WorldWideScience

Sample records for animal spect system

  1. The application and development of animal SPECT

    International Nuclear Information System (INIS)

    Animal SPECT is an important research approach for translating preclinical to clinical study. It has been widely applied in drug development and the researches of physiology and diseases in small animal models. With the rapid progresses of hardware technology and algorithm of image reconstruction, the systemic sensitivity,spatial resolution and quantitative accuracy of animal SPECT have been greatly improved. Animal SPECT has great advantages over animal PET with the feasibility of study, the convenience acquisition of radiopharmaceuticals and relative low cost. In a certain period, animal SPECT will still be a main approach for preclinical researches of molecular imaging. (author)

  2. A restraint-free small animal SPECT imaging system with motion tracking

    Energy Technology Data Exchange (ETDEWEB)

    Weisenberger, A.G.; Gleason, S.S.; Goddard, J.; Kross, B.; Majewski, S.; Meikle, S.R.; Paulus, M.J.; Pomper, M.; Popov, V.; Smith, M.F.; Welch, B.L.; Wojcik, R.

    2005-06-01

    We report on an approach toward the development of a high-resolution single photon emission computed tomography (SPECT) system to image the biodistribution of radiolabeled tracers such as Tc-99m and I-125 in unrestrained/unanesthetized mice. An infrared (IR)-based position tracking apparatus has been developed and integrated into a SPECT gantry. The tracking system is designed to measure the spatial position of a mouse's head at a rate of 10-15 frames per second with submillimeter accuracy. The high-resolution, gamma imaging detectors are based on pixellated NaI(Tl) crystal scintillator arrays, position-sensitive photomultiplier tubes, and novel readout circuitry requiring fewer analog-digital converter (ADC) channels while retaining high spatial resolution. Two SPECT gamma camera detector heads based upon position-sensitive photomultiplier tubes have been built and installed onto the gantry. The IR landmark-based pose measurement and tracking system is under development to provide animal position data during a SPECT scan. The animal position and orientation data acquired by the tracking system will be used for motion correction during the tomographic image reconstruction.

  3. MRC-SPECT: A sub-500 µm resolution MR-compatible SPECT system for simultaneous dual-modality study of small animals

    International Nuclear Information System (INIS)

    In this paper, we will report the development of an ultrahigh resolution MR-compatible SPECT system that can be operated inside a pre-existing clinical MR scanner for simultaneous dual-modality imaging of small animals. This system is constructed with 40 small-pixel CdTe detector modules assembled in a fully stationary ring SPECT geometry. We have experimentally demonstrated that this system is capable of providing an imaging resolution of <500 μm when operating inside MR scanners. We will report the design, construction of the MRI-compatible SPECT system, including the detector technology, collimator, system development and so on. The first imaging results obtained with this newly constructed SPECT system will also be reported

  4. Preliminary evaluation of the tomographic performance of the mediSPECT small animal imaging system

    Science.gov (United States)

    Accorsi, Roberto; Curion, Assunta Simona; Frallicciardi, Paola; Lanza, Richard C.; Lauria, Adele; Mettivier, Giovanni; Montesi, Maria Cristina; Russo, Paolo

    2007-02-01

    We report on the tests of a prototype (MediSPECT) system developed at University & INFN Napoli, for Single Photon Emission Computed Tomography (SPECT) imaging on small animals with a small Field of View (FoV) and high spatial resolution. MediSPECT is a SPECT imaging system based on a 1-mm-thick CdTe pixel detector, bump-bonded to the Medipix2 CMOS readout circuit operating in single-photon counting. The CdTe detector has 256×256 square array of pixels arranged with a 55 μm pitch, for a sensitive area of 14×14 mm 2. In its present version, this system implements a single detector head, mounted on a rotating gantry. For preliminary testing and calibration of the acquisition equipment and image reconstruction algorithms, 90 projections of a γ-ray point source ( 109Cd) through a single pinhole (diameter 0.4 mm; radius of rotation about 2.5 cm; focal length about 4.5 cm) were acquired for 20 min each in a step-and-shoot mode. Capillaries, 800 μm in diameter, were arranged in a Y-shape to form a more complex phantom ( 125I, 1 mm pinhole diameter, 45 projections, each acquired for 25 min). Images were reconstructed with a custom algorithm implementing standard OS-EM with center of rotation correction and spatial resolution of 0.2 mm over a FoV of 2 mm was obtained.

  5. Development of a combined microSPECT/CT system for small animal imaging

    Science.gov (United States)

    Sun, Mingshan

    Modern advances in the biomedical sciences have placed increased attention on small animals such as mice and rats as models of human biology and disease in biological research and pharmaceutical development. Their small size and fast breeding rate, their physiologic similarity to human, and, more importantly, the availability of sophisticated genetic manipulations, all have made mice and rats the laboratory mammals of choice in these experimental studies. However, the increased use of small animals in biomedical research also calls for new instruments that can measure the anatomic and metabolic information noninvasively with adequate spatial resolution and measurement sensitivity to facilitate these studies. This dissertation describes the engineering development of a combined single photon emission computed tomography (SPECT) and X-ray computed tomography (CT) system dedicated for small animals imaging. The system aims to obtain both the anatomic and metabolic images with submillimeter spatial resolution in a way that the data can be correlated to provide improved image quality and to offer more complete biological evaluation for biomedical studies involving small animals. The project requires development of complete microSPECT and microCT subsystems. Both subsystems are configured with a shared gantry and animal bed with integrated instrumentation for data acquisition and system control. The microCT employs a microfocus X-ray tube and a CCD-based detector for low noise, high resolution imaging. The microSPECT utilizes three semiconductor detectors coupled with pinhole collimators. A significant contribution of this dissertation project is the development of iterative algorithms with geometrical compensation that allows radionuclide images to be reconstructed at submillimeter spatial resolution, but with significantly higher detection efficiency than conventional methods. Both subsystems are capable of helical scans, offering lengthened field of view and improved

  6. Performance evaluation of a compact PET/SPECT/CT tri-modality system for small animal imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qingyang [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084 (China); Wang, Shi [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084 (China); Ma, Tianyu, E-mail: maty@tsinghua.edu.cn [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084 (China); Wu, Jing; Liu, Hui; Xu, Tianpeng; Xia, Yan; Fan, Peng; Lyu, Zhenlei; Liu, Yaqiang [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084 (China)

    2015-06-21

    PET, SPECT and CT imaging techniques are widely used in preclinical small animal imaging applications. In this paper, we present a compact small animal PET/SPECT/CT tri-modality system. A dual-functional, shared detector design is implemented which enables PET and SPECT imaging with a same LYSO ring detector. A multi-pinhole collimator is mounted on the system and inserted into the detector ring in SPECT imaging mode. A cone-beam CT consisting of a micro focus X-ray tube and a CMOS detector is implemented. The detailed design and the performance evaluations are reported in this paper. In PET imaging mode, the measured NEMA based spatial resolution is 2.12 mm (FWHM), and the sensitivity at the central field of view (CFOV) is 3.2%. The FOV size is 50 mm (∅)×100 mm (L). The SPECT has a spatial resolution of 1.32 mm (FWHM) and an average sensitivity of 0.031% at the center axial, and a 30 mm (∅)×90 mm (L) FOV. The CT spatial resolution is 8.32 lp/mm @10%MTF, and the contrast discrimination function value is 2.06% with 1.5 mm size cubic box object. In conclusion, a compact, tri-modality PET/SPECT/CT system was successfully built with low cost and high performance.

  7. Performance evaluation of a compact PET/SPECT/CT tri-modality system for small animal imaging applications

    International Nuclear Information System (INIS)

    PET, SPECT and CT imaging techniques are widely used in preclinical small animal imaging applications. In this paper, we present a compact small animal PET/SPECT/CT tri-modality system. A dual-functional, shared detector design is implemented which enables PET and SPECT imaging with a same LYSO ring detector. A multi-pinhole collimator is mounted on the system and inserted into the detector ring in SPECT imaging mode. A cone-beam CT consisting of a micro focus X-ray tube and a CMOS detector is implemented. The detailed design and the performance evaluations are reported in this paper. In PET imaging mode, the measured NEMA based spatial resolution is 2.12 mm (FWHM), and the sensitivity at the central field of view (CFOV) is 3.2%. The FOV size is 50 mm (∅)×100 mm (L). The SPECT has a spatial resolution of 1.32 mm (FWHM) and an average sensitivity of 0.031% at the center axial, and a 30 mm (∅)×90 mm (L) FOV. The CT spatial resolution is 8.32 lp/mm @10%MTF, and the contrast discrimination function value is 2.06% with 1.5 mm size cubic box object. In conclusion, a compact, tri-modality PET/SPECT/CT system was successfully built with low cost and high performance

  8. Implementation and assessment of an animal management system for small-animal micro-CT / micro-SPECT imaging

    Science.gov (United States)

    Holdsworth, David W.; Detombe, Sarah A.; Chiodo, Chris; Fricke, Stanley T.; Drangova, Maria

    2011-03-01

    Advances in laboratory imaging systems for CT, SPECT, MRI, and PET facilitate routine micro-imaging during pre-clinical investigations. Challenges still arise when dealing with immune-compromised animals, biohazardous agents, and multi-modality imaging. These challenges can be overcome with an appropriate animal management system (AMS), with the capability for supporting and monitoring a rat or mouse during micro-imaging. We report the implementation and assessment of a new AMS system for mice (PRA-3000 / AHS-2750, ASI Instruments, Warren MI), designed to be compatible with a commercial micro-CT / micro-SPECT imaging system (eXplore speCZT, GE Healthcare, London ON). The AMS was assessed under the following criteria: 1) compatibility with the imaging system (i.e. artifact generation, geometric dimensions); 2) compatibility with live animals (i.e. positioning, temperature regulation, anesthetic supply); 3) monitoring capabilities (i.e. rectal temperature, respiratory and cardiac monitoring); 4) stability of co-registration; and 5) containment. Micro-CT scans performed using a standardized live-animal protocol (90 kVp, 40 mA, 900 views, 16 ms per view) exhibited low noise (+/-19 HU) and acceptable artifact from high-density components within the AMS (e.g. ECG pad contacts). Live mice were imaged repeatedly (with removal and replacement of the AMS) and spatial registration was found to be stable to within +/-0.07 mm. All animals tolerated enclosure within the AMS for extended periods (i.e. > one hour) without distress, based on continuous recordings of rectal temperature, ECG waveform and respiratory rate. A sealed AMS system extends the capability of a conventional micro-imaging system to include immune-compromised and biosafety level 2 mouse-imaging protocols.

  9. Simulation, construction and application of focused pinhole small animal SPECT

    OpenAIRE

    Vastenhouw, B.

    2008-01-01

    New developments in molecular imaging techniques like small animal SPECT systems are important tools to analyze mouse models of human diseases. The main subjects of this thesis are simulation, construction and image reconstruction algorithms needed for the development of a small-animal SPECT system called U-SPECT. With the U-SPECT it is possible to study the function of organs and tissue in vivo at sub-half millimeter scale using radioactively labeled tracers. The first prototype (U-SPECT-I) ...

  10. Simulation, construction and application of focused pinhole small animal SPECT

    NARCIS (Netherlands)

    Vastenhouw, B.

    2008-01-01

    New developments in molecular imaging techniques like small animal SPECT systems are important tools to analyze mouse models of human diseases. The main subjects of this thesis are simulation, construction and image reconstruction algorithms needed for the development of a small-animal SPECT system

  11. Resolution-recovery-embedded image reconstruction for a high-resolution animal SPECT system.

    Science.gov (United States)

    Zeraatkar, Navid; Sajedi, Salar; Farahani, Mohammad Hossein; Arabi, Hossein; Sarkar, Saeed; Ghafarian, Pardis; Rahmim, Arman; Ay, Mohammad Reza

    2014-11-01

    The small-animal High-Resolution SPECT (HiReSPECT) is a dedicated dual-head gamma camera recently designed and developed in our laboratory for imaging of murine models. Each detector is composed of an array of 1.2 × 1.2 mm(2) (pitch) pixelated CsI(Na) crystals. Two position-sensitive photomultiplier tubes (H8500) are coupled to each head's crystal. In this paper, we report on a resolution-recovery-embedded image reconstruction code applicable to the system and present the experimental results achieved using different phantoms and mouse scans. Collimator-detector response functions (CDRFs) were measured via a pixel-driven method using capillary sources at finite distances from the head within the field of view (FOV). CDRFs were then fitted by independent Gaussian functions. Thereafter, linear interpolations were applied to the standard deviation (σ) values of the fitted Gaussians, yielding a continuous map of CDRF at varying distances from the head. A rotation-based maximum-likelihood expectation maximization (MLEM) method was used for reconstruction. A fast rotation algorithm was developed to rotate the image matrix according to the desired angle by means of pre-generated rotation maps. The experiments demonstrated improved resolution utilizing our resolution-recovery-embedded image reconstruction. While the full-width at half-maximum (FWHM) radial and tangential resolution measurements of the system were over 2 mm in nearly all positions within the FOV without resolution recovery, reaching around 2.5 mm in some locations, they fell below 1.8 mm everywhere within the FOV using the resolution-recovery algorithm. The noise performance of the system was also acceptable; the standard deviation of the average counts per voxel in the reconstructed images was 6.6% and 8.3% without and with resolution recovery, respectively.

  12. Exprerimental Evaluation of a Dedicated Pinhole SPECT System for Small Animal Imaging and Scintimammography

    Directory of Open Access Journals (Sweden)

    G. Loudos

    2011-02-01

    Full Text Available Nuclear medicine (SPECT and PET provides functional information, which is complementary to the structural. In cancer imaging radiopharmaceuticals allow visualization of cancer cells functionality, thus small cell population can be imaged. This allows early diagnosis, as well as fast assessment of response to therapy. Our system is a single head gamma camera based on an R3292 position sensitive photomultiplier tube (PSPMT, coupled to a 10cm in diameter CsI:Tl crystal. We have assessed two CsI:Tl crystals with pixel size of 2x2mm2 and 3x3mm2 respectively. Three collimators were tested: a a hexagonal, 1.1mm in diameter, general purpose parallel hole collimator b a 1mm pinhole and c a 2mm pinhole. Systems were tested using capillary phantoms. All measurements were carried out in photon counting mode with gamma radiation produced by 99mTc. Using the 2x2mm2 crystal and the 1mm pinhole collimator - a resolution better than 1mm was achieved. This allows very detailed imaging of small animals. Using the 3x3mm2 and the 2mm pinhole collimator a resolution of 1.3mm was possible with suitable sensitivity for breast imaging. Those results indicate that this system is suitable for animal and breast studies. The next step will be clinical evaluation of the camera.

  13. Design of a high-resolution small-animal SPECT-CT system sharing a CdTe semiconductor detector

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Hyun-Ju; Lee, Young-Jin; Lee, Seung-Wan; Cho, Hyo-Min; Choi, Yu-Na; Kim, Hee-Joung [Yonsei University, Wonju (Korea, Republic of)

    2012-07-15

    A single photon emission computed tomography (SPECT) system with a co-registered X-y computed tomography (CT) system allows the convergence of functional information and morphologic information. The localization of radio pharmaceuticals on a SPECT can be enhanced by combining the SPECT with an anatomical modality, such as X-ray CT. Gamma-ray imaging for nuclear medicine devices and X-ray imaging systems for diagnostics has recently been developed based on semiconductor detectors, and semiconductor detector materials such as cadmium telluride (CdTe) or cadmium zinc telluride (CZT) are available for both X-ray and gamma-ray systems for small animal imaging. CdTe or CZT detectors provide strong absorption and high detection efficiency of high energy X-ray and gamma-ray photons because of their large atomic numbers. In this study, a pinhole collimator SPECT system sharing a cadmium telluride (CdTe) detector with a CT was designed. The GEANT4 application for tomographic emission (GATE) v.6.1 was used for the simulation. The pinhole collimator was designed to obtain a high spatial resolution of the SPECT system. The acquisition time for each projection was 40 seconds, and 60 projections were obtained for tomographic image acquisition. The reconstruction was performed using ordered subset expectation maximization (OS-EM) algorithms. The sensitivity and the spatial resolution were measured on the GATE simulation to evaluate the system characteristics. The spatial resolution of the system calculated from the FWHM of Gaussian fitted PSF curve was 0.69 mm, and the sensitivity of the system was measured to be 0.354 cps/kBq by using a Tc-99m point source of 1 MBq for 800 seconds. A phantom study was performed to verify the design of the dual imaging modality system. The system will be built as designed, and it can be applied as a pre-clinical imaging system.

  14. A clinical gamma camera-based pinhole collimated system for high resolution small animal SPECT imaging

    International Nuclear Information System (INIS)

    The main objective of the present study was to upgrade a clinical gamma camera to obtain high resolution tomographic images of small animal organs. The system is based on a clinical gamma camera to which we have adapted a special-purpose pinhole collimator and a device for positioning and rotating the target based on a computer-controlled step motor. We developed a software tool to reconstruct the target's three-dimensional distribution of emission from a set of planar projections, based on the maximum likelihood algorithm. We present details on the hardware and software implementation. We imaged phantoms and heart and kidneys of rats. When using pinhole collimators, the spatial resolution and sensitivity of the imaging system depend on parameters such as the detector-to-collimator and detector-to-target distances and pinhole diameter. In this study, we reached an object voxel size of 0.6 mm and spatial resolution better than 2.4 and 1.7 mm full width at half maximum when 1.5- and 1.0-mm diameter pinholes were used, respectively. Appropriate sensitivity to study the target of interest was attained in both cases. Additionally, we show that as few as 12 projections are sufficient to attain good quality reconstructions, a result that implies a significant reduction of acquisition time and opens the possibility for radiotracer dynamic studies. In conclusion, a high resolution single photon emission computed tomography (SPECT) system was developed using a commercial clinical gamma camera, allowing the acquisition of detailed volumetric images of small animal organs. This type of system has important implications for research areas such as Cardiology, Neurology or Oncology. (author)

  15. A clinical gamma camera-based pinhole collimated system for high resolution small animal SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J.; Galvis-Alonso, O.Y., E-mail: mejia_famerp@yahoo.com.b [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Biologia Molecular; Castro, A.A. de; Simoes, M.V. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Clinica Medica; Leite, J.P. [Universidade de Sao Paulo (FMRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Medicina. Dept. de Neurociencias e Ciencias do Comportamento; Braga, J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Astrofisica

    2010-11-15

    The main objective of the present study was to upgrade a clinical gamma camera to obtain high resolution tomographic images of small animal organs. The system is based on a clinical gamma camera to which we have adapted a special-purpose pinhole collimator and a device for positioning and rotating the target based on a computer-controlled step motor. We developed a software tool to reconstruct the target's three-dimensional distribution of emission from a set of planar projections, based on the maximum likelihood algorithm. We present details on the hardware and software implementation. We imaged phantoms and heart and kidneys of rats. When using pinhole collimators, the spatial resolution and sensitivity of the imaging system depend on parameters such as the detector-to-collimator and detector-to-target distances and pinhole diameter. In this study, we reached an object voxel size of 0.6 mm and spatial resolution better than 2.4 and 1.7 mm full width at half maximum when 1.5- and 1.0-mm diameter pinholes were used, respectively. Appropriate sensitivity to study the target of interest was attained in both cases. Additionally, we show that as few as 12 projections are sufficient to attain good quality reconstructions, a result that implies a significant reduction of acquisition time and opens the possibility for radiotracer dynamic studies. In conclusion, a high resolution single photon emission computed tomography (SPECT) system was developed using a commercial clinical gamma camera, allowing the acquisition of detailed volumetric images of small animal organs. This type of system has important implications for research areas such as Cardiology, Neurology or Oncology. (author)

  16. Small-animal SPECT and SPECT/CT: application in cardiovascular research

    International Nuclear Information System (INIS)

    Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses gamma cameras and collimators to form projection data that are used to estimate (dynamic) 3-D tracer distributions in vivo. Recent developments in multipinhole collimation and advanced image reconstruction have led to sub-millimetre and sub-half-millimetre resolution SPECT in rats and mice, respectively. In this article we review applications of microSPECT in cardiovascular research in which information about the function and pathology of the myocardium, vessels and neurons is obtained. We give examples on how diagnostic tracers, new therapeutic interventions, pre- and postcardiovascular event prognosis, and functional and pathophysiological heart conditions can be explored by microSPECT, using small-animal models of cardiovascular disease. (orig.)

  17. High-resolution SPECT for small-animal imaging

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This article presents a brief overview of the development of high-resolution SPECT for small-animal imaging. A pinhole collimator has been used for high-resolution animal SPECT to provide better spatial resolution and detection efficiency in comparison with a parallel-hole collimator. The theory of imaging characteristics of the pinhole collimator is presented and the designs of the pinhole aperture are discussed. The detector technologies used for the development of small-animal SPECT and the recent advances are presented. The evolving trend of small-animal SPECT is toward a multi-pinhole and a multi-detector system to obtain a high resolution and also a high detection efficiency.

  18. The multi-module multi-resolution SPECT system: A tool for variable-pinhole small-animal imaging

    Science.gov (United States)

    Hesterman, Jacob Yost

    The multi-module, multi-resolution SPECT system (M 3R) was developed and evaluated at the University of Arizona's Center for Gamma-Ray Imaging (CGRI). The system consists of four modular gamma cameras stationed around a Cerrobend shielding assembly. Slots machined into the shielding allow for the easy interchange of pinhole apertures, providing M3R with excellent hardware flexibility. Motivation for the system included serving as a prototype for a tabletop, small-animal SPECT system, acting as a testbed for image quality by enabling the experimental validation of imaging theory, and aiding in the development of techniques for the emerging field of adaptive SPECT imaging. Development of the system included design and construction of the shielding assembly and pinhole apertures. The issue of pinhole design and evaluation represents a recurring theme of the presented work. Existing calibration methods were adapted for use with M3R. A new algorithm, the contracting grid-search algorithm, that is capable of being executed in hardware was developed for use in position estimation. The algorithm was successfully applied in software and progress was made in hardware implementation. Special equipment and interpolation techniques were also developed to deal with M3R's unique system design and calibration requirements. A code library was created to simplify the many image processing steps required to realize successful analysis of measured image and calibration data and to achieve reconstruction. Observer studies were performed using both projection data and reconstructed images. These observer studies sought to explore signal-detection and activity estimation for various pinhole apertures. Special attention was paid to object variability, including the development and statistical analysis of a phantom capable of generating multiple realizations of a random, textured background. The results of these studies indicate potential for multiple-pinhole, multiplexed apertures but

  19. Design Optimization of a Small-animal SPECT System Using LGSO Continuous Crystal and a Micro Parallel-hole Collimator

    CERN Document Server

    Kim, Joong Hyun; Kim, Soo Mee; Hong, Seong Jong; Lee, Jae Sung

    2015-01-01

    The aim of this study was to optimize the design of a monolithic LGSO scintillation crystal and micro parallel-hole collimator for the development of a small-animal single photon emission computed tomography (SPECT) system with compact size, low-cost and reasonable performance through Monte Carlo simulation. L0.9GSO crystals with surface area of 50 mm X 50 mm were investigated for the design optimization. The intrinsic detection efficiency, intrinsic spatial resolution, and intrinsic energy resolution of crystals were estimated for different crystal thicknesses and photon energies (using I-125 and Tc-99m sources). Two kinds of surface treatments (providing polished and rough surfaces) were compared by optical photon simulation. The standard deviation of the angle between a micro-facet and the mean surface was set to 0.1 and 6.0 for polished and rough surfaces, respectively. For comparison, the intrinsic performance of NaI(Tl) was also investigated. A multi-photomultiplier tube was designed with 16 X 16 anode ...

  20. MediSPECT: Single photon emission computed tomography system for small field of view small animal imaging based on a CdTe hybrid pixel detector

    Science.gov (United States)

    Accorsi, R.; Autiero, M.; Celentano, L.; Chmeissani, M.; Cozzolino, R.; Curion, A. S.; Frallicciardi, P.; Laccetti, P.; Lanza, R. C.; Lauria, A.; Maiorino, M.; Marotta, M.; Mettivier, G.; Montesi, M. C.; Riccio, P.; Roberti, G.; Russo, P.

    2007-02-01

    We describe MediSPECT, a new scanner developed at University and INFN Napoli, for SPECT studies on small animals with a small field of view (FOV) and high spatial resolution. The CdTe pixel detector (a 256×256 matrix of 55 μm square pixels) operating in single photon counting for detection of gamma-rays with low and medium energy (e.g. 125I, 27-35 keV, 99mTc, 140 keV), is bump bonded to the Medipix2 readout chip. The FOV of the MediSPECT scanner with a coded aperture mask collimator ranges from 6.3 mm (system spatial resolution 110 μm at 27-35 keV) to 24.3 mm. With a 0.30 mm pinhole the FOV ranges from 2.4 to 29 mm (where the system spatial resolution is 1.0 mm at 27-35 keV and 2.0 mm at 140 keV). MediSPECT will be used for in vivo imaging of small organs or tissue structures in mouse, e.g., brain, thyroid, heart or tumor.

  1. Multiple-pinhole SPECT/CBCT system and its application on animal model on tumor

    Science.gov (United States)

    Bao, Shanglian; Li, Jun

    2011-12-01

    Characterized by wisdom and creativity, human beings are huge, complex, giant systems. Each person's life is experienced the process of birth, growth, aging and death. The genetic stability keeps human beings no change, and the mutation keeps the human beings in progress. The balance between stability and mutation are controlled by the nature laws automatically. But the balance often broken because the body's biochemical processes is out of order in vivo, which is scaled by quantitative concentrations for all molecular in human body. Now day, the biomedical imaging tools can investigate these process quantitatively.

  2. An accurate and efficient system model of iterative image reconstruction in high-resolution pinhole SPECT for small animal research

    International Nuclear Information System (INIS)

    Accurate modeling of the photon acquisition process in pinhole SPECT is essential for optimizing resolution. In this work, the authors develop an accurate system model in which pinhole finite aperture and depth-dependent geometric sensitivity are explicitly included. To achieve high-resolution pinhole SPECT, the voxel size is usually set in the range of sub-millimeter so that the total number of image voxels increase accordingly. It is inevitably that a system matrix that models a variety of favorable physical factors will become extremely sophisticated. An efficient implementation for such an accurate system model is proposed in this research. We first use the geometric symmetries to reduce redundant entries in the matrix. Due to the sparseness of the matrix, only non-zero terms are stored. A novel center-to-radius recording rule is also developed to effectively describe the relation between a voxel and its related detectors at every projection angle. The proposed system matrix is also suitable for multi-threaded computing. Finally, the accuracy and effectiveness of the proposed system model is evaluated in a workstation equipped with two Quad-Core Intel X eon processors.

  3. Small-animal SPECT and SPECT/CT: application in cardiovascular research

    OpenAIRE

    Golestani, R.; Wu, C.; Tio, R.A.; Zeebregts, C. J.; Petrov, A.D.; Beekman, F.J.; Dierckx, R. A. J. O.; Boersma, H.H.; Slart, R.H.J.A.

    2010-01-01

    Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses gamma cameras and collimators to form projection data that are used to estimate (dynamic) 3-D tracer distributions in vivo. Recent developments in multipinhole collimation and advanced image reconstr...

  4. Design and performance of a multi-pinhole collimation device for small animal imaging with clinical SPECT and SPECT-CT scanners

    International Nuclear Information System (INIS)

    A multi-pinhole collimation device is developed that uses the gamma camera detectors of a clinical SPECT or SPECT-CT scanner to produce high-resolution SPECT images. The device consists of a rotating cylindrical collimator having 22 tungsten pinholes with 0.9 mm diameter apertures and an animal bed inside the collimator that moves linearly to provide helical or ordered-subsets axial sampling. CT images also may be acquired on a SPECT-CT scanner for purposes of image co-registration and SPECT attenuation correction. The device is placed on the patient table of the scanner without attaching to the detectors or scanner gantry. The system geometry is calibrated in-place from point source data and is then used during image reconstruction. The SPECT imaging performance of the device is evaluated with test phantom scans. Spatial resolution from reconstructed point source images is measured to be 0.6 mm full width at half maximum or better. Micro-Derenzo phantom images demonstrate the ability to resolve 0.7 mm diameter rod patterns. The axial slabs of a Micro-Defrise phantom are visualized well. Collimator efficiency exceeds 0.05% at the center of the field of view, and images of a uniform phantom show acceptable uniformity and minimal artifact. The overall simplicity and relatively good imaging performance of the device make it an interesting low-cost alternative to dedicated small animal scanners

  5. Design and performance of a multi-pinhole collimation device for small animal imaging with clinical SPECT and SPECT CT scanners

    Science.gov (United States)

    Di Filippo, Frank P.

    2008-08-01

    A multi-pinhole collimation device is developed that uses the gamma camera detectors of a clinical SPECT or SPECT-CT scanner to produce high-resolution SPECT images. The device consists of a rotating cylindrical collimator having 22 tungsten pinholes with 0.9 mm diameter apertures and an animal bed inside the collimator that moves linearly to provide helical or ordered-subsets axial sampling. CT images also may be acquired on a SPECT-CT scanner for purposes of image co-registration and SPECT attenuation correction. The device is placed on the patient table of the scanner without attaching to the detectors or scanner gantry. The system geometry is calibrated in-place from point source data and is then used during image reconstruction. The SPECT imaging performance of the device is evaluated with test phantom scans. Spatial resolution from reconstructed point source images is measured to be 0.6 mm full width at half maximum or better. Micro-Derenzo phantom images demonstrate the ability to resolve 0.7 mm diameter rod patterns. The axial slabs of a Micro-Defrise phantom are visualized well. Collimator efficiency exceeds 0.05% at the center of the field of view, and images of a uniform phantom show acceptable uniformity and minimal artifact. The overall simplicity and relatively good imaging performance of the device make it an interesting low-cost alternative to dedicated small animal scanners.

  6. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals

    Energy Technology Data Exchange (ETDEWEB)

    Joint Graduate Group in Bioengineering, University of California, San Francisco and University of California, Berkeley; Department of Radiology, University of California; Gullberg, Grant T; Hwang, Andrew B.; Franc, Benjamin L.; Gullberg, Grant T.; Hasegawa, Bruce H.

    2008-02-15

    Small animal SPECT imaging systems have multiple potential applications in biomedical research. Whereas SPECT data are commonly interpreted qualitatively in a clinical setting, the ability to accurately quantify measurements will increase the utility of the SPECT data for laboratory measurements involving small animals. In this work, we assess the effect of photon attenuation, scatter and partial volume errors on the quantitative accuracy of small animal SPECT measurements, first with Monte Carlo simulation and then confirmed with experimental measurements. The simulations modeled the imaging geometry of a commercially available small animal SPECT system. We simulated the imaging of a radioactive source within a cylinder of water, and reconstructed the projection data using iterative reconstruction algorithms. The size of the source and the size of the surrounding cylinder were varied to evaluate the effects of photon attenuation and scatter on quantitative accuracy. We found that photon attenuation can reduce the measured concentration of radioactivity in a volume of interest in the center of a rat-sized cylinder of water by up to 50percent when imaging with iodine-125, and up to 25percent when imaging with technetium-99m. When imaging with iodine-125, the scatter-to-primary ratio can reach up to approximately 30percent, and can cause overestimation of the radioactivity concentration when reconstructing data with attenuation correction. We varied the size of the source to evaluate partial volume errors, which we found to be a strong function of the size of the volume of interest and the spatial resolution. These errors can result in large (>50percent) changes in the measured amount of radioactivity. The simulation results were compared with and found to agree with experimental measurements. The inclusion of attenuation correction in the reconstruction algorithm improved quantitative accuracy. We also found that an improvement of the spatial resolution through the

  7. Feasibility of a CdTe-based SPECT for high-resolution low-dose small animal imaging: a Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Dedicated single-photon-emission computed tomography (SPECT) systems based on pixelated semiconductors such as cadmium telluride (CdTe) are in development to study small animal models of human disease. In an effort to develop a high-resolution, low-dose system for small animal imaging, we compared a CdTe-based SPECT system and a conventional NaI(Tl)-based SPECT system in terms of spatial resolution, sensitivity, contrast, and contrast-to-noise ratio (CNR). In addition, we investigated the radiation absorbed dose and calculated a figure of merit (FOM) for both SPECT systems. Using the conventional NaI(Tl)-based SPECT system, we achieved a spatial resolution of 1.66 mm at a 30 mm source-to-collimator distance, and a resolution of 2.4-mm hot-rods. Using the newly-developed CdTe-based SPECT system, we achieved a spatial resolution of 1.32 mm FWHM at a 30 mm source-to-collimator distance, and a resolution of 1.7-mm hot-rods. The sensitivities at a 30 mm source-to-collimator distance were 115.73 counts/sec/MBq and 83.38 counts/sec/MBq for the CdTe-based SPECT and conventional NaI(Tl)-based SPECT systems, respectively. To compare quantitative measurements in the mouse brain, we calculated the CNR for images from both systems. The CNR from the CdTe-based SPECT system was 4.41, while that from the conventional NaI(Tl)-based SPECT system was 3.11 when the injected striatal dose was 160 Bq/voxel. The CNR increased as a function of injected dose in both systems. The FOM of the CdTe-based SPECT system was superior to that of the conventional NaI(Tl)-based SPECT system, and the highest FOM was achieved with the CdTe-based SPECT at a dose of 40 Bq/voxel injected into the striatum. Thus, a CdTe-based SPECT system showed significant improvement in performance compared with a conventional system in terms of spatial resolution, sensitivity, and CNR, while reducing the radiation dose to the small animal subject. Herein, we discuss the feasibility of a CdTe-based SPECT system for high

  8. High Sensitivity SPECT for Small Animals and Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Gregory S. [UC Davis

    2015-02-28

    Imaging systems using single gamma-ray emitting radioisotopes typically implement collimators in order to form the images. However, a tradeoff in sensitivity is inherent in the use of collimators, and modern preclinical single-photon emission computed tomography (SPECT) systems detect a very small fraction of emitted gamma-rays (<0.3%). We have built a collimator-less system, which can reach sensitivity of 40% for 99mTc imaging, while still producing images of sufficient spatial resolution for certain applications in thin objects such as mice, small plants, and well plates used for in vitro experiments.

  9. PET and SPECT of neurobiological systems

    International Nuclear Information System (INIS)

    Addresses a variety of aspects of neurotransmission in the brain. Details the latest results in probe development. Emphasis on a multidisciplinary approach. Written by internationally acclaimed experts. PET and SPECT of Neurobiological Systems combines the expertise of renowned authors whose dedication to the development of novel probes and techniques for the investigation of neurobiological systems has achieved international recognition. Various aspects of neurotransmission in the brain are discussed, such as visualization and quantification of (more than 20 different) neuroreceptors, neuroinflammatory markers, transporters, and enzymes as well as neurotransmitter synthesis, ?-amyloid deposition, cerebral blood flow, and the metabolic rate of glucose. The latest results in probe development are also detailed. Most chapters are written jointly by radiochemists and nuclear medicine specialists to ensure a multidisciplinary approach. This state of the art compendium will be valuable to anyone in the field of clinical or preclinical neuroscience, from the radiochemist and radiologist/nuclear medicine specialist to the interested neurobiologist and general practitioner. It is the second volume of a trilogy on PET and SPECT imaging in the neurosciences. Other volumes focus on PET and SPECT in psychiatry and PET and SPECT in neurology''.

  10. PET and SPECT of neurobiological systems

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, Rudi A.J.O. [Groningen Univ. (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Gent Univ. (Belgium). Dept. of Nuclear Medicine; Otte, Andreas [Univ. of Applied Sciences, Offenburg (Germany). Faculty of Electrical Engineering and Information Technology; Vries, Erik F.J. de; Waarde, Aren van (eds.) [Groningen Univ. (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging

    2014-04-01

    Addresses a variety of aspects of neurotransmission in the brain. Details the latest results in probe development. Emphasis on a multidisciplinary approach. Written by internationally acclaimed experts. PET and SPECT of Neurobiological Systems combines the expertise of renowned authors whose dedication to the development of novel probes and techniques for the investigation of neurobiological systems has achieved international recognition. Various aspects of neurotransmission in the brain are discussed, such as visualization and quantification of (more than 20 different) neuroreceptors, neuroinflammatory markers, transporters, and enzymes as well as neurotransmitter synthesis, ?-amyloid deposition, cerebral blood flow, and the metabolic rate of glucose. The latest results in probe development are also detailed. Most chapters are written jointly by radiochemists and nuclear medicine specialists to ensure a multidisciplinary approach. This state of the art compendium will be valuable to anyone in the field of clinical or preclinical neuroscience, from the radiochemist and radiologist/nuclear medicine specialist to the interested neurobiologist and general practitioner. It is the second volume of a trilogy on PET and SPECT imaging in the neurosciences. Other volumes focus on PET and SPECT in psychiatry and PET and SPECT in neurology''.

  11. Quantitative multi-pinhole small-animal SPECT : uniform versus non-uniform Chang attenuation correction

    NARCIS (Netherlands)

    Wu, C.; de Jong, J. R.; van Andel, H. A. Gratama; van der Have, F.; Vastenhouw, B.; Laverman, P.; Boerman, O. C.; Dierckx, R. A. J. O.; Beekman, F. J.

    2011-01-01

    Attenuation of photon flux on trajectories between the source and pinhole apertures affects the quantitative accuracy of reconstructed single-photon emission computed tomography (SPECT) images. We propose a Chang-based non-uniform attenuation correction (NUA-CT) for small-animal SPECT/CT with focusi

  12. Quantitative multi-pinhole small-animal SPECT: uniform versus non-uniform Chang attenuation correction

    NARCIS (Netherlands)

    Wu, C.; Jong, J.R. de; Gratama van Andel, H.A.; Have, F. van der; Vastenhouw, B.; Laverman, P.; Boerman, O.C.; Dierckx, R.A.; Beekman, F.J.

    2011-01-01

    Attenuation of photon flux on trajectories between the source and pinhole apertures affects the quantitative accuracy of reconstructed single-photon emission computed tomography (SPECT) images. We propose a Chang-based non-uniform attenuation correction (NUA-CT) for small-animal SPECT/CT with focusi

  13. Improving the quality of small animal brain pinhole SPECT imaging by Bayesian reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Sohlberg, Antti [Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, P.O. Box 1777, 70211, Kuopio (Finland); Lensu, Sanna [Department of Pharmacology and Toxicology, University of Kuopio, Kuopio (Finland); Department of Environmental Health, National Public Health Institute, Kuopio (Finland); Jolkkonen, Jukka [Department of Neuroscience and Neurology, University of Kuopio, Kuopio (Finland); Tuomisto, Leena [Department of Pharmacology and Toxicology, University of Kuopio, Kuopio (Finland); Ruotsalainen, Ulla [Institute of Signal Processing, DMI, Tampere University of Technology, Tampere (Finland); Kuikka, Jyrki T. [Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, P.O. Box 1777, 70211, Kuopio (Finland); Niuvanniemi Hospital, Kuopio (Finland)

    2004-07-01

    The possibility of using existing hardware makes pinhole single-photon emission computed tomography (SPECT) attractive when pursuing the ultra-high resolution required for small animal brain imaging. Unfortunately, the poor sensitivity and the heavy weight of the collimator hamper the use of pinhole SPECT in animal studies by generating noisy and misaligned projections. To improve the image quality we have developed a new Bayesian reconstruction method, pinhole median root prior (PH-MRP), which prevents the excessive noise accumulation from the projections to the reconstructed image. The PH-MRP algorithm was used to reconstruct data acquired with our small animal rotating device, which was designed to reduce the rotation orbit misalignments. Phantom experiments were performed to test the device and compare the PH-MRP with the conventional Feldkamp-Davis-Kress (FDK) and pinhole ordered subsets maximum likelihood expectation maximisation (PH-OSEM) reconstruction algorithms. The feasibility of the system for small animal brain imaging was studied with Han-Wistar rats injected with {sup 123}I-epidepride and {sup 99m}Tc-hydroxy methylene diphosphonate. Considering all the experiments, no shape distortions due to orbit misalignments were encountered and remarkable improvements in noise characteristics and also in overall image quality were observed when the PH-MRP was applied instead of the FDK or PH-OSEM. In addition, the proposed methods utilise existing hardware and require only a certain amount of construction and programming work, making them easy to implement. (orig.)

  14. Improving the quality of small animal brain pinhole SPECT imaging by Bayesian reconstruction

    International Nuclear Information System (INIS)

    The possibility of using existing hardware makes pinhole single-photon emission computed tomography (SPECT) attractive when pursuing the ultra-high resolution required for small animal brain imaging. Unfortunately, the poor sensitivity and the heavy weight of the collimator hamper the use of pinhole SPECT in animal studies by generating noisy and misaligned projections. To improve the image quality we have developed a new Bayesian reconstruction method, pinhole median root prior (PH-MRP), which prevents the excessive noise accumulation from the projections to the reconstructed image. The PH-MRP algorithm was used to reconstruct data acquired with our small animal rotating device, which was designed to reduce the rotation orbit misalignments. Phantom experiments were performed to test the device and compare the PH-MRP with the conventional Feldkamp-Davis-Kress (FDK) and pinhole ordered subsets maximum likelihood expectation maximisation (PH-OSEM) reconstruction algorithms. The feasibility of the system for small animal brain imaging was studied with Han-Wistar rats injected with 123I-epidepride and 99mTc-hydroxy methylene diphosphonate. Considering all the experiments, no shape distortions due to orbit misalignments were encountered and remarkable improvements in noise characteristics and also in overall image quality were observed when the PH-MRP was applied instead of the FDK or PH-OSEM. In addition, the proposed methods utilise existing hardware and require only a certain amount of construction and programming work, making them easy to implement. (orig.)

  15. Improving the quality of small animal brain pinhole SPECT imaging by Bayesian reconstruction.

    Science.gov (United States)

    Sohlberg, Antti; Lensu, Sanna; Jolkkonen, Jukka; Tuomisto, Leena; Ruotsalainen, Ulla; Kuikka, Jyrki T

    2004-07-01

    The possibility of using existing hardware makes pinhole single-photon emission computed tomography (SPECT) attractive when pursuing the ultra-high resolution required for small animal brain imaging. Unfortunately, the poor sensitivity and the heavy weight of the collimator hamper the use of pinhole SPECT in animal studies by generating noisy and misaligned projections. To improve the image quality we have developed a new Bayesian reconstruction method, pinhole median root prior (PH-MRP), which prevents the excessive noise accumulation from the projections to the reconstructed image. The PH-MRP algorithm was used to reconstruct data acquired with our small animal rotating device, which was designed to reduce the rotation orbit misalignments. Phantom experiments were performed to test the device and compare the PH-MRP with the conventional Feldkamp-Davis-Kress (FDK) and pinhole ordered subsets maximum likelihood expectation maximisation (PH-OSEM) reconstruction algorithms. The feasibility of the system for small animal brain imaging was studied with Han-Wistar rats injected with (123)I-epidepride and (99m)Tc-hydroxy methylene diphosphonate. Considering all the experiments, no shape distortions due to orbit misalignments were encountered and remarkable improvements in noise characteristics and also in overall image quality were observed when the PH-MRP was applied instead of the FDK or PH-OSEM. In addition, the proposed methods utilise existing hardware and require only a certain amount of construction and programming work, making them easy to implement. PMID:14991246

  16. Evaluation and reduction of respiratory motion artifacts in small animal SPECT with GATE

    International Nuclear Information System (INIS)

    The degradation of image quality caused by respiration is a major impediment to accurate lesion detection in single photon emission computed tomography (SPECT) imaging. This study was performed to evaluate the effects of lung motion on image quantification. A small animal SPECT system with NaI(Tl) was modeled in the Geant4 application for tomographic emission (GATE) simulation for a lung lesion using a 4D mouse whole-body phantom. SPECT images were obtained using 120 projection views acquired from 0o to 360o with a 3o step. Slices were reconstructed using ordered subsets expectation maximization (OS-EM) without attenuation correction with five iterations and four subsets. Image quality was compared between the static mode without respiratory motion, and dynamic mode with respiratory motion in terms of spatial resolution was measured by the full width at half maximum (FWHM), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). The FWHM of the non-gated image and the respiratory gated image were also compared. Spatial resolution improved as activity increased and lesion diameter decreased in the static and dynamic modes. The SNR and CNR increased significantly as lesion activity increased and lesion diameter decreased. Our results show that respiratory motion leads to reduced contrast and quantitative accuracy and that image quantification depends on both the amplitude and the pattern of the respiratory motion. We verified that respiratory motion can have a major effect on the accuracy of measurement of lung lesions and that respiratory gating can reduce activity smearing on SPECT images

  17. Geometric calibration for a SPECT system dedicated to breast imaging

    Institute of Scientific and Technical Information of China (English)

    WU Li-Wei; WEI Long; CAO Xue-Xiang; WANG Lu; HUANG Xian-Chao; CHAI Pei; YUN Ming-Kai; ZHANG Yu-Bao; ZHANG Long; SHAN Bao-Ci

    2012-01-01

    Geometric calibration is critical to the accurate SPECT reconstruction.In this paper,a geometric calibration method was developed for a dedicated breast SPECT system with a tilted parallel beam (TPB)orbit.The acquisition geometry of the breast SPECT was firstly characterized.And then its projection model was established based on the acquisition geometry.Finally,the calibration results were obtained using a nonlinear optimization method that fitted the measured projections to the model.Monte Carlo data of the breast SPECT were used to verify the calibration method.Simulation results showed that the geometric parameters with reasonable accuracy could be obtained by the proposed method.

  18. High resolution SPECT imaging for visualization of intratumoral heterogeneity using a SPECT/CT scanner dedicated for small animal imaging

    International Nuclear Information System (INIS)

    Tumor interiors are never homogeneous and in vivo visualization of intratumoral heterogeneity would be an innovation that contributes to improved cancer therapy. But, conventional nuclear medicine tests have failed to visualize heterogeneity in vivo because of limited spatial resolution. Recently developed single photon emission computed tomographic (SPECT) scanners dedicated for small animal imaging are of interest due to their excellent spatial resolution of 111In and simulations of actual small animal imaging. The optimal conditions obtained were validated by in vivo imaging of sarcoma 180-bearing mice. Larger number of counts must be obtained within limited acquisition time to visualize tumor heterogeneity in vivo in animal imaging, compared to cases that simply detect tumors. At an acquisition time of 30 min, better image quality was obtained with pinhole apertures diameter of 1.4 mm than of 1.0 mm. The obtained best spatial resolution was 1.3 mm, it was acceptable for our purpose, though a little worse than the best possible performance of the scanner (1.0 mm). Additionally, the reconstruction parameters, such as noise suppression, voxel size, and iteration/subset number, needed to be optimized under the limited conditions and were different from those found under the ideal condition. The minimal radioactivity concentration for visualization of heterogeneous tumor interiors was estimated to be as high as 0.2-0.5 MBq/mL. Liposomes containing 111In met this requirement and were administered to tumor-bearing mice. SPECT imaging successfully showed heterogeneous 111In distribution within the tumors in vivo with good spatial resolution. A threshold of 0.2 MBq/g for clear visualization of tumor heterogeneity was validated. Autoradiograms obtained ex vivo of excised tumors confirmed that the in vivo SPECT images accurately depicted the heterogeneous intratumoral accumulation of liposomes. Intratumoral heterogeneity was successfully visualized under the optimized

  19. Novel high resolution SPECT instrumentation and techniques for molecular imaging of small animals

    International Nuclear Information System (INIS)

    The main purpose of the project is the development and tuning of an advanced detector system for molecular imaging with radionuclides on small animal. The equipment has sub-millimeter spatial resolution, adequate sensitivity and field of view, It is designed for studies, on animal models, of diagnostic and/or therapeutic techniques in cardiovascular diseases, such as detection and identification of vulnerable plaques in atherosclerosis and stem cell therapy for cardiac repair. The present activities is carried on in collaboration with groups from Johns Hopkins University (Baltimore), Jefferson Lab (Newport News), Istituto Nazionale Fisica Nucleare (INFN) and ISS (Dept. Technology and Health and Dept. Therapeutic Research and Medicines Evaluation). The main results of the last two years are summarized as follows: development of the SPECT system prototype; set up of the technique for vulnerable plaques detection;demonstration of detectability of the cardiac perfusion via peritoneum injection of the radiotracer

  20. Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition

    Science.gov (United States)

    Hamamura, Mark J.; Ha, Seunghoon; Roeck, Werner W.; Tugan Muftuler, L.; Wagenaar, Douglas J.; Meier, Dirk; Patt, Bradley E.; Nalcioglu, Orhan

    2010-03-01

    In medical imaging, single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high spatial resolution anatomical information as well as complementary functional information. In this study, we developed a miniaturized dual-modality SPECT/MRI (MRSPECT) system and demonstrated the feasibility of simultaneous SPECT and MRI data acquisition, with the possibility of whole-body MRSPECT systems through suitable scaling of components. For our MRSPECT system, a cadmium-zinc-telluride (CZT) nuclear radiation detector was interfaced with a specialized radiofrequency (RF) coil and placed within a whole-body 4 T MRI system. Various phantom experiments characterized the interaction between the SPECT and MRI hardware components. The metallic components of the SPECT hardware altered the B0 field and generated a non-uniform reduction in the signal-to-noise ratio (SNR) of the MR images. The presence of a magnetic field generated a position shift and resolution loss in the nuclear projection data. Various techniques were proposed to compensate for these adverse effects. Overall, our results demonstrate that accurate, simultaneous SPECT and MRI data acquisition is feasible, justifying the further development of MRSPECT for either small-animal imaging or whole-body human systems by using appropriate components.

  1. Using the NEMA NU 4 PET image quality phantom in multipinhole small-animal SPECT

    NARCIS (Netherlands)

    Harteveld, A.A.; Meeuwis, A.P.W.; Disselhorst, J.A.; Slump, C.H.; Oyen, W.J.G.; Boerman, O.C.; Visser, E.P.

    2011-01-01

    Several commercial small-animal SPECT scanners using multipinhole collimation are presently available. However, generally accepted standards to characterize the performance of these scanners do not exist. Whereas for small-animal PET, the National Electrical Manufacturers Association (NEMA) NU 4 sta

  2. Design and development of a high resolution animal SPECT scanner dedicated for rat and mouse imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sajedi, Salar; Zeraatkar, Navid [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Moji, Vahideh; Farahani, Mohammad Hossein [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Parto Negar Persia Co, Tehran (Iran, Islamic Republic of); Sarkar, Saeed [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Arabi, Hossein [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Teymoorian, Behnoosh [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Parto Negar Persia Co, Tehran (Iran, Islamic Republic of); Ghafarian, Pardis [Chronic Respiratory Disease Research Center, NRITLD, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); PET/CT and Cyclotron Center, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rahmim, Arman [Department of Radiology, Johns Hopkins University, Baltimore, MD (United States); Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD (United States); Reza Ay, Mohammad, E-mail: mohammadreza_ay@sina.tums.ac.ir [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-03-21

    A dedicated small-animal SPECT system, HiReSPECT, was designed and developed to provide a high resolution molecular imaging modality in response to growing research demands. HiReSPECT is a dual-head system mounted on a rotating gantry. The detection system is based on pixelated CsI(Na) scintillator crystals coupled to two Hamamatsu H8500 Position Sensitive Photomultiplier Tubes in each head. Also, a high resolution parallel-hole collimator is applied to every head. The dimensions of each head are 50 mm×100 mm, enabling sufficient transaxial and axial fields-of-view (TFOV and AFOV), respectively, for coverage of the entire mouse in single-bed position imaging. However, a 50 mm TFOV is not sufficient for transaxial coverage of rats. To address this, each head can be rotated by 90 degrees in order to align the larger dimension of the heads with the short body axis, allowing tomographic data acquisition for rats. An innovative non-linear recursive filter was used for signal processing/detection. Resolution recovery was also embedded in the modified Maximum-Likelihood Expectation Maximization (MLEM) image reconstruction code to compensate for Collimator-Detector Response (CDR). Moreover, an innovative interpolation algorithm was developed to speed up the reconstruction code. The planar spatial resolution at the head surface and the image spatial resolutions were 1.7 mm and 1.2–1.6 mm, respectively. The measurements followed by post-processing showed that the observed count rate at 20% count loss is about 42 kcps. The system sensitivity at the collimator surface for heads 1 and 2 were 1.32 cps/µCi and 1.25 cps/µCi, respectively. The corresponding values were 1.18 cps/µCi and 1.02 cps/µCi at 8 cm distance from the collimator surfaces. In addition, whole-body scans of mice demonstrated appropriate imaging capability of the HiReSPECT.

  3. Design and development of a high resolution animal SPECT scanner dedicated for rat and mouse imaging

    International Nuclear Information System (INIS)

    A dedicated small-animal SPECT system, HiReSPECT, was designed and developed to provide a high resolution molecular imaging modality in response to growing research demands. HiReSPECT is a dual-head system mounted on a rotating gantry. The detection system is based on pixelated CsI(Na) scintillator crystals coupled to two Hamamatsu H8500 Position Sensitive Photomultiplier Tubes in each head. Also, a high resolution parallel-hole collimator is applied to every head. The dimensions of each head are 50 mm×100 mm, enabling sufficient transaxial and axial fields-of-view (TFOV and AFOV), respectively, for coverage of the entire mouse in single-bed position imaging. However, a 50 mm TFOV is not sufficient for transaxial coverage of rats. To address this, each head can be rotated by 90 degrees in order to align the larger dimension of the heads with the short body axis, allowing tomographic data acquisition for rats. An innovative non-linear recursive filter was used for signal processing/detection. Resolution recovery was also embedded in the modified Maximum-Likelihood Expectation Maximization (MLEM) image reconstruction code to compensate for Collimator-Detector Response (CDR). Moreover, an innovative interpolation algorithm was developed to speed up the reconstruction code. The planar spatial resolution at the head surface and the image spatial resolutions were 1.7 mm and 1.2–1.6 mm, respectively. The measurements followed by post-processing showed that the observed count rate at 20% count loss is about 42 kcps. The system sensitivity at the collimator surface for heads 1 and 2 were 1.32 cps/µCi and 1.25 cps/µCi, respectively. The corresponding values were 1.18 cps/µCi and 1.02 cps/µCi at 8 cm distance from the collimator surfaces. In addition, whole-body scans of mice demonstrated appropriate imaging capability of the HiReSPECT

  4. TierSPECT: performance of a dedicated small-animal-SPECT camera and first in vivo measurements; TierSPECT: Leistungsparameter einer dedizierten Kleintier-SPECT-Kamera und erste in vivo Messungen

    Energy Technology Data Exchange (ETDEWEB)

    Wirrwar, A.K.; Nikolaus, S.; Arkian, S.; Mueller, H.W. [Nuklearmedizinische Klinik, Uniklinikum Duesseldorf (Germany); Schramm, N.U. [Zentrallabor fuer Elektronik, Forschungszentrum Juelich (Germany); Cohnen, M. [Inst. fuer Diagnostische Radiologie, Uniklinikum Duesseldorf (Germany)

    2005-07-01

    This paper presents the performance of a new small-animal camera (TierSPECT) devised for the in vivo measurements of radiolabeled substances in small laboratory animals such as mice and rats. In a scatter medium, the camera has a tomographic spatial resolution of 2.87 mm and a sensitivity of 22 cps/MBq in a usable Field-of-View (FOV) with a diameter of 82 mm. The planar homogeneity amounts to 3.3%, the tomographic homogeneity lies between 3.2% and 3.5%. The deviation between filled and measured concentration of activity in a cylindrical 4-chamber-phantom was smaller than 2.6%. Using a novel rat head phantom with chamber volumes in the order of magnitude of the spatial resolution (between 0.065 ml and 0.19 ml) it could be demonstrated that studies of the rat neostriatal dopaminergic system are feasible under observance of physiological conditions. In vivo studies using [{sup 99m}Tc]diphosphonato-1,2-propandicarbonic acid ({sup 99m}Tc-DPD) and [{sup 123}I]N-{omega}-fluoropropyl-2{beta}-carbomethoxy-3{beta}-(4-iodophenyl)-nortropane ({sup 123}I-FP-CIT) proved that bone metabolism and dopamine transporter binding can be visualized with the TierSPECT. The fusion of {sup 99m}Tc-DPD and {sup 123}I-FP-CIT images allowed the differentiation between intra- and extracerebral structures. Pretreatment with methylphenidate resulted in blockade of striatal dopamine transporter binding. (orig.)

  5. Optimal energy window selection of a CZT-based small-animal SPECT for quantitative accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Su-Jin [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju 220-710 (Korea, Republic of); Yu, A. Ram [Laboratory animal center, OSONG Medical Innovation Foundation, Chunguk 363-951 (Korea, Republic of); Department of Nuclear Medicine, College of Medicine, Hanyang University Hospital, Seoul 133-792 (Korea, Republic of); Choi, Yun Young [Department of Nuclear Medicine, College of Medicine, Hanyang University Hospital, Seoul 133-792 (Korea, Republic of); Kim, Kyeong Min [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Kim, Hee-Joung, E-mail: hjk1@yonsei.ac.kr [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju 220-710 (Korea, Republic of)

    2015-05-11

    Cadmium zinc telluride (CZT)-based small-animal single-photon emission computed tomography (SPECT) has desirable characteristics such as superior energy resolution, but data acquisition for SPECT imaging has been widely performed with a conventional energy window. The aim of this study was to determine the optimal energy window settings for technetium-99 m ({sup 99m}Tc) and thallium-201 ({sup 201}Tl), the most commonly used isotopes in SPECT imaging, using CZT-based small-animal SPECT for quantitative accuracy. We experimentally investigated quantitative measurements with respect to primary count rate, contrast-to-noise ratio (CNR), and scatter fraction (SF) within various energy window settings using Triumph X-SPECT. The two ways of energy window settings were considered: an on-peak window and an off-peak window. In the on-peak window setting, energy centers were set on the photopeaks. In the off-peak window setting, the ratios of energy differences between the photopeak from the lower- and higher-threshold varied from 4:6 to 3:7. In addition, the energy-window width for {sup 99m}Tc varied from 5% to 20%, and that for {sup 201}Tl varied from 10% to 30%. The results of this study enabled us to determine the optimal energy windows for each isotope in terms of primary count rate, CNR, and SF. We selected the optimal energy window that increases the primary count rate and CNR while decreasing SF. For {sup 99m}Tc SPECT imaging, the energy window of 138–145 keV with a 5% width and off-peak ratio of 3:7 was determined to be the optimal energy window. For {sup 201}Tl SPECT imaging, the energy window of 64–85 keV with a 30% width and off-peak ratio of 3:7 was selected as the optimal energy window. Our results demonstrated that the proper energy window should be carefully chosen based on quantitative measurements in order to take advantage of desirable characteristics of CZT-based small-animal SPECT. These results provided valuable reference information for the

  6. Position mapping and a uniformity correction method for small-animal SPECT based on connected regional recognition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiushi; Lu, Yanye [Department of Biomedicine and Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871 (China); Yang, Kun [Department of Control Technology and Instrument, College of Quality and Technical Supervision, Hebei University, No.180 Wusi East Road, Baoding 071000 (China); Ren, Qiushi, E-mail: renqsh@coe.pku.edu.cn [Department of Biomedicine and Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871 (China)

    2013-03-11

    We describe a novel position mapping and the uniformity correction method to improve the performance of small animal single-photon emission computed tomography (SPECT) imaging. The SPECT system consists of a cerium doped lutetium−yttrium oxyorthosilicate (LYSO) scintillation crystal (22×22 pixel array, 2 mm×2 mm×3 mm pixel size), a position sensitive photomultiplier tube (H8500c, Hamamatsu Photonics Co., Ltd., Shizuoka Prefecture, Japan), and a parallel-hole collimator (Nuclear Fields Pty. Ltd., St. Marys, Australia). The position mapping method was based on a connected regional recognition algorithm. We present the algorithm and step-by-step details of image boundary detection, dynamic binarization, connected regional recognition, center-of-gravity computing, and look-up table establishment. The position mapping and uniformity correction tables were generated and applied to the SPECT projection data. The corrected projection images demonstrated that this correction method improved the uniformity of the raw projection image by ∼16%. The preliminary SPECT reconstruction results (using algebraic reconstruction technology) are also presented. A comparison between the reconstructed images before and after correction further confirms the performance of this correction method.

  7. Bayesian reconstruction strategy of fluorescence-mediated tomography using an integrated SPECT-CT-OT system

    Science.gov (United States)

    Cao, Liji; Peter, Jörg

    2010-05-01

    Following the assembly of a triple-modality SPECT-CT-OT small animal imaging system providing intrinsically co-registered projection data of all three submodalities and under the assumption and investigation of dual-labeled probes consisting of both fluorophores and radionuclides, a novel multi-modal reconstruction strategy is presented in this paper aimed at improving fluorescence-mediated tomography (FMT). The following reconstruction procedure is proposed: firstly, standard x-ray CT image reconstruction is performed employing the FDK algorithm. Secondly, standard SPECT image reconstruction is performed using OSEM. Thirdly, from the reconstructed CT volume data the surface boundary of the imaged object is extracted for finite element definition. Finally, the reconstructed SPECT data are used as a priori information within a Bayesian reconstruction framework for optical (FMT) reconstruction. We provide results of this multi-modal approach using phantom experimental data and illustrate that this strategy does suppress artifacts and facilitates quantitative analysis for optical imaging studies.

  8. The influence of the image reconstruction in relative quantification in SPECT/PET/CT animal; A influencia da reconstrucao da imagem na quantificacao relativa em SPECT/PET/CT animal

    Energy Technology Data Exchange (ETDEWEB)

    Soriano, Sarah; Sa, Lidia Vasconcellos de, E-mail: sarahsoriano@bolsista.ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ),Rio de Janeiro, RJ (Brazil); Souza, Sergio; Barboza, Thiago [Hospital Universitario Clementino Fraga Filho (HUCFF/UFRJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    The objective of this study is to evaluate the spatial resolution of the equipment SPECT/PET/CT animal to different reconstruction methods and the influence of this parameter in the mouse dosimetry C57BL6, aimed at development of new radiopharmaceuticals for use in humans. CT and SPECT images were obtained from a simulator composed of four spheres of different diameters (d), which simulate captating lesions by the equipment FLEX ™ Triumph ™ Pre-Clinical Imaging System used for preclinical studies in the Hospital Universitario (HU/UFRJ). In order to simulate a real study, the total volume of the simulator (body) was filled with a solution of {sup 99m}Tc diluted in water and the spheres were filled with concentrations four time higher than the body of the simulator. From the gross SPECT images it was used filtered backprojection method (FBP) with application of different filters: Hamming, Hann and Ramp, ranging the cutoff frequencies. The resolution of the equipment found in the study was 9.3 to 9.4 mm, very below the value provided by the manufacturer of 1.6mm. Thus, the protocol for mice can be optimized as being the FBP reconstruction method of Hamming filter, cutoff of 0.5 to yield a resolution from 9.3 to 9.4mm. This value indicates that captating regions of diameter below 9.3 mm are not properly quantified.

  9. Establishment study of the in vivo imaging analysis with small animal imaging modalities (micro-PET and micro-SPECT/CT) for bio-drug development

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Beomsu; Park, Sanghyeon; Park, Jeonghoon; Jo, Sungkee; Jung, Uhee; Kim, Seolwha; Lee, Yunjong; Choi, Daeseong

    2011-01-15

    In this study, we established the image acquisition and analysis procedures of micro-PET, SPECT/CT using the experimental animal (mouse) for the development of imaging assessment method for the bio-drug. We examined the micro-SPECT/CT, PET imaging study using the Siemens Inveon micro-multimodality system (SPECT/CT) and micro-PET with {sup 99m}Tc-MDP, DMSA, and {sup 18}F-FDG. SPECT imaging studies using 3 types of pinhole collimators. 5-MWB collimator was used for SPECT image study. To study whole-body distribution, {sup 99m}Tc-MDP SPECT image study was performed. We obtained the fine distribution image. And the CT images was obtained to provide the anatomical information. And then these two types images are fused. To study specific organ uptake, we examined {sup 99}mTc-DMSA SPECT/CT imaging study. We also performed the PET image study using U87MG tumor bearing mice and {sup 18}F-FDG. The overnight fasting, warming and anesthesia with 2% isoflurane pretreatment enhance the tumor image through reducing the background uptake including brown fat, harderian gland and skeletal muscles. Also we got the governmental approval for use of x-ray generator for CT and radioisotopes as sealed and open source. We prepared the draft of process procedure for the experimental animal imaging facility. These research results can be utilized as a basic image study protocols and data for the image assessment of drugs including biological drug.

  10. SVD-Based Evaluation of Multiplexing in Multipinhole SPECT Systems

    Directory of Open Access Journals (Sweden)

    Aaron K. Jorgensen

    2008-01-01

    Full Text Available Multipinhole SPECT system design is largely a trial-and-error process. General principles can give system designers a general idea of how a system with certain characteristics will perform. However, the specific performance of any particular system is unknown before the system is tested. The development of an objective evaluation method that is not based on experimentation would facilitate the optimization of multipinhole systems. We derive a figure of merit for prediction of SPECT system performance based on the entire singular value spectrum of the system. This figure of merit contains significantly more information than the condition number of the system, and is therefore more revealing of system performance. This figure is then compared with simulated results of several SPECT systems and is shown to correlate well to the results of the simulations. The proposed figure of merit is useful for predicting system performance, but additional steps could be taken to improve its accuracy and applicability. The limits of the proposed method are discussed, and possible improvements to it are proposed.

  11. Evaluation of attenuation and scatter correction requirements in small animal PET and SPECT imaging

    Science.gov (United States)

    Konik, Arda Bekir

    Positron emission tomography (PET) and single photon emission tomography (SPECT) are two nuclear emission-imaging modalities that rely on the detection of high-energy photons emitted from radiotracers administered to the subject. The majority of these photons are attenuated (absorbed or scattered) in the body, resulting in count losses or deviations from true detection, which in turn degrades the accuracy of images. In clinical emission tomography, sophisticated correction methods are often required employing additional x-ray CT or radionuclide transmission scans. Having proven their potential in both clinical and research areas, both PET and SPECT are being adapted for small animal imaging. However, despite the growing interest in small animal emission tomography, little scientific information exists about the accuracy of these correction methods on smaller size objects, and what level of correction is required. The purpose of this work is to determine the role of attenuation and scatter corrections as a function of object size through simulations. The simulations were performed using Interactive Data Language (IDL) and a Monte Carlo based package, Geant4 application for emission tomography (GATE). In IDL simulations, PET and SPECT data acquisition were modeled in the presence of attenuation. A mathematical emission and attenuation phantom approximating a thorax slice and slices from real PET/CT data were scaled to 5 different sizes (i.e., human, dog, rabbit, rat and mouse). The simulated emission data collected from these objects were reconstructed. The reconstructed images, with and without attenuation correction, were compared to the ideal (i.e., non-attenuated) reconstruction. Next, using GATE, scatter fraction values (the ratio of the scatter counts to the total counts) of PET and SPECT scanners were measured for various sizes of NEMA (cylindrical phantoms representing small animals and human), MOBY (realistic mouse/rat model) and XCAT (realistic human model

  12. Performance evaluation of a parallel-hole collimated detector module for animal SPECT imaging

    Institute of Scientific and Technical Information of China (English)

    HUANG Xian-Chao; WANG Ying-Jie; WEI Long; SHAN Bao-Ci; WANG Bao-Yi; ZHANG Zhi-Ming; LI Dao-Wu; TANG Hao-Hui; LI Ting; LIAO Yan-Fei; LIU Jun-Hui; WANG Pei-Lin; CHEN Yan

    2011-01-01

    We have built and investigated a detector module for animal SPECT imaging,especially for use in large field of view (FOV) conditions.The module consists of a PMT-based detector and a parallel-hole collimator with an effective area of 80 mm × 80 mm.The detector is composed of a NaI scintillation crystal array coupled to four H8500 position sensitive photomultiplier tubes (PS-PMT).The intrinsic energy resolution of the detector is 11.5% at 140 keV on average.The planar spatial resolution of the module changes from 2.2 mm to 5.1 mm at different source-to-collimator distances with an unchanged sensitivity of about 34cps/MBq.Additionally,the SPECT Micro Deluxe Phantom imaging was performed with a radius of rotation (ROR)of 40 mm.Using the FBP reconstruction algorithm,a high performance image was obtained,indicating the feasibility of this detector module.

  13. Radiotracers for PET and SPECT studies of neurotransmitter systems

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J.S.

    1991-01-01

    The study of neurotransmitter systems is one of the major thrusts in emission tomography today. The current generation of Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) radiotracers examines neurotransmitter properties from a number of different perspectives including their pre and post synaptic sites and the activity of the enzymes which regulate their concentration. Although the dopamine system has been the most extensively investigated, other neurotransmitter systems including the acetylcholine muscarine, serotonin, benzodiazepine, opiate, NMDA and others are also under intensive development. Enzymes involved in the synthesis and regulation of neurotransmitter concentration, for example monoamine oxidase and amino acid decarboxylase has also been probed in vivo. Medical applications range from the study of normal function and the characterization of neurotransmitter activity in neurological and psychiatric diseases and in heart disease and cancer to the study of the binding of therapeutic drugs and substances of abuse. This chapter will provide an overview of the current generation of radiotracers for PET and SPECT studies of neurotransmitter systems including radiotracer design, synthesis localization mechanisms and applications in emission tomography. 60 refs., 1 tab.

  14. Impact of extraneous mispositioned events on motion-corrected brain SPECT images of freely moving animals

    Energy Technology Data Exchange (ETDEWEB)

    Angelis, Georgios I., E-mail: georgios.angelis@sydney.edu.au; Ryder, William J.; Bashar, Rezaul; Meikle, Steven R. [Faculty of Health Sciences and Brain and Mind Research Institute, The University of Sydney, Sydney, NSW 2006 (Australia); Fulton, Roger R. [Faculty of Health Sciences and Brain and Mind Research Institute, The University of Sydney, Sydney, NSW 2006 (Australia); School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Department of Medical Physics, Westmead Hospital, Sydney, NSW 2145 (Australia)

    2014-09-15

    Purpose: Single photon emission computed tomography (SPECT) brain imaging of freely moving small animals would allow a wide range of important neurological processes and behaviors to be studied, which are normally inhibited by anesthetic drugs or precluded due to the animal being restrained. While rigid body motion of the head can be tracked and accounted for in the reconstruction, activity in the torso may confound brain measurements, especially since motion of the torso is more complex (i.e., nonrigid) and not well correlated with that of the head. The authors investigated the impact of mispositioned events and attenuation due to the torso on the accuracy of motion corrected brain images of freely moving mice. Methods: Monte Carlo simulations of a realistic voxelized mouse phantom and a dual compartment phantom were performed. Each phantom comprised a target and an extraneous compartment which were able to move independently of each other. Motion correction was performed based on the known motion of the target compartment only. Two SPECT camera geometries were investigated: a rotating single head detector and a stationary full ring detector. The effects of motion, detector geometry, and energy of the emitted photons (hence, attenuation) on bias and noise in reconstructed brain regions were evaluated. Results: The authors observed two main sources of bias: (a) motion-related inconsistencies in the projection data and (b) the mismatch between attenuation and emission. Both effects are caused by the assumption that the orientation of the torso is difficult to track and model, and therefore cannot be conveniently corrected for. The motion induced bias in some regions was up to 12% when no attenuation effects were considered, while it reached 40% when also combined with attenuation related inconsistencies. The detector geometry (i.e., rotating vs full ring) has a big impact on the accuracy of the reconstructed images, with the full ring detector being more

  15. In vivo imaging of dopamine transporter function in rat striatum using pinhole SPECT and 123I-beta-CIT coregistered with small animal MRI

    CERN Document Server

    Dierkes, K

    2001-01-01

    The aim of this study was to establish in vivo imaging of dopamine transporter function in a small animal model of Parkinson's disease using pinhole SPECT and 123I labeled beta-CIT. Since functional imaging of small animals can hardly be interpreted without localization to related anatomical structures, MRI-SPECT coregistration secondly was established as an inexpensive tool for in vivo monitoring of physiological and pathological alterations in striatal dopamine transporters using beta-CIT as an specific radionuclear ligand.

  16. Clinical applications of SPECT/CT: New hybrid nuclear medicine imaging system

    International Nuclear Information System (INIS)

    Interest in multimodality imaging shows no sign of subsiding. New tracers are spreading out the spectrum of clinical applications and innovative technological solutions are preparing the way for yet more modality marriages: hybrid imaging. Single photon emission computed tomography (SPECT) has enabled the evaluation of disease processes based on functional and metabolic information of organs and cells. Integration of X ray computed tomography (CT) into SPECT has recently emerged as a brilliant diagnostic tool in medical imaging, where anatomical details may delineate functional and metabolic information. SPECT/CT has proven to be valuable in oncology. For example, in the case of a patient with metastatic thyroid cancer, neither SPECT nor CT alone could identify the site of malignancy. SPECT/CT, a hybrid image, precisely identified where the surgeon should operate. However SPECT/CT is not just advantageous in oncology. It may also be used as a one-stop-shop for various diseases. Clinical applications with SPECT/CT have started and expanded in developed countries. It has been reported that moving from SPECT alone to SPECT/CT could change diagnoses in 30% of cases. Large numbers of people could therefore benefit from this shift all over the world. This report presents an overview of clinical applications of SPECT/CT and a relevant source of information for nuclear medicine physicians, radiologists and clinical practitioners. This information may also be useful for decision making when allocating resources dedicated to the health care system, a critical issue that is especially important for the development of nuclear medicine in developing countries. In this regard, the IAEA may be heavily involved in the promotion of programmes aimed at the IAEA's coordinated research projects and Technical Cooperation projects

  17. Feasibility of 99mTc-TRODAT-1 Micro-SPECT imaging of dopamine transporter in animal retinas

    Institute of Scientific and Technical Information of China (English)

    ZHAO Juan; QI Yujin; DAI Qiusheng; ZHANG Xuezhu; QU Xiaomei; HUANG Jia; LIU Xingdang

    2008-01-01

    In this paper, 99mTc-TRODAT-1 Micro-SPECT (single-photon emission computed tomography) was used for imaging dopamine transporter (DAT) in retinas and to investigate the changes of DAT in retinas of guinea pigs with form deprivation myopia. Pigmented guinea pigs aged 3 weeks were devided into form deprivation myopia (FDM) group (n=6) and normal control group (n=6). The test group wore translucent goggles randomly for 4 weeks,and both groups underwent biometric measurement (refraction and axial length) before and after the experiment.Micro-SPECT retinas imaging was performed at the 4th week after injection of 99nTc-TRODAT-1. The retinas were clearly resolved in the images. The ratio of 99mTc-TRODAT-1 uptake in the myopic retinas (11.55±2.80) was 3.64±1.40 lower than that in the control eye (15.20±1.98), and 2.35+1.05 lower than that in the fellow eyes (13.90±2.04). The results showed that 99mTc-TRODAT-1 Micro-SPECT eye imaging can be used to trace the distribution and changes of DAT in retina, and DAT in the myopic retinas were lower than that in the normal control eyes and fellow eyes. Micro-SPECT may provide a new approach for further studies on the role of dopamine system in the experimental myopia.

  18. Final Report: A CdZnTe detector for MRI-compatible SPECT Systems

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Ling-Jian

    2012-12-27

    The key objective of this project is to develop the enabling technology for future MRI-compatible nuclear (e.g. SPECT) imaging system, and to demonstrate the feasibility of performing simultaneous MR and SPECT imaging studies of the same object. During the past three years, we have developed (a) a MRI-compatible ultrahigh resolution gamma ray detector and associated readout electronics, (b) a theoretical approach for modeling the effect of strong magnetic field on SPECT image quality, and (c) a maximum-likelihood (ML) based reconstruction routine with correction for the MR-induced distortion. With this support, we have also constructed a four-head MR-compatible SPECT system and tested the system inside a 3-T clinical MR-scanner located on UI campus. The experimental results obtained with this system have clearly demonstrated that sub-500um spatial resolution can be achieved with a SPECT system operated inside a 3-T MRI scanner. During the past three years, we have accomplished most of the major objectives outlined in the original proposal. These research efforts have laid out a solid foundation the development of future MR-compatible SPECT systems for both pre-clinical and clinical imaging applications.

  19. Image reconstruction on point cloud-based tetrahedral meshes in small animal SPECT with pinhole collimation

    International Nuclear Information System (INIS)

    Irregular tetrahedral meshes based on adaptively distributed point clouds are used as the object space data representation method to reconstruct SPECT images in pinhole geometry. In the object space, a tetrahedron is defined by the positions and intensities of its four vertices; image intensity inside a tetrahedron is a linear combination of the vertex intensities. For the parallel projection geometry, the projection of a tetrahedron is conveniently expressed in terms of an integral that is solved analytically. For the pinhole case, the vertices are first projected onto the detector plane and the geometric magnification factor is computed. Then, a virtual tetrahedron is formed in the detector space and projected onto the detector using exact analytical formulae developed for the parallel geometry. In order to compute the system matrix, point cloud geometry and acquisition geometry is adjusted using geometric calibration expressed in terms of 24 parameters determined from a special calibration study. The 3D images are reconstructed using a standard MLEM algorithm. Initial reconstruction is performed on a uniform finely-spaced cloud. Then, the points are adaptively removed or merged in constant intensity regions and moved to better outline the boundaries. The density of the point cloud is adjusted adaptively after each reconstruction so that the number of unknowns in the inverse problem is reduced by an order of magnitude. (orig.)

  20. Advanced brain dopamine transporter imaging in mice using small-animal SPECT/CT

    OpenAIRE

    Pitkonen, Miia; Hippeläinen, Eero; Raki, Mari; Andressoo, Jaan-Olle; Urtti, Arto; Männistö, Pekka T.; Savolainen, Sauli; Saarma, Mart; Bergström, Kim

    2012-01-01

    Background Iodine-123-β-CIT, a single-photon emission computed tomography (SPECT) ligand for dopamine transporters (DATs), has been used for in vivo studies in humans, monkeys, and rats but has not yet been used extensively in mice. To validate the imaging and analysis methods for preclinical DAT imaging, wild-type healthy mice were scanned using 123I-β-CIT. Methods The pharmacokinetics and reliability of 123I-β-CIT in mice (n = 8) were studied with a multipinhole SPECT/CT camera after intrav...

  1. Quantitation of dopamine transporter blockade by methylphenidate: first in vivo investigation using [{sup 123}I]FP-CIT and a dedicated small animal SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaus, Susanne; Wirrwar, Andreas; Antke, Christina; Arkian, Shahram; Mueller, Hans-Wilhelm; Larisch, Rolf [Heinrich-Heine University, Clinic of Nuclear Medicine, Duesseldorf (Germany); Schramm, Nils [Research Center Juelich, Central Laboratory for Electronics, Juelich (Germany)

    2005-03-01

    The aim of this study was to investigate the feasibility of assessing dopamine transporter binding after treatment with methylphenidate in the rat using a recently developed high-resolution small animal single-photon emission computed tomograph (TierSPECT) and [{sup 123}I]FP-CIT. [{sup 123}I]FP-CIT was administered intravenously 1 h after intraperitoneal injection of methylphenidate (10 mg/kg) or vehicle. Animals underwent scanning 2 h after radioligand administration. The striatum was identified by superimposition of [{sup 123}I]FP-CIT scans with bone metabolism and perfusion scans obtained with {sup 99m}Tc-DPD and {sup 99m}Tc-tetrofosmin, respectively. As these tracers do not pass the blood-brain barrier, their distribution permits the identification of extracerebral anatomical landmarks such as the orbitae and the harderian glands. The cerebellum was identified by superimposing [{sup 123}I]FP-CIT scans with images of brain perfusion obtained with {sup 99m}Tc-HMPAO. Methylphenidate-treated animals and vehicle-treated animals yielded striatal equilibrium ratios (V''{sub 3}) of 0.24{+-}0.26 (mean {+-} SD) and 1.09{+-}0.42, respectively (ttest, two-tailed, p<0.0001). Cortical V''{sub 3} values amounted to 0.05{+-}0.28 (methylphenidate) and 0.3{+-}0.39 (saline, p=0.176). This first in vivo study of rat dopamine transporter binding after pre-treatment with methylphenidate showed a mean reduction of 78% in striatal [{sup 123}I]FP-CIT accumulation. The results can be interpreted in terms of a pharmacological blockade in the rat striatum and show that in vivo quantitation of dopamine transporter binding is feasible with [{sup 123}I]FP-CIT and the TierSPECT. This may be of future relevance for in vivo investigations on rat models of attention deficit/hyperactivity disorder. Furthermore, our findings suggest that investigations in other animal models, e.g. of Parkinson's and Huntington's disease, may be feasible using SPECT radioligands and

  2. End-expiration Respiratory Gating for a High Resolution Stationary Cardiac SPECT system

    Science.gov (United States)

    Chan, Chung; Harris, Mark; Le, Max; Biondi, James; Grobshtein, Yariv; Liu, Yi-Hwa; Sinusas, Albert J.; Liu, Chi

    2014-01-01

    Respiratory and cardiac motions can degrade myocardial perfusion SPECT (MPS) image quality and reduce defect detection and quantitative accuracy. In this study, we developed a dual-respiratory and cardiac gating system for a high resolution fully stationary cardiac SPECT scanner in order to improve the image quality and defect detection. Respiratory motion was monitored using a compressive sensor pillow connected to a dual respiratory-cardiac gating box, which sends cardiac triggers only during end-expiration phases to the single cardiac trigger input on the SPECT scanners. The listmode data were rebinned retrospectively into end-expiration frames for respiratory motion reduction or 8 cardiac gates only during end-expiration phases to compensate for both respiratory and cardiac motions. The proposed method was first validated on a motion phantom in the presence and absence of multiple perfusion defects, and then applied on 11 patient studies with and without perfusion defects. In the normal phantom studies, the end-expiration gated SPECT (EXG-SPECT) reduced respiratory motion blur and increased myocardium to blood pool contrast by 51.2% as compared to the ungated images. The proposed method also yielded an average of 11.2% increase in myocardium to defect contrast as compared to the ungated images in the phantom studies with perfusion defects. In the patient studies, EXG-SPECT significantly improved the myocardium to blood pool contrast (pdefect, EXG-SPECT improved the defect contrast and definition. The dual respiratory-cardiac gating further reduced the blurring effect, increased the myocardium to blood pool contrast significantly by 36% (pdefect characteristics and visualization of fine structures at the expense of increased noise on the patient with defect. The results showed that the proposed methods can effectively reduce motion blur in the images caused by both respiratory and cardiac motions, which may lead to more accurate defect detection and

  3. End-expiration respiratory gating for a high-resolution stationary cardiac SPECT system

    Science.gov (United States)

    Chan, Chung; Harris, Mark; Le, Max; Biondi, James; Grobshtein, Yariv; Liu, Yi-Hwa; Sinusas, Albert J.; Liu, Chi

    2014-10-01

    Respiratory and cardiac motions can degrade myocardial perfusion SPECT (MPS) image quality and reduce defect detection and quantitative accuracy. In this study, we developed a dual respiratory and cardiac gating system for a high-resolution fully stationary cardiac SPECT scanner in order to improve the image quality and defect detection. Respiratory motion was monitored using a compressive sensor pillow connected to a dual respiratory-cardiac gating box, which sends cardiac triggers only during end-expiration phases to the single cardiac trigger input on the SPECT scanners. The listmode data were rebinned retrospectively into end-expiration frames for respiratory motion reduction or eight cardiac gates only during end-expiration phases to compensate for both respiratory and cardiac motions. The proposed method was first validated on a motion phantom in the presence and absence of multiple perfusion defects, and then applied on 11 patient studies with and without perfusion defects. In the normal phantom studies, the end-expiration gated SPECT (EXG-SPECT) reduced respiratory motion blur and increased myocardium to blood pool contrast by 51.2% as compared to the ungated images. The proposed method also yielded an average of 11.2% increase in myocardium to defect contrast as compared to the ungated images in the phantom studies with perfusion defects. In the patient studies, EXG-SPECT significantly improved the myocardium to blood pool contrast (p defect, EXG-SPECT improved the defect contrast and definition. The dual respiratory-cardiac gating further reduced the blurring effect, increased the myocardium to blood pool contrast significantly by 36% (p defect characteristics and visualization of fine structures at the expense of increased noise on the patient with defect. The results showed that the proposed methods can effectively reduce motion blur in the images caused by both respiratory and cardiac motions, which may lead to more accurate defect detection and

  4. Performance characterization of a new CZT-based preclinical SPECT system: a comparative study of different collimators

    International Nuclear Information System (INIS)

    Triumph X-SPECT is a newly released CZT-based preclinical small-animal SPECT system with interchangeable collimators. The purpose of this work was to evaluate and systematically compare the imaging performances of three different collimators in the CZT-based preclinical small-animal system: a single-pinhole collimator (SPH), a multi-pinhole collimator (MPH) and a parallel-hole collimator. We measured the spatial resolutions and sensitivities of the three collimators with 99mTc sources, considering three distinct energy window widths (5, 10, and 20%), and used the NEMA NU4-2008 Image Quality phantom to test the imaging performance of the three collimators in terms of uniformity and spill-over ratio (SOR) for each energy window. With a 10% energy window width at a radius of rotation (ROR) of 30 mm, the system resolution of the SPH, MPH and parallel-hole collimators was 0.715, 0.855 and 3.270 mm FWHM, respectively. For the same energy window, the sensitivity of the system with SPH, MPH and parallel-hole collimators was 32.860, 152.514 and 49.205 counts/sec/MBq at a 100 mm source-to-detector distance and 6.790, 33.376 and 49.038 counts/sec/MBq at a 130 mm source-to-detector distance, respectively. The image noise and SORair for the three collimators were 20.137, 12.278 and 11.232 (%STDunif) and 0.106, 0.140 and 0.161, respectively. Overall, the results show that the SPH had better spatial resolution than the other collimators. The MPH had the highest sensitivity at 100 mm source-to-collimator distance, and the parallel-hole collimator had the highest sensitivity at 130 mm-source-to-detector distance. Therefore, the proper collimator for Triumph X-SPECT system must be determined by the task. These results provide valuable reference data and insight into the imaging performance of various collimators in CZT-based preclinical small-animal SPECT

  5. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems

    International Nuclear Information System (INIS)

    Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT PhantomTM), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator or a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the pinhole

  6. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Susu, E-mail: susu.yan@duke.edu; Tough, MengHeng [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Bowsher, James; Yin, Fang-Fang [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 and Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Cheng, Lin [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-11-01

    Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT Phantom{sup TM}), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator or a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the

  7. SemiSPECT: A small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays

    OpenAIRE

    Kim, Hyunki; Furenlid, Lars R.; Crawford, Michael J.; Wilson, Donald W.; Barber, H. Bradford; Todd E. Peterson; Hunter, William C. J.; Liu, Zhonglin; Woolfenden, James M.; Barrett, Harrison H.

    2006-01-01

    The first full single-photon emission computed tomography (SPECT) imager to exploit eight compact high-intrinsic-resolution cadmium zinc telluride (CZT) detectors, called SemiSPECT, has been completed. Each detector consists of a CZT crystal and a customized application-specific integrated circuit (ASIC). The CZT crystal is a 2.7 cm × 2.7 cm × ~ 0.2 cm slab with a continuous top electrode and a bottom electrode patterned into a 64 × 64 pixel array by photolithography. The ASIC is attached to ...

  8. A Silicon SPECT System for Molecular Imaging of the Mouse Brain

    OpenAIRE

    Shokouhi, Sepideh; Fritz, Mark A; McDonald, Benjamin S.; Durko, Heather L.; Furenlid, Lars R.; Wilson, Donald W.; Peterson, Todd E

    2007-01-01

    We previously demonstrated the feasibility of using silicon double-sided strip detectors (DSSDs) for SPECT imaging of the activity distribution of iodine-125 using a 300-micrometer thick detector. Based on this experience, we now have developed fully customized silicon DSSDs and associated readout electronics with the intent of developing a multi-pinhole SPECT system. Each DSSD has a 60.4 mm × 60.4 mm active area and is 1 mm thick. The strip pitch is 59 micrometers, and the readout of the 102...

  9. End-expiration respiratory gating for a high-resolution stationary cardiac SPECT system

    International Nuclear Information System (INIS)

    Respiratory and cardiac motions can degrade myocardial perfusion SPECT (MPS) image quality and reduce defect detection and quantitative accuracy. In this study, we developed a dual respiratory and cardiac gating system for a high-resolution fully stationary cardiac SPECT scanner in order to improve the image quality and defect detection. Respiratory motion was monitored using a compressive sensor pillow connected to a dual respiratory–cardiac gating box, which sends cardiac triggers only during end-expiration phases to the single cardiac trigger input on the SPECT scanners. The listmode data were rebinned retrospectively into end-expiration frames for respiratory motion reduction or eight cardiac gates only during end-expiration phases to compensate for both respiratory and cardiac motions. The proposed method was first validated on a motion phantom in the presence and absence of multiple perfusion defects, and then applied on 11 patient studies with and without perfusion defects. In the normal phantom studies, the end-expiration gated SPECT (EXG-SPECT) reduced respiratory motion blur and increased myocardium to blood pool contrast by 51.2% as compared to the ungated images. The proposed method also yielded an average of 11.2% increase in myocardium to defect contrast as compared to the ungated images in the phantom studies with perfusion defects. In the patient studies, EXG-SPECT significantly improved the myocardium to blood pool contrast (p < 0.005) by 24% on average as compared to the ungated images, and led to improved perfusion uniformity across segments on polar maps for normal patients. For a patient with defect, EXG-SPECT improved the defect contrast and definition. The dual respiratory–cardiac gating further reduced the blurring effect, increased the myocardium to blood pool contrast significantly by 36% (p < 0.05) compared to EXG-SPECT, and further improved defect characteristics and visualization of fine structures at the expense of increased

  10. A portable device for small animal SPECT imaging in clinical gamma-cameras

    International Nuclear Information System (INIS)

    Molecular imaging is reshaping clinical practice in the last decades, providing practitioners with non-invasive ways to obtain functional in-vivo information on a diversity of relevant biological processes. The use of molecular imaging techniques in preclinical research is equally beneficial, but spreads more slowly due to the difficulties to justify a costly investment dedicated only to animal scanning. An alternative for lowering the costs is to repurpose parts of old clinical scanners to build new preclinical ones. Following this trend, we have designed, built, and characterized the performance of a portable system that can be attached to a clinical gamma-camera to make a preclinical single photon emission computed tomography scanner. Our system offers an image quality comparable to commercial systems at a fraction of their cost, and can be used with any existing gamma-camera with just an adaptation of the reconstruction software

  11. Assessment of hybrid rotation-translation scan schemes for in vivo animal SPECT imaging

    Science.gov (United States)

    Xia, Yan; Yao, Rutao; Deng, Xiao; Liu, Yaqiang; Wang, Shi; Ma, Tianyu

    2013-02-01

    To perform in vivo animal single photon emission computed tomography imaging on a stationary detector gantry, we introduced a hybrid rotation-translation (HRT) tomographic scan, a combination of translational and limited angle rotational movements of the image object, to minimize gravity-induced animal motion. To quantitatively assess the performance of ten HRT scan schemes and the conventional rotation-only scan scheme, two simulated phantoms were first scanned with each scheme to derive the corresponding image resolution (IR) in the image field of view. The IR results of all the scan schemes were visually assessed and compared with corresponding outputs of four scan scheme evaluation indices, i.e. sampling completeness (SC), sensitivity (S), conventional system resolution (SR), and a newly devised directional spatial resolution (DR) that measures the resolution in any specified orientation. A representative HRT scheme was tested with an experimental phantom study. Eight of the ten HRT scan schemes evaluated achieved a superior performance compared to two other HRT schemes and the rotation-only scheme in terms of phantom image resolution. The same eight HRT scan schemes also achieved equivalent or better performance in terms of the four quantitative indices than the conventional rotation-only scheme. As compared to the conventional index SR, the new index DR appears to be a more relevant indicator of system resolution performance. The experimental phantom image obtained from the selected HRT scheme was satisfactory. We conclude that it is feasible to perform in vivo animal imaging with a HRT scan scheme and SC and DR are useful predictors for quantitatively assessing the performance of a scan scheme.

  12. Assessment of hybrid rotation-translation scan schemes for in vivo animal SPECT imaging

    International Nuclear Information System (INIS)

    To perform in vivo animal single photon emission computed tomography imaging on a stationary detector gantry, we introduced a hybrid rotation-translation (HRT) tomographic scan, a combination of translational and limited angle rotational movements of the image object, to minimize gravity-induced animal motion. To quantitatively assess the performance of ten HRT scan schemes and the conventional rotation-only scan scheme, two simulated phantoms were first scanned with each scheme to derive the corresponding image resolution (IR) in the image field of view. The IR results of all the scan schemes were visually assessed and compared with corresponding outputs of four scan scheme evaluation indices, i.e. sampling completeness (SC), sensitivity (S), conventional system resolution (SR), and a newly devised directional spatial resolution (DR) that measures the resolution in any specified orientation. A representative HRT scheme was tested with an experimental phantom study. Eight of the ten HRT scan schemes evaluated achieved a superior performance compared to two other HRT schemes and the rotation-only scheme in terms of phantom image resolution. The same eight HRT scan schemes also achieved equivalent or better performance in terms of the four quantitative indices than the conventional rotation-only scheme. As compared to the conventional index SR, the new index DR appears to be a more relevant indicator of system resolution performance. The experimental phantom image obtained from the selected HRT scheme was satisfactory. We conclude that it is feasible to perform in vivo animal imaging with a HRT scan scheme and SC and DR are useful predictors for quantitatively assessing the performance of a scan scheme. (paper)

  13. Development of FAME Animation System

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yukihiro; Hamamatsu, Kiyotaka; Shirai, Hiroshi; Matsuda, Toshiaki [Department of Fusion Plasma Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan); Watanabe, Hideto; Itakura, Hirofumi; Tahata, Yasunori

    1999-02-01

    In order to monitor an animation of magnetohydrodynamic equilibrium calculated by the FAME-II (Fast Analyzer for Magnetohydrodynamic Equilibrium-II) system, a FAME Animation System was developed. This system provides automatically the animation on workstations connected to network with the same period of JT-60U discharge sequence. Then, the system can supply the important information for JT-60U operators to determine control parameters of the succeeding discharge. This report describes the overview of the FAME Animation System. (author)

  14. Diagnosis of pancreatic cancer using 201Tl-chloride and a three-head rotating gamma camera SPECT system

    International Nuclear Information System (INIS)

    201Tl SPECT was performed on 17 patients with pancreatic cancer or chronic pancreatitis using a three-head rotating gamma camera SPECT system. In 7 of 10 patients with pancreatic cancer, the lesions were clearly delineated by 201Tl SPECT. Whereas the lesion of 30 mm in diameter was visualized, a large tumor of 80 mm in diameter could not be visualized. Namely, it was thought that 201Tl uptake by pancreatic cancer might be well correlated with tumor blood flow and/or its histological subtype rather than with tumor size. In 5 of 7 patients with chronic pancreatitis, no uptake by the pancreas was shown. The sensitivity, specificity, and accuracy in diagnosing pancreatic cancer by 201Tl SPECT were 70%, 71%, and 71%, respectively. The present results obtained by 201Tl SPECT were thought satisfactory enough to evaluate pancreatic cancer under the present conditions where there was no useful imaging agent for visualizing pancreatic cancer by SPECT. 201Tl SPECT is expected to be a new diagnostic tool for investigation of pancreatic tumorous lesion. (author)

  15. Brain SPECT. SPECT in der Gehirndiagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Feistel, H. (Erlangen-Nuernberg Univ., Erlangen (Germany). Nuklearmedizinische Klinik mit Poliklinik)

    1991-12-01

    Brain SPECT investigations have gained broad acceptance since the introduction of the lipophilic tracer Tc-99m-HMPAO. Depending on equipment and objectives in different departments, the examinations can be divided into three groups: 1. Under normal conditions and standardised patient preparation the 'rest' SPECT can be performed in every department with a tomographic camera. In cerebrovascular disease there is a demand for determination of either the perfusion reserve in reversible ischemia or prognostic values in completed stroke. In cases of dementia, SPECT may yield useful results according to differential diagnosis. Central cerebral system involvement in immunologic disease may be estimated with higher sensitivity than in conventional brain imaging procedures. In psychiatric diseases there is only a relative indication for brain SPECT, since results during recent years have been contradictory and may be derived only in interventional manner. In brain tumor diagnostics SPECT with Tl-201 possibly permits grading. In inflammatory disease, especially in viral encephalitis, SPECT may be used to obtain early diagnosis. Normal pressure hydrocephalus can be distinguished from other forms of dementia and, consequently, the necessity for shunting surgery can be recognised. 2. In departments equipped for emergency cases an 'acute' SPECT can be performed in illnesses with rapid changing symptoms such as different forms of migraine, transient global amnesia, epileptic seizures (so-called 'ictal SPECT') or urgent forms like trauma. 3. In cooperation with several departments brain SPECT can be practised as an interventional procedure in clinical and in scientific studies. (orig./MG).

  16. Improved image quality in pinhole SPECT by accurate modeling of the point spread function in low magnification systems

    Energy Technology Data Exchange (ETDEWEB)

    Pino, Francisco [Unitat de Biofísica, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036, Spain and Servei de Física Mèdica i Protecció Radiològica, Institut Català d’Oncologia, L’Hospitalet de Llobregat 08907 (Spain); Roé, Nuria [Unitat de Biofísica, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036 (Spain); Aguiar, Pablo, E-mail: pablo.aguiar.fernandez@sergas.es [Fundación Ramón Domínguez, Complexo Hospitalario Universitario de Santiago de Compostela 15706, Spain and Grupo de Imagen Molecular, Instituto de Investigacións Sanitarias de Santiago de Compostela (IDIS), Galicia 15782 (Spain); Falcon, Carles; Ros, Domènec [Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain and CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona 08036 (Spain); Pavía, Javier [Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 080836 (Spain); CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona 08036 (Spain); and Servei de Medicina Nuclear, Hospital Clínic, Barcelona 08036 (Spain)

    2015-02-15

    Purpose: Single photon emission computed tomography (SPECT) has become an important noninvasive imaging technique in small-animal research. Due to the high resolution required in small-animal SPECT systems, the spatially variant system response needs to be included in the reconstruction algorithm. Accurate modeling of the system response should result in a major improvement in the quality of reconstructed images. The aim of this study was to quantitatively assess the impact that an accurate modeling of spatially variant collimator/detector response has on image-quality parameters, using a low magnification SPECT system equipped with a pinhole collimator and a small gamma camera. Methods: Three methods were used to model the point spread function (PSF). For the first, only the geometrical pinhole aperture was included in the PSF. For the second, the septal penetration through the pinhole collimator was added. In the third method, the measured intrinsic detector response was incorporated. Tomographic spatial resolution was evaluated and contrast, recovery coefficients, contrast-to-noise ratio, and noise were quantified using a custom-built NEMA NU 4–2008 image-quality phantom. Results: A high correlation was found between the experimental data corresponding to intrinsic detector response and the fitted values obtained by means of an asymmetric Gaussian distribution. For all PSF models, resolution improved as the distance from the point source to the center of the field of view increased and when the acquisition radius diminished. An improvement of resolution was observed after a minimum of five iterations when the PSF modeling included more corrections. Contrast, recovery coefficients, and contrast-to-noise ratio were better for the same level of noise in the image when more accurate models were included. Ring-type artifacts were observed when the number of iterations exceeded 12. Conclusions: Accurate modeling of the PSF improves resolution, contrast, and recovery

  17. Performance evaluation of a pinhole SPECT system for myocardial perfusion imaging of mice.

    Science.gov (United States)

    Wu, Max C; Hasegawa, Bruce H; Dae, Michael W

    2002-12-01

    The increasing use of transgenic mice as models of human physiology and disease has motivated the development of dedicated in vivo imaging systems for anatomic and functional characterization of mice as an adjunct to or a replacement for established ex vivo techniques. We have developed a pinhole single photon emission computed tomography (SPECT) system for high resolution imaging of mice with cardiovascular imaging as the primary application. In this work, we characterize the system performance through phantom studies. The spatial resolution and sensitivity were measured from images of a line source and point source, respectively, and were reported for a range of object-to-pinhole distances and pinhole diameters. Tomographic images of a uniform cylindrical phantom, Defrise phantom, and grid phantom were used to characterize the image uniformity and spatial linearity. The uniform phantom image did not contain any ring or reconstruction artifacts, but blurring in the axial direction was evident in the Defrise phantom images. The grid phantom images demonstrated excellent spatial linearity. A novel phantom modeling perfusion of the left ventricle of a mouse was designed and built with perfusion defects of varying sizes to evaluate the system performance for myocardial perfusion imaging of mice. The defect volumes were measured from the pinhole SPECT images and correlated to the actual defect volumes calculated according to geometric formulas. Linear regression analysis produced a correlation coefficient of r = 0.995 (p defect size in mice using pinhole SPECT. We have performed phantom studies to characterize the spatial resolution, sensitivity, image uniformity, and spatial linearity of the pinhole SPECT system. Measurement of the perfusion defect size is a valuable phenotypic assessment and will be useful for hypothesis testing in murine models of cardiovascular disease.

  18. A SPECT system simulator built on the SolidWorksTM 3D-Design package

    OpenAIRE

    LI, XIN; Furenlid, Lars R.

    2014-01-01

    We have developed a GPU-accelerated SPECT system simulator that integrates into instrument-design workflow [1]. This simulator includes a gamma-ray tracing module that can rapidly propagate gamma-ray photons through arbitrary apertures modeled by SolidWorksTM-created stereolithography (.STL) representations with a full complement of physics cross sections [2, 3]. This software also contains a scintillation detector simulation module that can model a scintillation detector with arbitrary scint...

  19. Feasibility study of SPECT system for online dosimetry imaging in boron neutron capture therapy.

    Science.gov (United States)

    Hales, B; Katabuchi, T; Hayashizaki, N; Terada, K; Igashira, M; Kobayashi, T

    2014-06-01

    A single collimator version of a proposed PG-SPECT system was manufactured and experimentally tested. Combining this experimental data with Monte Carlo simulation, the viability of Ge and CdTe semiconductors detectors was calculated. It was determined that the best detector of the ones compared would be a CdTe detector of 2-3mm, aided by the benefit of adding a Compton-suppression anti-coincidence timing detector. PMID:24378365

  20. IBZM tool: a fully automated expert system for the evaluation of IBZM SPECT studies

    Energy Technology Data Exchange (ETDEWEB)

    Buchert, Ralph; Wilke, Florian; Martin, Brigitte; Borczyskowski, Daniel von; Mester, Janos; Brenner, Winfried; Clausen, Malte [University Medical Center Hamburg-Eppendorf, Department of Nuclear Medicine, Hamburg (Germany); Berding, Georg [University School of Medicine Hannover, Department of Nuclear Medicine, Hannover (Germany)

    2006-09-15

    Visual reading of [{sup 123}I]IBZM SPECT scans depends on the experience of the interpreter. Therefore, semi-quantification of striatal IBZM uptake is commonly considered mandatory. However, semi-quantification is time consuming and prone to error, particularly if the volumes of interest (VOIs) are positioned manually. Therefore, the present paper proposes a new software tool (''IBZM tool'') for fully automated and standardised processing, evaluation and documentation of [{sup 123}I]IBZM SPECT scans. The IBZM tool is an easy-to-use SPM toolbox. It includes automated procedures for realignment and summation of multiple frames (motion correction), stereotactic normalisation, scaling, VOI analysis of striatum-to-reference ratio R, classification of R and standardised display. In order to evaluate the tool, which was developed at the University of Hamburg, the tool was transferred to the University of Hannover. There it was applied to 27 well-documented subjects: eight patients with multi-system atrophy (MSA), 12 patients with Parkinson's disease (PD) and seven controls. The IBZM tool was compared with manual VOI analysis. The sensitivity and specificity of the IBZM tool for the differentiation of the MSA subjects from the controls were 100% and 86%, respectively. The IBZM tool provided improved statistical power compared with manual VOI analysis. The IBZM tool is an expert system for the detection of reduced striatal D{sub 2} availability on [{sup 123}I]IBZM SPECT scans. The standardised documentation supports visual and semi-quantitative evaluation, and it is useful for presenting the findings to the referring physician. The IBZM tool has the potential for widespread use, since it appears to be fairly independent of the performance characteristics of the particular SPECT system used. The tool is available free of charge. (orig.)

  1. Design and evaluation of a mobile bedside PET/SPECT imaging system

    Science.gov (United States)

    Studenski, Matthew Thomas

    Patients confined to an intensive care unit, the emergency room, or a surgical suite are managed without nuclear medicine procedures such as positron emission tomography (PET) or single photon emission computed tomography (SPECT). These studies have diagnostic value which can greatly benefit the physician's treatment of the patient but require that the patient is moved to a scanner. This dissertation examines the feasibility of an economical PET/SPECT system that can be brought to the bedside of an immobile patient for imaging. We chose to focus on cardiac SPECT imaging including perfusion imaging using 99mTc tracers and viability imaging using 18F tracers first because of problems arising from positioning a detector beneath a patient's bed, a requirement for the opposed detector orientation in PET imaging. Second, SPECT imaging acquiring over the anterior 180 degrees of the patient results in reduced attenuation effects due to the heart's location in the anterior portion of the body. Four studies were done to assess the clinical feasibility of the mobile system; 1) the performance of the system was evaluated in SPECT mode at both 140 keV (99mTc tracers) and 511 keV (positron emitting tracers), 2) a dynamic cardiac phantom was used to develop and test image acquisition and processing methods for the system at both energies, 3) a high energy pinhole collimator was designed to reduce the effects of high energy photon penetration through the parallel hole collimator, and 4) we estimated the radiation dose to persons that would be in the vicinity of a patient to ensure that the effective dose is below the regulatory limit. With these studies, we show that the mobile system provides an economical means of bringing nuclear medicine to an immobile patient while staying below the regulatory dose limit to other persons. The system performed well at both 140 keV and 511 keV and provided viable images of a phantom myocardium at both energies. The system does not achieve the

  2. A line-source method for aligning on-board and other pinhole SPECT systems

    International Nuclear Information System (INIS)

    Purpose: In order to achieve functional and molecular imaging as patients are in position for radiation therapy, a robotic multipinhole SPECT system is being developed. Alignment of the SPECT system—to the linear accelerator (LINAC) coordinate frame and to the coordinate frames of other on-board imaging systems such as cone-beam CT (CBCT)—is essential for target localization and image reconstruction. An alignment method that utilizes line sources and one pinhole projection is proposed and investigated to achieve this goal. Potentially, this method could also be applied to the calibration of the other pinhole SPECT systems.Methods: An alignment model consisting of multiple alignment parameters was developed which maps line sources in three-dimensional (3D) space to their two-dimensional (2D) projections on the SPECT detector. In a computer-simulation study, 3D coordinates of line-sources were defined in a reference room coordinate frame, such as the LINAC coordinate frame. Corresponding 2D line-source projections were generated by computer simulation that included SPECT blurring and noise effects. The Radon transform was utilized to detect angles (α) and offsets (ρ) of the line-source projections. Alignment parameters were then estimated by a nonlinear least squares method, based on the α and ρ values and the alignment model. Alignment performance was evaluated as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise, and acquisition geometry. Experimental evaluations were performed using a physical line-source phantom and a pinhole-collimated gamma camera attached to a robot.Results: In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, six alignment parameters (three translational and three rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by

  3. A line-source method for aligning on-board and other pinhole SPECT systems

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Susu [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Bowsher, James; Yin, Fang-Fang [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 and Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2013-12-15

    Purpose: In order to achieve functional and molecular imaging as patients are in position for radiation therapy, a robotic multipinhole SPECT system is being developed. Alignment of the SPECT system—to the linear accelerator (LINAC) coordinate frame and to the coordinate frames of other on-board imaging systems such as cone-beam CT (CBCT)—is essential for target localization and image reconstruction. An alignment method that utilizes line sources and one pinhole projection is proposed and investigated to achieve this goal. Potentially, this method could also be applied to the calibration of the other pinhole SPECT systems.Methods: An alignment model consisting of multiple alignment parameters was developed which maps line sources in three-dimensional (3D) space to their two-dimensional (2D) projections on the SPECT detector. In a computer-simulation study, 3D coordinates of line-sources were defined in a reference room coordinate frame, such as the LINAC coordinate frame. Corresponding 2D line-source projections were generated by computer simulation that included SPECT blurring and noise effects. The Radon transform was utilized to detect angles (α) and offsets (ρ) of the line-source projections. Alignment parameters were then estimated by a nonlinear least squares method, based on the α and ρ values and the alignment model. Alignment performance was evaluated as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise, and acquisition geometry. Experimental evaluations were performed using a physical line-source phantom and a pinhole-collimated gamma camera attached to a robot.Results: In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, six alignment parameters (three translational and three rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by

  4. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    International Nuclear Information System (INIS)

    The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity

  5. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Reis, M.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Miranda, A.C.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Batista, I.R. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Barboza, M.R.F.; Shih, M.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Fu, G. [GE Global Research, Schenectady, NY (United States); Chen, C.T. [Department of Radiology, University of Chicago, Chicago, IL (United States); Meng, L.J. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana-Champaign, IL (United States); Bressan, R.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Amaro, E. Jr [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil)

    2013-11-06

    The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s{sup -1}·MBq{sup -1} were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging {sup 99m}Tc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using {sup 99m}Tc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

  6. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    Directory of Open Access Journals (Sweden)

    J. Mejia

    2013-11-01

    Full Text Available The single photon emission microscope (SPEM is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD. Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

  7. Quantitative uptake measurements of I-131 (364 keV) within the tomographic plane of a specially collimated SPECT system

    International Nuclear Information System (INIS)

    The use of SPECT for uptake measurements requires a linear relationship between the measured counts within a tomographic plane and its activity distribution. Many factors influence this relationship, and these include filter type and attenuation correction methods. However, for higher photon energy (I-131, 364 keV), photon penetration through the collimator or detector shielding may degrade, for example, the tomographic plane and slice thickness resolution and the ability to differentiate activity within a slice and between slices. A SPECT system (Picker International Dyna Camera), equipped with a specialized (low sensitivity) thick septa collimator for I-131 (364 keV) and 511 keV detector shielding is proposed for quantitative measurements. The influence of photon penetration was significantly reduced, with transverse plane and slice thickness resolution of 18 mm FWHM and 37 mm FWIM for a radius of rotation of 14 cm. Iodine collimators typically have FWTM 5-10 times the FWHM. A Jaszczak phantom was imaged with I-131, with two bar quadrants observed with diameters of 16 and 12.7 mm. The SPECT resolution data was equal to a low energy general purpose collimator. A multi-concentric ring (contrast) phantom was designed to quantitatively evaluate the SPECT system. A linear relationship was observed between the measured counts for a transverse plane and I-131 activity within the rings. Data suggest that with appropriate collimation and detector shielding SPECT systems may be used for quantitative measurements at higher photon energy

  8. Intrinsic and Tomographic Evaluation of Siemens e.cam® SPECT System at the Korle-Bu Teaching Hospital (Ghana

    Directory of Open Access Journals (Sweden)

    Intrinsic and Tomographic Evaluation of Siemens e.cam® SPECT System at the Korle-Bu Teaching Hospital (Ghana

    2011-10-01

    Full Text Available Intrinsic and tomographic evaluation tests on the Siemens e.cam® Signature Series Single Photon Emission Computed Tomography (SPECT system were conducted to ensure that it meets the specification required by the user and the capabilities claimed by the manufacturer after installation. The tests were performed according to National Electrical Manufacturers Association protocols and various measuring instrument and point sources containing 99 m-Tc were used. Intrinsic tests performed include intrinsic flood uniformity, intrinsic count rate performance in air and intrinsic energy resolution. Whole body scanning, SPECT resolution without scatter, SPECT resolution with inserts, SPECT uniformity and center of rotation were also evaluated. The intrinsic count rate performance measured was 300kcps as against manufactures’ specification of 310 kcps, intrinsic energy resolution was 9.31% whiles manufacturers’ specification was ≤ 9.9% and center of rotation specification is that Max. X-Min. X< 1 pixel and RMS < 0.5 whiles values measured was 0.254 and 0.10 for LEAP and 0.092 and 0.083 for LEHR collimators. The evaluation confirm that the SPECT system met the requirements for clinical medical imagine and also the values obtained could be used as baseline data for future quality control.

  9. A survey of head movement during clinical brain SPECT using an optical tracking system

    International Nuclear Information System (INIS)

    Full text: The aim of this study was to survey patient motion during clinical brain SPECT using a commercial motion detection system called Polaris. Polaris is an optical tracker that remotely tracks head position and orientation via a small target attached to the patient. Its accuracy for position measurement is 1mm or 1 degree (deg), 33% moved > 2mm or 2deg and 10% moved > 4mm or 4deg. 65% of subjects moved 3 or more times. Motion in the D and P groups was equally likely to be small (<3mm or <3deg) or large and equally likely to occur early or late during acquisition. Motion in the N, F and C groups was less likely to be large and for N and F more likely to occur late in the acquisition suggesting fatigue was the main cause. The most common large movements were anterior-posterior translations and axial (Z) rotations. Significant head movement is common in brain SPECT, particularly in dementia and psychiatric subjects, and accurate motion correction is desirable to maintain image quality. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  10. The feasibility of using CT-guided ROI for semiquantifying striatal dopamine transporter availability in a hybrid SPECT/CT system.

    Science.gov (United States)

    Hsu, Chien-Chin; Chang, Yen-Hsiang; Lin, Wei-Che; Tang, Shu-Wen; Wang, Pei-Wen; Huang, Yung-Cheng; Chiu, Nan-Tsing

    2014-01-01

    A hybrid SPECT/CT system provides accurate coregistration of functional and morphological images. CT-guided region of interest (ROI) for semiquantifying striatal dopamine transporter (DAT) availability may be a feasible method. We therefore assessed the intra- and interobserver reproducibility of manual SPECT and CT-guided ROI methods and compared their semiquantitative data with data from MRI-guided ROIs. We enrolled twenty-eight patients who underwent Tc-99m TRODAT-1 brain SPECT/CT and brain MRI. ROIs of the striatal, caudate, putamen, and occipital cortex were manually delineated on the SPECT, CT, and MRI. ROIs from CT and MRI were transferred to the coregistered SPECT for semiquantification. The striatal, caudate, and putamen nondisplaceable binding potential (BPND) were calculated. Using CT-guided ROIs had higher intra- and interobserver concordance correlation coefficients, closer Bland-Altman biases to zero, and narrower limits of agreement than using manual SPECT ROIs. The correlation coefficients of striatal, caudate, and putamen BPND were good between manual SPECT and MRI-guided ROI methods and even better between CT-guided and MRI-guided ROI methods. Conclusively, CT-guided ROI delineation for semiquantifying striatal DAT availability in a hybrid SPECT/CT system is highly reproducible, and the semiquantitative data correlate well with data from MRI-guided ROIs.

  11. The Feasibility of Using CT-Guided ROI for Semiquantifying Striatal Dopamine Transporter Availability in a Hybrid SPECT/CT System

    Directory of Open Access Journals (Sweden)

    Chien-Chin Hsu

    2014-01-01

    Full Text Available A hybrid SPECT/CT system provides accurate coregistration of functional and morphological images. CT-guided region of interest (ROI for semiquantifying striatal dopamine transporter (DAT availability may be a feasible method. We therefore assessed the intra- and interobserver reproducibility of manual SPECT and CT-guided ROI methods and compared their semiquantitative data with data from MRI-guided ROIs. We enrolled twenty-eight patients who underwent Tc-99m TRODAT-1 brain SPECT/CT and brain MRI. ROIs of the striatal, caudate, putamen, and occipital cortex were manually delineated on the SPECT, CT, and MRI. ROIs from CT and MRI were transferred to the coregistered SPECT for semiquantification. The striatal, caudate, and putamen nondisplaceable binding potential (BPND were calculated. Using CT-guided ROIs had higher intra- and interobserver concordance correlation coefficients, closer Bland-Altman biases to zero, and narrower limits of agreement than using manual SPECT ROIs. The correlation coefficients of striatal, caudate, and putamen BPND were good between manual SPECT and MRI-guided ROI methods and even better between CT-guided and MRI-guided ROI methods. Conclusively, CT-guided ROI delineation for semiquantifying striatal DAT availability in a hybrid SPECT/CT system is highly reproducible, and the semiquantitative data correlate well with data from MRI-guided ROIs.

  12. Computer-assisted diagnostic system for neurodegenerative dementia using brain SPECT and 3D-SSP

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Kazunari; Kanda, Tomonori; Uemura, Takafumi; Miyamoto, Naokazu; Yoshikawa, Toshiki [Hyogo Brain and Heart Center, Department of Radiology and Nuclear Medicine, Himeji, Hyogo (Japan); Shimada, Kenichi; Ohkawa, Shingo [Hyogo Brain and Heart Center, Institute for Aging Brain and Cognitive Disorders, Himeji, Hyogo (Japan); Minoshima, Satoshi [University of Washington, Radiology and Bioengineering, Department of Radiology, Seattle, WA (United States)

    2009-05-15

    To develop a computer-assisted automated diagnostic system to distinguish among Alzheimer disease (AD), dementia with Lewy bodies (DLB), and other degenerative disorders in patients with mild dementia. Single photon emission computed tomography (SPECT) images with injection of N-Isopropyl-p-[{sup 123}I]iodoamphetamine (IMP) were obtained from patients with mild degenerative dementia. First, datasets from 20 patients mild AD, 15 patients with dementia with DLB, and 17 healthy controls were used to develop an automated diagnosing system based on three-dimensional stereotactic surface projections (3D-SSP). AD- and DLB-specific regional templates were created using 3D-SSP, and critical Z scores in the templates were established. Datasets from 50 AD patients, 8 DLB patients, and 10 patients with non-AD/DLB type degenerative dementia (5 with frontotemporal dementia and 5 with progressive supranuclear palsy) were then used to test the diagnostic accuracy of the optimized automated system in comparison to the diagnostic interpretation of conventional IMP-SPECT images. These comparisons were performed to differentiate AD and DLB from non-AD/DLB and to distinguish AD from DLB. A receiver operating characteristic (ROC) analysis was performed. The area under the ROC curve (Az) and the accuracy of the automated diagnosis system were 0.89 and 82%, respectively, for AD/DLB vs. non-AD/DLB patients, and 0.70 and 65%, respectively, for AD vs. DLB patients. The mean Az and the accuracy of the visual inspection were 0.84 and 77%, respectively, for AD/DLB vs. non-AD/DLB patients, and 0.70 and 65%, respectively, for AD vs. DLB patients. The mean Az and the accuracy of the combination of visual inspection and this system were 0.96 and 91%, respectively, for AD/DLB vs. non-AD/DLB patients, and 0.70 and 66%, respectively, for AD vs. DLB patients. The system developed in the present study achieved as good discrimination of AD, DLB, and other degenerative disorders in patients with mild

  13. Computer-assisted diagnostic system for neurodegenerative dementia using brain SPECT and 3D-SSP

    International Nuclear Information System (INIS)

    To develop a computer-assisted automated diagnostic system to distinguish among Alzheimer disease (AD), dementia with Lewy bodies (DLB), and other degenerative disorders in patients with mild dementia. Single photon emission computed tomography (SPECT) images with injection of N-Isopropyl-p-[123I]iodoamphetamine (IMP) were obtained from patients with mild degenerative dementia. First, datasets from 20 patients mild AD, 15 patients with dementia with DLB, and 17 healthy controls were used to develop an automated diagnosing system based on three-dimensional stereotactic surface projections (3D-SSP). AD- and DLB-specific regional templates were created using 3D-SSP, and critical Z scores in the templates were established. Datasets from 50 AD patients, 8 DLB patients, and 10 patients with non-AD/DLB type degenerative dementia (5 with frontotemporal dementia and 5 with progressive supranuclear palsy) were then used to test the diagnostic accuracy of the optimized automated system in comparison to the diagnostic interpretation of conventional IMP-SPECT images. These comparisons were performed to differentiate AD and DLB from non-AD/DLB and to distinguish AD from DLB. A receiver operating characteristic (ROC) analysis was performed. The area under the ROC curve (Az) and the accuracy of the automated diagnosis system were 0.89 and 82%, respectively, for AD/DLB vs. non-AD/DLB patients, and 0.70 and 65%, respectively, for AD vs. DLB patients. The mean Az and the accuracy of the visual inspection were 0.84 and 77%, respectively, for AD/DLB vs. non-AD/DLB patients, and 0.70 and 65%, respectively, for AD vs. DLB patients. The mean Az and the accuracy of the combination of visual inspection and this system were 0.96 and 91%, respectively, for AD/DLB vs. non-AD/DLB patients, and 0.70 and 66%, respectively, for AD vs. DLB patients. The system developed in the present study achieved as good discrimination of AD, DLB, and other degenerative disorders in patients with mild dementia

  14. Design of a SPECT tomographic image system for online dosimetry in BNCT

    International Nuclear Information System (INIS)

    We present here a numerical analysis of a projected tomographic image system for online dose measurements in Boron Neutron Capture Therapy. In 94% of neutron capture reactions in boron, the 7Li ion is emitted in an excited state which decays through a characteristic 478 keV prompt gamma ray. In BNCT a large fraction of this radiation escapes from the patient body. Its detection is thus attractive for a noninvasive boron dose measurement and an online absorbed dose evaluation. For this purpose we have proposed a dedicated SPECT (Single Photon Emission Computed Tomography) imaging system. The proposed system can obtain images of 21x21cm2 divided in 1x1cm2 pixels by measuring 20 projections with 41 bins each, with 8% uncertainties in reconstructed dose. (author)

  15. Usefulness of three-phase bone scintigraphy and SPECT/CT for the diagnosis of bone lesions of systemic sarcoidosis

    Directory of Open Access Journals (Sweden)

    Shigeaki Higashiyama

    2014-05-01

    The findings of the three-phase bone scintigraphy and SPECT/CT suggested the presence of systemic sarcoidosis; however, a subsequent 18Ffluorodeoxyglucose positron emission tomography/CT (FDG-PET/CT could not exclude the possibility of multiple metastases from testicular tumors. Therefore, testicular enucleation was performed, and the pathological examination confirmed the presence of sarcoidosis.

  16. Systems biology in animal sciences

    NARCIS (Netherlands)

    Woelders, H.; Pas, te M.F.W.; Bannink, A.; Veerkamp, R.F.; Smits, M.A.

    2011-01-01

    Systems biology is a rapidly expanding field of research and is applied in a number of biological disciplines. In animal sciences, omics approaches are increasingly used, yielding vast amounts of data, but systems biology approaches to extract understanding from these data of biological processes an

  17. Dynamic molecular imaging of cardiac innervation using a dual headpinhole SPECT system

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jicun; Boutchko, Rostyslav; Sitek, Arkadiusz; Reutter, BryanW.; Huesman, Ronald H.; Gullberg, Grant T.

    2008-03-29

    Typically 123I-MIBG is used for the study of innervation andfunction of the sympathetic nervous system in heart failure. The protocolinvolves two studies: first a planar or SPECT scan is performed tomeasure initial uptake of the tracer, followed some 3-4 hours later byanother study measuring the wash-out of the tracer from the heart. A fastwash-out is indicative of a compromised heart. In this work, a dual headpinhole SPECT system was used for imaging the distribution and kineticsof 123I-MIBG in the myocardium of spontaneous hypertensive rats (SHR) andnormotensive Wistar Kyoto (WKY) rats. The system geometry was calibratedbased on a nonlinear point projection fitting method using a three-pointsource phantom. The angle variation effect of the parameters was modeledwith a sinusoidal function. A dynamic acquisition was performed byinjecting 123I-MIBG into rats immediately after starting the dataacquisition. The detectors rotated continuously performing a 360o dataacquisition every 90 seconds. We applied the factor analysis (FA)methodand region of interest (ROI) sampling method to obtain time activitycurves (TACs)in the blood pool and myocardium and then appliedtwo-compartment modeling to estimate the kinetic parameters. Since theinitial injection bolus is too fast for obtaining a consistenttomographic data set in the first few minutes of the study, we appliedthe FA method directly to projections during the first rotation. Then thetime active curves for blood and myocardial tissue were obtained from ROIsampling. The method was applied to determine if there were differencesin the kinetics between SHR and WKY rats and requires less time byreplacing the delayed scan at 3-4 hours after injection with a dynamicacquisition over 90 to 120 minutes. The results of a faster washout and asmaller distribution volume of 123IMIBG near the end of life in the SHRmodel of hypertrophic cardiomyopthy may be indicative of a failing heartin late stages of heart failure.

  18. Study of clinical application of 18F-FDG spect with coincidence in the recurrent or metastatic tumor of digestive system

    International Nuclear Information System (INIS)

    Purpose: To investigate the clinical value of 18F-FDG SPECT with coincidence in the diagnosis of recurrent or metastatic tumor of digestive system. Methods: 35 cases of postoperative patients with tumor of digestive system were enrolled in this study with 18F-FDG SPECT with coincidence. The results were analyzed by calculating its accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and 95% confidence interval and compared with UB, CT and MRI. Results: In 35 cases of postoperative patients with tumor of digestive system, the accuracy, sensitivity, specificity, PPV and NPV were 91.4%, 88.9%, 100%, 100%, 72.7%, respectively, and their 95% confidence interval were 77% - 98%, 71% - 98%, 63% - 100%, 86% - 100%, 39% - 94%, respectively. The diagnostic accuracy and sensitivity of 18F-FDG SPECT with coincidence were significantly higher than that of UB, while there were no significant difference between the result of other 18F-FDG SPECT with coincidence and CT and MRI. The analysis of 95% confidence interval showed a higher tendency in 18F-FDG SPECT with coincidence than in UB, CT and MRI. There is complementation among 18F-FDG SPECT with coincidence combined with UB, CT and MRI in some cases. Conclusions: 18F-FDG SPECT/PET has high clinical value in the diagnosis of recurrent or metastatic tumor of digestive system. (authors)

  19. Parallel-hole collimator concept for stationary SPECT imaging

    Science.gov (United States)

    Pato, Lara R. V.; Vandenberghe, Stefaan; Zedda, Tiziana; Van Holen, Roel

    2015-11-01

    Parallel-hole SPECT collimators have traditionally been manufactured by stacking sheets of lead foil or by casting. These techniques significantly restrict our options in terms of collimator geometry. However, recent developments in metal additive manufacturing are making novel collimator designs possible, giving rise to new opportunities in SPECT imaging. In this paper we propose an innovative type of collimator for stationary SPECT, using parallel-holes whose collimation direction depends on their axial position. Its main advantage compared to current stationary SPECT systems (which are based on pinholes) is that, using only axial bed translations, we can achieve complete angular sampling of an increased portion of the transaxial area of the collimator bore. This allows the system to be much more compact than current stationary SPECT systems that image objects of the same size. We describe three possible designs, for full-body, brain and small-animal imaging, respectively, and test their feasibility using simulations. The system modeling method is validated against realistic Monte Carlo simulations, and then used in the evaluation of the systems’ performances and reconstructions. The simulations show that the system is able to reconstruct objects occupying the predicted field of view (75% of the transaxial area of the bore) without sampling artifacts. In particular, we perform reconstructions from noisy projection data obtained for an activity and scanning time similar to standard protocols for the three applications, and the resulting images indicate the possibility of using the proposed systems in practice.

  20. Brain SPECT in childhood

    International Nuclear Information System (INIS)

    The modalities and the indications of perfusion and neurotransmission SPECT in childhood are presented. The perfusion as well as neurotransmission tracers have not yet authorization for use in children; they have to be used by prescription of magistral preparation or in research protocols. The radioprotection rules have to be strictly respected. The most frequent indication of perfusion SPECT is pharmacologically resistant epilepsy; the ictal SPECT before surgery allows the localization of the epileptogenic focus. Other indications are relevant in the prognosis of neonatal anoxia and encephalitis. In psychiatric disorders, especially in autism, the interest is the physiopathological approach of the brain dysfunctions. The neurotransmission SPECT is emerging as a consequence of the development of new radiotracer, as the dopaminergic system ligands. The decrease of the dopamine D2 receptors in the striatum can be imaged and quantified in the neonate. The lesions of dopamine system seem to be a consequence of the neonatal hypoxia-ischemia and it is predictive of motor sequelae. Brain SPECT should become a routine examination in child neurologic and psychiatric disorders. (authors)

  1. Cerebral hypoperfusion detected by SPECT in patients with systemic lupus erythematosus is related to clinical activity and cumulative tissue damage.

    Science.gov (United States)

    López-Longo, F J; Carol, N; Almoguera, M I; Olazarán, J; Alonso-Farto, J C; Ortega, A; Monteagudo, I; González, C Manuel; Carreño, L

    2003-01-01

    Cerebral single-photon emission computed tomography (SPECT) is a sensitive technique for the detection of central nervous system (CNS) involvement in systemic lupus erythematosus (SLE). The objective was to determine whether a relationship exists between cerebral hypoperfusion as detected by cerebral SPECT, cumulative tissue damage and the clinical activity of SLE. Cerebral technetium-99m-L,L-ethyl cysteinate dimer (99mTc-ECD) SPECT was performed in two groups of patients: 10 women with SLE (Group A) who had no previous history of major neuropsychiatric (NPS) manifestations and no minor NPS symptoms in the last six months, and 57 unselected women with SLE (Group B). In the same week that SPECT was performed, the SLE disease activity index (SLEDAI), SLICC/ACR damage index, native anti-DNA antibodies (ELISA) and erythrocyte sedimentation rate (ESR) were determined. In Group A, cerebral SPECT showed moderate or severe hypoperfusion (abnormal SPECT) in five patients without NPS symptoms, unrelated to age (mean 24.8 versus 27.8 years) or disease duration (mean 6.8 versus 9 years). Patients with significant cerebral hypoperfusion had greater clinical disease activity (mean SLEDAI 13.6 versus 7.6) (SLEDAI > 7 in 5/5 versus 1/5; Fisher: 0.023; OR: 33; 95% CI: 2.3-469.8) and ESR (mean 43.6 versus 9.8; P < 0.05). In Group B, the mean age of the 57 unselected women with SLE was 37 years (SD 6.3) and the mean duration of the disease was 9.7 years (SD 6.3). Cerebral SPECT revealed normal perfusion or mild hypoperfusion (normal SPECT) in 30 patients (52.6%), and moderate or severe hypoperfusion in 27 (47.4%). Hypoperfusion was unrelated to age, duration of SLE or concentrations of anti-DNA antibodies and C3 and C4 fractions. Patients with significant cerebral hypoperfusion had more active clinical disease (mean SLEDAI 13.92; SD 8.44 versus 4.56; SD 4.15) (Mann-Whitney, P < 0.005), more cumulative tissue damage (mean SLICC 2.66; SD 2.84 versus 1.03; SD 1.51) (Mann-Whitney, P = 0

  2. SU-C-201-02: Quantitative Small-Animal SPECT Without Scatter Correction Using High-Purity Germanium Detectors

    International Nuclear Information System (INIS)

    Purpose: To evaluate the impact of the exceptional energy resolution of germanium detectors for preclinical SPECT in comparison to conventional detectors. Methods: A cylindrical water phantom was created in GATE with a spherical Tc-99m source in the center. Sixty-four projections over 360 degrees using a pinhole collimator were simulated. The same phantom was simulated using air instead of water to establish the true reconstructed voxel intensity without attenuation. Attenuation correction based on the Chang method was performed on MLEM reconstructed images from the water phantom to determine a quantitative measure of the effectiveness of the attenuation correction. Similarly, a NEMA phantom was simulated, and the effectiveness of the attenuation correction was evaluated. Both simulations were carried out using both NaI detectors with an energy resolution of 10% FWHM and Ge detectors with an energy resolution of 1%. Results: Analysis shows that attenuation correction without scatter correction using germanium detectors can reconstruct a small spherical source to within 3.5%. Scatter analysis showed that for standard sized objects in a preclinical scanner, a NaI detector has a scatter-to-primary ratio between 7% and 12.5% compared to between 0.8% and 1.5% for a Ge detector. Preliminary results from line profiles through the NEMA phantom suggest that applying attenuation correction without scatter correction provides acceptable results for the Ge detectors but overestimates the phantom activity using NaI detectors. Due to the decreased scatter, we believe that the spillover ratio for the air and water cylinders in the NEMA phantom will be lower using germanium detectors compared to NaI detectors. Conclusion: This work indicates that the superior energy resolution of germanium detectors allows for less scattered photons to be included within the energy window compared to traditional SPECT detectors. This may allow for quantitative SPECT without implementing scatter

  3. SU-C-201-02: Quantitative Small-Animal SPECT Without Scatter Correction Using High-Purity Germanium Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gearhart, A; Peterson, T [Vanderbilt University, Nashville, TN (United States); Johnson, L [University of Pennsylvania, Philadelphia, PA (United States)

    2015-06-15

    Purpose: To evaluate the impact of the exceptional energy resolution of germanium detectors for preclinical SPECT in comparison to conventional detectors. Methods: A cylindrical water phantom was created in GATE with a spherical Tc-99m source in the center. Sixty-four projections over 360 degrees using a pinhole collimator were simulated. The same phantom was simulated using air instead of water to establish the true reconstructed voxel intensity without attenuation. Attenuation correction based on the Chang method was performed on MLEM reconstructed images from the water phantom to determine a quantitative measure of the effectiveness of the attenuation correction. Similarly, a NEMA phantom was simulated, and the effectiveness of the attenuation correction was evaluated. Both simulations were carried out using both NaI detectors with an energy resolution of 10% FWHM and Ge detectors with an energy resolution of 1%. Results: Analysis shows that attenuation correction without scatter correction using germanium detectors can reconstruct a small spherical source to within 3.5%. Scatter analysis showed that for standard sized objects in a preclinical scanner, a NaI detector has a scatter-to-primary ratio between 7% and 12.5% compared to between 0.8% and 1.5% for a Ge detector. Preliminary results from line profiles through the NEMA phantom suggest that applying attenuation correction without scatter correction provides acceptable results for the Ge detectors but overestimates the phantom activity using NaI detectors. Due to the decreased scatter, we believe that the spillover ratio for the air and water cylinders in the NEMA phantom will be lower using germanium detectors compared to NaI detectors. Conclusion: This work indicates that the superior energy resolution of germanium detectors allows for less scattered photons to be included within the energy window compared to traditional SPECT detectors. This may allow for quantitative SPECT without implementing scatter

  4. The ECN flow animation system

    Energy Technology Data Exchange (ETDEWEB)

    Van Wijk, J.J.

    1995-12-01

    ECN has developed a system for the visualization of fluid flow. The system is based on so-called surface particles. A surface particle is a small facet, convected by the flow. If a large number of surface particles is used in combination, a variety of flow visualization techniques can be realised, such as moving surfaces, streamlines, stream surfaces, etc.. This system has been used to visualize the results of FloTHERM and FloVent, two highly advanced CFD-packages developed by Flomerics Ltd.. Several additional programs had to be developed for the conversion of data and the post-processing of the images. This report, written for Flomerics Ltd., is a guide to the use of the ECN Flow Animation System. The system is described on various levels of detail. After an overview, each component is described in depth, including a description of commands and examples. 22 figs., 3 refs.

  5. Comparative immune systems in animals.

    Science.gov (United States)

    Yuan, Shaochun; Tao, Xin; Huang, Shengfeng; Chen, Shangwu; Xu, Anlong

    2014-02-01

    Animal immune systems can be classified into those of innate immunity and those of adaptive immunity. It is generally thought that the former are universal for all animals and depend on germline-encoded receptors that recognize highly conserved pathogen-associated molecular patterns (PAMPs), whereas the latter are vertebrate specific and are mediated primarily by lymphocytes bearing a unique antigen receptor. However, novel adaptive or adaptive-like immunities have been found in invertebrates and jawless vertebrates, and extraordinarily complex innate immunities, created through huge expansions of many innate gene families, have recently been found in the cephalochordate amphioxus and the echinoderm sea urchin. These studies not only inspire immunologists to seek novel immune mechanisms in invertebrates but also raise questions about the origin and evolution of vertebrate immunities. PMID:25384142

  6. Analytical, experimental, and Monte Carlo system response matrix for pinhole SPECT reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Pablo, E-mail: pablo.aguiar.fernandez@sergas.es [Fundación Ramón Domínguez, Medicina Nuclear, CHUS, Spain and Grupo de Imaxe Molecular, IDIS, Santiago de Compostela 15706 (Spain); Pino, Francisco [Unitat de Biofísica, Facultat de Medicina, Universitat de Barcelona, Spain and Servei de Física Médica i Protecció Radiológica, Institut Catalá d' Oncologia, Barcelona 08036 (Spain); Silva-Rodríguez, Jesús [Fundación Ramón Domínguez, Medicina Nuclear, CHUS, Santiago de Compostela 15706 (Spain); Pavía, Javier [Servei de Medicina Nuclear, Hospital Clínic, Barcelona (Spain); Institut d' Investigacions Biomèdiques August Pí i Sunyer (IDIBAPS) (Spain); CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona 08036 (Spain); Ros, Doménec [Unitat de Biofísica, Facultat de Medicina, Casanova 143 (Spain); Institut d' Investigacions Biomèdiques August Pí i Sunyer (IDIBAPS) (Spain); CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona 08036 (Spain); Ruibal, Álvaro [Servicio Medicina Nuclear, CHUS (Spain); Grupo de Imaxe Molecular, Facultade de Medicina (USC), IDIS, Santiago de Compostela 15706 (Spain); Fundación Tejerina, Madrid (Spain); and others

    2014-03-15

    Purpose: To assess the performance of two approaches to the system response matrix (SRM) calculation in pinhole single photon emission computed tomography (SPECT) reconstruction. Methods: Evaluation was performed using experimental data from a low magnification pinhole SPECT system that consisted of a rotating flat detector with a monolithic scintillator crystal. The SRM was computed following two approaches, which were based on Monte Carlo simulations (MC-SRM) and analytical techniques in combination with an experimental characterization (AE-SRM). The spatial response of the system, obtained by using the two approaches, was compared with experimental data. The effect of the MC-SRM and AE-SRM approaches on the reconstructed image was assessed in terms of image contrast, signal-to-noise ratio, image quality, and spatial resolution. To this end, acquisitions were carried out using a hot cylinder phantom (consisting of five fillable rods with diameters of 5, 4, 3, 2, and 1 mm and a uniform cylindrical chamber) and a custom-made Derenzo phantom, with center-to-center distances between adjacent rods of 1.5, 2.0, and 3.0 mm. Results: Good agreement was found for the spatial response of the system between measured data and results derived from MC-SRM and AE-SRM. Only minor differences for point sources at distances smaller than the radius of rotation and large incidence angles were found. Assessment of the effect on the reconstructed image showed a similar contrast for both approaches, with values higher than 0.9 for rod diameters greater than 1 mm and higher than 0.8 for rod diameter of 1 mm. The comparison in terms of image quality showed that all rods in the different sections of a custom-made Derenzo phantom could be distinguished. The spatial resolution (FWHM) was 0.7 mm at iteration 100 using both approaches. The SNR was lower for reconstructed images using MC-SRM than for those reconstructed using AE-SRM, indicating that AE-SRM deals better with the

  7. Feasibility and Initial Performance of Simultaneous SPECT-CT Imaging Using a Commercial Multi-Modality Preclinical Imaging System

    OpenAIRE

    Osborne, Dustin R.; Derek W. Austin

    2015-01-01

    Multi-modality imaging provides coregistered PET-CT and SPECT-CT images; however such multi-modality workflows usually consist of sequential scans from the individual imaging components for each modality. This typical workflow may result in long scan times limiting throughput of the imaging system. Conversely, acquiring multi-modality data simultaneously may improve correlation and registration of images, improve temporal alignment of the acquired data, increase imaging throughput, and benefi...

  8. Dynamic molecular imaging of cardiac innervation using a dual head pinhole SPECT system

    International Nuclear Information System (INIS)

    Typically 123I-MIBG is used for the study of innervation and function of the sympathetic nervous system in heart failure. The protocol involves two studies: first a planar or SPECT scan is performed to measure initial uptake of the tracer, followed some 3-4 hours later by another study measuring the wash-out of the tracer from the heart. A fast wash-out is indicative of a compromised heart. In this work, a dual head pinhole SPECT system was used for imaging the distribution and kinetics of 123I-MIBG in the myocardium of spontaneous hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats. The system geometry was calibrated based on a nonlinear point projection fitting method using a three-point source phantom. The angle variation effect of the parameters was modeled with a sinusoidal function. A dynamic acquisition was performed by injecting 123I-MIBG into rats immediately after starting the data acquisition. The detectors rotated continuously performing a 360o data acquisition every 90 seconds. We applied the factor analysis (FA)method and region of interest (ROI) sampling method to obtain time activity curves (TACs)in the blood pool and myocardium and then applied two-compartment modeling to estimate the kinetic parameters. Since the initial injection bolus is too fast for obtaining a consistent tomographic data set in the first few minutes of the study, we applied the FA method directly to projections during the first rotation. Then the time active curves for blood and myocardial tissue were obtained from ROI sampling. The method was applied to determine if there were differences in the kinetics between SHR and WKY rats and requires less time by replacing the delayed scan at 3-4 hours after injection with a dynamic acquisition over 90 to 120 minutes. The results of a faster washout and a smaller distribution volume of 123I-MIBG near the end of life in the SHR model of hypertrophic cardiomyopthy may be indicative of a failing heart in late stages of heart

  9. Molecular imaging agents for SPECT (and SPECT/CT)

    Energy Technology Data Exchange (ETDEWEB)

    Gnanasegaran, Gopinath [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); Ballinger, James R. [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2014-05-15

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  10. Evaluation of Multiple System Atrophy and Early Parkinson's Disease Using {sup 123}I-FP-CIT SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Oh, So Won; Kim, Yu Kyeong; Lee, Byung Chul; Kim, Bom Sahn; Kim, Ji Sun; Kim, Jong Min; Kim, Sang Eun [Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2009-02-15

    We investigated quantification of dopaminergic transporter (DAT) and serotonergic transporter (SERT) on {sup 123}I-FP-CIT SPECT for differentiating between multiple systemic atrophy (MSA) and idiopathic Parkinson's disease (IPD). N.fluoropropyl-2{beta}-carbomethoxy-3{beta}-4-[{sup 123}I]-iodophenylnortropane SPECT ({sup 123}I-FP-CIT SPECT) was performed in 8 patients with MSA (mean age: 64.0{+-}4.5yrs, m:f=6:2), 13 with early IPD (mean age: 65.5{+-}5.3yrs, m:f=9:4), and 12 healthy controls (mean age: 63.3{+-}5.7yrs, m:f=8:4). Standard regions of interests (ROIs) of striatum to evaluate DAT, and hypothalamus and midbrain for SERT were drawn on standard template images and applied to each image taken 4 hours after radiotracer injection. Striatal specific binding for DAT and hypothalamic and midbrain specific binding for SERT were calculated using region/reference ratio based on the transient equilibrium method. Group differences were tested using ANOVA with the postHoc analysis. DAT in the whole striatum and striatal subregions were significantly decreased in both patient groups with MSA and early IPD, compared with healthy control (p<0.05 in all). In early IPD, a significant increase in the uptake ratio in anterior and posterior putamen and a trend of increase in caudate to putamen ratio was observed. In MSA, the decrease of DAT was accompanied with no difference in the striatal uptake pattern compared with healthy controls. Regarding the brain regions where {sup 123}I-FP-CIT binding was predominant by SERT, MSA patients showed a decrease in the binding of {sup 123}I-FP-CIT in the pons compared with controls as well as early IPD patients (MSA: 0.22{+-}0.1 healthy controls: 0.33{+-}0.19, IPD: 0.29{+-}0.19), however, it did not reach the statistical significance. In this study, the differential patterns in the reduction of DAT in the striatum and the reduction of pontine {sup 123}I- FP-CIT binding predominant by SERT could be observed in MSA patients on {sup 123

  11. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Justin S. [Oak Ridge National Laboratory; Endres, Christopher J. [Johns Hopkins, Baltimore; Foss, Catherine A. [Johns Hopkins, Baltimore; Nimmagadda, Sridhar [Johns Hopkins, Baltimore; Jung, Hyeyun [Johns Hopkins, Baltimore; Goddard, James S. [Oak Ridge National Laboratory; Lee, Seung Joon [JLAB; McKisson, John [JLAB; Smith, Mark F. [University of Maryland; Stolin, Alexander V. [West Virginia University; Weisenberger, Andrew G. [JLAB; Pomper, Martin G. [Johns Hopkins, Baltimore

    2013-06-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a ^99mTc-pertechnetate phantom, ^99mTc-methylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand ^123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of ^123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.

  12. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Justin S [ORNL; Endres, Christopher [Johns Hopkins University; Foss, Catherine [Johns Hopkins University; Nimmagadda, Sridhar [Johns Hopkins University; Jung, Hyeyun [Johns Hopkins University; Goddard Jr, James Samuel [ORNL; Lee, Seung Joon [Jefferson Lab; McKisson, John [Jefferson Lab; Smith, Mark F. [University of Maryland School of Medicine, The, Baltimore, MD; Stolin, Alexander [West Virginia University, Morgantown; Weisenberger, Andrew G. [Jefferson Lab; Pomper, Martin [Johns Hopkins University

    2013-01-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a 99mTc-pertechnetate phantom, 99mTcmethylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand 123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of 123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.

  13. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    Science.gov (United States)

    Baba, Justin S.; Endres, Christopher J.; Foss, Catherine A.; Nimmagadda, Sridhar; Jung, Hyeyun; Goddard, James S.; Lee, Seungjoon; McKisson, John; Smith, Mark F.; Stolin, Alexander V.; Weisenberger, Andrew G.; Pomper, Martin G.

    2014-01-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a 99mTc-pertechnetate phantom, 99mTcmethylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand 123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of 123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake. PMID:23536223

  14. Thermal animal detection system (TADS)

    Energy Technology Data Exchange (ETDEWEB)

    Desholm, M.

    2003-03-01

    This report presents data from equipment tests and software development for the Thermal Animal Detection System (TADS) development project: 'Development of a method for estimating collision frequency between migrating birds and offshore wind turbines'. The technical tests were performed to investigate the performance of remote controlling, video file compression tool and physical stress of the thermal camera when operating outdoors and under the real time vibration conditions at a 2 MW turbine. Furthermore, experimental tests on birds were performed to describe the decreasing detectability with distance on free flying birds, the performance of the thermal camera during poor visibility, and finally, the performance of the thermal sensor software developed for securing high -quality data. In general, it can be concluded that the thermal camera and its related hardware and software, the TADS, are capable of recording migrating birds approaching the rotating blades of a turbine, even under conditions with poor visibility. If the TADS is used in a vertical viewing scenario it would comply with the requirements for a setup used for estimating the avian collision frequency at offshore wind turbines. (au)

  15. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    OpenAIRE

    Baba, Justin S.; Endres, Christopher J.; Foss, Catherine A.; Nimmagadda, Sridhar; Jung, Hyeyun; Goddard, James S.; Lee, Seungjoon; McKisson, John; Smith, Mark F.; Stolin, Alexander V.; Weisenberger, Andrew G.; Pomper, Martin G.

    2013-01-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques.

  16. Targeted multi-pinhole SPECT

    NARCIS (Netherlands)

    Branderhorst, W.; Vastenhouw, B.; Van der Have, F.; Blezer, E.L.A.; Bleeker, W.K.; Beekman, F.J.

    2010-01-01

    Purpose: Small-animal single photon emission computed tomography (SPECT) with focused multi-pinhole collimation geometries allows scanning modes in which large amounts of photons can be collected from specific volumes of interest. Here we present new tools that improve targeted imaging of specific o

  17. The SPECT imaging shows the accumulation of neural progenitor cells into internal organs after systemic administration in middle cerebral artery occlusion rats.

    Science.gov (United States)

    Lappalainen, Riikka S; Narkilahti, Susanna; Huhtala, Tuulia; Liimatainen, Timo; Suuronen, Tiina; Närvänen, Ale; Suuronen, Riitta; Hovatta, Outi; Jolkkonen, Jukka

    2008-08-01

    The regenerative potential of stem cells from various sources has been under intense investigation in the experimental models of cerebral ischemia. To end up with a restorative therapeutic treatment, it is crucial to get the cell transplants to the site of injury. Here, we evaluated the feasibility of small animal SPECT/CT in assessing the definite accumulation of (111)In-oxine-labeled human embryonic stem (ES) cell-derived neural progenitors and rat hippocampal progenitors after intravenous or intra-arterial administration (femoral vein vs. common carotid artery) in middle cerebral artery occlusion (MCAO) and sham-operated rats. Cell detection was carried out immediately and 24h after the infusion using a SPECT/CT device. The results showed that after intravenous injections both cell types accumulated primarily into internal organs, instead of brain. In contrast, after intra-arterial injection, a weak signal was detected in the ischemic hemisphere. Additional studies showed that the detection sensitivity of SPECT/CT device was approximately 1000 (111)In-oxine-labeled cells and labeling did not affect the cell viability. In conclusion, a small animal SPECT is powerful technique to study the whole body biodistribution of cell-based therapies. Our data showed that intravenous administration is not an optimal route to deliver neural progenitor cell-containing transplants into the brain after MCAO in rats. PMID:18572314

  18. Tri-modality small animal imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, B.K.; Stolin, A.V.; Pole, J.; Baumgart, L.; Fontaine, M.; Wojcik, R.; Kross, B.; Zorn, C.; Majewski, S.; Williams, M.B.

    2006-02-01

    Our group is developing a scanner that combines x-ray, single gamma, and optical imaging on the same rotating gantry. Two functional modalities (SPECT and optical) are included because they have different strengths and weaknesses in terms of spatial and temporal decay lengths in the context of in vivo imaging, and because of the recent advent of multiple reporter gene constructs. The effect of attenuation by biological tissue on the detected intensity of the emitted signal was measured for both gamma and optical imaging. Attenuation by biological tissue was quantified for both the bioluminescent emission of luciferace and for the emission light of the near infrared fluorophore cyanine 5.5, using a fixed excitation light intensity. Experiments were performed to test the feasibility of using either single gamma or x-ray imaging to make depth-dependent corrections to the measured optical signal. Our results suggest that significant improvements in quantitation of optical emission are possible using straightforward correction techniques based on information from other modalities. Development of an integrated scanner in which data from each modality are obtained with the animal in a common configuration will greatly simplify this process.

  19. Rapid construction of pinhole SPECT system matrices by distance-weighted Gaussian interpolation method combined with geometric parameter estimations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ming-Wei; Chen, Yi-Chun, E-mail: ycchen@dop.ncu.edu.tw

    2014-02-11

    In pinhole SPECT applied to small-animal studies, it is essential to have an accurate imaging system matrix, called H matrix, for high-spatial-resolution image reconstructions. Generally, an H matrix can be obtained by various methods, such as measurements, simulations or some combinations of both methods. In this study, a distance-weighted Gaussian interpolation method combined with geometric parameter estimations (DW-GIMGPE) is proposed. It utilizes a simplified grid-scan experiment on selected voxels and parameterizes the measured point response functions (PRFs) into 2D Gaussians. The PRFs of missing voxels are interpolated by the relations between the Gaussian coefficients and the geometric parameters of the imaging system with distance-weighting factors. The weighting factors are related to the projected centroids of voxels on the detector plane. A full H matrix is constructed by combining the measured and interpolated PRFs of all voxels. The PRFs estimated by DW-GIMGPE showed similar profiles as the measured PRFs. OSEM reconstructed images of a hot-rod phantom and normal rat myocardium demonstrated the effectiveness of the proposed method. The detectability of a SKE/BKE task on a synthetic spherical test object verified that the constructed H matrix provided comparable detectability to that of the H matrix acquired by a full 3D grid-scan experiment. The reduction in the acquisition time of a full 1.0-mm grid H matrix was about 15.2 and 62.2 times with the simplified grid pattern on 2.0-mm and 4.0-mm grid, respectively. A finer-grid H matrix down to 0.5-mm spacing interpolated by the proposed method would shorten the acquisition time by 8 times, additionally. -- Highlights: • A rapid interpolation method of system matrices (H) is proposed, named DW-GIMGPE. • Reduce H acquisition time by 15.2× with simplified grid scan and 2× interpolation. • Reconstructions of a hot-rod phantom with measured and DW-GIMGPE H were similar. • The imaging study of normal

  20. MO-G-17A-02: Computer Simulation Studies for On-Board Functional and Molecular Imaging of the Prostate Using a Robotic Multi-Pinhole SPECT System

    International Nuclear Information System (INIS)

    Purpose: To investigate prostate imaging onboard radiation therapy machines using a novel robotic, 49-pinhole Single Photon Emission Computed Tomography (SPECT) system. Methods: Computer-simulation studies were performed for region-of-interest (ROI) imaging using a 49-pinhole SPECT collimator and for broad cross-section imaging using a parallel-hole SPECT collimator. A male XCAT phantom was computersimulated in supine position with one 12mm-diameter tumor added in the prostate. A treatment couch was added to the phantom. Four-minute detector trajectories for imaging a 7cm-diameter-sphere ROI encompassing the tumor were investigated with different parameters, including pinhole focal length, pinhole diameter and trajectory starting angle. Pseudo-random Poisson noise was included in the simulated projection data, and SPECT images were reconstructed by OSEM with 4 subsets and up to 10 iterations. Images were evaluated by visual inspection, profiles, and Root-Mean- Square-Error (RMSE). Results: The tumor was well visualized above background by the 49-pinhole SPECT system with different pinhole parameters while it was not visible with parallel-hole SPECT imaging. Minimum RMSEs were 0.30 for 49-pinhole imaging and 0.41 for parallelhole imaging. For parallel-hole imaging, the detector trajectory from rightto- left yielded slightly lower RMSEs than that from posterior to anterior. For 49-pinhole imaging, near-minimum RMSEs were maintained over a broader range of OSEM iterations with a 5mm pinhole diameter and 21cm focal length versus a 2mm diameter pinhole and 18cm focal length. The detector with 21cm pinhole focal length had the shortest rotation radius averaged over the trajectory. Conclusion: On-board functional and molecular prostate imaging may be feasible in 4-minute scan times by robotic SPECT. A 49-pinhole SPECT system could improve such imaging as compared to broadcross-section parallel-hole collimated SPECT imaging. Multi-pinhole imaging can be improved by

  1. Calibration of gamma camera systems for a multicentre European 123I-FP-CIT SPECT normal database

    International Nuclear Information System (INIS)

    A joint initiative of the European Association of Nuclear Medicine (EANM) Neuroimaging Committee and EANM Research Ltd. aimed to generate a European database of [123I]FP-CIT single photon emission computed tomography (SPECT) scans of healthy controls. This study describes the characterization and harmonization of the imaging equipment of the institutions involved. 123I SPECT images of a striatal phantom filled with striatal to background ratios between 10:1 and 1:1 were acquired on all the gamma cameras with absolute ratios measured from aliquots. The images were reconstructed by a core lab using ordered subset expectation maximization (OSEM) without corrections (NC), with attenuation correction only (AC) and additional scatter and septal penetration correction (ACSC) using the triple energy window method. A quantitative parameter, the simulated specific binding ratio (sSBR), was measured using the ''Southampton'' methodology that accounts for the partial volume effect and compared against the actual values obtained from the aliquots. Camera-specific recovery coefficients were derived from linear regression and the error of the measurements was evaluated using the coefficient of variation (COV). The relationship between measured and actual sSBRs was linear across all systems. Variability was observed between different manufacturers and, to a lesser extent, between cameras of the same type. The NC and AC measurements were found to underestimate systematically the actual sSBRs, while the ACSC measurements resulted in recovery coefficients close to 100% for all cameras (AC range 69-89%, ACSC range 87-116%). The COV improved from 46% (NC) to 32% (AC) and to 14% (ACSC) (p < 0.001). A satisfactory linear response was observed across all cameras. Quantitative measurements depend upon the characteristics of the SPECT systems and their calibration is a necessary prerequisite for data pooling. Together with accounting for partial volume, the correction for scatter and septal

  2. In vivo imaging of brain dopaminergic neurotransmission system in small animals with high-resolution single photon emission computed tomography

    International Nuclear Information System (INIS)

    High-resolution single photon emission computed tomography (SPECT) provides a unique capability to image the biodistribution of radiolabeled molecules in small laboratory animals. Thus, we applied the high-resolution SPECT to in vivo imaging of the brain dopaminergic neurotransmission system in common marmosets using two radiolabeled ligands, [123I]2β-carbomethoxy-3β-(4-iodophenyl)tropane (β-CIT) as a dopamine transporter(DAT) ligand and [123I]iodobenzamide (IBZM) as a dopamine D2 receptor (D2R) ligand. Specific images of the striatum, a region with a high density of dopaminergic synapses, were obtained at 240 min and 60 min after injection of [123I]β-CIT and [123I]IBZM, respectively. Furthermore, a significantly low accumulation of [123I]β-CIT in the striatum was observed in MPTP-treated animals compared with results for a control group, and a similar accumulation in the control group was observed with the pretreatment of deprenyl in the MPTP-treated animals. However, the striatal accumulation of [123I]IBZM showed no changes among the control, MPTP-treated, and deprenyl-MPTP-treated groups. These SPECT imaging results agreed well with those of DA concentration and motor behavior. Since MPTP destroys nigrostriatal dopamine nerves and produces irreversible neurodegeneration associated with Parkinsonian syndrome, SPECDT imaging data in this study demonstrated that deprenyl shows its neuroprotective effect on Parkinsonism by protecting against the destruction of presynaptic dopamine neutrons. (author)

  3. Evaluation of cerebral perfusion in patients with neuropsychiatric systemic lupus erythematosus using 123I-IMP SPECT

    International Nuclear Information System (INIS)

    In the course of systemic lupus erythematosus (SLE), central nervous system (CNS) complications occur at a high frequency. An accurate diagnosis of CNS lupus, differentiated from secondary CNS involvement, is difficult. CNS lupus is indicative of advancing primary disease and is treated by steroid pulse therapy or increased dosage of steroids. In contrast, if symptoms are caused by secondary CNS complications, it is possible to observe or treat these complications using symptomatic therapy. We examined whether quantitative cerebral blood flow (CBF) measured using cerebral perfusion single photon emission computed tomography (SPECT) can be used to differentiate CNS lupus from secondary CNS involvement. We divided 18 SLE patients with CNS symptoms into a CNS lupus group and a non-CNS lupus group, and then compared the mean cerebral blood flow (mCBF) of each group of patients. SPECT was performed with N-isopropyl-p-[123I] iodoamphetamine (IMP), with quantitation carried out by table look-up and autoradiographic methods. The mCBF of both groups was decreased; however, the mCBF of patients with CNS lupus was significantly lower than that of non-CNS lupus patients. Quantitative CBF may provide a useful tool to distinguish CNS lupus from non-CNS lupus. (author)

  4. Core systems of geometry in animal minds

    OpenAIRE

    Spelke, Elizabeth S.; Lee, Sang Ah

    2012-01-01

    Research on humans from birth to maturity converges with research on diverse animals to reveal foundational cognitive systems in human and animal minds. The present article focuses on two such systems of geometry. One system represents places in the navigable environment by recording the distance and direction of the navigator from surrounding, extended surfaces. The other system represents objects by detecting the shapes of small-scale forms. These two systems show common signatures across a...

  5. Human Language and Animal Communication System

    Institute of Scientific and Technical Information of China (English)

    杨蕴哲

    2016-01-01

    Human language differs from animal communication in many ways. Hockett isolated 16 features that characterize human language and which distinguish it from other communication systems. The following passage will introduce some of these features, and by comparing language with animal communication systems, we can have a better understanding of the nature of language.

  6. SPECT/CT with a hybrid imaging system in the study of lower gastrointestinal bleeding with technetium-99m red blood cells

    International Nuclear Information System (INIS)

    Aim. Lower gastrointestinal (G I) hemorrhage is a complex clinical problem that requires disciplined evaluation for successful management. This study was conducted to evaluate the applicability of single photon emission computed tomography/computed tomography (SPECT/CT) in patients with acute lower gastrointestinal bleeding undergoing scintigraphy with 99m Tc-labelled red blood cells (RBC), and to assess the additional clinical value of fused images when compared to the standard radionuclide scan. Methods. Twenty-seven patients presenting with acute lower G I tract hemorrhage were studied with conventional dynamic and planar 99m Tc-RBC imaging. In 19 patients with positive findings on scans taken within 6 hours, a SPECT/CT study was immediately performed using a hybrid system composed of a dual-head, variable angle gamma camera and an X-ray tube. The number of patients in whom SPECT/CT changed the scintigraphic interpretation with regard to the presence or site of G I blood loss as confirmed by other diagnostic or therapeutical procedures was recorded. Results. Image fusion was easy and successful in all patients showing perfect correspondence between SPECT and CT data and allowing precise anatomical localization of the sites of 99m Tc-RBC extravasation. SPECT/CT had significant impact on the scintigraphic results in 7/19 patients (36.8%): in 6 patients it precisely localized the bleeding foci whose location could not be identified in standard scans and in one it excluded the presence of an active G I hemorrhage. Conclusion. SPECT/CT with a hybrid system is feasible and useful for facilitating imaging interpretation and improving the accuracy of 99m Tc-RBC scintigraphy in patients with acute lower G I bleeding.

  7. PET and SPECT imaging of the opioid system: receptors, radioligands and avenues for drug discovery and development.

    Science.gov (United States)

    Lever, John R

    2007-01-01

    As we celebrate the bicentennial of the isolation of morphine by Sertürner, opioids continue to dominate major sectors of the analgesic market worldwide. The pharmaceutical industry stands to benefit greatly from molecular imaging in preclinical and early clinical trials of new or improved opioid drugs. At this juncture, it seems fitting to summarize the past twenty or so years of research on molecular imaging of the opioid system from the viewpoint of drug discovery and development. Opioid receptors were first imaged in human volunteers by positron emission tomography (PET) in 1984. Now, quantitative PET imaging of the major opioid receptor types (micro, delta , kappa) is possible in the brain and peripheral organs of healthy persons and patient populations. Radioligands are under development for single photon emission computed tomography (SPECT) of opioid receptors as well. These functional, nuclear imaging techniques can trace the fate of radiolabeled molecules directly, but non-invasively, and allow precise pharmacokinetic and pharmacodynamic measurements. Molecular imaging provides unique data that can aid in selecting the best drug candidates, determining optimal dosing regimens, clearing regulatory hurdles and lowering risks of failure. Using a historical perspective, this review touches on opioid receptors as drug targets, and focuses on the status and use of radiotracers for opioid receptor PET and SPECT. Selected studies are discussed to illustrate the power of molecular imaging for facilitating opioid drug discovery and development. PMID:17266587

  8. Simulation of the expected performance of INSERT: A new multi-modality SPECT/MRI system for preclinical and clinical imaging

    Science.gov (United States)

    Busca, P.; Fiorini, C.; Butt, A. D.; Occhipinti, M.; Peloso, R.; Quaglia, R.; Schembari, F.; Trigilio, P.; Nemeth, G.; Major, P.; Erlandsson, K.; Hutton, B. F.

    2014-01-01

    A new multi-modality imaging tool is under development in the framework of the INSERT (INtegrated SPECT/MRI for Enhanced Stratification in Radio-chemo Therapy) project, supported by the European Community. The final goal is to develop a custom SPECT apparatus, that can be used as an insert for commercially available MRI systems such as 3 T MRI with 59 cm bore diameter. INSERT is expected to offer more effective and earlier diagnosis with potentially better outcome in survival for the treatment of brain tumors, primarily glioma. Two SPECT prototypes will be developed, one dedicated to preclinical imaging, the second one dedicated to clinical imaging. The basic building block of the SPECT detector ring is a small 5 cm×5 cm gamma camera, based on the well-established Anger architecture with a continuous scintillator readout by an array of silicon photodetectors. Silicon Drift Detectors (SDDs) and Silicon PhotoMultipliers (SiPM) are being considered as possible scintillator readout, considering that the detector choice plays a predominant role for the final performance of the system, such as energy and spatial resolution, as well as the useful field of view of the camera. Both solutions are therefore under study to evaluate their performances in terms of field of view (FOV), spatial and energy resolution. Preliminary simulations for both the preclinical and clinical systems have been carried out to evaluate resolution and sensitivity.

  9. Three-dimensional quantitation of regional cerebral blood flow in mice using a high-resolution pinhole SPECT system and 123I-iodoamphetamine

    International Nuclear Information System (INIS)

    Introduction: This study is intended to evaluate the feasibility of using a high-resolution pinhole SPECT system and iodine-123-N-isopropyl-4-iodoamphetamine (123I-IMP) for three-dimensional (3D) absolute quantitation of regional cerebral blood flow (rCBF) in mice. Methods: The pinhole SPECT system consists of a rotating stage and a pinhole collimator attached to a clinical gamma camera. The collimator's focal length is 251 mm. Phantom studies were performed to evaluate sensitivity and full-width half-maximum (FWHM) spatial resolution. The aperture-to-object distance was 15 mm. Six mice were studied. Cerebral infarctions were induced by ligating and disconnecting the distal portion of the left middle cerebral artery. Ex vivo SPECT studies were performed using harvested brains and skulls. The CBF volumetric image was computed using the standardized input function. Results: Excellent spatial resolution of 0.9-mm FWHM and uniform sensitivity throughout the 3D volume were demonstrated in the phantom experiments. The CBF images showed a defect in the infarcted areas and a reduction of CBF values in the infarcted region as compared with the control region. Conclusions: This study demonstrated the feasibility of the 3D quantitation of rCBF in mice using a high-resolution pinhole SPECT system and 123I-IMP.

  10. Animal Welfare in organic framing systems

    NARCIS (Netherlands)

    Spoolder, H.A.M.

    2007-01-01

    The concept of farm animal welfare can, for practical purposes, be translated into the so-called Five Freedoms.[1] Organic farming aims to meet animal welfare needs and should therefore comply with these Freedoms. The first Freedom, from hunger and thirst, is met in any system properly managed to or

  11. SU-E-I-79: Effect of Number of Pinholes in Onboard Robotic Multi-Pinhole SPECT System

    International Nuclear Information System (INIS)

    Purpose: To study the effect of number of pinholes for a novel Single Photon Emission Computed Tomography (SPECT) system for onboard molecular and functional imaging. Methods: Comparison studies were performed using simulation for the 49-pinhole SPECT system and a series of reductions in number of pinholes. Trajectories about the breast of a supine patient were considered. Minimum distances, radii of rotation (RORs), were determined by requirements to fully view the region of interest (ROI) and to avoid collision between the detector and the patient. Reductions in RORs translate into improvements in sensitivity. Starting from the 49-pinhole system, pinholes were removed pod by pod. The furthest two end pods in the Sup-Inf direction were removed first for their higher likelihood of alleviating the collision avoidance criteria. After iterating through different combinations of pinhole pods, and selecting three combinations, the corresponding RORs were used to analytically calculate sensitivities. Results: Based on the Methods procedure, 3 combination of pods removal were identified: 1) Superior peripheral pod 2) Inferior peripheral pod 3) both pods. RORs were reduced at only one multi-pinhole stop. Analytic calculation showed that sensitivities were reduced from 0.032 for the 49-pinhole system to 0.028 for 42-pinhole and to 0.023 for 39-pinhole system respectively. The sensitivity per pinhole detector was approximately the same for all three cases. Conclusion: For the trajectories considered, only minimal improvements in RORs were identified by removing pinhole pods. Consequently, sensitivities decreased in proportion to the number of pinholes. Studies of other anatomical sites are needed to determine if in some cases sensitivity per pinhole can be improved by removing some pinholes. PHS/NIH/NCI grant R21-CA156390-01A1

  12. Zinc fate in animal husbandry systems.

    Science.gov (United States)

    Romeo, A; Vacchina, V; Legros, S; Doelsch, E

    2014-11-01

    Zinc (Zn) is considered in animal production systems as both an essential nutrient and a possible pollutant. While it is generally supplemented at low levels in animal diets, with less than 200 mg kg(-1) in complete feeds, it is under scrutiny due to potential accumulation in the environment. This explains why international regulations limit maximum supplementation levels in animal feeds in a stricter way. This article gives an overview of the current knowledge on the fate of zinc in animal production systems, from animal diets to animal wastes. Some analytical methods can be used for the quantification and qualification of Zn chemical forms: X-ray crystallography, electrospray tandem mass spectrometry, separation techniques, hyphenated techniques… Analysis of chelated forms issued from complex matrices, like hydrolysed proteins, remains difficult, and the speciation of Zn in diluted carriers (premix and feed) is a challenge. Our understanding of Zn absorption has made progress with recent research on ZnT/Zip families and metallothioneins. However, fine-tuned approaches towards the nutritional and metabolic interactions for Zn supplementation in farm conditions still require further studies. The speciation of zinc in pig manure and poultry litter has been a priority as monogastric animals are usually raised under intensive conditions and fed with high quantities of trace minerals, leading to high animal density and elevated quantities of zinc from animal wastes.

  13. Theory and realization of a 2D high resolution and high sensitivity SPECT system with an angle-encoding attenuator pattern

    Science.gov (United States)

    Feng, Tao; Wang, Jizhe; Tsui, Benjamin M. W.

    2016-04-01

    The camera of the conventional SPECT system requires a collimator to allow incoming photons from a specific range of incident angle to reach the detector. It is the major factor that determines the spatial resolution of the camera. Moreover, it also greatly reduces the number of detected photons and hence increases statistical fluctuations in the acquired image data. The goal of this paper is to propose a theory and design for a novel high resolution and high sensitivity SPECT system without conventional collimators. The key is to resolve the incident photons from all directional angles and detected by every detector bin. Special ‘attenuators’ were designed to ‘encode’ the incoming photons from different directions similar to coded aperture to form projection data for image reconstruction. Each encoded angular pattern of detected photons was recorded as one measurement. Different angular patterns were achieved by changing the configurations of the attenuators so that angular pattern of different measurements or measurement matrix (MM) is invertible, which guarantee a unique reconstructed image. In simulation, the attenuators were fitted on a virtual full-ring gamma camera, as an alternative to the collimators in conventional SPECT systems. To evaluate the performance of the new SPECT system, analytical simulated projection data in 2D scenario were generated from the XCAT phantom. Noisy simulation using 100 noise realizations suggests that the new attenuator design provides much improved image quality in terms of contrast-noise trade-offs (~30% improvement). The results suggest that the new design of using attenuators to replace collimator is feasible and could potentially improve sensitivity without sacrificing resolution in today’s SPECT systems.

  14. SPECT/CT and pulmonary embolism

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, Jann [Copenhagen University Hospital, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen (Denmark); The Faroese National Hospital, Department of Medicine, Torshavn (Faroe Islands); Gutte, Henrik [Copenhagen University Hospital, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen (Denmark); Herlev Hospital, Copenhagen University Hospital, Department of Radiology, Copenhagen (Denmark); University of Copenhagen, Cluster for Molecular Imaging, Faculty of Health Sciences, Copenhagen (Denmark)

    2014-05-15

    Acute pulmonary embolism (PE) is diagnosed either by ventilation/perfusion (V/P) scintigraphy or pulmonary CT angiography (CTPA). In recent years both techniques have improved. Many nuclear medicine centres have adopted the single photon emission CT (SPECT) technique as opposed to the planar technique for diagnosing PE. SPECT has been shown to have fewer indeterminate results and a higher diagnostic value. The latest improvement is the combination of a low-dose CT scan with a V/P SPECT scan in a hybrid tomograph. In a study comparing CTPA, planar scintigraphy and SPECT alone, SPECT/CT had the best diagnostic accuracy for PE. In addition, recent developments in the CTPA technique have made it possible to image the pulmonary arteries of the lungs in one breath-hold. This development is based on the change from a single-detector to multidetector CT technology with an increase in volume coverage per rotation and faster rotation. Furthermore, the dual energy CT technique is a promising modality that can provide functional imaging in combination with anatomical information. Newer high-end CT scanners and SPECT systems are able to visualize smaller subsegmental emboli. However, consensus is lacking regarding the clinical impact and treatment. In the present review, SPECT and SPECT in combination with low-dose CT, CTPA and dual energy CT are discussed in the context of diagnosing PE. (orig.)

  15. SPECT/CT and pulmonary embolism.

    Science.gov (United States)

    Mortensen, Jann; Gutte, Henrik

    2014-05-01

    Acute pulmonary embolism (PE) is diagnosed either by ventilation/perfusion (V/P) scintigraphy or pulmonary CT angiography (CTPA). In recent years both techniques have improved. Many nuclear medicine centres have adopted the single photon emission CT (SPECT) technique as opposed to the planar technique for diagnosing PE. SPECT has been shown to have fewer indeterminate results and a higher diagnostic value. The latest improvement is the combination of a low-dose CT scan with a V/P SPECT scan in a hybrid tomograph. In a study comparing CTPA, planar scintigraphy and SPECT alone, SPECT/CT had the best diagnostic accuracy for PE. In addition, recent developments in the CTPA technique have made it possible to image the pulmonary arteries of the lungs in one breath-hold. This development is based on the change from a single-detector to multidetector CT technology with an increase in volume coverage per rotation and faster rotation. Furthermore, the dual energy CT technique is a promising modality that can provide functional imaging in combination with anatomical information. Newer high-end CT scanners and SPECT systems are able to visualize smaller subsegmental emboli. However, consensus is lacking regarding the clinical impact and treatment. In the present review, SPECT and SPECT in combination with low-dose CT, CTPA and dual energy CT are discussed in the context of diagnosing PE. PMID:24213621

  16. Organ volume estimation using SPECT

    CERN Document Server

    Zaidi, H

    1996-01-01

    Knowledge of in vivo thyroid volume has both diagnostic and therapeutic importance and could lead to a more precise quantification of absolute activity contained in the thyroid gland. In order to improve single-photon emission computed tomography (SPECT) quantitation, attenuation correction was performed according to Chang's algorithm. The dual-window method was used for scatter subtraction. We used a Monte Carlo simulation of the SPECT system to accurately determine the scatter multiplier factor k. Volume estimation using SPECT was performed by summing up the volume elements (voxels) lying within the contour of the object, determined by a fixed threshold and the gray level histogram (GLH) method. Thyroid phantom and patient studies were performed and the influence of 1) fixed thresholding, 2) automatic thresholding, 3) attenuation, 4) scatter, and 5) reconstruction filter were investigated. This study shows that accurate volume estimation of the thyroid gland is feasible when accurate corrections are perform...

  17. PET and SPECT in neurology

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, Rudi A.J.O. [Groningen University Medical Center (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Ghent Univ. (Belgium). Dept. of Radiology and Nuclear Medicine; Vries, Erik F.J. de; Waarde, Aren van [Groningen University Medical Center (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Otte, Andreas (ed.) [Univ. of Applied Sciences Offenburg (Germany). Faculty of Electrical Engineering and Information Technology

    2014-07-01

    PET and SPECT in Neurology highlights the combined expertise of renowned authors whose dedication to the investigation of neurological disorders through nuclear medicine technology has achieved international recognition. Classical neurodegenerative disorders are discussed as well as cerebrovascular disorders, brain tumors, epilepsy, head trauma, coma, sleeping disorders, and inflammatory and infectious diseases of the CNS. The latest results in nuclear brain imaging are detailed. Most chapters are written jointly by a clinical neurologist and a nuclear medicine specialist to ensure a multidisciplinary approach. This state-of-the-art compendium will be valuable to anybody in the field of neuroscience, from the neurologist and the radiologist/nuclear medicine specialist to the interested general practitioner and geriatrician. It is the second volume of a trilogy on PET and SPECT imaging in the neurosciences, the other volumes covering PET and SPECT in psychiatry and in neurobiological systems.

  18. PET and SPECT in neurology

    International Nuclear Information System (INIS)

    PET and SPECT in Neurology highlights the combined expertise of renowned authors whose dedication to the investigation of neurological disorders through nuclear medicine technology has achieved international recognition. Classical neurodegenerative disorders are discussed as well as cerebrovascular disorders, brain tumors, epilepsy, head trauma, coma, sleeping disorders, and inflammatory and infectious diseases of the CNS. The latest results in nuclear brain imaging are detailed. Most chapters are written jointly by a clinical neurologist and a nuclear medicine specialist to ensure a multidisciplinary approach. This state-of-the-art compendium will be valuable to anybody in the field of neuroscience, from the neurologist and the radiologist/nuclear medicine specialist to the interested general practitioner and geriatrician. It is the second volume of a trilogy on PET and SPECT imaging in the neurosciences, the other volumes covering PET and SPECT in psychiatry and in neurobiological systems.

  19. Simulation of the expected performance of INSERT: A new multi-modality SPECT/MRI system for preclinical and clinical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Busca, P., E-mail: busca@elet.polimi.it [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano (Italy); Fiorini, C., E-mail: carlo.fiorini@polimi.it [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano (Italy); Butt, A.D.; Occhipinti, M.; Peloso, R.; Quaglia, R.; Schembari, F.; Trigilio, P. [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano (Italy); Nemeth, G.; Major, P. [Mediso Medical Imaging Systems, Alsotorokvesz 14, H-1022 Budapest (Hungary); Erlandsson, K. [University College London, Gower Street, WC1E 6BT London (United Kingdom); Hutton, B.F. [University College London, Gower Street, WC1E 6BT London (United Kingdom); Centre for Medical Radiation Physics, University of Wollongong, NSW 2522 (Australia)

    2014-01-11

    A new multi-modality imaging tool is under development in the framework of the INSERT (INtegrated SPECT/MRI for Enhanced Stratification in Radio-chemo Therapy) project, supported by the European Community. The final goal is to develop a custom SPECT apparatus, that can be used as an insert for commercially available MRI systems such as 3 T MRI with 59 cm bore diameter. INSERT is expected to offer more effective and earlier diagnosis with potentially better outcome in survival for the treatment of brain tumors, primarily glioma. Two SPECT prototypes will be developed, one dedicated to preclinical imaging, the second one dedicated to clinical imaging. The basic building block of the SPECT detector ring is a small 5 cm×5 cm gamma camera, based on the well-established Anger architecture with a continuous scintillator readout by an array of silicon photodetectors. Silicon Drift Detectors (SDDs) and Silicon PhotoMultipliers (SiPM) are being considered as possible scintillator readout, considering that the detector choice plays a predominant role for the final performance of the system, such as energy and spatial resolution, as well as the useful field of view of the camera. Both solutions are therefore under study to evaluate their performances in terms of field of view (FOV), spatial and energy resolution. Preliminary simulations for both the preclinical and clinical systems have been carried out to evaluate resolution and sensitivity. -- Highlights: • We introduce INSERT, a new multi-modality SPECT/MRI instrument. • We propose two possible photodetectors (SDD, SiPM) for the scintillators readout. • We show possible results for INSERT, based on simulations.

  20. Evaluation of the effects of methylprednisolone pulse therapy in patients with systemic lupus erythematosus with brain involvement by Tc-99m HMPAO brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Sun, S.S.; Kao, C.H. [Department of Nuclear Medicine, China Medical University Hospital, Taichung (Taiwan); Huang, W.S. [Department of Nuclear Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei (Taiwan); Chen, J.J.H. [Section of Rheumatology, Department of Internal Medicine, China Medicine University Hospital, Taichung (Taiwan); Chang, C.P. [Division of Allergy, Immunology and Rheumatology, Changhua Christian Hospital, Changhua (Taiwan); Wang, J.J. [Department of Medical Research, Chi-Mei Medical Center, Tainan (Taiwan)

    2004-07-01

    Methylprednisolone pulse therapy (MPT) was introduced to avoid life-threatening complications in patients with systemic lupus erythematosus (SLE) with brain manifestations; however, the efficacy of MPT in SLE patients with brain involvement is still uncertain and needs to be objectively evaluated. We enrolled 15 female SLE patients with neuropsychiatric manifestations in this study. All patients had normal brain MRI and abnormal brain HMPAO-SPECT findings. Follow-up HMPAO-SPECT studies were conducted 2 weeks after MPT. Serum levels of anticardiolipin antibodies (ACA) and anti-ribosomal P antibodies (anti-P) were measured before and after MPT. Before MPT, 7 patients were positive for ACA and 7 patients were positive for anti-P. After MPT, none of the 15 patients demonstrated positive serologic findings or neuropsychiatric manifestations. Based on the follow up brain HMPAO-SPECT images following MPT, 13 patients showed disappearance of the perfusion defects and 2 patients showed partial recovery of rCBF. Brain HMPAO-SPECT imaging is a logical and objective tool for measuring the effects of MPT in SLE patients with brain involvement by determining of changes in rCBF. (orig.)

  1. SPECT in psychiatry. SPECT in der Psychiatrie

    Energy Technology Data Exchange (ETDEWEB)

    Barocka, A. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany)); Feistel, H. (Nuklearmedizinische Klinik, Erlangen (Germany)); Ebert, D. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany)); Lungershausen, E. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany))

    1993-08-13

    This review presents Single Photon Emission Computed Tomography (SPECT) as a powerful tool for clinical use and research in psychiatry. Its focus is on regional cerebral blood flow, measured with technetium labelled HMPAO. In addition, first results with brain receptor imaging, concerning dopamin-D[sub 2] and benzodiazepine receptors, are covered. Due to major improvements in image quality, and impressive number of results has been accumulated in the past three years. The authors caution against using SPECT results as markers for disease entities. A finding like 'hypofrontality' is considered typical of a variety of mental disorders. Clearly both, more experience with SPECT and contributions from psychopathology, are needed. (orig.)

  2. SPECT/CT - Technical aspects and optimization possibilities; SPECT/CT - Technische Aspekte und Optimierungsmoeglichkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Roemer, W. [Klinikum Passau, Klinik fuer Nuklearmedizin, Passau (Germany)

    2012-07-15

    In contrast to positron emission tomography/computed tomography (PET/CT), the currently available single photon emission computed tomography/computed tomography (SPECT/CT) systems are very heterogeneous. On the side of the gamma cameras, dual-head systems are established, which are not very different from one manufacturer to the other. For the CT component, there are low dose tubes on the one side and flat detector-based cone beam CT and multislice-CT on the other. The CT image data can be used for anatomic correlation of suspicious findings as well as for attenuation correction of SPECT data. Attenuation correction enables on the one hand enhancement of SPECT image quality and on the other hand quantification of the radioactivity concentration becomes possible. Modern iterative reconstruction algorithms allow scatter correction and attenuation correction of SPECT data using the density values from CT. It still has to be shown to what extent attenuation-corrected whole body SPECT/CT studies will be able to improve the sensitivity of scintigraphy studies. As SPECT/CT primarily aims at morphologic correlation and not detection of additional lesions, an attempt should be made to balance the necessary anatomic information and the additional radiation exposure. Besides SPECT-guided CT all technical possibilities for dose reduction should be exhausted. (orig.) [German] Im Gegensatz zur Positronenemissionstomographie/Computertomographie (PET/CT) sind die auf dem Markt angebotenen Single-photon-emission-computed-tomography/CT(SPECT/CT)-Systeme sehr heterogen. Auf der Seite der Gammakameras sind Zweikopfsysteme etabliert, die sich bei den verschiedenen Wettbewerbern nur unwesentlich unterscheiden. Hingegen reicht bei der CT-Komponente die Palette von der einfachen Niedrigdosisroentgenroehre ueber die flachdetektorbasierte Cone-beam-CT-Technologie bis hin zum Mehrzeilenspiral-CT. Die CT-Bilddaten werden dabei zum einen zur anatomischen Korrelation funktionell auffaelliger

  3. PET and SPECT in psychiatry

    International Nuclear Information System (INIS)

    Covers classical psychiatric disorders as well as other subjects such as suicide, sleep, eating disorders, and autism. Emphasis on a multidisciplinary approach. Written by internationally acclaimed experts. PET and SPECT in Psychiatry showcases the combined expertise of renowned authors whose dedication to the investigation of psychiatric disease through nuclear medicine technology has achieved international recognition. The classical psychiatric disorders as well as other subjects - such as suicide, sleep, eating disorders, and autism - are discussed and the latest results in functional neuroimaging are detailed. Most chapters are written jointly by a clinical psychiatrist and a nuclear medicine expert to ensure a multidisciplinary approach. This state of the art compendium will be valuable to all who have an interest in the field of neuroscience, from the psychiatrist and the radiologist/nuclear medicine specialist to the interested general practitioner and cognitive psychologist. It is the first volume of a trilogy on PET and SPECT imaging in the neurosciences; other volumes will focus on PET and SPECT in neurology and PET and SPECT of neurobiological systems.

  4. PET and SPECT in psychiatry

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, Rudi A.J.O. [University Medical Center Groningen (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Ghent Univ. (Belgium); Otte, Andreas [Univ. of Applied Sciences Offenburg (Germany). Faculty of Electrical Engineering and Information Technology; Vries, Erik F.J. de; Waarde, Aren van (eds.) [University Medical Center Groningen (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging

    2014-09-01

    Covers classical psychiatric disorders as well as other subjects such as suicide, sleep, eating disorders, and autism. Emphasis on a multidisciplinary approach. Written by internationally acclaimed experts. PET and SPECT in Psychiatry showcases the combined expertise of renowned authors whose dedication to the investigation of psychiatric disease through nuclear medicine technology has achieved international recognition. The classical psychiatric disorders as well as other subjects - such as suicide, sleep, eating disorders, and autism - are discussed and the latest results in functional neuroimaging are detailed. Most chapters are written jointly by a clinical psychiatrist and a nuclear medicine expert to ensure a multidisciplinary approach. This state of the art compendium will be valuable to all who have an interest in the field of neuroscience, from the psychiatrist and the radiologist/nuclear medicine specialist to the interested general practitioner and cognitive psychologist. It is the first volume of a trilogy on PET and SPECT imaging in the neurosciences; other volumes will focus on PET and SPECT in neurology and PET and SPECT of neurobiological systems.

  5. Myocardial Infarction Area Quantification using High-Resolution SPECT Images in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luciano Fonseca Lemos de [Divisão de Cardiologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Mejia, Jorge [Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP (Brazil); Carvalho, Eduardo Elias Vieira de; Lataro, Renata Maria; Frassetto, Sarita Nasbine [Divisão de Cardiologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Fazan, Rubens Jr.; Salgado, Hélio Cesar [Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Galvis-Alonso, Orfa Yineth [Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP (Brazil); Simões, Marcus Vinícius, E-mail: msimoes@fmrp.usp.br [Divisão de Cardiologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2013-07-15

    Imaging techniques enable in vivo sequential assessment of the morphology and function of animal organs in experimental models. We developed a device for high-resolution single photon emission computed tomography (SPECT) imaging based on an adapted pinhole collimator. To determine the accuracy of this system for quantification of myocardial infarct area in rats. Thirteen male Wistar rats (250 g) underwent experimental myocardial infarction by occlusion of the left coronary artery. After 4 weeks, SPECT images were acquired 1.5 hours after intravenous injection of 555 MBq of 99mTc-Sestamibi. The tomographic reconstruction was performed by using specially developed software based on the Maximum Likelihood algorithm. The analysis of the data included the correlation between the area of perfusion defects detected by scintigraphy and extent of myocardial fibrosis assessed by histology. The images showed a high target organ/background ratio with adequate visualization of the left ventricular walls and cavity. All animals presenting infarction areas were correctly identified by the perfusion images. There was no difference of the infarct area as measured by SPECT (21.1 ± 21.2%) and by histology (21.7 ± 22.0%; p=0.45). There was a strong correlation between individual values of the area of infarction measured by these two methods. The developed system presented adequate spatial resolution and high accuracy for the detection and quantification of myocardial infarction areas, consisting in a low cost and versatile option for high-resolution SPECT imaging of small rodents.

  6. SPECT quantification of regional radionuclide distributions

    International Nuclear Information System (INIS)

    SPECT quantification of regional radionuclide activities within the human body is affected by several physical and instrumental factors including attenuation of photons within the patient, Compton scattered events, the system's finite spatial resolution and object size, finite number of detected events, partial volume effects, the radiopharmaceutical biokinetics, and patient and/or organ motion. Furthermore, other instrumentation factors such as calibration of the center-of-rotation, sampling, and detector nonuniformities will affect the SPECT measurement process. These factors are described, together with examples of compensation methods that are currently available for improving SPECT quantification. SPECT offers the potential to improve in vivo estimates of absorbed dose, provided the acquisition, reconstruction, and compensation procedures are adequately implemented and utilized. 53 references, 2 figures

  7. Quantitative simultaneous 99mTc-ECD/123I-FP-CIT SPECT in Parkinson's disease and multiple system atrophy

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate the feasibility and utility of dual-isotope SPECT for differential diagnosis of idiopathic Parkinson's disease (IPD) and multiple system atrophy (MSA). Simultaneous 99mTc-ECD/123I-FP-CIT studies were performed in nine normal controls, five IPD patients, and five MSA patients. Projections were corrected for scatter, cross-talk, and high-energy penetration, and iteratively reconstructed while correcting for patient-specific attenuation and variable collimator response. Perfusion and dopamine transporter (DAT) function were assessed using voxel-based statistical parametric mapping (SPM2) and volume of interest quantitation. DAT binding potential (BP) and asymmetry index (AI) were estimated in the putamen and caudate nucleus. Striatal BP was lower in IPD (55%) and MSA (23%) compared to normal controls (p<0.01), and in IPD compared to MSA (p<0.05). AI was greater for IPD than for MSA and controls in both the caudate nucleus and the putamen (p<0.05). There was significantly decreased perfusion in the left and right nucleus lentiformis in MSA compared to IPD and controls (p<0.05). Dual-isotope studies are both feasible in and promising for the diagnosis of parkinsonian syndromes. (orig.)

  8. Rapid radiotracer washout from the heart: effect on image quality in SPECT performed with a single-headed gamma camera system.

    Science.gov (United States)

    O'Connor, M K; Cho, D S

    1992-06-01

    Technetium-99m-teboroxime demonstrates high extraction and rapid washout from the myocardium. To evaluate the feasibility of performing SPECT with this agent using a single-headed gamma camera system, a series of phantom studies were performed that simulated varying degrees of washout from normal and "ischemic" regions of the myocardium. In the absence of ischemic regions, short axis profiles were relatively unaffected by washout of less than 50% of activity over the duration of a SPECT acquisition. However, significant corruption of the SPECT data was observed when large (greater than a factor of 2) differences existed in the washout of activity from normal and "ischemic" myocardium. This corruption was observed with 30%-40% washout of activity from normal regions of the heart. Based on published washout rates, these results indicate that clinical studies with 99mTc-teboroxime may need to be completed within 2-4 min to order to prevent degradation of image quality due to differential washout effects.

  9. Combined 201Tl and 67Ga brain SPECT in patients with suspected central nervous system lymphoma or germinoma. Clinical and economic value

    International Nuclear Information System (INIS)

    Surgical resection is costly and an unfavorable prognostic factor for primary central nervous system (CNS) lymphoma and germinoma patients. The purpose of this study was to assess the diagnostic and economic impact of combined 201Tl and 67Ga brain SPECT on the management of patients suspected of having CNS lymphoma or germinoma. Sequential 201Tl and 67Ga brain SPECT was performed in 40 patients with cranial tumors to assess the diagnostic and economic impact of combined 201Tl and 67Ga SPECT on the management of patients suspected of having CNS lymphoma or germinoma. All intracranial masses were pathologically confirmed. The final diagnoses of a total of 47 foci were: 11 non-Hodgkin's lymphomas in 10 patients, 3 germinomas in 2 patients, 10 glioblastomas in 9 patients, 10 cerebral metastases in 8 patients, 13 meningiomas in 11 patients. Decision-tree sensitivity analysis for pretest probability regarding expected cost saving was performed for introduction of the combined study. All but one focus of CNS lymphomas or germinomas (92.9%, 13/14) exhibited more intense uptake of 67Ga than of 201Tl (p201Tl than of 67Ga (p67Ga-positive and 201Tl-positive pattern with more intense uptake of 67Ga than 201Tl probably suggests CNS lymphoma or germinoma. This combination study appears to be cost-effective only in patients highly suspected of having CNS lymphoma or germinoma. (author)

  10. Brain SPECT with Tl-201 DDC

    International Nuclear Information System (INIS)

    The development, animal and human experiments and the first clinical results of a new blood flow tracer thallium-201 diethyldithiocarbamate (Tl-201 DDC) are discussed for functional brain imaging with single-photon emission computed tomography (SPECT). 325 refs.; 43 figs.; 22 tabs

  11. Brain SPECT in psychiatry: Delusion or reality?

    International Nuclear Information System (INIS)

    Aim: The need for functional information is becoming increasingly evident for proper therapeutic approaches to the treatment and follow up of psychiatric diseases. While data on this subject already exists, there is a general lack of consensus about the use of brain SPECT in this domain and also a considerable negative prejudice due to a number of factors including poor quality imaging and unrealistic expectations. Based on a large group of brain SPECT-s performed over the past 3 years we attempted to sort and refine the indications for SPECT in psychiatry. Materials and Methods: High resolution brain SPECT was performed with triple head gamma camera, super-high resolution fan beam collimator and Tc-HMPAO. A comprehensive semiquantitative color, 3D surface as well as multi-thresholded volume display was routinely used and supplemented by automatic realignment in case of longitudinal follow-up. Results: 470 brain SPECT-s done on 432 patients were all referred by psychiatrists or neuro-psychiatrists for a wide spectrum of psychiatric diseases and ranged in age from 7 to 88 years. The most common primary reasons for referral were : attention deficit hyperactive disorder (ADHD); anxiety; obsessive-compulsive disease, depression (refractory, chronic, bipolar ), impulse control problems; oppositional defiance, post traumatic brain injury; seizures, learning difficulties, pervasive development disorders, memory loss and differential of dementia. Among common denominators were long duration of the disease, unresponsiveness to treatment, worsening of clinical status, and presence of multiple conditions at the same time. The multiparametric display used enabled a comprehensive evaluation of the brain volume which included the hemispheric surfaces; the basal ganglia (striatum) and the thalamus, several components of the limbic and paralimbic systems: anterior and posterior cingulate and their respective subdivisions, insula-s and their subdivisions, apical and mesial

  12. Sci—Thur PM: Imaging — 04: An iterative triple energy window (TEW) approach to cross talk correction in quantitative small animal Tc99m and In111 SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Prior, P [Carleton University (Canada); Timmins, R [University of Ottawa Heart Institute (Canada); Wells, R G [Carleton University (Canada); University of Ottawa Heart Institute (Canada)

    2014-08-15

    Dual isotope SPECT allows simultaneous measurement of two different tracers in vivo. With In111 (emission energies of 171keV and 245keV) and Tc99m (140keV), quantification of Tc99m is degraded by cross talk from the In111 photons that scatter and are detected at an energy corresponding to Tc99m. TEW uses counts recorded in two narrow windows surrounding the Tc99m primary window to estimate scatter. Iterative TEW corrects for the bias introduced into the TEW estimate resulting from un-scattered counts detected in the scatter windows. The contamination in the scatter windows is iteratively estimated and subtracted as a fraction of the scatter-corrected primary window counts. The iterative TEW approach was validated with a small-animal SPECT/CT camera using a 2.5mL plastic container holding thoroughly mixed Tc99m/In111 activity fractions of 0.15, 0.28, 0.52, 0.99, 2.47 and 6.90. Dose calibrator measurements were the gold standard. Uncorrected for scatter, the Tc99m activity was over-estimated by as much as 80%. Unmodified TEW underestimated the Tc99m activity by 13%. With iterative TEW corrections applied in projection space, the Tc99m activity was estimated within 5% of truth across all activity fractions above 0.15. This is an improvement over the non-iterative TEW, which could not sufficiently correct for scatter in the 0.15 and 0.28 phantoms.

  13. Quantitative SPECT techniques.

    Science.gov (United States)

    Watson, D D

    1999-07-01

    Quantitative imaging involves first, a set of measurements that characterize an image. There are several variations of technique, but the basic measurements that are used for single photon emission computed tomography (SPECT) perfusion images are reasonably standardized. Quantification currently provides only relative tracer activity within the myocardial regions defined by an individual SPECT acquisition. Absolute quantification is still a work in progress. Quantitative comparison of absolute changes in tracer uptake comparing a stress and rest study or preintervention and postintervention study would be useful and could be done, but most commercial systems do not maintain the data normalization that is necessary for this. Measurements of regional and global function are now possible with electrocardiography (ECG) gating, and this provides clinically useful adjunctive data. Techniques for measuring ventricular function are evolving and promise to provide clinically useful accuracy. The computer can classify images as normal or abnormal by comparison with a normal database. The criteria for this classification involve more than just checking the normal limits. The images should be analyzed to measure how far they deviate from normal, and this information can be used in conjunction with pretest likelihood to indicate the level of statistical certainty that an individual patient has a true positive or true negative test. The interface between the computer and the clinician interpreter is an important part of the process. Especially when both perfusion and function are being determined, the ability of the interpreter to correctly assimilate the data is essential to the use of the quantitative process. As we become more facile with performing and recording objective measurements, the significance of the measurements in terms of risk evaluation, viability assessment, and outcome should be continually enhanced. PMID:10433336

  14. Quantification of dopaminergic neurotransmission SPECT studies with {sup 123}I-labelled radioligands. A comparison between different imaging systems and data acquisition protocols using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Crespo, Cristina; Aguiar, Pablo [Universitat de Barcelona - IDIBAPS, Unitat de Biofisica i Bioenginyeria, Departament de Ciencies Fisiologiques I, Facultat de Medicina, Barcelona (Spain); Gallego, Judith [Universitat Politecnica de Catalunya, Institut de Tecniques Energetiques, Barcelona (Spain); Institut de Bioenginyeria de Catalunya, Barcelona (Spain); Cot, Albert [Universitat de Barcelona - IDIBAPS, Unitat de Biofisica i Bioenginyeria, Departament de Ciencies Fisiologiques I, Facultat de Medicina, Barcelona (Spain); Universitat Politecnica de Catalunya, Seccio d' Enginyeria Nuclear, Departament de Fisica i Enginyeria Nuclear, Barcelona (Spain); Falcon, Carles; Ros, Domenec [Universitat de Barcelona - IDIBAPS, Unitat de Biofisica i Bioenginyeria, Departament de Ciencies Fisiologiques I, Facultat de Medicina, Barcelona (Spain); CIBER en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain); Bullich, Santiago [Hospital del Mar, Center for Imaging in Psychiatry, CRC-MAR, Barcelona (Spain); Pareto, Deborah [CIBER en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain); PRBB, Institut d' Alta Tecnologia, Barcelona (Spain); Sempau, Josep [Universitat Politecnica de Catalunya, Institut de Tecniques Energetiques, Barcelona (Spain); CIBER en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain); Lomena, Francisco [IDIBAPS, Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); Calvino, Francisco [Universitat Politecnica de Catalunya, Institut de Tecniques Energetiques, Barcelona (Spain); Universitat Politecnica de Catalunya, Seccio d' Enginyeria Nuclear, Departament de Fisica i Enginyeria Nuclear, Barcelona (Spain); Pavia, Javier [CIBER en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain); IDIBAPS, Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain)

    2008-07-15

    {sup 123}I-labelled radioligands are commonly used for single-photon emission computed tomography (SPECT) imaging of the dopaminergic system to study the dopamine transporter binding. The aim of this work was to compare the quantitative capabilities of two different SPECT systems through Monte Carlo (MC) simulation. The SimSET MC code was employed to generate simulated projections of a numerical phantom for two gamma cameras equipped with a parallel and a fan-beam collimator, respectively. A fully 3D iterative reconstruction algorithm was used to compensate for attenuation, the spatially variant point spread function (PSF) and scatter. A post-reconstruction partial volume effect (PVE) compensation was also developed. For both systems, the correction for all degradations and PVE compensation resulted in recovery factors of the theoretical specific uptake ratio (SUR) close to 100%. For a SUR value of 4, the recovered SUR for the parallel imaging system was 33% for a reconstruction without corrections (OSEM), 45% for a reconstruction with attenuation correction (OSEM-A), 56% for a 3D reconstruction with attenuation and PSF corrections (OSEM-AP), 68% for OSEM-AP with scatter correction (OSEM-APS) and 97% for OSEM-APS plus PVE compensation (OSEM-APSV). For the fan-beam imaging system, the recovered SUR was 41% without corrections, 55% for OSEM-A, 65% for OSEM-AP, 75% for OSEM-APS and 102% for OSEM-APSV. Our findings indicate that the correction for degradations increases the quantification accuracy, with PVE compensation playing a major role in the SUR quantification. The proposed methodology allows us to reach similar SUR values for different SPECT systems, thereby allowing a reliable standardisation in multicentric studies. (orig.)

  15. Dosimetry of an animal irradiation system

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Nelson M.; Funari, Ana P.; Miranda, Jurandir T.; Napolitano, Celia M.; Goncalves, Josemary A.C.; Bueno, Carmen C.; Mathor, Monica B., E-mail: nelsonnininho@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Radiation therapy uses ionizing radiation for cancer treatment, but its effectiveness may be limited by the consequent appearance of radiodermatitis. This problem may present several degrees: the highest among them is radionecrosis. Therefore, a model of study for the animal irradiation system (AIS) was built, generating radionecrosis on rat backs. The AIS is comprised by: a) a shield between the {sup 60}Co irradiator metallic guide and the animal immobilizer (AI), with holes exposing the rat skin; b) a shield on the AI posterior part and (c) the AIS angle. The doses were measured with alanine pellets in seven positions (two external and five internal) and different heights, in axial planes along the AI, and irradiated with 85 Gy. The similarity in the geometry of the AIs made it possible to relate the doses of positions 1-7 with the same height among the AISs. The AISs equidistance to the source allowed simultaneous animal exposure. Minimizing the shielding and maximizing the angles among the AISs provided average doses almost identical in position 1. A small variation among the mean doses for each of the AISs enabled to replace them by the average doses of the three AISs at position 1. Shields allowed the attenuation of the uncertainties in the alanine pellet in the AI, reduction of the exposure time without compromising rat security and the rise of the dose in measurement positions 1 and 2. The maximization of the angles among the AISs reduced the shielding secondary radiation contribution. (author)

  16. PET and SPECT imaging in veterinary medicine.

    Science.gov (United States)

    LeBlanc, Amy K; Peremans, Kathelijne

    2014-01-01

    Veterinarians have gained increasing access to positron emission tomography (PET and PET/CT) imaging facilities, allowing them to use this powerful molecular imaging technique for clinical and research applications. SPECT is currently being used more in Europe than in the United States and has been shown to be useful in veterinary oncology and in the evaluation of orthopedic diseases. SPECT brain perfusion and receptor imaging is used to investigate behavioral disorders in animals that have interesting similarities to human psychiatric disorders. This article provides an overview of the potential applications of PET and SPECT. The use of commercially available and investigational PET radiopharmaceuticals in the management of veterinary disease has been discussed. To date, most of the work in this field has utilized the commercially available PET tracer, (18)F-fluorodeoxyglucose for oncologic imaging. Normal biodistribution studies in several companion animal species (cats, dogs, and birds) have been published to assist in lesion detection and interpretation for veterinary radiologists and clinicians. Studies evaluating other (18)F-labeled tracers for research applications are underway at several institutions and companion animal models of human diseases are being increasingly recognized for their value in biomarker and therapy development. Although PET and SPECT technologies are in their infancy for clinical veterinary medicine, increasing access to and interest in these applications and other molecular imaging techniques has led to a greater knowledge and collective body of expertise for veterinarians worldwide. Initiation and fostering of physician-veterinarian collaborations are key components to the forward movement of this field.

  17. Packaging systems for animal origin food

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available The main task of food packaging is to protect the product during storage and transport against the action of biological, chemical and mechanical factors. The paper presents packaging systems for food of animal origin. Vacuum and modified atmosphere packagings were characterised together with novel types of packagings, referred to as intelligent packaging and active packaging. The aim of this paper was to present all advantages and disadvantages of packaging used for meat products. Such list enables to choose the optimal type of packaging for given assortment of food and specific conditions of the transport and storing.

  18. Calibration of gamma camera systems for a multicentre European ¹²³I-FP-CIT SPECT normal database

    DEFF Research Database (Denmark)

    Tossici-Bolt, Livia; Dickson, John C; Sera, Terez;

    2011-01-01

    A joint initiative of the European Association of Nuclear Medicine (EANM) Neuroimaging Committee and EANM Research Ltd. aimed to generate a European database of [(123)I]FP-CIT single photon emission computed tomography (SPECT) scans of healthy controls. This study describes the characterization...

  19. ENVISION, developing SPECT imaging for particle therapy

    CERN Multimedia

    2013-01-01

    Particle therapy is an advanced technique of cancer radiation therapy, using protons or other ions to target the cancerous mass. ENVISION aims at developing medical imaging tools to improve the dose delivery to the patient, to ensure a safer and more effective treatment. The animation illustrates the use of Single Photon Emission Computed Tomography (SPECT) for monitoring the dose during treatment. Produced by: CERN KT/Life Sciences and ENVISION Project Management: Manuela Cirilli 3D animation: Jeroen Huijben, Nymus3d

  20. Usefulness of CT based SPECT Fusion Image in the lung Disease : Preliminary Study

    International Nuclear Information System (INIS)

    Recently, SPECT/CT system has been applied to many diseases, however, the application is not extensively applied at pulmonary disease. Especially, in case that, the pulmonary embolisms suspect at the CT images, SPECT is performed. For the accurate diagnosis, SPECT/CT tests are subsequently undergoing. However, without SPECT/CT, there are some limitations to apply these procedures. With SPECT/CT, although, most of the examination performed after CT. Moreover, such a test procedures generate unnecessary dual irradiation problem to the patient. In this study, we evaluated the amount of unnecessary irradiation, and the usefulness of fusion images of pulmonary disease, which independently acquired from SPECT and CT. Using NEMA PhantomTM (NU2-2001), SPECT and CT scan were performed for fusion images. From June 2011 to September 2010, 10 patients who didn't have other personal history, except lung disease were selected (male: 7, female: 3, mean age: 65.3±12.7). In both clinical patient and phantom data, the fusion images scored higher than SPECT and CT images. The fusion images, which is combined with pulmonary vessel images from CT and functional images from SPECT, can increase the detection possibility in detecting pulmonary embolism in the resin of lung parenchyma. It is sure that performing SPECT and CT in integral SPECT/CT system were better. However, we believe this protocol can give more informative data to have more accurate diagnosis in the hospital without integral SPECT/CT system.

  1. Characterization of a rotating slat collimator system dedicated to small animal imaging

    Science.gov (United States)

    Boisson, F.; Bekaert, V.; El Bitar, Z.; Wurtz, J.; Steibel, J.; Brasse, D.

    2011-03-01

    Some current investigations based on small animal models are dedicated to functional cerebral imaging. They represent a fundamental tool to understand the mechanisms involved in neurodegenerative diseases. In the radiopharmaceutical development approach, the main challenge is to measure the radioactivity distribution in the brain of a subject with good temporal and spatial resolutions. Classical SPECT systems mainly use parallel hole or pinhole collimators. In this paper we investigate the use of a rotating slat collimator system for small animal brain imaging. The proposed prototype consists of a 64-channel multi-anode photomultiplier tube (H8804, Hamamatsu Corp.) coupled to a YAP:Ce crystal highly segmented into 32 strips of 0.575 × 18.4 × 10 mm3. The parameters of the rotating slat collimator are optimized using GATE Monte Carlo simulations. The performance of the proposed prototype in terms of spatial resolution, detection efficiency and signal-to-noise ratio is compared to that obtained with a gamma camera equipped with a parallel hole collimator. Preliminary experimental results demonstrate that a spatial resolution of 1.54 mm can be achieved with a detection efficiency of 0.012% for a source located at 20 mm, corresponding to the position of the brain in the prototype field of view.

  2. Complete Isolation System for Laboratory Infectious Animal

    Institute of Scientific and Technical Information of China (English)

    Jean; Pierre

    2005-01-01

    Contents:Duringthe development of biological medical science,a great number of research experiments are carried out andthe various infectious animal experiments are necessary part of them.For lab animal experiments,it is necessary tochoose proper isolation equipments accordingto experiment hazardlevels.1.FunctionsAnimal isolation systemare used broadlyin laboratory research,pharmaceuticals and medical areas.The isolationsystemhas become excellent equipmentsin animal breeding,disease diagnosis,analysis,test ...

  3. Computer-assisted system for diagnosing degenerative dementia using cerebral blood flow SPECT and 3D-SSP. A multicenter study

    International Nuclear Information System (INIS)

    Due to increasing numbers of patients with dementia, more physicians who do not specialize in brain nuclear medicine are being asked to interpret SPECT images of cerebral blood flow. We conducted a multicenter study to determine whether a computer-assisted diagnostic system Z-score summation analysis method (ZSAM) using three-dimensional stereotactic surface projections (3D-SSP) can differentiate Alzheimer's disease (AD)/dementia with Lewy bodies (DLB) and non-AD/DLB in institutions using various types of gamma cameras. We determined the normal thresholds of Z-sum (summed Z-score) within a template region of interest for each single photon emission computed tomography (SPECT) device and then compared them with the Z-sums of patients and calculated the accuracy of the differential diagnosis by ZSAM. We compared the diagnostic accuracy between ZSAM and visual assessment. We enrolled 202 patients with AD (mean age, 76.8 years), 40 with DLB (mean age 76.3 years) and 36 with non-AD/DLB (progressive supranuclear palsy, n=10; frontotemporal dementia, n=20; slowly progressive aphasia, n=2 and one each with idiopathic normal pressure hydrocephalus, corticobasal degeneration, multiple system atrophy and Parkinson's disease) who underwent N-isopropyl-p-[123I] iodoamphetamine cerebral blood flow SPECT imaging at each participating institution. The ZSAM sensitivity to differentiate between AD/DLB and non-AD/DLB in all patients, as well as those with mini-mental state examination scores of ≥24 and 20-23 points were 88.0, 78.0 and 88.4%, respectively, with specificity of 50.0, 44.4 and 60.0%, respectively. The diagnostic accuracy rates were 83.1, 72.9 and 84.2%, respectively. The areas under receiver operating characteristics curves for visual inspection by four expert raters were 0.74-0.84, 0.66-0.85 and 0.81-0.93, respectively, in the same patient groups. The diagnostic accuracy rates were 70.9-89.2%, 50.9-84.8% and 76.2-93.1%, respectively. The diagnostic accuracy

  4. SPECT in epilepsies; SPECT bei Epilepsien

    Energy Technology Data Exchange (ETDEWEB)

    Stefan, H. [Neurologische Klinik, Univ. Erlangen-Nuernberg, Zentrum Epilepsie Erlangen (Germany)

    1997-06-01

    Registration of regional cerebral blood flow provides important new data for the investigation of pathophysiological processes in epilepsies. Further to the registration of perfusions, receptor studies are employed for the differentiation of localisation in focal epilepsies. For ultimative issues interictal registrations are supplemented by ictal recordings during the epileptic seizure. The combination of SPECT and electrophysiological registration can contribute to analysis of propagation of focal epileptic activity. (orig.) [Deutsch] Die Messung der regionalen Hirndurchblutung liefert wichtige neue Erkenntnis zur Untersuchung pathophysiologischer Ablaeufe bei Epilepsien. Ergaenzend zur Registrierung der Perfusion koennen Rezeptor-Studien zur Differenzierung der Lokalisation fokaler Epilepsien beitragen. Interiktale Registrierungen werden fuer letztere Fragestellung durch iktuale Messungen waehrend des epileptischen Anfalls ergaenzt. Die Kombination von SPECT und elektrophysiologischen Registrierungen kann zur Analyse der Propagation fokaler epileptischer Aktivitaet beitragen. (orig.)

  5. [{sup 123}I]Iodobenzamide binding to the rat dopamine D{sub 2} receptor in competition with haloperidol and endogenous dopamine - an in vivo imaging study with a dedicated small animal SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaus, Susanne; Larisch, Rolf; Wirrwar, Andreas; Jamdjeu-Noune, Marlyse; Antke, Christina; Beu, Markus; Mueller, Hans-Wilhelm [Heinrich-Heine University, Clinic of Nuclear Medicine, Duesseldorf (Germany); Schramm, Nils [Research Center Juelich, Central Laboratory for Electronics, Juelich (Germany)

    2005-11-01

    This study assessed [{sup 123}I]iodobenzamide binding to the rat dopamine D{sub 2} receptor in competition with haloperidol and endogenous dopamine using a high-resolution small animal SPECT. Subsequent to baseline quantifications of D{sub 2} receptor binding, imaging studies were performed on the same animals after pre-treatment with haloperidol and methylphenidate, which block D{sub 2} receptors and dopamine transporters, respectively. Striatal baseline equilibrium ratios (V{sub 3}{sup ''}) of [{sup 123}I]iodobenzamide binding were 1.42{+-}0.31 (mean{+-}SD). After pre-treatment with haloperidol and methylphenidate, V{sub 3}{sup ''} values decreased to 0.54{+-}0.46 (p<0.0001) and 0.98{+-}0.48 (p=0.009), respectively. The decrease in [{sup 123}I]iodobenzamide binding induced by pre-treatment with haloperidol reflects D{sub 2} receptor blockade, whereas the decrease in receptor binding induced by pre-treatment with methylphenidate can be interpreted in terms of competition between [{sup 123}I]IBZM and endogenous dopamine. Findings show that multiple in vivo measurements of [{sup 123}I]iodobenzamide binding to D{sub 2} receptors in competition with exogenous and endogenous ligands are feasible in the same animal. This may be of future relevance for the in vivo evaluation of novel radioligands as well as for studying the interrelations between pre- and/or postsynaptic radioligand binding and different levels of endogenous dopamine. (orig.)

  6. Modeling dopamine system dysfunction in experimental animals

    International Nuclear Information System (INIS)

    Quite a substantial number of human disorders have been associated with a primary or a secondary impairment of one or several of the dopaminergic pathways. Among disorders associated with a primary impairment of dopaminergic transmission are Parkinson's disease, striatonigral degeneration, progressive supranuclear palsy, and possibly schizophrenia. Diseases of secondary dopamine dysfunction are chiefly represented by Huntington's disease in which dopaminergic transmission is being interrupted by progressive loss of the striatal neurons bearing the postsynaptic D1- and D2-dopamine receptors. Central dopaminergic systems have anatomical as well as organizational properties that render them unique by comparison to other neurotransmission systems, making them able to play a pivotal role in the modulation of various important brain functions such as locomotor activity, attention, and some cognitive abilities. These properties of dopamine neurons have obviously several implications in the clinical expression of human disorders involving dopamine neuron dysfunction. In addition, they can greatly influence the clinical/behavioral consequences of experimental lesions in animal models of dopamine dysfunctions

  7. Validation of a short-scan-time imaging protocol for thallium-201 myocardial SPECT with a multifocal collimator

    International Nuclear Information System (INIS)

    IQ-SPECT (Siemens AG, Munich, Germany) is a highly sensitive single-photon-emission computed tomography (SPECT) myocardial perfusion imaging (MPI) system that uses a multifocal collimator. We searched for a suitable protocol for short-time imaging by IQ-SPECT in thallium-201 (Tl-201) MPI by evaluating phantom images and also by comparing human IQ-SPECT images with conventional SPECT images as reference standards. We assessed the image quality using the normalized mean square error (NMSE) and drew up count profiles in Tl-201 SPECT images acquired with IQ-SPECT in a phantom study. We also performed Tl-201 stress myocardial SPECT/CT in 21 patients and compared delayed images acquired by using IQ-SPECT with 36 or 17 views per head with images obtained by using conventional SPECT. The NMSE of SPECT images from IQ-SPECT with 36 views was approximately one-fifth of that with 17 views. The myocardial count profile of images with 17 views was lower than those of images with 36 or 104 views in some regions. Defect scores were significantly lower, and image quality scores higher, in images from conventional SPECT than in those from IQ-SPECT with 17 views. Defect scores and image quality scores were equivalent in images from conventional SPECT and those from IQ-SPECT with 36 views. Agreement with the results of conventional SPECT in terms of coronary artery territory-based defect judgment was the best in IQ-SPECT with 36 views with computed tomography-derived attenuation correction (CTAC): the kappa values for IQ-SPECT with 36 views were 0.76 (without CTAC) and 0.83 (with CTAC), and those for IQ-SPECT with 17 views were 0.62 (without CTAC) and 0.59 (with CTAC). The difference in quantitative tracer uptake between conventional SPECT images and IQ-SPECT images was significantly greater for IQ-SPECT images with 17 views than for those with 36 views. Scanning with 36 views per head with CTAC may be appropriate for Tl-201 MPI using IQ-SPECT, because it provides images equivalent to

  8. [The Optimal Reconstruction Parameters by Scatter and Attenuation Corrections Using Multi-focus Collimator System in Thallium-201 Myocardial Perfusion SPECT Study].

    Science.gov (United States)

    Shibutani, Takayuki; Onoguchi, Masahisa; Funayama, Risa; Nakajima, Kenichi; Matsuo, Shinro; Yoneyama, Hiroto; Konishi, Takahiro; Kinuya, Seigo

    2015-11-01

    The aim of this study was to reveal the optimal reconstruction parameters of ordered subset conjugates gradient minimizer (OSCGM) by no correction (NC), attenuation correction (AC), and AC+scatter correction (ACSC) using IQ-single photon emission computed tomography (SPECT) system in thallium-201 myocardial perfusion SPECT. Myocardial phantom acquired two patterns, with or without defect. Myocardial images were performed 5-point scale visual score and quantitative evaluations using contrast, uptake, and uniformity about the subset and update (subset×iteration) of OSCGM and the full width at half maximum (FWHM) of Gaussian filter by three corrections. We decided on optimal reconstruction parameters of OSCGM by three corrections. The number of subsets to create suitable images were 3 or 5 for NC and AC, 2 or 3 for ACSC. The updates to create suitable images were 30 or 40 for NC, 40 or 60 for AC, and 30 for ACSC. Furthermore, the FWHM of Gaussian filters were 9.6 mm or 12 mm for NC and ACSC, 7.2 mm or 9.6 mm for AC. In conclusion, the following optimal reconstruction parameters of OSCGM were decided; NC: subset 5, iteration 8 and FWHM 9.6 mm, AC: subset 5, iteration 8 and FWHM 7.2 mm, ACSC: subset 3, iteration 10 and FWHM 9.6 mm. PMID:26596202

  9. [The Optimal Reconstruction Parameters by Scatter and Attenuation Corrections Using Multi-focus Collimator System in Thallium-201 Myocardial Perfusion SPECT Study].

    Science.gov (United States)

    Shibutani, Takayuki; Onoguchi, Masahisa; Funayama, Risa; Nakajima, Kenichi; Matsuo, Shinro; Yoneyama, Hiroto; Konishi, Takahiro; Kinuya, Seigo

    2015-11-01

    The aim of this study was to reveal the optimal reconstruction parameters of ordered subset conjugates gradient minimizer (OSCGM) by no correction (NC), attenuation correction (AC), and AC+scatter correction (ACSC) using IQ-single photon emission computed tomography (SPECT) system in thallium-201 myocardial perfusion SPECT. Myocardial phantom acquired two patterns, with or without defect. Myocardial images were performed 5-point scale visual score and quantitative evaluations using contrast, uptake, and uniformity about the subset and update (subset×iteration) of OSCGM and the full width at half maximum (FWHM) of Gaussian filter by three corrections. We decided on optimal reconstruction parameters of OSCGM by three corrections. The number of subsets to create suitable images were 3 or 5 for NC and AC, 2 or 3 for ACSC. The updates to create suitable images were 30 or 40 for NC, 40 or 60 for AC, and 30 for ACSC. Furthermore, the FWHM of Gaussian filters were 9.6 mm or 12 mm for NC and ACSC, 7.2 mm or 9.6 mm for AC. In conclusion, the following optimal reconstruction parameters of OSCGM were decided; NC: subset 5, iteration 8 and FWHM 9.6 mm, AC: subset 5, iteration 8 and FWHM 7.2 mm, ACSC: subset 3, iteration 10 and FWHM 9.6 mm.

  10. Design optimization of multi-pinhole micro-SPECT configurations by signal detection tasks and system performance evaluations for mouse cardiac imaging

    Science.gov (United States)

    Lee, M.-W.; Lin, W.-T.; Chen, Y.-C.

    2015-01-01

    An optimized configuration of multi-pinhole aperture can improve the spatial resolution and the sensitivity of pinhole SPECT simultaneously. In this study, an optimization strategy of the multi-pinhole configuration with a small detector is proposed for mouse cardiac imaging. A 14 mm-diameter spherical field-of-view (FOV) is used to accommodate the mouse heart. To accelerate the optimization process, the analytic models are applied to rapidly obtain the projection areas of the FOV, the sensitivities and the spatial resolutions of numerous system designs. The candidates of optimal multi-pinhole configuration are then decided by the preliminary evaluations with the analytic models. Subsequently, the pinhole SPECT systems equipped with the designed multi-pinhole apertures are modeled in GATE to generate the imaging system matrices (H matrices) for the system performance assessments. The area under the ROC curves (AUC) of the designed systems is evaluated by signal-known-exactly/background-known-statistically detection tasks with their corresponding H matrices. In addition, the spatial resolutions are estimated by the Fourier crosstalk approach, and the sensitivities are calculated with the H matrices of designed systems, respectively. Furthermore, a series of OSEM reconstruction images of synthetic phantoms, including the hot-rod phantom, mouse heart phantom and Defrise phantom, are reconstructed with the H matrices of designed systems. To quantify the sensitivity and resolution competition in the optimization process, the AUC from the detection tasks and the resolution estimated by the Fourier crosstalk are used as the figure of merits. A trade-off function of AUC and resolution is introduced to find the optimal multi-pinhole configuration. According to the examining results, a 22.5° rotated detector plus a 4-pinhole aperture with 22.5° rotation, 20% multiplexing and 1.52X magnification is the optimized multi-pinhole configuration for the micro pinhole-SPECT

  11. SPECT in psychiatry

    International Nuclear Information System (INIS)

    In the last fifteen years different attempts have been undertaken to understand the biological basis of major psychiatric disorders. One important tool to determine patterns of brain dysfunction is single emission computed tomography (SPECT). Whereas SPECT investigations are already a valuable diagnostic instrument for the diagnosis of dementia of the Alzheimer Type (DAT) there have not been consistent findings that can be referred to as specific for any other particular psychiatric diagnostic entity. Nevertheless, SPECT studies have been able to demonstrate evidence of brain dysfunction in patients with schizophrenia, depression, anxiety disorders, and substance abuse in which other methods showed no clear abnormality of brain function. Our manuscript reviews the data which are currently available in the literature and stresses the need for further studies, especially for prediction and monitoring psychiatric treatment modalities. (orig.)

  12. 18F-DG PET and RCBF SPECT in epilepsy

    International Nuclear Information System (INIS)

    Functional imaging of cortical metabolism and perfusion is of growing importance in the presurgical evaluation of patients suffering from intractable epilepsy. PET and SPECT are of proven value in functional imaging prior to epilepsy surgery. To date the best clinical experience was gained by using 18-fluorodeoxyglucose for PET and tracers for measurement of regional cerebral blood flow (rCBF) like 99mTc-HMPO or 99mTc-ECD for SPECT respectively. Their relative contribution towards detection of a probable focus site in epilepsy is still controversial. To determine the relative value of both procedures the literature has been reviewed with special respect to ictal SPECT studies. With regard to different standards used for correlation a relative sensitivity of 62.4% was found for interictal rCBF SPECT. 71% for 18-FDG-PET and 87% for ictal rCBF SPECT studies. In conclusion, earlier reported advantages of PET over SPECT seem to closely reflect the better spatial resolution of PET. Modern SPECT systems, dedicated for brain SPECT, provide appropriate and almost equal sensitivity. Regarding the limited specificity of interictal studies, both rCBF SPECT and FDG-PET need precise indications. However, further to detection of a probable focus site, metabolism and rCBF studies seem to be of value to predicit the post-surgical patients outcome as to seizure frequency and mental functions secondarily affected by epilepsy surgery such as memory impairment. Ictal rCBF SPECT provides higher sensitivity and specificity and virtually allows the detection lateralisation in almost every case. This means that a relatively precise anatomical localisation of an epileptogenic focus is being found in a rising number of patients. (orig.)

  13. Fluorescence-enhanced optical tomography and nuclear imaging system for small animals

    Science.gov (United States)

    Tan, I.-Chih; Lu, Yujie; Darne, Chinmay; Rasmussen, John C.; Zhu, Banghe; Azhdarinia, Ali; Yan, Shikui; Smith, Anne M.; Sevick-Muraca, Eva M.

    2012-03-01

    Near-infrared (NIR) fluorescence is an alternative modality for molecular imaging that has been demonstrated in animals and recently in humans. Fluorescence-enhanced optical tomography (FEOT) using continuous wave or frequency domain photon migration techniques could be used to provide quantitative molecular imaging in vivo if it could be validated against "gold-standard," nuclear imaging modalities, using dual-labeled imaging agents. Unfortunately, developed FEOT systems are not suitable for incorporation with CT/PET/SPECT scanners because they utilize benchtop devices and require a large footprint. In this work, we developed a miniaturized fluorescence imaging system installed in the gantry of the Siemens Inveon PET/CT scanner to enable NIR transillumination measurements. The system consists of a CCD camera equipped with NIR sensitive intensifier, a diode laser controlled by a single board compact controller, a 2-axis galvanometer, and RF circuit modules for homodyne detection of the phase and amplitude of fluorescence signals. The performance of the FEOT system was tested and characterized. A mouse-shaped solid phantom of uniform optical properties with a fluorescent inclusion was scanned using CT, and NIR fluorescence images at several projections were collected. The method of high-order approximation to the radioactive transfer equation was then used to reconstruct the optical images. Dual-labeled agents were also used on a tumor bearing mouse to validate the results of the FEOT against PET/CT image. The results showed that the location of the fluorophore obtained from the FEOT matches the location of tumor obtained from the PET/CT images. Besides validation of FEOT, this hybrid system could allow multimodal molecular imaging (FEOT/PET/CT) for small animal imaging.

  14. SPECT/CT in diagnostics of the hand joint; SPECT/CT in der Handgelenkdiagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Huellner, M.W.; Strobel, K.; Veit-Haibach, P. [Luzerner Kantonsspital, Institut fuer Radiologie und Nuklearmedizin, Luzern (Switzerland); Hug, U.; Wartburg, U. von [Luzerner Kantonsspital, Abteilung fuer Hand- und Plastische Chirurgie, Luzern (Switzerland)

    2012-07-15

    Hand and wrist pain remains a diagnostic challenge, both for hand surgeons and for radiologists. Especially chronic wrist pain is often hard to localize clinically and further cross-sectional imaging is often indispensable. The well-established standard for non-invasive diagnostic imaging in chronic wrist pain is magnetic resonance imaging (MRI). Recently, state-of-the-art single photon emission computed tomography/computed tomography (SPECT/CT) systems have been introduced into the diagnostic array for musculoskeletal conditions. Besides morphological data SPECT/CT also provides metabolic information. SPECT/CT allows an exact detection and precise anatomical mapping of different pathologies of the wrist, which is often crucial for therapy. In patients with chronic wrist pain, SPECT/CT is more specific than MRI. It is also beneficial in patients with posttraumatic conditions and metal implants and may serve as a problem-solving tool in difficult cases. It is considered that SPECT/CT imaging is useful if MRI results are equivocal or present no clearly leading pathology. A primary examination with SPECT/CT seems to be a reasonable option for patients with certain bone pathologies, metal implants and non-specific wrist pain. (orig.) [German] Handgelenkschmerzen sind eine diagnostische Herausforderung fuer Handchirurgen und Radiologen. Insbesondere chronische Handgelenkschmerzen sind oft nur schwer einer genauen Lokalisation zuzuordnen, eine Schnittbildgebung ist deshalb oft unerlaesslich. Der etablierte Standard zur nichtinvasiven Diagnostik chronischer Handgelenkschmerzen ist die Magnetresonanztomographie. In den letzten Jahren ist mit der ''single photon emission computed tomography''/CT (SPECT/CT) eine neue Modalitaet zum diagnostischen Spektrum muskuloskelettaler Veraenderungen hinzugetreten, welche neben morphologischen Daten auch metabolische Informationen liefert. Die SPECT/CT ermoeglicht eine genaue Detektion und praezise anatomische

  15. Performance evaluation of high-resolution square parallel-hole collimators with a CZT room temperature pixelated semiconductor SPECT system: a Monte Carlo simulation study

    International Nuclear Information System (INIS)

    The pixelated semiconductor based on cadmium zinc telluride (CZT) is a promising imaging device that provides many benefits compared with conventional scintillation detectors. By using a high-resolution square parallel-hole collimator with a pixelated semiconductor detector, we were able to improve both sensitivity and spatial resolution. Here, we present a simulation of a CZT pixleated semiconductor single-photon emission computed tomography (SPECT) system with a high-resolution square parallel-hole collimator using various geometric designs of 0.5, 1.0, 1.5, and 2.0 mm X-axis hole size. We performed a simulation study of the eValuator-2500 (eV Microelectronics Inc., Saxonburg, PA, U.S.A.) CZT pixelated semiconductor detector using a Geant4 Application for Tomographic Emission (GATE). To evaluate the performances of these systems, the sensitivity and spatial resolution was evaluated. Moreover, to evaluate the overall performance of the imaging system, a hot-rod phantom was designed. Our results showed that the average sensitivity of the 2.0 mm collimator X-axis hole size was 1.34, 1.95, and 3.92 times higher than that of the 1.5, 1.0, and 0.5 mm collimator X-axis hole size, respectively. Also, the average spatial resolution of the 0.5 mm collimator X-axis hole size was 28.69, 44.65, and 55.73% better than that of the 1.0, 1.5, and 2.0 mm collimator X-axis hole size, respectively. We discuss the high-resolution square parallel-hole collimator of various collimator geometric designs and our evaluations. In conclusion, we have successfully designed a high-resolution square parallel-hole collimator with a CZT pixelated semiconductor SPECT system

  16. Absolute quantitation of myocardial blood flow with {sup 201}Tl and dynamic SPECT in canine: optimisation and validation of kinetic modelling

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Hidehiro; Kim, Kyeong-Min; Nakazawa, Mayumi; Sohlberg, Antti; Zeniya, Tsutomu; Hayashi, Takuya; Watabe, Hiroshi [National Cardiovascular Center Research Institute, Department of Investigative Radiology, Suita City, Osaka (Japan); Eberl, Stefan [National Cardiovascular Center Research Institute, Department of Investigative Radiology, Suita City, Osaka (Japan); Royal Prince Alfred Hospital, PET and Nuclear Medicine Department, Camperdown, NSW (Australia); Tamura, Yoshikazu [Akita Kumiai General Hospital, Department of Cardiology, Akita City (Japan); Ono, Yukihiko [Akita Research Institute of Brain, Akita City (Japan)

    2008-05-15

    {sup 201}Tl has been extensively used for myocardial perfusion and viability assessment. Unlike {sup 99m}Tc-labelled agents, such as {sup 99m}Tc-sestamibi and {sup 99m}Tc-tetrofosmine, the regional concentration of {sup 201}Tl varies with time. This study is intended to validate a kinetic modelling approach for in vivo quantitative estimation of regional myocardial blood flow (MBF) and volume of distribution of {sup 201}Tl using dynamic SPECT. Dynamic SPECT was carried out on 20 normal canines after the intravenous administration of {sup 201}Tl using a commercial SPECT system. Seven animals were studied at rest, nine during adenosine infusion, and four after beta-blocker administration. Quantitative images were reconstructed with a previously validated technique, employing OS-EM with attenuation-correction, and transmission-dependent convolution subtraction scatter correction. Measured regional time-activity curves in myocardial segments were fitted to two- and three-compartment models. Regional MBF was defined as the influx rate constant (K{sub 1}) with corrections for the partial volume effect, haematocrit and limited first-pass extraction fraction, and was compared with that determined from radio-labelled microspheres experiments. Regional time-activity curves responded well to pharmacological stress. Quantitative MBF values were higher with adenosine and decreased after beta-blocker compared to a resting condition. MBFs obtained with SPECT (MBF{sub SPECT}) correlated well with the MBF values obtained by the radio-labelled microspheres (MBF{sub MS}) (MBF{sub SPECT} = -0.067 + 1.042 x MBF{sub MS}, p < 0.001). The three-compartment model provided better fit than the two-compartment model, but the difference in MBF values between the two methods was small and could be accounted for with a simple linear regression. Absolute quantitation of regional MBF, for a wide physiological flow range, appears to be feasible using {sup 201}Tl and dynamic SPECT. (orig.)

  17. SPECT/CT - Technical aspects and optimization possibilities

    International Nuclear Information System (INIS)

    In contrast to positron emission tomography/computed tomography (PET/CT), the currently available single photon emission computed tomography/computed tomography (SPECT/CT) systems are very heterogeneous. On the side of the gamma cameras, dual-head systems are established, which are not very different from one manufacturer to the other. For the CT component, there are low dose tubes on the one side and flat detector-based cone beam CT and multislice-CT on the other. The CT image data can be used for anatomic correlation of suspicious findings as well as for attenuation correction of SPECT data. Attenuation correction enables on the one hand enhancement of SPECT image quality and on the other hand quantification of the radioactivity concentration becomes possible. Modern iterative reconstruction algorithms allow scatter correction and attenuation correction of SPECT data using the density values from CT. It still has to be shown to what extent attenuation-corrected whole body SPECT/CT studies will be able to improve the sensitivity of scintigraphy studies. As SPECT/CT primarily aims at morphologic correlation and not detection of additional lesions, an attempt should be made to balance the necessary anatomic information and the additional radiation exposure. Besides SPECT-guided CT all technical possibilities for dose reduction should be exhausted. (orig.)

  18. Binding of [123I]iodobenzamide to the rat D2 receptor after challenge with various doses of methylphenidate: an in vivo imaging study with dedicated small animal SPECT

    International Nuclear Information System (INIS)

    The effect of various doses of methylphenidate on the binding of [123I]iodobenzamide ([123I]IBZM) to the rat D2 receptor was assessed using small animal SPECT. D2 receptor binding was measured at baseline and after pretreatment with various doses of methylphenidate. For baseline and methylphenidate challenge, striatal equilibrium ratios (V3'') were computed as an estimation of the binding potential. After methylphenidate, striatal V3'' was 1.61 ± 0.61 (mean ± SD; 0.3 mg/kg), 0.91 ± 0.44 (3 mg/kg), 1.01 ± 0.44 (10 mg/kg), 0.91 ± 0.34 (30 mg/kg) and 0.99 ± 0.51 (60 mg/kg). Baseline values amounted to 1.73 ± 0.48, 1.32 ± 0.35, 1.50 ± 0.27, 1.82 ± 0.55 and 1.66 ± 0.41, respectively. Differences between baseline and methylphenidate were significant for the doses 3, 10, 30 and 60 mg/kg, whereas no significant difference was obtained for 0.3 mg/kg methylphenidate. Between-group differences of percentage reduction of D2 receptor binding were only significant for the groups pretreated with 0.3 and 30 mg/kg methylphenidate, respectively. Methylphenidate between 0.3 and 60 mg/kg decreased D2 receptor binding with a maximum reduction after 30 mg/kg. As no between-group differences were evident between the groups pretreated with 3, 10, 30 and 60 mg/kg, it may be inferred that doses ≥ 3 mg/kg were sufficient to induce maximum dopamine concentration in the synaptic cleft. Further investigations are needed in order to clarify whether the variation between subjects can be accounted for by different synaptic mechanisms at the presynaptic binding site. (orig.)

  19. Animal models for diseases of respiratory system

    Directory of Open Access Journals (Sweden)

    R. Adil

    2012-07-01

    Full Text Available Latest trends in understanding of respiratory diseases in human beings can be derived from thorough clinical studies of these diseases occurring in man, but conducting such studies in man is difficult in terms of experimental manipulation. In the last 2 decades, various types of experimental respiratory disease models has been developed and utilized by investigators, which have contributed a lot to the understanding of respiratory diseases in man, but only little investigation has been done on the naturally occurring pulmonary diseases of animals as potential models which could have added to our knowledge. There are certain selected examples of spontaneous pulmonary disease in animals that may serve as exploitable models for human chronic bronchitis, bronchiectasis, emphysema, interstitial lung disease, hypersensitivity pneumonitis, hyaline membrane disease, and bronchial asthma.

  20. Ready for prime time? Dual tracer PET and SPECT imaging

    Science.gov (United States)

    Fakhri, Georges El

    2012-01-01

    Dual isotope single photon emission computed tomography (SPECT) and dual tracer positron emission tomography (PET) imaging have great potential in clinical and molecular applications in the pediatric as well as the adult populations in many areas of brain, cardiac, and oncologic imaging as it allows the exploration of different physiological and molecular functions (e.g., perfusion, neurotransmission, metabolism, apoptosis, angiogenesis) under the same physiological and physical conditions. This is crucial when the physiological functions studied depend on each other (e.g., perfusion and metabolism) hence requiring simultaneous assessment under identical conditions, and can reduce greatly the quantitation errors associated with physical factors that can change between acquisitions (e.g., human subject or animal motion, change in the attenuation map as a function of time) as is detailed in this editorial. The clinical potential of simultaneous dual isotope SPECT, dual tracer PET and dual SPECT/PET imaging are explored and summarized. In this issue of AJNMMI (http://www.ajnmmi.us), Chapman et al. explore the feasibility of simultaneous and sequential SPECT/PET imaging and conclude that down-scatter and crosstalk from 511 keV photons preclude obtaining useful SPECT information in the presence of PET radiotracers. They report on an alternative strategy that consists of performing sequential SPECT and PET studies in hybrid microPET/SPECT/CT scanners, now widely available for molecular imaging. They validate their approach in a phantom consisting of a 96-well plate with variable 99mTc and 18F concentrations and illustrate the utility of such approaches in two sequential SPECT-PET/CT studies that include 99mTc-MAA/18F-NaF and 99mTc-Pentetate/18F-NaF. These approaches will need to be proven reproducible, accurate and robust to variations in the experimental conditions before they can be accepted by the molecular imaging community and be implemented in routine molecular

  1. Juvenile spondylolysis: a comparative analysis of CT, SPECT and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, R.S.D. [Royal Liverpool University Hospital, Department of Radiology, Liverpool (United Kingdom); Grainger, A.J. [Leeds General Infirmary, Department of Radiology, Leeds (United Kingdom); Hide, I.G. [Freeman Hospital, Department of Radiology, Newcastle upon Tyne (United Kingdom); Papastefanou, S. [James Cook University Hospital, Department Radiology, Middlesbrough (United Kingdom); Greenough, C.G. [James Cook University Hospital, Department of Trauma and Orthopaedics, Middlesbrough (United Kingdom)

    2005-02-01

    To evaluate whether MRI correlates with CT and SPECT imaging for the diagnosis of juvenile spondylolysis, and to determine whether MRI can be used as an exclusive image modality. Juveniles and young adults with a history of extension low back pain were evaluated by MRI, CT and SPECT imaging. All images were reviewed blindly. Correlative analyses included CT vs MRI for morphological grading and SPECT vs MRI for functional grading. Finally, an overall grading system compared MRI vs CT and SPECT combined. Statistical analysis was performed using the kappa statistic. Seventy-two patients (mean age 16 years) were recruited. Forty pars defects were identified in 22 patients (31%), of which 25 were chronic non-union, five acute complete defects and ten acute incomplete fractures. Kappa scores demonstrated a high level of agreement for all comparative analyses. MRI vs SPECT (kappa: 0.794), MRI vs CT (kappa: 0.829) and MRI vs CT/SPECT (kappa: 0.786). The main causes of discrepancy were between MRI and SPECT for the diagnosis of stress reaction in the absence of overt fracture, and distinguishing incomplete fractures from intact pars or complete defects. MRI can be used as an effective and reliable first-line image modality for diagnosis of juvenile spondylolysis. However, localised CT is recommended as a supplementary examination in selected cases as a baseline for assessment of healing and for evaluation of indeterminate cases. (orig.)

  2. Proceedings of clinical SPECT [single photon emission computed tomography] symposium

    International Nuclear Information System (INIS)

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluation of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base

  3. Animals

    International Nuclear Information System (INIS)

    The radionuclides of most concern with respect to contamination of animals after a nuclear accident are radioiodine, radiocaesium and radiostrontium (ICRP 30, 1979). Of the other significant anthropogenic radionuclides likely to be released in most accidents, only small proportions of that ingested will be absorbed in an animals gut, and the main animal products, milk and meat, will not normally be contaminated to a significant extent. Animal products will mostly be contaminated as a result of ingestion of contaminated feed and possibly, but to a much lesser extent, from inhalation (for radioiodine only). Direct external contamination of animals is of little or no consequence in human food production. Radioiodine and radiostrontium are important with respect to contamination of milk; radiocaesium contaminates both milk and meat. The physical and chemical form of a radionuclide can influence its absorption in the animal gut. For example, following the Chernobyl accident radiocaesium incorporated into vegetation by root uptake was more readily absorbed than that associated with the original deposit. The transfer of radiocaesium and radiostrontium to animals will be presented both as transfer coefficients and aggregated transfer coefficients. For most animal meat products, only radiocaesium is important as other radionuclides do not significantly contaminate muscle. Farm animal products are the most important foodstuff determining radiocaesium intake by the average consumer in the Nordic countries. The major potential source of radioiodine and radiostrontium to humans is milk and milk products. Of the different species, the smaller animals have the highest transfer of radiocaesium from fodder to meat and milk. (EG)

  4. Mnemonic activation by SPECT

    International Nuclear Information System (INIS)

    Data of literature show that SPECT is able to detect cerebral activations induced by sensory-motor stimuli. The facts are not clearly established in what concerns the cognitive activations the amplitude of which is lower. We have studied an activation paradigm such as the Grober and Bruschke test which implies the long term explicit memory. It comprises a visual presentation of words followed by their indexed recall. By using a two-day protocol, 2 SPECTs were achieved in 4 healthy right-handed voluntaries as follows: one of activation (A) and one of control (B). The fifth subject benefited by a SPECT B and of an MRI. The injection for the examination A has been done during the indexed recall stage and for the examination B at the moment when the patient repeated several times the same 3 words. The SPECT data were collected 1 hour after the injection of 370 MBq of ECD making use of a 3-head camera equipped with UHR fan collimators and ending by a LMH on the reconstructed images of 8 mm. The MRI has been achieved by means of a Signa 1.5 Tesla magnet. The SPECT A and B of the subjects 1 to 4 were matched elastically to that of the subject 5 and that of the subject 5 was rigidly matched on its MRI. In this way the individual activation cards of the 4 subjects could be averaged and superimposed on the MRI of the 5. subject. One observes an internal temporal activation (maximal activation of left tonsil, +25% and right uncus, +23%) and a right cingulum activation (maximal activation, +25%), in agreement with the neuro-physiological data. The elastic matching makes possible the inter-subject averaging, what increases the signal-to-noise ratio of activation. The inter-modality rigid matching facilitates the anatomical localisation of the activation site. With these adapted tools, the cognitive activation is thus possible by SPECT and opens perspectives for early diagnosis of neurological troubles, namely of Alzheimer's disease

  5. Spect in epilepsy; SPECT bei Anfallsleiden

    Energy Technology Data Exchange (ETDEWEB)

    Feistel, H. [Nuklearmedizinische Klinik mit Poliklinik und Neurologische Klinik, Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen (Germany); Weis, M. [Nuklearmedizinische Klinik mit Poliklinik und Neurologische Klinik, Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen (Germany); Michalik, K. [Nuklearmedizinische Klinik mit Poliklinik und Neurologische Klinik, Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen (Germany); Schueler, P. [Nuklearmedizinische Klinik mit Poliklinik und Neurologische Klinik, Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen (Germany); Platsch, G. [Nuklearmedizinische Klinik mit Poliklinik und Neurologische Klinik, Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen (Germany); Stefan, H. [Nuklearmedizinische Klinik mit Poliklinik und Neurologische Klinik, Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen (Germany); Wolf, F. [Nuklearmedizinische Klinik mit Poliklinik und Neurologische Klinik, Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen (Germany)

    1997-06-01

    In the Federal Republic of Germany it is assumed that about 80 000 patients suffer from a focal form of epilepsy which can not be sufficiently controlled with medication. As potential candidates for surgery, these patients undergo stepwise monitoring procedure in which the epileptic focus is located by means of increasingly invasive methods. In Erlangen the periictal SPECT is performed, whereby the perfusion tracer is injected after onset (ictal SPECT), immediately after cessation of the seizure (postictal scan) or between the seizures (interictal scan). To administer the tracer strongly in ictal or postictal state a close functional cooperation between the neurology and nuclear medicine department must be arranged. Injection inside the monitoring unit must be attuned to federal antiradiation precaution law. In temporal lobe epilepsy, different injection-times demonstrate a large area of hyperperfusion after ictal onset, which refines in the first two postictal minutes to the generating focus together with a decreased parietal blood flow pattern. Later, the entire temporal lobe epilepsy an early tracer injection within 40 seconds has to be achieved, otherwise an ictal propagation into distant brain areas, possibly contralateral, may occur. Extratemporal epilepsy is often linked to trauma or congenital malformations, and is difficult to categorize. In difficult cases with equivocal results, efforts can be undertaken by means of receptor scintigraphy with, for example, iomazenil, to localize the focus as a cold lesion caused by neuronal loss. (orig.) [Deutsch] In der Bundesrepublik Deutschland leiden nach vorsichtigen Schaetzungen ca. 80 000 Patienten an einer fokalen Epilepsieform, die mit Medikamenten nur unzureichend kontrolliert werden kann. Als potentielle Kandidaten fuer einen epilepsiechirurgischen Eingriff werden sie einem intensiven Monitoringverfahren unterzogen, in dem stufenweise nach dem Grad der Invasivitaet gesteigert, verschiedene Moeglichkeiten zu

  6. Animals

    Energy Technology Data Exchange (ETDEWEB)

    Skuterud, L.; Strand, P. [Norwegian Radiation Protection Authority (Norway); Howard, B.J. [Inst. of Terrestrial Ecology (United Kingdom)

    1997-10-01

    The radionuclides of most concern with respect to contamination of animals after a nuclear accident are radioiodine, radiocaesium and radiostrontium (ICRP 30, 1979). Of the other significant anthropogenic radionuclides likely to be released in most accidents, only small proportions of that ingested will be absorbed in an animals gut, and the main animal products, milk and meat, will not normally be contaminated to a significant extent. Animal products will mostly be contaminated as a result of ingestion of contaminated feed and possibly, but to a much lesser extent, from inhalation (for radioiodine only). Direct external contamination of animals is of little or no consequence in human food production. Radioiodine and radiostrontium are important with respect to contamination of milk; radiocaesium contaminates both milk and meat. The physical and chemical form of a radionuclide can influence its absorption in the animal gut. For example, following the Chernobyl accident radiocaesium incorporated into vegetation by root uptake was more readily absorbed than that associated with the original deposit. The transfer of radiocaesium and radiostrontium to animals will be presented both as transfer coefficients and aggregated transfer coefficients. For most animal meat products, only radiocaesium is important as other radionuclides do not significantly contaminate muscle. Farm animal products are the most important foodstuff determining radiocaesium intake by the average consumer in the Nordic countries. The major potential source of radioiodine and radiostrontium to humans is milk and milk products. Of the different species, the smaller animals have the highest transfer of radiocaesium from fodder to meat and milk. (EG). 68 refs.

  7. Intraoperative 3-D mapping of parathyroid adenoma using freehand SPECT

    OpenAIRE

    Rahbar, K.; Colombo-Benkmann, M. (Mario); Haane, C. (Christina); Wenning, C. (Christian); Vrachimis, A. (Alexis); Weckesser, J.M. (Jochen); Schober, O.

    2013-01-01

    Background: Freehand single photon emission computed tomography (fSPECT) is a three-dimensional (3-D) tomographic imaging modality based on data acquisition with a handheld detector that is moved freely, in contrast to conventional, gantry-mounted gamma camera systems. In this pilot study, we evaluated the feasibility of fSPECT for intraoperative 3-D mapping in patients with parathyroid adenomas. Methods: Three patients (range 30 to 45 years) diagnosed with hyperparathyroidism (one primary...

  8. Brain pertechnetate SPECT in perinatal asphyxia

    Energy Technology Data Exchange (ETDEWEB)

    Sfakianakis, G.; Curless, R.; Goldberg, R.; Clarke, L.; Saw, C.; Sfakianakis, E.; Bloom, F.; Bauer, C.; Serafini, A.

    1984-01-01

    Single photon emission computed tomography of the brain was performed in 6 patients with perinatal asphyxis aged 8-26 days. A single-head (LFOV) commercial SPECT system (Picker) was used and data were acquired 2-3 hr after an IV injection of 1-2 mCi Tc-99m-pertechnetate (360/sup 0/ rotation, 60 views, 64 x 64 matrix, 50K cts/view). Reconstruction in three planes was performed using MDS software (Hanning medium resolution filter, with or without attenuation correction using Sorenson's technique). For each clinical study, a ring type phantom source was used to identify the level of reconstruction noise in the tomographic planes. Abnormalities were found in all patients studied, 3 central (moderate intensity), 2 peripheral (1 severe, 1 moderate) and 1 diffuse (mild intensity). Despite use of oral perchlorate (50 mg) in one patient the choroid plexus was visible. Since attenuation correction tended to amplify noise, the clinical studies were interpreted both with and without this correction. All 3 patients with central lesions were found abnormal on early (1-4 mo) neurologic follow-up examination, whereas the others were normal. No correlation was found between SPECT and 24 hr blood levels of CPK, ammonia, base excess, or the Apgar scores. Ct scans were reported abnormal (3 diffuse, 1 peripheral, 1 central and 1 questionable). Planar scintigrams obtained immediately after SPECT were normal (2), questionable (2) and abnormal (2). Follow-up SPECT brain scintigrams in two of the patients showed partial resolution. SPECT of the brain appears promising in perinatal asphyxia but long-term correlation with patient development is necessary.

  9. Systems for animal exposure in full-scale fire tests

    Science.gov (United States)

    Hilado, C. J.; Cumming, H. J.; Kourtides, D. A.; Parker, J. A.

    1977-01-01

    Two systems for exposing animals in full-scale fire tests are described. Both systems involve the simultaneous exposure of two animal species, mice and rats, in modular units; determination of mortality, morbidity, and behavioral response; and analysis of the blood for carboxyhemoglobin. The systems described represent two of many possible options for obtaining bioassay data from full-scale fire tests. In situations where the temperatures to which the test animals are exposed can not be controlled, analytical techniques may be more appropriate than bioassay techniques.

  10. Animal venoms/toxins and the complement system.

    Science.gov (United States)

    Tambourgi, Denise V; van den Berg, Carmen W

    2014-10-01

    Nature is a wealthy source of agents that have been shown to be beneficial to human health, but nature is also a rich source of potential dangerous health damaging compounds. This review will summarise and discuss the agents from the animal kingdom that have been shown to interact with the human complement (C) system. Most of these agents are toxins found in animal venoms and animal secretions. In addition to the mechanism of action of these toxins, their contribution to the field of complement, their role in human pathology and the potential benefit to the venomous animal itself will be discussed. Potential therapeutic applications will also be discussed.

  11. The ECN flow animation system. New features

    Energy Technology Data Exchange (ETDEWEB)

    Van Wijk, J.J.

    1996-02-01

    The Netherlands Energy Research Foundation (ECN) has developed a system for the visualization of fluid flow. This system is based on so-called surface particles. A surface particle is a small facet, convected by the flow. If a large number of surface particles is used in combination, a variety of flow visualization techniques can be realised, such as moving surfaces, streamlines, stream surfaces, etc.. This system has been used to visualize the results of FloTHERM and FloVent, two highly advanced CFD-packages developed by Flomerics Ltd.. The use of the system by Flomerics Ltd. has revealed the need for a number of extensions. These have been implemented at ECN, and are described in this report. For each extension its usage and, if necessary, its implementation are described. The extensions concern motion blur for moving cameras, the visualization of scalar data on surfaces, and the use of particle sinks. 14 figs., 3 refs., 3 appendices

  12. High-resolution single photon planar and spect imaging of brain and neck employing a system of two co-registered opposed gamma imaging heads

    Science.gov (United States)

    Majewski, Stanislaw; Proffitt, James

    2011-12-06

    A compact, mobile, dedicated SPECT brain imager that can be easily moved to the patient to provide in-situ imaging, especially when the patient cannot be moved to the Nuclear Medicine imaging center. As a result of the widespread availability of single photon labeled biomarkers, the SPECT brain imager can be used in many locations, including remote locations away from medical centers. The SPECT imager improves the detection of gamma emission from the patient's head and neck area with a large field of view. Two identical lightweight gamma imaging detector heads are mounted to a rotating gantry and precisely mechanically co-registered to each other at 180 degrees. A unique imaging algorithm combines the co-registered images from the detector heads and provides several SPECT tomographic reconstructions of the imaged object thereby improving the diagnostic quality especially in the case of imaging requiring higher spatial resolution and sensitivity at the same time.

  13. Binding of [{sup 123}I]iodobenzamide to the rat D{sub 2} receptor after challenge with various doses of methylphenidate: an in vivo imaging study with dedicated small animal SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaus, Susanne; Antke, Christina; Beu, Markus; Wirrwar, Andreas; Mueller, Hans-Wilhelm [University Hospital Duesseldorf, Clinic of Nuclear Medicine, Duesseldorf (Germany); Kley, Konstantin [Institute of Radiology and Nuclear Medicine, Moenchengladbach (Germany); Huston, Joseph P. [Heinrich Heine University, Center for Behavioural Neuroscience, Duesseldorf (Germany)

    2011-04-15

    The effect of various doses of methylphenidate on the binding of [{sup 123}I]iodobenzamide ([{sup 123}I]IBZM) to the rat D{sub 2} receptor was assessed using small animal SPECT. D{sub 2} receptor binding was measured at baseline and after pretreatment with various doses of methylphenidate. For baseline and methylphenidate challenge, striatal equilibrium ratios (V{sub 3}'') were computed as an estimation of the binding potential. After methylphenidate, striatal V{sub 3}'' was 1.61 {+-} 0.61 (mean {+-} SD; 0.3 mg/kg), 0.91 {+-} 0.44 (3 mg/kg), 1.01 {+-} 0.44 (10 mg/kg), 0.91 {+-} 0.34 (30 mg/kg) and 0.99 {+-} 0.51 (60 mg/kg). Baseline values amounted to 1.73 {+-} 0.48, 1.32 {+-} 0.35, 1.50 {+-} 0.27, 1.82 {+-} 0.55 and 1.66 {+-} 0.41, respectively. Differences between baseline and methylphenidate were significant for the doses 3, 10, 30 and 60 mg/kg, whereas no significant difference was obtained for 0.3 mg/kg methylphenidate. Between-group differences of percentage reduction of D{sub 2} receptor binding were only significant for the groups pretreated with 0.3 and 30 mg/kg methylphenidate, respectively. Methylphenidate between 0.3 and 60 mg/kg decreased D{sub 2} receptor binding with a maximum reduction after 30 mg/kg. As no between-group differences were evident between the groups pretreated with 3, 10, 30 and 60 mg/kg, it may be inferred that doses {>=} 3 mg/kg were sufficient to induce maximum dopamine concentration in the synaptic cleft. Further investigations are needed in order to clarify whether the variation between subjects can be accounted for by different synaptic mechanisms at the presynaptic binding site. (orig.)

  14. Design and performance of a small-animal imaging system using synthetic collimation

    OpenAIRE

    Havelin, R J; Miller, B W; Barrett, H. H.; Furenlid, L.R.; Murphy, J M; Foley, M J

    2013-01-01

    This work outlines the design and construction of a single-photon emission computed tomography (SPECT) imaging system based on the concept of synthetic collimation. A focused multi-pinhole collimator is constructed using rapid-prototyping and casting techniques. The collimator projects the centre of the field of view (FOV) through forty-six pinholes when the detector is adjacent to the collimator, with the number reducing towards the edge of the FOV. The detector is then moved further from th...

  15. 76 FR 72897 - Privacy Act Systems of Records; APHIS Animal Health Surveillance and Monitoring System

    Science.gov (United States)

    2011-11-28

    ... Service Agency, APHIS' Wildlife Services, or from State veterinary health officials and animal testing... Animal and Plant Health Inspection Service Privacy Act Systems of Records; APHIS Animal Health Surveillance and Monitoring System AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice...

  16. SPECT检查放射性水污染智能防护系统的研制与应用%Development and utility of intelligent protection system for SPECT radioactive water pollution

    Institute of Scientific and Technical Information of China (English)

    李祥林; 殷志杰; 李建平; 董艳军; 邓大平; 刘泉源; 张迪; 王静

    2011-01-01

    目的 研制一种SPECT检查放射性水污染智能防护系统.方法 根据《医院污水处理技术指南》中对放射性废水的处理标准,应用计算机技术和电离辐射传感技术自主研制一种智能化的SPECT放射性水污染防护系统.结果 智能防护系统无需人工干预,可实时防护SPECT放射性水污染,排放废水的放射性浓度低于3.7×102 Bq/L.结论 SPECT放射性水污染智能防护系统可实现放射性废水排放的智能化、自动化,排放废水的放射性浓度符合国家标准要求.%Objective To develop an intelligent protection system, in order to protect the radioactive water pollution of SPECT. Methods According to the radioactive sewage processing standards of the hospital waste water treatment technology guide, using computer technology and ionizing radiation sensing technology, an intelligent protection system for SPECT radioactive water pollution was self-developed. Results Without manual intervention, the intelligent protection system could real-time protect the radioactive pollution of SPECT. The radioactive concentration of the discharge sewage was below 3. 7×102 Bq/L. Conclusion The intelligent protection system for SPECT radioactive pollution ensures the automatic discharge of radioactive sewage, and the radioactive concentration of the discharged sewage conforms to the state standards.

  17. Dopamine transporter imaging in the aged rat: a [123I]FP-CIT SPECT study

    International Nuclear Information System (INIS)

    Introduction: Rodent models are extensively used to assess the biochemical and physiological changes associated with aging. They play a major role in the development of therapies for age-related pathologies such as Parkinson's disease. To validate the usefulness of these animal models in aging or age-related disease research, the consistency of cerebral aging processes across species must be evaluated. The dopaminergic system seems particularly susceptible to the aging process. One of the results of this susceptibility is a decline in striatal dopamine transporter (DAT) availability. Methods: We sought to ascertain whether similar age changes could be detected in-vivo in rats, using molecular imaging techniques such as single photon emission computed tomography (SPECT) with [123I]FP-CIT. Results: A significant decrease of 17.21% in the striatal specific uptake ratio was observed in the aged rats with respect to the young control group. Conclusions: Our findings suggest that age-related degeneration in the nigrostriatal track is similar in humans and rats, which supports the use of this animal in models to evaluate the effect of aging on the dopaminergic system. Advances in Knowledge and Implications for patient Care: Our findings indicate that age-related degeneration in the nigrostriatal track is similar in humans and rats and that these changes can be monitored in vivo using small animal SPECT with [123I]FP-CIT, which could facilitate the translational research in rat models of age related disorders of dopaminergic system

  18. An image guided small animal stereotactic radiotherapy system

    Science.gov (United States)

    Sha, Hao; Udayakumar, Thirupandiyur S.; Johnson, Perry B.; Dogan, Nesrin; Pollack, Alan; Yang, Yidong

    2016-01-01

    Small animal radiotherapy studies should be performed preferably on irradiators capable of focal tumor irradiation and healthy tissue sparing. In this study, an image guided small animal arc radiation treatment system (iSMAART) was developed which can achieve highly precise radiation targeting through the utilization of onboard cone beam computed tomography (CBCT) guidance. The iSMAART employs a unique imaging and radiation geometry where animals are positioned upright. It consists of a stationary x-ray tube, a stationary flat panel detector, and a rotatable and translational animal stage. System performance was evaluated in regards to imaging, image guidance, animal positioning, and radiation targeting using phantoms and tumor bearing animals. The onboard CBCT achieved good signal, contrast, and sub-millimeter spatial resolution. The iodine contrast CBCT accurately delineated orthotopic prostate tumors. Animal positioning was evaluated with ∼0.3 mm vertical displacement along superior-inferior direction. The overall targeting precision was within 0.4 mm. Stereotactic radiation beams conformal to tumor targets can be precisely delivered from multiple angles surrounding the animal. The iSMAART allows radiobiology labs to utilize an image guided precision radiation technique that can focally irradiate tumors while sparing healthy tissues at an affordable cost. PMID:26958942

  19. An image guided small animal stereotactic radiotherapy system.

    Science.gov (United States)

    Sha, Hao; Udayakumar, Thirupandiyur S; Johnson, Perry B; Dogan, Nesrin; Pollack, Alan; Yang, Yidong

    2016-04-01

    Small animal radiotherapy studies should be performed preferably on irradiators capable of focal tumor irradiation and healthy tissue sparing. In this study, an image guided small animal arc radiation treatment system (iSMAART) was developed which can achieve highly precise radiation targeting through the utilization of onboard cone beam computed tomography (CBCT) guidance. The iSMAART employs a unique imaging and radiation geometry where animals are positioned upright. It consists of a stationary x-ray tube, a stationary flat panel detector, and a rotatable and translational animal stage. System performance was evaluated in regards to imaging, image guidance, animal positioning, and radiation targeting using phantoms and tumor bearing animals. The onboard CBCT achieved good signal, contrast, and sub-millimeter spatial resolution. The iodine contrast CBCT accurately delineated orthotopic prostate tumors. Animal positioning was evaluated with ~0.3 mm vertical displacement along superior-inferior direction. The overall targeting precision was within 0.4 mm. Stereotactic radiation beams conformal to tumor targets can be precisely delivered from multiple angles surrounding the animal. The iSMAART allows radiobiology labs to utilize an image guided precision radiation technique that can focally irradiate tumors while sparing healthy tissues at an affordable cost. PMID:26958942

  20. Un-collimated single-photon imaging system for high-sensitivity small animal and plant imaging

    International Nuclear Information System (INIS)

    In preclinical single-photon emission computed tomography (SPECT) system development the primary objective has been to improve spatial resolution by using novel parallel-hole or multi-pinhole collimator geometries. However, such high-resolution systems have relatively poor sensitivity (typically 0.01–0.1%). In contrast, a system that does not use collimators can achieve very high-sensitivity. Here we present a high-sensitivity un-collimated detector single-photon imaging (UCD-SPI) system for the imaging of both small animals and plants. This scanner consists of two thin, closely spaced, pixelated scintillator detectors that use NaI(Tl), CsI(Na), or BGO. The performance of the system has been characterized by measuring sensitivity, spatial resolution, linearity, detection limits, and uniformity. With 99mTc (140 keV) at the center of the field of view (20 mm scintillator separation), the sensitivity was measured to be 31.8% using the NaI(Tl) detectors and 40.2% with CsI(Na). The best spatial resolution (FWHM when the image formed as the geometric mean of the two detector heads, 20 mm scintillator separation) was 19.0 mm for NaI(Tl) and 11.9 mm for CsI(Na) at 140 keV, and 19.5 mm for BGO at 1116 keV, which is somewhat degraded compared to the cm-scale resolution obtained with only one detector head and a close source. The quantitative accuracy of the system’s linearity is better than 2% with detection down to activity levels of 100 nCi. Two in vivo animal studies (a renal scan using 99mTc MAG-3 and a thyroid scan with 123I) and one plant study (a 99mTcO4− xylem transport study) highlight the unique capabilities of this UCD-SPI system. From the renal scan, we observe approximately a one thousand-fold increase in sensitivity compared to the Siemens Inveon SPECT/CT scanner. UCD-SPI is useful for many imaging tasks that do not require excellent spatial resolution, such as high-throughput screening applications, simple radiotracer uptake studies in

  1. Un-collimated single-photon imaging system for high-sensitivity small animal and plant imaging

    Science.gov (United States)

    Walker, Katherine L.; Judenhofer, Martin S.; Cherry, Simon R.; Mitchell, Gregory S.

    2015-01-01

    In preclinical single-photon emission computed tomography (SPECT) system development the primary objective has been to improve spatial resolution by using novel parallel-hole or multi-pinhole collimator geometries. However, such high-resolution systems have relatively poor sensitivity (typically 0.01-0.1%). In contrast, a system that does not use collimators can achieve very high-sensitivity. Here we present a high-sensitivity un-collimated detector single-photon imaging (UCD-SPI) system for the imaging of both small animals and plants. This scanner consists of two thin, closely spaced, pixelated scintillator detectors that use NaI(Tl), CsI(Na), or BGO. The performance of the system has been characterized by measuring sensitivity, spatial resolution, linearity, detection limits, and uniformity. With 99mTc (140 keV) at the center of the field of view (20 mm scintillator separation), the sensitivity was measured to be 31.8% using the NaI(Tl) detectors and 40.2% with CsI(Na). The best spatial resolution (FWHM when the image formed as the geometric mean of the two detector heads, 20 mm scintillator separation) was 19.0 mm for NaI(Tl) and 11.9 mm for CsI(Na) at 140 keV, and 19.5 mm for BGO at 1116 keV, which is somewhat degraded compared to the cm-scale resolution obtained with only one detector head and a close source. The quantitative accuracy of the system’s linearity is better than 2% with detection down to activity levels of 100 nCi. Two in vivo animal studies (a renal scan using 99mTc MAG-3 and a thyroid scan with 123I) and one plant study (a 99mTcO4- xylem transport study) highlight the unique capabilities of this UCD-SPI system. From the renal scan, we observe approximately a one thousand-fold increase in sensitivity compared to the Siemens Inveon SPECT/CT scanner. UCD-SPI is useful for many imaging tasks that do not require excellent spatial resolution, such as high-throughput screening applications, simple radiotracer uptake studies in tumor

  2. New SPECT and PET dementia tracers

    International Nuclear Information System (INIS)

    Single photon emission tomography (SPECT) and positron emission tomography (PET) are techniques to study in vivo neurotransmitter systems, neuro inflammation and amyloid deposits in normal human brain and in dementia. These methods used to explore the integrity of dopaminergic, cholinergic and serotonergic systems in Alzheimer's disease and in other dementias allowed to understand how the neurotransmission was modified in these disorders. Progress in the understanding of pathophysiological and clinical signs of dementia requires an evolution of the radioligands used to carry out an increasingly early and differential diagnosis in addition to monitoring the progression of disease and the effects of therapies. New emerging radiotracers for neuro inflammation or amyloid deposits are essential. In this article, new SPECT and PET tracers are presented. (authors)

  3. Animals

    Institute of Scientific and Technical Information of China (English)

    杨光

    2000-01-01

    The largest animal ever to live on the earth is the blue whale(蓝鲸)It weighs about 80 tons--more than 24 elephants. It is more than 30 metres long. A newborn baby whale weighs as much as a big elephant.

  4. Forage based animal production systems and sustainability, an invited keynote

    Directory of Open Access Journals (Sweden)

    Abdul Shakoor Chaudhry

    2008-07-01

    Full Text Available Forages are essential for the successful operation of animal production systems. This is more relevant to ruminants which are heavily dependant upon forages for their health and production in a cost-effective and sustainable manner. While forages are an economical source of nutrients for animal production, they also help conserve the soil integrity, water supply and air quality. Although the role of these forages for animal production could vary depending upon the regional preferences for the animal and forage species, climate and resources, their importance in the success of ruminant production is acknowledged. However with the increasing global human population and urbanisation, the sustainability of forage based animal production systems is sometimes questioned due to the interrelationship between animal production and the environment. It is therefore vital to examine the suitability of these systems for their place in the future to supply quality food which is safe for human consumption and available at a competitive price to the growing human population. Grassland and forage crops are recognised for their contribution to the environment, recreation and efficiency of meat and milk production,. To maintain sustainability, it is crucial that such farming systems remain profitable and environmentally friendly while producing nutritious foods of high economical value. Thus, it is pertinent to improve the nutritive value of grasses and other forage plants in order to enhance animal production to obtain quality food. It is also vital to develop new forages which are efficiently utilised and wasted less by involving efficient animals. A combination of forage legumes, fresh or conserved grasses, crop residues and other feeds could help develop an animal production system which is economically efficient, beneficial and viable. Also, it is crucial to use efficient animals, improved forage conservation methods, better manure handling, and minimum

  5. PET/SPECT imaging: From carotid vulnerability to brain viability

    Energy Technology Data Exchange (ETDEWEB)

    Meerwaldt, Robbert [Department of Surgery, Isala Clinics, Zwolle (Netherlands); Slart, Riemer H.J.A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands); Dam, Gooitzen M. van [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands); Luijckx, Gert-Jan [Department of Neurology, University Medical Center Groningen, Groningen (Netherlands); Tio, Rene A. [Department of Cardiology, University Medical Center Groningen, Groningen (Netherlands); Zeebregts, Clark J. [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands)], E-mail: czeebregts@hotmail.com

    2010-04-15

    Background: Current key issues in ischemic stroke are related to carotid plaque vulnerability, brain viability, and timing of intervention. The treatment of ischemic stroke has evolved into urgent active interventions, as 'time is brain'. Functional imaging such as positron emission tomography (PET)/single photon emission computed tomography (SPECT) could improve selection of patients with a vulnerable plaque and evaluation of brain viability in ischemic stroke. Objective: To describe the current applications of PET and SPECT as a diagnostic tool in relation to ischemic stroke. Methods: A literature search using PubMed identified articles. Manual cross-referencing was also performed. Results: Several papers, all observational studies, identified PET/SPECT to be used as a tool to monitor systemic atheroma modifying treatment and to select high-risk patients for surgery regardless of the degree of luminal stenosis in carotid lesions. Furthermore, PET/SPECT is able to quantify the penumbra region during ischemic stroke and in this way may identify those patients who may benefit from timely intervention. Discussion: Functional imaging modalities such as PET/SPECT may become important tools for risk-assessment and evaluation of treatment strategies in carotid plaque vulnerability and brain viability. Prospective clinical studies are needed to evaluate the diagnostic accuracy of PET/SPECT.

  6. SPECT/CT in diagnostics of the hand joint

    International Nuclear Information System (INIS)

    Hand and wrist pain remains a diagnostic challenge, both for hand surgeons and for radiologists. Especially chronic wrist pain is often hard to localize clinically and further cross-sectional imaging is often indispensable. The well-established standard for non-invasive diagnostic imaging in chronic wrist pain is magnetic resonance imaging (MRI). Recently, state-of-the-art single photon emission computed tomography/computed tomography (SPECT/CT) systems have been introduced into the diagnostic array for musculoskeletal conditions. Besides morphological data SPECT/CT also provides metabolic information. SPECT/CT allows an exact detection and precise anatomical mapping of different pathologies of the wrist, which is often crucial for therapy. In patients with chronic wrist pain, SPECT/CT is more specific than MRI. It is also beneficial in patients with posttraumatic conditions and metal implants and may serve as a problem-solving tool in difficult cases. It is considered that SPECT/CT imaging is useful if MRI results are equivocal or present no clearly leading pathology. A primary examination with SPECT/CT seems to be a reasonable option for patients with certain bone pathologies, metal implants and non-specific wrist pain. (orig.)

  7. Using adaptive neuro-fuzzy inference system technique for crosstalk correction in simultaneous {sup 99m}Tc/{sup 201}Tl SPECT imaging: A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Heidary, Saeed, E-mail: saeedheidary@aut.ac.ir; Setayeshi, Saeed, E-mail: setayesh@aut.ac.ir

    2015-01-11

    This work presents a simulation based study by Monte Carlo which uses two adaptive neuro-fuzzy inference systems (ANFIS) for cross talk compensation of simultaneous {sup 99m}Tc/{sup 201}Tl dual-radioisotope SPECT imaging. We have compared two neuro-fuzzy systems based on fuzzy c-means (FCM) and subtractive (SUB) clustering. Our approach incorporates eight energy-windows image acquisition from 28 keV to 156 keV and two main photo peaks of {sup 201}Tl (77±10% keV) and {sup 99m}Tc (140±10% keV). The Geant4 application in emission tomography (GATE) is used as a Monte Carlo simulator for three cylindrical and a NURBS Based Cardiac Torso (NCAT) phantom study. Three separate acquisitions including two single-isotopes and one dual isotope were performed in this study. Cross talk and scatter corrected projections are reconstructed by an iterative ordered subsets expectation maximization (OSEM) algorithm which models the non-uniform attenuation in the projection/back-projection. ANFIS-FCM/SUB structures are tuned to create three to sixteen fuzzy rules for modeling the photon cross-talk of the two radioisotopes. Applying seven to nine fuzzy rules leads to a total improvement of the contrast and the bias comparatively. It is found that there is an out performance for the ANFIS-FCM due to its acceleration and accurate results.

  8. Using adaptive neuro-fuzzy inference system technique for crosstalk correction in simultaneous 99mTc/201Tl SPECT imaging: A Monte Carlo simulation study

    Science.gov (United States)

    Heidary, Saeed; Setayeshi, Saeed

    2015-01-01

    This work presents a simulation based study by Monte Carlo which uses two adaptive neuro-fuzzy inference systems (ANFIS) for cross talk compensation of simultaneous 99mTc/201Tl dual-radioisotope SPECT imaging. We have compared two neuro-fuzzy systems based on fuzzy c-means (FCM) and subtractive (SUB) clustering. Our approach incorporates eight energy-windows image acquisition from 28 keV to 156 keV and two main photo peaks of 201Tl (77±10% keV) and 99mTc (140±10% keV). The Geant4 application in emission tomography (GATE) is used as a Monte Carlo simulator for three cylindrical and a NURBS Based Cardiac Torso (NCAT) phantom study. Three separate acquisitions including two single-isotopes and one dual isotope were performed in this study. Cross talk and scatter corrected projections are reconstructed by an iterative ordered subsets expectation maximization (OSEM) algorithm which models the non-uniform attenuation in the projection/back-projection. ANFIS-FCM/SUB structures are tuned to create three to sixteen fuzzy rules for modeling the photon cross-talk of the two radioisotopes. Applying seven to nine fuzzy rules leads to a total improvement of the contrast and the bias comparatively. It is found that there is an out performance for the ANFIS-FCM due to its acceleration and accurate results.

  9. ANIMALS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mammals(哺乳动物)Mammals are the world's most dominant(最占优势的)animal.They are extremely(非常)diverse(多种多样的)creatures(生物,动物)that include(包括)the biggest ever animal (the blue whale鲸,which eats up to 6 tons every day),the smallest(leaf-nosed bat小蹄蝠) and the laziest(sloth树獭,who spends 80% of their time sleeping).There are over 4,600 kinds of mammals and they live in very different environments(环境)—oceans(海洋),rivers,the jungle(丛林),deserts,and plains(平原).

  10. Progression of dopamine transporter decline in patients with the Parkinson variant of multiple system atrophy: a voxel-based analysis of [{sup 123}I]{beta}-CIT SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Nocker, Michael; Seppi, Klaus; Wenning, Gregor K.; Poewe, Werner; Scherfler, Christoph [Innsbruck Medical University, Department of Neurology, Innsbruck (Austria); Donnemiller, Eveline; Virgolini, Irene [Innsbruck Medical University, Department of Nuclear Medicine, Innsbruck (Austria)

    2012-06-15

    We characterized the progression of dopamine transporter (DAT) decline in the striatum and extrastriatal regions including the midbrain and pons of patients with the Parkinson variant of multiple system atrophy (MSA-P) and compared longitudinally collected SPECT results with those in a cohort of patients with Parkinson's disease (PD). Eight patients with MSA-P (age 60.4 {+-} 7.7 years, disease duration 2.4 {+-} 1 years, UPDRS-III motor score 39.7 {+-} 4.7), and 11 patients with PD (age 61.2 {+-} 6.4 years, disease duration 2.4 {+-} 1.1 years, UPDRS-III motor score 18.9 {+-} 7.6) underwent a baseline and follow-up [{sup 123}I]{beta}-CIT SPECT investigation within a time period of 1.3 years. Statistical parametric mapping (SPM) and a repetitive ANOVA design were used to objectively localize the decline in DAT availability without having to make an a priori hypothesis as to its location. SPM localized significant reductions in [{sup 123}I]{beta}-CIT uptake in the dorsal brainstem of MSA-P patients compared to PD patients (p < 0.001) at baseline. Additional reductions in the DAT signal were localized in the caudate and anterior putamen of patients with MSA-P patients compared to PD patients at the follow-up examination (p < 0.001). Relative decline in tracer binding was evident in the caudate and anterior putamen of MSA-P patients compared to PD patients in the longitudinal analysis (p < 0.05), whereas no significant relative signal alteration was observed in the brainstem. In contrast to PD, the relatively higher rate of signal reduction in the caudate and anterior putamen is consistent with the faster disease progression reported in MSA-P. At baseline, the tracer uptake in the brainstem was already at very low levels in the MSA-P patients compared to that in healthy control subjects and did not progress any further, suggesting that the degeneration of monoaminergic neurons is almost complete early in the disease course. (orig.)

  11. Spect in epilepsy

    International Nuclear Information System (INIS)

    In the Federal Republic of Germany it is assumed that about 80 000 patients suffer from a focal form of epilepsy which can not be sufficiently controlled with medication. As potential candidates for surgery, these patients undergo stepwise monitoring procedure in which the epileptic focus is located by means of increasingly invasive methods. In Erlangen the periictal SPECT is performed, whereby the perfusion tracer is injected after onset (ictal SPECT), immediately after cessation of the seizure (postictal scan) or between the seizures (interictal scan). To administer the tracer strongly in ictal or postictal state a close functional cooperation between the neurology and nuclear medicine department must be arranged. Injection inside the monitoring unit must be attuned to federal antiradiation precaution law. In temporal lobe epilepsy, different injection-times demonstrate a large area of hyperperfusion after ictal onset, which refines in the first two postictal minutes to the generating focus together with a decreased parietal blood flow pattern. Later, the entire temporal lobe epilepsy an early tracer injection within 40 seconds has to be achieved, otherwise an ictal propagation into distant brain areas, possibly contralateral, may occur. Extratemporal epilepsy is often linked to trauma or congenital malformations, and is difficult to categorize. In difficult cases with equivocal results, efforts can be undertaken by means of receptor scintigraphy with, for example, iomazenil, to localize the focus as a cold lesion caused by neuronal loss. (orig.)

  12. Neuropsychiatry: PET and SPECT

    International Nuclear Information System (INIS)

    Functional brain imaging with PET and SPECT have a definitive and well established role in the investigation of a variety of conditions such as dementia, epilepsy and drug addiction. With these methods it is possible to detect early rCBF (regional Cerebral Blood Flow) changes seen in dementia (even before clinical symptoms) and differentiate Alzheimer's disease from other dementias by means of the rCBF pattern change. 18-F-FDG PET imaging is a useful tool in partial epilepsy because both rCBF and brain metabolism are compromised at the epileptogenic focus. During the seizure, rCBF dramatically increases locally. Using SPECT it is possible to locate such foci with 97% accuracy. In drug addiction, particularly with cocaine, functional imaging has proven to be very sensitive to detect brain flow and metabolism derangement early in the course of this condition. These findings are important in many ways: prognostic value, they are used as a powerful reinforcement tool and to monitor functional recovery with rehabilitation. There are many other conditions in which functional brain imaging is of importance such as acute stroke treatment assessment, trauma rehabilitation and in psychiatric and abnormal movement diseases specially with the development of receptor imaging (au)

  13. Hybrid SPECT/CT imaging in neurology.

    Science.gov (United States)

    Ciarmiello, Andrea; Giovannini, Elisabetta; Meniconi, Martina; Cuccurullo, Vincenzo; Gaeta, Maria Chiara

    2014-01-01

    In recent years, the SPECT/CT hybrid modality has led to a rapid development of imaging techniques in nuclear medicine, opening new perspectives for imaging staff and patients as well. However, while, the clinical role of positron emission tomography-computed tomography (PET-CT) is well consolidated, the diffusion and the consequent value of single-photon emission tomography-computed tomography (SPECT-CT) has yet to be weighed, Hence, there is a need for a careful analysis, comparing the "potential" benefits of the hybrid modality with the "established" ones of the standalone machine. The aim of this article is to analyze the impact of this hybrid tool on the diagnosis of diseases of the central nervous system, comparing strengths and weaknesses of both modalities through the use of SWOT analysis. PMID:25143053

  14. Expression Systems and Species Used for Transgenic Animal Bioreactors

    Directory of Open Access Journals (Sweden)

    Yanli Wang

    2013-01-01

    Full Text Available Transgenic animal bioreactors can produce therapeutic proteins with high value for pharmaceutical use. In this paper, we compared different systems capable of producing therapeutic proteins (bacteria, mammalian cells, transgenic plants, and transgenic animals and found that transgenic animals were potentially ideal bioreactors for the synthesis of pharmaceutical protein complexes. Compared with other transgenic animal expression systems (egg white, blood, urine, seminal plasma, and silkworm cocoon, the mammary glands of transgenic animals have enormous potential. Compared with other mammalian species (pig, goat, sheep, and cow that are currently being studied as bioreactors, rabbits offer many advantages: high fertility, easy generation of transgenic founders and offspring, insensitivity to prion diseases, relatively high milk production, and no transmission of severe diseases to humans. Noticeably, for a small- or medium-sized facility, the rabbit system is ideal to produce up to 50 kg of protein per year, considering both economical and hygienic aspects; rabbits are attractive candidates for the mammary-gland-specific expression of recombinant proteins. We also reviewed recombinant proteins that have been produced by targeted expression in the mammary glands of rabbits and discussed the limitations of transgenic animal bioreactors.

  15. Expression of L amino acid transport system 1 and analysis of iodine-123-methyltyrosine tumor uptake in a pancreatic xenotransplantation model using fused high-resolution-micro-SPECT-MRI

    Institute of Scientific and Technical Information of China (English)

    Corinna von Forstner; Maaz Zuhayra; Ole Ammerpohl; Yi Zhao; Sanjay Tiwari; Olav Jansen; Holger Kalthoff; Eberhard Henze; Jan-Hendrik Egberts

    2011-01-01

    BACKGROUND: The specificity in discriminating pancreatitis is limited in the positron emission tomography (PET) using Fluorine-18-fluorodeoxyglucose.Furthermore,PETisnot widely available compared to the single photon emission computed tomography (SPECT). Since amino acids play a minor role in metabolism of inflammatory cells, the potential of the SPECT tracer, 3-[123I]iodo-L-α-methyltyrosine (123I-IMT), for detecting pancreatic cancer was examined in xenotransplantation models of humanpancreaticcarcinomainmice. METHODS:  123I-IMT was injected to eight mice inoculated with subcutaneous or orthotopic pancreatic tumors. Fused high-resolution-micro-SPECT (Hi-SPECT) and magnetic resonance imaging were performed. The gene expression level of L amino acid transport-system 1 (LAT1) was analyzed and correlated with tumor uptake of 123I-IMT. RESULTS: A high uptake of 123I-IMT was detected in all tumor-bearing mice. The median tumor-to-background ratio (T/B) was 12.1 (2.0-13.2) for orthotopic and 8.4 (1.8-11.1) for subcutaneous xenotransplantation, respectively. Accordingly, the LAT1 expression in transplanted Colo357 cells was increased compared to non-malignant controls. CONCLUSIONS: Our mouse model could show a high 123I-IMT uptake in pancreatic cancer. Fused MRI scans facilitate precise evaluation of uptake in the specific regions of interest. Further studies are required to confirm these findings in tumors derived from other human pancreatic cancer cells. Since amino acids play a minor role in the metabolism of inflammatory cells, the potential for application of 123I-IMT to distinguish pancreatic tumor from inflammatory pancreatitis warrants further investigation.

  16. SPECT detectors: the Anger Camera and beyond.

    Science.gov (United States)

    Peterson, Todd E; Furenlid, Lars R

    2011-09-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous sodium iodide scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic. PMID:21828904

  17. SPECT detectors: the Anger Camera and beyond

    Science.gov (United States)

    Peterson, Todd E.; Furenlid, Lars R.

    2011-09-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous sodium iodide scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic.

  18. Quantitative simultaneous {sup 99m}Tc-ECD/{sup 123}I-FP-CIT SPECT in Parkinson's disease and multiple system atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Fakhri, Georges El; Kijewski, Marie Foley [Harvard Medical School and Brigham and Women' s Hospital, Division of Nuclear Medicine, Department of Radiology, Boston, MA (United States); Habert, Marie-Odile; Maksud, Philippe; Malek, Zoulikha [CHU Pitie-Salpetriere, U678 INSERM - UPMC, Paris (France); CHU Pitie-Salpetriere, Department of Nuclear Medicine, Paris (France); Kas, Aurelie [CHU Pitie-Salpetriere, Department of Nuclear Medicine, Paris (France); Lacomblez, Lucette [CHU Pitie-Salpetriere, Federation des Maladies du Systeme Nerveux, Paris (France); CHU Pitie-Salpetriere, Department of Pharmacology, Paris (France)

    2006-01-01

    The purpose of this study was to investigate the feasibility and utility of dual-isotope SPECT for differential diagnosis of idiopathic Parkinson's disease (IPD) and multiple system atrophy (MSA). Simultaneous {sup 99m}Tc-ECD/{sup 123}I-FP-CIT studies were performed in nine normal controls, five IPD patients, and five MSA patients. Projections were corrected for scatter, cross-talk, and high-energy penetration, and iteratively reconstructed while correcting for patient-specific attenuation and variable collimator response. Perfusion and dopamine transporter (DAT) function were assessed using voxel-based statistical parametric mapping (SPM2) and volume of interest quantitation. DAT binding potential (BP) and asymmetry index (AI) were estimated in the putamen and caudate nucleus. Striatal BP was lower in IPD (55%) and MSA (23%) compared to normal controls (p<0.01), and in IPD compared to MSA (p<0.05). AI was greater for IPD than for MSA and controls in both the caudate nucleus and the putamen (p<0.05). There was significantly decreased perfusion in the left and right nucleus lentiformis in MSA compared to IPD and controls (p<0.05). Dual-isotope studies are both feasible in and promising for the diagnosis of parkinsonian syndromes. (orig.)

  19. Cerebral blood flow assessed by brain SPECT with 99mTc-HMPAO utilising the acetazolamide test in systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Background: Cerebrovascular diseases are one of the most important complications of systemic lupus erythematosus (SLE). The diagnostic imaging of neuropsychiatric SLE complications presents many problems. This study was undertaken to investigate cerebral blood flow char s and its reactivity to hypercapnia by means of acetazolamide test in SLE patients. Methods: Brain SPECT studies using 99mTc-HMPAO were performed in 50 patients with SLE. Acetazolamide test was performed in 35 patients 3 days after the baseline study by means of repetitive scanning 20 min after i.v. injection of 1.0 g of acetazolamide. Results: Significant interhemispheric hypoperfusion areas were shown in 76.3% of all patients, 83.8% symptomatic and 63.1% asymptomatic. Patients with antiphospholipid syndrome showed multifocal perfusion deficits. The reaction of cerebral perfusion to acetazolamide was heterogenous and showed increase, decrease, no change or mixed reaction of baseline-study-found focal hypoperfusion. Acetazolamide test revealed hypoperfusion in two patients with normal baseline study. MRI scanning revealed cerebral lesions in 41% of patients. Conclusions: CBF asymmetries in symptomatic and asymptomatic patients with SLE are frequent. Regional CBF alterations seem to be different in patients with and without antiphospholipid syndrome. The part of the patients with SLE shows no or paradoxically inversed reaction to acetazolamide. (author)

  20. The role of preclinical SPECT in oncological and neurological research in combination with either CT or MRI

    Energy Technology Data Exchange (ETDEWEB)

    Bernsen, Monique R.; Jong, Marion de [Erasmus MC, Department of Nuclear Medicine, Rotterdam (Netherlands); Erasmus MC, Department of Radiology, Rotterdam (Netherlands); Vaissier, Pieter E.B. [Delft University of Technology, Section Radiation Detection and Medical Imaging, Delft (Netherlands); Holen, Roel van [Ghent University, iMinds, ELIS Department, MEDISIP, Ghent (Belgium); Booij, Jan [University of Amsterdam, Department of Nuclear Medicine, Academic Medical Center, Amsterdam (Netherlands); Beekman, Freek J. [Delft University of Technology, Section Radiation Detection and Medical Imaging, Delft (Netherlands); MILabs B.V., Utrecht (Netherlands)

    2014-05-15

    Preclinical imaging with SPECT combined with CT or MRI is used more and more frequently and has proven to be very useful in translational research. In this article, an overview of current preclinical research applications and trends of SPECT combined with CT or MRI, mainly in tumour imaging and neuroscience imaging, is given and the advantages and disadvantages of the different approaches are described. Today SPECT and CT systems are often integrated into a single device (commonly called a SPECT/CT system), whereas at present combined SPECT and MRI is almost always carried out with separate systems and fiducial markers to combine the separately acquired images. While preclinical SPECT/CT is most widely applied in oncology research, SPECT combined with MRI (SPECT/MRI when integrated in one system) offers the potential for both neuroscience applications and oncological applications. Today CT and MRI are still mainly used to localize radiotracer binding and to improve SPECT quantification, although both CT and MRI have additional potential. Future technology developments may include fast sequential or simultaneous acquisition of (dynamic) multimodality data, spectroscopy, fMRI along with high-resolution anatomic MRI, advanced CT procedures, and combinations of more than two modalities such as combinations of SPECT, PET, MRI and CT all together. This will all strongly depend on new technologies. With further advances in biology and chemistry for imaging molecular targets and (patho)physiological processes in vivo, the introduction of new imaging procedures and promising new radiopharmaceuticals in clinical practice may be accelerated. (orig.)

  1. The role of preclinical SPECT in oncological and neurological research in combination with either CT or MRI

    International Nuclear Information System (INIS)

    Preclinical imaging with SPECT combined with CT or MRI is used more and more frequently and has proven to be very useful in translational research. In this article, an overview of current preclinical research applications and trends of SPECT combined with CT or MRI, mainly in tumour imaging and neuroscience imaging, is given and the advantages and disadvantages of the different approaches are described. Today SPECT and CT systems are often integrated into a single device (commonly called a SPECT/CT system), whereas at present combined SPECT and MRI is almost always carried out with separate systems and fiducial markers to combine the separately acquired images. While preclinical SPECT/CT is most widely applied in oncology research, SPECT combined with MRI (SPECT/MRI when integrated in one system) offers the potential for both neuroscience applications and oncological applications. Today CT and MRI are still mainly used to localize radiotracer binding and to improve SPECT quantification, although both CT and MRI have additional potential. Future technology developments may include fast sequential or simultaneous acquisition of (dynamic) multimodality data, spectroscopy, fMRI along with high-resolution anatomic MRI, advanced CT procedures, and combinations of more than two modalities such as combinations of SPECT, PET, MRI and CT all together. This will all strongly depend on new technologies. With further advances in biology and chemistry for imaging molecular targets and (patho)physiological processes in vivo, the introduction of new imaging procedures and promising new radiopharmaceuticals in clinical practice may be accelerated. (orig.)

  2. The dopaminergic system in patients with functional dyspepsia analysed by single photon emission computed tomography (SPECT) and an alpha-methyl-para-tyrosine (AMPT) challenge test

    Energy Technology Data Exchange (ETDEWEB)

    Braak, Breg; Klooker, Tamira K. [Academic Medical Center, Department of Gastroenterology and Hepatology, Amsterdam (Netherlands); Booij, Jan [Academic Medical Center, Department of Nuclear Medicine, Amsterdam (Netherlands); Wijngaard, Rene M.J. van den [Academic Medical Center, Tytgat Institute of Liver and Intestinal Research, Amsterdam (Netherlands); Boeckxstaens, Guy E.E. [Academic Medical Center, Department of Gastroenterology and Hepatology, Amsterdam (Netherlands); University Hospital Leuven, Catholic University Leuven, Department of Gastroenterology, Leuven (Belgium)

    2012-04-15

    Functional dyspepsia (FD) is a chronic condition characterized by upper abdominal symptoms without an identifiable cause. While the serotonergic system is thought to play a key role in the regulation of gut physiology, the role of the dopaminergic system, which is important in the regulation of visceral pain and stress, is under-studied. Therefore, this study investigated the dopaminergic system and its relationship with drinking capacity and symptoms in FD patients. In FD patients and healthy volunteers (HV) the dopaminergic system was investigated by in-vivo assessment of central dopamine D2 receptors (D2Rs) with [{sup 123}I]IBZM SPECT and by an acute, but reversible, dopamine depletion alpha-methyl-para-tyrosine (AMPT) challenge test. A nutrient drink test was performed to investigate the association between maximal ingested volume, evoked symptoms, and D2Rs. The HV subjects comprised 12 women and 8 men (mean age 31 {+-} 3 years), and the FD patients comprised 5 women and 3 men (mean age 39 {+-} 5 years). The FD patients had a lower left plus right average striatal binding potential (BP{sub NP}) for the caudate nucleus (p = 0.02), but not for putamen (p = 0.15), which in the FD patients was correlated with maximal ingested volume (r = 0.756, p = 0.03). The D2R BP{sub NP} in the putamen was correlated with nausea (r = 0.857, p = 0.01). The acute dopamine depletion test, however, failed to reveal differences in prolactin release between the FD patients and the HV subjects. These preliminary data suggest that chronic rather than acute alterations in the dopaminergic system may be involved in the pathogenesis of FD. Further studies are required to reproduce our novel findings and to evaluate to what extent the dopaminergic changes may be secondary to abnormalities in serotonergic pathways. (orig.)

  3. Remote controlled bio-stimulator and animal behavior analysis system

    Science.gov (United States)

    Song, Weiguo; Yuan, Kui; Han, Taizhen; Chai, Jie

    2006-01-01

    This paper presents a surveillance and stimulation system to study the animal locomotion behavior under electrical micro-stimulations in the brain nerve, which provides a new platform and methodology for behavior experiment in neural science. The system consists of two parts: 1) micro-control based multi-channel stimulator backed by animal; 2) Computer vision based animal behavior tracking system; The performance of the micro-stimulator is validated for sciatic nerve of frog and the results show that it is reliable, stabile, compact (25×35×10 mm), light (20g with cell). The tracking speed and accuracy is improved with our new hybrid tracking algorithm based on color table looking and moving predication, and compared with the manual recording. The preliminary results of rat tracking show that it works accurately and robustly in real-time even under interference condition.

  4. Accelerated GPU based SPECT Monte Carlo simulations

    Science.gov (United States)

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-01

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: 99m Tc, 111In and 131I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency

  5. Staging of moyamoya disease by perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kuwabara, Yasuo [Kyushu Univ., Fukuoka (Japan). Hospital; Matsushima, Toshio; Fukui, Masashi

    2001-04-01

    Staging of moyamoya disease, based on angiography and PET have already been established. The authors have established staging of moyamoya disease based on perfusion SPECT, that can be summarized as follows: Stage I, no abnormality is seen at rest or after acetazolamide loading; Stage II, no abnormality is seen at rest, however, a decreased response (blood flow increase rate: <15%) is seen to acetazolamide loading (a, a decreased response is seen only in the frontal lobe; b, a decreased response is seen in regions other than the frontal lobe; and c, a decreased response is seen throughout the cerebrum); Stage III, localized decrease in blood flow (blood flow decrease compared with peripheral tissue: {>=}15%) and marked decrease in response to acetazolamide (blood flow increase rate: <5%) are seen at rest. In Stage III, CT and MRI show no abnormal findings or only mild lesions of the white matter; and Stage IV, multiple decreases in blood flow are seen at rest, and CT and MRI reveal infarctions and severe atrophy at the same sites. The above staging does not require determination of cerebral blood flow, and thus it can be used in children, in whom cerebral blood flow determination is difficult. The authors performed 99m-Tc ECD perfusion SPECT in 25 patients with moyamoya disease for the staging, and compared staging based on angiography with staging based on perfusion SPECT. The results did not show a correlation between the 2 staging methods. A problem inherent in the staging of moyamoya disease based on perfusion SPECT is that the relationship between cerebral blood flow and cerebral radioactivity concentrations may differ depending on the drug used to determine cerebral blood flow. Thus, although the present staging system does not depend on any specific radioactive drug to determine cerebral blood flow, further investigation is necessary to identify a more appropriate drug than those in current use. (K.H.)

  6. Radiopharmaceuticals for SPECT cancer detection

    Science.gov (United States)

    Chernov, V. I.; Medvedeva, A. A.; Zelchan, R. V.; Sinilkin, I. G.; Stasyuk, E. S.; Larionova, L. A.; Slonimskaya, E. M.; Choynzonov, E. L.

    2016-08-01

    The purpose of the study was to assess the efficacy of single photon emission computed tomography (SPECT) with 199Tl and 99mTc-MIBI in the detection of breast, laryngeal and hypopharyngeal cancers. A total of 220 patients were included into the study: 120 patients with breast lesions (100 patients with breast cancer and 20 patients with benign breast tumors) and 100 patients with laryngeal/hypopharyngeal diseases (80 patients with laryngeal/hypopharyngeal cancer and 20 patients with benign laryngeal/hypopharyngeal lesions). No abnormal 199Tl uptake was seen in all patients with benign breast and laryngeal lesions, indicating a 100% specificity of 199Tl SPECT. In the breast cancer patients, the increased 199Tl uptake in the breast was visualized in 94.8% patients, 99mTc-MIBI—in 93.4% patients. The increased 199Tl uptake in axillary lymph nodes was detected in 60% patients, and 99mTc-MIBI—in 93.1% patients. In patients with laryngeal/hypopharyngeal cancer, the sensitivity of SPECT with 199Tl and 99mTc-MIBI was 95%. The 199Tl SPECT sensitivity in identification of regional lymph node metastases in the patients with laryngeal/hypopharyngeal cancer was 75% and the 99mTc-MIBI SPECT sensitivity was 17%. The data obtained showed that SPECT with 199Tl and 99mTc-MIBI can be used as one of the additional imaging methods in detection of tumors.

  7. Proceedings of clinical SPECT (single photon emission computed tomography) symposium

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-01

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluation of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base. (TEM)

  8. Cost-efficiency of animal welfare in broiler production systems

    NARCIS (Netherlands)

    Gocsik, Éva; Brooshooft, Suzanne D.; Jong, de Ingrid C.; Saatkamp, Helmut W.

    2016-01-01

    Broiler producers operate in a highly competitive and cost-price driven environment. In addition, in recent years the societal pressure to improve animal welfare (AW) in broiler production systems is increasing. Hence, from an economic and decision making point of view, the cost-efficiency of imp

  9. Multipinhole SPECT helical scan parameters and imaging volume

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Rutao, E-mail: rutaoyao@buffalo.edu; Deng, Xiao [Department of Nuclear Medicine, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Wei, Qingyang; Dai, Tiantian; Ma, Tianyu [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Lecomte, Roger [Department of Nuclear Medicine and Radiobiology, Sherbrooke Molecular Imaging Center, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4 (Canada)

    2015-11-15

    Purpose: The authors developed SPECT imaging capability on an animal PET scanner using a multiple-pinhole collimator and step-and-shoot helical data acquisition protocols. The objective of this work was to determine the preferred helical scan parameters, i.e., the angular and axial step sizes, and the imaging volume, that provide optimal imaging performance. Methods: The authors studied nine helical scan protocols formed by permuting three rotational and three axial step sizes. These step sizes were chosen around the reference values analytically calculated from the estimated spatial resolution of the SPECT system and the Nyquist sampling theorem. The nine helical protocols were evaluated by two figures-of-merit: the sampling completeness percentage (SCP) and the root-mean-square (RMS) resolution. SCP was an analytically calculated numerical index based on projection sampling. RMS resolution was derived from the reconstructed images of a sphere-grid phantom. Results: The RMS resolution results show that (1) the start and end pinhole planes of the helical scheme determine the axial extent of the effective field of view (EFOV), and (2) the diameter of the transverse EFOV is adequately calculated from the geometry of the pinhole opening, since the peripheral region beyond EFOV would introduce projection multiplexing and consequent effects. The RMS resolution results of the nine helical scan schemes show optimal resolution is achieved when the axial step size is the half, and the angular step size is about twice the corresponding values derived from the Nyquist theorem. The SCP results agree in general with that of RMS resolution but are less critical in assessing the effects of helical parameters and EFOV. Conclusions: The authors quantitatively validated the effective FOV of multiple pinhole helical scan protocols and proposed a simple method to calculate optimal helical scan parameters.

  10. Assessment of brain SPECT neuropsychiatric involvement in collagen-vascular diseases

    International Nuclear Information System (INIS)

    Objective: To study the value of brain SPECT in the diagnosis and follow up of SNC involvement in systemic connective tissue diseases (SCTD) with neuropsychiatric symptoms (NPS). Materials and methods: We retrospectively analyzed 31 consecutive patients with SCTD presenting with NPS who underwent 99mTc-ECD SPECT and statistical surface maps. 21 patients had systemic lupus erythematosus and 3 had Behcet disease. Results were compared to those of CT (18/31), MRI (8/31) and neuropsychological examination (NPE). 6 patients had follow-up SPECT scans. Results: Twenty-eight patients had abnormal SPECT studies. CT was abnormal in 3/18 patients (sensitivity 90.3% vs. 16.7%; p<0.001). MRI showed alterations in 5/8 patients and NPE in 7/10. Although all these patients presented abnormal SPECT scans, sensitivity values were not statistically different. Patients with major NPS presented more extensive perfusion defects (p<0.035). Patients with follow-up SPECT scans showed perfusion improvement with response to treatment and progression of the alterations when symptoms relapsed. Conclusion:Brain SPECT presents high sensitivity for the detection of neurological involvement in SCTD. SPECT usefulness may extend to follow-up and evaluation of response to treatment

  11. SPECT Imaging of patients with parkinsonian syndromes; SPECT-Untersuchungen bei Patienten mit Parkinson-Syndromen

    Energy Technology Data Exchange (ETDEWEB)

    Tatsch, K. [Klinik und Poliklinik fuer Nuklearmedizin, Klinikum der Univ. Muenchen-Grosshardern (Germany)

    2002-09-01

    Stimulated by the commercial availability of specific radioligands in vivo characterization of the dopaminergic system with single-photon emission tomography (SPECT) has gained clinical importance in the diagnostic work-up of patiens with parkinsonism. Currently interest is focused on two aspects of the dopaminergic neurotransmission: Cocaine analogues bind to the presynaptically located striatal dopamine transporter and herewith allow to assess the structural integrity of the presynaptic terminals which are the striatal projections of neurons originating in the substantia nigra. For functional assessment of the postsynaptic aspect of the dopaminergic synapse binding of specific receptor antagonists to postsynaptically located D2 receptors is analyzed. Depending on the clinical question and the pathology expected both methods - either each one alone or a combination of both - provide valuable diagnostic information. Currently those SPECT methods are applied to confirm or exclude a Parkinsonian syndrome, in the early and differential diagnosis of Parkinsonian syndromes, to assess disease severity and measure disease progression, and to monitor the effects of therapy e.g. with potentially neuroprotective drugs. This paper offers a comprehensive summary of the SPECT results reported in the literature dealing with the mentioned clinical applications. (orig.) [German] Stimuliert durch die kommerzielle Verfuegbarkeit spezifischer Radioliganden gewinnt die In-vivo-Charakterisierung des dopaminergen Systems mit der single-photon-emissions-computertomographie (SPECT) bei der diagnostischen Abklaerung von Parkinson-Syndromen zunehmend an Bedeutung. Hierbei stehen zwei Aspekte der dopaminergen Neurotransmission im Blickpunkt des Interesses: Die Bindung von Kokainanaloga an den praesynaptischen Dopamintransporter laesst Rueckschluesse auf die Integritaet von Neuronen der Substantia nigra mit ihren zum Corpus striatum projizierenden Axonen (praesynaptische Nervenfasern) zu. Die

  12. Animal nutrition in a systems context - the way forward

    International Nuclear Information System (INIS)

    Full text: Secondary production (i.e. milk, meat, wool and eggs) in animal production systems is a function of complex interactions between animal potential and the environmental conditions (biotic and abiotic). A major factor limiting secondary production is animal nutrition. Obviously, in the absence of food, the animal will stop producing and eventually die; consequently, the investment in it, to that point, is lost. Supplying only enough nutrients to maintain the animal results in no productive output, and thus the marginal cost of production is infinite, i.e. animal input costs are incurred but no return is harvested. Provision of nutrients in excess of maintenance allows the animal to become productive thus generating a return on the investment. Animals differ in their nutrient requirements according to their inherent genetic potential and the desired level of production. There are multiple combinations of dietary ingredients that can meet an animal's nutrient requirements, which create variation in dietary costs when food resources are finite in supply. Optimization algorithms can be utilized to solve for maximum production or economic return given a set of constraints. For animals, these constraints include nutrient requirements and the availability and accessibility of food supplies. Temporal fluctuations of abiotic environmental conditions may directly impact key components of the primary production systems. For example seasonal drought diminishes and changes the seasonal pattern of herbage growth, altering or limiting the nutrient availability from local sources such as pasture. Thus, it is important that animal performance models are capable of accurately predicting secondary production responses to varying and dynamic feed inputs. The accuracy and precision of current nutrient requirement models for animals has improved over time. Although static in form, these models can and have been utilized to predict secondary production from a set of inputs

  13. 'Double-layer' method to improve image quality of industria SPECT

    International Nuclear Information System (INIS)

    Recently a lab-scale single photon emission computed tomography (SPECT) system was constructed to study the details of the image formation process in an industrial SPECT system. The industrial SPECT system differs from a medical SPECT system in that it uses relatively large detectors and collimators in order to effectively detect high-energy gammas with enough collimation power, resulting always, however, in low-quality images. In this paper, a simple but very effective 'double-layer' method is proposed as a means of improving the image quality of the industrial SPECT system. The rationale of the double-layer method is to simultaneously employ two layers of identical SPECT systems to increase the number of measurements points and, thereby, increase the image quality. The performance results of the double-layer method, as evaluated by Geant4 Monte Carlo simulations, showed dramatic improvement in image quality over those offered by the single-layer SPECT system. The improvement, additionally, was more marked for more complicated and higher-energy gamma sources.

  14. SPECT imaging of cardiac reporter gene expression in living rabbits

    Institute of Scientific and Technical Information of China (English)

    LIU Ying; LAN Xiaoli; ZHANG Liang; WU Tao; JIANG Rifeng; ZHANG Yongxue

    2009-01-01

    This work is to demonstrate feasibility of imaging the expression of herpes simplex virus 1-thymidine ki-nase (HSV1-tk) reporter gene in rabbits myocardium by using the reporter probe 131I-2'-fluoro-2'-deoxy-1-β-D- arabi-nofuranosyl-5-iodouracil (131I-FIAU) and SPECT. Rabbits of the study group received intramyocardial injection of Ad5-tk and control group received aseptic saline injection. Two sets of experiments were performed on the study group. Rabbits of the 1st set were injected with 131I-FIAU 600 μCi at Day 2 after intramyocardial transfection of Ad5-tk in 1×109, 5×108, 1×108, 5×107 and 1×107 pfu, and heart SPECT imaging was done at different hours. Rabbits of the 2nd were transferred various titers of Ad5-tk (1×109, 5×108, 1×108, 5×107, 1×107 pfu) to determine the threshold and optimal viral titer needed for detection of gene expression. Two days later, 131I-FIAU was injected and heart SPECT imaging was performed at 6, 24 and 48 h, before killing them for gamma counting of the hearts. Reverse tran-scription-polymerase chain reaction (RT-PCR) was used to verify the transferred HSV1-tk gene expression. Semi-quantitative analysis derived of region of interest (ROI) of SPECT images and RT-PCR images was performed and the relationship of SPECT images with ex vivo gamma counting and mRNA level were evaluated. SPECT images conformed 131I-FIAU accumulation in rabbits injected with Ad5-tk in the anterolateral wall. The optimal images qual-ity was obtained at 24~48 h for different viral titers. The highest radioactivity in the focal myocardium was seen at 6 h, and then declined with time. The threshold was 5×107 pfu of virus titer. The result could be set better in 1~5×108 pfu by SPECT analysis and gamma counting. ROI-derived semi-quantitative study on SPECT images correlated well with ex vivo gamma counting and mRNA levels from RT-PCR analysis. The HSV1-tk/131I-FIAU reporter gene/reporter probe system is feasible for cardiac SPECT reporter gene imaging

  15. GATE simulation of a LYSO-based SPECT imager: Validation and detector optimization

    Science.gov (United States)

    Li, Suying; Zhang, Qiushi; Xie, Zhaoheng; Liu, Qi; Xu, Baixuan; Yang, Kun; Li, Changhui; Ren, Qiushi

    2015-02-01

    This paper presents a small animal SPECT system that is based on cerium doped lutetium-yttrium oxyorthosilicate (LYSO) scintillation crystal, position sensitive photomultiplier tubes (PSPMTs) and parallel hole collimator. Spatial resolution test and animal experiment were performed to demonstrate the imaging performance of the detector. Preliminary results indicated a spatial resolution of 2.5 mm at FWHM that cannot meet our design requirement. Therefore, we simulated this gamma camera using GATE (GEANT 4 Application for Tomographic Emission) aiming to make detector spatial resolution less than 2 mm. First, the GATE simulation process was validated through comparison between simulated and experimental data. This also indicates the accuracy and effectiveness of GATE simulation for LYSO-based gamma camera. Then the different detector sampling methods (crystal size with 1.5, and 1 mm) and collimator design (collimator height with 30, 34.8, 38, and 43 mm) were studied to figure out an optimized parameter set. Detector sensitivity changes were also focused on with different parameters set that generated different spatial resolution results. Tradeoff curves of spatial resolution and sensitivity were plotted to determine the optimal collimator height with different sampling methods. Simulation results show that scintillation crystal size of 1 mm and collimator height of 38 mm, which can generate a spatial resolution of ~1.8 mm and sensitivity of ~0.065 cps/kBq, can be an ideal configuration for our SPECT imager design.

  16. GATE simulation of a LYSO-based SPECT imager: Validation and detector optimization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Suying [Department of Biomedicine and Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871 (China); Zhang, Qiushi [Institute for Drug and Instrument Control of Health Department GLD of PLA, No. 17 Fengtai West Road, Beijing 100071 (China); Xie, Zhaoheng; Liu, Qi [Department of Biomedicine and Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871 (China); Xu, Baixuan [The General Hospital of Chinese People’s Liberation Army, No. 28 Fuxing Road, Beijing 100039 (China); Yang, Kun; Li, Changhui [Department of Biomedicine and Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871 (China); Ren, Qiushi, E-mail: renqsh@coe.pku.edu.cn [Department of Biomedicine and Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871 (China)

    2015-02-11

    This paper presents a small animal SPECT system that is based on cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal, position sensitive photomultiplier tubes (PSPMTs) and parallel hole collimator. Spatial resolution test and animal experiment were performed to demonstrate the imaging performance of the detector. Preliminary results indicated a spatial resolution of 2.5 mm at FWHM that cannot meet our design requirement. Therefore, we simulated this gamma camera using GATE (GEANT 4 Application for Tomographic Emission) aiming to make detector spatial resolution less than 2 mm. First, the GATE simulation process was validated through comparison between simulated and experimental data. This also indicates the accuracy and effectiveness of GATE simulation for LYSO-based gamma camera. Then the different detector sampling methods (crystal size with 1.5, and 1 mm) and collimator design (collimator height with 30, 34.8, 38, and 43 mm) were studied to figure out an optimized parameter set. Detector sensitivity changes were also focused on with different parameters set that generated different spatial resolution results. Tradeoff curves of spatial resolution and sensitivity were plotted to determine the optimal collimator height with different sampling methods. Simulation results show that scintillation crystal size of 1 mm and collimator height of 38 mm, which can generate a spatial resolution of ∼1.8 mm and sensitivity of ∼0.065 cps/kBq, can be an ideal configuration for our SPECT imager design.

  17. GATE simulation of a LYSO-based SPECT imager: Validation and detector optimization

    International Nuclear Information System (INIS)

    This paper presents a small animal SPECT system that is based on cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal, position sensitive photomultiplier tubes (PSPMTs) and parallel hole collimator. Spatial resolution test and animal experiment were performed to demonstrate the imaging performance of the detector. Preliminary results indicated a spatial resolution of 2.5 mm at FWHM that cannot meet our design requirement. Therefore, we simulated this gamma camera using GATE (GEANT 4 Application for Tomographic Emission) aiming to make detector spatial resolution less than 2 mm. First, the GATE simulation process was validated through comparison between simulated and experimental data. This also indicates the accuracy and effectiveness of GATE simulation for LYSO-based gamma camera. Then the different detector sampling methods (crystal size with 1.5, and 1 mm) and collimator design (collimator height with 30, 34.8, 38, and 43 mm) were studied to figure out an optimized parameter set. Detector sensitivity changes were also focused on with different parameters set that generated different spatial resolution results. Tradeoff curves of spatial resolution and sensitivity were plotted to determine the optimal collimator height with different sampling methods. Simulation results show that scintillation crystal size of 1 mm and collimator height of 38 mm, which can generate a spatial resolution of ∼1.8 mm and sensitivity of ∼0.065 cps/kBq, can be an ideal configuration for our SPECT imager design

  18. SPECT in Focal Epilepsies

    Directory of Open Access Journals (Sweden)

    Roderick Duncan

    2000-01-01

    Full Text Available Brain perfusion changes during seizures were first observed in the 1930s. Single Photon Emission Computed Tomography (SPECT was developed in the 1970s, and tracers suitable for the imaging of regional cerebral perfusion (rCP became available in the 1980s. The method was first used to study rCP in the interictal phase, and this showed areas of low perfusion in a proportion of cases, mainly in patients with temporal lobe epilepsies. However, the trapping paradigm of tracers such as hexamethyl propyleneamine oxime (HMPAO provided a practicable method of studying changes in rCP during seizures, and a literature was established in the late 1980s and early 1990s showing a typical sequence of changes during and after seizures of mesial temporal lobe origin; the ictal phase was associated with large increases in perfusion throughout the temporal lobe, with first the lateral, then the mesial temporal lobe becoming hypoperfused in the postictal phase. Activation and inhibition of other structures, such as the basal ganglia and frontal cortex, were also seen. Studies of seizures originating elsewhere in the brain have shown a variety of patterns of change, according to the structures involved. These changes have been used practically to aid the process of localisation of the epileptogenic zone so that epilepsy surgery can be planned.

  19. Toxoplasma gondii Infection in Animal-Friendly Pig Production Systems

    OpenAIRE

    Kijlstra, A.; Eissen, O.A.; Cornelissen, J.B.W.J.; Munniksma, K.; Eijck, I.A.J.M.; Kortbeek, T.

    2004-01-01

    PURPOSE. Consumption of undercooked pork meat products has been considered a major risk factor for contracting toxoplasmosis in humans. Indoor farming and improved hygiene have drastically reduced Toxoplasma infections in pigs over the past decades. Whether introduction of animal-friendly production systems will lead to a reemergence of Toxoplasma infections in pigs is not yet known. Investigating this possibility was the purpose of this study. METHODS. Blood was obtained from pigs raised...

  20. A Motion System for Social and Animated Robots

    Directory of Open Access Journals (Sweden)

    Jelle Saldien

    2014-05-01

    Full Text Available This paper presents an innovative motion system that is used to control the motions and animations of a social robot. The social robot Probo is used to study Human-Robot Interactions (HRI, with a special focus on Robot Assisted Therapy (RAT. When used for therapy it is important that a social robot is able to create an “illusion of life” so as to become a believable character that can communicate with humans. The design of the motion system in this paper is based on insights from the animation industry. It combines operator-controlled animations with low-level autonomous reactions such as attention and emotional state. The motion system has a Combination Engine, which combines motion commands that are triggered by a human operator with motions that originate from different units of the cognitive control architecture of the robot. This results in an interactive robot that seems alive and has a certain degree of “likeability”. The Godspeed Questionnaire Series is used to evaluate the animacy and likeability of the robot in China, Romania and Belgium.

  1. Bioluminescent system for dynamic imaging of cell and animal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hara-Miyauchi, Chikako [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, Saitama 351-0198 (Japan); Department of Biophysics and Biochemistry, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo 113-8510 (Japan); Tsuji, Osahiko [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Hanyu, Aki [Division of Biochemistry, The Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550 (Japan); Okada, Seiji [Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Yasuda, Akimasa [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Fukano, Takashi [Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, Saitama 351-0198 (Japan); Akazawa, Chihiro [Department of Biophysics and Biochemistry, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo 113-8510 (Japan); Nakamura, Masaya [Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Imamura, Takeshi [Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 (Japan); Core Research for Evolutional Science and Technology, The Japan Science and Technology Corporation, Tokyo 135-8550 (Japan); Matsuzaki, Yumi [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Okano, Hirotaka James, E-mail: hjokano@jikei.ac.jp [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Division of Regenerative Medicine Jikei University School of Medicine, Tokyo 150-8461 (Japan); and others

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer We combined a yellow variant of GFP and firefly luciferase to make ffLuc-cp156. Black-Right-Pointing-Pointer ffLuc-cp156 showed improved photon yield in cultured cells and transgenic mice. Black-Right-Pointing-Pointer ffLuc-cp156 enabled video-rate bioluminescence imaging of freely-moving animals. Black-Right-Pointing-Pointer ffLuc-cp156 mice enabled tracking real-time drug delivery in conscious animals. -- Abstract: The current utility of bioluminescence imaging is constrained by a low photon yield that limits temporal sensitivity. Here, we describe an imaging method that uses a chemiluminescent/fluorescent protein, ffLuc-cp156, which consists of a yellow variant of Aequorea GFP and firefly luciferase. We report an improvement in photon yield by over three orders of magnitude over current bioluminescent systems. We imaged cellular movement at high resolution including neuronal growth cones and microglial cell protrusions. Transgenic ffLuc-cp156 mice enabled video-rate bioluminescence imaging of freely moving animals, which may provide a reliable assay for drug distribution in behaving animals for pre-clinical studies.

  2. Bioluminescent system for dynamic imaging of cell and animal behavior

    International Nuclear Information System (INIS)

    Highlights: ► We combined a yellow variant of GFP and firefly luciferase to make ffLuc-cp156. ► ffLuc-cp156 showed improved photon yield in cultured cells and transgenic mice. ► ffLuc-cp156 enabled video-rate bioluminescence imaging of freely-moving animals. ► ffLuc-cp156 mice enabled tracking real-time drug delivery in conscious animals. -- Abstract: The current utility of bioluminescence imaging is constrained by a low photon yield that limits temporal sensitivity. Here, we describe an imaging method that uses a chemiluminescent/fluorescent protein, ffLuc-cp156, which consists of a yellow variant of Aequorea GFP and firefly luciferase. We report an improvement in photon yield by over three orders of magnitude over current bioluminescent systems. We imaged cellular movement at high resolution including neuronal growth cones and microglial cell protrusions. Transgenic ffLuc-cp156 mice enabled video-rate bioluminescence imaging of freely moving animals, which may provide a reliable assay for drug distribution in behaving animals for pre-clinical studies.

  3. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    International Nuclear Information System (INIS)

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  4. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Bowsher, James, E-mail: james.bowsher@duke.edu; Giles, William; Yin, Fang-Fang [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Yan, Susu [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Roper, Justin [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-01-15

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  5. Technetium-99m-labelled red blood cell imaging in the diagnosis of hepatic haemangiomas: the role of SPECT/CT with a hybrid camera

    International Nuclear Information System (INIS)

    Delayed liver single-photon emission computed tomography (SPECT) after 99mTc red blood cell (RBC) labelling is helpful in detecting hepatic haemangiomas; however, diagnosis can be difficult when lesions are situated adjacent to structures like the inferior vena cava, the heart or hepatic vessels, where blood activity persists. The aims of this study were to evaluate the usefulness of RBC SPECT and transmission computed tomography (RBC SPECT/CT) performed simultaneously with a hybrid imaging system for correct characterisation of hepatic lesions in patients with suspected haemangioma, and to assess the additional value of fused images compared with SPECT alone. Twelve patients with 24 liver lesions were studied. The acquisitions of both anatomical (CT) and functional (SPECT) data were performed during a single session. SPECT images were first interpreted alone and then re-evaluated after adding the transmission anatomical maps. Image fusion was successful in all patients, with perfect correspondence between SPECT and CT data, allowing the precise anatomical localisation of sites of increased blood pool activity. SPECT/CT had a significant impact on results in four patients (33.3%) with four lesions defined as indeterminate on SPECT images, accurately characterising the hot spot foci located near vascular structures. In conclusion, RBC SPECT/CT imaging using this hybrid SPECT/CT system is feasible and useful in the identification or exclusion of suspected hepatic haemangiomas located near regions with high vascular activity. (orig.)

  6. Technetium-99m-labelled red blood cell imaging in the diagnosis of hepatic haemangiomas: the role of SPECT/CT with a hybrid camera

    Energy Technology Data Exchange (ETDEWEB)

    Schillaci, Orazio; Danieli, Roberta; Manni, Carlo; Capoccetti, Francesca; Simonetti, Giovanni [Department of Biopathology and Diagnostic Imaging, University ' ' Tor Vergata' ' , Rome (Italy)

    2004-07-01

    Delayed liver single-photon emission computed tomography (SPECT) after {sup 99m}Tc red blood cell (RBC) labelling is helpful in detecting hepatic haemangiomas; however, diagnosis can be difficult when lesions are situated adjacent to structures like the inferior vena cava, the heart or hepatic vessels, where blood activity persists. The aims of this study were to evaluate the usefulness of RBC SPECT and transmission computed tomography (RBC SPECT/CT) performed simultaneously with a hybrid imaging system for correct characterisation of hepatic lesions in patients with suspected haemangioma, and to assess the additional value of fused images compared with SPECT alone. Twelve patients with 24 liver lesions were studied. The acquisitions of both anatomical (CT) and functional (SPECT) data were performed during a single session. SPECT images were first interpreted alone and then re-evaluated after adding the transmission anatomical maps. Image fusion was successful in all patients, with perfect correspondence between SPECT and CT data, allowing the precise anatomical localisation of sites of increased blood pool activity. SPECT/CT had a significant impact on results in four patients (33.3%) with four lesions defined as indeterminate on SPECT images, accurately characterising the hot spot foci located near vascular structures. In conclusion, RBC SPECT/CT imaging using this hybrid SPECT/CT system is feasible and useful in the identification or exclusion of suspected hepatic haemangiomas located near regions with high vascular activity. (orig.)

  7. STUDY ON MULTIMEDIA ANIMATION SYSTEM OF ACUPOINT ANATOMY WITH FLASH

    Institute of Scientific and Technical Information of China (English)

    WANG Bin; LUO Zhi-yong; PU Yu-feng; HONG Hong; ZUO Zhi-xiong

    2006-01-01

    Mastering anatomic structures of acupoints is of active significance for avoiding blindly needling and preventing accidents of acupuncture and moxibustion. This multimedia animation system of acupoint anatomy adopts Flash software as developing tool and can dynamically display anatomic layers of needle insertion, with objectivity, convenient operation and English-Chinese control, higher reliability, easy to study and master anatomic knowledge of acupoint anatomy, increase teaching efficiency, and richen teaching ways. This system can be used as a teaching tool of acupuncture and moxibustion, a software of studying anatomy of acupoints and an adjuvant tool of medical workers in studying anatomy.

  8. 76 FR 78599 - National Pollutant Discharge Elimination System (NPDES) Concentrated Animal Feeding Operation...

    Science.gov (United States)

    2011-12-19

    ...) Concentrated Animal Feeding Operation (CAFO) Reporting Rule; Extension of Comment Period AGENCY: Environmental... Elimination System (NPDES) Concentrated Animal Feeding Operation (CAFO) Reporting Rule. As initially published... animal feeding operations (CAFOs) as defined in the National Pollutant Discharge Elimination...

  9. Development of the optical biopsy system for small experimental animals

    Science.gov (United States)

    Sato, Hidetoshi; Hattori, Yusuke; Oshima, Yusuke; Komachi, Yuichi; Katagiri, Takashi; Asakura, Toru; Shimosegawa, Toru; Matsuura, Yuji; Miyagi, Mitsunobu; Kanai, Gen'ichi; Ura, Nobuo; Masutani, Koji; Tashiro, Hideo

    2006-02-01

    Development of the optical biopsy system for experimental small animals is in progress. A prototype of the system which consists of a miniaturized gastro endoscope unit and Raman probes has been completed by now. The system is developed to study a gastric cancer rat model. The endoscope is 2.5 mm in diameter and is equipped an imaging bundle fiber, illumination fibers, a channel and a mechanism to angle the probe head. The head of the Raman probe comes out through the channel and it is possible to aim the probe to the target watching on the monitor. The endoscope was inserted into the anaesthetized healthy rat under the breathing support. It was successfully observed inside of the stomach of the living rat and measured Raman spectra. The spectrum of blood vessels contains the strong contribution from lipids. The present results demonstrate high potential of the system in the in vivo Raman study using the rat model.

  10. CALOR87: HETC87, MICAP, EGS4, and SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, T.A.; Alsmiller, F.S.; Alsmiller, R.G. Jr.; Bishop, B.L.; Hermann, O.W.; Johnson, J.O.

    1987-01-01

    A brief history of CALOR (HETC, EGS, MICAP, SPECT) is presented to indicate the evolution of this code system. Details concerning the current modifications and additions to the high-energy transport code, HETC, are also presented and new comparisons with experimental data are included to verify the new physics improvements. 27 refs., 5 figs.

  11. Collimator design for a multipinhole brain SPECT insert for MRI

    Energy Technology Data Exchange (ETDEWEB)

    Van Audenhaege, Karen; Van Holen, Roel; Vanhove, Christian; Vandenberghe, Stefaan [Department of Electronics and Information Systems, Ghent University-iMinds Medical IT, MEDISIP-IBiTech, De Pintelaan 185 block B/5, Ghent B-9000 (Belgium)

    2015-11-15

    Purpose: Brain single photon emission computed tomography (SPECT) imaging is an important clinical tool, with unique tracers for studying neurological diseases. Nowadays, most commercial SPECT systems are combined with x-ray computed tomography (CT) in so-called SPECT/CT systems to obtain an anatomical background for the functional information. However, while CT images have a high spatial resolution, they have a low soft-tissue contrast, which is an important disadvantage for brain imaging. Magnetic resonance imaging (MRI), on the other hand, has a very high soft-tissue contrast and does not involve extra ionizing radiation. Therefore, the authors designed a brain SPECT insert that can operate inside a clinical MRI. Methods: The authors designed and simulated a compact stationary multipinhole SPECT insert based on digital silicon photomultiplier detector modules, which have shown to be MR-compatible and have an excellent intrinsic resolution (0.5 mm) when combined with a monolithic 2 mm thick LYSO crystal. First, the authors optimized the different parameters of the SPECT system to maximize sensitivity for a given target resolution of 7.2 mm in the center of the field-of-view, given the spatial constraints of the MR system. Second, the authors performed noiseless simulations of two multipinhole configurations to evaluate sampling and reconstructed resolution. Finally, the authors performed Monte Carlo simulations and compared the SPECT insert with a clinical system with ultrahigh-resolution (UHR) fan beam collimators, based on contrast-to-noise ratio and a visual comparison of a Hoffman phantom with a 9 mm cold lesion. Results: The optimization resulted in a stationary multipinhole system with a collimator radius of 150.2 mm and a detector radius of 172.67 mm, which corresponds to four rings of 34 diSPM detector modules. This allows the authors to include eight rings of 24 pinholes, which results in a system volume sensitivity of 395 cps/MBq. Noiseless simulations

  12. Collimator design for a multipinhole brain SPECT insert for MRI

    International Nuclear Information System (INIS)

    Purpose: Brain single photon emission computed tomography (SPECT) imaging is an important clinical tool, with unique tracers for studying neurological diseases. Nowadays, most commercial SPECT systems are combined with x-ray computed tomography (CT) in so-called SPECT/CT systems to obtain an anatomical background for the functional information. However, while CT images have a high spatial resolution, they have a low soft-tissue contrast, which is an important disadvantage for brain imaging. Magnetic resonance imaging (MRI), on the other hand, has a very high soft-tissue contrast and does not involve extra ionizing radiation. Therefore, the authors designed a brain SPECT insert that can operate inside a clinical MRI. Methods: The authors designed and simulated a compact stationary multipinhole SPECT insert based on digital silicon photomultiplier detector modules, which have shown to be MR-compatible and have an excellent intrinsic resolution (0.5 mm) when combined with a monolithic 2 mm thick LYSO crystal. First, the authors optimized the different parameters of the SPECT system to maximize sensitivity for a given target resolution of 7.2 mm in the center of the field-of-view, given the spatial constraints of the MR system. Second, the authors performed noiseless simulations of two multipinhole configurations to evaluate sampling and reconstructed resolution. Finally, the authors performed Monte Carlo simulations and compared the SPECT insert with a clinical system with ultrahigh-resolution (UHR) fan beam collimators, based on contrast-to-noise ratio and a visual comparison of a Hoffman phantom with a 9 mm cold lesion. Results: The optimization resulted in a stationary multipinhole system with a collimator radius of 150.2 mm and a detector radius of 172.67 mm, which corresponds to four rings of 34 diSPM detector modules. This allows the authors to include eight rings of 24 pinholes, which results in a system volume sensitivity of 395 cps/MBq. Noiseless simulations

  13. SPECT og PET i neurobiologien

    DEFF Research Database (Denmark)

    Paulson, O.B.; Lassen, N.A.

    1997-01-01

    PET (positron emission tomography) and SPECT (single photon emission computed tomography) are isotopic methods in which the distribution is registered of radiolabelled tracers given in such small amounts that they are without effect on the organism or the organism's disposal of them. Thus, a series...

  14. U-SPECT-BioFluo: an integrated radionuclide, bioluminescence, and fluorescence imaging platform

    NARCIS (Netherlands)

    Van Oosterom, M.N.; Kreuger, R.; Buckle, T.; Mahn, W.A.; Bunschoten, A.; Josephson, L.; Van Leeuwen, F.W.B.; Beekman, F.J.

    2014-01-01

    Background: In vivo bioluminescence, fluorescence, and single-photon emission computed tomography (SPECT) imaging provide complementary information about biological processes. However, to date these signatures are evaluated separately on individual preclinical systems. In this paper, we introduce a

  15. Animal protection in the legal system of the Czech Republic

    OpenAIRE

    Vrbická, Markéta

    2012-01-01

    This thesis is focused on the summary of the law regulation of animal protection in the Czech Republic. In the introductory part the thesis defines basic causes and aims of the law regulation of animal protection and summaries the history of animals regulation in the Czech republic. After outlining the most significant international treaties and sources of European law in the area of animal protection, the substantial chapter dealing with the definition of animal and related terms in the czec...

  16. Optimization of detection geometry for industrial SPECT by Monte Carlo simulations

    Science.gov (United States)

    Park, J. G.; Kim, C. H.; Han, M. C.; Jung, S. H.; Kim, J. B.; Moon, J.

    2013-04-01

    The Korea Atomic Energy Research Institute (KAERI) has developed an industrial SPECT to investigate the fluid flow and mixing patterns in columns. It has been found that the industrial SPECT is indeed a very powerful tool to study the hydrodynamics in multiphase reactors. One of the practical issues in the development of industrial SPECTs is to achieve a required imaging resolution of an industrial SPECT with a minimum number of component detectors, the number of which is frequently limited by both the size of the detectors and the total cost of the imaging system. In the present study, a set of different geometries of industrial SPECTs were evaluated by Monte Carlo simulation using MCNPX to determine the minimum number of detectors that will provide a spatial resolution that corresponds to 10% of the cylindrical column diameter. Our results show that 11 and 12 detectors will satisfy the 10% resolution requirement for the 40 cm and 60 cm diameter columns, respectively, for the industrial SPECT and radioisotopes considered in the present study. The conclusion of this result is valid only for the case considered in the present study, but we believe that the same procedure can be applied to other industrial SPECTs for this kind of optimization.

  17. A Miniature Telemetric System for Freely Roaming Animals

    Institute of Scientific and Technical Information of China (English)

    Zhan-Ping Wang; Chun-Peng Zhang; Guang-Zhan Fang; Yang Xia; Tie-Jun Liu; De-Zhong Yao

    2009-01-01

    Telemetric monitoring and control are the two critical aspects for a robot-rat.Development in this work is a telemetric system to record the electro-encephalogram (EEG) from adult freely roaming animals.The system consists of two separated components:the transmit-end system,which consists of the preamplifier,the LPF (low-pass filter) and the transmitter,and the receive-end system,which consists of the receiver,the interface of receive-end and PC.The transmit-end system with light weight (10 g including battery) and small size (20 mm?50 mm) is fettered on the back of the rat.The EEG signal is modulated at the RF frequency of 2.4 GHz by nRF24E1 and transmitted by the antenna.The system can measure the EEG signal of the rat in freely roaming over a wireless transmission distance up to 8 m,and provide a new platform for behavioral and neurophysiological experiments.

  18. State of the art in both in vitro and in vivo aspects of small animal imaging

    International Nuclear Information System (INIS)

    Full text: In vivo imaging for small animals is dramatically expanding due to the coincidence of mainly three technical factors: 1. the explosion in computer power 2. the enhancement in image processing 3. the accessibility and affordability of digital autoradiography systems and small-animal scanners. Among these imaging techniques let us mention the anatomical imaging techniques such as ultrasonography, X-rays and IRM and the functional imaging radioisotopic techniques SPECT and TEP. The main advantage of the first group of imaging techniques is essentially linked to the high resolution of the anatomical images (with the drawback of the necessity of putting the animal at rest using anaesthesia). The main advantages of SPECT and PET are their high sensitivity and the vast number of functions or metabolism they allow to image. The applications for isotopic functional imaging in small animals are increasing rapidly. Factors contributing to this dramatic expansion include the three previous technical factors plus, at least, three methodological factors: 1. the drug discovery process based on receptor / mechanism of action 2. the increasing number of rodent models of human diseases (SCID mice implanted with human tumors, gene knock-out mice, transgene mice) 3. the advances in isotope and validated tracer availability performances Small animal radioisotopic functional imaging for drug development. In vivo quantification of biological processes to measure the mechanism of action of a potential drug and its concentration at the site of action has become mandatory for developing a drug. Rational and efficient means of confirming mechanisms of action are required. For this purpose, PET and/or SPECT functional - biochemical - molecular imaging in small animals are tools of choice for economical reasons (in the domain of drug development, industry is suffering huge opportunity costs by failing to weed out non-performing new active substances until late phases II and III) and

  19. 40 CFR 792.90 - Animal and other test system care.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Animal and other test system care. 792... Animal and other test system care. (a) There shall be standard operating procedures for the housing, feeding, handling, and care of animals and other test systems. (b) All newly received test systems...

  20. Imaging recognition of multidrug resistance in human breast tumors using {sup 99m}Tc-labeled monocationic agents and a high-resolution stationary SPECT system

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhonglin E-mail: zliu@radiology.arizona.edu; Stevenson, Gail D.; Barrett, Harrison H.; Kastis, George A.; Bettan, Michael; Furenlid, Lars R.; Wilson, Donald W.; Woolfenden, James M

    2004-01-01

    Imaging recognition of multidrug-resistance by {sup 99m}Tc-labeled sestamibi, tetrofosmin and furifosmin in mice bearing human breast tumors was evaluated using a high-resolution SPECT, FASTSPECT. Imaging results showed that the washout rates in drug-resistant MCF7/D40 tumors were significantly greater than that in drug-sensitive MCF7/S tumors. Furifosmin exhibited greater washout from both MCF7/S and MCF7/D40 than sestamibi, while tetrofosmin washout was greater than sestamibi in MCF7/D40 only. Feasibility of the monocationic agents for characterizing MDR expression was well clarified with FASTSPECT imaging.

  1. Scatter and crosstalk corrections for {sup 99m}Tc/{sup 123}I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Peng [Department of Diagnostic Radiology, Yale University, New Haven, Connecticut 06520 and Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Hutton, Brian F. [Institute of Nuclear Medicine, University College London, London WC1E 6BT, United Kingdom and Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia); Holstensson, Maria [Department of Nuclear Medicine, Karolinska University Hospital, Stockholm 14186 (Sweden); Ljungberg, Michael [Department of Medical Radiation Physics, Lund University, Lund 222 41 (Sweden); Hendrik Pretorius, P. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Prasad, Rameshwar; Liu, Chi, E-mail: chi.liu@yale.edu [Department of Diagnostic Radiology, Yale University, New Haven, Connecticut 06520 (United States); Ma, Tianyu; Liu, Yaqiang; Wang, Shi [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Thorn, Stephanie L.; Stacy, Mitchel R.; Sinusas, Albert J. [Department of Internal Medicine, Yale Translational Research Imaging Center, Yale University, New Haven, Connecticut 06520 (United States)

    2015-12-15

    Purpose: The energy spectrum for a cadmium zinc telluride (CZT) detector has a low energy tail due to incomplete charge collection and intercrystal scattering. Due to these solid-state detector effects, scatter would be overestimated if the conventional triple-energy window (TEW) method is used for scatter and crosstalk corrections in CZT-based imaging systems. The objective of this work is to develop a scatter and crosstalk correction method for {sup 99m}Tc/{sup 123}I dual-radionuclide imaging for a CZT-based dedicated cardiac SPECT system with pinhole collimators (GE Discovery NM 530c/570c). Methods: A tailing model was developed to account for the low energy tail effects of the CZT detector. The parameters of the model were obtained using {sup 99m}Tc and {sup 123}I point source measurements. A scatter model was defined to characterize the relationship between down-scatter and self-scatter projections. The parameters for this model were obtained from Monte Carlo simulation using SIMIND. The tailing and scatter models were further incorporated into a projection count model, and the primary and self-scatter projections of each radionuclide were determined with a maximum likelihood expectation maximization (MLEM) iterative estimation approach. The extracted scatter and crosstalk projections were then incorporated into MLEM image reconstruction as an additive term in forward projection to obtain scatter- and crosstalk-corrected images. The proposed method was validated using Monte Carlo simulation, line source experiment, anthropomorphic torso phantom studies, and patient studies. The performance of the proposed method was also compared to that obtained with the conventional TEW method. Results: Monte Carlo simulations and line source experiment demonstrated that the TEW method overestimated scatter while their proposed method provided more accurate scatter estimation by considering the low energy tail effect. In the phantom study, improved defect contrasts were

  2. Scatter and crosstalk corrections for 99mTc/123I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators

    International Nuclear Information System (INIS)

    Purpose: The energy spectrum for a cadmium zinc telluride (CZT) detector has a low energy tail due to incomplete charge collection and intercrystal scattering. Due to these solid-state detector effects, scatter would be overestimated if the conventional triple-energy window (TEW) method is used for scatter and crosstalk corrections in CZT-based imaging systems. The objective of this work is to develop a scatter and crosstalk correction method for 99mTc/123I dual-radionuclide imaging for a CZT-based dedicated cardiac SPECT system with pinhole collimators (GE Discovery NM 530c/570c). Methods: A tailing model was developed to account for the low energy tail effects of the CZT detector. The parameters of the model were obtained using 99mTc and 123I point source measurements. A scatter model was defined to characterize the relationship between down-scatter and self-scatter projections. The parameters for this model were obtained from Monte Carlo simulation using SIMIND. The tailing and scatter models were further incorporated into a projection count model, and the primary and self-scatter projections of each radionuclide were determined with a maximum likelihood expectation maximization (MLEM) iterative estimation approach. The extracted scatter and crosstalk projections were then incorporated into MLEM image reconstruction as an additive term in forward projection to obtain scatter- and crosstalk-corrected images. The proposed method was validated using Monte Carlo simulation, line source experiment, anthropomorphic torso phantom studies, and patient studies. The performance of the proposed method was also compared to that obtained with the conventional TEW method. Results: Monte Carlo simulations and line source experiment demonstrated that the TEW method overestimated scatter while their proposed method provided more accurate scatter estimation by considering the low energy tail effect. In the phantom study, improved defect contrasts were observed with both

  3. Method and apparatus for animal positioning in imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Hadjioannou, Arion-Xenofon; Stout, David B.; Silverman, Robert W.

    2013-01-01

    An apparatus for imaging an animal includes a first mounting surface, a bed sized to support the animal and releasably secured to or integral with the first mounting surface. The apparatus also includes a plurality of straps, each having a first end in a fixed position relative to the bed and a second end for tightening around a limb of the animal. A method for in-vivo imaging of an animal includes providing an animal that has limbs, providing a first mounting surface, and providing a bed removably secured to or integral with the mounting surface and sized to support the animal as well as being coupled to a plurality of straps. The method also includes placing the animal on the bed between the plurality of straps and tightening at least two of the plurality of straps around at least two of the limbs such that the animal is substantially secured in place relative to the bed.

  4. SPECT/CT diagnostics for skeletal infections

    International Nuclear Information System (INIS)

    Skeletal infections are often a diagnostic and clinical challenge. Nuclear imaging modalities used in the diagnostic workup of acute and chronic skeletal infections include three-phase bone scintigraphy and scintigraphy with labelled leucocytes. The introduction of hybrid technologies, such as single photon emission computed tomography/computed tomography (SPECT/CT) has dramatically changed nuclear medical imaging of infections. In general SPECT/CT leads to a considerably more accurate diagnosis than planar or SPECT imaging. Given the integrated acquisition of metabolic, functional and morphological information, SPECT/CT has increased in particular the specificity of three-phase skeletal scanning and scintigraphy with labeled leucocytes. (orig.)

  5. Comprehending emergent systems phenomena through direct-manipulation animation

    Science.gov (United States)

    Aguirre, Priscilla Abel

    This study seeks to understand the type of interaction mode that best supports learning and comprehension of emergent systems phenomena. Given that the literature has established that students hold robust misconceptions of such phenomena, this study investigates the influence of using three types of interaction; speed-manipulation animation (SMN), post-manipulation animation (PMA) and direct-manipulation animation (DMA) for increasing comprehension and testing transfer of the phenomena, by looking at the effect of simultaneous interaction of haptic and visual channels on long term and working memories when seeking to comprehend emergent phenomena. The questions asked were: (1) Does the teaching of emergent phenomena, with the aid of a dynamic interactive modeling tool (i.e., SMA, PMA or DMA), improve students' mental model construction of systems, thus increasing comprehension of this scientific concept? And (2) does the teaching of emergent phenomena, with the aid of a dynamic interactive modeling tool, give the students the necessary complex cognitive skill which can then be applied to similar (near transfer) and/or novel, but different, (far transfer) scenarios? In an empirical study undergraduate and graduate students were asked to participate in one of three experimental conditions: SMA, PMA, or DMA. The results of the study found that it was the participants of the SMA treatment condition that had the most improvement in post-test scores. Students' understanding of the phenomena increased most when they used a dynamic model with few interactive elements (i.e., start, stop, and speed) that allowed for real time visualization of one's interaction on the phenomena. Furthermore, no indication was found that the learning of emergent phenomena, with the aid of a dynamic interactive modeling tool, gave the students the necessary complex cognitive skill which could then be applied to similar (near transfer) and/or novel, but different, (far transfer) scenarios

  6. A Detector for Combined SPECT/CT. Final Technical Report

    International Nuclear Information System (INIS)

    The goal of the Phase I research was to demonstrate the feasibility of developing a high performance SPECT/CT detector module based on a combination of microcolumnar CsI(Tl) scintillator coupled to an EMCCD readout. We are very pleased to report that our Phase I research has demonstrated the technical feasibility of our approach with a very high degree of success. Specifically, we were able to implement a back-thinned EMCCD with a fiberoptic window which was successfully used to demonstrate the feasibility of near simultaneous radionuclide/CT using the proposed concept. Although significantly limited in imaging area (24 x 24 mm2) and pixel resolution (512 x 512), this prototype has shown exceptional capabilities such as a single optical photon sensitivity, very low noise, an intrinsic resolution of 64 (micro)m for radionuclide imaging, and a resolution in excess of 10 lp/mm for x-ray imaging. Furthermore, the combination of newly developed, thick, microcolumnar CsI and an EMCCD has shown to be capable of operating in a photon counting mode, and that the position and energy information obtained from these data can be used to improve resolution in radionuclide imaging. Finally, the prototype system has successfully been employed for near simultaneous SPECT/CT imaging using both, 125I and 99mTc radioisotopes. The tomographic reconstruction data obtained using a mouse heart phantom and other phantoms clearly demonstrate the feasibility and efficacy of the detector in small animal research. The following were the objectives specified in the Phase I proposal: (1) In consultation with Professor Hasegawa, develop specifications for the Phase I/Phase II prototype detector; (2) Modify current vapor deposition protocols to fabricate ∼2 mm thick microcolumnar CsI(Tl) scintillators with excellent columnar structure, high light yield, and high spatial resolution; (3) Perform detailed characterization of the film morphology, light output, and spatial resolution, and use these

  7. 40 CFR 160.90 - Animal and other test system care.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Animal and other test system care. 160... PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Testing Facilities Operation § 160.90 Animal and other test... care of animals and other test systems. (b) All newly received test systems from outside sources...

  8. 75 FR 50987 - Privacy Act System of Records; National Animal Health Laboratory Network (NAHLN)

    Science.gov (United States)

    2010-08-18

    ... information about the owner of or person having primary responsibility for an animal undergoing testing in a... responsibility for an animal undergoing testing in a networked laboratory, the following information ] will be... Animal and Plant Health Inspection Service Privacy Act System of Records; National Animal...

  9. SPECT of aged backache patients

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Shigehiko; Nishikimi, Junzo; Mizuno, Naokado; Watanabe, Kentaro; Kondo, Masaki; Ozaki, Satoshi; Urasaki, Tetsuya; Muro, Toshiyuki [Prefectural Tajimi Hospital, Gifu (Japan)

    1995-12-01

    Single photon emission computed tomography (SPECT) using {sup 99m}Tc-HMDP was performed on 53 middle-aged or elderly patients (male 20, female, 33; age range, 40-80 years old) with lumbago, i.e., 25 patients with lumbar spondylosis, 15 with lumbar degenerative spondylolisthesis, 4 with spondylolytic spondylolisthesis, 3 with compression fracture, 3 with pulurent spondylitis, 2 with spondylous osteoporosis, and 1 with spinal osteodesmosis. {sup 99m}Tc-HMDP (740 MBq) was intravenously injected and regular SPECT was performed at 3 hours. Gamma camera was performed for about 10 seconds with 5deg intervals, and 36 steps (180deg) of collection was completed after about 6 minutes. The radioisotope accumulation, the presence or absence of sthenia, and its site were evaluated. Forty-seven (88.7%) patients showed excessive accumulation, i.e., 40 (75.5%) in peripheral vertebral osteophyte, 31 (58.5%) in vertebral articulations, and 10 (18.9%) in whole vertebral body. Significantly increased bilateral excessive accumulation was admitted in the vertebral articulations of sliding disc in degenerative spondylolisthesis. SPECT is considered useful in understanding the pathophysiology of degenerative lumber diseases. (S.Y.).

  10. The magnetic shielding for the neutron decay spectrometer aSPECT

    OpenAIRE

    Konrad, Gertrud; Guardia, Fidel Ayala; Baeßler, Stefan(Physics Department, University of Virginia, 382 McCormick Road, Charlottesville, VA 22904, USA); Borg, Michael; Glück, Ferenc; Heil, Werner; Hiebel, Stefan; Horta, Raquel Munoz; Sobolev, Yury

    2014-01-01

    Many experiments in nuclear and neutron physics are confronted with the problem that they use a superconducting magnetic spectrometer which potentially affects other experiments by their stray magnetic field. The retardation spectrometer aSPECT consists, inter alia, of a superconducting magnet system that produces a strong longitudinal magnetic field of up to 6.2T. In order not to disturb other experiments in the vicinity of aSPECT, we had to develop a magnetic field return yoke for the magne...

  11. Animation of multi-flexible body systems and its use in control system design

    Science.gov (United States)

    Juengst, Carl; Stahlberg, Ron

    1993-01-01

    Animation can greatly assist the structural dynamicist and control system analyst with better understanding of how multi-flexible body systems behave. For multi-flexible body systems, the structural characteristics (mode frequencies, mode shapes, and damping) change, sometimes dramatically with large angles of rotation between bodies. With computer animation, the analyst can visualize these changes and how the system responds to active control forces and torques. A characterization of the type of system we wish to animate is presented. The lack of clear understanding of the above effects was a key element leading to the development of a multi-flexible body animation software package. The resulting animation software is described in some detail here, followed by its application to the control system analyst. Other applications of this software can be determined on an individual need basis. A number of software products are currently available that make the high-speed rendering of rigid body mechanical system simulation possible. However, such options are not available for use in rendering flexible body mechanical system simulations. The desire for a high-speed flexible body visualization tool led to the development of the Flexible Or Rigid Mechanical System (FORMS) software. This software was developed at the Center for Simulation and Design Optimization of Mechanical Systems at the University of Iowa. FORMS provides interactive high-speed rendering of flexible and/or rigid body mechanical system simulations, and combines geometry and motion information to produce animated output. FORMS is designed to be both portable and flexible, and supports a number of different user interfaces and graphical display devices. Additional features have been added to FORMS that allow special visualization results related to the nature of the flexible body geometric representations.

  12. SPECT/CT in neuroendocrine cancers; SPECT/CT bei neuroendokrinen Tumoren

    Energy Technology Data Exchange (ETDEWEB)

    Miederer, M. [Technische Univ. Muenchen (Germany). Nuklearmedizinische Klinik und Poliklinik; Mainz Univ. (Germany). Klinik und Poliklinik fuer Nuklearmedizin; Castrop, C.; Scheidhauer, K. [Technische Univ. Muenchen (Germany). Nuklearmedizinische Klinik und Poliklinik; Buck, A.K. [Universitaetsklinikum Wuerzburg (Germany). Nuklearmedizinische Klinik und Poliklinik

    2011-03-15

    The accuracy of functional SPECT imaging has been significantly improved by addition of CT. This is especially relevant for functional imaging of neuroendocrine tumors using highly specific radiopharmaceuticals. Parathyroid adenomas can be detected by {sup 99m}Tc-MIBI SPECT/CT with very high sensitivity and specificity, playing an important role especially when minimally invasive techniques are used for surgical resection. With SPECT/CT, extra-adrenal manifestations of pheochromocytomas and tumors of the adrenal cortex can be detected with high accuracy. Because of the availability of PET radiopharmaceuticals such as {sup 68}Ga-DOTATOC, the clinical relevance of {sup 111}In-Octreotide SPECT for detection of neuroendocrine cancers has been recently reduced. Because of the better availability, SPECT and SPECT/CT still represent standard tools for imaging neuroendocrine cancers. SPECT/CT represents the superior imaging modality for monitoring radiopeptide based therapies, which are now increasingly used for treatment of neuroendocrine cancers. (orig.)

  13. Cervical SPECT Camera for Parathyroid Imaging

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-08-31

    Primary hyperparathyroidism characterized by one or more enlarged parathyroid glands has become one of the most common endocrine diseases in the world affecting about 1 per 1000 in the United States. Standard treatment is highly invasive exploratory neck surgery called Parathyroidectomy. The surgery has a notable mortality rate because of the close proximity to vital structures. The move to minimally invasive parathyroidectomy is hampered by the lack of high resolution pre-surgical imaging techniques that can accurately localize the parathyroid with respect to surrounding structures. We propose to develop a dedicated ultra-high resolution (~ 1 mm) and high sensitivity (10x conventional camera) cervical scintigraphic imaging device. It will be based on a multiple pinhole-camera SPECT system comprising a novel solid state CZT detector that offers the required performance. The overall system will be configured to fit around the neck and comfortably image a patient.

  14. Assessment of anatomic relation between pulmonary perfusion and morphology in pulmonary emphysema with breath-hold SPECT-CT fusion images

    International Nuclear Information System (INIS)

    Anatomic relation between pulmonary perfusion and morphology in pulmonary emphysema was assessed on deep-inspiratory breath-hold (DIBrH) perfusion single-photon emission computed tomography (SPECT)-CT fusion images. Subjects were 38 patients with pulmonary emphysema and 11 non-smoker controls, who successfully underwent DIBrH and non-BrH perfusion SPECT using a dual-headed SPECT system during the period between January 2004 and June 2006. DIBrH SPECT was three-dimensionally co-registered with DIBrH CT to comprehend the relationship between lung perfusion defects and CT low attenuation areas (LAA). By comparing the appearance of lung perfusion on DIBrH with non-BrH SPECT, the correlation with the rate constant for the alveolar-capillary transfer of carbon monoxide (DLCO/VA) was compared between perfusion abnormalities on these SPECTs and LAA on CT. DIBrH SPECT provided fairly uniform perfusion in controls, but significantly enhanced perfusion heterogeneity when compared with non-BrH SPECT in pulmonary emphysema patients (P<0.001). The reliable DIBrH SPECT-CT fusion images confirmed more extended perfusion defects than LAA on CT in majority (73%) of patients. Perfusion abnormalities on DIBrH SPECT were more closely correlated with DLCO/VA than LAA on CT (P<0.05). DIBrH SPECT identifies affected lungs with perfusion abnormality better than does non-BrH SPECT in pulmonary emphysema. DIBrH SPECT-CT fusion images are useful for more accurately localizing affected lungs than morphologic CT alone in this disease. (author)

  15. 3-D Rat Brain Phantom for High-Resolution Molecular Imaging: Experimental studies aimed at advancing understanding of human brain disease and malfunction, and of behavior problems, may be aided by computer models of small laboratory animals

    NARCIS (Netherlands)

    Beekman, F.J.; Vastenhouw, B.; Van der Wilt, G.; Vervloet, M.; Visscher, R.; Booij, J.; Gerrits, M.; Ji, C.; Ramakers, R.; Van der Have, F.

    2009-01-01

    With the steadily improving resolution of novel small-animal single photon emission computed tomography (SPECT) and positron emission tomography devices, highly detailed phantoms are required for testing and optimizing these systems. We present a three-dimensional (3-D) digital and physical phantom

  16. Diagnostic value of SPECT in bone scintigraphy; Bedeutung der SPECT bei der Knochenszintigraphie

    Energy Technology Data Exchange (ETDEWEB)

    Gratz, S.; Becker, W. [Goettingen Univ. (Germany). Abt. fuer Nuklearmedizin

    2000-05-01

    Single Photon Emission Computed Tomography (SPECT) reflects the realization of its ability to remove unwanted activity from bone structures with greater contrast. Especially in the spine SPECT improves the diagnostic accuracy compared with planar bone scintigraphy, because smaller structures of single vertebral bodies can be diagnosed with better anatomic resolution due to SPECT with consequently higher sensitivities and specificities. With SPECT, alterations of the lateral part of the vertebral body, pars interacticularis and smaller facet joints can be correctly diagnosed as spondylarthrotic degenerative alterations. In patients with suspected spine malignancies SPECT did not demonstrate to be a reliable instrument for diagnosing malignancy. We recommend to perform SPECT in case of patients with back pain and suspected spine pathologies seen on planar bone scans, since a correct diagnosis of especially benign spondylarthrotic spine lesions is possible with SPECT. With SPECT, a reduction of radiological examinations of 23% should be possible. (orig.) [German] Die Single-Photonenemissionscomputertomographie (SPECT) erlaubt bei der Knochenszintigraphie eine ueberlagerungsfreie Darstellung von Knochenstrukturen mit hoher Kontrastgenauigkeit. Insbesondere bei Wirbelsaeulenerkrankungen ermoeglicht SPECT einen deutlichen diagnostischen Zugewinn gegenueber planaren Aufnahmen, da kleinere Strukturen einzelner Wirbelkoerper aufgrund des hohen anatomischen Aufloesungsvermoegens mit SPECT sehr sensitiv und spezifisch dargestellt werden. Veraenderungen, die sich auf den lateralen Anteil des Wirbelkoerpers, die Pars interarticularis und die kleinen Facettengelenke projizieren, koennen mit SPECT als spondylarthrotisch degenerative Laesionen eingestuft werden. Zwingende SPECT-szintigraphische Kriterien, die eine Laesion als eindeutig maligne nachweisen, gibt es dagegen nicht. Wir denken, dass SPECT bei allen Patienten mit Rueckenschmerzen und planarszintigraphisch suspekten

  17. Clinical applications of SPECT-CT

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadzadehfar, Hojjat; Biersack, Hans-Juergen (eds.) [University Hospital Bonn (Germany). Dept. of Nuclear Medicine

    2014-06-01

    Covers the full spectrum of clinical applications of SPECT/CT in diagnosis of benign and malignant diseases. Includes chapters on the use of SPECT/CT for dosimetry and for therapy planning. Completely up to date. Many helpful illustrations. SPECT/CT cameras have considerably improved diagnostic accuracy in recent years. Such cameras allow direct correlation of anatomic and functional information, resulting in better localization and definition of scintigraphic findings. In addition to this anatomic referencing, CT coregistration provides superior quantification of radiotracer uptake based on the attenuation correction capabilities of CT. Useful applications of SPECT/CT have been identified not only in oncology but also in other specialties such as orthopedics and cardiology. This book covers the full spectrum of clinical applications of SPECT/CT in diagnosis and therapy planning of benign and malignant diseases. Opening chapters discuss the technology and physics of SPECT/CT and its use for dosimetry. The role of SPECT/CT in the imaging of a range of pathologic conditions is then addressed in detail. Applications covered include, among others, imaging of the thyroid, bone, and lungs, imaging of neuroendocrine tumors, cardiac scintigraphy, and sentinel node scintigraphy. Individual chapters are also devoted to therapy planning in selective internal radiation therapy of liver tumors and bremsstrahlung SPECT/CT. Readers will find this book to be an essential and up-to-date source of information on this invaluable hybrid imaging technique.

  18. A Scenario Analysis on the Implementation of a Farm Animal Welfare Assessment System

    NARCIS (Netherlands)

    Ingenbleek, P.T.M.; Blokhuis, H.J.; Butterworth, A.; Keeling, L.J.

    2011-01-01

    There have been important developments in the measurement of farm animal welfare in recent years. Measuring animal welfare is one thing, implementing a farm animal welfare assessment system another. The implementation of such a system occurs in an environment that is influenced by economic, politica

  19. Learning about Skeletons and Other Organ Systems of Vertebrate Animals.

    Science.gov (United States)

    Tunnicliffe, Sue Dale; Reiss, Michael

    1999-01-01

    Describes students' (n=175) understandings of the structure of animal (including human) skeletons and the internal organs found in them. Finds that older students have a better knowledge of animals' internal anatomies, although knowledge of human internal structure is significantly better than knowledge of rat, bird, and fish internal structure.…

  20. MRI and SPECT fusion for epilepsy lateralization

    Science.gov (United States)

    Jafari-Khouzani, Kourosh; Soltanian-Zadeh, Hamid; Elisevich, Kost

    2005-04-01

    This paper presents a study on the SPECT images of the brain with the aim of determining the hippocampus abnormality and consequently applying timely treatment. Intensity and volume features of the hippocampus from brain MRI have been shown to be useful in detecting the abnormal hippocampus in TLE. In this study, we evaluate the intensity information of the SPECT images of the brain for the purpose of early detection of abnormal hippocampus, before the brain tissue is damaged and MRI features change. The hippocampi are segmented manually by an expert from T1-weighted MR images. The segmented regions are mapped on the corresponding SPECT images using the mutual information technique. The mean and standard deviation of the hippocampi from SPECT images are used to determine abnormal hippocampus. The experimental results show that SPECT images analyzed along with MRI generate quantitative information useful for the treatment and evaluation of epileptic patients.

  1. SPECT/CT and pulmonary embolism

    DEFF Research Database (Denmark)

    Mortensen, Jann; Borgwardt, Henrik Gutte

    2014-01-01

    Acute pulmonary embolism (PE) is diagnosed either by ventilation/perfusion (V/P) scintigraphy or pulmonary CT angiography (CTPA). In recent years both techniques have improved. Many nuclear medicine centres have adopted the single photon emission CT (SPECT) technique as opposed to the planar...... technique for diagnosing PE. SPECT has been shown to have fewer indeterminate results and a higher diagnostic value. The latest improvement is the combination of a low-dose CT scan with a V/P SPECT scan in a hybrid tomograph. In a study comparing CTPA, planar scintigraphy and SPECT alone, SPECT/CT had...... the best diagnostic accuracy for PE. In addition, recent developments in the CTPA technique have made it possible to image the pulmonary arteries of the lungs in one breath-hold. This development is based on the change from a single-detector to multidetector CT technology with an increase in volume...

  2. MR guided spatial normalization of SPECT scans

    International Nuclear Information System (INIS)

    Full text: In SPECT population studies where magnetic resonance (MR) scans are also available, the higher resolution of the MR scans allows for an improved spatial normalization of the SPECT scans. In this approach, the SPECT images are first coregistered to their corresponding MR images by a linear (affine) transformation which is calculated using SPM's mutual information maximization algorithm. Non-linear spatial normalization maps are then computed either directly from the MR scans using SPM's built in spatial normalization algorithm, or, from segmented TI MR images using DARTEL, an advanced diffeomorphism based spatial normalization algorithm. We compare these MR based methods to standard SPECT based spatial normalization for a population of 27 fibromyalgia patients and 25 healthy controls with spin echo T1 scans. We identify significant perfusion deficits in prefrontal white matter in FM patients, with the DARTEL based spatial normalization procedure yielding stronger statistics than the standard SPECT based spatial normalization. (author)

  3. Murine cardiac images obtained with focusing pinhole SPECT are barely influenced by extra-cardiac activity

    Science.gov (United States)

    Branderhorst, Woutjan; van der Have, Frans; Vastenhouw, Brendan; Viergever, Max A.; Beekman, Freek J.

    2012-02-01

    Ultra-high-resolution SPECT images can be obtained with focused multipinhole collimators. Here we investigate the influence of unwanted high tracer uptake outside the scan volume on reconstructed tracer distributions inside the scan volume, for 99mTc-tetrofosmin myocardial perfusion scanning in mice. Simulated projections of a digital mouse phantom (MOBY) in a focusing multipinhole SPECT system (U-SPECT-II, MILabs, The Netherlands) were generated. With this system differently sized user-defined scan volumes can be selected, by translating the animal in 3D through the focusing collimators. Scan volume selections were set to (i) a minimal volume containing just the heart, acquired without translating the animal during scanning, (ii) a slightly larger scan volume as is typically applied for the heart, requiring only small XYZ translations during scanning, (iii) same as (ii), but extended further transaxially, and (iv) same as (ii), but extended transaxially to cover the full thorax width (gold standard). Despite an overall negative bias that is significant for the minimal scan volume, all selected volumes resulted in visually similar images. Quantitative differences in the reconstructed myocardium between gold standard and the results from the smaller scan volume selections were small; the 17 standardized myocardial segments of a bull's eye plot, normalized to the myocardial mean of the gold standard, deviated on average 6.0%, 2.5% and 1.9% for respectively the minimal, the typical and the extended scan volume, while maximum absolute deviations were respectively 18.6%, 9.0% and 5.2%. Averaged over ten low-count noisy simulations, the mean absolute deviations were respectively 7.9%, 3.2% and 1.9%. In low-count noisy simulations, the mean and maximum absolute deviations for the minimal scan volume could be reduced to respectively 4.2% and 12.5% by performing a short survey scan of the exterior activity and focusing the remaining scan time at the organ of interest. We

  4. PET and SPECT investigations in Alzheimer's disease

    International Nuclear Information System (INIS)

    Nuclear medicine offers a wide range of possibilities to investigate dementia. Various SPECT and PET tracers will be introduced in this article first. Different questions concerning evaluation of dementia are discussed taking Alzheimer's disease (AD) as an example. It is important to perform nuclear medicine investigations on high technical level, using standardized methods as statistical parametric mapping (SPM) for evaluation. If neuroprotective therapies are available, an early diagnosis, the determination of risk factors and longitudinal investigations will be the focus of interest and the main goal of nuclear medicine. Apart from measuring cerebral perfusion and glucose metabolism the development of new ligands, concerning the cholinergic system and the visualization of amyloid plaques, is of great importance. (orig.)

  5. Three-dimensional modeler for animated images display system

    International Nuclear Information System (INIS)

    The mv3d software allows the modeling and display of three dimensional objects in interpretative mode with animation possibility in real time. This system is intended for a graphical extension of a FORTH interpreter (implemented by CEA/IRDI/D.LETI/DEIN) in order to control a specific hardware (3.D card designed and implemented by DEIN) allowing the generation of three dimensional objects. The object description is carried out with a specific graphical language integrated in the FORTH interpreter. Objects are modeled using elementary solids called basic forms (cube, cone, cylinder...) assembled with classical geometric transformations (rotation, translation and scaling). These basic forms are approximated by plane polygonal facets further divided in triangles. Coordinates of the summits of triangles constitute the geometrical data. These are sent to the 3.D. card for processing and display. Performed processing are: geometrical transformations on display, hidden surface elimination, shading and clipping. The mv3d software is not an entire modeler but a simple, modular and extensible tool, to which other specific functions may be easily added such as: robots motion, collisions... (author)

  6. An isolated working heart system for large animal models.

    Science.gov (United States)

    Schechter, Matthew A; Southerland, Kevin W; Feger, Bryan J; Linder, Dean; Ali, Ayyaz A; Njoroge, Linda; Milano, Carmelo A; Bowles, Dawn E

    2014-01-01

    Since its introduction in the late 19(th) century, the Langendorff isolated heart perfusion apparatus, and the subsequent development of the working heart model, have been invaluable tools for studying cardiovascular function and disease(1-15). Although the Langendorff heart preparation can be used for any mammalian heart, most studies involving this apparatus use small animal models (e.g., mouse, rat, and rabbit) due to the increased complexity of systems for larger mammals(1,3,11). One major difficulty is ensuring a constant coronary perfusion pressure over a range of different heart sizes - a key component of any experiment utilizing this device(1,11). By replacing the classic hydrostatic afterload column with a centrifugal pump, the Langendorff working heart apparatus described below allows for easy adjustment and tight regulation of perfusion pressures, meaning the same set-up can be used for various species or heart sizes. Furthermore, this configuration can also seamlessly switch between constant pressure or constant flow during reperfusion, depending on the user's preferences. The open nature of this setup, despite making temperature regulation more difficult than other designs, allows for easy collection of effluent and ventricular pressure-volume data. PMID:24962492

  7. Development, validation and implementation of animal health information systems in an environment without uniquely identified animals in transitional countries

    International Nuclear Information System (INIS)

    The veterinary activities for control of animal diseases are based on the Low for Veterinary Health [2], the Programme for control and eradication of especially dangerous diseases in animals [3] and the special programmes designed for specific diseases, which are in accordance with the EU legislative. This legislative is defining a division of the country into 30 Epidemiological Areas (EAs) and 123 Epidemiological Units (EUs). Each village belongs to a defined EU, which further belongs to a defined EA. Two animal health information systems were developed in Macedonia, the National Epidemiological Information System (NEIS) and the Laboratory Information System (LABIS). Both systems were aimed on collection/interpretation of animal disease data, in a country where animals are not uniquely identified. The development of NEIS was based on the existing legislation of compulsatory notification of infectious diseases. Field records are collected via the designated veterinary practices (DVP) and entered into the NEIS via the veterinary inspectors (VIs), (employees of the MAFWE). Sources of data for NEIS are obligatory disease control programs (Annual order), Endemic diseases, Outbreaks, Slaughterhouses and Laboratory results of annual surveys. LABIS is a separate database for managing laboratory results. It collects data from samples submitted by DVPs. The samples can be then analyzed in different laboratories, using different methods and given a 'final status' by authorized person. The final status is linked to the previously performed tests and entered into the NEIS. By this concept, the Veterinary department is capable to trace back the background for each individual sample, by reviewing the analyses performed on it. Both systems are designed as a referential integrity databases, where the field result is linked to the animal, owner, village (n = 1803), epidemiological units (n = 123) and epidemiological areas (n = 30) in the country. NEIS can also present the same data

  8. Development, validation and implementation of animal health information systems in an environment without uniquely identified animals in transitional countries

    International Nuclear Information System (INIS)

    Two animal health information systems were developed in Macedonia, the National Epidemiological Information System (NEIS) and the Laboratory Information System (LABIS). Both systems were aimed at collecting/interpreting animal disease data in a country where animals are not uniquely identified. The development of NEIS was based on the existing legislation of compulsory notification of infectious diseases. Field records are collected via the designated veterinary practices and entered into the NEIS via the veterinary inspectors who are employees of the Ministry of Agriculture, Forestry and Water Economy. Sources of data for NEIS are obligatory disease control programmes (Annual Order), endemic diseases, outbreaks, slaughterhouses and laboratory results of annual surveys. LABIS is a separate database for managing laboratory results. It collects data from samples submitted by Designated Veterinary Practices (DVPs). The samples can then be analysed in different laboratories using different methods and given a 'final status' by an authorised person. The final status is linked to the previously performed tests and entered into the NEIS. Using this concept, the Veterinary Department can trace back the background for each individual sample by reviewing the analyses performed on it. Both systems are designed as a referential integrity databases, where the field result is linked to the animal, owner, village (n = 1 803), epidemiological unit (n = 123) and epidemiological area (n = 30) in the country. NEIS can also present the same data in geographical maps, showing the infected village as the smallest unit of observation. Both systems have also different levels of authorisation access, allowing precise tracing of entered data. (author)

  9. Crossed cerebellar hyperperfusion in brain perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Jinnouchi, Seishi; Nagamachi, Shigeki; Nishii, Ryuuichi; Futami, Shigemi; Tamura, Shozo [Miyazaki Medical Coll., Kiyotake (Japan); Kawai, Keiichi

    2000-10-01

    Crossed cerebellar diaschisis is a well-known brain SPECT finding in stroke patients. Few reports, however, have described supratentorial and contralateral cerebellar hyperperfusion (crossed cerebellar hyperperfusion, CCH). We assessed the incidence of CCH in 33 patients with cerebral hyperperfusion. Brain SPECT showed CCH in five patients out of 20 epilepsy and three of 13 patients with acute encephalitis. These eight patients with CCH had recent epileptic attack. CCH was found in ECD SPECT as well as HM-PAO. The contralateral cerebellar activity correlated with the cerebral activity in patients with CCH. CCH would have a relation with supratentrial hyperfunction in epilepsy and acute encephalitis. (author)

  10. SPECT/CT and pulmonary embolism

    OpenAIRE

    Mortensen, Jann; Gutte, Henrik

    2013-01-01

    Acute pulmonary embolism (PE) is diagnosed either by ventilation/perfusion (V/P) scintigraphy or pulmonary CT angiography (CTPA). In recent years both techniques have improved. Many nuclear medicine centres have adopted the single photon emission CT (SPECT) technique as opposed to the planar technique for diagnosing PE. SPECT has been shown to have fewer indeterminate results and a higher diagnostic value. The latest improvement is the combination of a low-dose CT scan with a V/P SPECT scan i...

  11. Molecular imaging of gene expression and protein function in vivo with PET and SPECT.

    Science.gov (United States)

    Sharma, Vijay; Luker, Gary D; Piwnica-Worms, David

    2002-10-01

    Molecular imaging is broadly defined as the characterization and measurement of biological processes in living animals, model systems, and humans at the cellular and molecular level using remote imaging detectors. One underlying premise of molecular imaging is that this emerging field is not defined by the imaging technologies that underpin acquisition of the final image per se, but rather is driven by the underlying biological questions. In practice, the choice of imaging modality and probe is usually reduced to choosing between high spatial resolution and high sensitivity to address a given biological system. Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) inherently use image-enhancing agents (radiopharmaceuticals) that are synthesized at sufficiently high specific activity to enable use of tracer concentrations of the compound (picomolar to nanomolar) for detecting molecular signals while providing the desired levels of image contrast. The tracer technologies strategically provide high sensitivity for imaging small-capacity molecular systems in vivo (receptors, enzymes, transporters) at a cost of lower spatial resolution than other technologies. We review several significant PET and SPECT advances in imaging receptors (somatostatin receptor subtypes, neurotensin receptor subtypes, alpha(v)beta(3) integrin), enzymes (hexokinase, thymidine kinase), transporters (MDR1 P-glycoprotein, sodium-iodide symporter), and permeation peptides (human immunodeficiency virus type 1 (HIV-1) Tat conjugates), as well as innovative reporter gene constructs (herpes simplex virus 1 thymidine kinase, somatostatin receptor subtype 2, cytosine deaminase) for imaging gene promoter activation and repression, signal transduction pathways, and protein-protein interactions in vivo. PMID:12353250

  12. SPECT Myocardial Blood Flow Quantitation Concludes Equivocal Myocardial Perfusion SPECT Studies to Increase Diagnostic Benefits.

    Science.gov (United States)

    Chen, Lung-Ching; Lin, Chih-Yuan; Chen, Ing-Jou; Ku, Chi-Tai; Chen, Yen-Kung; Hsu, Bailing

    2016-01-01

    Recently, myocardial blood flow quantitation with dynamic SPECT/CT has been reported to enhance the detection of coronary artery disease in human. This advance has created important clinical applications to coronary artery disease diagnosis and management for areas where myocardial perfusion PET tracers are not available. We present 2 clinical cases that undergone a combined test of 1-day rest/dipyridamole-stress dynamic SPECT and ECG-gated myocardial perfusion SPECT scans using an integrated imaging protocol and demonstrate that flow parameters are capable to conclude equivocal myocardial perfusion SPECT studies, therefore increasing diagnostic benefits to add value in making clinical decisions.

  13. SPECT Myocardial Blood Flow Quantitation Concludes Equivocal Myocardial Perfusion SPECT Studies to Increase Diagnostic Benefits.

    Science.gov (United States)

    Chen, Lung-Ching; Lin, Chih-Yuan; Chen, Ing-Jou; Ku, Chi-Tai; Chen, Yen-Kung; Hsu, Bailing

    2016-01-01

    Recently, myocardial blood flow quantitation with dynamic SPECT/CT has been reported to enhance the detection of coronary artery disease in human. This advance has created important clinical applications to coronary artery disease diagnosis and management for areas where myocardial perfusion PET tracers are not available. We present 2 clinical cases that undergone a combined test of 1-day rest/dipyridamole-stress dynamic SPECT and ECG-gated myocardial perfusion SPECT scans using an integrated imaging protocol and demonstrate that flow parameters are capable to conclude equivocal myocardial perfusion SPECT studies, therefore increasing diagnostic benefits to add value in making clinical decisions. PMID:26053731

  14. A video-based system for hand-driven stop-motion animation.

    Science.gov (United States)

    Han, Xiaoguang; Fu, Hongbo; Zheng, Hanlin; Liu, Ligang; Wang, Jue

    2013-01-01

    Stop-motion is a well-established animation technique but is often laborious and requires craft skills. A new video-based system can animate the vast majority of everyday objects in stop-motion style, more flexibly and intuitively. Animators can perform and capture motions continuously instead of breaking them into increments and shooting one still picture per increment. More important, the system permits direct hand manipulation without resorting to rigs, achieving more natural object control for beginners. The system's key component is two-phase keyframe-based capturing and processing, assisted by computer vision techniques. With this system, even amateurs can generate high-quality stop-motion animations.

  15. The usefulness of SPECT and MRI in the diagnosis of atypical parkinsonian syndromes; Diagnostisk nytte av SPECT- og MR-undersoekelse ved atypisk parkinsonisme

    Energy Technology Data Exchange (ETDEWEB)

    Skogseid, I.M.; Gerdts, R.; Nyberg-Hansen, R.; Rootwelt, K.; Bakke, S.J

    2001-07-01

    Clinico-pathological studies have shown that only three out of four patients with parkinsonism have idiopathic Parkinson's disease. In patients with so-called Parkinson plus syndrome, the degeneration in the brain is more widespread and the variety of neurological signs greater than in Parkinson's disease. The differentiation of these syndromes from Parkinson's disease can be difficult. Single photon emission computed tomography (SPECT) and magnetic resonance imaging (MRl) can be of value in the differential diagnosis of parkinsonism. We present three patients with atypical parkinsonism in whom MRI and SPECT with {beta}-CIT and epidepride was performed in addition to the clinical evaluation. The three patients all had a rapidly developing symmetric akinetic-rigid syndrome that responded poorly to levodopa. MRI showed findings regarded as typical for multiple system atrophy in two patients, but only nonspecific findings in the third patient. SPECT with {beta}-CIT showed a pronounced bilateral and relatively symmetric reduction in the striatal dopaminergic activity in all patients. SPECT with epidepride showed a clearly reduced striatal D{sub 2}-receptor binding bilaterally in only one of the patients. In patients with atypical parkinsonism, MRI and SPECT with {beta}-CIT and epidepride can give valuable support to the clinical diagnosis of a Parkinson plus syndrome.

  16. Fusion imaging using a hybrid SPECT-CT camera improves port perfusion scintigraphy for control of hepatic arterial infusion of chemotherapy in colorectal cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Denecke, Timm; Lehmkuhl, Lukas; Peters, Nils; Pech, Maciej; Ricke, Jens; Felix, Roland; Amthauer, Holger [Charite-Universitatsmedizin Berlin - Klinik fur Strahlenheilkunde und PET-Zentrum Berlin, Campus Virchow-Klinikum, Berlin (Germany); Hildebrandt, Bert; Nicolaou, Annett; Riess, Hanno [Charite-Universitatsmedizin Berlin - Medizinische Klinik m.S. Haematologie Onkologie, Campus Virchow-Klinikum, Berlin (Germany)

    2005-09-01

    Exclusive and homogeneous perfusion of the liver is considered essential for the efficacy of hepatic arterial infusion of chemotherapy (HAI). The aim of this study was to evaluate port perfusion scintigraphy in colorectal cancer patients using a hybrid SPECT-CT system for control of minimally invasive intra-arterial port systems within the scope of a phase II trial. In 24 consecutive patients, the perfusion territories of intra-arterial hepatic port systems were assessed by port scintigraphy with{sup 99m}Tc-labelled macroaggregated albumin employing planar imaging, SPECT and SPECT-CT (acquired with a hybrid SPECT-CT camera). The results of blinded reading of the scintigraphic modalities concerning the intra- and extrahepatic perfusion pattern were compared with combined image analysis (angiography and contrast-enhanced dedicated CT) and patient history for validation. Extrahepatic perfusion was correctly seen in three patients, while suspected extrahepatic perfusion could be excluded in one. In 46 liver lobes, perfusion patterns were correctly visualised by SPECT-CT in 100% of cases (planar, 67%; SPECT, 86%). Assessing the perfusion pattern inside the liver on a segmental basis (segments, n=138), SPECT-CT revealed correct segmental assignment of tracer distribution in 100% and was significantly superior to SPECT alone (accuracy, 84%; p<0.001). The scintigraphic findings resulted in changes in therapeutic management in 8/24 patients (33%); in two of these the relevant findings were visualised only by SPECT-CT. In patients receiving HAI, port perfusion scintigraphy by fusion imaging with a hybrid SPECT-CT system provides important information for therapy optimisation and appears to be superior to SPECT alone. (orig.)

  17. [Usefulness of attenuation correction with transmission source in myocardial SPECT].

    Science.gov (United States)

    Murakawa, Keizo; Katafuchi, Tetsuro; Nishimura, Yoshihiro; Enomoto, Naoyuki; Sago, Masayoshi; Oka, Hisashi

    2006-01-20

    Attenuation correction in SPECT has been used for uniformly absorptive objects like the head. On the other hand, it has seldom been applied to nonuniform absorptive objects like the heart and surrounding lungs because of the difficulty and inaccuracy of data processing. However, since attenuation correction using a transmission source recently became practical, we were able to apply this method to a nonuniform absorptive object. Therefore, we evaluated the usefulness of this attenuation correction system with a transmission source in myocardial SPECT. The dose linearity, defect/normal ratio using a myocardial phantom, and myocardial count distribution in clinical cases was examined with and without the attenuation correction system. We found that all data processed with attenuation correction were better than those without attenuation correction. For example, in myocardial count distribution, while there was a difference between men and women without attenuation correction, which was considered to be caused by differences in body shape, after processing with attenuation correction, myocardial count distribution was almost the same in all cases. In conclusion, these results suggested that attenuation correction with a transmission source was useful in myocardial SPECT.

  18. Toxoplasma gondii Infection in Animal-Friendly Pig Production Systems

    NARCIS (Netherlands)

    Kijlstra, A.; Eissen, O.A.; Cornelissen, J.B.W.J.; Munniksma, K.; Eijck, I.A.J.M.; Kortbeek, T.

    2004-01-01

    PURPOSE. Consumption of undercooked pork meat products has been considered a major risk factor for contracting toxoplasmosis in humans. Indoor farming and improved hygiene have drastically reduced Toxoplasma infections in pigs over the past decades. Whether introduction of animal-friendly production

  19. Remote Laboratory and Animal Behaviour: An Interactive Open Field System

    Science.gov (United States)

    Fiore, Lorenzo; Ratti, Giovannino

    2007-01-01

    Remote laboratories can provide distant learners with practical acquisitions which would otherwise remain precluded. Our proposal here is a remote laboratory on a behavioural test (open field test), with the aim of introducing learners to the observation and analysis of stereotyped behaviour in animals. A real-time video of a mouse in an…

  20. Animal health in organic livestock production systems: a review

    NARCIS (Netherlands)

    Kijlstra, A.; Eijck, I.A.J.M.

    2006-01-01

    Organic livestock production is a means of food production with a large number of rules directed towards a high status of animal welfare, care for the environment, restricted use of medical drugs and the production of a healthy product without residues (pesticides or medical drugs). The intentions o

  1. An Intelligent Recommendation System for Animation Scriptwriters' Education

    Science.gov (United States)

    Tsai, Shang-Te; Chang, Ting-Cheng; Huang, Yu-Feng

    2016-01-01

    Producing an animation requires extensive labor, time, and money. Experienced directors and screenwriters are required to design scenes using standard props and actors in position. This study structurally analyzes the script and defines scenes, characters, positions, dialogue, etc., according to their dramatic attributes. These are entered into a…

  2. SPECT assay of radiolabeled monoclonal antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Jaszczak, R.J.

    1992-02-01

    The long-term goal of this research project is to develop methods to improve the utility of single photon emission computed tomography (SPECI) to quantify the biodistribution of monoclonal antibodies (MoAbs) labeled with clinically relevant radionuclides ({sup 123}I, {sup 131}I, and {sup 111}In) and with another radionuclide,{sup 211}At, recently used in therapy. We describe here our progress in developing quantitative SPECT methodology for {sup 111}In and {sup 123}I. We have focused our recent research thrusts on the following aspects of SPECT: (1) The development of improved SPECT hardware, such as improved acquisition geometries. (2) The development of better reconstruction methods that provide accurate compensation for the physical factors that affect SPECT quantification. (3) The application of carefully designed simulations and experiments to validate our hardware and software approaches.

  3. Single Photon Emission Computed Tomography (SPECT)

    Science.gov (United States)

    ... Tools & Resources Stroke More Single Photon Emission Computed Tomography (SPECT) Updated:Sep 11,2015 What is a ... Heart Attack Myocardial Perfusion Imaging (MPI) Positron Emission Tomography (PET) Radionuclide Ventriculography, Radionuclide Angiography, MUGA Scan Heart ...

  4. SPECT assay of radiolabeled monoclonal antibodies

    International Nuclear Information System (INIS)

    The long-term goal of this research project is to develop methods to improve the utility of single photon emission computed tomography (SPECI) to quantify the biodistribution of monoclonal antibodies (MoAbs) labeled with clinically relevant radionuclides (123I, 131I, and 111In) and with another radionuclide,211At, recently used in therapy. We describe here our progress in developing quantitative SPECT methodology for 111In and 123I. We have focused our recent research thrusts on the following aspects of SPECT: (1) The development of improved SPECT hardware, such as improved acquisition geometries. (2) The development of better reconstruction methods that provide accurate compensation for the physical factors that affect SPECT quantification. (3) The application of carefully designed simulations and experiments to validate our hardware and software approaches

  5. D-SPECT, a semiconductor camera: Technical aspects and clinical applications;La camera a semi-conducteur D-Spect: aspects techniques et applications cliniques

    Energy Technology Data Exchange (ETDEWEB)

    Merlin, C.; Bertrand, S.; Kelly, A.; Veyre, A.; Mestas, D.; Cachin, F. [CLCC Jean-Perrin, Service de medecine nucleaire, 63 - Clermont-Ferrand (France); Motreff, P.; Levesque, S. [CHU Gabriel-Montpied, Service de cardiologie, 63 - Clermont-Ferrand (France); Cachin, F. [Universite d' Auvergne, UMR 990 Inserm, 63 - Clermont-Ferrand (France); Askienazy, S. [Cyclopharma, biopole Clermont-Limagne, 63 -Saint-Beauzire (France)

    2010-03-15

    Clinical practice in nuclear medicine has largely changed in the last decade, particularly with the arrival of PET/CT and SPECT/CT. New semiconductor cameras could represent the next evolution in our nuclear medicine practice. Due to the resolution and sensitivity improvement, this technology authorizes fast speed acquisitions, high contrast and resolution images performed with low activity injection. The dedicated cardiology D-SPECT camera (Spectrum Dynamics, Israel) is based on semiconductor technology and provides an original system for collimation and images reconstruction. We describe here our clinical experience in using the D-SPECT with a preliminary study comparing D-D.P.E.C.T. and conventional gamma camera. (authors)

  6. Hyperpolarized singlet NMR on a small animal imaging system

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Pileio, Giuseppe; Tayler, Michael C. D.;

    2012-01-01

    Nuclear spin hyperpolarization makes a significant advance toward overcoming the sensitivity limitations of in vivo magnetic resonance imaging, particularly in the case of low-gamma nuclei. The sensitivity may be improved further by storing the hyperpolarization in slowly relaxing singlet...... populations of spin- 1/2 pairs. Here, we report hyperpolarized 13C spin order transferred into and retrieved from singlet spin order using a small animal magnetic resonance imaging scanner. For spins in sites with very similar chemical shifts, singlet spin order is sustained in high magnetic field without...... requiring strong radiofrequency irradiation. The demonstration of robust singlet-to-magnetization conversion, and vice versa, on a small animal scanner, is promising for future in vivo and clinical deployments....

  7. An Arbitrary Waveform Wearable Neuro-stimulator System for Neurophysiology Research on Freely Behaving Animals

    OpenAIRE

    Samani, Mohsen Mosayebi; Mahnam, Amin; Hosseini, Nasrin

    2014-01-01

    Portable wireless neuro-stimulators have been developed to facilitate long-term cognitive and behavioral studies on the central nervous system in freely moving animals. These stimulators can provide precisely controllable input(s) to the nervous system, without distracting the animal attention with cables connected to its body. In this study, a low power backpack neuro-stimulator was developed for animal brain researches that can provides arbitrary stimulus waveforms for the stimulation, whil...

  8. A role of advanced image data logger systems in marine animal studies

    OpenAIRE

    Naito, Yasuhiko

    2006-01-01

    To fulfill information gaps of underwater animal behavior, variety of animal-borne observation systems have been developed in last several decades, which revealed diving behavior, foraging behavior of many endotherms, particularly seals and penguins by providing information on many dive parameters, such as dive depth, dive angles, dive profiles, swim speed, body motion, body postures, ambient temperatures, 3D dive paths and so on. Above advanced animal-borne systems supported us to obtain rel...

  9. Hyperpolarized singlet NMR on a small animal imaging system

    OpenAIRE

    Laustsen, Christoffer; Pileio, Giuseppe; Tayler, Michael C. D.; Brown, Lynda J.; Brown, Richard C. D.; Levitt, Malcolm H.; Ardenkjaer-Larsen, Jan H.

    2012-01-01

    Nuclear spin hyperpolarization makes a significant advance toward overcoming the sensitivity limitations of in vivo magnetic resonance imaging, particularly in the case of low-gamma nuclei. The sensitivity may be improved further by storing the hyperpolarization in slowly relaxing singlet populations of spin-1/2 pairs. Here, we report hyperpolarized 13C spin order transferred into and retrieved from singlet spin order using a small animal magnetic resonance imaging scanner. For spins in sites...

  10. Brain SPECT imaging in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Temporal lobe epilepsy is diagnosed by clinical symptoms and signs and by localization of an epileptogenic focus. A brain SPECT study of two patients with temporal lobe epilepsy, using 99mTc-HMPAO, was used to demonstrate a perfusion abnormality in the temporal lobe, while brain CT and MRI were non-contributory. The electroencephalogram, though abnormal, did not localize the diseased area. The potential role of the SPECT study in diagnosis and localization of temporal lobe epilepsy is discussed. (orig.)

  11. Precise fusion of MRI and dual energy 111In WBC/99mTc HDP SPECT/CT in the diabetic foot using companion CT: an example of SPECT/MRI imaging

    International Nuclear Information System (INIS)

    The purpose of our study was to correctly fuse MRI and SPECT 111In WBC and 99m Tc HDP images using companion CT images. The fused images could be used to assess proper surgical approach in treatment of the diabetic foot. Nine patients who had dual energy 111In WBC/ 99m Tc HDP SPECT/CT and MRI studies within a week were investigated in an ongoing project. A GE Infinia SPECT/CT camera and Siemens MAGNETOM 1.5T MR system were used in this study. First, the MRI and corresponding CT images were coregistrated using a transformation based on normalized mutual information. The transformation was saved and used for MRI and 111In WBC/ 99m Tc HDP SPECT fusion. A Jaszczak phantom study was also performed in order to estimate accuracy of MRI/ SPECT fusion. The Jaszczak phantom study with 3.7 MBq 111In hot sphere showed that MRI/SPECT alignment using the approach described above produced registration with 0.7±0.4 mm accuracy in all three dimensions (3D). The nine clinical cases were visually evaluated and showed 1-2 mm 3D fusion accuracy. MRI provides almost perfect anatomy of soft tissue and bony structures but it may exaggerate the extent of infection. 111In WBC/99m Tc HDP SPECT imaging is more accurate for infection detection but lacks anatomical reference. Combination of these images proved an essential adjunct to diagnosis. A clinical utility of the approach is illustrated in two clinical examples. In conclusion, the CT in dual energy 111In WBC/99m Tc HDP SPECT/CT studies can be used to accurately fuse and compare 111In WBC/99m Tc HDP SPECT and MRI images of the diabetic foot. This can significantly help in conservative treatment planning and limb salvage procedures in treatment of diabetic foot infections.

  12. The use of models in the analysis and management of aquatic and terrestrial animal production systems.

    NARCIS (Netherlands)

    Machiels, M.A.M.; Udo, H.M.J.; Densen, van W.L.T.

    1994-01-01

    Modelling of animal production systems as a whole is mainly used for extensively managed systems, such as fishing and hunting natural animal populations. This type of modelling is widely used in fisheries management, but has as yet found limited application in the modelling of extensive cultivation

  13. Plants and Animals as Concept Generators for the Development of Biomimetic Cable Entry Systems

    Institute of Scientific and Technical Information of China (English)

    Tom Masseiter; Uwe Scharf; Thomas Speck

    2008-01-01

    Many animals and plants have high potential to serve as concept generators for developing biomimetic materials and structures. We present some ideas based on structural and functional properties of plants and animals that led to the development of two types of biomimetic cable entry systems. Those systems have been realized on the level of functional demonstrators.

  14. SPECT/CT diagnostics for skeletal infections; SPECT/CT-Infektdiagnostik am Skelett

    Energy Technology Data Exchange (ETDEWEB)

    Klaeser, B.; Spanjol, M.; Krause, T. [Inselspital Bern, Universitaetsklinik fuer Nuklearmedizin, Bern (Switzerland)

    2012-07-15

    Skeletal infections are often a diagnostic and clinical challenge. Nuclear imaging modalities used in the diagnostic workup of acute and chronic skeletal infections include three-phase bone scintigraphy and scintigraphy with labelled leucocytes. The introduction of hybrid technologies, such as single photon emission computed tomography/computed tomography (SPECT/CT) has dramatically changed nuclear medical imaging of infections. In general SPECT/CT leads to a considerably more accurate diagnosis than planar or SPECT imaging. Given the integrated acquisition of metabolic, functional and morphological information, SPECT/CT has increased in particular the specificity of three-phase skeletal scanning and scintigraphy with labeled leucocytes. (orig.) [German] Knoecherne Infekte stellen nicht selten eine diagnostische und klinische Herausforderung dar. Nuklearmedizinische Standardverfahren fuer die Diagnostik akuter und chronischer Knocheninfekte sind die Mehrphasenskelettszintigraphie und die Infektszintigraphie mit markierten Leukozyten. Die Einfuehrung von Hybridtechnologien wie der SPECT/CT hat die nuklearmedizinische Infektbildgebung tiefgreifend veraendert. Die SPECT/CT erlaubt bei der Frage nach Knocheninfekten insgesamt eine wesentlich genauere Beurteilung als planare Aufnahmen und SPECT. Die integrierte Akquisition von metabolischer, funktioneller und topographisch-morphologischer Information mit SPECT/CT steigerte insbesondere die Spezifitaet der Mehrphasenskelettszintigraphie und der Infektszintigraphie mit markierten Leukozyten. (orig.)

  15. Ectopic hyperfunctioning parathyroid tissue: the role of combined CT/SPECT technology

    International Nuclear Information System (INIS)

    Full text: Surgery is the therapeutic option for hyperparathyroidism and minimal invasive parathyroidectomy (MIP) has challenged the traditional approach of bilateral neck exploration. MIP provides the possibility of focal anesthesia, shorter operation time and length of hospital stay, better cosmetic results and lowered rates of operative morbidity. Ectopic parathyroid glands are relatively common and are often reasons for intervention failures. More than one reexploration is related with high surgical risk, therefore accurate preoperative localizing imaging is very essential. 99mTc-sestamibi dual-phase-scintigraphy (MIBI-SPECT) is a well established imaging modality in detecting (ectopic) hyperfunctioning parathyroid tissue, however, it lacks anatomical details. In case of ectopic tissue further morphological localization with CT/MRI is needed. Recently, SPECT/CT technology (GE Medical Systems Millennium VG with Hawkeye) has been presented which combines simultaneous acquisition of both transmission and emission tomography in a single device. We now report a successful use of this technology for exact preoperative localization of ectopic parathyroid tissue in order to facilitate MIP. SPECT/CT technology was used in three patients with hyperparathyroidism. One patient had primary and the remaining two renal hyperparathyroidism. The MIBI-SPECT study demonstrated in all patients a focal accumulation of the tracer in ectopic localization. For further anatomical details SPECT/CT technology has been used. SPECT/CT technology using a single device provided reliable anatomical details leading to a successful MIP. The success of the correct localization and resection of the hyperfunctioning parathyroid tissue was assessed by intraoperative parathyroid hormone measurement. Postoperative PTH levels and serum calcium are now in normal range. We conclude that preoperative localization of ectopic parathyroid tissue can be accurately achieved by combined use of SPECT (MIBI

  16. Invisible Base Electrode Coordinates Approximation for Simultaneous SPECT and EEG Data Visualization

    Directory of Open Access Journals (Sweden)

    Kowalczyk L.

    2014-04-01

    Full Text Available This work was performed as part of a larger research concerning the feasibility of improving the localization of epileptic foci, as compared to the standard SPECT examination, by applying the technique of EEG mapping. The presented study extends our previous work on the development of a method for superposition of SPECT images and EEG 3D maps when these two examinations are performed simultaneously. Due to the lack of anatomical data in SPECT images it is a much more difficult task than in the case of MRI/EEG study where electrodes are visible in morphological images. Using the appropriate dose of radioisotope we mark five base electrodes to make them visible in the SPECT image and then approximate the coordinates of the remaining electrodes using properties of the 10-20 electrode placement system and the proposed nine-ellipses model. This allows computing a sequence of 3D EEG maps spanning on all electrodes. It happens, however, that not all five base electrodes can be reliably identified in SPECT data. The aim of the current study was to develop a method for determining the coordinates of base electrode(s missing in the SPECT image. The algorithm for coordinates approximation has been developed and was tested on data collected for three subjects with all visible electrodes. To increase the accuracy of the approximation we used head surface models. Freely available model from Oostenveld research based on data from SPM package and our own model based on data from our EEG/SPECT studies were used. For data collected in four cases with one electrode not visible we compared the invisible base electrode coordinates approximation for Oostenveld and our models. The results vary depending on the missing electrode placement, but application of the realistic head model significantly increases the accuracy of the approximation.

  17. Brain SPECT in childhood; Temp cerebrale chez l'enfant

    Energy Technology Data Exchange (ETDEWEB)

    Tranquart, F.; Saliba, E.; Prunier, C.; Baulieu, F.; Besnard, J.C.; Guilloteau, D.; Baulieu, J.L. [Hopital Bretonneau, Service de Medecine Nucleaire, Unite Inserm 316, 37 - Tours (France)

    2001-04-01

    The modalities and the indications of perfusion and neurotransmission SPECT in childhood are presented. The perfusion as well as neurotransmission tracers have not yet authorization for use in children; they have to be used by prescription of magistral preparation or in research protocols. The radioprotection rules have to be strictly respected. The most frequent indication of perfusion SPECT is pharmacologically resistant epilepsy; the ictal SPECT before surgery allows the localization of the epileptogenic focus. Other indications are relevant in the prognosis of neonatal anoxia and encephalitis. In psychiatric disorders, especially in autism, the interest is the physiopathological approach of the brain dysfunctions. The neurotransmission SPECT is emerging as a consequence of the development of new radiotracer, as the dopaminergic system ligands. The decrease of the dopamine D2 receptors in the striatum can be imaged and quantified in the neonate. The lesions of dopamine system seem to be a consequence of the neonatal hypoxia-ischemia and it is predictive of motor sequelae. Brain SPECT should become a routine examination in child neurologic and psychiatric disorders. (authors)

  18. Citizens’ View on Veal Calves’ Fattening System in Italy and Animal Welfare

    Directory of Open Access Journals (Sweden)

    Marta Brscic

    2013-09-01

    Full Text Available Aims of this study were to assess citizens’ view on the current veal calves’ fattening system in Italy and on animal welfare, and to find relationships with veal meat consumption. Socio-demographic characteristics, veal meat consumption habits, knowledge of veal calves rearing system and animal welfare attitudes of 100 citizens were investigated through a questionnaire submitted on a voluntary base in supermarkets/butcher shops. Results showed that 61 respondents were veal meat consumers and the remaining 39 were non-consumers. A large proportion of respondents were aware of the modern veal calves rearing system but their knowledge as such did not affect veal meat consumption. Non-consumers declared they didn’t like veal meat organoleptic characteristics, opposed the production system or considered it too expensive. Most citizens sustained animal welfare but no correlations were found between concerns for animal welfare and veal meat consumption/purchase (rs 0.05. Citizens conceptualized animal welfare through the aspects of care animals received by the farmer and veterinarian and of healthy feed for animals. It could be concluded that consumers don’t really think of animal welfare while buying or having meat, and they still have idealised notions of naturality, traditional farming, free-range and small scale production linked to farm animal production.

  19. Improved Benefit of SPECT/CT Compared to SPECT Alone for the Accurate Localization of Endocrine and Neuroendocrine Tumors

    Directory of Open Access Journals (Sweden)

    Gonca G. Bural

    2012-12-01

    Full Text Available Objective: To assess the clinical utility of SPECT/ CT in subjects with endocrine and neuroendocrine tumors compared to SPECT alone. Material and Methods: 48 subjects (31 women;17 men; mean age 54±11 with clinical suspicion or diagnosis of endocrine and neuroendocrine tumor had 50 SPECT/CT scans (32 Tc-99m MIBI, 5 post treatment I-131, 8 In-111 Pentetreotide, and 5 I-123 MIBG. SPECT alone findings were compared to SPECT/CT and to pathology or radiological follow up. Results: From the 32 Tc-99m MIBI scans, SPECT accurately localized the lesion in 22 positive subjects while SPECT/CT did in 31 subjects. Parathyroid lesions not seen on SPECT alone were smaller than 10 mm. In five post treatment I-131 scans, SPECT alone neither characterized, nor localized any lesions accurately. SPECT/CT revealed 3 benign etiologies, a metastatic lymph node, and one equivocal lesion. In 8 In-111 Pentetreotide scans, SPECT alone could not localize primary or metastatic lesions in 6 subjects all of which were localized with SPECT/CT. In five I-123 MIBG scans, SPECT alone could not detect a 1.1 cm adrenal lesion or correctly characterize normal physiologic adrenal uptake in consecutive scans of the same patient with prior history of adrenelectomy, all of which were correctly localized and characterized with SPECT/CT. Conclusion: SPECT/CT is superior to SPECT alone in the assessment of endocrine and neuroendocrine tumors. It is better in lesion localization and lesion characterization leading to a decrease in the number of equivocal findings. SPECT/CT should be included in the clinical work up of all patients with diagnosis or suspicion of endocrine and neuroendocrine tumors. (MIRT 2012;21:91-96

  20. A Novel System for Non-Invasive Method of Animal Tracking and Classification in Designated Area Using Intelligent Camera System

    Directory of Open Access Journals (Sweden)

    S. Matuska

    2016-04-01

    Full Text Available This paper proposed a novel system for non-invasive method of animal tracking and classification in designated area. The system is based on intelligent devices with cameras, which are situated in a designated area and a main computing unit (MCU acting as a system master. Intelligent devices track animals and then send data to MCU to evaluation. The main purpose of this system is detection and classification of moving animals in a designated area and then creation of migration corridors of wild animals. In the intelligent devices, background subtraction method and CAMShift algorithm are used to detect and track animals in the scene. Then, visual descriptors are used to create representation of unknown objects. In order to achieve the best accuracy in classification, key frame extraction method is used to filtrate an object from detection module. Afterwards, Support Vector Machine is used to classify unknown moving animals.

  1. Investigation of dynamic SPECT measurements of the arterial input function in human subjects using simulation, phantom and human studies

    Science.gov (United States)

    Winant, Celeste D.; Aparici, Carina Mari; Zelnik, Yuval R.; Reutter, Bryan W.; Sitek, Arkadiusz; Bacharach, Stephen L.; Gullberg, Grant T.

    2012-01-01

    Computer simulations, a phantom study and a human study were performed to determine whether a slowly rotating single-photon computed emission tomography (SPECT) system could provide accurate arterial input functions for quantification of myocardial perfusion imaging using kinetic models. The errors induced by data inconsistency associated with imaging with slow camera rotation during tracer injection were evaluated with an approach called SPECT/P (dynamic SPECT from positron emission tomography (PET)) and SPECT/D (dynamic SPECT from database of SPECT phantom projections). SPECT/P simulated SPECT-like dynamic projections using reprojections of reconstructed dynamic 94Tc-methoxyisobutylisonitrile (94Tc-MIBI) PET images acquired in three human subjects (1 min infusion). This approach was used to evaluate the accuracy of estimating myocardial wash-in rate parameters K1 for rotation speeds providing 180° of projection data every 27 or 54 s. Blood input and myocardium tissue time-activity curves (TACs) were estimated using spatiotemporal splines. These were fit to a one-compartment perfusion model to obtain wash-in rate parameters K1. For the second method (SPECT/D), an anthropomorphic cardiac torso phantom was used to create real SPECT dynamic projection data of a tracer distribution derived from 94Tc-MIBI PET scans in the blood pool, myocardium, liver and background. This method introduced attenuation, collimation and scatter into the modeling of dynamic SPECT projections. Both approaches were used to evaluate the accuracy of estimating myocardial wash-in parameters for rotation speeds providing 180° of projection data every 27 and 54 s. Dynamic cardiac SPECT was also performed in a human subject at rest using a hybrid SPECT/CT scanner. Dynamic measurements of 99mTc-tetrofosmin in the myocardium were obtained using an infusion time of 2 min. Blood input, myocardium tissue and liver TACs were estimated using the same spatiotemporal splines. The spatiotemporal maximum

  2. Microbiomes: unifying animal and plant systems through the lens of community ecology theory

    OpenAIRE

    Natalie eChristian; Briana Kathleen Whitaker; Keith eClay

    2015-01-01

    The field of microbiome research is arguably one of the fastest growing in biology. Bacteria feature prominently in studies on animal health, but fungi appear to be the more prominent functional symbionts for plants. Despite the similarities in the ecological organization and evolutionary importance of animal-bacterial and plant-fungal microbiomes, there is a general failure across disciplines to integrate the advances made in each system. Researchers studying bacterial symbionts in animals b...

  3. Microbiomes: unifying animal and plant systems through the lens of community ecology theory

    OpenAIRE

    Christian, Natalie; Whitaker, Briana K.; Clay, Keith

    2015-01-01

    The field of microbiome research is arguably one of the fastest growing in biology. Bacteria feature prominently in studies on animal health, but fungi appear to be the more prominent functional symbionts for plants. Despite the similarities in the ecological organization and evolutionary importance of animal-bacterial and plant–fungal microbiomes, there is a general failure across disciplines to integrate the advances made in each system. Researchers studying bacterial symbionts in animals b...

  4. Breath-hold CT attenuation correction for quantitative cardiac SPECT

    OpenAIRE

    Koshino, Kazuhiro; Fukushima, Kazuhito; Fukumoto, Masaji; Sasaki, Kazunari; Moriguchi, Tetsuaki; Hori, Yuki; Zeniya, Tsutomu; Nishimura, Yoshihiro; Kiso, Keisuke; Iida, Hidehiro

    2012-01-01

    Background Attenuation correction of a single photon emission computed tomography (SPECT) image is possible using computed tomography (CT)-based attenuation maps with hybrid SPECT/CT. CT attenuation maps acquired during breath holding can be misaligned with SPECT, generating artifacts in the reconstructed images. The purpose of this study was to investigate the effects of respiratory phase during breath-hold CT acquisition on attenuation correction of cardiac SPECT imaging. Methods A series o...

  5. Indeterminate lesions on planar bone scintigraphy in lung cancer patients: SPECT, CT or SPECT-CT?

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Punit; Kumar, Rakesh; Singh, Harmandeep; Bal, Chandrasekhar; Malhotra, Arun [All India Institute of Medical Sciences, Department of Nuclear Medicine, New Delhi (India); Julka, Pramod Kumar [All India Institute of Medical Sciences, Department of Radiation Oncology, New Delhi (India); Thulkar, Sanjay [All India Institute of Medical Sciences, Department of Radiodiagnosis, New Delhi (India)

    2012-07-15

    The objective of the present study was to compare the role of single photon emission computed tomography (SPECT), computed tomography (CT) and SPECT-CT of selected volume in lung cancer patients with indeterminate lesions on planar bone scintigraphy (BS). The data of 50 lung cancer patients (53 {+-} 10.3 years; range 30-75; male/female 38/12) with 65 indeterminate lesions on planar BS (January 2010 to November 2010) were retrospectively evaluated. All of them underwent SPECT-CT of a selected volume. SPECT, CT and SPECT-CT images were independently evaluated by two experienced readers (experience in musculoskeletal imaging, including CT: 5 and 7 years) in separate sessions. A scoring scale of 1 to 5 was used, in which 1 is definitely metastatic, 2 is probably metastatic, 3 is indeterminate, 4 is probably benign and 5 is definitely benign. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated for each modality, taking a score {<=}2 as metastatic. With receiver operating characteristic (ROC) curve analysis, areas under the curve (AUC) were calculated for each modality and compared. Clinical and imaging follow-up and/or histopathology were taken as reference standard. For both readers SPECT was inferior to CT (P = 0.004, P = 0.022) and SPECT-CT (P = 0.003, P = 0.037). However, no significant difference was found between CT and SPECT-CT for reader 1 (P = 0.847) and reader 2 (P = 0.592). The findings were similar for lytic as well as sclerotic lesions. Moderate inter-observer agreement was seen for SPECT images ({kappa} = 0.426), while almost perfect agreement was seen for CT ({kappa} = 0.834) and SPECT-CT ({kappa} = 0.971). CT alone and SPECT-CT are better than SPECT for accurate characterisation of indeterminate lesions on planar BS in lung cancer patients. CT alone is not inferior to SPECT-CT for this purpose and might be preferred because of shorter acquisition time and wider availability. (orig.)

  6. Rcos.java: a simulated operating system with animations

    OpenAIRE

    Jones, David; Newman, Andrew

    2001-01-01

    RCOS.java (Ron Chernich's Operating System) is a Java-based, simulated operating system designed to address student difficulties in understanding operating systems concepts. This paper describes the rationale, design, features and planned use of RCOS.java. The intent with RCOS.java is to emphasise active, student-based learning and the development of the higher level learning skills of analysis, synthesis, evaluation or problem solving.

  7. Registration and display of brain SPECT and MRI using external markers

    Energy Technology Data Exchange (ETDEWEB)

    Pohjonen, H. [Medical Engineering Centre, Helsinki University Central Hospital, Stenbaeckinkatu 9, FIN-00290 Helsinki (Finland); Nikkinen, P. [Department of Clinical Chemistry, Division of Nuclear Medicine, Helsinki University Central Hospital, Helsinki (Finland); Sipilae, O. [Laboratory of Biomedical Engineering, Helsinki University of Technology, Espoo (Finland); Launes, J. [Department of Neurology, Helsinki University Central Hospital, Helsinki (Finland); Salli, E. [Laboratory of Biomedical Engineering, Helsinki University of Technology, Espoo (Finland); Salonen, O. [Department of Radiology, Helsinki University Central Hospital, Helsinki (Finland); Karp, P. [Medical Engineering Centre, Helsinki University Central Hospital, Stenbaeckinkatu 9, FIN-00290 Helsinki (Finland); Ylae-Jaeaeski, J. [Graphic Arts Laboratory, Technical Research Centre of Finland, Espoo (Finland); Katila, T. [Medical Engineering Centre, Helsinki University Central Hospital, Stenbaeckinkatu 9, FIN-00290 Helsinki (Finland)]|[Laboratory of Biomedical Engineering, Helsinki University of Technology, Espoo (Finland); Liewendahl, K. [Department of Clinical Chemistry, Division of Nuclear Medicine, Helsinki University Central Hospital, Helsinki (Finland)

    1996-02-01

    Accurate anatomical localisation of abnormalities observed in brain perfusion single-photon emission computed tomography (SPECT) is difficult, but can be improved by correlating data from SPECT and other tomographic imaging modalities. For this purpose we have developed software to register, analyse and display {sup 99m}Tc-hexamethylpropyleneamine oxime SPECT and 1.0 T MRI of the brain. For registration of SPECT and MRI data external skin markers containing {sup 99m}Tc (220 kBq) in 50 {mu}l of coconut butter were used. The software is coded in the C programming language, and the X Window system and the OSF/Motif standards are used for graphics and definition of the user interface. The registration algorithm follows a noniterative least-squares method using singular value decomposition of a 3 x 3 covariance matrix. After registration, the image slices of both data sets are shown at identical tomographic levels. The registration error in phantom studies was on average 4 mm. In the two-dimensional display mode the orthogonal cross-sections of the data sets are displayed side by side. In the three-dimensional mode MRI data are displayed as a surface-shaded 3 D reconstruction and SPECT data as cut planes. The usefulness of this method is demonstrated in patients with cerebral infarcts, brain tumour, herpes simplex encephalitis and epilepsy. (orig.). With 9 figs.

  8. The usefulness of SPECT and MRI in the diagnosis of atypical parkinsonian syndromes

    International Nuclear Information System (INIS)

    Clinico-pathological studies have shown that only three out of four patients with parkinsonism have idiopathic Parkinson's disease. In patients with so-called Parkinson plus syndrome, the degeneration in the brain is more widespread and the variety of neurological signs greater than in Parkinson's disease. The differentiation of these syndromes from Parkinson's disease can be difficult. Single photon emission computed tomography (SPECT) and magnetic resonance imaging (MRl) can be of value in the differential diagnosis of parkinsonism. We present three patients with atypical parkinsonism in whom MRI and SPECT with β-CIT and epidepride was performed in addition to the clinical evaluation. The three patients all had a rapidly developing symmetric akinetic-rigid syndrome that responded poorly to levodopa. MRI showed findings regarded as typical for multiple system atrophy in two patients, but only nonspecific findings in the third patient. SPECT with β-CIT showed a pronounced bilateral and relatively symmetric reduction in the striatal dopaminergic activity in all patients. SPECT with epidepride showed a clearly reduced striatal D2-receptor binding bilaterally in only one of the patients. In patients with atypical parkinsonism, MRI and SPECT with β-CIT and epidepride can give valuable support to the clinical diagnosis of a Parkinson plus syndrome

  9. Modelling photon transport in non-uniform media for SPECT with a vectorized Monte Carlo code.

    Science.gov (United States)

    Smith, M F

    1993-10-01

    A vectorized Monte Carlo code has been developed for modelling photon transport in non-uniform media for single-photon-emission computed tomography (SPECT). The code is designed to compute photon detection kernels, which are used to build system matrices for simulating SPECT projection data acquisition and for use in matrix-based image reconstruction. Non-uniform attenuating and scattering regions are constructed from simple three-dimensional geometric shapes, in which the density and mass attenuation coefficients are individually specified. On a Stellar GS1000 computer, Monte Carlo simulations are performed between 1.6 and 2.0 times faster when the vector processor is utilized than when computations are performed in scalar mode. Projection data acquired with a clinical SPECT gamma camera for a line source in a non-uniform thorax phantom are well modelled by Monte Carlo simulations. The vectorized Monte Carlo code was used to stimulate a 99Tcm SPECT myocardial perfusion study, and compensations for non-uniform attenuation and the detection of scattered photons improve activity estimation. The speed increase due to vectorization makes Monte Carlo simulation more attractive as a tool for modelling photon transport in non-uniform media for SPECT. PMID:8248288

  10. ON-FARM MANAGEMENT SYSTEMS IN ANIMAL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Aleksandra Jug

    2000-06-01

    Full Text Available The on-farm management systems under development in order to insure data collection, regular data processing needed on a farm as well as automatic data exchange between farm and computing centre. The core of information system presents relational database (RDBMS accompanied with tools developed in APIIS. A system analysis method has been done on two pig industrial units, on national selection program for swine in Slovenia, and compared with examples from other countries and species. Public domain software like PostgreSQL, Perl and Linux have been chosen for use on farms and can be replaced with commercial software like Oracle for more demanding central systems. The system contains at this stage applications for entering, managing, and viewing the data as well as transferring the information between local and central databases.

  11. Systems Biology in Animal Breeding: Identifying relationships among markers, genes, and phenotypes

    Science.gov (United States)

    The Breeding and Genetics Symposium titled “Systems Biology in Animal Breeding: Identifying relationships among markers, genes, and phenotypes” was held at the Joint Annual Meeting of the American Dairy Science Association and the American Society of Animal Science in Phoenix, AZ, July 15 to 19, 201...

  12. ras activation in human tumors and in animal model systems

    Energy Technology Data Exchange (ETDEWEB)

    Corominas, M.; Sloan, S.R.; Leon, J.; Kamino, Hideko; Newcomb, E.W.; Pellicer, A. (New York Univ. Medical Center, New York (United States))

    1991-06-01

    Environmental agents such as radiation and chemicals are known to cause genetic damage. Alterations in a limited set of cellular genes called proto-oncogenes lead to unregulated proliferation and differentiation. The authors have studied the role of the ras gene family in carcinogenesis using two different animal models. In one case, thymic lymphomas were induced in mice by either gamma or neutron radiation, and in the other, keratoacanthomas were induced in rabbit skin with dimethylbenzanthracene. Human keratoacanthomas similar to the ones induced in rabbits were also analyzed. They found that different types of radiation such as gamma rays and neutrons, induced different point mutations in ras genes. A novel K-ras mutation in codon 146 has been found in thymic lymphomas induced by neutrons. Keratoacanthomas induced in rabbit skin by dimethylbenzanthracene show a high frequency of H-ras-activated genes carrying a mutation in codon 61. The same is observed in human keratoacanthomas, although mutations are in both the 12th and the 61st codons of the H-ras gene. H-ras activation is less frequent in human squamous cell carcinomas than in keratoacanthomas, suggesting that ras genes could play a role in vivo in differentiation as well as in proliferation.

  13. Development of a SiPM-based PET imaging system for small animals

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanye [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Yang, Kun, E-mail: yangkun9999@hotmail.com [Department of Control Technology and Instrumentation, College of Quality and Technical Supervision, Hebei University, Baoding, 071000 (China); Zhou, Kedi; Zhang, Qiushi; Pang, Bo [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Ren, Qiushi, E-mail: renqsh@coe.pku.edu.cn [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2014-04-11

    Advances in small animal positron emission tomography (PET) imaging have been accelerated by many new technologies such as the successful incorporation of silicon photomultiplier (SiPM). In this paper, we have developed a compact, lightweight PET imaging system that is based on SiPM detectors for small animals imaging, which could be integrated into a multi-modality imaging system. This PET imaging system consists of a stationary detector gantry, a motor-controlled animal bed module, electronics modules, and power supply modules. The PET detector, which was designed as a multi-slice circular ring geometry of 27 discrete block detectors, is composed of a cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal and SiPM arrays. The system has a 60 mm transaxial field of view (FOV) and a 26 mm axial FOV. Performance tests (e.g. spatial resolution, energy resolution, and sensitivity) and phantom and animal imaging studies were performed to evaluate the imaging performance of the PET imaging system. The performance tests and animal imaging results demonstrate the feasibility of an animal PET system based on SiPM detectors and indicate that SiPM detectors can be promising photodetectors in animal PET instrumentation development.

  14. Development of a SiPM-based PET imaging system for small animals

    International Nuclear Information System (INIS)

    Advances in small animal positron emission tomography (PET) imaging have been accelerated by many new technologies such as the successful incorporation of silicon photomultiplier (SiPM). In this paper, we have developed a compact, lightweight PET imaging system that is based on SiPM detectors for small animals imaging, which could be integrated into a multi-modality imaging system. This PET imaging system consists of a stationary detector gantry, a motor-controlled animal bed module, electronics modules, and power supply modules. The PET detector, which was designed as a multi-slice circular ring geometry of 27 discrete block detectors, is composed of a cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal and SiPM arrays. The system has a 60 mm transaxial field of view (FOV) and a 26 mm axial FOV. Performance tests (e.g. spatial resolution, energy resolution, and sensitivity) and phantom and animal imaging studies were performed to evaluate the imaging performance of the PET imaging system. The performance tests and animal imaging results demonstrate the feasibility of an animal PET system based on SiPM detectors and indicate that SiPM detectors can be promising photodetectors in animal PET instrumentation development

  15. Development of the nSpect portable neutron spectrometer

    International Nuclear Information System (INIS)

    Portable instruments are particularly useful when a neutron spectrum is required for an area with limited space and accessibility. Portable instruments also offer a practical, cost-effective means by which areas that require infrequent surveying can be examined. This paper discusses the design and development of nSpect, a new, truly portable, neutron spectrometer. The nSpect spectrometer is a direct replacement for existing transportable neutron spectrometers, designed to perform equivalently or better. However, the use of bespoke electronic circuits and a more compact and lightweight design have reduced the typical mass of these instruments to approximately 15 kg. This weight falls within manual handling guidelines and makes nSpect truly portable. The nSpect spectrometer is fully-contained within two units, a sensor probe and a remote operator console. This allows the operator to be up to 40 m from the field while being much easier to carry than, for example, the significant bulk of a Bonner sphere set or less portable spectrometers. nSpect employs a variety of detectors which define six overlapping energy ranges to give nSpect an overall energy range from the thermal region (0.025 eV) to 10 MeV. Two BF3 proportional counters are used to assess the neutron flux at thermal and epi-thermal energies. A heavy metal sleeve has been used around one of the BF3 detectors in order to shield it from the thermal component of the flux. Hydrogen-filled proportional counters, with filling pressures of 1, 3 and 10 atm., have been used for the 50 keV - 1.4 MeV energy range. These spherical proportional counters, named SP10, have been adapted from the Centronic Ltd. SP9-type detector specifically for this project. A new approach to the energy calibration of spherical proportional counters has been developed and applied to the nSpect SP10 detectors. A small liquid scintillator cell, filled with EJ-301, is used for the 1 - 10 MeV energy range. High-speed digital electronics have

  16. WAHIS-Wild and its interface: the OIE worldwide monitoring system for wild animal diseases.

    Science.gov (United States)

    Jebara, Karim Ben

    2016-06-30

    Wild animal diseases are a global growing concern, given the threat that they pose to animal health and their zoonotic potential. The World Organisation for Animal Health (OIE) was among the first organisations to recognise the importance of having a comprehensive knowledge of the disease situation in wild animals, collecting information on wildlife diseases worldwide since 1993, when for the first time an annual questionnaire was distribute by OIE to members Countries in order to collect qualitative and quantitative data on selected diseases in wild animals. Starting with 2008 until 2012 an updated version of questionnaire was circulated to allow for identifying wildlife species by their Latin name and by their common names in the 3 OIE official languages (English, French, and Spanish). This specific functionality was then implemented in the World Animal Health Information System (WAHIS) in 2012, when this information was made available to the public through WAHIS-Wild Interface. PMID:27393871

  17. Animal models for the study of the effects of spaceflight on the immune system

    Science.gov (United States)

    Sonnenfeld, G.

    2003-10-01

    Animal models have been used to determine the effects of spaceflight on the immune system. Rats and rhesus monkeys have been the primary animals used for actual space flight studies, but mice have also been utilized for studies in ground-based models. The primary ground based model used has been hindlimb unloading of rodents, which is similar to the chronic bed-rest model for humans. A variety of immune responses have been shown to be modified when animals are hindlimb unloaded. These results parallel those observed when animals are flown in space. In general, immune responses are depressed in animals maintained in the hindlimb unloading model or flown in space. These results raise the possibility that spaceflight could result in decreased resistance to infection in animals.

  18. Telocytes in female reproductive system (human and animal).

    Science.gov (United States)

    Aleksandrovych, Veronika; Walocha, Jerzy A; Gil, Krzysztof

    2016-06-01

    Telocytes (TCs) are a newly discovered type of cell with numerous functions. They have been found in a large variety of organs: heart (endo-, myo-, epi- and pericardium, myocardial sleeves, heart valves); digestive tract and annex glands (oesophagus, stomach, duodenum, jejunum, liver, gallbladder, salivary gland, exocrine pancreas); respiratory system (trachea and lungs); urinary system (kidney, renal pelvis, ureters, bladder, urethra); female reproductive system (uterus, Fallopian tube, placenta, mammary gland); vasculature (blood vessels, thoracic duct); serous membranes (mesentery and pleura); and other organs (skeletal muscle, meninges and choroid plexus, neuromuscular spindles, fascia lata, skin, eye, prostate, bone marrow). Likewise, TCs are widely distributed in vertebrates (fish, reptiles, birds, mammals, including human). This review summarizes particular features of TCs in the female reproductive system, emphasizing their involvement in physiological and pathophysiological processes. PMID:27060783

  19. Comparison of 99mTc-Technegas SPECT with 133Xe dynamic SPECT in pulmonary emphysema

    International Nuclear Information System (INIS)

    This study was undertaken to compare axial images of 99mTc-Technegas SPECT (Technegas) with those of 133Xe gas dynamic SPECT in patients with pulmonary emphysema. There were 20 patients, 19 males and 1 female. All patients except one ex-smoker were heavy smokers with a mean age of 68.1 years. For Technegas scintigraphy, the patients inhaled 505 MBq 99mTc-Technegas in several tidal volume breaths in the supine position without breath holding. For 133Xe gas scintigraphy, the patients inhaled 370 MBq 133Xe gas. 133Xe gas dynamic SPECT was performed in the equilibrium phase for the last minute of the 3 minute inhalation in a closed circuit, and in the washout phase for 6 minutes of inhalation in a semi-closed circuit, by means of a gamma camera with dual detectors (Picker model Prism 2000). Abnormal findings included heterogeneity, defects and hot spots on Technegas images and on retention images taken 3 minutes after 133Xe gas washout. In 2 of 20 patients, the degree of abnormal findings on Technegas images depended on the area of 133Xe gas retention in the washout phase. In 3 patients, the degrees of abnormal findings on both Technegas SPECT and 133Xe gas dynamic SPECT images were equivalent. In the remaining 15 patients, more detailed findings and a greater area were shown by Technegas SPECT than 133Xe gas dynamic SPECT. We conclude that in patients with pulmonary emphysema Technegas SPECT can demonstrate ventilation impairment more easily than 133Xe gas dynamic SPECT. (author)

  20. Report of the FELASA Working Group on evaluation of quality systems for animal units.

    Science.gov (United States)

    Howard, B; van Herck, H; Guillen, J; Bacon, B; Joffe, R; Ritskes-Hoitinga, M

    2004-04-01

    This report compares and considers the merits of existing, internationally available quality management systems suitable for implementation in experimental animal facilities. These are: the Good Laboratory Practice Guidelines, ISO 9000:2000 (International Organization for Standardization) and AAALAC International (Association for Assessment and Accreditation of Laboratory Animal Care International). Good laboratory practice (GLP) is a legal requirement for institutions undertaking non-clinical health and environmental studies for the purpose of registering or licensing for use and which have to be 'GLP-compliant'. GLP guidelines are often only relevant for and obtainable by those institutions. ISO is primarily an external business standard, which provides a management tool to master and optimize a business activity; it aims to implement and enhance 'customer satisfaction'. AAALAC is primarily a peer-reviewed system of accreditation which evaluates the organization and procedures in programmes of animal care and use to ensure the appropriate use of animals, safeguard animal well-being (ensuring state-of-the-art housing, management, procedural techniques, etc.) as well as the management of health and safety of staff. Management needs to determine, on the basis of a facility's specific goals, whether benefits would arise from the introduction of a quality system and, if so, which system is most appropriate. The successful introduction of a quality system confers peer-recognition against an independent standard, thereby providing assurance of standards of animal care and use, improving the quality of animal studies, and contributing to the three Rs-reduction, refinement and replacement.

  1. Brain FDG-PET Scan and Brain Perfusion SPECT in the Diagnosis of Neuroacanthocytosis Syndromes

    Directory of Open Access Journals (Sweden)

    Eylem Değirmenci

    2015-06-01

    Full Text Available Neuroacanthocytosis syndromes (NA include autosomal recessive chorea-acanthocytosis and X-linked McLeod syndrome consisting of a choreatic movement disorder, psychiatric manifestations and cognitive decline, and additional multi-system features including myopathy and axonal neuropathy. Fluor 18 -2-fluoro-2-deoxyglucose (18F-FDG-PET positron emission tomography (PET and technetium 99m -d, l-hexamethyl-propylene amine oxime (99mTc-HMPAO brain single photon emission computed tomography (SPECT have been increasingly used for the detection of neurologic disorders, such as dementia, epilepsy, and movement disorders. In this case report, we report two patients with neuroacanthocytosis syndromes with the imaging features of brain metabolism by PET and brain perfusion by SPECT. Brain PET and brain SPECT findings of patients with neuroacanthocytosis syndromes were also reviewed.

  2. Simultaneous SPECT imaging of multi-targets to assist in identifying hepatic lesions

    Science.gov (United States)

    Guo, Zhide; Gao, Mengna; Zhang, Deliang; Li, Yesen; Song, Manli; Zhuang, Rongqiang; Su, Xinhui; Chen, Guibing; Liu, Ting; Liu, Pingguo; Wu, Hua; Du, Jin; Zhang, Xianzhong

    2016-01-01

    Molecular imaging technique is an attractive tool to detect liver disease at early stage. This study aims to develop a simultaneous dual-isotope single photon emission computed tomography (SPECT)/CT imaging method to assist diagnosis of hepatic tumor and liver fibrosis. Animal models of liver fibrosis and orthotopic human hepatocellular carcinoma (HCC) were established. The tracers of 131I-NGA and 99mTc-3P-RGD2 were selected to target asialoglycoprotein receptor (ASGPR) on the hepatocytes and integrin αvβ3 receptor in tumor or fibrotic liver, respectively. SPECT imaging and biodistribution study were carried out to verify the feasibility and superiority. As expected, 99mTc-3P-RGD2 had the ability to evaluate liver fibrosis and detect tumor lesions. 131I-NGA showed that it was effective in assessing the anatomy and function of the liver. In synchronized dual-isotope SPECT/CT imaging, clear fusion images can be got within 30 minutes for diagnosing liver fibrosis and liver cancer. This new developed imaging approach enables the acquisition of different physiological information for diagnosing liver fibrosis, liver cancer and evaluating residual functional liver volume simultaneously. So synchronized dual-isotope SPECT/CT imaging with 99mTc-3P-RGD2 and 131I-NGA is an effective approach to detect liver disease, especially liver fibrosis and liver cancer. PMID:27377130

  3. ANIMATION AND VISUALIZATION OF WATER QUALITY IN DISTRIBUTION SYSTEMS

    Science.gov (United States)

    Water may undergo a number of changes in the distribution system, making the quality of the water at the customer's tap different from the quality of the water that leaves the treatment plant. Such changes in quality may be caused by chemical or biological variations or by a loss...

  4. Environmental and Social Management System Implementation Handbook : Animal Production

    OpenAIRE

    International Finance Corporation

    2014-01-01

    Environmental and social responsibility is becoming more and more important in todayapos;s global economy. There are thousands of environmental and social codes and standards in the world today. The codes and standards define the rules and the objectives. But the challenge is in the implementation. An environmental and social management system (ESMS) helps companies to integrate the ru...

  5. Development of Optical Molecular Imaging System for the Acquisition of Bioluminescence Signals from Small Animals

    International Nuclear Information System (INIS)

    Optical imaging is providing great advance and improvement in genetic and molecular imaging of animals and humans. Optical imaging system consists of optical imaging devices, which carry out major function for monitoring, tracing, and imaging in most of molecular in-vivo researches. In bio-luminescent imaging, small animals containing luciferase gene locally irradiate light, and emitted photons transmitted through skin of the small animals are imaged by using a high sensitive charged coupled device (CCD) camera. In this paper, we introduced optical imaging system for the image acquisition of bio-luminescent signals emitted from small animals. In the system, Nikon lens and four LED light sources were mounted at the inside of a dark box. A cooled CCD camera equipped with a control module was used. We tested the performance of the optical imaging system using effendorf tube and light emitting bacteria which injected intravenously into CT26 tumor bearing nude mouse. The performance of implemented optical imaging system for bio-luminescence imaging was demonstrated and the feasibility of the system in small animal imaging application was proved. We anticipate this system could be a useful tool for the molecular imaging of small animals adaptable for various experimental conditions in future

  6. A Roadmap for the Development of Alternative (Non-Animal) Methods for Systemic Toxicity Testing

    Science.gov (United States)

    Systemic toxicity testing forms the cornerstone for the safety evaluation of substances. Pressures to move from traditional animal models to novel technologies arise from various concerns, including: the need to evaluate large numbers of previously untested chemicals and new prod...

  7. Gallium-SPECT in the detection of prosthetic valve endocarditis and aortic ring abscess

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, K.; Barnes, D.; Martin, R.H.; Rae, J.R. (Department of Diagnostic Radiology, Victoria General Hospital Halifax, Nova Scotia (Canada))

    1991-09-01

    A 52-yr-old man who had a bioprosthetic aortic valve developed Staphylococcus aureus bacteremia. Despite antibiotic therapy he had persistent pyrexia and developed new conduction system disturbances. Echocardiography did not demonstrate vegetations on the valve or an abscess, but gallium scintigraphy using SPECT clearly identified a focus of intense activity in the region of the aortic valve. The presence of valvular vegetations and a septal abscess was confirmed at autopsy. Gallium scintigraphy, using SPECT, provided a useful noninvasive method for the demonstration of endocarditis and the associated valve ring abscess.

  8. Comparison of SPECT/CT and MRI in diagnosing symptomatic lesions in ankle and foot pain patients: diagnostic performance and relation to lesion type.

    Directory of Open Access Journals (Sweden)

    Seunggyun Ha

    Full Text Available The purpose of this study was to compare the diagnostic performance of SPECT/CT and MRI in patients with ankle and foot pain, with regard to the lesion types.Fifty consecutive patients with ankle and foot pain, who underwent 99mTc-MDP SPECT/CT and MRI, were retrospectively enrolled in this study. Symptomatic lesions were determined based on clinical examination and response to treatment. On MRI and SPECT/CT, detected lesions were classified as bone, ligament/tendon, and joint lesions. Uptake on SPECT/CT was assessed using a 4-grade system. Sensitivity, specificity, positive predictive value (PPV and negative predictive value (NPV of SPECT/CT and MRI were evaluated in all detected lesions and each lesion type. Diagnostic value of uptake grade was analyzed using receiver-operating characteristics (ROC curve analysis, and diagnostic performance was compared using Chi-square or McNemar tests.In overall lesions, the sensitivity, PPV and NPV of SPECT/CT for symptomatic lesions were 93%, 56%, 91%, and they were 98%, 48%, 95% for MRI. There was no significant difference between SPECT/CT and MRI. However, the specificity of SPECT/CT was significantly higher than that of MRI (48% versus 24%, P = 0.016. Uptake grade on SPECT/CT was significantly higher in symptomatic lesions (P < 0.001, and its area under curve on ROC analysis was 0.787. In the analysis of each lesion type, the specificity of SPECT/CT was poor in joint lesions compared with other lesion types and MRI (P < 0.001, respectively. MRI exhibited lower specificity than SPECT/CT in bone lesions (P = 0.004 and ligament/tendon lesions (P < 0.001.SPECT/CT has MRI-comparable diagnostic performance for symptomatic lesions in ankle and foot pain patients. SPECT/CT and MRI exhibit different diagnostic specificity in different lesion types. SPECT/CT may be used as a complementary imaging method to MRI for enhancing diagnostic specificity.

  9. A reference system for animal biometrics: application to the northern leopard frog

    Science.gov (United States)

    Petrovska-Delacretaz, D.; Edwards, A.; Chiasson, J.; Chollet, G.; Pilliod, D.S.

    2014-01-01

    Reference systems and public databases are available for human biometrics, but to our knowledge nothing is available for animal biometrics. This is surprising because animals are not required to give their agreement to be in a database. This paper proposes a reference system and database for the northern leopard frog (Lithobates pipiens). Both are available for reproducible experiments. Results of both open set and closed set experiments are given.

  10. Citizens’ View on Veal Calves’ Fattening System in Italy and Animal Welfare

    OpenAIRE

    Marta Brscic; Flaviana Gottardo; Giulio Cozzi

    2013-01-01

    Aims of this study were to assess citizens’ view on the current veal calves’ fattening system in Italy and on animal welfare, and to find relationships with veal meat consumption. Socio-demographic characteristics, veal meat consumption habits, knowledge of veal calves rearing system and animal welfare attitudes of 100 citizens were investigated through a questionnaire submitted on a voluntary base in supermarkets/butcher shops. Results showed that 61 respondents were veal meat consumers and ...

  11. Testing alternative designs for a roadside animal detection system using a driving simulator

    OpenAIRE

    Molly K. Grace; Smith, Daniel J; Reed F Noss

    2015-01-01

    Objectives: A Roadside Animal Detection System (RADS) was installed in January 2012 along Highway 41 through Big Cypress National Preserve in Florida, USA in an attempt to reduce wildlife-vehicle collisions. The system uses flashing warning signs to alert drivers when a large animal is near the road. However, we suspected that the RADS warning signs could be ignored by drivers because they resemble other conventional signs. We hypothesized that word-based warning signs (current design) are le...

  12. SPECT/CT versus MRI in patients with nonspecific pain of the hand and wrist - a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Huellner, Martin W.; Buerkert, Alexander; Schleich, Florian S.; Strobel, Klaus; Veit-Haibach, Patrick [Lucerne Cantonal Hospital, Department of Radiology and Nuclear Medicine, Lucerne (Switzerland); Schuerch, Maja; Hug, Urs; Wartburg, Urs von [Lucerne Cantonal Hospital, Department of Hand and Plastic Surgery, Lucerne (Switzerland)

    2012-05-15

    Hand and wrist pain is a diagnostic challenge for hand surgeons and radiologists due to the complex anatomy of the involved small structures. The American College of Radiology recommends MRI as the study of choice in patients with chronic wrist pain if radiographs are negative. Lately, state-of-the-art SPECT/CT systems have been introduced and may help in the diagnosis of this selected indication. This retrospective study included 21 patients with nonspecific pain of the hand/wrist. The diagnosis of nonspecific wrist pain was made by the referring hand surgeon based on patient history, clinical examination, plain radiography and clinical guidelines. All patients received planar early-phase imaging and late-phase SPECT/CT imaging as well as MRI. Lesions were divided into major (causative) and minor (not causative) pathologies according to clinical follow-up. Furthermore, oedema-like bone marrow changes seen on MRI were compared with focally increased tracer uptake seen on SPECT/CT images. MRI yielded a quite high sensitivity (0.86), but a low specificity (0.20). In contrast, SPECT/CT yielded a high specificity (1.00) and a low sensitivity (0.71). Oedema-like bone marrow changes were detected in 15 lesions in 11 patients. In ten lesions with bone marrow oedema on MRI, foci of elevated tracer uptake were detected on SPECT/CT. Overall, MRI was more sensitive, but SPECT/CT was more specific in the evaluation of causative pathologies. In this initial comparison, SPECT/CT showed higher specificity than MRI in the evaluation of causative pathologies in patients with nonspecific wrist pain. However, MRI was more sensitive. Thus, SPECT/CT was shown to be a useful problem-solving tool in the diagnostic work-up of these patients. (orig.)

  13. Smart technologies for detecting animal welfare status and delivering health remedies for rangeland systems.

    Science.gov (United States)

    Rutter, S M

    2014-04-01

    Although the emerging field of precision livestock farming (PLF) is predominantly associated with intensive animal production, there is increasing interest in applying smart technologies in extensive rangeland systems. Precision livestock farming technologies bring the possibility of closely monitoring the behaviour, liveweight and other parameters of individual animals in free-ranging systems. 'Virtual fencing', ideally based on positive reinforcement, i.e. rewarding animals for moving in a specified direction, has the potential to gently guide foraging livestock towards areas of vegetation identified by remote sensing. As well as reducing hunger, this could be integrated with weather forecasting to help ensure that animals are automatically directed to areas with appropriate shelter when adverse weather is forecast. The system could also direct animals towards handling facilities when required, reducing the fear and distress associated with being mustered. The integration of the various data collected by such a 'virtual shepherd' system should be able to rapidly detect disease and injury, and sick animals could then be automatically shepherded to an enclosure for treatment. In general, rangeland livestock already have the freedom to express normal behaviour, but PLF technologies could facilitate this. By bringing levels of monitoring and control normally associated with intensive production to rangeland systems, PLF has the potential, with appropriate adoption, to enhance the capacity of rangeland livestock production systems to meet key areas of welfare concern highlighted by the Five Freedoms.

  14. An integrated multimodality image-guided robot system for small-animal imaging research

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Wen-Lin [Department of Radiology, Tzu-Chi University and Radiation Oncology, Buddhist Tzu-Chi General Hospital Hualien, Taiwan (China); Hsin Wu, Tung [Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei, Taiwan (China); Hsu, Shih-Ming [Department of Biomedical Imaging and Radiological Sciences, China Medical University, Taichung, Taiwan (China); Chen, Chia-Lin [Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan (China); Lee, Jason J.S., E-mail: jslee@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei, Taiwan (China); Huang, Yung-Hui, E-mail: yhhuang@isu.edu.tw [Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung, Taiwan (China)

    2011-10-01

    We design and construct an image-guided robot system for use in small-animal imaging research. This device allows the use of co-registered small-animal PET-MRI images to guide the movements of robotic controllers, which will accurately place a needle probe at any predetermined location inside, for example, a mouse tumor, for biological readouts without sacrificing the animal. This system is composed of three major components: an automated robot device, a CCD monitoring mechanism, and a multimodality registration implementation. Specifically, the CCD monitoring mechanism was used for correction and validation of the robot device. To demonstrate the value of the proposed system, we performed a tumor hypoxia study that involved FMISO small-animal PET imaging and the delivering of a pO{sub 2} probe into the mouse tumor using the image-guided robot system. During our evaluation, the needle positioning error was found to be within 0.153{+-}0.042 mm of desired placement; the phantom simulation errors were within 0.693{+-}0.128 mm. In small-animal studies, the pO{sub 2} probe measurements in the corresponding hypoxia areas showed good correlation with significant, low tissue oxygen tensions (less than 6 mmHg). We have confirmed the feasibility of the system and successfully applied it to small-animal investigations. The system could be easily adapted to extend to other biomedical investigations in the future.

  15. ChR2 transgenic animals in peripheral sensory system: Sensing light as various sensations.

    Science.gov (United States)

    Ji, Zhi-Gang; Wang, Hongxia

    2016-04-01

    Since the introduction of Channelrhodopsin-2 (ChR2) to neuroscience, optogenetics technology was developed, making it possible to activate specific neurons or circuits with spatial and temporal precision. Various ChR2 transgenic animal models have been generated and are playing important roles in revealing the mechanisms of neural activities, mapping neural circuits, controlling the behaviors of animals as well as exploring new strategy for treating the neurological diseases in both central and peripheral nervous system. An animal including humans senses environments through Aristotle's five senses (sight, hearing, smell, taste and touch). Usually, each sense is associated with a kind of sensory organ (eyes, ears, nose, tongue and skin). Is it possible that one could hear light, smell light, taste light and touch light? When ChR2 is targeted to different peripheral sensory neurons by viral vectors or generating ChR2 transgenic animals, the animals can sense the light as various sensations such as hearing, touch, pain, smell and taste. In this review, we focus on ChR2 transgenic animals in the peripheral nervous system. Firstly the working principle of ChR2 as an optogenetic actuator is simply described. Then the current transgenic animal lines where ChR2 was expressed in peripheral sensory neurons are presented and the findings obtained by these animal models are reviewed.

  16. Farewell to Animal Testing: Innovations on Human Intestinal Microphysiological Systems

    Directory of Open Access Journals (Sweden)

    Tae Hyun Kang

    2016-06-01

    Full Text Available The human intestine is a dynamic organ where the complex host-microbe interactions that orchestrate intestinal homeostasis occur. Major contributing factors associated with intestinal health and diseases include metabolically-active gut microbiota, intestinal epithelium, immune components, and rhythmical bowel movement known as peristalsis. Human intestinal disease models have been developed; however, a considerable number of existing models often fail to reproducibly predict human intestinal pathophysiology in response to biological and chemical perturbations or clinical interventions. Intestinal organoid models have provided promising cytodifferentiation and regeneration, but the lack of luminal flow and physical bowel movements seriously hamper mimicking complex host-microbe crosstalk. Here, we discuss recent advances of human intestinal microphysiological systems, such as the biomimetic human “Gut-on-a-Chip” that can employ key intestinal components, such as villus epithelium, gut microbiota, and immune components under peristalsis-like motions and flow, to reconstitute the transmural 3D lumen-capillary tissue interface. By encompassing cutting-edge tools in microfluidics, tissue engineering, and clinical microbiology, gut-on-a-chip has been leveraged not only to recapitulate organ-level intestinal functions, but also emulate the pathophysiology of intestinal disorders, such as chronic inflammation. Finally, we provide potential perspectives of the next generation microphysiological systems as a personalized platform to validate the efficacy, safety, metabolism, and therapeutic responses of new drug compounds in the preclinical stage.

  17. Use of animal models for space flight physiology studies, with special focus on the immune system

    Science.gov (United States)

    Sonnenfeld, Gerald

    2005-01-01

    Animal models have been used to study the effects of space flight on physiological systems. The animal models have been used because of the limited availability of human subjects for studies to be carried out in space as well as because of the need to carry out experiments requiring samples and experimental conditions that cannot be performed using humans. Experiments have been carried out in space using a variety of species, and included developmental biology studies. These species included rats, mice, non-human primates, fish, invertebrates, amphibians and insects. The species were chosen because they best fit the experimental conditions required for the experiments. Experiments with animals have also been carried out utilizing ground-based models that simulate some of the effects of exposure to space flight conditions. Most of the animal studies have generated results that parallel the effects of space flight on human physiological systems. Systems studied have included the neurovestibular system, the musculoskeletal system, the immune system, the neurological system, the hematological system, and the cardiovascular system. Hindlimb unloading, a ground-based model of some of the effects of space flight on the immune system, has been used to study the effects of space flight conditions on physiological parameters. For the immune system, exposure to hindlimb unloading has been shown to results in alterations of the immune system similar to those observed after space flight. This has permitted the development of experiments that demonstrated compromised resistance to infection in rodents maintained in the hindlimb unloading model as well as the beginning of studies to develop countermeasures to ameliorate or prevent such occurrences. Although there are limitations to the use of animal models for the effects of space flight on physiological systems, the animal models should prove very valuable in designing countermeasures for exploration class missions of the future.

  18. [Distribution of the different patterns of aging over the system of animal world].

    Science.gov (United States)

    Popov, I Iu

    2011-01-01

    Since the system of animal world reflects evolutionary trends, an analysis of distribution of patterns of aging over this system provides information on the causes of the formation of differences among them. In this paper the system of the main animal groups in form of a table is presented, and the distribution of patterns demonstrating minimum and maximum of aging is discussed. Meanwhile the colonial animals are considered as a "minimum of aging", the animals demonstrating drastic self-liquidation after reproduction are considered as a "maximum of aging" (the most well-known example is the pink salmon). It is shown, that as far as the degree of difference from the simplest ancestor increases in process of evolution, the increase of the manifestations of aging takes place. Slow aging of relatively simple organisms cannot be a direct source of measures to prevent aging of complex ones. PMID:21957572

  19. A Pilot System for Environmental Monitoring Through Domestic Animals

    Science.gov (United States)

    Schwabe, Calvin W.; Sawyer, John; Martin, Wayne

    1971-01-01

    A pilot system for environmental monitoring is in its early phases of development in Northern California. It is based upon the existing nation wide Federal-State Market Cattle Testing (14CT) program for brucellosis in cattle. This latter program depends upon the collection of blood program at the time of identified cattle. As the cattle Population of California is broadly distributed throughout the state, we intend to utilize these blood samples to biologically monitor the distribution and intensity of selected environmental pollutants. In a 2-year preliminary trial, the feasibility of retrieving, utilizing for a purpose similar to this, and tracing back to their geographic areas of origin of MCT samples have been demonstrated.

  20. Unsupervised learning of spect reconstruction

    International Nuclear Information System (INIS)

    An approach of image reconstruction from projection in single-photon emission computed tomography (SPECT), based on an unsupervised learning artificial Kohonen neural network, is developed. A kind of random sampling technique is used to generate sensory input from tomographic projections. It is proved that an adequate interpretation and representation of the synaptic strengths of the network can be used to obtain the tomographic image. A relevant numerical experiment is reported. To validate the method tests were performed using a typical phantom (simulated object) used in limited data sets tomography. At the end of the self-organizing process the synaptic strengths can be shown on x-y plane as a map of points. The density of points gives the reconstructed image. In order to obtain a usual representation of the image a grid of 32 x 32 pixels was superimposed on the map and the number of points in each pixel was counted in order to form the image function. As the number of points in each pixel (especially for pixels corresponding to the background of the phantom) is relatively small, the image function is spoiled by noise. Noise filtering was used to improve the quality of the image. The final result is presented as a 3D-surface plot and as a corresponding 8-level gray map. It can be concluded that a good reconstruction of sizes and shapes was obtained. Some artifacts spoil the region located around the spikes. This artifact can be reduced if an increased number of external stimuli are presented to the network. The price paid for this improvement is the increase of computation time. (authors)

  1. Anatomical-based partial volume correction for low-dose dedicated cardiac SPECT/CT

    Science.gov (United States)

    Liu, Hui; Chan, Chung; Grobshtein, Yariv; Ma, Tianyu; Liu, Yaqiang; Wang, Shi; Stacy, Mitchel R.; Sinusas, Albert J.; Liu, Chi

    2015-09-01

    Due to the limited spatial resolution, partial volume effect has been a major degrading factor on quantitative accuracy in emission tomography systems. This study aims to investigate the performance of several anatomical-based partial volume correction (PVC) methods for a dedicated cardiac SPECT/CT system (GE Discovery NM/CT 570c) with focused field-of-view over a clinically relevant range of high and low count levels for two different radiotracer distributions. These PVC methods include perturbation geometry transfer matrix (pGTM), pGTM followed by multi-target correction (MTC), pGTM with known concentration in blood pool, the former followed by MTC and our newly proposed methods, which perform the MTC method iteratively, where the mean values in all regions are estimated and updated by the MTC-corrected images each time in the iterative process. The NCAT phantom was simulated for cardiovascular imaging with 99mTc-tetrofosmin, a myocardial perfusion agent, and 99mTc-red blood cell (RBC), a pure intravascular imaging agent. Images were acquired at six different count levels to investigate the performance of PVC methods in both high and low count levels for low-dose applications. We performed two large animal in vivo cardiac imaging experiments following injection of 99mTc-RBC for evaluation of intramyocardial blood volume (IMBV). The simulation results showed our proposed iterative methods provide superior performance than other existing PVC methods in terms of image quality, quantitative accuracy, and reproducibility (standard deviation), particularly for low-count data. The iterative approaches are robust for both 99mTc-tetrofosmin perfusion imaging and 99mTc-RBC imaging of IMBV and blood pool activity even at low count levels. The animal study results indicated the effectiveness of PVC to correct the overestimation of IMBV due to blood pool contamination. In conclusion, the iterative PVC methods can achieve more accurate quantification, particularly for low

  2. [The design and development of a quality system for the diagnosis of exotic animal diseases at the National Centre for Animal and Plant Health in Cuba].

    Science.gov (United States)

    de Oca, N Montes; Villoch, A; Pérez Ruano, M

    2004-12-01

    A quality system for the diagnosis of exotic animal diseases was developed at the national centre for animal and plant health (CENSA), responsible for coordinating the clinical, epizootiological and laboratory diagnosis of causal agents of exotic animal diseases in Cuba. A model was designed on the basis of standard ISO 9001:2000 of the International Organization for Standardization (ISO), standard ISO/IEC 17025:1999 of ISO and the International Electrotechnical Commission, recommendations of the World Organisation for Animal Health (OIE) and other regulatory documents from international and national organisations that deal specifically with the treatment of emerging diseases. Twenty-nine standardised operating procedures were developed, plus 13 registers and a checklist to facilitate the evaluation of the system. The effectiveness of the quality system was confirmed in the differential diagnosis of classical swine fever at an animal virology laboratory in Cuba. PMID:15861883

  3. SPECT in psychiatry; Die Bedeutung der Hirn-SPECT in der Psychiatrie

    Energy Technology Data Exchange (ETDEWEB)

    Kasper, S. [Universitaetsklinik fuer Psychiatrie, Wien (Austria); Gruenwald, F. [Bonn Univ. (Germany). Klinik fuer Nuklearmedizin; Danos, P. [Psychiatrische Universitaetsklinik, Bonn (Germany); Walter, H. [Universitaetsklinik fuer Psychiatrie, Wien (Austria); Klemm, E. [Bonn Univ. (Germany). Klinik fuer Nuklearmedizin; Bruecke, T. [Universitaetsklinik fuer Neurologie, Wien (Austria); Podreka, I. [Universitaetsklinik fuer Neurologie, Wien (Austria); Biersack, H.J. [Bonn Univ. (Germany). Klinik fuer Nuklearmedizin

    1994-10-01

    In the last fifteen years different attempts have been undertaken to understand the biological basis of major psychiatric disorders. One important tool to determine patterns of brain dysfunction is single emission computed tomography (SPECT). Whereas SPECT investigations are already a valuable diagnostic instrument for the diagnosis of dementia of the Alzheimer Type (DAT) there have not been consistent findings that can be referred to as specific for any other particular psychiatric diagnostic entity. Nevertheless, SPECT studies have been able to demonstrate evidence of brain dysfunction in patients with schizophrenia, depression, anxiety disorders, and substance abuse in which other methods showed no clear abnormality of brain function. Our manuscript reviews the data which are currently available in the literature and stresses the need for further studies, especially for prediction and monitoring psychiatric treatment modalities. (orig.) [Deutsch] In den vergangenen 15 Jahren wurde durch verschiedene methodologische Ansaetze versucht, die biologischen Ursachen psychiatrischer Erkrankungen naeher zu erforschen. Als eine bedeutende Methode hat sich dabei die Single-Photonen-Emissions-Computertomographie (SPECT) herausgestellt. Waehrend die SPECT-Untersuchungen bereits Eingang in die Routinediagnostik bei Demenzen vom Alzheimer-Typ gefunden haben, konnten fuer weitere psychiatrische Erkrankungen noch keine eindeutigen Befunde etabliert werden. Mit der SPECT-Methode ist es jedoch gelungen, funktionelle Veraenderungen des Gehirns von psychiatrischen Erkrankungen darzustellen, wie z.B. Schizophrenie, Depression, Angsterkrankungen bzw. Substanzmissbrauch. In Forschungsprotokollen wird durch die SPECT-Methode versucht, abzuklaeren, inwieweit es moeglich ist, innerhalb der Erkrankungsentitaeten psychiatrischer Erkrankungen oder auch diese uebergreifend eine Subklassifizierung zu finden und evtl. Gehirnsysteme ausfindig zu machen, die mit einer spezifischen

  4. Animal Hospital Management System Design Based on C/S/S Structure

    Institute of Scientific and Technical Information of China (English)

    HUANG Jing; ZHAO Jie; WEI Xiaoli

    2008-01-01

    By analysis of the functions of animal hospital's departments,combining with management information development truth,the paper developed animal hospital management system.The system included six modules, like system management module, basic information management module,sections management module,and so on.The paper used Visual C++6.0 and SQL Server 2000,and ODBC database accessing technology,which can encapsulate any database table and operation into class.The system could make any window to share table's operation to realize hospital management quickly and efficiency.

  5. Effects of Pronunciation Practice System Based on Personalized CG Animations of Mouth Movement Model

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2012-06-01

    Full Text Available Pronunciation practice system based on personalized Computer Graphics: CG animation of mouth movement model is proposed. The system enables a learner to practice pronunciation by looking at personalized CG animations of mouth movement model , and allows him/her to compare them with his/her own mouth movements. In order to evaluate the effectiveness of the system by using personalized CG animation of mouth movement model, Japanese vowel and consonant sounds were read by 8 infants before and after practicing with the proposed system, and their pronunciations were examined. Remarkable improvement on their pronunciations is confirmed through a comparison to their pronunciation without the proposed system based on identification test by subjective basis.

  6. Potential Application of Electronic Olfaction Systems in Feedstuffs Analysis and Animal Nutrition

    Directory of Open Access Journals (Sweden)

    Vittorio Dell'Orto

    2013-10-01

    Full Text Available Electronic Olfaction Systems (EOSs based on a variety of gas-sensing technologies have been developed to simulate in a simplified manner animal olfactory sensing systems. EOSs have been successfully applied to many applications and fields, including food technology and agriculture. Less information is available for EOS applications in the feed technology and animal nutrition sectors. Volatile Organic Compounds (VOCs, which are derived from both forages and concentrate ingredients of farm animal rations, are considered and described in this review as olfactory markers for feedstock quality and safety evaluation. EOS applications to detect VOCs from feedstuffs (as analytical matrices are described, and some future scenarios are hypothesised. Furthermore, some EOS applications in animal feeding behaviour and organoleptic feed assessment are also described.

  7. MRI compatible small animal monitoring and trigger system for whole body scanners

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Karl-Heinz; Krumbein, Ines; Reichenbach, Juergen R. [Jena University Hospital (Germany). Medical Physics Group; Pfeiffer, Norman [Jena University Hospital (Germany). Medical Physics Group; Ernst-Abbe-Fachhochschule Jena (Germany); Herrmann, Lutz [Ernst-Abbe-Fachhochschule Jena (Germany)

    2014-03-01

    Performing magnetic resonance imaging (MRI) experiments with small animals requires continuous monitoring of vital parameters, especially the respiration rate. Clinical whole-body MR scanners represent an attractive option for preclinical imaging as dedicated animal scanners are cost-intensive in both investment and maintenance, thus limiting their availability. Even though impressive image quality is achievable with clinical MR systems in combination with special coils, their built-in physiologic monitoring and triggering units are often not suited for small animal imaging. In this work, we present a simple, MRI compatible low cost solution to monitor the respiration and heart rate of small animals in a clinical whole-body MR scanner. The recording and processing of the biosignals as well as the optimisation of the respiratory trigger generation is described. Additionally rat and mouse in-vivo MRI experiments are presented to illustrate the effectiveness of the monitoring and respiratory trigger system in suppressing motion artifacts. (orig.)

  8. MRI compatible small animal monitoring and trigger system for whole body scanners

    International Nuclear Information System (INIS)

    Performing magnetic resonance imaging (MRI) experiments with small animals requires continuous monitoring of vital parameters, especially the respiration rate. Clinical whole-body MR scanners represent an attractive option for preclinical imaging as dedicated animal scanners are cost-intensive in both investment and maintenance, thus limiting their availability. Even though impressive image quality is achievable with clinical MR systems in combination with special coils, their built-in physiologic monitoring and triggering units are often not suited for small animal imaging. In this work, we present a simple, MRI compatible low cost solution to monitor the respiration and heart rate of small animals in a clinical whole-body MR scanner. The recording and processing of the biosignals as well as the optimisation of the respiratory trigger generation is described. Additionally rat and mouse in-vivo MRI experiments are presented to illustrate the effectiveness of the monitoring and respiratory trigger system in suppressing motion artifacts. (orig.)

  9. Chilaiditi's syndrome demonstrated by SPECT/CT

    Directory of Open Access Journals (Sweden)

    Nalini S Perumal

    2009-11-01

    Full Text Available Purpose: Chilaiditi’s syndrome is a rare condition commonly diagnosed as an incidental radiological finding. The aim of this report is to show the role of SPECT-CT in this syndrome and state the functional and anatomical role of this hybrid imaging modality. Materials and Methods: A case report. Results: A 49-year-old female patient was referred for gallium-67 citrate for a possible granulomatous myositis and underwent SPECT-CT of the abdomen to assess the area of decreased gallium uptake on planar images of the liver. The combined SPECT and CT modality demonstrated findings consistent with the clinical evidence of Chilaiditi’s syndrome. The anatomical part of this hybrid modality made it easier to evaluate the area of gallium lack of uptake which was due to air in the colon. Conclusion: This case does not only show the role of SPECT-CT in this syndrome but also suggest that the use of such modality should be considered whenever available in the evaluation of patients in whom the localization of active disease becomes imperative.

  10. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo;

    2010-01-01

    Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas ov...

  11. SPECT and PET in Eating Disorders

    NARCIS (Netherlands)

    van Waarde, Aren; Audenaert, Kurt; Busatto, Geraldo F.; Buchpiguel, Carlos; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; de Vries, Erik FJ; van Waarde, Aren; den Boer, Johan A

    2014-01-01

    Medical imaging techniques like PET and SPECT have been applied for investigation of brain function in anorexia and bulimia nervosa. Regional abnormalities have been detected in cerebral blood flow, glucose metabolism, the availability of several neurotransmitter receptors (serotonin 1A and 2A, dopa

  12. LABAQM - A SYSTEM FOR QUALITATIVE MODELLING AND ANALYSIS OF ANIMAL BEHAVIOUR

    OpenAIRE

    Matetić, Maja; Ribarić, Slobodan; Ipšić, Ivo

    2002-01-01

    Tracking of a laboratory animal and its behaviour interpretation based on frame sequence analysis have been traditionally quantitative and typically generates large amounts of temporally evolving data. In our work we are dealing with higher-level approaches such as conceptual clustering and qualitative modelling in order to represent data obtained by tracking. We present the LABAQM system developed for the analysis of laboratory animal behaviours. It is based on qualitative modelling of anima...

  13. A roadmap for the development of alternative (non-animal) methods for systemic toxicity testing

    OpenAIRE

    Ruhdel, Irmela; Vanparys, Philippe; Knudsen, Thomas B.; Roggen, Erwin; Oué draogo, Gladys; Basketter, David A.; Daneshian, Mardas; Eskes, Chantra; Rossi, Annamaria; Skinner, Nigel; Blaauboer, Bas; Pelkonen, Olavi; Maxwell, Gavin; Yager, James

    2012-01-01

    Systemic toxicity testing forms the cornerstone for the safety evaluation of substances. Pressures to move from traditional animal models to novel technologies arise from various concerns, including: the need to evaluate large numbers of previously untested chemicals and new products (such as nanoparticles or cell therapies), the limited predictivity of traditional tests for human health effects, duration and costs of current approaches, and animal welfare considerations. The latter holds esp...

  14. The oxytocin system in drug discovery for autism: Animal models and novel therapeutic strategies

    OpenAIRE

    Modi, Meera E.; Young, Larry J.

    2011-01-01

    Animal models and behavioral paradigms are critical for elucidating the neural mechanism involved in complex behaviors, including social cognition. Both genotype and phenotype based models have implicated the neuropeptide oxytocin (OT) in the regulation of social behavior. Based on the findings in animal models, alteration of the OT system has been hypothesized to play a role in the social deficits associated with autism and other neuropsychiatric disorders. While the evidence linking the pep...

  15. Real-time animation software for customized training to use motor prosthetic systems.

    Science.gov (United States)

    Davoodi, Rahman; Loeb, Gerald E

    2012-03-01

    Research on control of human movement and development of tools for restoration and rehabilitation of movement after spinal cord injury and amputation can benefit greatly from software tools for creating precisely timed animation sequences of human movement. Despite their ability to create sophisticated animation and high quality rendering, existing animation software are not adapted for application to neural prostheses and rehabilitation of human movement. We have developed a software tool known as MSMS (MusculoSkeletal Modeling Software) that can be used to develop models of human or prosthetic limbs and the objects with which they interact and to animate their movement using motion data from a variety of offline and online sources. The motion data can be read from a motion file containing synthesized motion data or recordings from a motion capture system. Alternatively, motion data can be streamed online from a real-time motion capture system, a physics-based simulation program, or any program that can produce real-time motion data. Further, animation sequences of daily life activities can be constructed using the intuitive user interface of Microsoft's PowerPoint software. The latter allows expert and nonexpert users alike to assemble primitive movements into a complex motion sequence with precise timing by simply arranging the order of the slides and editing their properties in PowerPoint. The resulting motion sequence can be played back in an open-loop manner for demonstration and training or in closed-loop virtual reality environments where the timing and speed of animation depends on user inputs. These versatile animation utilities can be used in any application that requires precisely timed animations but they are particularly suited for research and rehabilitation of movement disorders. MSMS's modeling and animation tools are routinely used in a number of research laboratories around the country to study the control of movement and to develop and test

  16. Real-time animation software for customized training to use motor prosthetic systems.

    Science.gov (United States)

    Davoodi, Rahman; Loeb, Gerald E

    2012-03-01

    Research on control of human movement and development of tools for restoration and rehabilitation of movement after spinal cord injury and amputation can benefit greatly from software tools for creating precisely timed animation sequences of human movement. Despite their ability to create sophisticated animation and high quality rendering, existing animation software are not adapted for application to neural prostheses and rehabilitation of human movement. We have developed a software tool known as MSMS (MusculoSkeletal Modeling Software) that can be used to develop models of human or prosthetic limbs and the objects with which they interact and to animate their movement using motion data from a variety of offline and online sources. The motion data can be read from a motion file containing synthesized motion data or recordings from a motion capture system. Alternatively, motion data can be streamed online from a real-time motion capture system, a physics-based simulation program, or any program that can produce real-time motion data. Further, animation sequences of daily life activities can be constructed using the intuitive user interface of Microsoft's PowerPoint software. The latter allows expert and nonexpert users alike to assemble primitive movements into a complex motion sequence with precise timing by simply arranging the order of the slides and editing their properties in PowerPoint. The resulting motion sequence can be played back in an open-loop manner for demonstration and training or in closed-loop virtual reality environments where the timing and speed of animation depends on user inputs. These versatile animation utilities can be used in any application that requires precisely timed animations but they are particularly suited for research and rehabilitation of movement disorders. MSMS's modeling and animation tools are routinely used in a number of research laboratories around the country to study the control of movement and to develop and test

  17. Determination of optimum filter in inferolateral view of myocardial SPECT

    International Nuclear Information System (INIS)

    Background: In myocardial perfusion SPECT imaging, images are degraded by photon attenuation, distance-dependent collimator, detector response and photon scattering. As filters greatly affect quality of nuclear medicine images, in this study determination of optimum filter for inferolateral view is our prime objective. Materials and Methods: .A phantom simulating heart left ventricle was built. About 1mCi of 99mTc, was injected into the phantom. Images were taken from this phantom. Parzen, Hamming, Hanning, Butter worth and Gaussian filters were exerted on the images obtained from the phantom.. By defining some criteria such as contrast, signal to noise ratio, and defect size delectability, the best filter was determined for our ADAC spect system at our nuclear medicine center. In this study, 27 patients who previously had undergone coronary angiography were chosen to be included. All of these patients revealed significant stenosis in the left circumflex artery. Myocardial SPECT images of these patients had inferolateral defect. The images of these patients were processed with 12 filters including the optimum filters obtained from phantom study and some other non-optimum filters. A nuclear medicine physician quantified the results by assigmng mark from 0 to 4. to every image. 0 mark for images that didn't show the defect properly and 4 for the best one. The data from patient study were analyzed with non-related, non -parametric Friedman test. Results: Nyquist frequency of 0.325 and 0.5 were obtained as the optimum cut-off frequencies for hamming and Hanning filters respectively. Order 11 and cut-off frequency of 0.45 and order 20. with cut-off frequency of 0.5 were found to be optimum for Butter worth and Gaussian filters. In patient studies it was found that, Butter worth filter with cut-off frequency of 0.45 and order of 11 produced the best quality images. Conclusion: In this study. Butter worth filter with cut-off frequency of 0.45 and order of 11 was the

  18. Ventilation-perfused studies using SPECT

    International Nuclear Information System (INIS)

    A method for the quantitative analysis of ventilation-perfusion SPECT studies is decribed and an effort is made to evaluate its usefullness. The technical details of the emthod are described. In the the transaxial reconstructions of the tomographic studies the contour of the lungs is detected and regional values of lung volume, ventilation, perfusion and ventilation-perfusion ratios are calculated. The method is operator independent. The lung volume calculations from the SPECT studies are validated by comparing them with lung volume measurements using the helium dilution technique. A good correlation (r=0.91) was found between the two volumes. SPECT volume was greater than the volume measured with helium dilution, which was attributed to non-gas-containing structures in the. lungs. The use of ventilation-perfusion ratio SPECT is described to evaluate the effect of ionizing radiation on the lungs in patients treated with mantle field irradiation for Hodgkin's disease. Perfusion changes appear as early as 2 months after the start of irradiation. Ventilation changes appear later and relatively minor. No changes are seen outside the radiation portals. The ventilation-perfusion inequality in pulmonary sarcoidosis is treated. It is suggested that the decrease D LCO in these patients may be partly due to an even distribution of ventilation perfusion ratios. An effort is made to establish the properties of a new tracer used for the assessment of the metabolic function of the pulmonary endothelium. The lung uptake of I-123 IMP mimics the distribution of a perfusion tracer and it is suggested that this tracer may be useful for the early detection of pulmonary vascular damage, even when blood flow is still intact. Some aspects of the use of Kr-81m as a ventilation tracer are discussed as well as the effect of noise on Kr-81m SPECT reconstructions. (author). 146 refs.; 39 figs.; 8 tabs

  19. Cerebral perfusion SPECT in transient ischemic attack

    Energy Technology Data Exchange (ETDEWEB)

    You, D.-L. E-mail: dlyou@mail.kfcc.org.tw; Shieh, F.-Y.; Tzen, K.-Y.; Tsai, M.-F.; Kao, P.-F

    2000-04-01

    Purpose: The purpose of our study is to evaluate the efficacy of cerebral perfusion single photon emission computerized tomography (SPECT) in patients with transient ischemic attack (TIA). Methods: Thirty-seven patients with TIA were collected for study. All patients had transient focal neurological symptoms or signs with complete recovery within 24 h after onset. The patients underwent cerebral perfusion SPECT between 6 h and 11 days after onset, with 10 cases performed within 24 h (group A), nine cases performed between 1 and 3 days (group B), 11 cases performed between 3 and 5 days (group C), and seven cases performed after more than 5 days (group D). A semi-quantitative method was used for analyzing the SPECT data, and the difference ratios between lesion side and contralateral normal side were calculated on each pair of regions of interest. Results: In total, 78.4% (29/37) of patients had reduced perfusion in the cerebral cortical regions or deep nuclei, and the regions with reduced perfusion corresponded with clinical presentations of the patients. The abnormal rate with reduced perfusion was 90.0% in group A, 77.8% in group B, 72.7% in group C and 71.4% in group D. Cross cerebellar diaschisis (CCD) was present in seven patients, and all of the primary cerebral perfusion defects of these patients were located at the territory of left or right middle cerebral artery. Conclusion: Cerebral perfusion SPECT is a potential tool to detect cerebral perfusion defects and CCD in patients with TIA. Although the perfusion defect may persist more than 5 days after onset, we suggest cerebral perfusion SPECT should be performed as soon as possible.

  20. Comparison and planar and SPECT ventilation/perfusion lung scanning

    International Nuclear Information System (INIS)

    Full text: Ventilation/perfusion (V/Q) lung scanning, using multiple planar views, is an accepted technique for diagnosing pulmonary embolism (PE). Under PIOPED criteria, there are a substantial number of indeterminate results due to confounding factors such as CAL, unusual anatomy or superimposed activity in the planar image. Our aim was to investigate if SPECT could improve the diagnostic accuracy of V/Q scanning in the diagnosis of PE. Both planar and SPECT images were acquired on a dual or a triple head gamma camera following inhalation of 99mTc-Technegas and after injection of 99mTc-MAA. Total acquisition time for SPECT studies was 7.5 min for ventilation and 5 min for perfusion. SPECT studies were reconstructed with an accelerated iterative reconstruction (OSEM) and ventilation slices and perfusion slices were registered with an automated image registration package. Total processing time was 5 min. We have now performed more than 600 planar and SPECT studies. A subset of 50 sequential patients and 10 cases with pulmonary angiography were scored blinded by experienced nuclear medicine physicians. Scores ranged from 0 (no PE) to 5 (definite PE). A score of 3 indicated indeterminate for PE. In the 60 patients analysed, planar and SPECT scores were equal in 27 patients, SPECT was more definite in 16 and less definite in 7 patients. In 8 patients, SPECT indicated PE and planar imaging low probability of PE. In 1 patient planar imaging was scored as PE and SPECT as low probability. Indeterminate rate was reduced from 8 to 1 with SPECT. In the 10 patients with angiography, SPECT studies agreed with angiography findings in 8 patients, while planar studies agreed with angiography findings in 5 patients. Our preliminary data suggest that SPECT V/Q lung scanning can: i) provide a significant improvement over planar imaging for the diagnosis of PE, and ii) our short acquisition time for V/Q SPECT is clinically practicable

  1. SPECT/CT imaging in children with papillary thyroid carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwa-Young; Gelfand, Michael J.; Sharp, Susan E. [Cincinnati Children' s Hospital, Department of Radiology, Cincinnati, OH (United States)

    2011-08-15

    SPECT/CT improves localization of single photon-emitting radiopharmaceuticals. To determine the utility of SPECT/CT in children with papillary thyroid carcinoma. 20 SPECT/CT and planar studies were reviewed in 13 children with papillary thyroid carcinoma after total thyroidectomy. Seven studies used I-123 and 13 used I-131, after elevating TSH by T4 deprivation or intramuscular thyrotropin alfa. Eight children had one study and five children had two to four studies. Studies were performed at initial post-total thyroidectomy evaluation, follow-up and after I-131 treatment doses. SPECT/CT was performed with a diagnostic-quality CT unit in 13 studies and a localization-only CT unit in 7. Stimulated thyroglobulin was measured (except in 2 cases with anti-thyroglobulin antibodies). In 13 studies, neck activity was present but poorly localized on planar imaging; all foci of uptake were precisely localized by SPECT/CT. Two additional foci of neck uptake were found on SPECT/CT. SPECT/CT differentiated high neck uptake from facial activity. In six studies (four children), neck uptake was identified as benign by SPECT/CT (three thyroglossal duct remnants, one skin contamination, two by precise anatomical CT localization). In two children, SPECT/CT supported a decision not to treat with I-131. When SPECT/CT was unable to identify focal uptake as benign, stimulated thyroglobulin measurements were valuable. In three of 13 studies with neck uptake, SPECT/CT provided no useful additional information. SPECT/CT precisely localizes neck iodine uptake. In small numbers of patients, treatment is affected. SPECT/CT should be used when available in thyroid carcinoma patients. (orig.)

  2. SP ECT/CT不同显像方法诊断急性肺栓塞的动物实验研究%Animal experimental study on multiple imaging methods for the diagnosis of acute pulmonary em-bolism by SPECT/CT

    Institute of Scientific and Technical Information of China (English)

    刘清奎; 陈萍; 刘海平; 侯鹏; 刘襄平; 秦积龙; 罗冬云

    2016-01-01

    Objective To evaluate the diagnostic efficiency of Q⁃SPECT, CTPA, Q⁃SPECT/CT, and Q⁃SPECT/CTPA for pulmonary embolism (PE) in rabbit models. Methods (1) The PE models were constructed by injecting Gelfoam into the femoral vein of New Zealand rabbits ( n=30) . Q⁃SPECT, CTPA, Q⁃SPECT/CT and Q⁃SPECT/CTPA fusion images were obtained by integrated SPECT/CT. (2) All images were interpreted by two experienced nuclear radiologists who were blind to pathologic findings. The locations and numbers of lung lobes with PE were recorded respectively. ( 3) Serial sectioning of the lungs was per⁃formed and pathologically determined. (4) Se, Sp and Ac of different methods were compared using McNemar test;PPV and NPV were compared usingχ2 test. Kappa test was used to analyze the consistency between two nuclear radiologists. Kappa values0.75 as good consistency. Results (1) Histologically confirmed emboli were present in a total of 26 pulmonary lobes and absent in 79 lobes. (2)The Se, Sp, Ac, PPV, and NPV of 4 imaging methods were:53.8%(14/26), 93.7%(74/79), 83.8%(88/105), 14/19, 86.0%(74/86) for Q⁃SPECT;73.1%(19/26), 96.2%(76/79), 90.5%(95/105), 86.4%(19/22), 91.6%(76/83) for CTPA;76.9%(20/26), 93.7%(74/79), 89.5%(94/105), 80.0%(20/25), 92.5%(74/80)for Q⁃SPECT/CT;88.5%(23/26), 91.1%(72/79), 90.5%(95/105), 76.7%(23/30), 96.0%(72/75) for Q⁃SPECT/CTPA. (3) McNemar test showed Q⁃SPECT/CT and Q⁃SPECT/CTPA had higher diagnostic Se for the detection of PE than Q⁃SPECT (χ2=4.167, 7.111, both P0.05) . Q⁃SPECT/CT had higher diagnostic Ac than Q⁃SPECT (χ2=4.167, P0.05). (4)Kappa values of 4 imaging methods for radiologist 1 and 2 were 0.902, 0.915, 0.973, and 0.884. Conclusions Q⁃SPECT/CT imaging provides good Se and Sp. The diag⁃nostic efficiency of Q⁃SPECT/CT is better than that of Q⁃SPECT and is corresponded roughly to the efficien⁃cy of CTPA, Q⁃SPECT/CTPA. The diagnosis of two radiologists on Q⁃SPECT/CT images has the best con⁃sistency.%目

  3. The magnetic shielding for the neutron decay spectrometer aSPECT

    Energy Technology Data Exchange (ETDEWEB)

    Konrad, Gertrud, E-mail: gkonrad@ati.ac.at [Universität Mainz, Institut für Physik, Staudingerweg 7, D-55128 Mainz (Germany); Technische Universität Wien, Atominstitut, Stadionallee 2, A-1020 Wien (Austria); Ayala Guardia, Fidel [Universität Mainz, Institut für Physik, Staudingerweg 7, D-55128 Mainz (Germany); Baeßler, Stefan [Universität Mainz, Institut für Physik, Staudingerweg 7, D-55128 Mainz (Germany); University of Virginia, Department of Physics, Charlottesville, VA 22904 (United States); Borg, Michael [Universität Mainz, Institut für Physik, Staudingerweg 7, D-55128 Mainz (Germany); Glück, Ferenc [Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology, P.O.B. 3640, D-76021 Karlsruhe (Germany); Wigner Research Institute for Physics, P.O.B. 49, H-1525 Budapest (Hungary); Heil, Werner [Universität Mainz, Institut für Physik, Staudingerweg 7, D-55128 Mainz (Germany); Hiebel, Stefan [Universität Mainz, Institut für Physik, Staudingerweg 7, D-55128 Mainz (Germany); Sekels GmbH, Dieselstraße 6, D-61239 Ober-Mörlen (Germany); Muñoz Horta, Raquel; Sobolev, Yury [Universität Mainz, Institut für Physik, Staudingerweg 7, D-55128 Mainz (Germany)

    2014-12-11

    Many experiments in nuclear and neutron physics are confronted with the problem that they use a superconducting magnetic spectrometer which potentially affects other experiments by their stray magnetic field. The retardation spectrometer aSPECT consists, inter alia, of a superconducting magnet system that produces a strong longitudinal magnetic field of up to 6.2 T. In order not to disturb other experiments in the vicinity of aSPECT, we had to develop a magnetic field return yoke for the magnet system. While the return yoke must reduce the stray magnetic field, the internal magnetic field and its homogeneity should not be affected. As in many cases, the magnetic shielding for aSPECT must manage with limited space. In addition, we must ensure that the additional magnetic forces on the magnet coils are not destructive. In order to determine the most suitable geometry for the magnetic shielding for aSPECT, we simulated a variety of possible geometries and combinations of shielding materials of non-linear permeability. The results of our simulations were checked through magnetic field measurements both with Hall and nuclear magnetic resonance probes. The experimental data are in good agreement with the simulated values: the mean deviation from the simulated exterior magnetic field is (−1.7±4.8)%. However, in the two critical regions, the internal magnetic field deviates by 0.2% (decay volume) and <1×10{sup −4} (analyzing plane) from the simulated values.

  4. The magnetic shielding for the neutron decay spectrometer aSPECT

    CERN Document Server

    Konrad, Gertrud; Baeßler, Stefan; Borg, Michael; Glück, Ferenc; Heil, Werner; Hiebel, Stefan; Horta, Raquel Munoz; Sobolev, Yury

    2014-01-01

    Many experiments in nuclear and neutron physics are confronted with the problem that they use a superconducting magnetic spectrometer which potentially affects other experiments by their stray magnetic field. The retardation spectrometer aSPECT consists, inter alia, of a superconducting magnet system that produces a strong longitudinal magnetic field of up to 6.2T. In order not to disturb other experiments in the vicinity of aSPECT, we had to develop a magnetic field return yoke for the magnet system. While the return yoke must reduce the stray magnetic field, the internal magnetic field and its homogeneity should not be affected. As in many cases, the magnetic shielding for aSPECT must manage with limited space. In addition, we must ensure that the additional magnetic forces on the magnet coils are not destructive. In order to determine the most suitable geometry for the magnetic shielding for aSPECT, we simulated a variety of possible geometries and combinations of shielding materials of non-linear permeabi...

  5. The magnetic shielding for the neutron decay spectrometer aSPECT

    International Nuclear Information System (INIS)

    Many experiments in nuclear and neutron physics are confronted with the problem that they use a superconducting magnetic spectrometer which potentially affects other experiments by their stray magnetic field. The retardation spectrometer aSPECT consists, inter alia, of a superconducting magnet system that produces a strong longitudinal magnetic field of up to 6.2 T. In order not to disturb other experiments in the vicinity of aSPECT, we had to develop a magnetic field return yoke for the magnet system. While the return yoke must reduce the stray magnetic field, the internal magnetic field and its homogeneity should not be affected. As in many cases, the magnetic shielding for aSPECT must manage with limited space. In addition, we must ensure that the additional magnetic forces on the magnet coils are not destructive. In order to determine the most suitable geometry for the magnetic shielding for aSPECT, we simulated a variety of possible geometries and combinations of shielding materials of non-linear permeability. The results of our simulations were checked through magnetic field measurements both with Hall and nuclear magnetic resonance probes. The experimental data are in good agreement with the simulated values: the mean deviation from the simulated exterior magnetic field is (−1.7±4.8)%. However, in the two critical regions, the internal magnetic field deviates by 0.2% (decay volume) and <1×10−4 (analyzing plane) from the simulated values

  6. The dopaminergic system in patients with functional dyspepsia analysed by single photon emission computed tomography (SPECT) and an alpha-methyl-para-tyrosine (AMPT) challenge test

    OpenAIRE

    Braak, Breg; Booij, Jan; Klooker, Tamira K.; van den Wijngaard, Rene M. J.; Boeckxstaens, Guy E. E.

    2011-01-01

    Purpose Functional dyspepsia (FD) is a chronic condition characterized by upper abdominal symptoms without an identifiable cause. While the serotonergic system is thought to play a key role in the regulation of gut physiology, the role of the dopaminergic system, which is important in the regulation of visceral pain and stress, is under-studied. Therefore, this study investigated the dopaminergic system and its relationship with drinking capacity and symptoms in FD patients. Methods In FD pat...

  7. 加拿大的动物福利制度%The Animal Welfare System of Canada

    Institute of Scientific and Technical Information of China (English)

    田琳

    2005-01-01

    This paper makes an analysis on the animal wefare system and takes emphasis on the anmal welfare system of Canda and the resaon Canda takes this system Also.the paper evaluates the resaonableness of this system and wants to give the examples of the tegislation of animal welfare system in our country.

  8. Evaluation of the quality of picture in studies of sect brain acquired with various collimators; Evaluacion de la calidad de imagen en estudios de spect cerebral adquiridos con distintos colimadores

    Energy Technology Data Exchange (ETDEWEB)

    Moran Velasco, V.; Prieto Azcarete, E.; Barbes Fernandez, B.; Sancho rodriguez, L.; Ribelles Segura, M. J.; Richter echevarria, J. A.; Arbizu Lostao, J.; Marti-Climent, J. M.

    2015-07-01

    On the practice clinic , the performance of the systems SPECT depends on in large measurement of the quality of image. The goal of East study was evaluate how affect the parameters of reconstruction of studies SPECT of perfusion brain acquired with a collimator of holes parallel (LEHR) and other of holes in fan (Fan-Beam). (Author)

  9. A Human-Animal-Robot Cooperative System for Anti-Personal Mine Detection

    OpenAIRE

    Nanayakkara, Thrishantha; Dissanayake, Tharindu; Mahipala, Prasanna; Sanjaya, K. A. Gayan

    2008-01-01

    To the best of the author's knowledge, this is the first time a human-robot-animal integrated system is tested for antipersonnel landmine detection. The proposed system tries to integrate distinct capabilities of three different systems to improve the effectiveness of landmine detection in a cluttered environment. The mongoose is found to be a rodent with extremely sensitive olfactory capabilities, dexterous navigation capabilities in a cluttered environment, and small enough to burrow throug...

  10. Accelerated Monte Carlo simulation for scatter correction in SPECT

    OpenAIRE

    Jong, Hugo Wilhelmus Antonius Maria de

    2002-01-01

    Single Photon Emission Tomography (SPECT) is often used in the clinical practice to image the distribution of photon-emitting pharmaceuticals in the patient. From this distribution, functional information can be obtained (e.g. perfusion and metabolic processes). To assess the viability of myocardial tissue using SPECT, one perfusion measurement is acquired with the patient in rest and one measurement after exercise. In dual-isotope SPECT, Tl-201 can be used for the rest acquisition and Tc-99m...

  11. Quantitation of myocardial blood flow and myocardial flow reserve with {sup 99m}Tc-sestamibi dynamic SPECT/CT to enhance detection of coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Bailing [University of Missouri-Columbia, Nuclear Science and Engineering Institute, Columbia, MO (United States); Chen, Fu-Chung; Chen, Chien-Cheng [Show Chwan Memorial Hospital, Section of Cardiology, Department of Internal Medicine, Changhua (China); Wu, Tao-Cheng [Taipei Veterans General Hospital, Section of Cardiology, Department of Internal Medicine, Taipei (China); Huang, Wen-Sheng [Changhua Christian Hospital, Department of Medical Research and Department of Nuclear Medicine, Changhua (China); Hou, Po-Nien [Chang Bing Show Chwan Memorial Hospital, Department of Nuclear Medicine, Lukong Town, Changhua Shien (China); Hung, Guang-Uei [Chang Bing Show Chwan Memorial Hospital, Department of Nuclear Medicine, Lukong Town, Changhua Shien (China); Central Taiwan University of Science and Technology, Department of Medical Imaging and Radiological Science, Taichung (China); China Medical University, Department of Biomedical Imaging and Radiological Science, Taichung (China)

    2014-12-15

    Conventional dual-head single photon emission computed tomography (SPECT)/CT systems capable of fast dynamic SPECT (DySPECT) imaging have a potential for flow quantitation. This study introduced a new method to quantify myocardial blood flow (MBF) and myocardial flow reserve (MFR) with DySPECT scan and evaluated the diagnostic performance of detecting coronary artery disease (CAD) compared with perfusion using invasive coronary angiography (CAG) as the reference standard. This study included 21 patients with suspected or known CAD who had received DySPECT, ECG-gated SPECT (GSPECT), and CAG (13 with ≥50 % stenosis in any vessel; non-CAD group: 8 with patent arteries or <50 % stenosis). DySPECT and GSPECT scans were performed on a widely used dual-head SPECT/CT scanner. The DySPECT imaging protocol utilized 12-min multiple back-and-forth gantry rotations during injections of {sup 99m}Tc-sestamibi (MIBI) tracer at rest or dipyridamole-stress stages. DySPECT images were reconstructed with full physical corrections and converted to the physical unit of becquerels per milliliter. Stress MBF (SMBF), rest MBF (RMBF), and MFR were quantified by a one-tissue compartment flow model using time-activity curves derived from DySPECT images. Perfusion images were processed for GSPECT scan and interpreted to obtain summed stress score (SSS) and summed difference score (SDS). Receiver-operating characteristic (ROC) analyses were conducted to evaluate the diagnostic performance of flow and perfusion. Using the criteria of ≥50 % stenosis as positive CAD, areas under the ROC curve (AUCs) of flow assessment were overall significantly greater than those of perfusion. For patient-based analysis, AUCs for MFR, SMBF, SSS, and SDS were 0.91 ± 0.07, 0.86 ± 0.09, 0.64 ± 0.12, and 0.59 ± 0.13. For vessel-based analysis, AUCs for MFR, SMBF, SSS, and SDS were 0.81 ± 0.05, 0.76 ± 0.06, 0.62 ± 0.07, and 0.56 ± 0.08, respectively. The preliminary data suggest that MBF quantitation with a

  12. Near Field UHF RFID Antenna System Enabling the Tracking of Small Laboratory Animals

    Directory of Open Access Journals (Sweden)

    Luca Catarinucci

    2013-01-01

    Full Text Available Radio frequency identification (RFID technology is more and more adopted in a wide range of applicative scenarios. In many cases, such as the tracking of small-size living animals for behaviour analysis purposes, the straightforward use of commercial solutions does not ensure adequate performance. Consequently, both RFID hardware and the control software should be tailored for the particular application. In this work, a novel RFID-based approach enabling an effective localization and tracking of small-sized laboratory animals is proposed. It is mainly based on a UHF Near Field RFID multiantenna system, to be placed under the animals’ cage, and able to rigorously identify the NF RFID tags implanted in laboratory animals (e.g., mice. Once the requirements of the reader antenna have been individuated, the antenna system has been designed and realized. Moreover, an algorithm based on the measured Received Signal Strength Indication (RSSI aiming at removing potential ambiguities in data captured by the multiantenna system has been developed and integrated. The animal tracking system has been largely tested on phantom mice in order to verify its ability to precisely localize each subject and to reconstruct its path. The achieved and discussed results demonstrate the effectiveness of the proposed tracking system.

  13. Brain MRI and SPECT in the diagnosis of early neurological involvement in Wilson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Piga, Mario; Satta, Loredana; Serra, Alessandra; Loi, Gianluigi [Policlinico Universitario, University of Cagliari, Nuclear Medicine, Department of Medical Science, Monserrato, Cagliari (Italy); Murru, Alessandra; Demelia, Luigi [Policlinico Universitario, University of Cagliari, Gastroenterology, Department of Medical Science, Monserrato, Cagliari (Italy); Sias, Alessandro [Policlinico Universitario, University of Cagliari, Radiology, Department of Medical Science, Monserrato, Cagliari (Italy); Marrosu, Francesco [Policlinico Universitario, University of Cagliari, Neurology, Department of Medical Science, Monserrato, Cagliari (Italy)

    2008-04-15

    To evaluate the impact of brain MRI and single-photon emission computed tomography (SPECT) in early detection of central nervous system abnormalities in patients affected by Wilson's disease (WD) with or without neurological involvement. Out of 25 consecutive WD patients, 13 showed hepatic involvement, ten hepatic and neurological manifestations, and twp hepatic, neurological, and psychiatric symptoms, including mainly movement disorders, major depression, and psychosis. Twenty-four healthy, age-gender matched subjects served as controls. All patients underwent brain MRI and {sup 99m}Tc-ethyl-cysteinate dimer (ECD) SPECT before starting specific therapy. Voxel-by-voxel analyses were performed using statistical parametric mapping to compare differences in {sup 99m}Tc-ECD brain uptake between the two groups. Brain MRI showed T2-weighted hyperintensities in seven patients (28%), six of whom were affected by hepatic and neurological forms. Brain perfusion SPECT showed pathological data in 19 patients (76%), revealing diffuse or focal hypoperfusion in superior frontal (Brodmann area (BA) 6), prefrontal (BA 9), parietal (BA 40), and occipital (BA 18, BA 39) cortices in temporal gyri (BA 37, BA 21) and in caudatus and putamen. Moreover, hepatic involvement was detected in nine subjects; eight presented both hepatic and neurological signs, while two exhibited WD-correlated hepatic, neurological, and psychiatric alterations. All but one patient with abnormal MRI matched with abnormal ECD SPECT. Pathologic MRI findings were obtained in six out of ten patients with hepatic and neurological involvement while abnormal ECD SPECT was revealed in eight patients. Both patients with hepatic, neurological, and psychiatric involvement displayed abnormal ECD SPECT and one displayed an altered MRI. These findings suggest that ECD SPECT might be useful in detecting early brain damage in WD, not only in the perspective of assessing and treating motor impairment but also in evaluating

  14. Estimating farm-gate ammonia emissions from major animal production systems in China

    Science.gov (United States)

    Gao, Zhiling; Ma, Wenqi; Zhu, Gaodi; Roelcke, Marco

    2013-11-01

    Ammonia (NH3) emissions from livestock production in China are an important contributor to the global NH3 budget. In this study, by estimating total nitrogen (N) intake based on herd structures and excreted N, a mass balance model was used to estimate NH3 losses from animal housing and manure storage facilities of dairy cattle, beef cattle, pigs, broiler and layer productions within animal farm gate and their corresponding NH3 emission intensities on the basis of animal products, N and protein in animal products. In 2009, NH3 emissions from pigs, layers, beef and dairy cattle and broiler production systems in China were 1.23, 0.52, 0.24, 0.21 and 0.09 million tons, respectively. The NH3 emission intensities were 26.6 g NH3-N kg-1 of pork, 28.1 g NH3-N kg-1 of layer eggs, 39.4 g NH3-N kg-1 of beef meat, 6.0 g NH3-N kg-1 of dairy milk and 4.6 g NH3-N kg-1 of chicken meat, or 1260 (pigs), 1514 (layers), 1297 (beef), 1107 (dairy) and 123 g NH3-N (broilers) kg-1 N in animal products. Of the sectors of NH3 emission, manure storage facilities and farmyard manure (FYM) in animal housing were the major contributors to the total NH3 emissions except for layers; housing emissions from slurry were also major contributors for dairy and pig production.

  15. A Video Camera Road Sign System of the Early Warning from Collision with the Wild Animals

    Directory of Open Access Journals (Sweden)

    Matuska Slavomir

    2016-05-01

    Full Text Available This paper proposes a camera road sign system of the early warning, which can help to avoid from vehicle collision with the wild animals. The system consists of camera modules placed down the particularly chosen route and the intelligent road signs. The camera module consists of the camera device and the computing unit. The video stream is captured from video camera using computing unit. Then the algorithms of object detection are deployed. Afterwards, the machine learning algorithms will be used to classify the moving objects. If the moving object is classified as animal and this animal can be dangerous for safety of the vehicle, warning will be displayed on the intelligent road sings.

  16. A repeater type biotelemetry system for use on wild big game animals.

    Science.gov (United States)

    Cupal, J J; Ward, A L; Weeks, R W

    1975-01-01

    A repeater type telemetry system was developed and field tested on a wild elk near laramie, Wyoming, in the summer of 1973. The telemetry system consisted of the following: (a) a heat flow rate sensing implanted transmitter, (b) a repeater type neck collar and (c) a portable receiving station consisting of a receiver, decoding circuitry and analog chart recorder. The transmitter in (a) produced relatively low frequency rf pulses whose repetition rate was directly proportional to heat flow rate through the hide of the animal. In (b), the pulses from the implant are sensed and retransmitted using a relatively high power, high frequency transmitter. A second rf pulse was generated whose pulse spacing was related to animal activity. Details of circuit design and performance are given. Field experience has shown that this method is extremely useful for the monitoring of biological data from secretive big game animals such as elk.

  17. [Effect of the low-frequency impulse magnetic field on the autonomic nervous system in animals].

    Science.gov (United States)

    Kraiukhina, K Iu; Lobkaeva, E P; Deviatkova, N S

    2010-01-01

    The effect of weak (up to 3.5 mT) low-frequency (up to 100 Hz) impulse magnetic field on the state of the vegetative nervous system of animals has been studied by analyzing the variability of the heart rate. The effect of the magnetic field was estimated by a specially designed complex for recording cardiac signals of animals. Several specially selected regimes of impulse magnetic fields were studied. It was shown that the impulse magnetic field possesses a high biological activity at all regimes used, and the indices of the vegetative nervous system after the exposure to the impulse magnetic field approach the values typical for normotonic animals. This makes it possible to use magnetic fields at these regimes in magnetotherapy. PMID:20968088

  18. Functional neuroimaging in epilepsy: FDG-PET and SPECT

    International Nuclear Information System (INIS)

    Finding epileptogenic zone is the most important step for the successful epilepsy surgery. F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and single photon emission computed tomography (SPECT) can be used in the localization of epileptogenic foci. In medial temporal lobe epilepsy, the diagnostic sensitivity of FDG-PET and ictal SPECT is excellent. However, detection of hippocampal sclerosis by MRI is so certain that use of FDG-PET and ictal SPECT in medial temporal lobe epilepsy is limited for some occasions. In neocortical epilepsy, the sensitivities of FDG-PET or ictal SPECT are fair. However, FDG-PET and ictal SPECT can have a crucial role in the localization of epileptogenic foci for non-lesional neocortical epilepsy. Interpretation of FDG-PET has been recently advanced by voxel-based analysis and automatic volume of interest analysis based on a population template. Both analytical methods can aid the objective diagnosis of epileptogenic foci. lctal SPECT was analyzed using subtraction methods and voxel-based analysis. Rapidity of injection of tracers, ictal EEG findings during injection of tracer, and repeated ictal SPECT were important technical issues of ictal SPECT. SPECT can also be used in the evaluation of validity of Wada test

  19. Dopamine transporter density of the basal ganglia assessed with I-123 IPT SPECT in methamphetamine abusers

    International Nuclear Information System (INIS)

    Functional imaging of dopamine transporter (DAT) defines integrity of the dopaminergic system, and DAT is the target site of drugs of abuse such as cocaine and methamphetamine. Functional imaging the DAT may be a sensitive and selective indicator of neurotoxic change by the drug. The aim of the present study is to evaluate the clinical implications of qualitative/quantitative analyses of dopamine transporter imaging in methamphetamine abusers. Six detoxified methamphetamine abusers (abuser group) and 4 volunteers (control group) were enrolled in this study. Brain MRI was performed in all of abuser group. Abuser group underwent psychiatric and depression assessment using brief psychiatric rating scale (BPRS) and Hamilton depression rating scale (HAMD), respectively. All of the subjects underwent I-123 IPT SPECT (IPT SPECT). IPT SPECT image was analysed with visual qualitative method and quantitative method using basal ganglia dopamine transporter (DAT) specific/non-specific binding ratio (SBR). Comparison of DAT SBR between abuser and control groups was performed. We also performed correlation tests between psychiatric and depression assessment results and DAT SBR in abuser group. All of abuser group showed normal MRI finding, but had residual psychiatric and depressive symptoms, and psychiatric and depressive symptom scores were exactly correlated (r=1.0, ρ =0.005) each other. Five of them showed abnormal finding on qualitative visual I-123 IPT SPECT. Abuser group had lower basal ganglia DAT SBR than that of control (2.38 ± 0.20 vs 3.04 ± 0.27, ρ =0.000). Psychiatric and depressive symptoms were negatively well correlated with basal ganglia DAT SBR (r=-0.908, ρ =0.012, r=-0.924, ρ =0.009) This results suggest that dopamine transporter imaging using I-123 IPT SPECT may be used to evaluate dopaminergic system of the basal ganglia and the clinical status in methamphetamine abusers

  20. Dopamine transporter density of the basal ganglia assessed with I-123 IPT SPECT in methamphetamine abusers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo Ryung; Ahn, Byeong Cheol [Kyungpook National University Medical School, Daegu (Korea, Republic of); Kewm, Do Hun [National Bugok Mental Hospital, Changryung (Korea, Republic of)] (and others)

    2005-10-15

    Functional imaging of dopamine transporter (DAT) defines integrity of the dopaminergic system, and DAT is the target site of drugs of abuse such as cocaine and methamphetamine. Functional imaging the DAT may be a sensitive and selective indicator of neurotoxic change by the drug. The aim of the present study is to evaluate the clinical implications of qualitative/quantitative analyses of dopamine transporter imaging in methamphetamine abusers. Six detoxified methamphetamine abusers (abuser group) and 4 volunteers (control group) were enrolled in this study. Brain MRI was performed in all of abuser group. Abuser group underwent psychiatric and depression assessment using brief psychiatric rating scale (BPRS) and Hamilton depression rating scale (HAMD), respectively. All of the subjects underwent I-123 IPT SPECT (IPT SPECT). IPT SPECT image was analysed with visual qualitative method and quantitative method using basal ganglia dopamine transporter (DAT) specific/non-specific binding ratio (SBR). Comparison of DAT SBR between abuser and control groups was performed. We also performed correlation tests between psychiatric and depression assessment results and DAT SBR in abuser group. All of abuser group showed normal MRI finding, but had residual psychiatric and depressive symptoms, and psychiatric and depressive symptom scores were exactly correlated (r=1.0, {rho} =0.005) each other. Five of them showed abnormal finding on qualitative visual I-123 IPT SPECT. Abuser group had lower basal ganglia DAT SBR than that of control (2.38 {+-} 0.20 vs 3.04 {+-} 0.27, {rho} =0.000). Psychiatric and depressive symptoms were negatively well correlated with basal ganglia DAT SBR (r=-0.908, {rho} =0.012, r=-0.924, {rho} =0.009) This results suggest that dopamine transporter imaging using I-123 IPT SPECT may be used to evaluate dopaminergic system of the basal ganglia and the clinical status in methamphetamine abusers.

  1. Dosimetry estimation of SPECT/CT for iodine 123-labeled metaiodobenzylguanidine in children

    Directory of Open Access Journals (Sweden)

    Aida Mhiri

    2015-09-01

    Full Text Available Purpose: To evaluate the additional radiation exposure in terms of effective dose incurred by patients in the CT (computed tomography portion of 123I-MIBG (123II-metaiodobenzylguanidine study with SPECT/CT (Single photon emission computed tomography associated to computed tomography in some pediatric patients of our department. Methods: Data from 123II-MIBG scans comprising 50 children were presented in this study. The contribution of total effective dose imparted by the nuclear tracer and patient's age was calculated. Effective dose from the CT portion of the examination is also estimated.SPECT acquisitions were performed with a dual-headed SPECT unit with an integrated 2-slice CT scanner (Symbia T E-Cam, Siemens Medical Systems, Erlangen, Germany. The CT acquisition were performed using a tube current modulation system (Care Dose 4D. Parameters used were: tube current of 30 - 60 mAs, slice thickness of 3-5 mm, and tube voltage of 110 kV. Results: Our results show that SPECT dosimetry depends on administered activity and patient’s age and weight. For CT scan, effective dose is affected by tube current (mA, tube potential (kVp, rotation speed, pitch, slice thickness, patient mass, and the exact volume of the patient that is being imaged. Conclusion: For children, 123II-MIBG study with SPECT/CT should be performed using the lowest available voltage and current. A sensible choice of these two parameters used can significantly reduce radiation dose, without any compromise in the quality of the diagnostic information.

  2. Effect of Probiotics on Central Nervous System Functions in Animals and Humans: A Systematic Review

    Science.gov (United States)

    Wang, Huiying; Lee, In-Seon; Braun, Christoph; Enck, Paul

    2016-01-01

    To systematically review the effects of probiotics on central nervous system function in animals and humans, to summarize effective interventions (species of probiotic, dose, duration), and to analyze the possibility of translating preclinical studies. Literature searches were conducted in Pubmed, Medline, Embase, and the Cochrane Library. Only randomized controlled trials were included. In total, 38 studies were included: 25 in animals and 15 in humans (2 studies were conducted in both). Most studies used Bifidobacterium (eg, B. longum, B. breve, and B. infantis) and Lactobacillus (eg, L. helveticus, and L. rhamnosus), with doses between 109 and 1010 colony-forming units for 2 weeks in animals and 4 weeks in humans. These probiotics showed efficacy in improving psychiatric disorder-related behaviors including anxiety, depression, autism spectrum disorder (ASD), obsessive-compulsive disorder, and memory abilities, including spatial and non-spatial memory. Because many of the basic science studies showed some efficacy of probiotics on central nervous system function, this background may guide and promote further preclinical and clinical studies. Translating animal studies to human studies has obvious limitations but also suggests possibilities. Here, we provide several suggestions for the translation of animal studies. More experimental designs with both behavioral and neuroimaging measures in healthy volunteers and patients are needed in the future. PMID:27413138

  3. On the Use of a Simple Physical System Analogy to Study Robustness Features in Animal Sciences.

    Directory of Open Access Journals (Sweden)

    Bastien Sadoul

    Full Text Available Environmental perturbations can affect the health, welfare, and fitness of animals. Being able to characterize and phenotype adaptive capacity is therefore of growing scientific concern in animal ecology and in animal production sciences. Terms borrowed from physics are commonly used to describe adaptive responses of animals facing an environmental perturbation, but no quantitative characterization of these responses has been made. Modeling the dynamic responses to an acute challenge was used in this study to facilitate the characterization of adaptive capacity and therefore robustness. A simple model based on a spring and damper was developed to simulate the dynamic responses of animals facing an acute challenge. The parameters characterizing the spring and the damper can be interpreted in terms of stiffness and resistance to the change of the system. The model was tested on physiological and behavioral responses of rainbow trout facing an acute confinement challenge. The model has proven to properly fit the different responses measured in this study and to quantitatively describe the different temporal patterns for each statistical individual in the study. It provides therefore a new way to explicitly describe, analyze and compare responses of individuals facing an acute perturbation. This study suggests that such physical models may be usefully applied to characterize robustness in many other biological systems.

  4. Dynamic pulmonary xenon-133 SPECT and three-dimensional display in the assessment of regional ventilatory function

    International Nuclear Information System (INIS)

    Usefulness of dynamic Xe-133 SPECT in detection of ventilation abnormality was examined in lung disease. Subjects were 7 healthy volunteers and 84 patients with lung disease (72 males, 12 females, age 47-78). Dynamic SPECT was performed using triple-head SPECT system with the return mode of continuous repetitive rotating acquisition. One SPECT image (slice thickness 3.2 mm) was reconstructed from the averaged data of the same angle (every 6 degrees). Following inhalation of Xe-133 gas, equilibrium and washout images were acquired by 3-D SPECT and constructed using surface rendering method from 32 transverse system image of the whole lung field. Then, each 3-D images were superposed to one 3-D image. Washout time (T 1/2) of Xe-133 gas delayed significantly in obstructive pulmonary disease compared with those of healthy volunteers and restrictive lung disease. In 10 cases of restrictive lung disease, abnormal shadow was detected with chest CT, but no delay of washout was recognized. In composition of 3-D image, spatial distribution and extent of Xe-133 retention were grasped easily. (K.H.)

  5. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo;

    2010-01-01

    radiolabeled liquid aerosols are not restricted to the presence of obstructive lung disease. Radiolabeled macroaggregated human albumin is the imaging agent of choice for perfusion scintigraphy. An optimal combination of nuclide activities and acquisition times for ventilation and perfusion, collimators......Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas over......, and imaging matrix yields an adequate V/Q SPECT study in approximately 20 minutes of imaging time. The recommended protocol based on the patient remaining in an unchanged position during the initial ventilation study and the perfusion study allows presentation of matching ventilation and perfusion slices...

  6. SPECT/CT in pediatric patient management

    Energy Technology Data Exchange (ETDEWEB)

    Nadel, Helen R. [British Columbia Children' s Hospital, University of British Columbia, Pediatric Radiologist and Nuclear Medicine Physician, Division of Nuclear Medicine Department of Radiology, Vancouver, British Columbia (Canada)

    2014-05-15

    Hybrid SPECT/CT imaging is becoming the standard of care in pediatric imaging. Indications are mainly for oncologic imaging including mIBG scintigraphy for neuroblastoma and I-123 post surgical imaging of children with thyroid carcinoma, bone scintigraphy for back pain, children referred from sports medicine and neurodevelopmentally delayed children presenting with pain symptoms. The studies provide improved diagnostic accuracy, and oncologic imaging that includes optimized CT as part of the SPECT/CT study may decrease the number of studies and sedation procedures an individual child may need. The studies, however, must be tailored on an individual basis as the addition of the CT study can increase exposure to the child and should only be performed after appropriate justification and with adherence to optimized low dose pediatric protocols. (orig.)

  7. SPECT/CT in pediatric patient management

    International Nuclear Information System (INIS)

    Hybrid SPECT/CT imaging is becoming the standard of care in pediatric imaging. Indications are mainly for oncologic imaging including mIBG scintigraphy for neuroblastoma and I-123 post surgical imaging of children with thyroid carcinoma, bone scintigraphy for back pain, children referred from sports medicine and neurodevelopmentally delayed children presenting with pain symptoms. The studies provide improved diagnostic accuracy, and oncologic imaging that includes optimized CT as part of the SPECT/CT study may decrease the number of studies and sedation procedures an individual child may need. The studies, however, must be tailored on an individual basis as the addition of the CT study can increase exposure to the child and should only be performed after appropriate justification and with adherence to optimized low dose pediatric protocols. (orig.)

  8. SPECT Molecular Imaging in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Ling Wang

    2012-01-01

    Full Text Available Parkinson's disease (PD is a common disorder, and the diagnosis of Parkinson's disease is clinical and relies on the presence of characteristic motor symptoms. The accuracy of the clinical diagnosis of PD is still limited. Functional neuroimaging using SPECT technique is helpful in patients with first signs of parkinsonism. The changes detected may reflect the disease process itself and/or compensatory responses to the disease, or they may arise in association with disease- and/or treatment-related complications. This paper addresses the value of SPECT in early differential diagnosis of PD and its potential as a sensitive tool to assess the pathophysiology and progression, as well as the therapeutic efficacy of PD.

  9. {sup 99m}Tc-MIBI pinhole SPECT in primary hyperparathyroidism: comparison with conventional SPECT, planar scintigraphy and ultrasonography

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, Thomas; Bodet-Milin, Caroline; Kraeber-Bodere, Francoise; Ansquer, Catherine [Hotel Dieu University Hospital, Nuclear Medicine Department, Nantes (France); INSERM CRCNA, Nantes (France); Oudoux, Aurore [Hotel Dieu University Hospital, Nuclear Medicine Department, Nantes (France); Mirallie, Eric [Hotel Dieu University Hospital, Surgery Department, Nantes (France); Seret, Alain [University of Liege, Institute of Physics, Experimental Medical Imaging, Liege (Belgium); Daumy, Isabelle [Ultrasonography Center, Nantes (France); Leux, Christophe [Saint Jacques University Hospital, PIMESP, Nantes (France)

    2008-03-15

    A pinhole collimator is routinely used to increase the resolution of scintigraphy. This prospective study was conducted to determine the interest of {sup 99m}Tc-MIBI pinhole single-photon emission computed tomography (SPECT) for the preoperative localisation of parathyroid lesions in primary hyperparathyroidism. All patients underwent a neck ultrasonography (US), {sup 99m}TcO{sub 4}{sup -} and {sup 99m}Tc-MIBI planar images and two consecutive SPECT with a parallel (C-SPECT) and a pinhole collimator (P-SPECT). P-SPECT was performed with a tilted detector equipped with a pinhole collimator and reconstructed with a dedicated OSEM algorithm. A diagnostic confidence score (CS) was assigned to each procedure considering intensity and extra-thyroidal location of suspected lesions: 0 = negative, 1 = doubtful, 2 = moderately positive, 3 = positive. The results of these preoperative localisation studies were compared with surgical, pathological and 6-month biological findings. Fifty-one patients cured after surgery were included. Surgery revealed 55 lesions (median weight 0.5 g, 11 in ectopy). Sensitivities of US, planar imaging, C-SPECT and P-SPECT were, respectively, 51, 76, 82 and 87%. Nine glands were only detected by tomography and five glands only by P-SPECT. {sup 99m}Tc-MIBI/{sup 99m}TcO{sub 4}{sup -} planar scans and P-SPECT were complementary and, when combined together, showed the highest sensitivity (93%). Compared with planar imaging and C-SPECT, P-SPECT increased CS for 42 and 53% of lesions, respectively, and contributed to markedly reduce the number of uncertain results. A combination of planar {sup 99m}Tc-MIBI/{sup 99m}TcO{sub 4}{sup -} scintigraphy and P-SPECT appears to be a highly accurate preoperative imaging procedure in primary hyperparathyroidism. (orig.)

  10. What's Inside Bodies? Learning about Skeletons and Other Organ Systems of Vertebrate Animals.

    Science.gov (United States)

    Tunnicliffe, Sue Dale; Reiss, Michael

    This paper describes a study of young children's understanding of what is on the inside of animals--skeletons and other organ systems. The study uses 2-D drawings based on the idea that a drawing is the representational model and is the outward expression of the mental model. The 617 drawings made by participants in the study were awarded one of…

  11. Augmenting Instructional Animations with a Body Analogy to Help Children Learn about Physical Systems.

    Science.gov (United States)

    Pouw, Wim T J L; van Gog, Tamara; Zwaan, Rolf A; Paas, Fred

    2016-01-01

    We investigated whether augmenting instructional animations with a body analogy (BA) would improve 10- to 13-year-old children's learning about class-1 levers. Children with a lower level of general math skill who learned with an instructional animation that provided a BA of the physical system, showed higher accuracy on a lever problem-solving reaction time task than children studying the instructional animation without this BA. Additionally, learning with a BA led to a higher speed-accuracy trade-off during the transfer task for children with a lower math skill, which provided additional evidence that especially this group is likely to be affected by learning with a BA. However, overall accuracy and solving speed on the transfer task was not affected by learning with or without this BA. These results suggest that providing children with a BA during animation study provides a stepping-stone for understanding mechanical principles of a physical system, which may prove useful for instructional designers. Yet, because the BA does not seem effective for all children, nor for all tasks, the degree of effectiveness of body analogies should be studied further. Future research, we conclude, should be more sensitive to the necessary degree of analogous mapping between the body and physical systems, and whether this mapping is effective for reasoning about more complex instantiations of such physical systems. PMID:27375538

  12. Management Systems for Organic EggProduction - Aiming to Improve AnimalHealth and Welfare

    DEFF Research Database (Denmark)

    Hegelund, Lene

    one production period. In the second part of the project a generic HACCP system was developed, using an expert panel analysis. The two management tools have very different approaches to improving animal health and welfare, and subsequently different methods, cost and advantages. This makes them...

  13. Courseware Development with Animated Pedagogical Agents in Learning System to Improve Learning Motivation

    Science.gov (United States)

    Chin, Kai-Yi; Hong, Zeng-Wei; Huang, Yueh-Min; Shen, Wei-Wei; Lin, Jim-Min

    2016-01-01

    The addition of animated pedagogical agents (APAs) in computer-assisted learning (CAL) systems could successfully enhance students' learning motivation and engagement in learning activities. Conventionally, the APA incorporated multimedia materials are constructed through the cooperation of teachers and software programmers. However, the thinking…

  14. Small animal optoacoustic tomography system for molecular imaging of contrast agents

    Science.gov (United States)

    Su, Richard; Liopo, Anton; Ermilov, Sergey A.; Oraevsky, Alexander A.

    2016-03-01

    We developed a new and improved Laser Optoacoustic Imaging System, LOIS-3D for preclinical research applications in small animal models. The advancements include (i) a new stabilized imaging module with a more homogeneous illumination of the mouse yielding a better spatial resolution (bioluminescence based modalities for molecular imaging in live mice.

  15. Regularized Kalman filtering for dynamic SPECT

    International Nuclear Information System (INIS)

    We introduce a novel Bregman projection approach applied to Kalman filter to ensure nonnegativity and spatial regularization. While we do not postulate a precise anterior information about the underlying dynamics of the physical process, we put our method into practice for the case of image reconstruction in time-dependent single photon emission computed tomography (SPECT). Classical SPECT reconstruction algorithms assume that the activity does not vary in time; this is not always the case in practice. Thus arises the need of exploring time-varying SPECT which is an ill-posed and an ill-conditioned reconstruction problem. In this paper, we will explore a Kalman reconstruction approach to estimate the dynamic activity. We formulate a linear state-space model of the problem which we solve using the optimal Kalman filter (KF) and smoother. However, Kalman output image is unidentifiable because of the presence of nonnegative activity. In addition, KF does a temporal smoothing but not a spatial regularization. We thus incorporate a projection method to ensure nonnegativity and to enforce a spatial regularization using Tikhonov and median approaches. Numerical results are provided to corroborate the effectiveness of our reconstruction method

  16. Reconstruction of dynamic gated cardiac SPECT

    International Nuclear Information System (INIS)

    In this paper we propose an image reconstruction procedure which aims to unify gated single photon emission computed tomography (SPECT) and dynamic SPECT into a single method. We divide the cardiac cycle into a number of gate intervals as in gated SPECT, but treat the tracer distribution for each gate as a time-varying signal. By using both dynamic and motion-compensated temporal regularization, our reconstruction procedure will produce an image sequence that shows both cardiac motion and time-varying tracer distribution simultaneously. To demonstrate the proposed reconstruction method, we simulated gated cardiac perfusion imaging using the gated mathematical cardiac-torso (gMCAT) phantom with Tc99m-Teboroxime as the imaging agent. Our results show that the proposed method can produce more accurate reconstruction of gated dynamic images than independent reconstruction of individual gate frames with spatial smoothness alone. In particular, our results show that the former could improve the contrast to noise ratio of a simulated perfusion defect by as much as 100% when compared to the latter

  17. A programmable closed-loop recording and stimulating wireless system for behaving small laboratory animals

    Science.gov (United States)

    Angotzi, Gian Nicola; Boi, Fabio; Zordan, Stefano; Bonfanti, Andrea; Vato, Alessandro

    2014-08-01

    A portable 16-channels microcontroller-based wireless system for a bi-directional interaction with the central nervous system is presented in this work. The device is designed to be used with freely behaving small laboratory animals and allows recording of spontaneous and evoked neural activity wirelessly transmitted and stored on a personal computer. Biphasic current stimuli with programmable duration, frequency and amplitude may be triggered in real-time on the basis of the recorded neural activity as well as by the animal behavior within a specifically designed experimental setup. An intuitive graphical user interface was developed to configure and to monitor the whole system. The system was successfully tested through bench tests and in vivo measurements on behaving rats chronically implanted with multi-channels microwire arrays.

  18. Volumetric Diffuse Optical Tomography for Small Animals Using a CCD-Camera-Based Imaging System

    Directory of Open Access Journals (Sweden)

    Zi-Jing Lin

    2012-01-01

    Full Text Available We report the feasibility of three-dimensional (3D volumetric diffuse optical tomography for small animal imaging by using a CCD-camera-based imaging system with a newly developed depth compensation algorithm (DCA. Our computer simulations and laboratory phantom studies have demonstrated that the combination of a CCD camera and DCA can significantly improve the accuracy in depth localization and lead to reconstruction of 3D volumetric images. This approach may present great interests for noninvasive 3D localization of an anomaly hidden in tissue, such as a tumor or a stroke lesion, for preclinical small animal models.

  19. Simultaneous Tc-99m/I-123 Dual Radionuclide Myocardial Perfusion/Innervation Imaging Using Siemens IQ-SPECT with SMARTZOOM Collimator

    OpenAIRE

    Du, Yong; Bhattacharya, Manojeet; Frey, Eric C.

    2014-01-01

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region compared to a typical parallel-hole low-energy high-resolution collimator but without the data truncation that can result with conventional converging-beam collimators. Th...

  20. Initial results from a PET/planar small animal imaging system

    OpenAIRE

    Siegel, Stefan; Vaquero, Juan José; Aloj, L; Seidel, Jürgen; Jagoda, E.; Gandler, William R.; Eckelman, W. C.; Green, Michael V.

    1999-01-01

    A pair of stationary, opposed scintillation detectors in time coincidence is being used to create planar projection or tomographic images of small animals injected with positronemitting radiotracers. The detectors are comprised of arrays of individual crystals of bismuth germanate coupled to position-sensitive photomultiplier tubes. The system uses FERA (LeCroy Research Systems) charge-sensitive ADCs and a low cost digital YO board as a E R A bus-to-host bridge. In pro...

  1. The Design of Wild Animals Monitoring System Based on 3G and Internet of Things

    OpenAIRE

    Jiang Xiao; Chenying Zeng; Zhouyan Yu

    2013-01-01

    As the rapid growth of economy and population, the wild animals’ habitat is badly damaged by the development and utilization of wild animals living environment by people. To carry out the research on wildlife monitoring technology is of great significance. Along with the advent of the era of 3G, 3G transmission technology is more and more advanced, and the Android operating system is currently the most popular operating system. The advantages and disadvantages of the existing monitoring techn...

  2. Systems and algorithms for wireless sensor networks based on animal and natural behavior

    OpenAIRE

    Sandra Sendra; Lorena Parra; Jaime Lloret; Shafiullah Khan

    2015-01-01

    In last decade, there have been many research works about wireless sensor networks (WSNs) focused on improving the network performance as well as increasing the energy efficiency and communications effectiveness. Many of these new mechanisms have been implemented using the behaviors of certain animals, such as ants, bees, or schools of fish.These systems are called bioinspired systems and are used to improve aspects such as handling large-scale networks, provide dynamic nature, and a...

  3. Dopamine-transporter SPECT and Dopamine-D2-receptor SPECT in basal ganglia diseases

    International Nuclear Information System (INIS)

    The basal ganglia comprise a group of subcortical nuclei, which are essential for motor control. Dysfunction of these areas, especially in dopaminergic transmission, results in disordered movement and neurological diseases such as Parkinson's disease, Wilson's disease, or Huntington disease. Positron emission tomography and single photon emission computed tomography (SPECT) have enhanced the understanding of the underlying pathophysiology, but they much more contribute to the early differential diagnosis of patients suffering from Parkinsonian syndrome in routine care. The present article provides dopamine transporter and D2 receptor SPECT findings in selected movement disorders. (orig.)

  4. SPECT and PET imaging in epilepsia; SPECT und PET in der Diagnostik von Epilepsien

    Energy Technology Data Exchange (ETDEWEB)

    Landvogt, C. [Mainz Univ. (Germany). Klinik und Poliklinik fuer Nuklearmedizin

    2007-09-15

    In preoperative localisation of epileptogenic foci, nuclear medicine diagnostics plays a crucial role. FDG-PET is used as first line diagnostics. In case of inconsistent MRI, EEG and FDG-PET findings, {sup 11}C-Flumazenil-PET or ictal and interictal perfusion-SPECT should be performed. Other than FDG, Flumazenil can help to identify the extend of the region, which should be resected. To enhance sensitivity and specificity, further data analysis using voxelbased statistical analyses or SISCOM (substraction ictal SPECT coregistered MRI) should be performed.

  5. Comparative systems biology between human and animal models based on next-generation sequencing methods

    Institute of Scientific and Technical Information of China (English)

    Yu-Qi ZHAO; Gong-Hua LI; Jing-Fei HUANG

    2013-01-01

    Animal models provide myriad benefits to both experimental and clinical research.Unfortunately,in many situations,they fall short of expected results or provide contradictory results.In part,this can be the result of traditional molecular biological approaches that are relatively inefficient in elucidating underlying molecular mechanism.To improve the efficacy of animal models,a technological breakthrough is required.The growing availability and application of the high-throughput methods make systematic comparisons between human and animal models easier to perform.In the present study,we introduce the concept of the comparative systems biology,which we define as "comparisons of biological systems in different states or species used to achieve an integrated understanding of life forms with all their characteristic complexity of interactions at multiple levels".Furthermore,we discuss the applications of RNA-seq and ChIP-seq technologies to comparative systems biology between human and animal models and assess the potential applications for this approach in the future studies.

  6. Microbiomes: unifying animal and plant systems through the lens of community ecology theory

    Directory of Open Access Journals (Sweden)

    Natalie eChristian

    2015-09-01

    Full Text Available The field of microbiome research is arguably one of the fastest growing in biology. Bacteria feature prominently in studies on animal health, but fungi appear to be the more prominent functional symbionts for plants. Despite the similarities in the ecological organization and evolutionary importance of animal-bacterial and plant-fungal microbiomes, there is a general failure across disciplines to integrate the advances made in each system. Researchers studying bacterial symbionts in animals benefit from greater access to efficient sequencing pipelines and taxonomic reference databases, perhaps due to high medical and veterinary interest. However, researchers studying plant-fungal symbionts benefit from the relative tractability of fungi under laboratory conditions and ease of cultivation. Thus each system has strengths to offer, but both suffer from the lack of a common conceptual framework. We argue that community ecology best illuminates complex species interactions across space and time. In this synthesis we compare and contrast the animal-bacterial and plant-fungal microbiomes using six core theories in community ecology (i.e., succession, community assembly, metacommunities, multi-trophic interactions, disturbance, restoration. The examples and questions raised are meant to spark discussion amongst biologists and lead to the integration of these two systems, as well as more informative, manipulatory experiments on microbiomes research.

  7. Clinical utility of spatially normalized PET and SPECT to evaluate patients with memory and cognitive impairments

    International Nuclear Information System (INIS)

    We assessed cerebral metabolism and blood flow in patients with memory and other cognitive impairment using the easy Z score imaging system (eZIS) and statistical parametric mapping (SPM) of FDG-PET and SPECT scans. Twenty patients with dementia (12 Alzheimer's disease (AD), 3 diffuse Lewy body disease (DLB), and 2 frontotemporal dementia (FTD)) and twenty with diffuse axonal injury (DAI) and cognitive impairments were studied with FDG-PET and ECD-SPECT. All images were analyzed using eZIS with the same processing procedures, including smoothing, normalization, and z-transformation, and compared to a database of normals. Z score maps were super-imposed on 3D MRI brain images. Group analyses were performed using SPM. Age-related declines in cerebral metabolism and blood flow were observed in the anterior cingulate association area. In contrast, reductions in these cerebral functions correlated best with severity of AD in the posterior cingulate association areas. In DLB and FTD, eZIS analysis of PET and SPECT revealed reductions of cerebral functions in specific areas. DAI showed low metabolism and blood flow in mesiofrontal cortex including the anterior cingulate association area. Dysfunction of the anterior cingulate association area in DAI, which resembled age-related cognitive decline, may be responsible for cognitive impairments. Overall, PET and SPECT scans showed significant correlations according to the type of dementia. Spatially normalized maps contributed to PET and SPECT image interpretation for patients with memory and cognitive impairments because better 3D visualization allowed more objective and systematic investigations. (author)

  8. The evolution of novel animal signals: silk decorations as a model system.

    Science.gov (United States)

    Walter, André; Elgar, Mark A

    2012-08-01

    Contemporary animal signals may derive from an elaboration of existing forms or novel non-signalling traits. Unravelling the evolution of the latter is challenging because experiments investigating the maintenance of the signal may provide little insight into its early evolution. The web decorations, or stabilimenta of some orb web spiders represent an intriguing model system to investigate novel animal signals. For over 100 years, biologists have struggled to explain why spiders decorate their webs with additional threads of silk, producing a conspicuous signal on a construction whose function is to entangle unsuspecting prey. The numerous explanations for the maintenance of this behaviour starkly contrast with the absence of a plausible explanation for its evolutionary origin. Our review highlights the difficulties in resolving both the evolution and maintenance of animal signalling, and inferring the causative arrow-even from experimental studies. Drawing on recent research that focuses on physiological processes, we provide a model of the evolutionary progression of web-decorating behaviour.

  9. Human-animal bonds II: the role of pets in family systems and family therapy.

    Science.gov (United States)

    Walsh, Froma

    2009-12-01

    The vast majority of pet owners regard their companion animals as family members, yet the role of pets in family systems and family therapy has received little attention in research, training, and practice. This article first notes the benefits of family pets and their importance for resilience. It then examines their role in couple and family processes and their involvement in relational dynamics and tensions. Next, it addresses bereavement in the loss of a cherished pet, influences complicating grief, and facilitation of mourning and adaptation. Finally, it explores the ways that clients' pets and the use of therapists' companion animals in animal-assisted therapy can inform and enrich couple and family therapy as valuable resources in healing. PMID:19930434

  10. Tl-201 and Tc-99m-Sestamibi SPECT for brain tumor detection: Comparison using MRI coregistration

    Energy Technology Data Exchange (ETDEWEB)

    Darcourt, J.; Itti, L.; Chang, L. [UCLA Medical Center, Torrance, CA (United States)] [and others

    1994-05-01

    Tl-201 (Tl) brain SPECT has been validated for the differential diagnosis of high versus low grade gliomas and recurrence versus radiation necrosis. We compared this technique to Tc-99m-Sestamibi (MIBI) SPECT in 9 patients (pts) with brain tumors using MRI coregistration. Pts were injected with 4 mCi of Tl and brain SPECT was performed using a dedicated brain system. This was immediately following by an injection of 20 mCi of MIBI and a brain SPECT using the same camera and with the pt in the same position. Four pts were studied for the diagnosis of radiation necrosis vs. tumor recurrence (2 had biopsy proven recurrence); 5 pts were studied for primary tumor evaluation: 2 meningiomas, 1 oligodendroglioma, 1 low-grade astrocytoma, 1 cysticercosis. Coregistration was performed for every pt by 3D surface fitting of the inner skull MIBI contour to the MRI brain surface extracted automatically. ROIs were drawn on the MRI and applied to the coregistered MIBI and Tl images for tumor to non-tumor ratios T/NT calculations. There was a tight correlation between MIBI and Tl T/NT (r-0.96) and a 1.5 threshold separated radiation necrosis from recurrence and low from high grade primary tumors. Therefore, the data already available on Tl brain tumor imaging can be used with MIBI SPECT with the advantage of a better image quality (2.5 to 4 times more counts).

  11. Feasibility study of segmented-parallel-hole collimator for stationary cardiac SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Yanfei [Utah Univ., Salt Lake City, UT (United States). Center for Advanced Imaging Research (UCAIR); Utah Univ., Salt Lake City, UT (United States). Dept. of Bioengineering; Zeng, Gengsheng L. [Utah Univ., Salt Lake City, UT (United States). Center for Advanced Imaging Research (UCAIR)

    2011-07-01

    The goal of this research is to propose a stationary cardiac SPECT system using the segmented parallel-beam collimator and to perform some computer simulations to test the feasibility. A stationary system has a benefit of acquiring temporally consistent projections. The most challenging issue in building a stationary system is to provide sufficient projection view-angles. A 2-detector, multi-segment collimator system with 14 view-angles over 180 in the transaxial direction and 3 view-angles in the axial directions was designed, where the two detectors are configured 90 apart in an L-shape. We applied the parallel-beam imaging geometry and used segmented parallel-hole collimator to acquire SPECT data. To improve the system condition due to data truncation, we measured more rays within the field-of-view (FOV) of the detector by using a relatively small detector bin-size. In image reconstruction, we used the maximum-likelihood expectation-maximization (ML-EM) algorithm. The criterion for evaluating the system is the summed pixel-to-pixel distance that measures the discrepancy between the 3D gold-standard image and the reconstructed 3D region of interest (ROI) with truncated data. Effects of limited number of view-angles, data truncation, varying body habitus, attenuation, and noise were considered in the system design. As a result, our segmented-parallel-beam stationary cardiac SPECT system is able to acquire sufficient data for cardiac imaging and has a high sensitivity gain. (orig.)

  12. Stages in the development of a dedicated positron emission tomography system for imaging small animals

    International Nuclear Information System (INIS)

    The stages in the development of a small diameter positron emission tomograph for the study of small animals are described. Initial experiments were performed with a pair of commercial, 4 mm multicrystal detectors at an inter-detector separation of 100 mm. The system's performance in this geometry was evaluated using physical and biological studies. These indicated the feasibility of using such detectors at this separation to delineate regional tracer kinetic information from small experimental animals. A small diameter, septa-less tomograph incorporating the detectors was simulated and biological data acquired which indicated the benefits of tomography compared with planar studies for imaging small animals. A tomograph incorporating 16 of the latest generation of block detector (3 mm crystals) in a ring diameter of 115 mm was constructed. The detectors were mounted on a 1 m2 vertical gantry and the system incorporated commercial hardware and software for data acquisition. The physical performance of the tomograph indicated that the spatial resolutions expected from the crystal size could be achieved at the centre of the field of view for all axes. However, the small diameter of the system resulted in larger degradation of the spatial resolution off-axis due to non-uniformity of detector sampling and photon penetration into neighbouring crystals. In spite of the physical problems posed by the small diameter of the system, useful in vivo studies on small animals are being routinely performed which assist in the development of novel radioligands and the interpretation of clinical positron emission tomography data and, in addition, provide a unique methodology to study the serial aspects of animal models of human disease. (author). 15 refs, 7 figs, 2 tabs

  13. A multiresolution restoration method for cardiac SPECT

    Science.gov (United States)

    Franquiz, Juan Manuel

    Single-photon emission computed tomography (SPECT) is affected by photon attenuation and image blurring due to Compton scatter and geometric detector response. Attenuation correction is important to increase diagnostic accuracy of cardiac SPECT. However, in attenuation-corrected scans, scattered photons from radioactivity in the liver could produce a spillover of counts into the inferior myocardial wall. In the clinical setting, blurring effects could be compensated by restoration with Wiener and Metz filters. Inconveniences of these procedures are that the Wiener filter depends upon the power spectra of the object image and noise, which are unknown, while Metz parameters have to be optimized by trial and error. This research develops an alternative restoration procedure based on a multiresolution denoising and regularization algorithm. It was hypothesized that this representation leads to a more straightforward and automatic restoration than conventional filters. The main objective of the research was the development and assessment of the multiresolution algorithm for compensating the liver spillover artifact. The multiresolution algorithm decomposes original SPECT projections into a set of sub-band frequency images. This allows a simple denoising and regularization procedure by discarding high frequency channels and performing inversion only in low and intermediate frequencies. The method was assessed in bull's eye polar maps and short- axis attenuation-corrected reconstructions of a realistic cardiac-chest phantom with a custom-made liver insert and different 99mTc liver-to-heart activity ratios. Inferior myocardial defects were simulated in some experiments. The cardiac phantom in free air was considered as the gold standard reference. Quantitative analysis was performed by calculating contrast of short- axis slices and the normalized chi-square measure, defect size and mean and standard deviation of polar map counts. The performance of the multiresolution

  14. Noninvasive quantification of myocardial perfusion heterogeneity by Markovian analysis in SPECT nuclear imaging

    International Nuclear Information System (INIS)

    Cardiovascular diseases are the leading cause of mortality worldwide, and third of these deaths are caused by coronary artery disease and rupture of vulnerable atherosclerotic plaques. The heterogeneous alteration of the coronary microcirculation is an early phenomenon associated with many cardiovascular risk factors that can strongly predict the subsequent development of coronary artery disease, and lead to the appearance of myocardial perfusion heterogeneity. Nuclear medicine allows the study of myocardial perfusion in clinical routine through scintigraphic scans performed after injection of a radioactive tracer of coronary blood flow. Analysis of scintigraphic perfusion images currently allows the detection of myocardial ischemia, but the ability of the technique to measure the perfusion heterogeneity in apparently normally perfused areas is unknown. The first part of this thesis focuses on a retrospective clinical study to determine the feasibility of myocardial perfusion heterogeneity quantification measured by Thallium-201 single photon emission computed tomography (SPECT) in diabetic patients compared with healthy subjects. The clinical study has demonstrated the ability of routine thallium-201 SPECT imaging to quantify greater myocardial perfusion heterogeneity in diabetic patients compared with normal subjects. The second part of this thesis tests the hypothesis that the myocardial perfusion heterogeneity could be quantified in small animal SPECT imaging by Thallium-201 and/or Technetium-99m-MIBI in an experimental study using two animal models of diabetes, and is correlated with histological changes. The lack of difference in myocardial perfusion heterogeneity between control and diabetic animals suggests that animal models are poorly suited, or that the technology currently available does not seem satisfactory to obtain similar results as the clinical study. (author)

  15. The effect of acquisition interval and spatial resolution on dynamic cardiac imaging with a stationary SPECT camera

    International Nuclear Information System (INIS)

    The current SPECT scanning paradigm that acquires images by slow rotation of multiple detectors in body-contoured orbits around the patient is not suited to the rapid collection of tomographically complete data. During rapid image acquisition, mechanical and patient safety constraints limit the detector orbit to circular paths at increased distances from the patient, resulting in decreased spatial resolution. We consider a novel dynamic rotating slant-hole (DyRoSH) SPECT camera that can collect full tomographic data every 2 s, employing three stationary detectors mounted with slant-hole collimators that rotate at 30 rpm. Because the detectors are stationary, they can be placed much closer to the patient than is possible with conventional SPECT systems. We propose that the decoupling of the detector position from the mechanics of rapid image acquisition offers an additional degree of freedom which can be used to improve accuracy in measured kinetic parameter estimates. With simulations and list-mode reconstructions, we consider the effects of different acquisition intervals on dynamic cardiac imaging, comparing a conventional three detector SPECT system with the proposed DyRoSH SPECT system. Kinetic parameters of a two-compartment model of myocardial perfusion for technetium-99m-teboroxime were estimated. When compared to a conventional SPECT scanner for the same acquisition periods, the proposed DyRoSH system shows equivalent or reduced bias or standard deviation values for the kinetic parameter estimates. The DyRoSH camera with a 2 s acquisition period does not show any improvement compared to a DyRoSH camera with a 10 s acquisition period

  16. Quantitative Monte Carlo-based holmium-166 SPECT reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Elschot, Mattijs; Smits, Maarten L. J.; Nijsen, Johannes F. W.; Lam, Marnix G. E. H.; Zonnenberg, Bernard A.; Bosch, Maurice A. A. J. van den; Jong, Hugo W. A. M. de [Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Viergever, Max A. [Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands)

    2013-11-15

    Purpose: Quantitative imaging of the radionuclide distribution is of increasing interest for microsphere radioembolization (RE) of liver malignancies, to aid treatment planning and dosimetry. For this purpose, holmium-166 ({sup 166}Ho) microspheres have been developed, which can be visualized with a gamma camera. The objective of this work is to develop and evaluate a new reconstruction method for quantitative {sup 166}Ho SPECT, including Monte Carlo-based modeling of photon contributions from the full energy spectrum.Methods: A fast Monte Carlo (MC) simulator was developed for simulation of {sup 166}Ho projection images and incorporated in a statistical reconstruction algorithm (SPECT-fMC). Photon scatter and attenuation for all photons sampled from the full {sup 166}Ho energy spectrum were modeled during reconstruction by Monte Carlo simulations. The energy- and distance-dependent collimator-detector response was modeled using precalculated convolution kernels. Phantom experiments were performed to quantitatively evaluate image contrast, image noise, count errors, and activity recovery coefficients (ARCs) of SPECT-fMC in comparison with those of an energy window-based method for correction of down-scattered high-energy photons (SPECT-DSW) and a previously presented hybrid method that combines MC simulation of photopeak scatter with energy window-based estimation of down-scattered high-energy contributions (SPECT-ppMC+DSW). Additionally, the impact of SPECT-fMC on whole-body recovered activities (A{sup est}) and estimated radiation absorbed doses was evaluated using clinical SPECT data of six {sup 166}Ho RE patients.Results: At the same noise level, SPECT-fMC images showed substantially higher contrast than SPECT-DSW and SPECT-ppMC+DSW in spheres ≥17 mm in diameter. The count error was reduced from 29% (SPECT-DSW) and 25% (SPECT-ppMC+DSW) to 12% (SPECT-fMC). ARCs in five spherical volumes of 1.96–106.21 ml were improved from 32%–63% (SPECT-DSW) and 50%–80

  17. Characterizing the MTF in 3D for a Quantized SPECT Camera Having Arbitrary Trajectories.

    Science.gov (United States)

    Madhav, Priti; Bowsher, James E; Cutler, Spencer J; Tornai, Martin P

    2009-06-01

    The emergence of application-specific 3D tomographic small animal and dedicated breast imaging systems has stimulated the development of simple methods to quantify the spatial resolution or Modulation Transfer Function (MTF) of the system in three dimensions. Locally determined MTFs, obtained from line source measurements at specific locations, can characterize spatial variations in the system resolution and can help correct for such variations. In this study, a method is described to measure the MTF in 3D for a compact SPECT system that uses a 16 × 20 cm(2) CZT-based compact gamma camera and 3D positioning gantry capable of moving in different trajectories. Image data are acquired for a novel phantom consisting of three radioactivity-filled capillary tubes, positioned nearly orthogonally to each other. These images provide simultaneous measurements of the local MTF along three dimensions of the reconstructed imaged volume. The usefulness of this approach is shown by characterizing the MTF at different locations in the reconstructed imaged 3D volume using various (1) energy windows; (2) iterative reconstruction parameters including number of iterations, voxel size, and number of projection views; (3) simple and complex 3D orbital trajectories including simple vertical axis of rotation, simple tilt, complex circle-plus-arc, and complex sinusoids projected onto a hemisphere; and (4) object shapes in the camera's field of view. Results indicate that the method using the novel phantom can provide information on spatial resolution effects caused by system design, sampling, energy windows, reconstruction parameters, novel 3D orbital trajectories, and object shapes. Based on these measurements that are useful for dedicated tomographic breast imaging, it was shown that there were small variations in the MTF in 3D for various energy windows and reconstruction parameters. However, complex trajectories that uniformly sample the breast volume of interest were quantitatively

  18. A small animal holding fixture system with positional reproducibility for longitudinal multimodal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kokuryo, Daisuke; Kimura, Yuichi; Obata, Takayuki; Yamaya, Taiga; Kawamura, Kazunori; Zhang, Ming-Rong; Kanno, Iwao; Aoki, Ichio, E-mail: ukimura@ieee.or [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan)

    2010-07-21

    This study presents a combined small animal holding fixture system, termed a 'bridge capsule', which provides for small animal re-fixation with positional reproducibility. This system comprises separate holding fixtures for the head and lower body and a connecting part to a gas anesthesia system. A mouse is fixed in place by the combination of a head fixture with a movable part made from polyacetal resin, a lower body fixture made from vinyl-silicone and a holder for the legs and tail. For re-fixation, a similar posture could be maintained by the same holding fixtures and a constant distance between the head and lower body fixtures is maintained. Artifacts caused by the bridge capsule system were not observed on magnetic resonance (MRI) and positron emission tomography (PET) images. The average position differences of the spinal column and the iliac body before and after re-fixation for the same modality were approximately 1.1 mm. The difference between the MRI and PET images was approximately 1.8 mm for the lower body fixture after image registration using fiducial markers. This system would be useful for longitudinal, repeated and multimodal imaging experiments requiring similar animal postures.

  19. The research on detector sensitivity of full-coverage animal PET system

    International Nuclear Information System (INIS)

    In order to improve detector sensitivity of small animal PET system and increase geometry angle coverage rate of detector, a full-coverage animal PET system design is proposed, in which two square detectors are added to the original circular PET scanner's both ends. There is a hole in the middle of each of the two square detectors. To investigate the detector sensitivity performance of the new system, GATE was used to build system model and simulation was performed with three different types of radioactive sources which is point, plane and volume sources. The simulation results demonstrate that the change to the detector structure effectively increase the detector sensitivity, and the number of line of responses (LOR) is doubled more than before which will potentially benefit image reconstruction; meanwhile the simulation results of point and plane radioactive sources show that the proposed full-coverage arrangement of detectors improves the uniformity of sensitivity in the FOV, however the hole on the board detector weakens the improvement of detector sensitivity, especially to the radioactive source which is put on the edge of the FOV. Full-coverage animal PET system as proposed can improve detector sensitivity and image quality. (authors)

  20. Frequencies and implications of discordant findings of interictal SPECT and itcal SPECT in patients with intractable epilepsy

    International Nuclear Information System (INIS)

    Interictal SPECT could be used at best as a reference image to ictal SPECT, and cause sometimes confusion if it had given unexplained discordant findings from ictal SPECT. We investigated implications of discordant findings which occurred in 26 among 268 which found their epileptogenic zones using ictal EEG and/or operative outcome. Sensitivity of interictal SPECT was only 36%. Among these 268, 69 patients had no structural lesions on MR, 14 of whom had decreased perfusion on interictal SPECT (8 trues and 6 falses (adjacent or contralateral)). Structural lesion were found in 199 on MR, 103 of whom had decreased perfusion (89 trues and 14 falses). Among 26 having discordant cases, 10 interictal SPECT were proved wrong after operation and/or invasive EEG and the other 16 were on speculation using PET and ictal EEG. Ictal hyperperfusion was observed in 14 patients in these interictal SPECT. Six ictal studies were found postictal accompanied by contralateral propagation or not. Two patients had dual pathology, and the remaining 2 unknown. Interictal SPECT was done on the 2nd day after ictal study(24), the 3rd day (18), the 4th day(16), the 5th day (23). Four among 24 interictal studies (17%) of the 2nd day and the other 4 among 57 of 3rd to 5th day revealed ictal hyperperfusion on interictal SPECT. Six interictal studies (2.7% among 221) acquired on the indifferent day showed also ictal hyperperfusion. We could suggest that the next day is not desirable for interictal SPECT after ictal study, as ictal hyperperfusion on interictal study confounded more than postictal findings of ictal SPECT in the discrete localization than reassuring ictal study

  1. Development and validation of a treatment planning system for small animal radiotherapy: SmART-Plan

    International Nuclear Information System (INIS)

    Background and purpose: Image-guided equipment for precision irradiation of small animals for pre-clinical radiotherapy research became recently available. To enable downscaled radiotherapy studies that can be translated into human radiotherapy knowledge, a treatment planning system for pre-clinical studies is required. Material and methods: A dedicated treatment planning system (SmART-Plan) for small animal radiotherapy studies was developed. It is based on Monte Carlo simulation of particle transport in an animal. The voxel geometry is derived from the onboard cone beam CT imaging panel. SmART-Plan was validated using radiochromic film (RCF) dosimetry in various phantoms: uniform, multislab and a realistic plasticized mouse geometry. Results: Good agreement was obtained between SmART-Plan dose calculations and RCF dose measurements in all phantoms. For various delivered plans agreement was obtained within 10% for the majority of the targeted dose region, with larger differences between 10% and 20% near the penumbra regions and for the smallest 1 mm collimator. Absolute depth and lateral dose distributions showed better agreement for 5 and 15-mm collimators than for a 1-mm collimator, indicating that accurate dose prediction for the smallest field sizes is difficult. Conclusion: SmART-Plan offers a useful dose calculation tool for pre-clinical small animal irradiation studies

  2. Interest of the SPECT-CT to D.M.S.A.-V images merging in the management of thyroid medullary carcinomas; Interets de la fusion d'image TEMP-TDM au DMSA-V dans la prise en charge des carcinomes medullaires de la thyroide

    Energy Technology Data Exchange (ETDEWEB)

    Menemani, A.; Mebarki, M.; Slama, A.; Khellil, N.; Meghelli, S.; Lachachi, B.; Krim, M.; Merad, S.; Berber, N. [CHU Tlemcen, Service de medecine nucleaire (Algeria)

    2010-07-01

    Purpose: hybrid imaging associating SPECT and CT, integers functional and anatomical data. The aim of this communication is to present the contribution of the SPECT coupled to CT with D.M.S.A. V. in our daily practice of the medullary thyroid carcinomas management. Conclusions: the SPECT/CT got by a system of images merging allows a better anatomical location and improves the management of thyroid medullary carcinomas. (N.C.)

  3. Ictal cerebral perfusion patterns in partial epilepsy: SPECT subtraction

    International Nuclear Information System (INIS)

    To investigate the various ictal perfusion patterns and find the relationships between clinical factors and different perfusion patterns. Interictal and ictal SPECT and SPECT subtraction were performed in 61 patients with partial epilepsy. Both positive images showing ictal hyperperfusion and negative images revealing ictal hypoperfusion were obtained by SPECT subtraction. The ictal perfusion patterns of subtracted SPECT were classified into focal hyperperfusion, hyperperfusion-plus, combined hyperperfusion-hypoperfusion, and focal hypoperfusion only. The concordance rates with epileptic focus were 91.8% in combined analysis of ictal hyperperfusion and hypoperfusion images of subtracted SPECT, 85.2% in hyperperfusion images only of subtracted SPECT, and 68.9% in conventional ictal SPECT analysis. Ictal hypoperfusion occurred less frequently in temporal lobe epilepsy (TLE) than extratemporal lobe epilepsy. Mesial temporal hyperperfusion alone was seen only in mesial TLE while lateral temporal hyperperfusion alone was observed only in neocortical TLE. Hippocampal sclerosis had much lower incidence of ictal hypoperfusion than any other pathology. Some patients showed ictal hypoperfusion at epileptic focus with ictal hyperperfusion in the neighboring brain regions where ictal discharges propagated. Hypoperfusion as well as hyperperfusion in ictal SPECT should be considered for localizing epileptic focus. Although the mechanism of ictal hypoperfusion could be an intra-ictal early exhaustion of seizure focus or a steal phenomenon by the propagation of ictal discharges to adjacent brain areas, further study is needed to elucidate it.=20

  4. Interobserver variation in diagnosis of dementia by brain perfusion SPECT

    International Nuclear Information System (INIS)

    Brain perfusion SPECT (BP-SPECT) has characteristic patterns of abnormality, enabling the differential diagnosis of dementia. The purpose of this study was to measure interobserver variations in the diagnosis of dementia using BP-SPECT. BP-SPECT images of 57 cases, 19 of Alzheimer's disease (AD), eight of multi-infarct dementia (MID), three of Pick's disease, five of other dementias, and 22 normal controls, were interpreted by ten nuclear medicine physicians with varying levels of experience. Brain MR images of the cases were then interpreted apart from SPECT. The physicians independently rated all of the diagnoses listed beforehand according to a five-point scale, with clinical information provided. Receiver-operating characteristic (ROC) curves and the area under the ROC curve (Az) were calculated. Az varied from 0.48 to 0.87. Mean Az's were significantly larger (p<0.05) in the diagnosis by SPECT than in that by MRI (0.715 and 0.629 for dementia vs. normal, 0.670 and 0.560 for AD or MID vs. normal, 0.610 and 0.416 for AD vs. normal, and 0.672 and 0.412 for AD vs. MID, respectively). Considerable interobserver variation was present in BP-SPECT interpretation, BP-SPECT may be more effective for the evaluation of dementia than MRI when the same nuclear medicine physicians interpret both images. (author)

  5. Mass effect of injected dose in small rodent imaging by SPECT and PET

    Energy Technology Data Exchange (ETDEWEB)

    Kung, M.-P. [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Kung, Hank F. [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States) and Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (United States)]. E-mail: kunghf@sunmac.spect.upenn.edu

    2005-10-01

    This paper discusses the effect of mass (chemical quantity) of injected dose on positron emission tomography (PET) and single-photon emission computed tomography (SPECT). Commonly, PET or SPECT imaging study uses a 'no-carrier added' dose, which contains a small amount of radioactive imaging agent (in picogram to microgram). For small animal (rodent) imaging studies, specifically targeting binding sites or biological processes, the mass (chemical quantity) in the dose may significantly modify the binding, pharmacokinetics and, ultimately, the imaging outcome. Due to differences in size and other physiological factors between humans and rodents, there is a dramatic divergence of mass effect between small animal and human imaging study. In small animal imaging studies, the mass, or effective dose (ED{sub 50}), a dose required for 50% of receptor or binding site occupancy, is usually not directly related to binding potential (B {sub max}/K {sub d}) (measured by in vitro binding assay). It is likely that dynamic interplays between specific and nonspecific binding in blood circulation, transient lung retention, kidney excretion, liver-gallbladder flow, soft tissue retention as well as metabolism could each play a significant role in determining the concentration of the tracer in the target regions. When using small animal imaging for studying drug occupancy (either by a pretreatment, coinjection or chasing dose), the mass effects on imaging outcome are important factors for consideration.

  6. Dual-energy micro-CT imaging of pulmonary airway obstruction: correlation with micro-SPECT

    Science.gov (United States)

    Badea, C. T.; Befera, N.; Clark, D.; Qi, Y.; Johnson, G. A.

    2014-03-01

    To match recent clinical dual energy (DE) CT studies focusing on the lung, similar developments for DE micro-CT of the rodent lung are required. Our group has been actively engaged in designing pulmonary gating techniques for micro- CT, and has also introduced the first DE micro-CT imaging method of the rodent lung. The aim of this study was to assess the feasibility of DE micro-CT imaging for the evaluation of airway obstruction in mice, and to compare the method with micro single photon emission computed tomography (micro-SPECT) using technetium-99m labeled macroaggregated albumin (99mTc-MAA). The results suggest that the induced pulmonary airway obstruction causes either atelectasis, or air-trapping similar to asthma or chronic bronchitis. Atelectasis could only be detected at early time points in DE micro-CT images, and is associated with a large increase in blood fraction and decrease in air fraction. Air trapping had an opposite effect with larger air fraction and decreased blood fraction shown by DE micro-CT. The decrease in perfusion to the hypoventilated lung (hypoxic vasoconstriction) is also seen in micro-SPECT. The proposed DE micro-CT technique for imaging localized airway obstruction performed well in our evaluation, and provides a higher resolution compared to micro-SPECT. Both DE micro-CT and micro-SPECT provide critical, quantitative lung biomarkers for image-based anatomical and functional information in the small animal. The methods are readily linked to clinical methods allowing direct comparison of preclinical and clinical results.

  7. Evaluation of performance quality of SPECT camera in Sharyati Hospital of Tehran University of Medical Sciences

    International Nuclear Information System (INIS)

    In nuclear medicine, there are two methods of imaging, planar and tomography. Single photon emission computerized tomography (SPECT) shows better image details and therefore is influenced more by image parameters such as resolution, uniformity, sensitivity, etc. Manufacturers provide customers with data which are obtained by complicated and sometimes secret methods. Marketing companies test and verify these data and buyers perform acceptance testing on installation of system. Since acceptance testing is not usually done in our country, follow up of system performance and therefore setting up of a comprehensive quality control program faces difficulty. In this research which was done sometimes after installation, evaluation of SPECT system was carried out and data obtained were compared with those of manufacturer catalogue. It was found that in most cases our figures do not correspond to those of manufacturer catalogue, therefore acceptance testing using standard and precision devices being carried out by trained personnel is strongly recommended

  8. Influence of respiratory gating, image filtering, and animal positioning on high-resolution electrocardiography-gated murine cardiac single-photon emission computed tomography

    NARCIS (Netherlands)

    Wu, Chao; Vaissier, Pieter E. B.; Vastenhouw, Brendan; de Jong, Johan R.; Slart, Riemer H. J. A.; Beekman, Freek J.

    2015-01-01

    Cardiac parameters obtained from single-photon emission computed tomographic (SPECT) images can be affected by respiratory motion, image filtering, and animal positioning. We investigated the influence of these factors on ultra-high-resolution murine myocardial perfusion SPECT. Five mice were inject

  9. Global positioning system and associated technologies in animal behaviour and ecological research

    Science.gov (United States)

    Tomkiewicz, Stanley M.; Fuller, Mark R.; Kie, John G.; Bates, Kirk K.

    2010-01-01

    Biologists can equip animals with global positioning system (GPS) technology to obtain accurate (less than or equal to 30 m) locations that can be combined with sensor data to study animal behaviour and ecology. We provide the background of GPS techniques that have been used to gather data for wildlife studies. We review how GPS has been integrated into functional systems with data storage, data transfer, power supplies, packaging and sensor technologies to collect temperature, activity, proximity and mortality data from terrestrial species and birds. GPS 'rapid fixing' technologies combined with sensors provide location, dive frequency and duration profiles, and underwater acoustic information for the study of marine species. We examine how these rapid fixing technologies may be applied to terrestrial and avian applications. We discuss positional data quality and the capability for high-frequency sampling associated with GPS locations. We present alternatives for storing and retrieving data by using dataloggers (biologging), radio-frequency download systems (e.g. very high frequency, spread spectrum), integration of GPS with other satellite systems (e.g. Argos, Globalstar) and potential new data recovery technologies (e.g. network nodes). GPS is one component among many rapidly evolving technologies. Therefore, we recommend that users and suppliers interact to ensure the availability of appropriate equipment to meet animal research objectives.

  10. A New Quad-Modality Integrated Molecular Imaging System for Small Animals%一种新型的小动物四模态分子医学影像系统

    Institute of Scientific and Technical Information of China (English)

    周坤; 孟祥溪; 谢肇恒; 李素莹; 田涧; 杨昆; 任秋实

    2015-01-01

    A new quad-modality integrated molecular imaging system for small animal was invented, which integrated the modalities of computed tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT) and lfuorescent molecular tomography (FMT). The imaging results of mouse models of tumors and inflammation revealed that the multi-modality integrated comprehensive reconstruction can provide more structural, functional and metabolic information than the single modality.%本文介绍了一种新型的小动物四模态分子影像系统的研发。该系统集成了计算机断层成像(computed tomography, CT)、正电子发射断层成像(positron emission tomography, PET)、单光子发射计算机断层成像(single-photon emission computed tomography, SPECT)和荧光分子断层成像(fluorescence molecular tomography, FMT)四种模态。对小鼠肿瘤-炎症模型的成像结果显示,融合了各个模态的综合重建结果可以提供较单一模态更加丰富的结构、功能代谢信息。

  11. Performance Evaluation of a Small-Animal PET/CT System

    OpenAIRE

    Dahle, Tordis Johnsen

    2014-01-01

    This master project is the first vendor-independent performance evaluation of the new nanoScan PET/CT system at the University of Bergen. A comprehensive performance evaluation of a novel scanner is very important, particularly when quantitative assessments of images are required. The nanoScan PET/CT system is a fully integrated small-animal PET/CT system. An abbreviated performance evaluation of the CT subsystem was done, which included a Hounsfield quality check, a comparison of reconstr...

  12. Atlas-driven scan planning for high-resolution micro-SPECT data acquisition based on multi-vew photographs: a pilot study

    NARCIS (Netherlands)

    Baiker, M.; Vastenhouw, B.; Branderhorst, SW.; Reiber, J.H.C.; Beekman, F.J.; Lelieveld, B.P.F.

    2009-01-01

    Highly focused Micro-SPECT scanners enable the acquisition of functional small animal data with very high-resolution. To acquire a maximum of emitted photons from a specific structure of interest and at the same time minimize the required acquisition time, typically only a small subvolume of the ani

  13. Atlas-driven scan planning for high-resolution Micro-SPECT data acquisition based on multi-view photographs: a pilot study

    NARCIS (Netherlands)

    Baiker, M.; Vastenhouw, B.; Branderhorst, W.; Reiber, J.H.C.; Beekman, F.; Lelieveldt, B.P.F.

    2009-01-01

    Highly focused Micro-SPECT scanners enable the acquisition of functional small animal data with very high-resolution. To acquire a maximum of emitted photons from a specific structure of interest and at the same time minimize the required acquisition time, typically only a small subvolume of the ani

  14. Varenicline increases in vivo striatal dopamine D2/3 receptor binding: an ultra-high-resolution pinhole [123I]IBZM SPECT study in rats

    International Nuclear Information System (INIS)

    Introduction: Ex vivo storage phosphor imaging rat studies reported increased brain dopamine D2/3 receptor (DRD2/3) availability following treatment with varenicline, a nicotinergic drug. However, ex vivo studies can only be performed using cross-sectional designs. Small-animal imaging offers the opportunity to perform serial assessments. We evaluated whether high-resolution pinhole single photon emission computed tomography (SPECT) imaging in rats was able to reproduce previous ex vivo findings. Methods: Rats were imaged for baseline striatal DRD2/3 availability using ultra-high-resolution pinhole SPECT (U-SPECT-II) and [123I]IBZM as a radiotracer, and randomized to varenicline (n=7; 2 mg/kg) or saline (n=7). Following 2 weeks of treatment, a second scan was acquired. Results: Significantly increased striatal DRD2/3 availability was found following varenicline treatment compared to saline (time⁎treatment effect): posttreatment difference in binding potential between groups corrected for initial baseline differences was 2.039 (P=.022), indicating a large effect size (d=1.48). Conclusions: Ultra-high-resolution pinhole SPECT can be used to assess varenicline-induced changes in DRD2/3 availability in small laboratory animals over time. Future small-animal studies should include imaging techniques to enable repeated within-subjects measurements and reduce the amount of animals.

  15. Environmental and Public Health Issues of Animal Food Products Delivery System in Imo State, Nigeria

    OpenAIRE

    Opara Maxwell Nwachukwu; Okorondu Ugochukwu Victor; Okoli Ifeanyi Charles; Okoli Chidi Grace

    2006-01-01

    Information on livestock movement, animal food products processing facilities, meat inspection methods, official meat inspection records and distribution and marketing systems for processed products in Imo state, Nigeria needed for policy development interventions in the sector are not fully understood. The primary data generated with the aid of personal interviews, field observations and secondary data obtained from records accumulated by the department of veterinary services Imo state from ...

  16. The Evolution of Animal Communication Systems: Questions of Function Examined through Simulation

    OpenAIRE

    Noble, J.

    1998-01-01

    Simulated evolution is used as a tool for investigating the selective pressures that have influenced the design of animal signalling systems. The biological literature on communication is first reviewed: central concepts such as the handicap principle and the view of signalling as manipulation are discussed. The equation of “biological function” with “adaptive value” is then defended, along with a workable definition of communication. Evolutionary simulation models are advocated as a way of t...

  17. Quantitative tools for comparing animal communication systems: information theory applied to bottlenose dolphin whistle repertoires.

    Science.gov (United States)

    McCOWAN; Hanser; Doyle

    1999-02-01

    Comparative analysis of nonhuman animal communication systems and their complexity, particularly in comparison to human language, has been generally hampered by both a lack of sufficiently extensive data sets and appropriate analytic tools. Information theory measures provide an important quantitative tool for examining and comparing communication systems across species. In this paper we use the original application of information theory, that of statistical examination of a communication system's structure and organization. As an example of the utility of information theory to the analysis of animal communication systems, we applied a series of information theory statistics to a statistically categorized set of bottlenose dolphin Tursiops truncatus, whistle vocalizations. First, we use the first-order entropic relation in a Zipf-type diagram (Zipf 1949 Human Behavior and the Principle of Least Effort) to illustrate the application of temporal statistics as comparative indicators of repertoire complexity, and as possible predictive indicators of acquisition/learning in animal vocal repertoires. Second, we illustrate the need for more extensive temporal data sets when examining the higher entropic orders, indicative of higher levels of internal informational structure, of such vocalizations, which could begin to allow the statistical reconstruction of repertoire organization. Third, we propose using 'communication capacity' as a measure of the degree of temporal structure and complexity of statistical correlation, represented by the values of entropic order, as an objective tool for interspecies comparison of communication complexity. In doing so, we introduce a new comparative measure, the slope of Shannon entropies, and illustrate how it potentially can be used to compare the organizational complexity of vocal repertoires across a diversity of species. Finally, we illustrate the nature and predictive application of these higher-order entropies using a preliminary

  18. Environmental and Public Health Issues of Animal Food Products Delivery System in Imo State, Nigeria

    Directory of Open Access Journals (Sweden)

    Opara Maxwell Nwachukwu

    2006-05-01

    Full Text Available Information on livestock movement, animal food products processing facilities, meat inspection methods, official meat inspection records and distribution and marketing systems for processed products in Imo state, Nigeria needed for policy development interventions in the sector are not fully understood. The primary data generated with the aid of personal interviews, field observations and secondary data obtained from records accumulated by the department of veterinary services Imo state from 2001 to 2004 were used to investigate the environmental and public health issues of animal food products delivery system in state. Majority of trade animals supplied to the state originated from the northern states of the country and were brought in with trucks by road. Only two veterinary control posts served the whole state thus resulting in non-inspection and taxing of a large proportion of trade animals. Official record of trade animals supplied to the state from 2001 to 2004 ranged from 45000 – 144000 for cattle, 23000 – 96000 for goats and 11000 – 72000 for sheep per annum, with supplies increasing steadily across the years. Official slaughter points in the state were principally low-grade quality slaughter premises consisting of a thin concrete slab. Meat handling was very unhygienic with carcasses dressed beside refuse heaps of over 2 years standing. Carcasses were dragged on the ground and transported in taxi boots and open trucks. Meat inspection at these points was not thorough because of stiff resistance of butchers to carcass condemnation. Official meat inspection records for the state from 2001 to 2004 revealed that overall totals of 159,000 cattle, 101,000 goats and 67,000 sheep were slaughtered. This accounted for about 56, 57 and 57% shortfall of cattle, goat and sheep respectively supplied to the state and represents the volume of un-inspected animals during the study period. Fascioliasis and tuberculosis were the most common

  19. Design and implementation of a marine animal alert system to support Marine Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhiqun; Carlson, Thomas J.; Fu, Tao; Ren, Huiying; Martinez, Jayson J.; Myers, Joshua R.; Matzner, Shari; Choi, Eric Y.; Copping, Andrea E.

    2013-08-08

    Power extracted from fast moving tidal currents has been identified as a potential commercial-scale source of renewable energy. Device developers and utilities are pursuing deployment of prototype tidal turbines to assess technology viability, site feasibility, and environmental interactions. Deployment of prototype turbines requires permits from a range of regulatory authorities. Ensuring the safety of marine animals, particularly those under protection of the Endangered Species Act of 1973 (ESA) and the Marine Mammal Protection Act of 1972 has emerged as a key regulatory challenge for initial MHK deployments. The greatest perceived risk to marine animals is from strike by the rotating blades of tidal turbines. Development of the marine mammal alert system (MAAS) was undertaken to support monitoring and mitigation requirements for tidal turbine deployments. The prototype system development focused on Southern Resident killer whales (SRKW), an endangered population of killer whales that frequents Puget Sound and is intermittently present in the part of the sound where deployment of prototype tidal turbines is being considered. Passive acoustics were selected as the primary means because of the vocal nature of these animals. The MAAS passive acoustic system consists of two-stage process involving the use of an energy detector and a spectrogram-based classifier to distinguish between SKRW’s calls and noise. A prototype consisting of two 2D symmetrical star arrays separated by 20 m center to center was built and evaluated in the waters of Sequim Bay using whale call playback.

  20. Open-source medical devices (OSMD) design of a small animal radiotherapy system

    International Nuclear Information System (INIS)

    Open-Source Medical Devices (OSMD) was initiated with the goal of facilitating medical research by developing medical technologies including both hardware and software on an open-source platform. Our first project was to develop an integrated imaging and radiotherapy device for small animals that includes computed tomography (CT), positron emission tomography (PET) and radiation therapy (RT) modalities for which technical specifications were defined in the first OSMD conference held in Madison, Wisconsin, USA in December 2011. This paper specifically focuses on the development of a small animal RT (micro-RT) system by designing a binary micro multileaf collimator (bmMLC) and a small animal treatment planning system (SATPS) to enable intensity modulated RT (IMRT). Both hardware and software projects are currently under development and their current progresses are described. After the development, both bmMLC and TPS will be validated and commissioned for a micro-RT system. Both hardware design and software development will be open-sourced after completion.

  1. The Global Livestock Impact Mapping System (GLIMS as a tool for animal health applications

    Directory of Open Access Journals (Sweden)

    Gianluca Franceschini

    2009-12-01

    Full Text Available Recent concerns expressed by various national and international organisations about global livestock sector development and its consequences on the environment and on human and animal health suggest the need to reinforce efforts to monitor and collect more accurate and detailed statistics on livestock. Modern technologies for the organisation, analysis, dissemination and presentation of data and results enhance the contribution that these statistics can make towards the planning of efficient and sustainable animal production and health interventions. To this end, the Food and Agriculture Organization Animal Production and Health Division (FAO-AGA has developed the Global Livestock Impact Mapping System (GLIMS. GLIMS provides a repository for sub-national data pertaining to the livestock sector and produces and distributes, through various channels and formats, a number of global public products, namely: the Gridded Livestock of the World (GLW, mapping the spatial distribution of the main livestock species, the Global Livestock Production and Health Atlas (GLiPHA, disseminating sub-national geo-referenced statistics, and the AGA Livestock Sector Briefs, which are concise national reports on the livestock sector. These products have a variety of applications. The authors focus attention on applications in the field of animal health, both to increase knowledge of the occurrence of livestock diseases and to assess their impact.

  2. Countering the livestock-targeted bioterrorism threat and responding with an animal health safeguarding system.

    Science.gov (United States)

    Yeh, J-Y; Lee, J-H; Park, J-Y; Cho, Y S; Cho, I-S

    2013-08-01

    Attacks against livestock and poultry using biological agents constitute a subtype of agroterrorism. These attacks are defined as the intentional introduction of an animal infectious disease to strike fear in people, damage a nation's economy and/or threaten social stability. Livestock bioterrorism is considered attractive to terrorists because biological agents for use against livestock or poultry are more readily available and difficult to monitor than biological agents for use against humans. In addition, an attack on animal husbandry can have enormous economic consequences, even without human casualties. Animal husbandry is vulnerable to livestock-targeted bioterrorism because it is nearly impossible to secure all livestock animals, and compared with humans, livestock are less well-guarded targets. Furthermore, anti-livestock biological weapons are relatively easy to employ, and a significant effect can be produced with only a small amount of infectious material. The livestock sector is presently very vulnerable to bioterrorism as a result of large-scale husbandry methods and weaknesses in the systems used to detect disease outbreaks, which could aggravate the consequences of livestock-targeted bioterrorism. Thus, terrorism against livestock and poultry cannot be thought of as either a 'low-probability' or 'low-consequence' incident. This review provides an overview of methods to prevent livestock-targeted bioterrorism and respond to terrorism involving the deliberate introduction of a pathogen-targeting livestock and poultry.

  3. Good governance of animal health systems and public-private partnerships: an Australian case study.

    Science.gov (United States)

    Black, P F

    2012-08-01

    The animal health system in Australia has evolved over more than 100 years and includes innovative public-private partnership arrangements. The establishment in 1996 of Animal Health Australia (AHA), a not-for-profit company, was a crucial development which formalised arrangements for shared decision-making and funding across both government and industry stakeholders. However, Federal and State governments retain legislative authority for animal health control. Accordingly, all programmes must recognise that the public sector remains an executive arm of government, accountable for its actions. Hence, much effort has been invested in ensuring that the governance arrangements within AHA are lawful and transparent. The Emergency Animal Disease Response Agreement (EADRA) is a very good example of governance arrangements that are sustainably financed, widely available, provided efficiently, without waste or duplication, and in a manner that is transparent and free of fraud or corruption. The benefits of EADRA include certainty and greater transparency of funding; greater efficiency through increased probability of a rapid response to an occurrence of any of 65 diseases; and industry participation in the management and financing of such a response.

  4. An automatic weighting system for wild animals based in an artificial neural network: how to weigh wild animals without causing stress.

    Science.gov (United States)

    Larios, Diego Francisco; Rodríguez, Carlos; Barbancho, Julio; Baena, Manuel; Angel, Miguel Leal; Marín, Jesús; León, Carlos; Bustamante, Javier

    2013-02-28

    This paper proposes a novel and autonomous weighing system for wild animals. It allows evaluating changes in the body weight of animals in their natural environment without causing stress. The proposed system comprises a smart scale designed to estimate individual body weights and their temporal evolution in a bird colony. The system is based on computational intelligence, and offers valuable large amount of data to evaluate the relationship between long-term changes in the behavior of individuals and global change. The real deployment of this system has been for monitoring a breeding colony of lesser kestrels (Falco naumanni) in southern Spain. The results show that it is possible to monitor individual weight changes during the breeding season and to compare the weight evolution in males and females.

  5. 99mTc-HMPAO Brain SPECT in Seizure Disorder: Comparison Brain SPECT, MRI / CT and EEG

    International Nuclear Information System (INIS)

    We studied 115 patients with seizure who had been performed brain SPECT brain MRI of CT and EEG. To evaluate the pattern of brain SPECT in seizure patients 28 of them had secondary epilepsies, 87 had primary epilepsies. In primary epilepsies, 42 were generalized seizure and 45 were partial seizure. The causes of secondary epilepsies were congenital malformation, cerebromalacia, cerebral infarction ultiple sclerosis, AV-malformation. granuloma and etc, in order. In 28 secondary epilepsies, 25 of them, brain SPECT lesions was concordant with MRI or CT lesions. 3 were disconcordant. The brain SPECT findings of generalized seizure were normal in 22 patients, diffuse irregular decreased perfusion in 8, decreased in frontal cortex in 4. temporal in 5 and frontotemporal in 3. In 45 partial seizure, 19 brain SPECT were concordant with EEG (42.4%).

  6. Clinical results of neurotransmission SPECT in extra-pyramidal diseases; Resultats cliniques de la TEMP de la neurotransmission en pathologie extra-pyramidale

    Energy Technology Data Exchange (ETDEWEB)

    Baulieu, J.L.; Prunier, C.; Tranquart, F.; Guilloteau, D. [Centre Hospitalier Universitaire Bretonneau, Service de Medecine Nucleaire in vitro, INSERM U316, 37 - Tours (France)

    1999-12-01

    We present some methodological aspects and clinical applications of dopamine D2 receptor and transporter SPECT using new radiotracers radiolabeled with iodine 123. The gamma camera quality control and standardisation has to be adapted to the small volume and deep location of striata, where receptors and transporters are present. Phantom containing hollow spheres of different diameters which can be filled with different amounts of {sup 99m}Tc or {sup 123}I. The semi quantitation of receptor and transporter molecular concentration is based on an equilibrium binding model. According to this model, the binding potential (Bmax. Ka) is equal to the ratio between specific binding in the striatum and circulating activity in a reference region of interest in the occipital cortex. By comparing ECD and ILIS SPECT, it has been shown that striatal ILIS binding does not depend on the local perfusion. The clinical applications mainly concern the extra-pyramidal pathology: ILIS and IBZM SPECT are able to differentiate pre- and post-synaptic lesions. In Parkinson disease the nigrostriatal pathway is damaged and D2 receptors are normal or increased, as shown by normal or elevated IBZM or ILIS uptake. In other extra pyramidal degenerative diseases as progressive supra nuclear palsy or multiple system atrophy striatal D2 receptors are damaged as shown by decreased IBZM or ILIS uptake. In our experience, 88 per cent of patients are correctly classified by ILIS SPECT and 86 per cent with IBZM SPECT. Dopamine transporter SPECT with {beta}CIT and PE2I provides an evaluation of the presynaptic neuronal density in the striatum. One can expect an help for the early diagnosis and the evaluation of Parkinson disease. Another potential application of dopaminergic neurotransmission SPECT is the evaluation of neuronal loss after hypoxo-ischemia. We conclude that dopaminergic neurotransmission SPECT using specific ligands should become a useful diagnosis tool to study a large number of brain

  7. Semi-quantitation of pulmonary perfusion heterogeneity on respiratory-gated inspiratory and expiratory perfusion SPECT in patients with pulmonary emphysema

    International Nuclear Information System (INIS)

    Pulmonary perfusion heterogeneity (PPH) in pulmonary emphysema (PE) was semi-quantified by functional lung volume rate (FLVR) curves obtained from respiratory-gated inspiratory and expiratory single-photon emission computed tomography (SPECT). Gated and ungated SPECT were obtained in 36 PE patients [25 with stage IIA and 11 with stage IIB for global initiative for chronic obstructive lung disease (GOLD) stage classification] and 12 controls, using a triple-head SPECT system and a respiratory tracking device. On gated SPECT, the voxel numbers calculated at the 10% cutoff threshold for the maximum lung radioactivity were assumed to be the functional lung volume of the lung (V). FLVR (%) was calculated as FLV divided by V at every additional 10% thresholds, yielding inspiratory and expiratory FLVR curves. The dissociations between these curves (ΔFLVRinsp-exsp) and the total difference (D index) of these curves from the normal standard curve (averaged inspiratory and expiratory curve in controls) were calculated. D index and the extent of low attenuation area (%LAA) on CT were correlated with the transfer coefficient for carbon monoxide (KCO) in PE patients. Although gated and ungated SPECT showed fairly uniform perfusion in controls, gated SPECT-enhanced PPH compared with ungated SPECT in PE patients, with significantly higher dissociation (ΔFLVRinsp-exsp) than that in controls (24.9%±9.5% vs. 4.5%±1.3%; PCO (R=0.642, PCO. FLVR curve analysis on gated SPECT appears useful for semi-quantitation of respiratory change of PPH in PE. Expiratory D index may better reflect the lung pathophysiology of PE than morphologic CT. (author)

  8. The Role of Routine Whole Volume SPECT Reconstruction in Comparison to Cine Raw Data in the Detection of Extracardiac Uptake on Myocardial Perfusion Scans.

    Science.gov (United States)

    Maharaj, M; Korowlay, N A

    2011-01-01

    The objective of this study was to determine the role of routine whole volume reconstructed single-photon emission tomography (rSPECT) compared to cine raw data to detect extracardiac uptake of Sestamibi (MIBI). In a retrospective study, the myocardial perfusion studies of 426 patients were inspected separately for extracardiac uptake on cine raw data and rSPECT. The acquisition parameters for all the images were done according to departmental protocol. The whole volume SPECT data was selected and processed by HOSEM iterative reconstruction using the HERMES computer software system. The images were assessed by two observers, a student in training and a senior consultant nuclear medicine physician. The overall mean age and standard deviation of the 426 patients at the time of the study was 60 ± 12 years. Statistical analysis was performed using the Kappa and McNemars tests. The clinical significance of the extracardiac uptake was evaluated using hospital folders and /or laboratory results after viewing images. rSPECT detected 25 patients (5.9%) and cine raw data identified 18 patients (4.2%) with extracardiac uptake. All the areas of extracardiac uptake noted on cine raw data were seen on the rSPECT images. Only 21 of the 25 patients had complete 5-year clinical follow-up. The value of the clinical significance of the extracardiac uptake was limited due to the study being retrospective. The proportion of positives identified by rSPECT was significantly larger than those identified by cine raw data (P = 0.0082). Although our study demonstrates that rSP