WorldWideScience

Sample records for animal spect system

  1. SPECT data acquisition and image reconstruction in a stationary small animal SPECT/MRI system

    Science.gov (United States)

    Xu, Jingyan; Chen, Si; Yu, Jianhua; Meier, Dirk; Wagenaar, Douglas J.; Patt, Bradley E.; Tsui, Benjamin M. W.

    2010-04-01

    The goal of the study was to investigate data acquisition strategies and image reconstruction methods for a stationary SPECT insert that can operate inside an MRI scanner with a 12 cm bore diameter for simultaneous SPECT/MRI imaging of small animals. The SPECT insert consists of 3 octagonal rings of 8 MR-compatible CZT detectors per ring surrounding a multi-pinhole (MPH) collimator sleeve. Each pinhole is constructed to project the field-of-view (FOV) to one CZT detector. All 24 pinholes are focused to a cylindrical FOV of 25 mm in diameter and 34 mm in length. The data acquisition strategies we evaluated were optional collimator rotations to improve tomographic sampling; and the image reconstruction methods were iterative ML-EM with and without compensation for the geometric response function (GRF) of the MPH collimator. For this purpose, we developed an analytic simulator that calculates the system matrix with the GRF models of the MPH collimator. The simulator was used to generate projection data of a digital rod phantom with pinhole aperture sizes of 1 mm and 2 mm and with different collimator rotation patterns. Iterative ML-EM reconstruction with and without GRF compensation were used to reconstruct the projection data from the central ring of 8 detectors only, and from all 24 detectors. Our results indicated that without GRF compensation and at the default design of 24 projection views, the reconstructed images had significant artifacts. Accurate GRF compensation substantially improved the reconstructed image resolution and reduced image artifacts. With accurate GRF compensation, useful reconstructed images can be obtained using 24 projection views only. This last finding potentially enables dynamic SPECT (and/or MRI) studies in small animals, one of many possible application areas of the SPECT/MRI system. Further research efforts are warranted including experimentally measuring the system matrix for improved geometrical accuracy, incorporating the co

  2. Integration of AdaptiSPECT, a small-animal adaptive SPECT imaging system

    OpenAIRE

    Chaix, Cécile; Kovalsky, Stephen; Kosmider, Matthew; Barrett, Harrison H.; Furenlid, Lars R.

    2013-01-01

    AdaptiSPECT is a pre-clinical adaptive SPECT imaging system under final development at the Center for Gamma-ray Imaging. The system incorporates multiple adaptive features: an adaptive aperture, 16 detectors mounted on translational stages, and the ability to switch between a non-multiplexed and a multiplexed imaging configuration. In this paper, we review the design of AdaptiSPECT and its adaptive features. We then describe the on-going integration of the imaging system.

  3. Design and development of MR-compatible SPECT systems for simultaneous SPECT-MR imaging of small animals

    Science.gov (United States)

    Tsui, Benjamin M. W.; Hugg, James W.; Xu, Jingyan; Chen, Si; Meier, Dirk; Edelstein, William; El-Sharkawy, Abdel; Wagenaar, Douglas J.; Patt, Bradley E.

    2011-03-01

    We describe a continuing design and development of MR-compatible SPECT systems for simultaneous SPECT-MR imaging of small animals. A first generation prototype SPECT system was designed and constructed to fit inside a MRI system with a gradient bore inner diameter of 12 cm. It consists of 3 angularly offset rings of 8 detectors (1"x1", 16x16 pixels MR-compatible solid-state CZT). A matching 24-pinhole collimator sleeve, made of a tungsten-compound, provides projections from a common FOV of ~25 mm. A birdcage RF coil for MRI data acquisition surrounds the collimator. The SPECT system was tested inside a clinical 3T MRI system. Minimal interference was observed on the simultaneously acquired SPECT and MR images. We developed a sparse-view image reconstruction method based on accurate modeling of the point response function (PRF) of each of the 24 pinholes to provide artifact-free SPECT images. The stationary SPECT system provides relatively low resolution of 3-5 mm but high geometric efficiency of 0.5- 1.2% for fast dynamic acquisition, demonstrated in a SPECT renal kinetics study using Tc-99m DTPA. Based on these results, a second generation prototype MR-compatible SPECT system with an outer diameter of 20 cm that fits inside a mid-sized preclinical MRI system is being developed. It consists of 5 rings of 19 CZT detectors. The larger ring diameter allows the use of optimized multi-pinhole collimator designs, such as high system resolution up to ~1 mm, high geometric efficiency, or lower system resolution without collimator rotation. The anticipated performance of the new system is supported by simulation data.

  4. The application and development of animal SPECT

    International Nuclear Information System (INIS)

    Animal SPECT is an important research approach for translating preclinical to clinical study. It has been widely applied in drug development and the researches of physiology and diseases in small animal models. With the rapid progresses of hardware technology and algorithm of image reconstruction, the systemic sensitivity,spatial resolution and quantitative accuracy of animal SPECT have been greatly improved. Animal SPECT has great advantages over animal PET with the feasibility of study, the convenience acquisition of radiopharmaceuticals and relative low cost. In a certain period, animal SPECT will still be a main approach for preclinical researches of molecular imaging. (author)

  5. A SPECT Camera for Combined MRI and SPECT for Small Animals

    OpenAIRE

    Meier, D.; Wagenaar, D J; Chen, S; Xu, J.; Yu, J.; Tsui, B. M. W.

    2011-01-01

    We describe an MR-compatible SPECT camera for small animals. The SPECT camera system can be inserted into the bore of a state-of-the-art MRI system and allows researchers to acquire tomographic images from a mouse in-vivo with the MRI and the SPECT acquiring simultaneously. The SPECT system provides functional information, while MRI provides anatomical information. Until today it was impossible to operate conventional SPECT inside the MRI because of mutual interference. The new SPECT technolo...

  6. Quantitative analysis of L-SPECT system for small animal brain imaging

    Science.gov (United States)

    Rahman, Tasneem; Tahtali, Murat; Pickering, Mark R.

    2016-03-01

    This paper aims to investigate the performance of a newly proposed L-SPECT system for small animal brain imaging. The L-SPECT system consists of an array of 100 × 100 micro range diameter pinholes. The proposed detector module has a 48 mm by 48 mm active area and the system is based on a pixelated array of NaI crystals (10×10×10 mm elements) coupled with an array of position sensitive photomultiplier tubes (PSPMTs). The performance of this system was evaluated with pinhole radii of 50 μm, 60 μm and 100 μm. Monte Carlo simulation studies using the Geant4 Application for Tomographic Emission (GATE) software package validate the performance of this novel dual head L-SPECT system where a geometric mouse phantom is used to investigate its performance. All SPECT data were obtained using 120 projection views from 0° to 360° with a 3° step. Slices were reconstructed using conventional filtered back projection (FBP) algorithm. We have evaluated the quality of the images in terms of spatial resolution (FWHM) based on line spread function, the system sensitivity, the point source response function and the image quality. The sensitivity of our newly proposed L- SPECT system was about 4500 cps/μCi at 6 cm along with excellent full width at half-maximum (FWHM) using 50 μm pinhole aperture at several radii of rotation. The analysis results show the combination of excellent spatial resolution and high detection efficiency over an energy range between 20-160 keV. The results demonstrate that SPECT imaging using a pixelated L-SPECT detector module is applicable in a quantitative study of mouse brain imaging.

  7. A restraint-free small animal SPECT imaging system with motion tracking

    Energy Technology Data Exchange (ETDEWEB)

    Weisenberger, A.G.; Gleason, S.S.; Goddard, J.; Kross, B.; Majewski, S.; Meikle, S.R.; Paulus, M.J.; Pomper, M.; Popov, V.; Smith, M.F.; Welch, B.L.; Wojcik, R.

    2005-06-01

    We report on an approach toward the development of a high-resolution single photon emission computed tomography (SPECT) system to image the biodistribution of radiolabeled tracers such as Tc-99m and I-125 in unrestrained/unanesthetized mice. An infrared (IR)-based position tracking apparatus has been developed and integrated into a SPECT gantry. The tracking system is designed to measure the spatial position of a mouse's head at a rate of 10-15 frames per second with submillimeter accuracy. The high-resolution, gamma imaging detectors are based on pixellated NaI(Tl) crystal scintillator arrays, position-sensitive photomultiplier tubes, and novel readout circuitry requiring fewer analog-digital converter (ADC) channels while retaining high spatial resolution. Two SPECT gamma camera detector heads based upon position-sensitive photomultiplier tubes have been built and installed onto the gantry. The IR landmark-based pose measurement and tracking system is under development to provide animal position data during a SPECT scan. The animal position and orientation data acquired by the tracking system will be used for motion correction during the tomographic image reconstruction.

  8. Design and performance evaluation of high-resolution small animal SPECT system

    International Nuclear Information System (INIS)

    A high-resolution and low-cost small animal single photon emission computed tomography (SPECT) system was designed based on a clinical scanner and a pinhole collimator. Optimal design schemes of a single-pinhole collimator and a seven-pinhole one were proposed, in terms of achieving the best trade-off of field of view size, spatial resolution and sensitivity. System performances of the two design schemes were compared by evaluating the average spatial resolution and sensitivity over the full field of view, and the seven-pinhole collimator design demonstrated improved resolution and better sensitivity. Monte Carlo simulation studies validate that ultra-high 0.5 mm spatial resolution can be achieved with the proposed seven-pinhole design, which is cost-effective comparing to the existing animal SPECT systems equipped with dedicated detector. (authors)

  9. MRC-SPECT: A sub-500 µm resolution MR-compatible SPECT system for simultaneous dual-modality study of small animals

    International Nuclear Information System (INIS)

    In this paper, we will report the development of an ultrahigh resolution MR-compatible SPECT system that can be operated inside a pre-existing clinical MR scanner for simultaneous dual-modality imaging of small animals. This system is constructed with 40 small-pixel CdTe detector modules assembled in a fully stationary ring SPECT geometry. We have experimentally demonstrated that this system is capable of providing an imaging resolution of <500 μm when operating inside MR scanners. We will report the design, construction of the MRI-compatible SPECT system, including the detector technology, collimator, system development and so on. The first imaging results obtained with this newly constructed SPECT system will also be reported

  10. Development of a combined microSPECT/CT system for small animal imaging

    Science.gov (United States)

    Sun, Mingshan

    Modern advances in the biomedical sciences have placed increased attention on small animals such as mice and rats as models of human biology and disease in biological research and pharmaceutical development. Their small size and fast breeding rate, their physiologic similarity to human, and, more importantly, the availability of sophisticated genetic manipulations, all have made mice and rats the laboratory mammals of choice in these experimental studies. However, the increased use of small animals in biomedical research also calls for new instruments that can measure the anatomic and metabolic information noninvasively with adequate spatial resolution and measurement sensitivity to facilitate these studies. This dissertation describes the engineering development of a combined single photon emission computed tomography (SPECT) and X-ray computed tomography (CT) system dedicated for small animals imaging. The system aims to obtain both the anatomic and metabolic images with submillimeter spatial resolution in a way that the data can be correlated to provide improved image quality and to offer more complete biological evaluation for biomedical studies involving small animals. The project requires development of complete microSPECT and microCT subsystems. Both subsystems are configured with a shared gantry and animal bed with integrated instrumentation for data acquisition and system control. The microCT employs a microfocus X-ray tube and a CCD-based detector for low noise, high resolution imaging. The microSPECT utilizes three semiconductor detectors coupled with pinhole collimators. A significant contribution of this dissertation project is the development of iterative algorithms with geometrical compensation that allows radionuclide images to be reconstructed at submillimeter spatial resolution, but with significantly higher detection efficiency than conventional methods. Both subsystems are capable of helical scans, offering lengthened field of view and improved

  11. Preliminary evaluation of the tomographic performance of the mediSPECT small animal imaging system

    Science.gov (United States)

    Accorsi, Roberto; Curion, Assunta Simona; Frallicciardi, Paola; Lanza, Richard C.; Lauria, Adele; Mettivier, Giovanni; Montesi, Maria Cristina; Russo, Paolo

    2007-02-01

    We report on the tests of a prototype (MediSPECT) system developed at University & INFN Napoli, for Single Photon Emission Computed Tomography (SPECT) imaging on small animals with a small Field of View (FoV) and high spatial resolution. MediSPECT is a SPECT imaging system based on a 1-mm-thick CdTe pixel detector, bump-bonded to the Medipix2 CMOS readout circuit operating in single-photon counting. The CdTe detector has 256×256 square array of pixels arranged with a 55 μm pitch, for a sensitive area of 14×14 mm 2. In its present version, this system implements a single detector head, mounted on a rotating gantry. For preliminary testing and calibration of the acquisition equipment and image reconstruction algorithms, 90 projections of a γ-ray point source ( 109Cd) through a single pinhole (diameter 0.4 mm; radius of rotation about 2.5 cm; focal length about 4.5 cm) were acquired for 20 min each in a step-and-shoot mode. Capillaries, 800 μm in diameter, were arranged in a Y-shape to form a more complex phantom ( 125I, 1 mm pinhole diameter, 45 projections, each acquired for 25 min). Images were reconstructed with a custom algorithm implementing standard OS-EM with center of rotation correction and spatial resolution of 0.2 mm over a FoV of 2 mm was obtained.

  12. Preliminary evaluation of the tomographic performance of the mediSPECT small animal imaging system

    International Nuclear Information System (INIS)

    We report on the tests of a prototype (MediSPECT) system developed at University and INFN Napoli, for Single Photon Emission Computed Tomography (SPECT) imaging on small animals with a small Field of View (FoV) and high spatial resolution. MediSPECT is a SPECT imaging system based on a 1-mm-thick CdTe pixel detector, bump-bonded to the Medipix2 CMOS readout circuit operating in single-photon counting. The CdTe detector has 256x256 square array of pixels arranged with a 55 μm pitch, for a sensitive area of 14x14 mm2. In its present version, this system implements a single detector head, mounted on a rotating gantry. For preliminary testing and calibration of the acquisition equipment and image reconstruction algorithms, 90 projections of a γ-ray point source (109Cd) through a single pinhole (diameter 0.4 mm; radius of rotation about 2.5 cm; focal length about 4.5 cm) were acquired for 20 min each in a step-and-shoot mode. Capillaries, 800 μm in diameter, were arranged in a Y-shape to form a more complex phantom (125I, 1 mm pinhole diameter, 45 projections, each acquired for 25 min). Images were reconstructed with a custom algorithm implementing standard OS-EM with center of rotation correction and spatial resolution of 0.2 mm over a FoV of 2 mm was obtained

  13. A SPECT camera for combined MRI and SPECT for small animals

    Science.gov (United States)

    Meier, D.; Wagenaar, D. J.; Chen, S.; Xu, J.; Yu, J.; Tsui, B. M. W.

    2011-10-01

    We describe an MR-compatible SPECT camera for small animals. The SPECT camera system can be inserted into the bore of a state-of-the-art MRI system and allows researchers to acquire tomographic images from a mouse in-vivo with the MRI and the SPECT acquiring simultaneously. The SPECT system provides functional information, while MRI provides anatomical information. Until today it was impossible to operate conventional SPECT inside the MRI because of mutual interference. The new SPECT technology is based on semiconductor radiation sensors (CZT, ASICs), and it fits into conventional high field MRI systems with a minimum 12-cm bore size. The SPECT camera has an MR-compatible multi-pinhole collimator for mice with a Ø25-mm field-of-view. For the work reported here we assembled a prototype SPECT camera system and acquired SPECT and MRI data from radioactive sources and resolution phantoms using the camera outside and inside the MRI.

  14. A SPECT camera for combined MRI and SPECT for small animals

    Energy Technology Data Exchange (ETDEWEB)

    Meier, D., E-mail: dirk.meier@gm-ideas.com [Gamma Medica - Ideas (Norway) AS, Martin Linges Vei 25, Snaroya, POB 1, N-1330 Fornebu (Norway); Wagenaar, D.J. [Gamma Medica - Ideas, Inc.,19355 Business Center Dr., Ste 8, 91324 Northridge (United States); Chen, S.; Xu, J.; Yu, J.; Tsui, B.M.W. [Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD (United States)

    2011-10-01

    We describe an MR-compatible SPECT camera for small animals. The SPECT camera system can be inserted into the bore of a state-of-the-art MRI system and allows researchers to acquire tomographic images from a mouse in-vivo with the MRI and the SPECT acquiring simultaneously. The SPECT system provides functional information, while MRI provides anatomical information. Until today it was impossible to operate conventional SPECT inside the MRI because of mutual interference. The new SPECT technology is based on semiconductor radiation sensors (CZT, ASICs), and it fits into conventional high field MRI systems with a minimum 12-cm bore size. The SPECT camera has an MR-compatible multi-pinhole collimator for mice with a O25-mm field-of-view. For the work reported here we assembled a prototype SPECT camera system and acquired SPECT and MRI data from radioactive sources and resolution phantoms using the camera outside and inside the MRI.

  15. A SPECT camera for combined MRI and SPECT for small animals

    International Nuclear Information System (INIS)

    We describe an MR-compatible SPECT camera for small animals. The SPECT camera system can be inserted into the bore of a state-of-the-art MRI system and allows researchers to acquire tomographic images from a mouse in-vivo with the MRI and the SPECT acquiring simultaneously. The SPECT system provides functional information, while MRI provides anatomical information. Until today it was impossible to operate conventional SPECT inside the MRI because of mutual interference. The new SPECT technology is based on semiconductor radiation sensors (CZT, ASICs), and it fits into conventional high field MRI systems with a minimum 12-cm bore size. The SPECT camera has an MR-compatible multi-pinhole collimator for mice with a O25-mm field-of-view. For the work reported here we assembled a prototype SPECT camera system and acquired SPECT and MRI data from radioactive sources and resolution phantoms using the camera outside and inside the MRI.

  16. Performance evaluation of a compact PET/SPECT/CT tri-modality system for small animal imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qingyang [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084 (China); Wang, Shi [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084 (China); Ma, Tianyu, E-mail: maty@tsinghua.edu.cn [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084 (China); Wu, Jing; Liu, Hui; Xu, Tianpeng; Xia, Yan; Fan, Peng; Lyu, Zhenlei; Liu, Yaqiang [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084 (China)

    2015-06-21

    PET, SPECT and CT imaging techniques are widely used in preclinical small animal imaging applications. In this paper, we present a compact small animal PET/SPECT/CT tri-modality system. A dual-functional, shared detector design is implemented which enables PET and SPECT imaging with a same LYSO ring detector. A multi-pinhole collimator is mounted on the system and inserted into the detector ring in SPECT imaging mode. A cone-beam CT consisting of a micro focus X-ray tube and a CMOS detector is implemented. The detailed design and the performance evaluations are reported in this paper. In PET imaging mode, the measured NEMA based spatial resolution is 2.12 mm (FWHM), and the sensitivity at the central field of view (CFOV) is 3.2%. The FOV size is 50 mm (∅)×100 mm (L). The SPECT has a spatial resolution of 1.32 mm (FWHM) and an average sensitivity of 0.031% at the center axial, and a 30 mm (∅)×90 mm (L) FOV. The CT spatial resolution is 8.32 lp/mm @10%MTF, and the contrast discrimination function value is 2.06% with 1.5 mm size cubic box object. In conclusion, a compact, tri-modality PET/SPECT/CT system was successfully built with low cost and high performance.

  17. Performance evaluation of a compact PET/SPECT/CT tri-modality system for small animal imaging applications

    International Nuclear Information System (INIS)

    PET, SPECT and CT imaging techniques are widely used in preclinical small animal imaging applications. In this paper, we present a compact small animal PET/SPECT/CT tri-modality system. A dual-functional, shared detector design is implemented which enables PET and SPECT imaging with a same LYSO ring detector. A multi-pinhole collimator is mounted on the system and inserted into the detector ring in SPECT imaging mode. A cone-beam CT consisting of a micro focus X-ray tube and a CMOS detector is implemented. The detailed design and the performance evaluations are reported in this paper. In PET imaging mode, the measured NEMA based spatial resolution is 2.12 mm (FWHM), and the sensitivity at the central field of view (CFOV) is 3.2%. The FOV size is 50 mm (∅)×100 mm (L). The SPECT has a spatial resolution of 1.32 mm (FWHM) and an average sensitivity of 0.031% at the center axial, and a 30 mm (∅)×90 mm (L) FOV. The CT spatial resolution is 8.32 lp/mm @10%MTF, and the contrast discrimination function value is 2.06% with 1.5 mm size cubic box object. In conclusion, a compact, tri-modality PET/SPECT/CT system was successfully built with low cost and high performance

  18. Performance evaluation of a compact PET/SPECT/CT tri-modality system for small animal imaging applications

    Science.gov (United States)

    Wei, Qingyang; Wang, Shi; Ma, Tianyu; Wu, Jing; Liu, Hui; Xu, Tianpeng; Xia, Yan; Fan, Peng; Lyu, Zhenlei; Liu, Yaqiang

    2015-06-01

    PET, SPECT and CT imaging techniques are widely used in preclinical small animal imaging applications. In this paper, we present a compact small animal PET/SPECT/CT tri-modality system. A dual-functional, shared detector design is implemented which enables PET and SPECT imaging with a same LYSO ring detector. A multi-pinhole collimator is mounted on the system and inserted into the detector ring in SPECT imaging mode. A cone-beam CT consisting of a micro focus X-ray tube and a CMOS detector is implemented. The detailed design and the performance evaluations are reported in this paper. In PET imaging mode, the measured NEMA based spatial resolution is 2.12 mm (FWHM), and the sensitivity at the central field of view (CFOV) is 3.2%. The FOV size is 50 mm (∅)×100 mm (L). The SPECT has a spatial resolution of 1.32 mm (FWHM) and an average sensitivity of 0.031% at the center axial, and a 30 mm (∅)×90 mm (L) FOV. The CT spatial resolution is 8.32 lp/mm @10%MTF, and the contrast discrimination function value is 2.06% with 1.5 mm size cubic box object. In conclusion, a compact, tri-modality PET/SPECT/CT system was successfully built with low cost and high performance.

  19. Simulation, construction and application of focused pinhole small animal SPECT

    OpenAIRE

    Vastenhouw, B.

    2008-01-01

    New developments in molecular imaging techniques like small animal SPECT systems are important tools to analyze mouse models of human diseases. The main subjects of this thesis are simulation, construction and image reconstruction algorithms needed for the development of a small-animal SPECT system called U-SPECT. With the U-SPECT it is possible to study the function of organs and tissue in vivo at sub-half millimeter scale using radioactively labeled tracers. The first prototype (U-SPECT-I) ...

  20. Simulation, construction and application of focused pinhole small animal SPECT

    NARCIS (Netherlands)

    Vastenhouw, B.

    2008-01-01

    New developments in molecular imaging techniques like small animal SPECT systems are important tools to analyze mouse models of human diseases. The main subjects of this thesis are simulation, construction and image reconstruction algorithms needed for the development of a small-animal SPECT system

  1. Total variation penalized maximum-likelihood image reconstruction for a stationary small animal SPECT system

    International Nuclear Information System (INIS)

    We have developed a 3D total variation (TV) penalized maximum likelihood (ML) image reconstruction method and tested it in simulated dynamic SPECT scans using a stationary ring-type SPECT insert for simultaneous small animal SPECTMR imaging. The SPECT insert consists of 5 (axial) x 19 (transaxial) MR-compatible CZT detectors that form a seamless 19-side detector ring, inside which a cylindrical collimator sleeve with 36 focused pinholes is inserted for dynamic SPECT acquisition. The short duration of the individual time frames and the stationary data acquisition nature may cause severe noise and sparse-view artifacts in the reconstructed images, and as a result affect the time-activity curve (TAC) derived from the 4D image sequence. The TV potential function favors piece-wise constant image reconstruction therefore is capable of reducing these image artifacts. Our implementation of the ML-TV method used the Douglas-Rachford splitting to deal with the non-smooth TV function. We applied the ML-TV method to a computer-simulated dynamic mouse renal SPECT scan, and evaluated the method in terms of pixel-wise TAC estimation compared to the conventional ML-EM. The pixel-wise TAC obtained by the MLEM method exhibited large fluctuation around the truth; this large fluctuation was significantly suppressed by using ML-TV. Our next step is to incorporate time-domain correlation and develop fully 4D (3D spatial + 1D time) image reconstruction methods for dynamic stationary small animal SPECT studies. (orig.)

  2. Total variation penalized maximum-likelihood image reconstruction for a stationary small animal SPECT system

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jingyan; Tsui, Benjamin M.W. [Johns Hopkins Univ., Baltimore, MD (United States). Div. of Medical Imaging Physics; Chen, Si [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Electrical and Computer Engineering

    2011-07-01

    We have developed a 3D total variation (TV) penalized maximum likelihood (ML) image reconstruction method and tested it in simulated dynamic SPECT scans using a stationary ring-type SPECT insert for simultaneous small animal SPECTMR imaging. The SPECT insert consists of 5 (axial) x 19 (transaxial) MR-compatible CZT detectors that form a seamless 19-side detector ring, inside which a cylindrical collimator sleeve with 36 focused pinholes is inserted for dynamic SPECT acquisition. The short duration of the individual time frames and the stationary data acquisition nature may cause severe noise and sparse-view artifacts in the reconstructed images, and as a result affect the time-activity curve (TAC) derived from the 4D image sequence. The TV potential function favors piece-wise constant image reconstruction therefore is capable of reducing these image artifacts. Our implementation of the ML-TV method used the Douglas-Rachford splitting to deal with the non-smooth TV function. We applied the ML-TV method to a computer-simulated dynamic mouse renal SPECT scan, and evaluated the method in terms of pixel-wise TAC estimation compared to the conventional ML-EM. The pixel-wise TAC obtained by the MLEM method exhibited large fluctuation around the truth; this large fluctuation was significantly suppressed by using ML-TV. Our next step is to incorporate time-domain correlation and develop fully 4D (3D spatial + 1D time) image reconstruction methods for dynamic stationary small animal SPECT studies. (orig.)

  3. Exprerimental Evaluation of a Dedicated Pinhole SPECT System for Small Animal Imaging and Scintimammography

    Directory of Open Access Journals (Sweden)

    G. Loudos

    2011-02-01

    Full Text Available Nuclear medicine (SPECT and PET provides functional information, which is complementary to the structural. In cancer imaging radiopharmaceuticals allow visualization of cancer cells functionality, thus small cell population can be imaged. This allows early diagnosis, as well as fast assessment of response to therapy. Our system is a single head gamma camera based on an R3292 position sensitive photomultiplier tube (PSPMT, coupled to a 10cm in diameter CsI:Tl crystal. We have assessed two CsI:Tl crystals with pixel size of 2x2mm2 and 3x3mm2 respectively. Three collimators were tested: a a hexagonal, 1.1mm in diameter, general purpose parallel hole collimator b a 1mm pinhole and c a 2mm pinhole. Systems were tested using capillary phantoms. All measurements were carried out in photon counting mode with gamma radiation produced by 99mTc. Using the 2x2mm2 crystal and the 1mm pinhole collimator - a resolution better than 1mm was achieved. This allows very detailed imaging of small animals. Using the 3x3mm2 and the 2mm pinhole collimator a resolution of 1.3mm was possible with suitable sensitivity for breast imaging. Those results indicate that this system is suitable for animal and breast studies. The next step will be clinical evaluation of the camera.

  4. Development and performance evaluation of an animal SPECT system using Philips ARGUS gamma camera and pinhole collimators

    International Nuclear Information System (INIS)

    We developed an animal SPECT system using clinical Philips ARGUS scintillation camera, pinhole collimator with specially manufactured small apertures and laser alignment system to minimize center of rotation error. In this study, we evaluated the physical characteristics of this system and biological feasibility for animal experiments. Rotating station for small animals using a step motor and laser alignment system were developed. Pinhole inserts with small apertures (0.5, 1.0, and 2.0 mm) were manufactured and physical parameters including planar and reconstructed spatial resolution and sensitivity were measured for some apertures. Using manufactured multiple line sources; the size of usable field of view was measured. Using a Tc-99m line source with 0.5 mm diameter placed in the exact center of field of view, planar spatial resolution according to the distance was measured. Calibration factor to obtain FWHM values in mm unit was calculated from the planar image of two separated line sources. Tc-99m point source with 1 mm diameter was used for the measurement of system sensitivity. In addition, SPECT data of micro phantom with cold inserts and rat brain after intravenous injection of [I-123]FP-CIT were acquired using laser alignment system and reconstructed using filtered back projection and ordered subsets expectation maximization reconstruction algorithm. Size of usable field of view was proportional to the distance and that could be fitted into a linear equation.(y=1.4x+0.5 x:distance) System sensitivity and planar spatial resolution at 3 cm measured using 1.0 mm aperture was 71 cps/MBq and 1.24 mm, respectively. In the SPECT image of rat brain the distribution of dopamine transporter in the striatum was well identified in each hemisphere. We verified that this new animal SPECT system with the Philips ARGUS scanner and small apertures had sufficient performance for small animal imaging

  5. Design of a high-resolution small-animal SPECT-CT system sharing a CdTe semiconductor detector

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Hyun-Ju; Lee, Young-Jin; Lee, Seung-Wan; Cho, Hyo-Min; Choi, Yu-Na; Kim, Hee-Joung [Yonsei University, Wonju (Korea, Republic of)

    2012-07-15

    A single photon emission computed tomography (SPECT) system with a co-registered X-y computed tomography (CT) system allows the convergence of functional information and morphologic information. The localization of radio pharmaceuticals on a SPECT can be enhanced by combining the SPECT with an anatomical modality, such as X-ray CT. Gamma-ray imaging for nuclear medicine devices and X-ray imaging systems for diagnostics has recently been developed based on semiconductor detectors, and semiconductor detector materials such as cadmium telluride (CdTe) or cadmium zinc telluride (CZT) are available for both X-ray and gamma-ray systems for small animal imaging. CdTe or CZT detectors provide strong absorption and high detection efficiency of high energy X-ray and gamma-ray photons because of their large atomic numbers. In this study, a pinhole collimator SPECT system sharing a cadmium telluride (CdTe) detector with a CT was designed. The GEANT4 application for tomographic emission (GATE) v.6.1 was used for the simulation. The pinhole collimator was designed to obtain a high spatial resolution of the SPECT system. The acquisition time for each projection was 40 seconds, and 60 projections were obtained for tomographic image acquisition. The reconstruction was performed using ordered subset expectation maximization (OS-EM) algorithms. The sensitivity and the spatial resolution were measured on the GATE simulation to evaluate the system characteristics. The spatial resolution of the system calculated from the FWHM of Gaussian fitted PSF curve was 0.69 mm, and the sensitivity of the system was measured to be 0.354 cps/kBq by using a Tc-99m point source of 1 MBq for 800 seconds. A phantom study was performed to verify the design of the dual imaging modality system. The system will be built as designed, and it can be applied as a pre-clinical imaging system.

  6. Design of a high-resolution small-animal SPECT-CT system sharing a CdTe semiconductor detector

    International Nuclear Information System (INIS)

    A single photon emission computed tomography (SPECT) system with a co-registered X-y computed tomography (CT) system allows the convergence of functional information and morphologic information. The localization of radio pharmaceuticals on a SPECT can be enhanced by combining the SPECT with an anatomical modality, such as X-ray CT. Gamma-ray imaging for nuclear medicine devices and X-ray imaging systems for diagnostics has recently been developed based on semiconductor detectors, and semiconductor detector materials such as cadmium telluride (CdTe) or cadmium zinc telluride (CZT) are available for both X-ray and gamma-ray systems for small animal imaging. CdTe or CZT detectors provide strong absorption and high detection efficiency of high energy X-ray and gamma-ray photons because of their large atomic numbers. In this study, a pinhole collimator SPECT system sharing a cadmium telluride (CdTe) detector with a CT was designed. The GEANT4 application for tomographic emission (GATE) v.6.1 was used for the simulation. The pinhole collimator was designed to obtain a high spatial resolution of the SPECT system. The acquisition time for each projection was 40 seconds, and 60 projections were obtained for tomographic image acquisition. The reconstruction was performed using ordered subset expectation maximization (OS-EM) algorithms. The sensitivity and the spatial resolution were measured on the GATE simulation to evaluate the system characteristics. The spatial resolution of the system calculated from the FWHM of Gaussian fitted PSF curve was 0.69 mm, and the sensitivity of the system was measured to be 0.354 cps/kBq by using a Tc-99m point source of 1 MBq for 800 seconds. A phantom study was performed to verify the design of the dual imaging modality system. The system will be built as designed, and it can be applied as a pre-clinical imaging system.

  7. Design of a high-resolution small-animal SPECT-CT system sharing a CdTe semiconductor detector

    Science.gov (United States)

    Ryu, Hyun-Ju; Lee, Young-Jin; Lee, Seung-Wan; Cho, Hyo-Min; Choi, Yu-Na; Kim, Hee-Joung

    2012-07-01

    A single photon emission computed tomography (SPECT) system with a co-registered X-y computed tomography (CT) system allows the convergence of functional information and morphologic information. The localization of radiopharmaceuticals on a SPECT can be enhanced by combining the SPECT with an anatomical modality, such as X-ray CT. Gamma-ray imaging for nuclear medicine devices and X-ray imaging systems for diagnostics has recently been developed based on semiconductor detectors, and semiconductor detector materials such as cadmium telluride (CdTe) or cadmium zinc telluride (CZT) are available for both X-ray and gamma-ray systems for small-animal imaging. CdTe or CZT detectors provide strong absorption and high detection efficiency of high energy X-ray and gamma-ray photons because of their large atomic numbers. In this study, a pinhole collimator SPECT system sharing a cadmium telluride (CdTe) detector with a CT was designed. The GEANT4 application for tomographic emission (GATE) v.6.1 was used for the simulation. The pinhole collimator was designed to obtain a high spatial resolution of the SPECT system. The acquisition time for each projection was 40 seconds, and 60 projections were obtained for tomographic image acquisition. The reconstruction was performed using ordered subset expectation maximization (OS-EM) algorithms. The sensitivity and the spatial resolution were measured on the GATE simulation to evaluate the system characteristics. The spatial resolution of the system calculated from the FWHM of Gaussian fitted PSF curve was 0.69 mm, and the sensitivity of the system was measured to be 0.354 cps/kBq by using a Tc-99m point source of 1 MBq for 800 seconds. A phantom study was performed to verify the design of the dual imaging modality system. The system will be built as designed, and it can be applied as a pre-clinical imaging system.

  8. A clinical gamma camera-based pinhole collimated system for high resolution small animal SPECT imaging

    International Nuclear Information System (INIS)

    The main objective of the present study was to upgrade a clinical gamma camera to obtain high resolution tomographic images of small animal organs. The system is based on a clinical gamma camera to which we have adapted a special-purpose pinhole collimator and a device for positioning and rotating the target based on a computer-controlled step motor. We developed a software tool to reconstruct the target's three-dimensional distribution of emission from a set of planar projections, based on the maximum likelihood algorithm. We present details on the hardware and software implementation. We imaged phantoms and heart and kidneys of rats. When using pinhole collimators, the spatial resolution and sensitivity of the imaging system depend on parameters such as the detector-to-collimator and detector-to-target distances and pinhole diameter. In this study, we reached an object voxel size of 0.6 mm and spatial resolution better than 2.4 and 1.7 mm full width at half maximum when 1.5- and 1.0-mm diameter pinholes were used, respectively. Appropriate sensitivity to study the target of interest was attained in both cases. Additionally, we show that as few as 12 projections are sufficient to attain good quality reconstructions, a result that implies a significant reduction of acquisition time and opens the possibility for radiotracer dynamic studies. In conclusion, a high resolution single photon emission computed tomography (SPECT) system was developed using a commercial clinical gamma camera, allowing the acquisition of detailed volumetric images of small animal organs. This type of system has important implications for research areas such as Cardiology, Neurology or Oncology. (author)

  9. A clinical gamma camera-based pinhole collimated system for high resolution small animal SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J.; Galvis-Alonso, O.Y., E-mail: mejia_famerp@yahoo.com.b [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Biologia Molecular; Castro, A.A. de; Simoes, M.V. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Clinica Medica; Leite, J.P. [Universidade de Sao Paulo (FMRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Medicina. Dept. de Neurociencias e Ciencias do Comportamento; Braga, J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Astrofisica

    2010-11-15

    The main objective of the present study was to upgrade a clinical gamma camera to obtain high resolution tomographic images of small animal organs. The system is based on a clinical gamma camera to which we have adapted a special-purpose pinhole collimator and a device for positioning and rotating the target based on a computer-controlled step motor. We developed a software tool to reconstruct the target's three-dimensional distribution of emission from a set of planar projections, based on the maximum likelihood algorithm. We present details on the hardware and software implementation. We imaged phantoms and heart and kidneys of rats. When using pinhole collimators, the spatial resolution and sensitivity of the imaging system depend on parameters such as the detector-to-collimator and detector-to-target distances and pinhole diameter. In this study, we reached an object voxel size of 0.6 mm and spatial resolution better than 2.4 and 1.7 mm full width at half maximum when 1.5- and 1.0-mm diameter pinholes were used, respectively. Appropriate sensitivity to study the target of interest was attained in both cases. Additionally, we show that as few as 12 projections are sufficient to attain good quality reconstructions, a result that implies a significant reduction of acquisition time and opens the possibility for radiotracer dynamic studies. In conclusion, a high resolution single photon emission computed tomography (SPECT) system was developed using a commercial clinical gamma camera, allowing the acquisition of detailed volumetric images of small animal organs. This type of system has important implications for research areas such as Cardiology, Neurology or Oncology. (author)

  10. Design Optimization of a Small-animal SPECT System Using LGSO Continuous Crystal and a Micro Parallel-hole Collimator

    OpenAIRE

    Kim, Joong Hyun; Ito, Mikiko; Kim, Soo Mee; Hong, Seong Jong; Lee, Jae Sung

    2015-01-01

    The aim of this study was to optimize the design of a monolithic LGSO scintillation crystal and micro parallel-hole collimator for the development of a small-animal single photon emission computed tomography (SPECT) system with compact size, low-cost and reasonable performance through Monte Carlo simulation. L0.9GSO crystals with surface area of 50 mm X 50 mm were investigated for the design optimization. The intrinsic detection efficiency, intrinsic spatial resolution, and intrinsic energy r...

  11. Development and performance evaluation of an animal SPECT system using Philips ARGUS gamma camera and pinhole collimator

    International Nuclear Information System (INIS)

    We developed an animal SPECT system using clinical Philips ARGUS scintillation camera and pinhole collimator with specially manufactured small apertures. In this study, we evaluated the physical characteristics of this system and biological feasibility for animal experiments. Rotating station for small animals using a step motor and operating software were developed. Pinhole inserts with small apertures (diameter of 0.5, 1.0, and 2.0 mm) were manufactured and physical parameters including planar spatial resolution and sensitivity and reconstructed resolution were measured for some apertures. In order to measure the size of the usable field of view according to the distance from the focal point, manufactured multiple line sources separated with the same distance were scanned and numbers of lines within the field of view were counted. Using a Tc-99m line source with 0.5 mm diameter and 12 mm length placed in the exact center of field of view, planar spatial resolution according to the distance was measured. Calibration factor to obtain FWHM values in 'mm' unit was calculated from the planar image of two separated line sources. Tc-99m point source with 1 mm diameter was used for the measurement of system sensitivity. In addition, SPECT data of micro phantom with cold and hot line inserts and rat brain after intravenous injection of [I-123]FP-CIT were acquired and reconstructed using filtered back projection reconstruction algorithm for pinhole collimator. Size of usable field of view was proportional to the distance from the focal point and their relationship could be fitted into a linear equation (y=1,4x + 0.5, x: distance). System sensitivity and planar spatial resolution at 3 cm measured using 1.0 mm aperture was 71 cps/MBq and 1.24 mm, respectively. In the SPECT image of rat brain with [I-123]FP-CIT acquired using 1.0 mm aperture, the distribution of dopamine transporter in the striatum was well identified in each hemisphere. We verified that this new animal SPECT

  12. Small-animal SPECT and SPECT/CT: application in cardiovascular research

    International Nuclear Information System (INIS)

    Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses gamma cameras and collimators to form projection data that are used to estimate (dynamic) 3-D tracer distributions in vivo. Recent developments in multipinhole collimation and advanced image reconstruction have led to sub-millimetre and sub-half-millimetre resolution SPECT in rats and mice, respectively. In this article we review applications of microSPECT in cardiovascular research in which information about the function and pathology of the myocardium, vessels and neurons is obtained. We give examples on how diagnostic tracers, new therapeutic interventions, pre- and postcardiovascular event prognosis, and functional and pathophysiological heart conditions can be explored by microSPECT, using small-animal models of cardiovascular disease. (orig.)

  13. The multi-module multi-resolution SPECT system: A tool for variable-pinhole small-animal imaging

    Science.gov (United States)

    Hesterman, Jacob Yost

    The multi-module, multi-resolution SPECT system (M 3R) was developed and evaluated at the University of Arizona's Center for Gamma-Ray Imaging (CGRI). The system consists of four modular gamma cameras stationed around a Cerrobend shielding assembly. Slots machined into the shielding allow for the easy interchange of pinhole apertures, providing M3R with excellent hardware flexibility. Motivation for the system included serving as a prototype for a tabletop, small-animal SPECT system, acting as a testbed for image quality by enabling the experimental validation of imaging theory, and aiding in the development of techniques for the emerging field of adaptive SPECT imaging. Development of the system included design and construction of the shielding assembly and pinhole apertures. The issue of pinhole design and evaluation represents a recurring theme of the presented work. Existing calibration methods were adapted for use with M3R. A new algorithm, the contracting grid-search algorithm, that is capable of being executed in hardware was developed for use in position estimation. The algorithm was successfully applied in software and progress was made in hardware implementation. Special equipment and interpolation techniques were also developed to deal with M3R's unique system design and calibration requirements. A code library was created to simplify the many image processing steps required to realize successful analysis of measured image and calibration data and to achieve reconstruction. Observer studies were performed using both projection data and reconstructed images. These observer studies sought to explore signal-detection and activity estimation for various pinhole apertures. Special attention was paid to object variability, including the development and statistical analysis of a phantom capable of generating multiple realizations of a random, textured background. The results of these studies indicate potential for multiple-pinhole, multiplexed apertures but

  14. Design Optimization of a Small-animal SPECT System Using LGSO Continuous Crystal and a Micro Parallel-hole Collimator

    CERN Document Server

    Kim, Joong Hyun; Kim, Soo Mee; Hong, Seong Jong; Lee, Jae Sung

    2015-01-01

    The aim of this study was to optimize the design of a monolithic LGSO scintillation crystal and micro parallel-hole collimator for the development of a small-animal single photon emission computed tomography (SPECT) system with compact size, low-cost and reasonable performance through Monte Carlo simulation. L0.9GSO crystals with surface area of 50 mm X 50 mm were investigated for the design optimization. The intrinsic detection efficiency, intrinsic spatial resolution, and intrinsic energy resolution of crystals were estimated for different crystal thicknesses and photon energies (using I-125 and Tc-99m sources). Two kinds of surface treatments (providing polished and rough surfaces) were compared by optical photon simulation. The standard deviation of the angle between a micro-facet and the mean surface was set to 0.1 and 6.0 for polished and rough surfaces, respectively. For comparison, the intrinsic performance of NaI(Tl) was also investigated. A multi-photomultiplier tube was designed with 16 X 16 anode ...

  15. MediSPECT: Single photon emission computed tomography system for small field of view small animal imaging based on a CdTe hybrid pixel detector

    Science.gov (United States)

    Accorsi, R.; Autiero, M.; Celentano, L.; Chmeissani, M.; Cozzolino, R.; Curion, A. S.; Frallicciardi, P.; Laccetti, P.; Lanza, R. C.; Lauria, A.; Maiorino, M.; Marotta, M.; Mettivier, G.; Montesi, M. C.; Riccio, P.; Roberti, G.; Russo, P.

    2007-02-01

    We describe MediSPECT, a new scanner developed at University and INFN Napoli, for SPECT studies on small animals with a small field of view (FOV) and high spatial resolution. The CdTe pixel detector (a 256×256 matrix of 55 μm square pixels) operating in single photon counting for detection of gamma-rays with low and medium energy (e.g. 125I, 27-35 keV, 99mTc, 140 keV), is bump bonded to the Medipix2 readout chip. The FOV of the MediSPECT scanner with a coded aperture mask collimator ranges from 6.3 mm (system spatial resolution 110 μm at 27-35 keV) to 24.3 mm. With a 0.30 mm pinhole the FOV ranges from 2.4 to 29 mm (where the system spatial resolution is 1.0 mm at 27-35 keV and 2.0 mm at 140 keV). MediSPECT will be used for in vivo imaging of small organs or tissue structures in mouse, e.g., brain, thyroid, heart or tumor.

  16. MediSPECT: Single photon emission computed tomography system for small field of view small animal imaging based on a CdTe hybrid pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Accorsi, R. [Department of Radiology, The Children' s Hospital of Philadelphia, Philadelphia, PA (United States); Autiero, M. [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, Naples (Italy); Celentano, L. [Dipartimento di Scienze Biomorfologiche e Funzionali, Universita di Napoli Federico II, Naples (Italy)] (and others)

    2007-02-01

    We describe MediSPECT, a new scanner developed at University and INFN Napoli, for SPECT studies on small animals with a small field of view (FOV) and high spatial resolution. The CdTe pixel detector (a 256x256 matrix of 55 {mu}m square pixels) operating in single photon counting for detection of gamma-rays with low and medium energy (e.g. {sup 125}I, 27-35 keV, {sup 99m}Tc, 140 keV), is bump bonded to the Medipix2 readout chip. The FOV of the MediSPECT scanner with a coded aperture mask collimator ranges from 6.3 mm (system spatial resolution 110 {mu}m at 27-35 keV) to 24.3 mm. With a 0.30 mm pinhole the FOV ranges from 2.4 to 29 mm (where the system spatial resolution is 1.0 mm at 27-35 keV and 2.0 mm at 140 keV). MediSPECT will be used for in vivo imaging of small organs or tissue structures in mouse, e.g., brain, thyroid, heart or tumor.

  17. MediSPECT: Single photon emission computed tomography system for small field of view small animal imaging based on a CdTe hybrid pixel detector

    International Nuclear Information System (INIS)

    We describe MediSPECT, a new scanner developed at University and INFN Napoli, for SPECT studies on small animals with a small field of view (FOV) and high spatial resolution. The CdTe pixel detector (a 256x256 matrix of 55 μm square pixels) operating in single photon counting for detection of gamma-rays with low and medium energy (e.g. 125I, 27-35 keV, 99mTc, 140 keV), is bump bonded to the Medipix2 readout chip. The FOV of the MediSPECT scanner with a coded aperture mask collimator ranges from 6.3 mm (system spatial resolution 110 μm at 27-35 keV) to 24.3 mm. With a 0.30 mm pinhole the FOV ranges from 2.4 to 29 mm (where the system spatial resolution is 1.0 mm at 27-35 keV and 2.0 mm at 140 keV). MediSPECT will be used for in vivo imaging of small organs or tissue structures in mouse, e.g., brain, thyroid, heart or tumor

  18. Performance evaluation of a newly developed high-resolution, dual-head animal SPECT system based on the NEMA NU1-2007 standard.

    Science.gov (United States)

    Moji, Vahideh; Zeratkar, Navid; Farahani, Mohammad Hossein; Aghamiri, Mahmoud Reza; Sajedi, Salar; Teimourian, Behnoosh; Ghafarian, Pardis; Sarkar, Saeed; Ay, Mohammad Reza

    2014-01-01

    Small-animal single-photon emission computed tomography (SPECT) system plays an important role in the field of drug development and investigation of potential drugs in the preclinical phase. The small-animal High-Resolution SPECT (HiReSPECT) scanner has been recently designed and developed based on compact and high-resolution detectors. The detectors are based on a high-resolution parallel hole collimator, a cesium iodide (sodium-activated) pixelated crystal array and two H8500 position-sensitive photomultiplier tubes. In this system, a full set of data cor- rections such as energy, linearity, and uniformity, together with resolution recovery option in reconstruction algorithms, are available. In this study, we assessed the performance of the system based on NEMA-NU1-2007 standards for pixelated detector cameras. Characterization of the HiReSPECT was performed by measure- ment of the physical parameters including planar and tomographic performance. The planar performance of the system was characterized with flood-field phantom for energy resolution and uniformity. Spatial resolution and sensitivity were evaluated as functions of distance with capillary tube and cylindrical source, respectively. Tomographic spatial resolution was characterized as a function of radius of rotation (ROR). A dedicated hot rod phantom and image quality phantom was used for the evaluation of overall tomographic quality of the HiReSPECT. The results showed that the planar spatial resolution was ~ 1.6 mm and ~ 2.3 mm in terms of full-width at half-maximum (FWHM) along short- and long-axis dimensions, respectively, when the source was placed on the detector surface. The integral uniformity of the system after uniformity correction was 1.7% and 1.2% in useful field of view (UFOV) and central field of view (CFOV), respectively. System sensitivity on the collimator surface was 1.31 cps/μCi and didn't vary significantly with distance. Mean tomographic spatial resolution was measured ~ 1.7 mm

  19. Comparison of photon counting and conventional scintillation detectors in a pinhole SPECT system for small animal imaging: Monte carlo simulation studies

    Science.gov (United States)

    Lee, Young-Jin; Park, Su-Jin; Lee, Seung-Wan; Kim, Dae-Hong; Kim, Ye-Seul; Kim, Hee-Joung

    2013-05-01

    The photon counting detector based on cadmium telluride (CdTe) or cadmium zinc telluride (CZT) is a promising imaging modality that provides many benefits compared to conventional scintillation detectors. By using a pinhole collimator with the photon counting detector, we were able to improve both the spatial resolution and the sensitivity. The purpose of this study was to evaluate the photon counting and conventional scintillation detectors in a pinhole single-photon emission computed tomography (SPECT) system. We designed five pinhole SPECT systems of two types: one type with a CdTe photon counting detector and the other with a conventional NaI(Tl) scintillation detector. We conducted simulation studies and evaluated imaging performance. The results demonstrated that the spatial resolution of the CdTe photon counting detector was 0.38 mm, with a sensitivity 1.40 times greater than that of a conventional NaI(Tl) scintillation detector for the same detector thickness. Also, the average scatter fractions of the CdTe photon counting and the conventional NaI(Tl) scintillation detectors were 1.93% and 2.44%, respectively. In conclusion, we successfully evaluated various pinhole SPECT systems for small animal imaging.

  20. Multiple-pinhole SPECT/CBCT system and its application on animal model on tumor

    Science.gov (United States)

    Bao, Shanglian; Li, Jun

    2011-12-01

    Characterized by wisdom and creativity, human beings are huge, complex, giant systems. Each person's life is experienced the process of birth, growth, aging and death. The genetic stability keeps human beings no change, and the mutation keeps the human beings in progress. The balance between stability and mutation are controlled by the nature laws automatically. But the balance often broken because the body's biochemical processes is out of order in vivo, which is scaled by quantitative concentrations for all molecular in human body. Now day, the biomedical imaging tools can investigate these process quantitatively.

  1. An accurate and efficient system model of iterative image reconstruction in high-resolution pinhole SPECT for small animal research

    International Nuclear Information System (INIS)

    Accurate modeling of the photon acquisition process in pinhole SPECT is essential for optimizing resolution. In this work, the authors develop an accurate system model in which pinhole finite aperture and depth-dependent geometric sensitivity are explicitly included. To achieve high-resolution pinhole SPECT, the voxel size is usually set in the range of sub-millimeter so that the total number of image voxels increase accordingly. It is inevitably that a system matrix that models a variety of favorable physical factors will become extremely sophisticated. An efficient implementation for such an accurate system model is proposed in this research. We first use the geometric symmetries to reduce redundant entries in the matrix. Due to the sparseness of the matrix, only non-zero terms are stored. A novel center-to-radius recording rule is also developed to effectively describe the relation between a voxel and its related detectors at every projection angle. The proposed system matrix is also suitable for multi-threaded computing. Finally, the accuracy and effectiveness of the proposed system model is evaluated in a workstation equipped with two Quad-Core Intel X eon processors.

  2. PET-based geometrical calibration of a pinhole SPECT add-on for an animal PET scanner

    International Nuclear Information System (INIS)

    We developed SPECT imaging capability on an animal PET scanner to provide a cost effective option for animal SPECT imaging. The SPECT add-on sub-system was enabled by mechanically integrating a multiple-pinhole collimator in the PET detector ring. This study introduces a method to calibrate the geometrical parameters of the SPECT add-on using the PET imaging capability of the scanner. The proposed PET imaging-based calibration method consists of two steps: (1) paint the pinhole apertures of the collimator with a positron emitting radioactive solution; and (2) image the collimator inside the scanner in PET mode. The geometrical parameters of the multi-pinhole SPECT add-on can then be derived directly from a set of PET images by simple linear calculation and used in defining the SPECT system. The method was compared to our implementation of a SPECT calibration approach with model-based fitting of SPECT projection data. The procedure for carrying out the PET imaging-based calibration method is simpler and faster than that of our implementation of the SPECT model-based calibration method. Since it does not require model fitting, the uniqueness of the calibration result is warranted. Better quality SPECT images were reconstructed using the PET-derived calibration parameters rather than our implementation of the SPECT model-based calibration parameters. We conclude that the proposed PET imaging-based calibration method provides a highly effective means for enabling SPECT imaging on a PET scanner. (paper)

  3. Dual SPECT/MR imaging in small animal

    International Nuclear Information System (INIS)

    Objective: To demonstrate the feasibility of SPECT/MRI in small animal using a dual device. Material and methods: A small animal pinhole camera (1.5 mm in diameter) coupled together with a dedicated low-field (0.1 T) small MR imager (imaging volume of 10x10x6 cm3) was used. SPECT consisted of acquiring 48 projections after intra-venous injections of 0.2 ml and 700 MBq of 99mTc-Sestamibi and was immediately followed by MRI with 3D isotropic T1 and T2 weighted imaging sequences. Two adult Swiss nude mice with stereotaxic brain implanted human glioblastoma cells and maintained under isoflurane 1.5% and air 0.3 L min-1 in a warmed-up and non-magnetic imaging cell for both modalities were used in this study. Results: Fusion images of SPECT/low-field MRI were obtained with isotropic voxel resolutions of 1x1x1 mm3 for SPECT and 0.5x0.5x0.5 mm3 for MRI. Total acquisition time for both imaging modalities was 2.5 h. Conclusion: A low magnetic field strength of 0.1 T is a potential solution for a small animal dual imaging device combining pinhole SPECT and MRI in a single machine

  4. Small-animal SPECT and SPECT/CT: application in cardiovascular research

    OpenAIRE

    Golestani, R.; Wu, C.; Tio, R.A.; Zeebregts, C. J.; Petrov, A.D.; Beekman, F.J.; Dierckx, R. A. J. O.; Boersma, H.H.; Slart, R.H.J.A.

    2010-01-01

    Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses gamma cameras and collimators to form projection data that are used to estimate (dynamic) 3-D tracer distributions in vivo. Recent developments in multipinhole collimation and advanced image reconstr...

  5. Quality assurance for SPECT systems

    International Nuclear Information System (INIS)

    Quality control is crucial to all aspects of nuclear medicine practice, including the measurement of radioactivity, the preparation of radiopharmaceuticals, the use of instrumentation to obtain images, computations to calculate functional parameters, and the interpretation of the results by the physician. It plays an integral part in fulfilling the regulatory requirement for establishing a comprehensive quality assurance programme as described in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. In 1984, the IAEA published IAEA-TECDOC-317, Quality Control of Nuclear Medicine Instruments, which addressed the quality control of radionuclide activity calibrators (also known as dose calibrators), gamma counters, and single and multiprobe counting systems, rectilinear scanners and scintillation cameras. An updated version of IAEA-TECDOC-317 was issued in 1991 as IAEA-TECDOC-602, and this included new chapters on scanner-computer systems and single photon emission computed tomography (SPECT) systems. The rapidly increasing use of SPECT systems during the 1990s prompted the need for a further update of these publications with special emphasis on SPECT systems, planar scintillation cameras, camera-computer systems and whole body scanning systems. Since rectilinear scanners have already been, or will soon be, phased out in Member States, the current publication excludes them completely. Quality assurance and quality control aspects of instrumentation for radioactivity measurements in nuclear medicine are addressed in Technical Reports Series No. 454, Quality Assurance for Radioactivity Measurement in Nuclear Medicine. The current publication is intended to be a resource for medical physicists, technologists and other healthcare professionals who are responsible for ensuring optimal performance of imaging instruments, particularly SPECT systems, in their respective institutions. It is intended for

  6. Design and performance of a multi-pinhole collimation device for small animal imaging with clinical SPECT and SPECT-CT scanners

    International Nuclear Information System (INIS)

    A multi-pinhole collimation device is developed that uses the gamma camera detectors of a clinical SPECT or SPECT-CT scanner to produce high-resolution SPECT images. The device consists of a rotating cylindrical collimator having 22 tungsten pinholes with 0.9 mm diameter apertures and an animal bed inside the collimator that moves linearly to provide helical or ordered-subsets axial sampling. CT images also may be acquired on a SPECT-CT scanner for purposes of image co-registration and SPECT attenuation correction. The device is placed on the patient table of the scanner without attaching to the detectors or scanner gantry. The system geometry is calibrated in-place from point source data and is then used during image reconstruction. The SPECT imaging performance of the device is evaluated with test phantom scans. Spatial resolution from reconstructed point source images is measured to be 0.6 mm full width at half maximum or better. Micro-Derenzo phantom images demonstrate the ability to resolve 0.7 mm diameter rod patterns. The axial slabs of a Micro-Defrise phantom are visualized well. Collimator efficiency exceeds 0.05% at the center of the field of view, and images of a uniform phantom show acceptable uniformity and minimal artifact. The overall simplicity and relatively good imaging performance of the device make it an interesting low-cost alternative to dedicated small animal scanners

  7. Design and performance of a multi-pinhole collimation device for small animal imaging with clinical SPECT and SPECT CT scanners

    Science.gov (United States)

    Di Filippo, Frank P.

    2008-08-01

    A multi-pinhole collimation device is developed that uses the gamma camera detectors of a clinical SPECT or SPECT-CT scanner to produce high-resolution SPECT images. The device consists of a rotating cylindrical collimator having 22 tungsten pinholes with 0.9 mm diameter apertures and an animal bed inside the collimator that moves linearly to provide helical or ordered-subsets axial sampling. CT images also may be acquired on a SPECT-CT scanner for purposes of image co-registration and SPECT attenuation correction. The device is placed on the patient table of the scanner without attaching to the detectors or scanner gantry. The system geometry is calibrated in-place from point source data and is then used during image reconstruction. The SPECT imaging performance of the device is evaluated with test phantom scans. Spatial resolution from reconstructed point source images is measured to be 0.6 mm full width at half maximum or better. Micro-Derenzo phantom images demonstrate the ability to resolve 0.7 mm diameter rod patterns. The axial slabs of a Micro-Defrise phantom are visualized well. Collimator efficiency exceeds 0.05% at the center of the field of view, and images of a uniform phantom show acceptable uniformity and minimal artifact. The overall simplicity and relatively good imaging performance of the device make it an interesting low-cost alternative to dedicated small animal scanners.

  8. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals

    Energy Technology Data Exchange (ETDEWEB)

    Joint Graduate Group in Bioengineering, University of California, San Francisco and University of California, Berkeley; Department of Radiology, University of California; Gullberg, Grant T; Hwang, Andrew B.; Franc, Benjamin L.; Gullberg, Grant T.; Hasegawa, Bruce H.

    2008-02-15

    Small animal SPECT imaging systems have multiple potential applications in biomedical research. Whereas SPECT data are commonly interpreted qualitatively in a clinical setting, the ability to accurately quantify measurements will increase the utility of the SPECT data for laboratory measurements involving small animals. In this work, we assess the effect of photon attenuation, scatter and partial volume errors on the quantitative accuracy of small animal SPECT measurements, first with Monte Carlo simulation and then confirmed with experimental measurements. The simulations modeled the imaging geometry of a commercially available small animal SPECT system. We simulated the imaging of a radioactive source within a cylinder of water, and reconstructed the projection data using iterative reconstruction algorithms. The size of the source and the size of the surrounding cylinder were varied to evaluate the effects of photon attenuation and scatter on quantitative accuracy. We found that photon attenuation can reduce the measured concentration of radioactivity in a volume of interest in the center of a rat-sized cylinder of water by up to 50percent when imaging with iodine-125, and up to 25percent when imaging with technetium-99m. When imaging with iodine-125, the scatter-to-primary ratio can reach up to approximately 30percent, and can cause overestimation of the radioactivity concentration when reconstructing data with attenuation correction. We varied the size of the source to evaluate partial volume errors, which we found to be a strong function of the size of the volume of interest and the spatial resolution. These errors can result in large (>50percent) changes in the measured amount of radioactivity. The simulation results were compared with and found to agree with experimental measurements. The inclusion of attenuation correction in the reconstruction algorithm improved quantitative accuracy. We also found that an improvement of the spatial resolution through the

  9. Using the Wiener estimator to determine optimal imaging parameters in a synthetic-collimator SPECT system used for small animal imaging

    Science.gov (United States)

    Lin, Alexander; Johnson, Lindsay C.; Shokouhi, Sepideh; Peterson, Todd E.; Kupinski, Matthew A.

    2015-03-01

    In synthetic-collimator SPECT imaging, two detectors are placed at different distances behind a multi-pinhole aperture. This configuration allows for image detection at different magnifications and photon energies, resulting in higher overall sensitivity while maintaining high resolution. Image multiplexing the undesired overlapping between images due to photon origin uncertainty may occur in both detector planes and is often present in the second detector plane due to greater magnification. However, artifact-free image reconstruction is possible by combining data from both the front detector (little to no multiplexing) and the back detector (noticeable multiplexing). When the two detectors are used in tandem, spatial resolution is increased, allowing for a higher sensitivity-to-detector-area ratio. Due to variability in detector distances and pinhole spacings found in synthetic-collimator SPECT systems, a large parameter space must be examined to determine optimal imaging configurations. We chose to assess image quality based on the task of estimating activity in various regions of a mouse brain. Phantom objects were simulated using mouse brain data from the Magnetic Resonance Microimaging Neurological Atlas (MRM NeAt) and projected at different angles through models of a synthetic-collimator SPECT system, which was developed by collaborators at Vanderbilt University. Uptake in the different brain regions was modeled as being normally distributed about predetermined means and variances. We computed the performance of the Wiener estimator for the task of estimating activity in different regions of the mouse brain. Our results demonstrate the utility of the method for optimizing synthetic-collimator system design.

  10. TierSPECT: performance of a dedicated small-animal-SPECT camera and first in vivo measurements

    International Nuclear Information System (INIS)

    This paper presents the performance of a new small-animal camera (TierSPECT) devised for the in vivo measurements of radiolabeled substances in small laboratory animals such as mice and rats. In a scatter medium, the camera has a tomographic spatial resolution of 2.87 mm and a sensitivity of 22 cps/MBq in a usable Field-of-View (FOV) with a diameter of 82 mm. The planar homogeneity amounts to 3.3%, the tomographic homogeneity lies between 3.2% and 3.5%. The deviation between filled and measured concentration of activity in a cylindrical 4-chamber-phantom was smaller than 2.6%. Using a novel rat head phantom with chamber volumes in the order of magnitude of the spatial resolution (between 0.065 ml and 0.19 ml) it could be demonstrated that studies of the rat neostriatal dopaminergic system are feasible under observance of physiological conditions. In vivo studies using [99mTc]diphosphonato-1,2-propandicarbonic acid (99mTc-DPD) and [123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)-nort ropane (123I-FP-CIT) proved that bone metabolism and dopamine transporter binding can be visualized with the TierSPECT. The fusion of 99mTc-DPD and 123I-FP-CIT images allowed the differentiation between intra- and extracerebral structures. Pretreatment with methylphenidate resulted in blockade of striatal dopamine transporter binding. (orig.)

  11. High Sensitivity SPECT for Small Animals and Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Gregory S. [UC Davis

    2015-02-28

    Imaging systems using single gamma-ray emitting radioisotopes typically implement collimators in order to form the images. However, a tradeoff in sensitivity is inherent in the use of collimators, and modern preclinical single-photon emission computed tomography (SPECT) systems detect a very small fraction of emitted gamma-rays (<0.3%). We have built a collimator-less system, which can reach sensitivity of 40% for 99mTc imaging, while still producing images of sufficient spatial resolution for certain applications in thin objects such as mice, small plants, and well plates used for in vitro experiments.

  12. Feasibility of a CdTe-based SPECT for high-resolution low-dose small animal imaging: a Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Dedicated single-photon-emission computed tomography (SPECT) systems based on pixelated semiconductors such as cadmium telluride (CdTe) are in development to study small animal models of human disease. In an effort to develop a high-resolution, low-dose system for small animal imaging, we compared a CdTe-based SPECT system and a conventional NaI(Tl)-based SPECT system in terms of spatial resolution, sensitivity, contrast, and contrast-to-noise ratio (CNR). In addition, we investigated the radiation absorbed dose and calculated a figure of merit (FOM) for both SPECT systems. Using the conventional NaI(Tl)-based SPECT system, we achieved a spatial resolution of 1.66 mm at a 30 mm source-to-collimator distance, and a resolution of 2.4-mm hot-rods. Using the newly-developed CdTe-based SPECT system, we achieved a spatial resolution of 1.32 mm FWHM at a 30 mm source-to-collimator distance, and a resolution of 1.7-mm hot-rods. The sensitivities at a 30 mm source-to-collimator distance were 115.73 counts/sec/MBq and 83.38 counts/sec/MBq for the CdTe-based SPECT and conventional NaI(Tl)-based SPECT systems, respectively. To compare quantitative measurements in the mouse brain, we calculated the CNR for images from both systems. The CNR from the CdTe-based SPECT system was 4.41, while that from the conventional NaI(Tl)-based SPECT system was 3.11 when the injected striatal dose was 160 Bq/voxel. The CNR increased as a function of injected dose in both systems. The FOM of the CdTe-based SPECT system was superior to that of the conventional NaI(Tl)-based SPECT system, and the highest FOM was achieved with the CdTe-based SPECT at a dose of 40 Bq/voxel injected into the striatum. Thus, a CdTe-based SPECT system showed significant improvement in performance compared with a conventional system in terms of spatial resolution, sensitivity, and CNR, while reducing the radiation dose to the small animal subject. Herein, we discuss the feasibility of a CdTe-based SPECT system for high

  13. Development of dual-function SPECT and CT probe for small animal imaging

    International Nuclear Information System (INIS)

    Full text: Different biological queries require different imaging strategies. In imaging this is more dependent not so much on the instruments but on the properties of the imaging agents.The development of dual-function probes for both fluorescence imaging and MRI was recently reported. Nano SPECT-CT, Bioscan system for animal imaging recently procured by our institute motivated us to explore and standardize a dual function probe for such a system. The study has been planned with a view develop a dual capability CT and radiopharmaceutical contrast to facilitate an anatomical and functional images thus combining the good resolution abilities of CT and high sensitivity functional images of SPECT. Method: Radiolabeling, of Bismuth nanocolloid with Technetium-99m was done and confirmation of good binding by instant thin layer chromatography (ITLC) confirmed more than 90% binding. This was injected into male Sprauge Dawley rats and biodistribution image and clearance time from blood was calculated. Confirmation, of Bismuth nano-colloid to act as CT contrast agent was done by performing phantom study at various concentrations in saline, 50 mg/ml, 100 mg/ml, 200 mg/ml and 500 mg/ml at CT tube current of 2.5mA and tube voltage of 140 KVp. Results: As compared to commercial Iodine contrast (375 mg/ml iodine) which was used as standard the average clearance time Bismuth colloid was longer. Its biodistribution was seen in heart, Liver, spleen and kidney. The iodine comparable CT contrast was achieved by 500 mg/ml of Bismuth colloid. 99mTc-Bismuth colloid imaging on a dedicated animal SPECT-CT (Nano-SPECT, Bioscan) revealed similar biodistribution and in-vivo-stability of labeling. Conclusion: Successful radiolabeling, in-vivo stability and SPECT imaging of 99mTc-Bismuth colloid along with its potential to impart iodine equivalent contrast raises the possibility of converting 99m-Tc-Bismuth as dual SPECT-CT probe for obtaining functional and anatomical image in pre

  14. PET and SPECT of neurobiological systems

    International Nuclear Information System (INIS)

    Addresses a variety of aspects of neurotransmission in the brain. Details the latest results in probe development. Emphasis on a multidisciplinary approach. Written by internationally acclaimed experts. PET and SPECT of Neurobiological Systems combines the expertise of renowned authors whose dedication to the development of novel probes and techniques for the investigation of neurobiological systems has achieved international recognition. Various aspects of neurotransmission in the brain are discussed, such as visualization and quantification of (more than 20 different) neuroreceptors, neuroinflammatory markers, transporters, and enzymes as well as neurotransmitter synthesis, ?-amyloid deposition, cerebral blood flow, and the metabolic rate of glucose. The latest results in probe development are also detailed. Most chapters are written jointly by radiochemists and nuclear medicine specialists to ensure a multidisciplinary approach. This state of the art compendium will be valuable to anyone in the field of clinical or preclinical neuroscience, from the radiochemist and radiologist/nuclear medicine specialist to the interested neurobiologist and general practitioner. It is the second volume of a trilogy on PET and SPECT imaging in the neurosciences. Other volumes focus on PET and SPECT in psychiatry and PET and SPECT in neurology''.

  15. PET and SPECT of neurobiological systems

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, Rudi A.J.O. [Groningen Univ. (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Gent Univ. (Belgium). Dept. of Nuclear Medicine; Otte, Andreas [Univ. of Applied Sciences, Offenburg (Germany). Faculty of Electrical Engineering and Information Technology; Vries, Erik F.J. de; Waarde, Aren van (eds.) [Groningen Univ. (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging

    2014-04-01

    Addresses a variety of aspects of neurotransmission in the brain. Details the latest results in probe development. Emphasis on a multidisciplinary approach. Written by internationally acclaimed experts. PET and SPECT of Neurobiological Systems combines the expertise of renowned authors whose dedication to the development of novel probes and techniques for the investigation of neurobiological systems has achieved international recognition. Various aspects of neurotransmission in the brain are discussed, such as visualization and quantification of (more than 20 different) neuroreceptors, neuroinflammatory markers, transporters, and enzymes as well as neurotransmitter synthesis, ?-amyloid deposition, cerebral blood flow, and the metabolic rate of glucose. The latest results in probe development are also detailed. Most chapters are written jointly by radiochemists and nuclear medicine specialists to ensure a multidisciplinary approach. This state of the art compendium will be valuable to anyone in the field of clinical or preclinical neuroscience, from the radiochemist and radiologist/nuclear medicine specialist to the interested neurobiologist and general practitioner. It is the second volume of a trilogy on PET and SPECT imaging in the neurosciences. Other volumes focus on PET and SPECT in psychiatry and PET and SPECT in neurology''.

  16. Improving the quality of small animal brain pinhole SPECT imaging by Bayesian reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Sohlberg, Antti [Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, P.O. Box 1777, 70211, Kuopio (Finland); Lensu, Sanna [Department of Pharmacology and Toxicology, University of Kuopio, Kuopio (Finland); Department of Environmental Health, National Public Health Institute, Kuopio (Finland); Jolkkonen, Jukka [Department of Neuroscience and Neurology, University of Kuopio, Kuopio (Finland); Tuomisto, Leena [Department of Pharmacology and Toxicology, University of Kuopio, Kuopio (Finland); Ruotsalainen, Ulla [Institute of Signal Processing, DMI, Tampere University of Technology, Tampere (Finland); Kuikka, Jyrki T. [Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, P.O. Box 1777, 70211, Kuopio (Finland); Niuvanniemi Hospital, Kuopio (Finland)

    2004-07-01

    The possibility of using existing hardware makes pinhole single-photon emission computed tomography (SPECT) attractive when pursuing the ultra-high resolution required for small animal brain imaging. Unfortunately, the poor sensitivity and the heavy weight of the collimator hamper the use of pinhole SPECT in animal studies by generating noisy and misaligned projections. To improve the image quality we have developed a new Bayesian reconstruction method, pinhole median root prior (PH-MRP), which prevents the excessive noise accumulation from the projections to the reconstructed image. The PH-MRP algorithm was used to reconstruct data acquired with our small animal rotating device, which was designed to reduce the rotation orbit misalignments. Phantom experiments were performed to test the device and compare the PH-MRP with the conventional Feldkamp-Davis-Kress (FDK) and pinhole ordered subsets maximum likelihood expectation maximisation (PH-OSEM) reconstruction algorithms. The feasibility of the system for small animal brain imaging was studied with Han-Wistar rats injected with {sup 123}I-epidepride and {sup 99m}Tc-hydroxy methylene diphosphonate. Considering all the experiments, no shape distortions due to orbit misalignments were encountered and remarkable improvements in noise characteristics and also in overall image quality were observed when the PH-MRP was applied instead of the FDK or PH-OSEM. In addition, the proposed methods utilise existing hardware and require only a certain amount of construction and programming work, making them easy to implement. (orig.)

  17. Improving the quality of small animal brain pinhole SPECT imaging by Bayesian reconstruction

    International Nuclear Information System (INIS)

    The possibility of using existing hardware makes pinhole single-photon emission computed tomography (SPECT) attractive when pursuing the ultra-high resolution required for small animal brain imaging. Unfortunately, the poor sensitivity and the heavy weight of the collimator hamper the use of pinhole SPECT in animal studies by generating noisy and misaligned projections. To improve the image quality we have developed a new Bayesian reconstruction method, pinhole median root prior (PH-MRP), which prevents the excessive noise accumulation from the projections to the reconstructed image. The PH-MRP algorithm was used to reconstruct data acquired with our small animal rotating device, which was designed to reduce the rotation orbit misalignments. Phantom experiments were performed to test the device and compare the PH-MRP with the conventional Feldkamp-Davis-Kress (FDK) and pinhole ordered subsets maximum likelihood expectation maximisation (PH-OSEM) reconstruction algorithms. The feasibility of the system for small animal brain imaging was studied with Han-Wistar rats injected with 123I-epidepride and 99mTc-hydroxy methylene diphosphonate. Considering all the experiments, no shape distortions due to orbit misalignments were encountered and remarkable improvements in noise characteristics and also in overall image quality were observed when the PH-MRP was applied instead of the FDK or PH-OSEM. In addition, the proposed methods utilise existing hardware and require only a certain amount of construction and programming work, making them easy to implement. (orig.)

  18. Improving the quality of small animal brain pinhole SPECT imaging by Bayesian reconstruction.

    Science.gov (United States)

    Sohlberg, Antti; Lensu, Sanna; Jolkkonen, Jukka; Tuomisto, Leena; Ruotsalainen, Ulla; Kuikka, Jyrki T

    2004-07-01

    The possibility of using existing hardware makes pinhole single-photon emission computed tomography (SPECT) attractive when pursuing the ultra-high resolution required for small animal brain imaging. Unfortunately, the poor sensitivity and the heavy weight of the collimator hamper the use of pinhole SPECT in animal studies by generating noisy and misaligned projections. To improve the image quality we have developed a new Bayesian reconstruction method, pinhole median root prior (PH-MRP), which prevents the excessive noise accumulation from the projections to the reconstructed image. The PH-MRP algorithm was used to reconstruct data acquired with our small animal rotating device, which was designed to reduce the rotation orbit misalignments. Phantom experiments were performed to test the device and compare the PH-MRP with the conventional Feldkamp-Davis-Kress (FDK) and pinhole ordered subsets maximum likelihood expectation maximisation (PH-OSEM) reconstruction algorithms. The feasibility of the system for small animal brain imaging was studied with Han-Wistar rats injected with (123)I-epidepride and (99m)Tc-hydroxy methylene diphosphonate. Considering all the experiments, no shape distortions due to orbit misalignments were encountered and remarkable improvements in noise characteristics and also in overall image quality were observed when the PH-MRP was applied instead of the FDK or PH-OSEM. In addition, the proposed methods utilise existing hardware and require only a certain amount of construction and programming work, making them easy to implement. PMID:14991246

  19. Evaluation and reduction of respiratory motion artifacts in small animal SPECT with GATE

    Science.gov (United States)

    Lee, C.-L.; Park, S.-J.; Kim, H.-J.

    2015-09-01

    The degradation of image quality caused by respiration is a major impediment to accurate lesion detection in single photon emission computed tomography (SPECT) imaging. This study was performed to evaluate the effects of lung motion on image quantification. A small animal SPECT system with NaI(Tl) was modeled in the Geant4 application for tomographic emission (GATE) simulation for a lung lesion using a 4D mouse whole-body phantom. SPECT images were obtained using 120 projection views acquired from 0o to 360o with a 3o step. Slices were reconstructed using ordered subsets expectation maximization (OS-EM) without attenuation correction with five iterations and four subsets. Image quality was compared between the static mode without respiratory motion, and dynamic mode with respiratory motion in terms of spatial resolution was measured by the full width at half maximum (FWHM), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). The FWHM of the non-gated image and the respiratory gated image were also compared. Spatial resolution improved as activity increased and lesion diameter decreased in the static and dynamic modes. The SNR and CNR increased significantly as lesion activity increased and lesion diameter decreased. Our results show that respiratory motion leads to reduced contrast and quantitative accuracy and that image quantification depends on both the amplitude and the pattern of the respiratory motion. We verified that respiratory motion can have a major effect on the accuracy of measurement of lung lesions and that respiratory gating can reduce activity smearing on SPECT images.

  20. Evaluation and reduction of respiratory motion artifacts in small animal SPECT with GATE

    International Nuclear Information System (INIS)

    The degradation of image quality caused by respiration is a major impediment to accurate lesion detection in single photon emission computed tomography (SPECT) imaging. This study was performed to evaluate the effects of lung motion on image quantification. A small animal SPECT system with NaI(Tl) was modeled in the Geant4 application for tomographic emission (GATE) simulation for a lung lesion using a 4D mouse whole-body phantom. SPECT images were obtained using 120 projection views acquired from 0o to 360o with a 3o step. Slices were reconstructed using ordered subsets expectation maximization (OS-EM) without attenuation correction with five iterations and four subsets. Image quality was compared between the static mode without respiratory motion, and dynamic mode with respiratory motion in terms of spatial resolution was measured by the full width at half maximum (FWHM), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). The FWHM of the non-gated image and the respiratory gated image were also compared. Spatial resolution improved as activity increased and lesion diameter decreased in the static and dynamic modes. The SNR and CNR increased significantly as lesion activity increased and lesion diameter decreased. Our results show that respiratory motion leads to reduced contrast and quantitative accuracy and that image quantification depends on both the amplitude and the pattern of the respiratory motion. We verified that respiratory motion can have a major effect on the accuracy of measurement of lung lesions and that respiratory gating can reduce activity smearing on SPECT images

  1. SemiSPECT: A small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays

    International Nuclear Information System (INIS)

    The first full single-photon emission computed tomography (SPECT) imager to exploit eight compact high-intrinsic-resolution cadmium zinc telluride (CZT) detectors, called SemiSPECT, has been completed. Each detector consists of a CZT crystal and a customized application-specific integrated circuit (ASIC). The CZT crystal is a 2.7 cmx2.7 cmx∼0.2 cm slab with a continuous top electrode and a bottom electrode patterned into a 64x64 pixel array by photolithography. The ASIC is attached to the bottom of the CZT crystal by indium-bump bonding. A bias voltage of -180 V is applied to the continuous electrode. The eight detectors are arranged in an octagonal lead-shielded ring. Each pinhole in the eight-pinhole aperture placed at the center of the ring is matched to each individual detector array. An object is imaged onto each detector through a pinhole, and each detector is operated independently with list-mode acquisition. The imaging subject can be rotated about a vertical axis to obtain additional angular projections. The performance of SemiSPECT was characterized using 99mTc. When a 0.5 mm diameter pinhole is used, the spatial resolution on each axis is about 1.4 mm as estimated by the Fourier crosstalk matrix, which provides an algorithm-independent average resolution over the field of view. The energy resolution achieved by summing neighboring pixel signals in a 3x3 window is about 10% full-width-at-half-maximum of the photopeak. The overall system sensitivity is about 0.5x10-4 with the energy window of ±10% from the photopeak. Line-phantom images are presented to visualize the spatial resolution provided by SemiSPECT, and images of bone, myocardium, and human tumor xenografts in mice demonstrate the feasibility of preclinical small-animal studies with SemiSPECT

  2. Design and assessment of cardiac SPECT systems

    Science.gov (United States)

    Lee, Chih-Jie

    Single-photon emission computed tomography (SPECT) is a modality widely used to detect myocardial ischemia and myocardial infarction. Objectively assessing and comparing different SPECT systems is important so that the best detectability of cardiac defects can be achieved. Whitaker, Clarkson, and Barrett's study on the scanning linear observer (SLO) shows that the SLO can be used to estimate the location and size of signals. One major advantage of the SLO is that it can be used with projection data rather than reconstruction data. Thus, this observer model assesses overall hardware performance independent by any reconstruction algorithm. In addition, we will show that the run time of image-quality studies is significantly reduced. Several systems derived from the GE CZT-based dedicated cardiac SPECT camera Discovery 530c design, which is officially named the Alcyone Technology: Discovery NM 530c, were assessed using the performance of the SLO for the task of detecting cardiac defects and estimating the properties of the defects. Clinically, hearts can be virtually segmented into three coronary artery territories: left anterior descending artery (LAD), left circumflex artery (LCX), and right coronary artery (RCA). One of the most important functions of a cardiac SPECT system is to produce images from which a radiologist can correctly predict in which territory the defect exists. A good estimation of the defect extent from the images is also very helpful for determining the seriousness of the myocardial ischemia. In this dissertation, both locations and extent of defects were estimated by the SLO, and system performance was assessed using localization receiver operating characteristic (LROC) / estimation receiver operating characteristic (EROC) curves. Area under LROC curve (AULC) / area under EROC curve (AUEC) and true positive fraction (TPF) at specific false positive fraction (FPF) can be treated as the gures of merit (FOMs). As the results will show, a

  3. Novel high resolution SPECT instrumentation and techniques for molecular imaging of small animals

    International Nuclear Information System (INIS)

    The main purpose of the project is the development and tuning of an advanced detector system for molecular imaging with radionuclides on small animal. The equipment has sub-millimeter spatial resolution, adequate sensitivity and field of view, It is designed for studies, on animal models, of diagnostic and/or therapeutic techniques in cardiovascular diseases, such as detection and identification of vulnerable plaques in atherosclerosis and stem cell therapy for cardiac repair. The present activities is carried on in collaboration with groups from Johns Hopkins University (Baltimore), Jefferson Lab (Newport News), Istituto Nazionale Fisica Nucleare (INFN) and ISS (Dept. Technology and Health and Dept. Therapeutic Research and Medicines Evaluation). The main results of the last two years are summarized as follows: development of the SPECT system prototype; set up of the technique for vulnerable plaques detection;demonstration of detectability of the cardiac perfusion via peritoneum injection of the radiotracer

  4. High resolution SPECT imaging for visualization of intratumoral heterogeneity using a SPECT/CT scanner dedicated for small animal imaging

    International Nuclear Information System (INIS)

    Tumor interiors are never homogeneous and in vivo visualization of intratumoral heterogeneity would be an innovation that contributes to improved cancer therapy. But, conventional nuclear medicine tests have failed to visualize heterogeneity in vivo because of limited spatial resolution. Recently developed single photon emission computed tomographic (SPECT) scanners dedicated for small animal imaging are of interest due to their excellent spatial resolution of 111In and simulations of actual small animal imaging. The optimal conditions obtained were validated by in vivo imaging of sarcoma 180-bearing mice. Larger number of counts must be obtained within limited acquisition time to visualize tumor heterogeneity in vivo in animal imaging, compared to cases that simply detect tumors. At an acquisition time of 30 min, better image quality was obtained with pinhole apertures diameter of 1.4 mm than of 1.0 mm. The obtained best spatial resolution was 1.3 mm, it was acceptable for our purpose, though a little worse than the best possible performance of the scanner (1.0 mm). Additionally, the reconstruction parameters, such as noise suppression, voxel size, and iteration/subset number, needed to be optimized under the limited conditions and were different from those found under the ideal condition. The minimal radioactivity concentration for visualization of heterogeneous tumor interiors was estimated to be as high as 0.2-0.5 MBq/mL. Liposomes containing 111In met this requirement and were administered to tumor-bearing mice. SPECT imaging successfully showed heterogeneous 111In distribution within the tumors in vivo with good spatial resolution. A threshold of 0.2 MBq/g for clear visualization of tumor heterogeneity was validated. Autoradiograms obtained ex vivo of excised tumors confirmed that the in vivo SPECT images accurately depicted the heterogeneous intratumoral accumulation of liposomes. Intratumoral heterogeneity was successfully visualized under the optimized

  5. Performance evaluation of D-SPECT: a novel SPECT system for nuclear cardiology

    Science.gov (United States)

    Erlandsson, Kjell; Kacperski, Krzysztof; van Gramberg, Dean; Hutton, Brian F.

    2009-05-01

    D-SPECT (Spectrum Dynamics, Israel) is a novel SPECT system for cardiac perfusion studies. Based on CZT detectors, region-centric scanning, high-sensitivity collimators and resolution recovery, it offers potential advantages over conventional systems. A series of measurements were made on a β-version D-SPECT system in order to evaluate its performance in terms of energy resolution, scatter fraction, sensitivity, count rate capability and resolution. Corresponding measurements were also done on a conventional SPECT system (CS) for comparison. The energy resolution of the D-SPECT system at 140 keV was 5.5% (CS: 9.25%), the scatter fraction 30% (CS: 34%), the planar sensitivity 398 s-1 MBq-1 per head (99mTc, 10 cm) (CS: 72 s-1 MBq-1), and the tomographic sensitivity in the heart region was in the range 647-1107 s-1 MBq-1 (CS: 141 s-1 MBq-1). The count rate increased linearly with increasing activity up to 1.44 M s-1. The intrinsic resolution was equal to the pixel size, 2.46 mm (CS: 3.8 mm). The average reconstructed resolution using the standard clinical filter was 12.5 mm (CS: 13.7 mm). The D-SPECT has superior sensitivity to that of a conventional system with similar spatial resolution. It also has excellent energy resolution and count rate characteristics, which should prove useful in dynamic and dual radionuclide studies.

  6. Performance evaluation of D-SPECT: a novel SPECT system for nuclear cardiology

    International Nuclear Information System (INIS)

    D-SPECT (Spectrum Dynamics, Israel) is a novel SPECT system for cardiac perfusion studies. Based on CZT detectors, region-centric scanning, high-sensitivity collimators and resolution recovery, it offers potential advantages over conventional systems. A series of measurements were made on a β-version D-SPECT system in order to evaluate its performance in terms of energy resolution, scatter fraction, sensitivity, count rate capability and resolution. Corresponding measurements were also done on a conventional SPECT system (CS) for comparison. The energy resolution of the D-SPECT system at 140 keV was 5.5% (CS: 9.25%), the scatter fraction 30% (CS: 34%), the planar sensitivity 398 s-1 MBq-1 per head (99mTc, 10 cm) (CS: 72 s-1 MBq-1), and the tomographic sensitivity in the heart region was in the range 647-1107 s-1 MBq-1 (CS: 141 s-1 MBq-1). The count rate increased linearly with increasing activity up to 1.44 M s-1. The intrinsic resolution was equal to the pixel size, 2.46 mm (CS: 3.8 mm). The average reconstructed resolution using the standard clinical filter was 12.5 mm (CS: 13.7 mm). The D-SPECT has superior sensitivity to that of a conventional system with similar spatial resolution. It also has excellent energy resolution and count rate characteristics, which should prove useful in dynamic and dual radionuclide studies.

  7. Design and development of a high resolution animal SPECT scanner dedicated for rat and mouse imaging

    International Nuclear Information System (INIS)

    A dedicated small-animal SPECT system, HiReSPECT, was designed and developed to provide a high resolution molecular imaging modality in response to growing research demands. HiReSPECT is a dual-head system mounted on a rotating gantry. The detection system is based on pixelated CsI(Na) scintillator crystals coupled to two Hamamatsu H8500 Position Sensitive Photomultiplier Tubes in each head. Also, a high resolution parallel-hole collimator is applied to every head. The dimensions of each head are 50 mm×100 mm, enabling sufficient transaxial and axial fields-of-view (TFOV and AFOV), respectively, for coverage of the entire mouse in single-bed position imaging. However, a 50 mm TFOV is not sufficient for transaxial coverage of rats. To address this, each head can be rotated by 90 degrees in order to align the larger dimension of the heads with the short body axis, allowing tomographic data acquisition for rats. An innovative non-linear recursive filter was used for signal processing/detection. Resolution recovery was also embedded in the modified Maximum-Likelihood Expectation Maximization (MLEM) image reconstruction code to compensate for Collimator-Detector Response (CDR). Moreover, an innovative interpolation algorithm was developed to speed up the reconstruction code. The planar spatial resolution at the head surface and the image spatial resolutions were 1.7 mm and 1.2–1.6 mm, respectively. The measurements followed by post-processing showed that the observed count rate at 20% count loss is about 42 kcps. The system sensitivity at the collimator surface for heads 1 and 2 were 1.32 cps/µCi and 1.25 cps/µCi, respectively. The corresponding values were 1.18 cps/µCi and 1.02 cps/µCi at 8 cm distance from the collimator surfaces. In addition, whole-body scans of mice demonstrated appropriate imaging capability of the HiReSPECT

  8. Design and development of a high resolution animal SPECT scanner dedicated for rat and mouse imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sajedi, Salar; Zeraatkar, Navid [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Moji, Vahideh; Farahani, Mohammad Hossein [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Parto Negar Persia Co, Tehran (Iran, Islamic Republic of); Sarkar, Saeed [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Arabi, Hossein [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Teymoorian, Behnoosh [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Parto Negar Persia Co, Tehran (Iran, Islamic Republic of); Ghafarian, Pardis [Chronic Respiratory Disease Research Center, NRITLD, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); PET/CT and Cyclotron Center, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rahmim, Arman [Department of Radiology, Johns Hopkins University, Baltimore, MD (United States); Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD (United States); Reza Ay, Mohammad, E-mail: mohammadreza_ay@sina.tums.ac.ir [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-03-21

    A dedicated small-animal SPECT system, HiReSPECT, was designed and developed to provide a high resolution molecular imaging modality in response to growing research demands. HiReSPECT is a dual-head system mounted on a rotating gantry. The detection system is based on pixelated CsI(Na) scintillator crystals coupled to two Hamamatsu H8500 Position Sensitive Photomultiplier Tubes in each head. Also, a high resolution parallel-hole collimator is applied to every head. The dimensions of each head are 50 mm×100 mm, enabling sufficient transaxial and axial fields-of-view (TFOV and AFOV), respectively, for coverage of the entire mouse in single-bed position imaging. However, a 50 mm TFOV is not sufficient for transaxial coverage of rats. To address this, each head can be rotated by 90 degrees in order to align the larger dimension of the heads with the short body axis, allowing tomographic data acquisition for rats. An innovative non-linear recursive filter was used for signal processing/detection. Resolution recovery was also embedded in the modified Maximum-Likelihood Expectation Maximization (MLEM) image reconstruction code to compensate for Collimator-Detector Response (CDR). Moreover, an innovative interpolation algorithm was developed to speed up the reconstruction code. The planar spatial resolution at the head surface and the image spatial resolutions were 1.7 mm and 1.2–1.6 mm, respectively. The measurements followed by post-processing showed that the observed count rate at 20% count loss is about 42 kcps. The system sensitivity at the collimator surface for heads 1 and 2 were 1.32 cps/µCi and 1.25 cps/µCi, respectively. The corresponding values were 1.18 cps/µCi and 1.02 cps/µCi at 8 cm distance from the collimator surfaces. In addition, whole-body scans of mice demonstrated appropriate imaging capability of the HiReSPECT.

  9. Optimal energy window selection of a CZT-based small-animal SPECT for quantitative accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Su-Jin [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju 220-710 (Korea, Republic of); Yu, A. Ram [Laboratory animal center, OSONG Medical Innovation Foundation, Chunguk 363-951 (Korea, Republic of); Department of Nuclear Medicine, College of Medicine, Hanyang University Hospital, Seoul 133-792 (Korea, Republic of); Choi, Yun Young [Department of Nuclear Medicine, College of Medicine, Hanyang University Hospital, Seoul 133-792 (Korea, Republic of); Kim, Kyeong Min [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Kim, Hee-Joung, E-mail: hjk1@yonsei.ac.kr [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju 220-710 (Korea, Republic of)

    2015-05-11

    Cadmium zinc telluride (CZT)-based small-animal single-photon emission computed tomography (SPECT) has desirable characteristics such as superior energy resolution, but data acquisition for SPECT imaging has been widely performed with a conventional energy window. The aim of this study was to determine the optimal energy window settings for technetium-99 m ({sup 99m}Tc) and thallium-201 ({sup 201}Tl), the most commonly used isotopes in SPECT imaging, using CZT-based small-animal SPECT for quantitative accuracy. We experimentally investigated quantitative measurements with respect to primary count rate, contrast-to-noise ratio (CNR), and scatter fraction (SF) within various energy window settings using Triumph X-SPECT. The two ways of energy window settings were considered: an on-peak window and an off-peak window. In the on-peak window setting, energy centers were set on the photopeaks. In the off-peak window setting, the ratios of energy differences between the photopeak from the lower- and higher-threshold varied from 4:6 to 3:7. In addition, the energy-window width for {sup 99m}Tc varied from 5% to 20%, and that for {sup 201}Tl varied from 10% to 30%. The results of this study enabled us to determine the optimal energy windows for each isotope in terms of primary count rate, CNR, and SF. We selected the optimal energy window that increases the primary count rate and CNR while decreasing SF. For {sup 99m}Tc SPECT imaging, the energy window of 138–145 keV with a 5% width and off-peak ratio of 3:7 was determined to be the optimal energy window. For {sup 201}Tl SPECT imaging, the energy window of 64–85 keV with a 30% width and off-peak ratio of 3:7 was selected as the optimal energy window. Our results demonstrated that the proper energy window should be carefully chosen based on quantitative measurements in order to take advantage of desirable characteristics of CZT-based small-animal SPECT. These results provided valuable reference information for the

  10. Appropriate collimators in a small animal SPECT scanner with CZT detector

    International Nuclear Information System (INIS)

    Almost all small animal single photon emission computed tomography (SPECT) is performed with pinhole collimators (PH), including single-PH (SPH) and multi-PH (MPH). In the clinical study, not only PH but also parallel-hole collimator (PAH) is often used in planar and SPECT imaging. However, there have been no comparative studies on image quality with various collimators on the small animal imaging. This study compared the basic characteristics of PH and PAH in small animal imaging. Performance of planar and SPECT images was evaluated using 99mTcO4- and SPH, MPH and PAH with low energy and high resolution on the SPECT/CT scanner FX3200. We measured sensitivity, resolution, concentration linearity and uniformity. Planar imaging of mice with 99mTc-labeled mercaptoacetyltriglycine (99mTc-MAG3) was performed using SPH and PAH. SPECT imaging with 99mTc-methylene diphosphonate (99mTc-MDP) was performed using all collimators. With SPH, MPH and PAH, sensitivity was 43.5, 211.2 and 926.5 cps/MBq, respectively, and spatial resolution was 0.60/0.56, non/0.96, 5.20/5.34 mm full-width half maximum (planar/SPECT), respectively. There were marked correlations between the radioactivity counts on images and radioactivity with all collimators. Values of % standard deviation on planar imaging showed small differences between the SPH and PAH, while the values were the smallest on SPECT imaging with MPH. On imaging of mice, SPH yielded high-quality 99mTc-MAG3-planar images when compared with PAH. MPH yielded sharper 99mTc-MDP-SPECT images than SPH and PAH. The characteristics of PH and PAH differed on small animal imaging. Although sensitivity was higher with PAH, PH showed higher resolution. Among the PH collimators, SPH was more appropriate for planar imaging, and MPH was more suitable for SPECT imaging in a small animal imaging scanner with cadmium zinc telluride (CZT) detector. (author)

  11. Optimal energy window selection of a CZT-based small-animal SPECT for quantitative accuracy

    International Nuclear Information System (INIS)

    Cadmium zinc telluride (CZT)-based small-animal single-photon emission computed tomography (SPECT) has desirable characteristics such as superior energy resolution, but data acquisition for SPECT imaging has been widely performed with a conventional energy window. The aim of this study was to determine the optimal energy window settings for technetium-99 m (99mTc) and thallium-201 (201Tl), the most commonly used isotopes in SPECT imaging, using CZT-based small-animal SPECT for quantitative accuracy. We experimentally investigated quantitative measurements with respect to primary count rate, contrast-to-noise ratio (CNR), and scatter fraction (SF) within various energy window settings using Triumph X-SPECT. The two ways of energy window settings were considered: an on-peak window and an off-peak window. In the on-peak window setting, energy centers were set on the photopeaks. In the off-peak window setting, the ratios of energy differences between the photopeak from the lower- and higher-threshold varied from 4:6 to 3:7. In addition, the energy-window width for 99mTc varied from 5% to 20%, and that for 201Tl varied from 10% to 30%. The results of this study enabled us to determine the optimal energy windows for each isotope in terms of primary count rate, CNR, and SF. We selected the optimal energy window that increases the primary count rate and CNR while decreasing SF. For 99mTc SPECT imaging, the energy window of 138–145 keV with a 5% width and off-peak ratio of 3:7 was determined to be the optimal energy window. For 201Tl SPECT imaging, the energy window of 64–85 keV with a 30% width and off-peak ratio of 3:7 was selected as the optimal energy window. Our results demonstrated that the proper energy window should be carefully chosen based on quantitative measurements in order to take advantage of desirable characteristics of CZT-based small-animal SPECT. These results provided valuable reference information for the establishment of new protocol for CZT

  12. Optimal energy window selection of a CZT-based small-animal SPECT for quantitative accuracy

    Science.gov (United States)

    Park, Su-Jin; Yu, A. Ram; Choi, Yun Young; Kim, Kyeong Min; Kim, Hee-Joung

    2015-05-01

    Cadmium zinc telluride (CZT)-based small-animal single-photon emission computed tomography (SPECT) has desirable characteristics such as superior energy resolution, but data acquisition for SPECT imaging has been widely performed with a conventional energy window. The aim of this study was to determine the optimal energy window settings for technetium-99 m (99mTc) and thallium-201 (201Tl), the most commonly used isotopes in SPECT imaging, using CZT-based small-animal SPECT for quantitative accuracy. We experimentally investigated quantitative measurements with respect to primary count rate, contrast-to-noise ratio (CNR), and scatter fraction (SF) within various energy window settings using Triumph X-SPECT. The two ways of energy window settings were considered: an on-peak window and an off-peak window. In the on-peak window setting, energy centers were set on the photopeaks. In the off-peak window setting, the ratios of energy differences between the photopeak from the lower- and higher-threshold varied from 4:6 to 3:7. In addition, the energy-window width for 99mTc varied from 5% to 20%, and that for 201Tl varied from 10% to 30%. The results of this study enabled us to determine the optimal energy windows for each isotope in terms of primary count rate, CNR, and SF. We selected the optimal energy window that increases the primary count rate and CNR while decreasing SF. For 99mTc SPECT imaging, the energy window of 138-145 keV with a 5% width and off-peak ratio of 3:7 was determined to be the optimal energy window. For 201Tl SPECT imaging, the energy window of 64-85 keV with a 30% width and off-peak ratio of 3:7 was selected as the optimal energy window. Our results demonstrated that the proper energy window should be carefully chosen based on quantitative measurements in order to take advantage of desirable characteristics of CZT-based small-animal SPECT. These results provided valuable reference information for the establishment of new protocol for CZT

  13. Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition

    Science.gov (United States)

    Hamamura, Mark J.; Ha, Seunghoon; Roeck, Werner W.; Tugan Muftuler, L.; Wagenaar, Douglas J.; Meier, Dirk; Patt, Bradley E.; Nalcioglu, Orhan

    2010-03-01

    In medical imaging, single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high spatial resolution anatomical information as well as complementary functional information. In this study, we developed a miniaturized dual-modality SPECT/MRI (MRSPECT) system and demonstrated the feasibility of simultaneous SPECT and MRI data acquisition, with the possibility of whole-body MRSPECT systems through suitable scaling of components. For our MRSPECT system, a cadmium-zinc-telluride (CZT) nuclear radiation detector was interfaced with a specialized radiofrequency (RF) coil and placed within a whole-body 4 T MRI system. Various phantom experiments characterized the interaction between the SPECT and MRI hardware components. The metallic components of the SPECT hardware altered the B0 field and generated a non-uniform reduction in the signal-to-noise ratio (SNR) of the MR images. The presence of a magnetic field generated a position shift and resolution loss in the nuclear projection data. Various techniques were proposed to compensate for these adverse effects. Overall, our results demonstrate that accurate, simultaneous SPECT and MRI data acquisition is feasible, justifying the further development of MRSPECT for either small-animal imaging or whole-body human systems by using appropriate components.

  14. Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Hamamura, Mark J; Ha, Seunghoon; Roeck, Werner W; Muftuler, L Tugan; Nalcioglu, Orhan [Tu and Yuen Center for Functional Onco-Imaging, University of California, Irvine, CA (United States); Wagenaar, Douglas J; Meier, Dirk; Patt, Bradley E [Gamma Medica-Ideas, Inc., Northridge, CA (United States)], E-mail: markjham@uci.edu

    2010-03-21

    In medical imaging, single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high spatial resolution anatomical information as well as complementary functional information. In this study, we developed a miniaturized dual-modality SPECT/MRI (MRSPECT) system and demonstrated the feasibility of simultaneous SPECT and MRI data acquisition, with the possibility of whole-body MRSPECT systems through suitable scaling of components. For our MRSPECT system, a cadmium-zinc-telluride (CZT) nuclear radiation detector was interfaced with a specialized radiofrequency (RF) coil and placed within a whole-body 4 T MRI system. Various phantom experiments characterized the interaction between the SPECT and MRI hardware components. The metallic components of the SPECT hardware altered the B{sub 0} field and generated a non-uniform reduction in the signal-to-noise ratio (SNR) of the MR images. The presence of a magnetic field generated a position shift and resolution loss in the nuclear projection data. Various techniques were proposed to compensate for these adverse effects. Overall, our results demonstrate that accurate, simultaneous SPECT and MRI data acquisition is feasible, justifying the further development of MRSPECT for either small-animal imaging or whole-body human systems by using appropriate components.

  15. Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition

    International Nuclear Information System (INIS)

    In medical imaging, single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high spatial resolution anatomical information as well as complementary functional information. In this study, we developed a miniaturized dual-modality SPECT/MRI (MRSPECT) system and demonstrated the feasibility of simultaneous SPECT and MRI data acquisition, with the possibility of whole-body MRSPECT systems through suitable scaling of components. For our MRSPECT system, a cadmium-zinc-telluride (CZT) nuclear radiation detector was interfaced with a specialized radiofrequency (RF) coil and placed within a whole-body 4 T MRI system. Various phantom experiments characterized the interaction between the SPECT and MRI hardware components. The metallic components of the SPECT hardware altered the B0 field and generated a non-uniform reduction in the signal-to-noise ratio (SNR) of the MR images. The presence of a magnetic field generated a position shift and resolution loss in the nuclear projection data. Various techniques were proposed to compensate for these adverse effects. Overall, our results demonstrate that accurate, simultaneous SPECT and MRI data acquisition is feasible, justifying the further development of MRSPECT for either small-animal imaging or whole-body human systems by using appropriate components.

  16. TierSPECT: performance of a dedicated small-animal-SPECT camera and first in vivo measurements; TierSPECT: Leistungsparameter einer dedizierten Kleintier-SPECT-Kamera und erste in vivo Messungen

    Energy Technology Data Exchange (ETDEWEB)

    Wirrwar, A.K.; Nikolaus, S.; Arkian, S.; Mueller, H.W. [Nuklearmedizinische Klinik, Uniklinikum Duesseldorf (Germany); Schramm, N.U. [Zentrallabor fuer Elektronik, Forschungszentrum Juelich (Germany); Cohnen, M. [Inst. fuer Diagnostische Radiologie, Uniklinikum Duesseldorf (Germany)

    2005-07-01

    This paper presents the performance of a new small-animal camera (TierSPECT) devised for the in vivo measurements of radiolabeled substances in small laboratory animals such as mice and rats. In a scatter medium, the camera has a tomographic spatial resolution of 2.87 mm and a sensitivity of 22 cps/MBq in a usable Field-of-View (FOV) with a diameter of 82 mm. The planar homogeneity amounts to 3.3%, the tomographic homogeneity lies between 3.2% and 3.5%. The deviation between filled and measured concentration of activity in a cylindrical 4-chamber-phantom was smaller than 2.6%. Using a novel rat head phantom with chamber volumes in the order of magnitude of the spatial resolution (between 0.065 ml and 0.19 ml) it could be demonstrated that studies of the rat neostriatal dopaminergic system are feasible under observance of physiological conditions. In vivo studies using [{sup 99m}Tc]diphosphonato-1,2-propandicarbonic acid ({sup 99m}Tc-DPD) and [{sup 123}I]N-{omega}-fluoropropyl-2{beta}-carbomethoxy-3{beta}-(4-iodophenyl)-nortropane ({sup 123}I-FP-CIT) proved that bone metabolism and dopamine transporter binding can be visualized with the TierSPECT. The fusion of {sup 99m}Tc-DPD and {sup 123}I-FP-CIT images allowed the differentiation between intra- and extracerebral structures. Pretreatment with methylphenidate resulted in blockade of striatal dopamine transporter binding. (orig.)

  17. Position mapping and a uniformity correction method for small-animal SPECT based on connected regional recognition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiushi; Lu, Yanye [Department of Biomedicine and Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871 (China); Yang, Kun [Department of Control Technology and Instrument, College of Quality and Technical Supervision, Hebei University, No.180 Wusi East Road, Baoding 071000 (China); Ren, Qiushi, E-mail: renqsh@coe.pku.edu.cn [Department of Biomedicine and Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871 (China)

    2013-03-11

    We describe a novel position mapping and the uniformity correction method to improve the performance of small animal single-photon emission computed tomography (SPECT) imaging. The SPECT system consists of a cerium doped lutetium−yttrium oxyorthosilicate (LYSO) scintillation crystal (22×22 pixel array, 2 mm×2 mm×3 mm pixel size), a position sensitive photomultiplier tube (H8500c, Hamamatsu Photonics Co., Ltd., Shizuoka Prefecture, Japan), and a parallel-hole collimator (Nuclear Fields Pty. Ltd., St. Marys, Australia). The position mapping method was based on a connected regional recognition algorithm. We present the algorithm and step-by-step details of image boundary detection, dynamic binarization, connected regional recognition, center-of-gravity computing, and look-up table establishment. The position mapping and uniformity correction tables were generated and applied to the SPECT projection data. The corrected projection images demonstrated that this correction method improved the uniformity of the raw projection image by ∼16%. The preliminary SPECT reconstruction results (using algebraic reconstruction technology) are also presented. A comparison between the reconstructed images before and after correction further confirms the performance of this correction method.

  18. Position mapping and a uniformity correction method for small-animal SPECT based on connected regional recognition

    Science.gov (United States)

    Zhang, Qiushi; Lu, Yanye; Yang, Kun; Ren, Qiushi

    2013-03-01

    We describe a novel position mapping and the uniformity correction method to improve the performance of small animal single-photon emission computed tomography (SPECT) imaging. The SPECT system consists of a cerium doped lutetium-yttrium oxyorthosilicate (LYSO) scintillation crystal (22×22 pixel array, 2 mm×2 mm×3 mm pixel size), a position sensitive photomultiplier tube (H8500c, Hamamatsu Photonics Co., Ltd., Shizuoka Prefecture, Japan), and a parallel-hole collimator (Nuclear Fields Pty. Ltd., St. Marys, Australia). The position mapping method was based on a connected regional recognition algorithm. We present the algorithm and step-by-step details of image boundary detection, dynamic binarization, connected regional recognition, center-of-gravity computing, and look-up table establishment. The position mapping and uniformity correction tables were generated and applied to the SPECT projection data. The corrected projection images demonstrated that this correction method improved the uniformity of the raw projection image by ˜16%. The preliminary SPECT reconstruction results (using algebraic reconstruction technology) are also presented. A comparison between the reconstructed images before and after correction further confirms the performance of this correction method.

  19. Performance evaluation of D-SPECT: a novel SPECT system for nuclear cardiology

    Energy Technology Data Exchange (ETDEWEB)

    Erlandsson, Kjell; Kacperski, Krzysztof; Van Gramberg, Dean; Hutton, Brian F [Institute of Nuclear Medicine, University College London and UCLH NHS Foundation Trust, London NW1 2BU (United Kingdom)], E-mail: kjell.erlandsson@uclh.nhs.uk

    2009-05-07

    D-SPECT (Spectrum Dynamics, Israel) is a novel SPECT system for cardiac perfusion studies. Based on CZT detectors, region-centric scanning, high-sensitivity collimators and resolution recovery, it offers potential advantages over conventional systems. A series of measurements were made on a {beta}-version D-SPECT system in order to evaluate its performance in terms of energy resolution, scatter fraction, sensitivity, count rate capability and resolution. Corresponding measurements were also done on a conventional SPECT system (CS) for comparison. The energy resolution of the D-SPECT system at 140 keV was 5.5% (CS: 9.25%), the scatter fraction 30% (CS: 34%), the planar sensitivity 398 s{sup -1} MBq{sup -1} per head ({sup 99m}Tc, 10 cm) (CS: 72 s{sup -1} MBq{sup -1}), and the tomographic sensitivity in the heart region was in the range 647-1107 s{sup -1} MBq{sup -1} (CS: 141 s{sup -1} MBq{sup -1}). The count rate increased linearly with increasing activity up to 1.44 M s{sup -1}. The intrinsic resolution was equal to the pixel size, 2.46 mm (CS: 3.8 mm). The average reconstructed resolution using the standard clinical filter was 12.5 mm (CS: 13.7 mm). The D-SPECT has superior sensitivity to that of a conventional system with similar spatial resolution. It also has excellent energy resolution and count rate characteristics, which should prove useful in dynamic and dual radionuclide studies.

  20. Performance evaluation of advanced industrial SPECT system with diverging collimator

    International Nuclear Information System (INIS)

    An advanced industrial SPECT system with 12-fold-array diverging collimator was developed for flow visualization in industrial reactors and was discussed in the previous study. The present paper describes performance evaluation of the SPECT system under both static- and dynamic- flow conditions. Under static conditions, the movement of radiotracer inside the test reactor was compared with that of color tracer (blue ink) captured with a high-speed camera. The comparison of the reconstructed images obtained with the radiotracer and the SPECT system showed fairly good agreement with video-frames of the color tracer obtained with the camera. Based on the results of the performance evaluation, it is concluded that the SPECT system is suitable for investigation and visualization of flows in industrial flow reactors. - Highlights: • Industrial SPECT system provides the flow behavior of industrial multiphase processes. • A 12-fold-array industrial SPECT system was constructed using diverging collimators. • The constructed system turned out to be very suitable to examine the fluid behavior

  1. The influence of the image reconstruction in relative quantification in SPECT/PET/CT animal; A influencia da reconstrucao da imagem na quantificacao relativa em SPECT/PET/CT animal

    Energy Technology Data Exchange (ETDEWEB)

    Soriano, Sarah; Sa, Lidia Vasconcellos de, E-mail: sarahsoriano@bolsista.ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ),Rio de Janeiro, RJ (Brazil); Souza, Sergio; Barboza, Thiago [Hospital Universitario Clementino Fraga Filho (HUCFF/UFRJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    The objective of this study is to evaluate the spatial resolution of the equipment SPECT/PET/CT animal to different reconstruction methods and the influence of this parameter in the mouse dosimetry C57BL6, aimed at development of new radiopharmaceuticals for use in humans. CT and SPECT images were obtained from a simulator composed of four spheres of different diameters (d), which simulate captating lesions by the equipment FLEX ™ Triumph ™ Pre-Clinical Imaging System used for preclinical studies in the Hospital Universitario (HU/UFRJ). In order to simulate a real study, the total volume of the simulator (body) was filled with a solution of {sup 99m}Tc diluted in water and the spheres were filled with concentrations four time higher than the body of the simulator. From the gross SPECT images it was used filtered backprojection method (FBP) with application of different filters: Hamming, Hann and Ramp, ranging the cutoff frequencies. The resolution of the equipment found in the study was 9.3 to 9.4 mm, very below the value provided by the manufacturer of 1.6mm. Thus, the protocol for mice can be optimized as being the FBP reconstruction method of Hamming filter, cutoff of 0.5 to yield a resolution from 9.3 to 9.4mm. This value indicates that captating regions of diameter below 9.3 mm are not properly quantified.

  2. Small animal SPECT and its place in the matrix of molecular imaging technologies

    International Nuclear Information System (INIS)

    Molecular imaging refers to the use of non-invasive imaging techniques to detect signals that originate from molecules, often in the form of an injected tracer, and observe their interaction with a specific cellular target in vivo. Differences in the underlying physical principles of these measurement techniques determine the sensitivity, specificity and length of possible observation of the signal, characteristics that have to be traded off according to the biological question under study. Here, we describe the specific characteristics of single photon emission computed tomography (SPECT) relative to other molecular imaging technologies. SPECT is based on the tracer principle and external radiation detection. It is capable of measuring the biodistribution of minute (-10 molar) concentrations of radio-labelled biomolecules in vivo with sub-millimetre resolution and quantifying the molecular kinetic processes in which they participate. Like some other imaging techniques, SPECT was originally developed for human use and was subsequently adapted for imaging small laboratory animals at high spatial resolution for basic and translational research. Its unique capabilities include (i) the ability to image endogenous ligands such as peptides and antibodies due to the relative ease of labelling these molecules with technetium or iodine (ii) the ability to measure relatively slow kinetic processes (compared with positron emission tomography, for example) due to the long half-life of the commonly used isotopes and (iii) the ability to probe two or more molecular pathways simultaneously by detecting isotopes with different emission energies. In this paper, we review the technology developments and design tradeoffs that led to the current state-of-the-art in SPECT small animal scanning and describe the position SPECT occupies within the matrix of molecular imaging technologies. (topical review)

  3. GATE validation of standard dual energy corrections in small animal SPECT-CT.

    Directory of Open Access Journals (Sweden)

    Sanghyeb Lee

    Full Text Available This paper addresses 123I and 125I dual isotope SPECT imaging, which can be challenging because of spectrum overlap in the low energy spectrums of these isotopes. We first quantify the contribution of low-energy photons from each isotope using GATE-based Monte Carlo simulations for the MOBY mouse phantom. We then describe and analyze a simple, but effective method that uses the ratio of detected low and high energy 123I activity to separate the mixed low energy 123I and 125I activities. Performance is compared with correction methods used in conventional tissue biodistribution techniques. The results indicate that the spectrum overlap effects can be significantly reduced, if not entirely eliminated, when attenuation and scatter is either absent or corrected for using standard methods. In particular, we show that relative activity levels of the two isotopes can be accurately estimated for a wide range of organs and provide quantitative validation that standard methods for spectrum overlap correction provide reasonable estimates for reasonable corrections in small-animal SPECT/CT imaging.

  4. Recent advances in cardiac SPECT instrumentation and system design.

    Science.gov (United States)

    Smith, Mark F

    2013-08-01

    Recent advances in clinical cardiac SPECT instrumentation are reviewed from a systems perspective. New hardware technologies include pixelated scintillator and semiconductor detector elements; photodetectors such as position-sensitive photomultiplier tubes (PSPMT), avalanche photodiodes (APD) and silicon photomultipliers (SiPM); and novel cardiac collimation methods. There are new approaches for positioning detectors and controlling their motion during cardiac imaging. Software technology advances include iterative image reconstruction with modeling of Poisson statistics and depth-dependent collimator response. These new technologies enable faster acquisitions, the lowering of administered activity and radiation dose, and improved image resolution. Higher sensitivity collimators are a significant factor enabling faster acquisitions. Several clinical systems incorporating new technologies are discussed and different system designs can achieve similar performance. With detector elements such as APDs, SiPMs and semiconductors that are insensitive to magnetic fields, the potential for cardiac SPECT imagers that are MRI compatible opens up new frontiers in clinical cardiac research and patient care. PMID:23832650

  5. Observer detection limits for a dedicated SPECT breast imaging system

    Science.gov (United States)

    Cutler, S. J.; Perez, K. L.; Barnhart, H. X.; Tornai, M. P.

    2010-04-01

    An observer-based contrast-detail study is performed in an effort to evaluate the limits of object detectability using a dedicated CZT-based breast SPECT imaging system under various imaging conditions. A custom geometric contrast-resolution phantom was developed that can be used for both positive ('hot') and negative contrasts ('cold'). The 3 cm long fillable tubes are arranged in six sectors having equal inner diameters ranging from 1 mm to 6 mm with plastic wall thicknesses of SPECT camera having 2.5 mm intrinsic pixels, the mean detectable rod was ~3.4 mm at a 10:1 ratio, degrading to ~5.2 mm with the 2.5:1 concentration ratio. The smallest object detail was observed using a 45° tilted trajectory acquisition. The complex 3D projected sine wave acquisition, however, had the most consistent combined intra- and inter-observer results, making it potentially the best imaging approach for consistent results.

  6. Optimization of pinhole collimator for small animal SPECT using Monte Carlo simulations

    International Nuclear Information System (INIS)

    The aim of this study was to design an optimized pinhole collimator using Monte Carlo simulation for the development of an ultra high-resolution SPECT using a PSPMT. Simulations using Monte Carlo N-Particle transport code system were performed to model the pinhole SPECT system. The simulation geometries consist of a cone-shaped pinhole collimator with tungsten aperture and a NaI(TI) crystal with 6 mm thickness and 120 mm diameter. System parameters of resolution, sensitivity, edge penetration, and scatter fraction were simulated by changing pinhole diameter and channel height to derive the optimum pinhole collimator. The experimental results showed good agreement with the simulation results. Trade-off curve of sensitivity and resolution demonstrated that the steeper slope is preferred to design a pinhole collimator for sub-millimeter imaging because the data on the steeper slope have the advantage of higher sensitivity gain with smaller sacrifice in resolution. The penetration and scatter fraction curve indicated that the keel-edge is preferable over knife-edge. However, channel height aggravates the angle dependent sensitivity and reduces the useful FOV. The results demonstrate that the pinhole collimator designed in this study could be utilized to perform ultra high-resolution radionuclide imaging

  7. Lutetium oxyorthosilicate (LSO) intrinsic activity correction and minimal detectable target activity study for SPECT imaging with a LSO-based animal PET scanner

    Science.gov (United States)

    Yao, Rutao; Ma, Tianyu; Shao, Yiping

    2008-08-01

    This work is part of a feasibility study to develop SPECT imaging capability on a lutetium oxyorthosilicate (LSO) based animal PET system. The SPECT acquisition was enabled by inserting a collimator assembly inside the detector ring and acquiring data in singles mode. The same LSO detectors were used for both PET and SPECT imaging. The intrinsic radioactivity of 176Lu in the LSO crystals, however, contaminates the SPECT data, and can generate image artifacts and introduce quantification error. The objectives of this study were to evaluate the effectiveness of a LSO background subtraction method, and to estimate the minimal detectable target activity (MDTA) of image object for SPECT imaging. For LSO background correction, the LSO contribution in an image study was estimated based on a pre-measured long LSO background scan and subtracted prior to the image reconstruction. The MDTA was estimated in two ways. The empirical MDTA (eMDTA) was estimated from screening the tomographic images at different activity levels. The calculated MDTA (cMDTA) was estimated from using a formula based on applying a modified Currie equation on an average projection dataset. Two simulated and two experimental phantoms with different object activity distributions and levels were used in this study. The results showed that LSO background adds concentric ring artifacts to the reconstructed image, and the simple subtraction method can effectively remove these artifacts—the effect of the correction was more visible when the object activity level was near or above the eMDTA. For the four phantoms studied, the cMDTA was consistently about five times of the corresponding eMDTA. In summary, we implemented a simple LSO background subtraction method and demonstrated its effectiveness. The projection-based calculation formula yielded MDTA results that closely correlate with that obtained empirically and may have predicative value for imaging applications.

  8. Lutetium oxyorthosilicate (LSO) intrinsic activity correction and minimal detectable target activity study for SPECT imaging with a LSO-based animal PET scanner

    International Nuclear Information System (INIS)

    This work is part of a feasibility study to develop SPECT imaging capability on a lutetium oxyorthosilicate (LSO) based animal PET system. The SPECT acquisition was enabled by inserting a collimator assembly inside the detector ring and acquiring data in singles mode. The same LSO detectors were used for both PET and SPECT imaging. The intrinsic radioactivity of 176Lu in the LSO crystals, however, contaminates the SPECT data, and can generate image artifacts and introduce quantification error. The objectives of this study were to evaluate the effectiveness of a LSO background subtraction method, and to estimate the minimal detectable target activity (MDTA) of image object for SPECT imaging. For LSO background correction, the LSO contribution in an image study was estimated based on a pre-measured long LSO background scan and subtracted prior to the image reconstruction. The MDTA was estimated in two ways. The empirical MDTA (eMDTA) was estimated from screening the tomographic images at different activity levels. The calculated MDTA (cMDTA) was estimated from using a formula based on applying a modified Currie equation on an average projection dataset. Two simulated and two experimental phantoms with different object activity distributions and levels were used in this study. The results showed that LSO background adds concentric ring artifacts to the reconstructed image, and the simple subtraction method can effectively remove these artifacts-the effect of the correction was more visible when the object activity level was near or above the eMDTA. For the four phantoms studied, the cMDTA was consistently about five times of the corresponding eMDTA. In summary, we implemented a simple LSO background subtraction method and demonstrated its effectiveness. The projection-based calculation formula yielded MDTA results that closely correlate with that obtained empirically and may have predicative value for imaging applications

  9. Preliminary experience with small animal SPECT imaging on clinical gamma cameras.

    Science.gov (United States)

    Aguiar, P; Silva-Rodríguez, J; Herranz, M; Ruibal, A

    2014-01-01

    The traditional lack of techniques suitable for in vivo imaging has induced a great interest in molecular imaging for preclinical research. Nevertheless, its use spreads slowly due to the difficulties in justifying the high cost of the current dedicated preclinical scanners. An alternative for lowering the costs is to repurpose old clinical gamma cameras to be used for preclinical imaging. In this paper we assess the performance of a portable device, that is, working coupled to a single-head clinical gamma camera, and we present our preliminary experience in several small animal applications. Our findings, based on phantom experiments and animal studies, provided an image quality, in terms of contrast-noise trade-off, comparable to dedicated preclinical pinhole-based scanners. We feel that our portable device offers an opportunity for recycling the widespread availability of clinical gamma cameras in nuclear medicine departments to be used in small animal SPECT imaging and we hope that it can contribute to spreading the use of preclinical imaging within institutions on tight budgets. PMID:24963478

  10. Performance of a semiconductor SPECT system: comparison with a conventional Anger-type SPECT instrument

    OpenAIRE

    Takahashi, Yasuyuki; MIYAGAWA, MASAO; Nishiyama, Yoshiko; Ishimura, Hayato; Mochizuki, Teruhito

    2012-01-01

    Objective The performance of a new single photon emission computed tomography (SPECT) scanner with a cadmium-zinc-telluride (CZT) solid-state semiconductor detector (Discovery NM 530c; D530c) was evaluated and compared to a conventional Anger-type SPECT with a dual-detector camera (Infinia). Methods Three different phantom studies were performed. Full width at half maximum (FWHM) was measured using line sources placed at different locations in a cylindrical phantom. Uniformity was measured us...

  11. Brain SPECT

    International Nuclear Information System (INIS)

    Brain SPECT investigations have gained broad acceptance since the introduction of the lipophilic tracer Tc-99m-HMPAO. Depending on equipment and objectives in different departments, the examinations can be divided into three groups: 1. Under normal conditions and standardised patient preparation the 'rest' SPECT can be performed in every department with a tomographic camera. In cerebrovascular disease there is a demand for determination of either the perfusion reserve in reversible ischemia or prognostic values in completed stroke. In cases of dementia, SPECT may yield useful results according to differential diagnosis. Central cerebral system involvement in immunologic disease may be estimated with higher sensitivity than in conventional brain imaging procedures. In psychiatric diseases there is only a relative indication for brain SPECT, since results during recent years have been contradictory and may be derived only in interventional manner. In brain tumor diagnostics SPECT with Tl-201 possibly permits grading. In inflammatory disease, especially in viral encephalitis, SPECT may be used to obtain early diagnosis. Normal pressure hydrocephalus can be distinguished from other forms of dementia and, consequently, the necessity for shunting surgery can be recognised. 2. In departments equipped for emergency cases an 'acute' SPECT can be performed in illnesses with rapid changing symptoms such as different forms of migraine, transient global amnesia, epileptic seizures (so-called 'ictal SPECT') or urgent forms like trauma. 3. In cooperation with several departments brain SPECT can be practised as an interventional procedure in clinical and in scientific studies. (orig./MG)

  12. Advances in Small Animal Imaging Systems

    International Nuclear Information System (INIS)

    The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to an increased interest in in vivo laboratory animal imaging during the past few years. For this purpose, new instrumentation, data acquisition strategies, and image processing and reconstruction techniques are being developed, researched and evaluated. The aim of this article is to give a short overview of the state of the art technologies for high resolution and high sensitivity molecular imaging techniques, primarily positron emission tomography (PET) and single photon emission computed tomography (SPECT). The basic needs of small animal imaging will be described. The evolution in instrumentation in the past two decades, as well as the commercially available systems will be overviewed. Finally, the new trends in detector technology and preliminary results from challenging applications will be presented. For more details a number of references are provided

  13. Impact of extraneous mispositioned events on motion-corrected brain SPECT images of freely moving animals

    Energy Technology Data Exchange (ETDEWEB)

    Angelis, Georgios I., E-mail: georgios.angelis@sydney.edu.au; Ryder, William J.; Bashar, Rezaul; Meikle, Steven R. [Faculty of Health Sciences and Brain and Mind Research Institute, The University of Sydney, Sydney, NSW 2006 (Australia); Fulton, Roger R. [Faculty of Health Sciences and Brain and Mind Research Institute, The University of Sydney, Sydney, NSW 2006 (Australia); School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Department of Medical Physics, Westmead Hospital, Sydney, NSW 2145 (Australia)

    2014-09-15

    Purpose: Single photon emission computed tomography (SPECT) brain imaging of freely moving small animals would allow a wide range of important neurological processes and behaviors to be studied, which are normally inhibited by anesthetic drugs or precluded due to the animal being restrained. While rigid body motion of the head can be tracked and accounted for in the reconstruction, activity in the torso may confound brain measurements, especially since motion of the torso is more complex (i.e., nonrigid) and not well correlated with that of the head. The authors investigated the impact of mispositioned events and attenuation due to the torso on the accuracy of motion corrected brain images of freely moving mice. Methods: Monte Carlo simulations of a realistic voxelized mouse phantom and a dual compartment phantom were performed. Each phantom comprised a target and an extraneous compartment which were able to move independently of each other. Motion correction was performed based on the known motion of the target compartment only. Two SPECT camera geometries were investigated: a rotating single head detector and a stationary full ring detector. The effects of motion, detector geometry, and energy of the emitted photons (hence, attenuation) on bias and noise in reconstructed brain regions were evaluated. Results: The authors observed two main sources of bias: (a) motion-related inconsistencies in the projection data and (b) the mismatch between attenuation and emission. Both effects are caused by the assumption that the orientation of the torso is difficult to track and model, and therefore cannot be conveniently corrected for. The motion induced bias in some regions was up to 12% when no attenuation effects were considered, while it reached 40% when also combined with attenuation related inconsistencies. The detector geometry (i.e., rotating vs full ring) has a big impact on the accuracy of the reconstructed images, with the full ring detector being more

  14. Impact of extraneous mispositioned events on motion-corrected brain SPECT images of freely moving animals

    International Nuclear Information System (INIS)

    Purpose: Single photon emission computed tomography (SPECT) brain imaging of freely moving small animals would allow a wide range of important neurological processes and behaviors to be studied, which are normally inhibited by anesthetic drugs or precluded due to the animal being restrained. While rigid body motion of the head can be tracked and accounted for in the reconstruction, activity in the torso may confound brain measurements, especially since motion of the torso is more complex (i.e., nonrigid) and not well correlated with that of the head. The authors investigated the impact of mispositioned events and attenuation due to the torso on the accuracy of motion corrected brain images of freely moving mice. Methods: Monte Carlo simulations of a realistic voxelized mouse phantom and a dual compartment phantom were performed. Each phantom comprised a target and an extraneous compartment which were able to move independently of each other. Motion correction was performed based on the known motion of the target compartment only. Two SPECT camera geometries were investigated: a rotating single head detector and a stationary full ring detector. The effects of motion, detector geometry, and energy of the emitted photons (hence, attenuation) on bias and noise in reconstructed brain regions were evaluated. Results: The authors observed two main sources of bias: (a) motion-related inconsistencies in the projection data and (b) the mismatch between attenuation and emission. Both effects are caused by the assumption that the orientation of the torso is difficult to track and model, and therefore cannot be conveniently corrected for. The motion induced bias in some regions was up to 12% when no attenuation effects were considered, while it reached 40% when also combined with attenuation related inconsistencies. The detector geometry (i.e., rotating vs full ring) has a big impact on the accuracy of the reconstructed images, with the full ring detector being more

  15. Design of a CZT based BreastSPECT system

    International Nuclear Information System (INIS)

    A high-resolution SPECT instrument dedicated to breast imaging has been designed incorporating arrays of collimated Cadmium-Zinc-Telluride (CZT) detectors tiled on either a cylindrical surface or a hemispherical surface surrounding the breast. The performance characteristics of a three-segment rotating parallel-hole collimator as well as a stationary multiple pin-hole collimator were considered for the cylindrical system. A stationary multiple pin-hole collimated system was also considered for the hemispherical design. Monte Carlo studies suggest that at almost equal spatial resolution of 0.5 cm, the cylindrical design with parallel-hole collimator would have an approximately a factor of two higher geometrical efficiency than the hemispherical pin-hole collimated system including effects of attenuation in the breast. However, whereas the parallel-hole collimator must be rotated to acquire data from multiple angles of view, the pin-hole version has the advantage of recording data from 112 views in a stationary mode. Monte Carlo studies of filtered backprojections as well as a Bayesian reconstruction approach including attenuation and scatter within the breast, where the breast was modeled as a 15 cm hemisphere of uniform activity distribution containing three spherical lesions of diameters 1.0 cm, 0.7 cm and 0.5 cm respectively suggest that the 0.5 cm could be detected with either design in a one-hour SPECT study assuming a 10:1 tumor to background ratio. The authors conclude that a high resolution Breast SPECT instrument where the resolution is limited to about 0.5 cm is viable with CZT detectors

  16. Design of a CZT based BreastSPECT system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.; Mumcuoglu, E. [Univ. of Southern California, Los Angeles, CA (United States)

    1998-06-01

    A high-resolution SPECT instrument dedicated to breast imaging has been designed incorporating arrays of collimated Cadmium-Zinc-Telluride (CZT) detectors tiled on either a cylindrical surface or a hemispherical surface surrounding the breast. The performance characteristics of a three-segment rotating parallel-hole collimator as well as a stationary multiple pin-hole collimator were considered for the cylindrical system. A stationary multiple pin-hole collimated system was also considered for the hemispherical design. Monte Carlo studies suggest that at almost equal spatial resolution of 0.5 cm, the cylindrical design with parallel-hole collimator would have an approximately a factor of two higher geometrical efficiency than the hemispherical pin-hole collimated system including effects of attenuation in the breast. However, whereas the parallel-hole collimator must be rotated to acquire data from multiple angles of view, the pin-hole version has the advantage of recording data from 112 views in a stationary mode. Monte Carlo studies of filtered backprojections as well as a Bayesian reconstruction approach including attenuation and scatter within the breast, where the breast was modeled as a 15 cm hemisphere of uniform activity distribution containing three spherical lesions of diameters 1.0 cm, 0.7 cm and 0.5 cm respectively suggest that the 0.5 cm could be detected with either design in a one-hour SPECT study assuming a 10:1 tumor to background ratio. The authors conclude that a high resolution Breast SPECT instrument where the resolution is limited to about 0.5 cm is viable with CZT detectors.

  17. Observer detection limits for a dedicated SPECT breast imaging system

    OpenAIRE

    Cutler, S J; Perez, K L; Barnhart, H. X.; Tornai, M P

    2010-01-01

    An observer-based contrast-detail study is performed in an effort to evaluate the limits of object detectability using a dedicated CZT-based breast SPECT imaging system under various imaging conditions. A custom geometric contrast-resolution phantom was developed that can be used for both positive (‘hot’) and negative contrasts (‘cold’). The 3 cm long fillable tubes are arranged in six sectors having equal inner diameters ranging from 1 mm to 6 mm with plastic wall thicknesses of

  18. In vivo imaging of dopamine transporter function in rat striatum using pinhole SPECT and 123I-beta-CIT coregistered with small animal MRI

    CERN Document Server

    Dierkes, K

    2001-01-01

    The aim of this study was to establish in vivo imaging of dopamine transporter function in a small animal model of Parkinson's disease using pinhole SPECT and 123I labeled beta-CIT. Since functional imaging of small animals can hardly be interpreted without localization to related anatomical structures, MRI-SPECT coregistration secondly was established as an inexpensive tool for in vivo monitoring of physiological and pathological alterations in striatal dopamine transporters using beta-CIT as an specific radionuclear ligand.

  19. A new modular detector for a cylindrical brain SPECT system

    International Nuclear Information System (INIS)

    A new detector module has been developed for a prototype system, McSPECT 2, which is being constructed for high-resolution clinical brain imaging. The detector module is the building block of the cylindrical detector system of the McSPECT 2. Each detector module contains 5 NaI(Tl) bars and is backed by a glass window in an aluminum housing. Each detector module is associated with 6 PMTs to form a functional unit for position estimation. Bench-top tests performed on a sample unit demonstrated an average of 10.5% local energy resolution (ER) at 140 keV. Centroid calculations were applied in both orthogonal directions of the module for position estimation. In the longitudinal direction, a two-step centroid method yields a 13 cm UFOV (useful field-of-view) along the bar and an 11 cm CFOV (center FOV), with intrinsic spatial resolution of < 5.5 and 3.8 ± 0.3 mm FWHM, respectively. In the transverse direction, the task of identifying the bar detector involved in an event is simplified, with an accuracy better than 99% when photons are incident normally

  20. Monte Carlo simulation on SPECT imaging and the development of a low cost and high performance SPECT system in China

    International Nuclear Information System (INIS)

    SPECT was investigated in the 1970's, developed in the 1980's and popularized in the 1990's in developed countries. Now there are more than 160 systems working in those countries. The Institute of Heavy Ion Physics, Beijing University, has built a laboratory. The goal of the laboratory is to develop a low cost and high performance SPECT system with 37 PMT and PC computer system because the number of PMT is not so important for space resolution while it costs too much. The speed of PC development is the fastest among all computers. The high speed, large size of memory and wide developed environment of software is suitable for such purpose. During the development, the Monte Carlo simulation is very important to make the design of the production better

  1. Instruments for radiation measurement in life sciences (5). 'Development of imaging technology in life sciences'. 8. Small animal imaging using SPECT

    International Nuclear Information System (INIS)

    Here are described such characteristics of single photon emission computed tomography (SPECT) small animal imaging as comparison with positron emission tomography (PET), gamma camera, fusion equipment of images, design of NanoSPECT/CT (Bioscan Ltd.), actual images by it, and other manufacturers' instruments. SPECT is superior to PET in high spatial resolution, long-term observation and simultaneous measurement of different nuclides with different energies in an animal. Gamma camera is used for detection of single photon emitter and is composed from collimator, scintillator, photomultiplier and circuit for positioning. SPECT only gives functional images and lacks the anatomical information of the animal. For this, machines fused with CT have been developed and authors use this type NanoSPECT/CT. It has beds for the mouse and rat, 4 detectors of NaI (Tl) crystal (9.5 mm thick, 230 x 215 mm), and multi-pinhole collimator (9 holes x 4 collimators), is operated by helical-scanning along the long axis of 99mTc, spatial resolution is 0.8 mm and sensitivity, 1640 cps/MBq (0.0164%). Actual images of rats and mice given with compounds labeled by 99mTc, 123I, 125I, 111In, and 99mTc/111In are shown here. At present, 5 machines are in market. SPECT in small animals will be further useful for development of new drugs and diagnostic methods. (R.T.)

  2. Feasibility of 99mTc-TRODAT-1 Micro-SPECT imaging of dopamine transporter in animal retinas

    Institute of Scientific and Technical Information of China (English)

    ZHAO Juan; QI Yujin; DAI Qiusheng; ZHANG Xuezhu; QU Xiaomei; HUANG Jia; LIU Xingdang

    2008-01-01

    In this paper, 99mTc-TRODAT-1 Micro-SPECT (single-photon emission computed tomography) was used for imaging dopamine transporter (DAT) in retinas and to investigate the changes of DAT in retinas of guinea pigs with form deprivation myopia. Pigmented guinea pigs aged 3 weeks were devided into form deprivation myopia (FDM) group (n=6) and normal control group (n=6). The test group wore translucent goggles randomly for 4 weeks,and both groups underwent biometric measurement (refraction and axial length) before and after the experiment.Micro-SPECT retinas imaging was performed at the 4th week after injection of 99nTc-TRODAT-1. The retinas were clearly resolved in the images. The ratio of 99mTc-TRODAT-1 uptake in the myopic retinas (11.55±2.80) was 3.64±1.40 lower than that in the control eye (15.20±1.98), and 2.35+1.05 lower than that in the fellow eyes (13.90±2.04). The results showed that 99mTc-TRODAT-1 Micro-SPECT eye imaging can be used to trace the distribution and changes of DAT in retina, and DAT in the myopic retinas were lower than that in the normal control eyes and fellow eyes. Micro-SPECT may provide a new approach for further studies on the role of dopamine system in the experimental myopia.

  3. Feasibility of 99mTc-TRODAT-1 micro-SPECT imaging of dopamine transporter in animal retinas

    International Nuclear Information System (INIS)

    In this paper, 99mTc-TRODAT-1 Micro-SPECT (single-photon emission computed tomography) was used for imaging dopamine transporter (DAT) in retinas and to investigate the changes of DAT in retinas of guinea pigs with form deprivation myopia. Pigmented guinea pigs aged 3 weeks were devided into form deprivation myopia (FDM) group (n=6) and normal control group (n=6). The test group wore translucent goggles randomly for 4 weeks, and both groups underwent biometric measurement (refraction and axial length) before and after the experiment. Micro-SPECT retinas imaging was performed at the 4th week after injection of 99mTcc-TRODAT-1. The retinas were clearly resolved in the images. The ratio of 99mTc-TRODAT-1 uptake in the myopic retinas (11.55 ± 2.80) was 3.64 ± 1.40 lower than that in the control eye (15.20 ± 1.98), and 2.35 ± 1.05 lower than that in the fellow eyes (13.90 ± 2.04). The results showed that 99mTc-TRODAT-1 Micro-SPECT eye imaging can be used to trace the distribution and changes of DAT in retina, and DAT in the myopic retinas were lower than that in the normal control eyes and fellow eyes. Micro-SPECT may provide a new approach for further studies on the role of dopamine system in the experimental myopia. (authors)

  4. Image reconstruction on point cloud-based tetrahedral meshes in small animal SPECT with pinhole collimation

    International Nuclear Information System (INIS)

    Irregular tetrahedral meshes based on adaptively distributed point clouds are used as the object space data representation method to reconstruct SPECT images in pinhole geometry. In the object space, a tetrahedron is defined by the positions and intensities of its four vertices; image intensity inside a tetrahedron is a linear combination of the vertex intensities. For the parallel projection geometry, the projection of a tetrahedron is conveniently expressed in terms of an integral that is solved analytically. For the pinhole case, the vertices are first projected onto the detector plane and the geometric magnification factor is computed. Then, a virtual tetrahedron is formed in the detector space and projected onto the detector using exact analytical formulae developed for the parallel geometry. In order to compute the system matrix, point cloud geometry and acquisition geometry is adjusted using geometric calibration expressed in terms of 24 parameters determined from a special calibration study. The 3D images are reconstructed using a standard MLEM algorithm. Initial reconstruction is performed on a uniform finely-spaced cloud. Then, the points are adaptively removed or merged in constant intensity regions and moved to better outline the boundaries. The density of the point cloud is adjusted adaptively after each reconstruction so that the number of unknowns in the inverse problem is reduced by an order of magnitude. (orig.)

  5. Clinical applications of SPECT/CT: New hybrid nuclear medicine imaging system

    International Nuclear Information System (INIS)

    Interest in multimodality imaging shows no sign of subsiding. New tracers are spreading out the spectrum of clinical applications and innovative technological solutions are preparing the way for yet more modality marriages: hybrid imaging. Single photon emission computed tomography (SPECT) has enabled the evaluation of disease processes based on functional and metabolic information of organs and cells. Integration of X ray computed tomography (CT) into SPECT has recently emerged as a brilliant diagnostic tool in medical imaging, where anatomical details may delineate functional and metabolic information. SPECT/CT has proven to be valuable in oncology. For example, in the case of a patient with metastatic thyroid cancer, neither SPECT nor CT alone could identify the site of malignancy. SPECT/CT, a hybrid image, precisely identified where the surgeon should operate. However SPECT/CT is not just advantageous in oncology. It may also be used as a one-stop-shop for various diseases. Clinical applications with SPECT/CT have started and expanded in developed countries. It has been reported that moving from SPECT alone to SPECT/CT could change diagnoses in 30% of cases. Large numbers of people could therefore benefit from this shift all over the world. This report presents an overview of clinical applications of SPECT/CT and a relevant source of information for nuclear medicine physicians, radiologists and clinical practitioners. This information may also be useful for decision making when allocating resources dedicated to the health care system, a critical issue that is especially important for the development of nuclear medicine in developing countries. In this regard, the IAEA may be heavily involved in the promotion of programmes aimed at the IAEA's coordinated research projects and Technical Cooperation projects

  6. Quantitation of dopamine transporter blockade by methylphenidate: first in vivo investigation using [{sup 123}I]FP-CIT and a dedicated small animal SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaus, Susanne; Wirrwar, Andreas; Antke, Christina; Arkian, Shahram; Mueller, Hans-Wilhelm; Larisch, Rolf [Heinrich-Heine University, Clinic of Nuclear Medicine, Duesseldorf (Germany); Schramm, Nils [Research Center Juelich, Central Laboratory for Electronics, Juelich (Germany)

    2005-03-01

    The aim of this study was to investigate the feasibility of assessing dopamine transporter binding after treatment with methylphenidate in the rat using a recently developed high-resolution small animal single-photon emission computed tomograph (TierSPECT) and [{sup 123}I]FP-CIT. [{sup 123}I]FP-CIT was administered intravenously 1 h after intraperitoneal injection of methylphenidate (10 mg/kg) or vehicle. Animals underwent scanning 2 h after radioligand administration. The striatum was identified by superimposition of [{sup 123}I]FP-CIT scans with bone metabolism and perfusion scans obtained with {sup 99m}Tc-DPD and {sup 99m}Tc-tetrofosmin, respectively. As these tracers do not pass the blood-brain barrier, their distribution permits the identification of extracerebral anatomical landmarks such as the orbitae and the harderian glands. The cerebellum was identified by superimposing [{sup 123}I]FP-CIT scans with images of brain perfusion obtained with {sup 99m}Tc-HMPAO. Methylphenidate-treated animals and vehicle-treated animals yielded striatal equilibrium ratios (V''{sub 3}) of 0.24{+-}0.26 (mean {+-} SD) and 1.09{+-}0.42, respectively (ttest, two-tailed, p<0.0001). Cortical V''{sub 3} values amounted to 0.05{+-}0.28 (methylphenidate) and 0.3{+-}0.39 (saline, p=0.176). This first in vivo study of rat dopamine transporter binding after pre-treatment with methylphenidate showed a mean reduction of 78% in striatal [{sup 123}I]FP-CIT accumulation. The results can be interpreted in terms of a pharmacological blockade in the rat striatum and show that in vivo quantitation of dopamine transporter binding is feasible with [{sup 123}I]FP-CIT and the TierSPECT. This may be of future relevance for in vivo investigations on rat models of attention deficit/hyperactivity disorder. Furthermore, our findings suggest that investigations in other animal models, e.g. of Parkinson's and Huntington's disease, may be feasible using SPECT radioligands and

  7. Quantitation of dopamine transporter blockade by methylphenidate: first in vivo investigation using [123I]FP-CIT and a dedicated small animal SPECT

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the feasibility of assessing dopamine transporter binding after treatment with methylphenidate in the rat using a recently developed high-resolution small animal single-photon emission computed tomograph (TierSPECT) and [123I]FP-CIT. [123I]FP-CIT was administered intravenously 1 h after intraperitoneal injection of methylphenidate (10 mg/kg) or vehicle. Animals underwent scanning 2 h after radioligand administration. The striatum was identified by superimposition of [123I]FP-CIT scans with bone metabolism and perfusion scans obtained with 99mTc-DPD and 99mTc-tetrofosmin, respectively. As these tracers do not pass the blood-brain barrier, their distribution permits the identification of extracerebral anatomical landmarks such as the orbitae and the harderian glands. The cerebellum was identified by superimposing [123I]FP-CIT scans with images of brain perfusion obtained with 99mTc-HMPAO. Methylphenidate-treated animals and vehicle-treated animals yielded striatal equilibrium ratios (V''3) of 0.24±0.26 (mean ± SD) and 1.09±0.42, respectively (ttest, two-tailed, p''3 values amounted to 0.05±0.28 (methylphenidate) and 0.3±0.39 (saline, p=0.176). This first in vivo study of rat dopamine transporter binding after pre-treatment with methylphenidate showed a mean reduction of 78% in striatal [123I]FP-CIT accumulation. The results can be interpreted in terms of a pharmacological blockade in the rat striatum and show that in vivo quantitation of dopamine transporter binding is feasible with [123I]FP-CIT and the TierSPECT. This may be of future relevance for in vivo investigations on rat models of attention deficit/hyperactivity disorder. Furthermore, our findings suggest that investigations in other animal models, e.g. of Parkinson's and Huntington's disease, may be feasible using SPECT radioligands and small animal imaging systems. (orig.)

  8. Advanced brain dopamine transporter imaging in mice using small-animal SPECT/CT

    OpenAIRE

    Pitkonen, Miia; Hippeläinen, Eero; Raki, Mari; Andressoo, Jaan-Olle; Urtti, Arto; Männistö, Pekka T.; Savolainen, Sauli; Saarma, Mart; Bergström, Kim

    2012-01-01

    Background Iodine-123-β-CIT, a single-photon emission computed tomography (SPECT) ligand for dopamine transporters (DATs), has been used for in vivo studies in humans, monkeys, and rats but has not yet been used extensively in mice. To validate the imaging and analysis methods for preclinical DAT imaging, wild-type healthy mice were scanned using 123I-β-CIT. Methods The pharmacokinetics and reliability of 123I-β-CIT in mice (n = 8) were studied with a multipinhole SPECT/CT camera after intrav...

  9. Observer detection limits for a dedicated SPECT breast imaging system

    International Nuclear Information System (INIS)

    An observer-based contrast-detail study is performed in an effort to evaluate the limits of object detectability using a dedicated CZT-based breast SPECT imaging system under various imaging conditions. A custom geometric contrast-resolution phantom was developed that can be used for both positive ('hot') and negative contrasts ('cold'). The 3 cm long fillable tubes are arranged in six sectors having equal inner diameters ranging from 1 mm to 6 mm with plastic wall thicknesses of <0.25 mm, on a pitch of twice their inner diameters. Scans of the activity filled tubes using simple circular trajectories are obtained in a 215 mL uniform water filled cylinder, varying the rod:background concentration ratios from 10:1 to 1:10 simulating a large range of biological uptake ratios. The rod phantom is then placed inside a non-uniformly shaped 500 mL breast phantom and scans are again acquired using both simple and complex 3D trajectories for similarly varying contrasts. Summed slice and contiguous multi-slice images are evaluated by five independent readers, identifying the smallest distinguishable rod for each concentration and experimental setup. Linear and quadratic regression is used to compare the resulting contrast-detail curves. Results indicate that in a moderately low-noise 500 mL background, using the SPECT camera having 2.5 mm intrinsic pixels, the mean detectable rod was ∼3.4 mm at a 10:1 ratio, degrading to ∼5.2 mm with the 2.5:1 concentration ratio. The smallest object detail was observed using a 45 deg. tilted trajectory acquisition. The complex 3D projected sine wave acquisition, however, had the most consistent combined intra- and inter-observer results, making it potentially the best imaging approach for consistent results.

  10. Observer detection limits for a dedicated SPECT breast imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, S J; Tornai, M P [Department of Biomedical Engineering, Duke University, Durham, NC 27708 (United States); Perez, K L [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States); Barnhart, H X [Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27715 (United States)], E-mail: spencer.cutler@duke.edu

    2010-04-07

    An observer-based contrast-detail study is performed in an effort to evaluate the limits of object detectability using a dedicated CZT-based breast SPECT imaging system under various imaging conditions. A custom geometric contrast-resolution phantom was developed that can be used for both positive ('hot') and negative contrasts ('cold'). The 3 cm long fillable tubes are arranged in six sectors having equal inner diameters ranging from 1 mm to 6 mm with plastic wall thicknesses of <0.25 mm, on a pitch of twice their inner diameters. Scans of the activity filled tubes using simple circular trajectories are obtained in a 215 mL uniform water filled cylinder, varying the rod:background concentration ratios from 10:1 to 1:10 simulating a large range of biological uptake ratios. The rod phantom is then placed inside a non-uniformly shaped 500 mL breast phantom and scans are again acquired using both simple and complex 3D trajectories for similarly varying contrasts. Summed slice and contiguous multi-slice images are evaluated by five independent readers, identifying the smallest distinguishable rod for each concentration and experimental setup. Linear and quadratic regression is used to compare the resulting contrast-detail curves. Results indicate that in a moderately low-noise 500 mL background, using the SPECT camera having 2.5 mm intrinsic pixels, the mean detectable rod was {approx}3.4 mm at a 10:1 ratio, degrading to {approx}5.2 mm with the 2.5:1 concentration ratio. The smallest object detail was observed using a 45 deg. tilted trajectory acquisition. The complex 3D projected sine wave acquisition, however, had the most consistent combined intra- and inter-observer results, making it potentially the best imaging approach for consistent results.

  11. Quality control and measurement of physical parameters of SPECT system

    International Nuclear Information System (INIS)

    The quality control of nuclear medicine systems are one of the most important parameters that is affecting the studies performed on patients. Any defect in performance of the system may lead to appearance of artifacts that affect the quantitative and qualitative information obtained from images. In this paper the results of quality control performed on both ADAC and SOPHA single head SPECT systems in Shahid Rajaei Heart Hospital are presented. Energy resolution, spatial resolution, temporal resolution sensitivity, uniformity, linearity, center of rotation and multi window energy registration were performed according to NEMA standards. In addition to the above mentioned tests MTF was obtained for various collimators of both systems. Apart from the linearity and uniformity of ADAC system which were unacceptable and later were corrected by the company engineers, all the above factors were within acceptable range for both systems. Comparison of MLF curves at various frequencies for SOPHA HEGP collimator and ADAC HEAP collimator shows superior performance of SOPHA system using this collimator

  12. Research For Developing CT/SPECT Technique Utilizing The Lab-Scaled Of Industrial One Source - One Detector CT System

    International Nuclear Information System (INIS)

    The Research for developing CT/SPECT technique utilizing the lab-scaled of industrial one source - one detector CT system is the continued project following the project Design and fabrication of a lab-scaled of industrial one source - one detector CT system. The main aim of this project is to approach the SPECT technique for the development of the imaging technique research in the Centre for Applications of nuclear technique in industry (CANTI); fabricate and set up a hardware configuration; develop the image reconstruction software for CT/SPECT. Since the project budget is limited, the main product of this project is an associated hardware configuration of SPECT and CT (2 detector for SPECT and one source - one detector for CT) which can be taken SPECT/CT image in static condition. The SPECT/CT images can be reconstructed either by Filtered back projection (FBP) or Algebraic reconstruction technique (ART) or Expectation Maximization (EM) algorithms. (author)

  13. Performance of a semiconductor SPECT system. Comparison with a conventional anger-type SPECT instrument

    International Nuclear Information System (INIS)

    The performance of a new single photon emission computed tomography (SPECT) scanner with a cadmium-zinc-telluride (CZT) solid-state semiconductor detector (Discovery NM 530c; D530c) was evaluated and compared to a conventional Anger-type SPECT with a dual-detector camera (Infinia). Three different phantom studies were performed. Full width at half maximum (FWHM) was measured using line sources placed at different locations in a cylindrical phantom. Uniformity was measured using cylindrical phantoms with 3 different diameters (80, 120, and 160 mm). Spatial resolution was evaluated using hot-rod phantoms of various diameters (5, 9, 13, 16, and 20 mm). Three different myocardial phantom studies were also performed, acquiring projection data with and without defects, and evaluating the interference of liver and gallbladder radioactivity. In a clinical study, the D530c employed list-mode raw data acquisition with electrocardiogram (ECG)-gated acquisition over a 10-min period. From the 10-min projection data, 1-, 3-, 5-, 7- and 10-min SPECT images were reconstructed. The FWHM of the D503c was 1.73-3.48 mm (without water) and 3.88-6.64 mm (with water), whereas the FWHM of the Infinia was 8.17-12.63 mm (without water) and 15.48-16.28 mm (with water). Non-uniformity was larger for the D530c than for the Infinia. Truncation artifacts were also observed with the D530c in a Φ160 mm phantom. The contrast ratio, as defined by myocardial defect/non-defect ratio, was better for the D530c than for the Infinia, and the influence from liver and gallbladder radioactivities was less. Quantitative gated SPECT (QGS) software demonstrated significant differences between data captured over a 10-min period, relative to those acquired over periods of <5 min; there was no difference between ejection fractions calculated using data capture for periods ≥5 min (p<0.05). The D530c is superior to the Infinia, with regard to both spatial resolution and sensitivity. In this study, these

  14. Final Report: A CdZnTe detector for MRI-compatible SPECT Systems

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Ling-Jian

    2012-12-27

    The key objective of this project is to develop the enabling technology for future MRI-compatible nuclear (e.g. SPECT) imaging system, and to demonstrate the feasibility of performing simultaneous MR and SPECT imaging studies of the same object. During the past three years, we have developed (a) a MRI-compatible ultrahigh resolution gamma ray detector and associated readout electronics, (b) a theoretical approach for modeling the effect of strong magnetic field on SPECT image quality, and (c) a maximum-likelihood (ML) based reconstruction routine with correction for the MR-induced distortion. With this support, we have also constructed a four-head MR-compatible SPECT system and tested the system inside a 3-T clinical MR-scanner located on UI campus. The experimental results obtained with this system have clearly demonstrated that sub-500um spatial resolution can be achieved with a SPECT system operated inside a 3-T MRI scanner. During the past three years, we have accomplished most of the major objectives outlined in the original proposal. These research efforts have laid out a solid foundation the development of future MR-compatible SPECT systems for both pre-clinical and clinical imaging applications.

  15. Multimodal fluorescence mediated tomography and SPECT/CT for small animals imaging

    OpenAIRE

    Solomon, Metasebya; Nothdruft, Ralph E.; Akers, Walter; Edwards, W. Barry; Liang, Kexian; Xu, Baogang; Suddlow, Gail P.; Deghani, Hamid; Tai, Yuan-Chuan; Eggebrecht, Adam T.; Achilefu, Samuel; Culver, Joseph P.

    2013-01-01

    Spatial and temporal co-registration of nuclear and optical images would enable the fusion of the information from theses complementary molecular imaging modalities. A critical challenge in integration is fitting optical hardware into the nuclear imaging platforms. Flexible fiber-based fluorescence mediated tomography (FMT) systems provide a viable solution because the various imaging bore sizes of small animal nuclear imaging systems can potentially accommodate the FMT fiber imaging arrays. ...

  16. Development of FAME Animation System

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yukihiro; Hamamatsu, Kiyotaka; Shirai, Hiroshi; Matsuda, Toshiaki [Department of Fusion Plasma Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan); Watanabe, Hideto; Itakura, Hirofumi; Tahata, Yasunori

    1999-02-01

    In order to monitor an animation of magnetohydrodynamic equilibrium calculated by the FAME-II (Fast Analyzer for Magnetohydrodynamic Equilibrium-II) system, a FAME Animation System was developed. This system provides automatically the animation on workstations connected to network with the same period of JT-60U discharge sequence. Then, the system can supply the important information for JT-60U operators to determine control parameters of the succeeding discharge. This report describes the overview of the FAME Animation System. (author)

  17. Performance characterization of a new CZT-based preclinical SPECT system: a comparative study of different collimators

    Science.gov (United States)

    Yu, A. R.; Park, S.-J.; Choi, Y. Y.; Kim, K. M.; Kim, H.-J.

    2015-09-01

    Triumph X-SPECT is a newly released CZT-based preclinical small-animal SPECT system with interchangeable collimators. The purpose of this work was to evaluate and systematically compare the imaging performances of three different collimators in the CZT-based preclinical small-animal system: a single-pinhole collimator (SPH), a multi-pinhole collimator (MPH) and a parallel-hole collimator. We measured the spatial resolutions and sensitivities of the three collimators with 99mTc sources, considering three distinct energy window widths (5, 10, and 20%), and used the NEMA NU4-2008 Image Quality phantom to test the imaging performance of the three collimators in terms of uniformity and spill-over ratio (SOR) for each energy window. With a 10% energy window width at a radius of rotation (ROR) of 30 mm, the system resolution of the SPH, MPH and parallel-hole collimators was 0.715, 0.855 and 3.270 mm FWHM, respectively. For the same energy window, the sensitivity of the system with SPH, MPH and parallel-hole collimators was 32.860, 152.514 and 49.205 counts/sec/MBq at a 100 mm source-to-detector distance and 6.790, 33.376 and 49.038 counts/sec/MBq at a 130 mm source-to-detector distance, respectively. The image noise and SORair for the three collimators were 20.137, 12.278 and 11.232 (%STDunif) and 0.106, 0.140 and 0.161, respectively. Overall, the results show that the SPH had better spatial resolution than the other collimators. The MPH had the highest sensitivity at 100 mm source-to-collimator distance, and the parallel-hole collimator had the highest sensitivity at 130 mm-source-to-detector distance. Therefore, the proper collimator for Triumph X-SPECT system must be determined by the task. These results provide valuable reference data and insight into the imaging performance of various collimators in CZT-based preclinical small-animal SPECT.

  18. Performance characterization of a new CZT-based preclinical SPECT system: a comparative study of different collimators

    International Nuclear Information System (INIS)

    Triumph X-SPECT is a newly released CZT-based preclinical small-animal SPECT system with interchangeable collimators. The purpose of this work was to evaluate and systematically compare the imaging performances of three different collimators in the CZT-based preclinical small-animal system: a single-pinhole collimator (SPH), a multi-pinhole collimator (MPH) and a parallel-hole collimator. We measured the spatial resolutions and sensitivities of the three collimators with 99mTc sources, considering three distinct energy window widths (5, 10, and 20%), and used the NEMA NU4-2008 Image Quality phantom to test the imaging performance of the three collimators in terms of uniformity and spill-over ratio (SOR) for each energy window. With a 10% energy window width at a radius of rotation (ROR) of 30 mm, the system resolution of the SPH, MPH and parallel-hole collimators was 0.715, 0.855 and 3.270 mm FWHM, respectively. For the same energy window, the sensitivity of the system with SPH, MPH and parallel-hole collimators was 32.860, 152.514 and 49.205 counts/sec/MBq at a 100 mm source-to-detector distance and 6.790, 33.376 and 49.038 counts/sec/MBq at a 130 mm source-to-detector distance, respectively. The image noise and SORair for the three collimators were 20.137, 12.278 and 11.232 (%STDunif) and 0.106, 0.140 and 0.161, respectively. Overall, the results show that the SPH had better spatial resolution than the other collimators. The MPH had the highest sensitivity at 100 mm source-to-collimator distance, and the parallel-hole collimator had the highest sensitivity at 130 mm-source-to-detector distance. Therefore, the proper collimator for Triumph X-SPECT system must be determined by the task. These results provide valuable reference data and insight into the imaging performance of various collimators in CZT-based preclinical small-animal SPECT

  19. A portable device for small animal SPECT imaging in clinical gamma-cameras

    International Nuclear Information System (INIS)

    Molecular imaging is reshaping clinical practice in the last decades, providing practitioners with non-invasive ways to obtain functional in-vivo information on a diversity of relevant biological processes. The use of molecular imaging techniques in preclinical research is equally beneficial, but spreads more slowly due to the difficulties to justify a costly investment dedicated only to animal scanning. An alternative for lowering the costs is to repurpose parts of old clinical scanners to build new preclinical ones. Following this trend, we have designed, built, and characterized the performance of a portable system that can be attached to a clinical gamma-camera to make a preclinical single photon emission computed tomography scanner. Our system offers an image quality comparable to commercial systems at a fraction of their cost, and can be used with any existing gamma-camera with just an adaptation of the reconstruction software

  20. The value of serial 99mTc-MIBI myocardial SPECT imaging in animal models of acute myocardial ischemia and reperfusion

    International Nuclear Information System (INIS)

    The purpose is to evaluate acute ischemia and reperfusion in canine models by serial 99mTc-MIBI myocardial SPECT studies. In 24 dogs, myocardial ischemia was induced by dilated balloon inserted in LAD or LCX, followed by reperfusion at 1h (Group I), 4h (Group II) later, and permanent ischemia by copper coil (Group III). The first and second imaging was taken after ischemia and after reperfusion. The 3rd, 4th and 5th SPECT were at 7, 14 and 28 days later. Defect fraction (DF), and ischemic fraction (IF) was obtained from the Bull's-eye images. The first DFs in all 3 groups correlated well with the myocardium at risk (IF) measured by pathological study. DF in group I decreased consistently since the second SPECT, in Group II DF had some decrease, while in Group III no decrease of DF was measured. The SF in all animals showed the same trend. The last DF was correlated with the real size of infarct foci (NF) determined by TTC staining by pathological study. 99mTc-MIBI SPECT was sensitive and accurate in revealing myocardial damage after acute ischemia and its response to reperfusion. The first (before), second (right after), and the last SPECT (4 weeks after reperfusion) were the most informative and clinically useful

  1. Assessment of hybrid rotation-translation scan schemes for in vivo animal SPECT imaging

    International Nuclear Information System (INIS)

    To perform in vivo animal single photon emission computed tomography imaging on a stationary detector gantry, we introduced a hybrid rotation-translation (HRT) tomographic scan, a combination of translational and limited angle rotational movements of the image object, to minimize gravity-induced animal motion. To quantitatively assess the performance of ten HRT scan schemes and the conventional rotation-only scan scheme, two simulated phantoms were first scanned with each scheme to derive the corresponding image resolution (IR) in the image field of view. The IR results of all the scan schemes were visually assessed and compared with corresponding outputs of four scan scheme evaluation indices, i.e. sampling completeness (SC), sensitivity (S), conventional system resolution (SR), and a newly devised directional spatial resolution (DR) that measures the resolution in any specified orientation. A representative HRT scheme was tested with an experimental phantom study. Eight of the ten HRT scan schemes evaluated achieved a superior performance compared to two other HRT schemes and the rotation-only scheme in terms of phantom image resolution. The same eight HRT scan schemes also achieved equivalent or better performance in terms of the four quantitative indices than the conventional rotation-only scheme. As compared to the conventional index SR, the new index DR appears to be a more relevant indicator of system resolution performance. The experimental phantom image obtained from the selected HRT scheme was satisfactory. We conclude that it is feasible to perform in vivo animal imaging with a HRT scan scheme and SC and DR are useful predictors for quantitatively assessing the performance of a scan scheme. (paper)

  2. Assessment of hybrid rotation-translation scan schemes for in vivo animal SPECT imaging

    Science.gov (United States)

    Xia, Yan; Yao, Rutao; Deng, Xiao; Liu, Yaqiang; Wang, Shi; Ma, Tianyu

    2013-02-01

    To perform in vivo animal single photon emission computed tomography imaging on a stationary detector gantry, we introduced a hybrid rotation-translation (HRT) tomographic scan, a combination of translational and limited angle rotational movements of the image object, to minimize gravity-induced animal motion. To quantitatively assess the performance of ten HRT scan schemes and the conventional rotation-only scan scheme, two simulated phantoms were first scanned with each scheme to derive the corresponding image resolution (IR) in the image field of view. The IR results of all the scan schemes were visually assessed and compared with corresponding outputs of four scan scheme evaluation indices, i.e. sampling completeness (SC), sensitivity (S), conventional system resolution (SR), and a newly devised directional spatial resolution (DR) that measures the resolution in any specified orientation. A representative HRT scheme was tested with an experimental phantom study. Eight of the ten HRT scan schemes evaluated achieved a superior performance compared to two other HRT schemes and the rotation-only scheme in terms of phantom image resolution. The same eight HRT scan schemes also achieved equivalent or better performance in terms of the four quantitative indices than the conventional rotation-only scheme. As compared to the conventional index SR, the new index DR appears to be a more relevant indicator of system resolution performance. The experimental phantom image obtained from the selected HRT scheme was satisfactory. We conclude that it is feasible to perform in vivo animal imaging with a HRT scan scheme and SC and DR are useful predictors for quantitatively assessing the performance of a scan scheme.

  3. SemiSPECT: A small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays

    OpenAIRE

    Kim, Hyunki; Furenlid, Lars R.; Crawford, Michael J.; Wilson, Donald W.; Barber, H. Bradford; Todd E. Peterson; Hunter, William C. J.; Liu, Zhonglin; Woolfenden, James M.; Barrett, Harrison H.

    2006-01-01

    The first full single-photon emission computed tomography (SPECT) imager to exploit eight compact high-intrinsic-resolution cadmium zinc telluride (CZT) detectors, called SemiSPECT, has been completed. Each detector consists of a CZT crystal and a customized application-specific integrated circuit (ASIC). The CZT crystal is a 2.7 cm × 2.7 cm × ~ 0.2 cm slab with a continuous top electrode and a bottom electrode patterned into a 64 × 64 pixel array by photolithography. The ASIC is attached to ...

  4. A practical head tracking system for motion correction in neurological SPECT and PET

    International Nuclear Information System (INIS)

    Full text: Patient motion during data acquisition can degrade the quality of SPECT and PET images. Techniques for motion correction in neurological studies in both modalities based on continuous monitoring of head position have been proposed. However difficulties in developing suitable head tracking systems have so far impeded clinical implementations. We have developed a head tracking system based on the mechanical ADL-1 tracker (Shooting Star Technology, Rosedale, Canada) on a Trionix triple-head SPECT camera A software driver running on a SUN Sparc host computer communicates with the tracker over a serial line providing up to 300 updates per second with angular and positional resolutions of 0.05 degrees and 0.2 mm respectively. The SUN Sparc workstation which acquires the SPECT study also communicates with the tracker, eliminating synchronisation problems. For motion correction, the motion parameters provided by the tracker within its own coordinate system must be converted to the camera's coordinate system. The conversion requires knowledge of the rotational relationships between the two coordinate systems and the displacement of their origins, both of which are determined from a calibration procedure. The tracker has been tested under clinical SPECT imaging conditions with a 3D Hoffman brain phantom. Multiple SPECT acquisitions were performed. After each acquisition the phantom was moved to a new position and orientation. Motion parameters reported by the tracker for each applied movement were compared with those obtained by applying an automated image registration program to the sequential reconstructed studies. Maximum differences were < 0.5 degrees and < 2mm, within the expected errors of the registration procedure. We conclude that this tracking system will be suitable for clinical evaluation of motion correction in SPECT and PET

  5. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems

    International Nuclear Information System (INIS)

    Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT PhantomTM), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator or a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the pinhole

  6. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Susu, E-mail: susu.yan@duke.edu; Tough, MengHeng [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Bowsher, James; Yin, Fang-Fang [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 and Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Cheng, Lin [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-11-01

    Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT Phantom{sup TM}), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator or a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the

  7. A Silicon SPECT System for Molecular Imaging of the Mouse Brain

    OpenAIRE

    Shokouhi, Sepideh; Fritz, Mark A; McDonald, Benjamin S.; Durko, Heather L.; Furenlid, Lars R.; Wilson, Donald W.; Peterson, Todd E

    2007-01-01

    We previously demonstrated the feasibility of using silicon double-sided strip detectors (DSSDs) for SPECT imaging of the activity distribution of iodine-125 using a 300-micrometer thick detector. Based on this experience, we now have developed fully customized silicon DSSDs and associated readout electronics with the intent of developing a multi-pinhole SPECT system. Each DSSD has a 60.4 mm × 60.4 mm active area and is 1 mm thick. The strip pitch is 59 micrometers, and the readout of the 102...

  8. Feasibility and Initial Performance of Simultaneous SPECT-CT Imaging Using a Commercial Multi-Modality Preclinical Imaging System

    Directory of Open Access Journals (Sweden)

    Dustin R. Osborne

    2015-01-01

    Full Text Available Multi-modality imaging provides coregistered PET-CT and SPECT-CT images; however such multi-modality workflows usually consist of sequential scans from the individual imaging components for each modality. This typical workflow may result in long scan times limiting throughput of the imaging system. Conversely, acquiring multi-modality data simultaneously may improve correlation and registration of images, improve temporal alignment of the acquired data, increase imaging throughput, and benefit the scanned subject by minimizing time under anesthetic. In this work, we demonstrate the feasibility and procedure for modifying a commercially available preclinical SPECT-CT platform to enable simultaneous SPECT-CT acquisition. We also evaluate the performance of simultaneous SPECT-CT tomographic imaging with this modified system. Performance was accessed using a 57Co source and image quality was evaluated with Tc99m phantoms in a series of simultaneous SPECT-CT scans.

  9. Feasibility and Initial Performance of Simultaneous SPECT-CT Imaging Using a Commercial Multi-Modality Preclinical Imaging System

    Science.gov (United States)

    Osborne, Dustin R.; Austin, Derek W.

    2015-01-01

    Multi-modality imaging provides coregistered PET-CT and SPECT-CT images; however such multi-modality workflows usually consist of sequential scans from the individual imaging components for each modality. This typical workflow may result in long scan times limiting throughput of the imaging system. Conversely, acquiring multi-modality data simultaneously may improve correlation and registration of images, improve temporal alignment of the acquired data, increase imaging throughput, and benefit the scanned subject by minimizing time under anesthetic. In this work, we demonstrate the feasibility and procedure for modifying a commercially available preclinical SPECT-CT platform to enable simultaneous SPECT-CT acquisition. We also evaluate the performance of simultaneous SPECT-CT tomographic imaging with this modified system. Performance was accessed using a 57Co source and image quality was evaluated with 99mTc phantoms in a series of simultaneous SPECT-CT scans. PMID:26146568

  10. Targeted multi-pinhole SPECT

    International Nuclear Information System (INIS)

    Small-animal single photon emission computed tomography (SPECT) with focused multi-pinhole collimation geometries allows scanning modes in which large amounts of photons can be collected from specific volumes of interest. Here we present new tools that improve targeted imaging of specific organs and tumours, and validate the effects of improved targeting of the pinhole focus. A SPECT system with 75 pinholes and stationary detectors was used (U-SPECT-II). An XYZ stage automatically translates the animal bed with a specific sequence in order to scan a selected volume of interest. Prior to stepping the animal through the collimator, integrated webcams acquire images of the animal. Using sliders, the user designates the desired volume to be scanned (e.g. a xenograft or specific organ) on these optical images. Optionally projections of an atlas are overlaid semiautomatically to locate specific organs. In order to assess the effects of more targeted imaging, scans of a resolution phantom and a mouse myocardial phantom, as well as in vivo mouse cardiac and tumour scans, were acquired with increased levels of targeting. Differences were evaluated in terms of count yield, hot rod visibility and contrast-to-noise ratio. By restricting focused SPECT scans to a 1.13-ml resolution phantom, count yield was increased by a factor 3.6, and visibility of small structures was significantly enhanced. At equal noise levels, the small-lesion contrast measured in the myocardial phantom was increased by 42%. Noise in in vivo images of a tumour and the mouse heart was significantly reduced. Targeted pinhole SPECT improves images and can be used to shorten scan times. Scan planning with optical cameras provides an effective tool to exploit this principle without the necessity for additional X-ray CT imaging. (orig.)

  11. End-expiration respiratory gating for a high-resolution stationary cardiac SPECT system

    Science.gov (United States)

    Chan, Chung; Harris, Mark; Le, Max; Biondi, James; Grobshtein, Yariv; Liu, Yi-Hwa; Sinusas, Albert J.; Liu, Chi

    2014-10-01

    Respiratory and cardiac motions can degrade myocardial perfusion SPECT (MPS) image quality and reduce defect detection and quantitative accuracy. In this study, we developed a dual respiratory and cardiac gating system for a high-resolution fully stationary cardiac SPECT scanner in order to improve the image quality and defect detection. Respiratory motion was monitored using a compressive sensor pillow connected to a dual respiratory-cardiac gating box, which sends cardiac triggers only during end-expiration phases to the single cardiac trigger input on the SPECT scanners. The listmode data were rebinned retrospectively into end-expiration frames for respiratory motion reduction or eight cardiac gates only during end-expiration phases to compensate for both respiratory and cardiac motions. The proposed method was first validated on a motion phantom in the presence and absence of multiple perfusion defects, and then applied on 11 patient studies with and without perfusion defects. In the normal phantom studies, the end-expiration gated SPECT (EXG-SPECT) reduced respiratory motion blur and increased myocardium to blood pool contrast by 51.2% as compared to the ungated images. The proposed method also yielded an average of 11.2% increase in myocardium to defect contrast as compared to the ungated images in the phantom studies with perfusion defects. In the patient studies, EXG-SPECT significantly improved the myocardium to blood pool contrast (p < 0.005) by 24% on average as compared to the ungated images, and led to improved perfusion uniformity across segments on polar maps for normal patients. For a patient with defect, EXG-SPECT improved the defect contrast and definition. The dual respiratory-cardiac gating further reduced the blurring effect, increased the myocardium to blood pool contrast significantly by 36% (p < 0.05) compared to EXG-SPECT, and further improved defect characteristics and visualization of fine structures at the expense of increased noise on

  12. End-expiration respiratory gating for a high-resolution stationary cardiac SPECT system

    International Nuclear Information System (INIS)

    Respiratory and cardiac motions can degrade myocardial perfusion SPECT (MPS) image quality and reduce defect detection and quantitative accuracy. In this study, we developed a dual respiratory and cardiac gating system for a high-resolution fully stationary cardiac SPECT scanner in order to improve the image quality and defect detection. Respiratory motion was monitored using a compressive sensor pillow connected to a dual respiratory–cardiac gating box, which sends cardiac triggers only during end-expiration phases to the single cardiac trigger input on the SPECT scanners. The listmode data were rebinned retrospectively into end-expiration frames for respiratory motion reduction or eight cardiac gates only during end-expiration phases to compensate for both respiratory and cardiac motions. The proposed method was first validated on a motion phantom in the presence and absence of multiple perfusion defects, and then applied on 11 patient studies with and without perfusion defects. In the normal phantom studies, the end-expiration gated SPECT (EXG-SPECT) reduced respiratory motion blur and increased myocardium to blood pool contrast by 51.2% as compared to the ungated images. The proposed method also yielded an average of 11.2% increase in myocardium to defect contrast as compared to the ungated images in the phantom studies with perfusion defects. In the patient studies, EXG-SPECT significantly improved the myocardium to blood pool contrast (p < 0.005) by 24% on average as compared to the ungated images, and led to improved perfusion uniformity across segments on polar maps for normal patients. For a patient with defect, EXG-SPECT improved the defect contrast and definition. The dual respiratory–cardiac gating further reduced the blurring effect, increased the myocardium to blood pool contrast significantly by 36% (p < 0.05) compared to EXG-SPECT, and further improved defect characteristics and visualization of fine structures at the expense of increased

  13. Validation of a rotating camera based SPECT system for dosimetry applications

    International Nuclear Information System (INIS)

    The authors have evaluated the quantitative properties of a rotating camera based SPECT system using three isotopes commonly used clinically (Tc-99m, In-111, and I-123 contaminated with I-124). The isotopes were chosen due to their different imaging characteristics. The Alderson body phantom was used with 'hot' spheres, with and without background activity, to determine system sensitivity and linearity. An analytic post processing attenuation correction routine was implemented which increased system linearity with respect to position in the phantom and was used throughout the study. Up to four organ phantoms were placed in the body phantom and imaged in two ways. First, a two view planar technique, and second, a circular rotation SPECT acquisition. The two view planar technique uses a combination arithmetic and geometric mean with correction for attenuation. The planar technique showed good correlation to actual activity in absence of background (slope .98; R .99), and slightly degraded accuracy with background (slope .91; R .97). However, it was only able to quantitate activity when no overlying or underlying organs were present. The SPECT system, though, was clearly able to distinguish regions of activity in transverse section for which accurate quantitation was possible. Very good correlation between SPECT activity and measured activity was observed both with (slope .98; R .98), and without (slope 1.02; R .99) background activity present. Accurate quantitation of total organ activity is very useful not only for dosimetry applications, but also for radiotherapy planning and monitoring of treatment

  14. SPECT detector system design based on embedded system

    International Nuclear Information System (INIS)

    A single-photon emission computed tomography detector system based on embedded Linux designed. This system is composed of detector module, data acquisition module, ARM MPU module, network interface communication module and human machine interface module. Its software uses multithreading technology based on embedded Linux. It can achieve high speed data acquisition, real-time data correction and network data communication. It can accelerate the data acquisition and decrease the dead time. The accuracy and the stability of the system can be improved. (authors)

  15. Comparison of animal studies between interstitial magnetic resonance lymphography and radiocolloid SPECT/CT lymphoscintigraphy in the head and neck region

    International Nuclear Information System (INIS)

    The objective of this study was to comparatively assess two techniques, radiocolloid single photon emission computed tomography (SPECT)/CT lymphoscintigraphy and interstitial MR lymphography using SPIO and gadoxetate disodium, in animal models. We used twenty one 8-week-old male nude mice of strain BALB/c Slc-nu/nu, weighing 23-27 g. The 4.7-T MRI equipment was used to detect the SNs. T2*WI of gradient-echo sequences was acquired sequentially up to 24 h after administering superparamagnetic iron oxides (SPIO), ferucarbotran. T1WI was acquired sequentially up to 80 min after administering gadoxetate disodium. 99mTc-phytate SPECT/CT lymphoscintigraphy was taken at 30 min after the injection to detect the SNs using animal-dedicated whole-body SPECT/CT hybrid scanner. The injection was submucosally performed in the right tongue margin of each mouse. Reading performances concerning SN visualization and its quality on interstitial MR lymphogram and SPECT/CT lymphoscintigram were performed by 3 radiologists. The SN intensities were 0.43 for the right, 0.61 for the left at 30 min after ferucarbotran injection, with gradual decrease in intensity, and 1.43 for the right, 1.33 for the left at 10 min after gadoxetate disodium injection with a fast decrease in intensity. The base value of 1.0 was at pre-examination. The mean numbers of lymph nodes visualized were 4.00 nodes for on SPECT/CT lymphoscintigram and 2.0 for interstitial MR lymphogram. There was a statistically significant difference in the mean scores between SPECT/CT lymphoscintigraphy and interstitial MR lymphography (two factor mixed design with repeated measures on one factor: p<0.0002). In our comparative study using mice, the results of radiocolloid SPECT/CT lymphoscintigraphy were superior to those of interstitial MR lymphography, while both SPIO and gadoxetate disodium have a potential of being employed for sentinel node navigation surgery by interstitial MR lymphography in the head and neck region. (author)

  16. Improved image quality in pinhole SPECT by accurate modeling of the point spread function in low magnification systems

    Energy Technology Data Exchange (ETDEWEB)

    Pino, Francisco [Unitat de Biofísica, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036, Spain and Servei de Física Mèdica i Protecció Radiològica, Institut Català d’Oncologia, L’Hospitalet de Llobregat 08907 (Spain); Roé, Nuria [Unitat de Biofísica, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036 (Spain); Aguiar, Pablo, E-mail: pablo.aguiar.fernandez@sergas.es [Fundación Ramón Domínguez, Complexo Hospitalario Universitario de Santiago de Compostela 15706, Spain and Grupo de Imagen Molecular, Instituto de Investigacións Sanitarias de Santiago de Compostela (IDIS), Galicia 15782 (Spain); Falcon, Carles; Ros, Domènec [Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain and CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona 08036 (Spain); Pavía, Javier [Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 080836 (Spain); CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona 08036 (Spain); and Servei de Medicina Nuclear, Hospital Clínic, Barcelona 08036 (Spain)

    2015-02-15

    Purpose: Single photon emission computed tomography (SPECT) has become an important noninvasive imaging technique in small-animal research. Due to the high resolution required in small-animal SPECT systems, the spatially variant system response needs to be included in the reconstruction algorithm. Accurate modeling of the system response should result in a major improvement in the quality of reconstructed images. The aim of this study was to quantitatively assess the impact that an accurate modeling of spatially variant collimator/detector response has on image-quality parameters, using a low magnification SPECT system equipped with a pinhole collimator and a small gamma camera. Methods: Three methods were used to model the point spread function (PSF). For the first, only the geometrical pinhole aperture was included in the PSF. For the second, the septal penetration through the pinhole collimator was added. In the third method, the measured intrinsic detector response was incorporated. Tomographic spatial resolution was evaluated and contrast, recovery coefficients, contrast-to-noise ratio, and noise were quantified using a custom-built NEMA NU 4–2008 image-quality phantom. Results: A high correlation was found between the experimental data corresponding to intrinsic detector response and the fitted values obtained by means of an asymmetric Gaussian distribution. For all PSF models, resolution improved as the distance from the point source to the center of the field of view increased and when the acquisition radius diminished. An improvement of resolution was observed after a minimum of five iterations when the PSF modeling included more corrections. Contrast, recovery coefficients, and contrast-to-noise ratio were better for the same level of noise in the image when more accurate models were included. Ring-type artifacts were observed when the number of iterations exceeded 12. Conclusions: Accurate modeling of the PSF improves resolution, contrast, and recovery

  17. Diagnosis of pancreatic cancer using 201Tl-chloride and a three-head rotating gamma camera SPECT system

    International Nuclear Information System (INIS)

    201Tl SPECT was performed on 17 patients with pancreatic cancer or chronic pancreatitis using a three-head rotating gamma camera SPECT system. In 7 of 10 patients with pancreatic cancer, the lesions were clearly delineated by 201Tl SPECT. Whereas the lesion of 30 mm in diameter was visualized, a large tumor of 80 mm in diameter could not be visualized. Namely, it was thought that 201Tl uptake by pancreatic cancer might be well correlated with tumor blood flow and/or its histological subtype rather than with tumor size. In 5 of 7 patients with chronic pancreatitis, no uptake by the pancreas was shown. The sensitivity, specificity, and accuracy in diagnosing pancreatic cancer by 201Tl SPECT were 70%, 71%, and 71%, respectively. The present results obtained by 201Tl SPECT were thought satisfactory enough to evaluate pancreatic cancer under the present conditions where there was no useful imaging agent for visualizing pancreatic cancer by SPECT. 201Tl SPECT is expected to be a new diagnostic tool for investigation of pancreatic tumorous lesion. (author)

  18. Validation of variance reduction techniques in Mediso (SPIRIT DH-V) SPECT system by Monte Carlo

    International Nuclear Information System (INIS)

    Monte Carlo simulation of nuclear medical imaging systems is a widely used method for reproducing their operation in a real clinical environment, There are several Single Photon Emission Tomography (SPECT) systems in Cuba. For this reason it is clearly necessary to introduce a reliable and fast simulation platform in order to obtain consistent image data. This data will reproduce the original measurements conditions. In order to fulfill these requirements Monte Carlo platform GAMOS (Geant4 Medicine Oriented Architecture for Applications) have been used. Due to the very size and complex configuration of parallel hole collimators in real clinical SPECT systems, Monte Carlo simulation usually consumes excessively high time and computing resources. main goal of the present work is to optimize the efficiency of calculation by means of new GAMOS functionality. There were developed and validated two GAMOS variance reduction techniques to speed up calculations. These procedures focus and limit transport of gamma quanta inside the collimator. The obtained results were asses experimentally in Mediso (SPIRIT DH-V) SPECT system. Main quality control parameters, such as sensitivity and spatial resolution were determined. Differences of 4.6% sensitivity and 8.7% spatial resolution were reported against manufacturer values. Simulation time was decreased up to 650 times. Using these techniques it was possible to perform several studies in almost 8 hours each. (Author)

  19. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Reis, M.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Miranda, A.C.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Batista, I.R. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Barboza, M.R.F.; Shih, M.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Fu, G. [GE Global Research, Schenectady, NY (United States); Chen, C.T. [Department of Radiology, University of Chicago, Chicago, IL (United States); Meng, L.J. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana-Champaign, IL (United States); Bressan, R.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Amaro, E. Jr [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil)

    2013-11-06

    The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s{sup -1}·MBq{sup -1} were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging {sup 99m}Tc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using {sup 99m}Tc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

  20. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    Directory of Open Access Journals (Sweden)

    J. Mejia

    2013-11-01

    Full Text Available The single photon emission microscope (SPEM is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD. Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

  1. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    International Nuclear Information System (INIS)

    The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity

  2. A SPECT system simulator built on the SolidWorksTM 3D-Design package

    OpenAIRE

    LI, XIN; Furenlid, Lars R.

    2014-01-01

    We have developed a GPU-accelerated SPECT system simulator that integrates into instrument-design workflow [1]. This simulator includes a gamma-ray tracing module that can rapidly propagate gamma-ray photons through arbitrary apertures modeled by SolidWorksTM-created stereolithography (.STL) representations with a full complement of physics cross sections [2, 3]. This software also contains a scintillation detector simulation module that can model a scintillation detector with arbitrary scint...

  3. Feasibility study of SPECT system for online dosimetry imaging in boron neutron capture therapy.

    Science.gov (United States)

    Hales, B; Katabuchi, T; Hayashizaki, N; Terada, K; Igashira, M; Kobayashi, T

    2014-06-01

    A single collimator version of a proposed PG-SPECT system was manufactured and experimentally tested. Combining this experimental data with Monte Carlo simulation, the viability of Ge and CdTe semiconductors detectors was calculated. It was determined that the best detector of the ones compared would be a CdTe detector of 2-3mm, aided by the benefit of adding a Compton-suppression anti-coincidence timing detector. PMID:24378365

  4. IBZM tool: a fully automated expert system for the evaluation of IBZM SPECT studies

    International Nuclear Information System (INIS)

    Visual reading of [123I]IBZM SPECT scans depends on the experience of the interpreter. Therefore, semi-quantification of striatal IBZM uptake is commonly considered mandatory. However, semi-quantification is time consuming and prone to error, particularly if the volumes of interest (VOIs) are positioned manually. Therefore, the present paper proposes a new software tool (''IBZM tool'') for fully automated and standardised processing, evaluation and documentation of [123I]IBZM SPECT scans. The IBZM tool is an easy-to-use SPM toolbox. It includes automated procedures for realignment and summation of multiple frames (motion correction), stereotactic normalisation, scaling, VOI analysis of striatum-to-reference ratio R, classification of R and standardised display. In order to evaluate the tool, which was developed at the University of Hamburg, the tool was transferred to the University of Hannover. There it was applied to 27 well-documented subjects: eight patients with multi-system atrophy (MSA), 12 patients with Parkinson's disease (PD) and seven controls. The IBZM tool was compared with manual VOI analysis. The sensitivity and specificity of the IBZM tool for the differentiation of the MSA subjects from the controls were 100% and 86%, respectively. The IBZM tool provided improved statistical power compared with manual VOI analysis. The IBZM tool is an expert system for the detection of reduced striatal D2 availability on [123I]IBZM SPECT scans. The standardised documentation supports visual and semi-quantitative evaluation, and it is useful for presenting the findings to the referring physician. The IBZM tool has the potential for widespread use, since it appears to be fairly independent of the performance characteristics of the particular SPECT system used. The tool is available free of charge. (orig.)

  5. IBZM tool: a fully automated expert system for the evaluation of IBZM SPECT studies

    Energy Technology Data Exchange (ETDEWEB)

    Buchert, Ralph; Wilke, Florian; Martin, Brigitte; Borczyskowski, Daniel von; Mester, Janos; Brenner, Winfried; Clausen, Malte [University Medical Center Hamburg-Eppendorf, Department of Nuclear Medicine, Hamburg (Germany); Berding, Georg [University School of Medicine Hannover, Department of Nuclear Medicine, Hannover (Germany)

    2006-09-15

    Visual reading of [{sup 123}I]IBZM SPECT scans depends on the experience of the interpreter. Therefore, semi-quantification of striatal IBZM uptake is commonly considered mandatory. However, semi-quantification is time consuming and prone to error, particularly if the volumes of interest (VOIs) are positioned manually. Therefore, the present paper proposes a new software tool (''IBZM tool'') for fully automated and standardised processing, evaluation and documentation of [{sup 123}I]IBZM SPECT scans. The IBZM tool is an easy-to-use SPM toolbox. It includes automated procedures for realignment and summation of multiple frames (motion correction), stereotactic normalisation, scaling, VOI analysis of striatum-to-reference ratio R, classification of R and standardised display. In order to evaluate the tool, which was developed at the University of Hamburg, the tool was transferred to the University of Hannover. There it was applied to 27 well-documented subjects: eight patients with multi-system atrophy (MSA), 12 patients with Parkinson's disease (PD) and seven controls. The IBZM tool was compared with manual VOI analysis. The sensitivity and specificity of the IBZM tool for the differentiation of the MSA subjects from the controls were 100% and 86%, respectively. The IBZM tool provided improved statistical power compared with manual VOI analysis. The IBZM tool is an expert system for the detection of reduced striatal D{sub 2} availability on [{sup 123}I]IBZM SPECT scans. The standardised documentation supports visual and semi-quantitative evaluation, and it is useful for presenting the findings to the referring physician. The IBZM tool has the potential for widespread use, since it appears to be fairly independent of the performance characteristics of the particular SPECT system used. The tool is available free of charge. (orig.)

  6. Brain SPECT. SPECT in der Gehirndiagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Feistel, H. (Erlangen-Nuernberg Univ., Erlangen (Germany). Nuklearmedizinische Klinik mit Poliklinik)

    1991-12-01

    Brain SPECT investigations have gained broad acceptance since the introduction of the lipophilic tracer Tc-99m-HMPAO. Depending on equipment and objectives in different departments, the examinations can be divided into three groups: 1. Under normal conditions and standardised patient preparation the 'rest' SPECT can be performed in every department with a tomographic camera. In cerebrovascular disease there is a demand for determination of either the perfusion reserve in reversible ischemia or prognostic values in completed stroke. In cases of dementia, SPECT may yield useful results according to differential diagnosis. Central cerebral system involvement in immunologic disease may be estimated with higher sensitivity than in conventional brain imaging procedures. In psychiatric diseases there is only a relative indication for brain SPECT, since results during recent years have been contradictory and may be derived only in interventional manner. In brain tumor diagnostics SPECT with Tl-201 possibly permits grading. In inflammatory disease, especially in viral encephalitis, SPECT may be used to obtain early diagnosis. Normal pressure hydrocephalus can be distinguished from other forms of dementia and, consequently, the necessity for shunting surgery can be recognised. 2. In departments equipped for emergency cases an 'acute' SPECT can be performed in illnesses with rapid changing symptoms such as different forms of migraine, transient global amnesia, epileptic seizures (so-called 'ictal SPECT') or urgent forms like trauma. 3. In cooperation with several departments brain SPECT can be practised as an interventional procedure in clinical and in scientific studies. (orig./MG).

  7. Design and imaging studies of a position sensitive photomultiplier based dynamic SPECT system

    International Nuclear Information System (INIS)

    The design and image reconstruction aspects of a new generation of dynamic SPECT instrumentation utilizing multiple rings of position sensitive photomultiplier tubes (PSPMTs) are reported. A diverging cone-beam collimator is attached to each PSPMT to achieve a 22 cm diameter spherical field of view in a system designed for head imaging. The resolution with the diverging collimator is estimated to be approximately 20% worse than a parallel hole collimator. Iterative and direct cone-beam reconstruction algorithms have been investigated under different conditions of angular sampling and counting statistics. The ramifications of temporal resolution and signal to noise ratio are discussed in relation to dynamic SPECT imaging of labeled cisplatin for chemotherapy

  8. A line-source method for aligning on-board and other pinhole SPECT systems

    International Nuclear Information System (INIS)

    Purpose: In order to achieve functional and molecular imaging as patients are in position for radiation therapy, a robotic multipinhole SPECT system is being developed. Alignment of the SPECT system—to the linear accelerator (LINAC) coordinate frame and to the coordinate frames of other on-board imaging systems such as cone-beam CT (CBCT)—is essential for target localization and image reconstruction. An alignment method that utilizes line sources and one pinhole projection is proposed and investigated to achieve this goal. Potentially, this method could also be applied to the calibration of the other pinhole SPECT systems.Methods: An alignment model consisting of multiple alignment parameters was developed which maps line sources in three-dimensional (3D) space to their two-dimensional (2D) projections on the SPECT detector. In a computer-simulation study, 3D coordinates of line-sources were defined in a reference room coordinate frame, such as the LINAC coordinate frame. Corresponding 2D line-source projections were generated by computer simulation that included SPECT blurring and noise effects. The Radon transform was utilized to detect angles (α) and offsets (ρ) of the line-source projections. Alignment parameters were then estimated by a nonlinear least squares method, based on the α and ρ values and the alignment model. Alignment performance was evaluated as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise, and acquisition geometry. Experimental evaluations were performed using a physical line-source phantom and a pinhole-collimated gamma camera attached to a robot.Results: In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, six alignment parameters (three translational and three rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by

  9. Small-Animal SPECT/CT of the Progression and Recovery of Rat Liver Fibrosis by Using an Integrin αvβ3-targeting Radiotracer.

    Science.gov (United States)

    Yu, Xinhe; Wu, Yue; Liu, Hao; Gao, Liquan; Sun, Xianlei; Zhang, Chenran; Shi, Jiyun; Zhao, Huiyun; Jia, Bing; Liu, Zhaofei; Wang, Fan

    2016-05-01

    Purpose To assess the potential utility of an integrin αvβ3-targeting radiotracer, technetium 99m-PEG4-E[PEG4-cyclo(arginine-glycine-aspartic acid-D-phenylalanine-lysine)]2 ((99m)Tc-3PRGD2), for single photon emission computed tomography (SPECT)/computed tomography (CT) for monitoring of the progression and prognosis of liver fibrosis in a rat model. Materials and Methods All animal experiments were performed by following the protocol approved by the institutional animal care and use committee. (99m)Tc-3PRGD2 was prepared and longitudinal SPECT/CT was performed to monitor the progression (n = 8) and recovery (n = 5) of liver fibrosis induced in a rat model by means of thioacetamide (TAA) administration. The mean liver-to-background radioactivity per unit volume ratio was analyzed for comparisons between the TAA and control (saline) groups at different stages of liver fibrosis. Data were compared by using Student t and Mann-Whitney tests. Results of SPECT/CT were compared with those of ex vivo biodistribution analysis (n = 5). Results Accumulation of (99m)Tc-3PRGD2 in the liver increased in proportion to the progression of fibrosis and TAA exposure time; accumulation levels were significantly different between the TAA and control groups as early as week 4 of TAA administration (liver-to-background ratio: 32.30 ± 3.39 vs 19.01 ± 3.31; P = .0002). Results of ex vivo immunofluorescence staining demonstrated the positive expression of integrin αvβ3 on the activated hepatic stellate cells, and the integrin αvβ3 levels in the liver corresponded to the results of SPECT/CT (R(2) = 0.75, P < .0001). (99m)Tc-3PRGD2 uptake in the fibrotic liver decreased after antifibrotic therapy with interferon α2b compared with that in the control group (relative liver-to-background ratio: 0.45 ± 0.05 vs 1.01 ± 0.05; P < .0001) or spontaneous recovery (relative liver-to-background ratio: 0.56 ± 0.06 vs 1.01 ± 0.05; P < .0001). Conclusion (99m)Tc-3PRGD2 SPECT/CT was successfully

  10. Evaluation of both perfusion and atrophy in multiple system atrophy of the cerebellar type using brain SPECT alone

    International Nuclear Information System (INIS)

    Partial volume effects in atrophied areas should be taken into account when interpreting brain perfusion single photon emission computed tomography (SPECT) images of neurodegenerative diseases. To evaluate both perfusion and atrophy using brain SPECT alone, we developed a new technique applying tensor-based morphometry (TBM) to SPECT. After linear spatial normalization of brain perfusion SPECT using 99mTc-ethyl cysteinate dimer (99mTc-ECD) to a Talairach space, high-dimension-warping was done using an original 99mTc-ECD template. Contraction map images calculated from Jacobian determinants and spatially normalized SPECT images using this high-dimension-warping were compared using statistical parametric mapping (SPM2) between two groups of 16 multiple system atrophy of the cerebellar type (MSA-C) patients and 73 age-matched normal controls. This comparison was also performed in conventionally warped SPECT images. SPM2 demonstrated statistically significant contraction indicating local atrophy and decreased perfusion in the whole cerebellum and pons of MSA-C patients as compared to normal controls. Higher significance for decreased perfusion in these areas was obtained in high-dimension-warping than in conventional warping, possibly due to sufficient spatial normalization to a 99mTc-ECD template in high-dimensional warping of severely atrophied cerebellum and pons. In the present high-dimension-warping, modification of tracer activity remained within 3% of the original tracer distribution. The present new technique applying TBM to brain SPECT provides information on both perfusion and atrophy at the same time thereby enhancing the role of brain perfusion SPECT

  11. Comparative immune systems in animals.

    Science.gov (United States)

    Yuan, Shaochun; Tao, Xin; Huang, Shengfeng; Chen, Shangwu; Xu, Anlong

    2014-02-01

    Animal immune systems can be classified into those of innate immunity and those of adaptive immunity. It is generally thought that the former are universal for all animals and depend on germline-encoded receptors that recognize highly conserved pathogen-associated molecular patterns (PAMPs), whereas the latter are vertebrate specific and are mediated primarily by lymphocytes bearing a unique antigen receptor. However, novel adaptive or adaptive-like immunities have been found in invertebrates and jawless vertebrates, and extraordinarily complex innate immunities, created through huge expansions of many innate gene families, have recently been found in the cephalochordate amphioxus and the echinoderm sea urchin. These studies not only inspire immunologists to seek novel immune mechanisms in invertebrates but also raise questions about the origin and evolution of vertebrate immunities. PMID:25384142

  12. Quantitative uptake measurements of I-131 (364 keV) within the tomographic plane of a specially collimated SPECT system

    International Nuclear Information System (INIS)

    The use of SPECT for uptake measurements requires a linear relationship between the measured counts within a tomographic plane and its activity distribution. Many factors influence this relationship, and these include filter type and attenuation correction methods. However, for higher photon energy (I-131, 364 keV), photon penetration through the collimator or detector shielding may degrade, for example, the tomographic plane and slice thickness resolution and the ability to differentiate activity within a slice and between slices. A SPECT system (Picker International Dyna Camera), equipped with a specialized (low sensitivity) thick septa collimator for I-131 (364 keV) and 511 keV detector shielding is proposed for quantitative measurements. The influence of photon penetration was significantly reduced, with transverse plane and slice thickness resolution of 18 mm FWHM and 37 mm FWIM for a radius of rotation of 14 cm. Iodine collimators typically have FWTM 5-10 times the FWHM. A Jaszczak phantom was imaged with I-131, with two bar quadrants observed with diameters of 16 and 12.7 mm. The SPECT resolution data was equal to a low energy general purpose collimator. A multi-concentric ring (contrast) phantom was designed to quantitatively evaluate the SPECT system. A linear relationship was observed between the measured counts for a transverse plane and I-131 activity within the rings. Data suggest that with appropriate collimation and detector shielding SPECT systems may be used for quantitative measurements at higher photon energy

  13. Intrinsic and Tomographic Evaluation of Siemens e.cam® SPECT System at the Korle-Bu Teaching Hospital (Ghana

    Directory of Open Access Journals (Sweden)

    Intrinsic and Tomographic Evaluation of Siemens e.cam® SPECT System at the Korle-Bu Teaching Hospital (Ghana

    2011-10-01

    Full Text Available Intrinsic and tomographic evaluation tests on the Siemens e.cam® Signature Series Single Photon Emission Computed Tomography (SPECT system were conducted to ensure that it meets the specification required by the user and the capabilities claimed by the manufacturer after installation. The tests were performed according to National Electrical Manufacturers Association protocols and various measuring instrument and point sources containing 99 m-Tc were used. Intrinsic tests performed include intrinsic flood uniformity, intrinsic count rate performance in air and intrinsic energy resolution. Whole body scanning, SPECT resolution without scatter, SPECT resolution with inserts, SPECT uniformity and center of rotation were also evaluated. The intrinsic count rate performance measured was 300kcps as against manufactures’ specification of 310 kcps, intrinsic energy resolution was 9.31% whiles manufacturers’ specification was ≤ 9.9% and center of rotation specification is that Max. X-Min. X< 1 pixel and RMS < 0.5 whiles values measured was 0.254 and 0.10 for LEAP and 0.092 and 0.083 for LEHR collimators. The evaluation confirm that the SPECT system met the requirements for clinical medical imagine and also the values obtained could be used as baseline data for future quality control.

  14. Development Of Software For Automation And Data Acquisition System For Gamma Spider And SPECT

    International Nuclear Information System (INIS)

    The portable system of gamma-ray computed tomography known as Gamma Spider and Single-Photon Emission Computed Tomography (SPECT) are designed for the detection and measurement of the physical condition of small object that can fit within the diameter of 50 cm. The project consists of two major components; the scanner hardware and the system software. This paper describes the system software components which are linear and rotate motor control, data acquisition for rate meter and data recording. The scanning resolution for linear movement can be set to 0.25 cm, 0.5 cm or 1.0 cm whereas the rotation movement can be set to 5 or 10 degree depending on user requirement. The selections for scanning offset are set to three diameters which are 30 cm, 40 cm and 50 cm. The algorithm for this automation system and issues on development are also discussed in this paper. (author)

  15. A survey of head movement during clinical brain SPECT using an optical tracking system

    International Nuclear Information System (INIS)

    Full text: The aim of this study was to survey patient motion during clinical brain SPECT using a commercial motion detection system called Polaris. Polaris is an optical tracker that remotely tracks head position and orientation via a small target attached to the patient. Its accuracy for position measurement is 1mm or 1 degree (deg), 33% moved > 2mm or 2deg and 10% moved > 4mm or 4deg. 65% of subjects moved 3 or more times. Motion in the D and P groups was equally likely to be small (<3mm or <3deg) or large and equally likely to occur early or late during acquisition. Motion in the N, F and C groups was less likely to be large and for N and F more likely to occur late in the acquisition suggesting fatigue was the main cause. The most common large movements were anterior-posterior translations and axial (Z) rotations. Significant head movement is common in brain SPECT, particularly in dementia and psychiatric subjects, and accurate motion correction is desirable to maintain image quality. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  16. IBZM- and CIT-SPECT of the dopaminergic system in Parkinsonism

    International Nuclear Information System (INIS)

    Parkinsonism is most of the time caused by idiopathic Parkinson's disease (IPD). Considering the differences in therapeutic response and prognosis. in viva discrimination between IPD and 'Parkinsonism-plus' syndromes is important. Recently, ligands have become available for imaging the pre- and postsynaptic dopaminergic system by Single Photon Emission Computed Tomography (SPECT). Visualization of postsynaptic D2 dopamine receptors using 123I-iodobenzamide (123I-IBZM) may contribute to the differential diagnosis between IPD and 'Parkinsonism-plus' syndromes as IPD is a pure presynaptic disease. Imaging of the presynaptic dopamine transporters using [123I]β-CIT (2β-carbomethoxy-3β-(4-iodophenyl)tropane) may be used as a diagnostic technique. Early disease detection in subjects suspected to be at risk for developing IPD has become possible using [123I]β-CIT or other ligands for the dopamine transporter. Furthermore, with SPECT one is probably able to monitor in an objective way the efficacy of new pharmacological therapies. (author)

  17. Computer-assisted diagnostic system for neurodegenerative dementia using brain SPECT and 3D-SSP

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Kazunari; Kanda, Tomonori; Uemura, Takafumi; Miyamoto, Naokazu; Yoshikawa, Toshiki [Hyogo Brain and Heart Center, Department of Radiology and Nuclear Medicine, Himeji, Hyogo (Japan); Shimada, Kenichi; Ohkawa, Shingo [Hyogo Brain and Heart Center, Institute for Aging Brain and Cognitive Disorders, Himeji, Hyogo (Japan); Minoshima, Satoshi [University of Washington, Radiology and Bioengineering, Department of Radiology, Seattle, WA (United States)

    2009-05-15

    To develop a computer-assisted automated diagnostic system to distinguish among Alzheimer disease (AD), dementia with Lewy bodies (DLB), and other degenerative disorders in patients with mild dementia. Single photon emission computed tomography (SPECT) images with injection of N-Isopropyl-p-[{sup 123}I]iodoamphetamine (IMP) were obtained from patients with mild degenerative dementia. First, datasets from 20 patients mild AD, 15 patients with dementia with DLB, and 17 healthy controls were used to develop an automated diagnosing system based on three-dimensional stereotactic surface projections (3D-SSP). AD- and DLB-specific regional templates were created using 3D-SSP, and critical Z scores in the templates were established. Datasets from 50 AD patients, 8 DLB patients, and 10 patients with non-AD/DLB type degenerative dementia (5 with frontotemporal dementia and 5 with progressive supranuclear palsy) were then used to test the diagnostic accuracy of the optimized automated system in comparison to the diagnostic interpretation of conventional IMP-SPECT images. These comparisons were performed to differentiate AD and DLB from non-AD/DLB and to distinguish AD from DLB. A receiver operating characteristic (ROC) analysis was performed. The area under the ROC curve (Az) and the accuracy of the automated diagnosis system were 0.89 and 82%, respectively, for AD/DLB vs. non-AD/DLB patients, and 0.70 and 65%, respectively, for AD vs. DLB patients. The mean Az and the accuracy of the visual inspection were 0.84 and 77%, respectively, for AD/DLB vs. non-AD/DLB patients, and 0.70 and 65%, respectively, for AD vs. DLB patients. The mean Az and the accuracy of the combination of visual inspection and this system were 0.96 and 91%, respectively, for AD/DLB vs. non-AD/DLB patients, and 0.70 and 66%, respectively, for AD vs. DLB patients. The system developed in the present study achieved as good discrimination of AD, DLB, and other degenerative disorders in patients with mild

  18. Computer-assisted diagnostic system for neurodegenerative dementia using brain SPECT and 3D-SSP

    International Nuclear Information System (INIS)

    To develop a computer-assisted automated diagnostic system to distinguish among Alzheimer disease (AD), dementia with Lewy bodies (DLB), and other degenerative disorders in patients with mild dementia. Single photon emission computed tomography (SPECT) images with injection of N-Isopropyl-p-[123I]iodoamphetamine (IMP) were obtained from patients with mild degenerative dementia. First, datasets from 20 patients mild AD, 15 patients with dementia with DLB, and 17 healthy controls were used to develop an automated diagnosing system based on three-dimensional stereotactic surface projections (3D-SSP). AD- and DLB-specific regional templates were created using 3D-SSP, and critical Z scores in the templates were established. Datasets from 50 AD patients, 8 DLB patients, and 10 patients with non-AD/DLB type degenerative dementia (5 with frontotemporal dementia and 5 with progressive supranuclear palsy) were then used to test the diagnostic accuracy of the optimized automated system in comparison to the diagnostic interpretation of conventional IMP-SPECT images. These comparisons were performed to differentiate AD and DLB from non-AD/DLB and to distinguish AD from DLB. A receiver operating characteristic (ROC) analysis was performed. The area under the ROC curve (Az) and the accuracy of the automated diagnosis system were 0.89 and 82%, respectively, for AD/DLB vs. non-AD/DLB patients, and 0.70 and 65%, respectively, for AD vs. DLB patients. The mean Az and the accuracy of the visual inspection were 0.84 and 77%, respectively, for AD/DLB vs. non-AD/DLB patients, and 0.70 and 65%, respectively, for AD vs. DLB patients. The mean Az and the accuracy of the combination of visual inspection and this system were 0.96 and 91%, respectively, for AD/DLB vs. non-AD/DLB patients, and 0.70 and 66%, respectively, for AD vs. DLB patients. The system developed in the present study achieved as good discrimination of AD, DLB, and other degenerative disorders in patients with mild dementia

  19. Design of a SPECT tomographic image system for online dosimetry in BNCT

    International Nuclear Information System (INIS)

    We present here a numerical analysis of a projected tomographic image system for online dose measurements in Boron Neutron Capture Therapy. In 94% of neutron capture reactions in boron, the 7Li ion is emitted in an excited state which decays through a characteristic 478 keV prompt gamma ray. In BNCT a large fraction of this radiation escapes from the patient body. Its detection is thus attractive for a noninvasive boron dose measurement and an online absorbed dose evaluation. For this purpose we have proposed a dedicated SPECT (Single Photon Emission Computed Tomography) imaging system. The proposed system can obtain images of 21x21cm2 divided in 1x1cm2 pixels by measuring 20 projections with 41 bins each, with 8% uncertainties in reconstructed dose. (author)

  20. Optimization technique for a prompt gamma-ray SPECT collimator system

    International Nuclear Information System (INIS)

    Because background radiation in an irradiation room creates a problem with the PG-SPECT (Prompt Gamma-ray Single Photon Emission Computed Tomography) system, which evaluates the absorbed dose for the Boron Neutron Capture Therapy treatment, optimization of a collimator system was performed while taking the shielding of background gamma-rays into consideration. Assuming that a parallel-beam collimator is used, three parameters - the diameter of a hole, the length of the collimator, and the number of detectors (the number of holes of the collimator) - were selected for optimization. Because the combinations of these parameters are limitless, it is difficult to determine them simultaneously. Therefore, a statistically derived Optimization Criterion has been proposed to optimize these parameters. When the spatial resolution was 1 cm-FWHM (full width at half maximum), the optimal diameter of the collimator was 5.4 mm, the optimal length was 321 mm, and the optimal number of detectors was 31 x 31. (author)

  1. SU-C-201-02: Quantitative Small-Animal SPECT Without Scatter Correction Using High-Purity Germanium Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gearhart, A; Peterson, T [Vanderbilt University, Nashville, TN (United States); Johnson, L [University of Pennsylvania, Philadelphia, PA (United States)

    2015-06-15

    Purpose: To evaluate the impact of the exceptional energy resolution of germanium detectors for preclinical SPECT in comparison to conventional detectors. Methods: A cylindrical water phantom was created in GATE with a spherical Tc-99m source in the center. Sixty-four projections over 360 degrees using a pinhole collimator were simulated. The same phantom was simulated using air instead of water to establish the true reconstructed voxel intensity without attenuation. Attenuation correction based on the Chang method was performed on MLEM reconstructed images from the water phantom to determine a quantitative measure of the effectiveness of the attenuation correction. Similarly, a NEMA phantom was simulated, and the effectiveness of the attenuation correction was evaluated. Both simulations were carried out using both NaI detectors with an energy resolution of 10% FWHM and Ge detectors with an energy resolution of 1%. Results: Analysis shows that attenuation correction without scatter correction using germanium detectors can reconstruct a small spherical source to within 3.5%. Scatter analysis showed that for standard sized objects in a preclinical scanner, a NaI detector has a scatter-to-primary ratio between 7% and 12.5% compared to between 0.8% and 1.5% for a Ge detector. Preliminary results from line profiles through the NEMA phantom suggest that applying attenuation correction without scatter correction provides acceptable results for the Ge detectors but overestimates the phantom activity using NaI detectors. Due to the decreased scatter, we believe that the spillover ratio for the air and water cylinders in the NEMA phantom will be lower using germanium detectors compared to NaI detectors. Conclusion: This work indicates that the superior energy resolution of germanium detectors allows for less scattered photons to be included within the energy window compared to traditional SPECT detectors. This may allow for quantitative SPECT without implementing scatter

  2. SU-C-201-02: Quantitative Small-Animal SPECT Without Scatter Correction Using High-Purity Germanium Detectors

    International Nuclear Information System (INIS)

    Purpose: To evaluate the impact of the exceptional energy resolution of germanium detectors for preclinical SPECT in comparison to conventional detectors. Methods: A cylindrical water phantom was created in GATE with a spherical Tc-99m source in the center. Sixty-four projections over 360 degrees using a pinhole collimator were simulated. The same phantom was simulated using air instead of water to establish the true reconstructed voxel intensity without attenuation. Attenuation correction based on the Chang method was performed on MLEM reconstructed images from the water phantom to determine a quantitative measure of the effectiveness of the attenuation correction. Similarly, a NEMA phantom was simulated, and the effectiveness of the attenuation correction was evaluated. Both simulations were carried out using both NaI detectors with an energy resolution of 10% FWHM and Ge detectors with an energy resolution of 1%. Results: Analysis shows that attenuation correction without scatter correction using germanium detectors can reconstruct a small spherical source to within 3.5%. Scatter analysis showed that for standard sized objects in a preclinical scanner, a NaI detector has a scatter-to-primary ratio between 7% and 12.5% compared to between 0.8% and 1.5% for a Ge detector. Preliminary results from line profiles through the NEMA phantom suggest that applying attenuation correction without scatter correction provides acceptable results for the Ge detectors but overestimates the phantom activity using NaI detectors. Due to the decreased scatter, we believe that the spillover ratio for the air and water cylinders in the NEMA phantom will be lower using germanium detectors compared to NaI detectors. Conclusion: This work indicates that the superior energy resolution of germanium detectors allows for less scattered photons to be included within the energy window compared to traditional SPECT detectors. This may allow for quantitative SPECT without implementing scatter

  3. Thermal animal detection system (TADS)

    Energy Technology Data Exchange (ETDEWEB)

    Desholm, M.

    2003-03-01

    This report presents data from equipment tests and software development for the Thermal Animal Detection System (TADS) development project: 'Development of a method for estimating collision frequency between migrating birds and offshore wind turbines'. The technical tests were performed to investigate the performance of remote controlling, video file compression tool and physical stress of the thermal camera when operating outdoors and under the real time vibration conditions at a 2 MW turbine. Furthermore, experimental tests on birds were performed to describe the decreasing detectability with distance on free flying birds, the performance of the thermal camera during poor visibility, and finally, the performance of the thermal sensor software developed for securing high -quality data. In general, it can be concluded that the thermal camera and its related hardware and software, the TADS, are capable of recording migrating birds approaching the rotating blades of a turbine, even under conditions with poor visibility. If the TADS is used in a vertical viewing scenario it would comply with the requirements for a setup used for estimating the avian collision frequency at offshore wind turbines. (au)

  4. Clinical investigation of elderly patients with central nervous system diseases using SPECT and 99Tcm-HMPAO

    International Nuclear Information System (INIS)

    99Tcm-HMPAO (hexamethylpropylene amine oxime) single photon emission computed tomography (SPECT) images were acquired for 177 elderly patients with central nervous system diseases. Among them were 132 cases of cerebrovascular disease, 33 cases of Parkinson's disease and 12 cases of dementia. A comparative study with computed tomography (CT)/magnetic resonance imaging (MRI) was performed. The detectable rate of cerebral infarction was 96.1% and the hypoperfusion area in SPECT coincided with the respective abnormal area in MRI or CT, but with a greater size. This was probably due to the inclusion of both infarction and 'ischaemic penumbra' (IP). Six cases of infarction of the basal ganglia accompanies by cerebral cortical hypoperfusion may be neurological functional communication disturbances (similar to diathesis). In 61.9% of transient ischaemic attacks, the hypoperfusion area can be detected. In 66.7% of the cases of Parkinson's disease, there was cortical hypoperfusion and 18.2% showed asymmetrical low perfusion in the basal ganglia. This finding was not related to the Hoehn-Yahr stage and the laterality of motor symptoms. In the dementia group, six cases of Alzheimer's disease showed unilateral or diffusing cortical hypoperfusion, but in six cases of multiple infarction dementia, SPECT showed multiple, irregular cortical hypoperfusion, mostly involved with basal ganglia or cerebellum hypoperfusion, which can be differentiated from Alzheimer's disease. In conclusion, SPECT provided an objective diagnostic tool for elderly patients with central nervous system disease. (author). 6 refs

  5. Dynamic molecular imaging of cardiac innervation using a dual headpinhole SPECT system

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jicun; Boutchko, Rostyslav; Sitek, Arkadiusz; Reutter, BryanW.; Huesman, Ronald H.; Gullberg, Grant T.

    2008-03-29

    Typically 123I-MIBG is used for the study of innervation andfunction of the sympathetic nervous system in heart failure. The protocolinvolves two studies: first a planar or SPECT scan is performed tomeasure initial uptake of the tracer, followed some 3-4 hours later byanother study measuring the wash-out of the tracer from the heart. A fastwash-out is indicative of a compromised heart. In this work, a dual headpinhole SPECT system was used for imaging the distribution and kineticsof 123I-MIBG in the myocardium of spontaneous hypertensive rats (SHR) andnormotensive Wistar Kyoto (WKY) rats. The system geometry was calibratedbased on a nonlinear point projection fitting method using a three-pointsource phantom. The angle variation effect of the parameters was modeledwith a sinusoidal function. A dynamic acquisition was performed byinjecting 123I-MIBG into rats immediately after starting the dataacquisition. The detectors rotated continuously performing a 360o dataacquisition every 90 seconds. We applied the factor analysis (FA)methodand region of interest (ROI) sampling method to obtain time activitycurves (TACs)in the blood pool and myocardium and then appliedtwo-compartment modeling to estimate the kinetic parameters. Since theinitial injection bolus is too fast for obtaining a consistenttomographic data set in the first few minutes of the study, we appliedthe FA method directly to projections during the first rotation. Then thetime active curves for blood and myocardial tissue were obtained from ROIsampling. The method was applied to determine if there were differencesin the kinetics between SHR and WKY rats and requires less time byreplacing the delayed scan at 3-4 hours after injection with a dynamicacquisition over 90 to 120 minutes. The results of a faster washout and asmaller distribution volume of 123IMIBG near the end of life in the SHRmodel of hypertrophic cardiomyopthy may be indicative of a failing heartin late stages of heart failure.

  6. Parallel-hole collimator concept for stationary SPECT imaging.

    Science.gov (United States)

    Pato, Lara R V; Vandenberghe, Stefaan; Zedda, Tiziana; Van Holen, Roel

    2015-11-21

    Parallel-hole SPECT collimators have traditionally been manufactured by stacking sheets of lead foil or by casting. These techniques significantly restrict our options in terms of collimator geometry. However, recent developments in metal additive manufacturing are making novel collimator designs possible, giving rise to new opportunities in SPECT imaging. In this paper we propose an innovative type of collimator for stationary SPECT, using parallel-holes whose collimation direction depends on their axial position. Its main advantage compared to current stationary SPECT systems (which are based on pinholes) is that, using only axial bed translations, we can achieve complete angular sampling of an increased portion of the transaxial area of the collimator bore. This allows the system to be much more compact than current stationary SPECT systems that image objects of the same size. We describe three possible designs, for full-body, brain and small-animal imaging, respectively, and test their feasibility using simulations. The system modeling method is validated against realistic Monte Carlo simulations, and then used in the evaluation of the systems' performances and reconstructions. The simulations show that the system is able to reconstruct objects occupying the predicted field of view ([Formula: see text] of the transaxial area of the bore) without sampling artifacts. In particular, we perform reconstructions from noisy projection data obtained for an activity and scanning time similar to standard protocols for the three applications, and the resulting images indicate the possibility of using the proposed systems in practice. PMID:26528908

  7. Study of clinical application of 18F-FDG spect with coincidence in the recurrent or metastatic tumor of digestive system

    International Nuclear Information System (INIS)

    Purpose: To investigate the clinical value of 18F-FDG SPECT with coincidence in the diagnosis of recurrent or metastatic tumor of digestive system. Methods: 35 cases of postoperative patients with tumor of digestive system were enrolled in this study with 18F-FDG SPECT with coincidence. The results were analyzed by calculating its accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and 95% confidence interval and compared with UB, CT and MRI. Results: In 35 cases of postoperative patients with tumor of digestive system, the accuracy, sensitivity, specificity, PPV and NPV were 91.4%, 88.9%, 100%, 100%, 72.7%, respectively, and their 95% confidence interval were 77% - 98%, 71% - 98%, 63% - 100%, 86% - 100%, 39% - 94%, respectively. The diagnostic accuracy and sensitivity of 18F-FDG SPECT with coincidence were significantly higher than that of UB, while there were no significant difference between the result of other 18F-FDG SPECT with coincidence and CT and MRI. The analysis of 95% confidence interval showed a higher tendency in 18F-FDG SPECT with coincidence than in UB, CT and MRI. There is complementation among 18F-FDG SPECT with coincidence combined with UB, CT and MRI in some cases. Conclusions: 18F-FDG SPECT/PET has high clinical value in the diagnosis of recurrent or metastatic tumor of digestive system. (authors)

  8. Parallel-hole collimator concept for stationary SPECT imaging

    Science.gov (United States)

    Pato, Lara R. V.; Vandenberghe, Stefaan; Zedda, Tiziana; Van Holen, Roel

    2015-11-01

    Parallel-hole SPECT collimators have traditionally been manufactured by stacking sheets of lead foil or by casting. These techniques significantly restrict our options in terms of collimator geometry. However, recent developments in metal additive manufacturing are making novel collimator designs possible, giving rise to new opportunities in SPECT imaging. In this paper we propose an innovative type of collimator for stationary SPECT, using parallel-holes whose collimation direction depends on their axial position. Its main advantage compared to current stationary SPECT systems (which are based on pinholes) is that, using only axial bed translations, we can achieve complete angular sampling of an increased portion of the transaxial area of the collimator bore. This allows the system to be much more compact than current stationary SPECT systems that image objects of the same size. We describe three possible designs, for full-body, brain and small-animal imaging, respectively, and test their feasibility using simulations. The system modeling method is validated against realistic Monte Carlo simulations, and then used in the evaluation of the systems’ performances and reconstructions. The simulations show that the system is able to reconstruct objects occupying the predicted field of view (75% of the transaxial area of the bore) without sampling artifacts. In particular, we perform reconstructions from noisy projection data obtained for an activity and scanning time similar to standard protocols for the three applications, and the resulting images indicate the possibility of using the proposed systems in practice.

  9. Inter-comparative study to evaluate the current state of gamma cameras and SPECT systems in Cuba

    International Nuclear Information System (INIS)

    The aim of this study was to perform an inter-comparative study to evaluate the current state of the gamma cameras and SPECT systems in Cuba. In situ measurements were carried out in all the nuclear medicine departments participating in the study. This work was performed as part of a global project to establish a national programme for quality control of nuclear medicine instruments. The Cuban regulatory authorities (CCEEM) participated and supported this job. Firstly, a survey was carried out in order to collect data about the features of the instruments and availability of accessories for the quality control procedures. The selected tests and procedures were based on international standards for quality control of nuclear medicine instruments. Evaluations of uniformity, spatial resolution, sensitivity, energy resolution, linearity, tomographic uniformity, center of rotation, tomographic resolution and total performance for SPECT systems were carried out in the five gamma cameras and five SPECT system available in the country. Nuclear medicine services and equipments were codified in order to maintain anonymity. Table 1 summarizes the parameters measured in all the equipment. In general, the outcome of the quality control measurements showed that most of the evaluated equipment was working in an appropriate and acceptable technical state. As a rule, the instruments with longer period of use showed higher irregularities in the evaluated parameters. Some detected problems were solved by means of corrective procedures during the measurement period; otherwise, suggestions were provided to the engineering services in order to fix them. Outcomes were recorded in a technical report and a formal information was provided to hospital authorities and the national regulatory authorities. In spite of the results showing that majority of the equipment had acceptable non-uniformity values (integral and differential) below 5% for UFOV and CFOV, two gamma cameras (PH-3) and (SH-2

  10. Tri-modality small animal imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, B.K.; Stolin, A.V.; Pole, J.; Baumgart, L.; Fontaine, M.; Wojcik, R.; Kross, B.; Zorn, C.; Majewski, S.; Williams, M.B.

    2006-02-01

    Our group is developing a scanner that combines x-ray, single gamma, and optical imaging on the same rotating gantry. Two functional modalities (SPECT and optical) are included because they have different strengths and weaknesses in terms of spatial and temporal decay lengths in the context of in vivo imaging, and because of the recent advent of multiple reporter gene constructs. The effect of attenuation by biological tissue on the detected intensity of the emitted signal was measured for both gamma and optical imaging. Attenuation by biological tissue was quantified for both the bioluminescent emission of luciferace and for the emission light of the near infrared fluorophore cyanine 5.5, using a fixed excitation light intensity. Experiments were performed to test the feasibility of using either single gamma or x-ray imaging to make depth-dependent corrections to the measured optical signal. Our results suggest that significant improvements in quantitation of optical emission are possible using straightforward correction techniques based on information from other modalities. Development of an integrated scanner in which data from each modality are obtained with the animal in a common configuration will greatly simplify this process.

  11. Single photon emission computed tomography (SPECT): Fundamentals, technique, clinical applications

    International Nuclear Information System (INIS)

    The fundamentals of SPECT (Single Photon Emission Computed Tomography) are presented, and the requirements on rotating SPECT systems are listed. SPECT with a rotating gamma camera has found general acceptance as an imaging method in nuclear medicine. Compared with conventional, two-dimensional imaging techniques, SPECT offers higher contrast and three-dimensional transversal, sagittal, coronal or oblique sectional images. (orig./MG)

  12. Brain SPECT in childhood

    International Nuclear Information System (INIS)

    The modalities and the indications of perfusion and neurotransmission SPECT in childhood are presented. The perfusion as well as neurotransmission tracers have not yet authorization for use in children; they have to be used by prescription of magistral preparation or in research protocols. The radioprotection rules have to be strictly respected. The most frequent indication of perfusion SPECT is pharmacologically resistant epilepsy; the ictal SPECT before surgery allows the localization of the epileptogenic focus. Other indications are relevant in the prognosis of neonatal anoxia and encephalitis. In psychiatric disorders, especially in autism, the interest is the physiopathological approach of the brain dysfunctions. The neurotransmission SPECT is emerging as a consequence of the development of new radiotracer, as the dopaminergic system ligands. The decrease of the dopamine D2 receptors in the striatum can be imaged and quantified in the neonate. The lesions of dopamine system seem to be a consequence of the neonatal hypoxia-ischemia and it is predictive of motor sequelae. Brain SPECT should become a routine examination in child neurologic and psychiatric disorders. (authors)

  13. Evaluation of quantitative accuracy in CZT-based pre-clinical SPECT for various isotopes

    International Nuclear Information System (INIS)

    In vivo pre-clinical single-photon emission computed tomography (SPECT) is a valuable tool for functional small animal imaging, but several physical factors, such as scatter radiation, limit the quantitative accuracy of conventional scintillation crystal-based SPECT. Semiconductor detectors such as CZT overcome these deficiencies through superior energy resolution. To our knowledge, little scientific information exists regarding the accuracy of quantitative analysis in CZT-based pre-clinical SPECT systems for different isotopes. The aim of this study was to assess the quantitative accuracy of CZT-based pre-clinical SPECT for four isotopes: 201Tl, 99mTc, 123I, and 111In. The quantitative accuracy of the CZT-based Triumph X-SPECT (Gamma-Medica Ideas, Northridge, CA, U.S.A.) was compared with that of a conventional SPECT using GATE simulation. Quantitative errors due to the attenuation and scatter effects were evaluated for all four isotopes with energy windows of 5%, 10%, and 20%. A spherical source containing the isotope was placed at the center of the air-or-water-filled mouse-sized cylinder phantom. The CZT-based pre-clinical SPECT was more accurate than the conventional SPECT. For example, in the conventional SPECT with an energy window of 10%, scatter effects degraded quantitative accuracy by up to 11.52%, 5.10%, 2.88%, and 1.84% for 201Tl, 99mTc, 123I, and 111In, respectively. However, with the CZT-based pre-clinical SPECT, the degradations were only 9.67%, 5.45%, 2.36%, and 1.24% for 201Tl, 99mTc, 123I, and 111In, respectively. As the energy window was increased, the quantitative errors increased in both SPECT systems. Additionally, the isotopes with lower energy of photon emissions had greater quantitative error. Our results demonstrated that the CZT-based pre-clinical SPECT had lower overall quantitative errors due to reduced scatter and high detection efficiency. Furthermore, the results of this systematic assessment quantifying the accuracy of these SPECT

  14. Evaluation of quantitative accuracy in CZT-based pre-clinical SPECT for various isotopes

    Science.gov (United States)

    Park, S.-J.; Yu, A. R.; Kim, Y.-s.; Kang, W.-S.; Jin, S. S.; Kim, J.-S.; Son, T. J.; Kim, H.-J.

    2015-05-01

    In vivo pre-clinical single-photon emission computed tomography (SPECT) is a valuable tool for functional small animal imaging, but several physical factors, such as scatter radiation, limit the quantitative accuracy of conventional scintillation crystal-based SPECT. Semiconductor detectors such as CZT overcome these deficiencies through superior energy resolution. To our knowledge, little scientific information exists regarding the accuracy of quantitative analysis in CZT-based pre-clinical SPECT systems for different isotopes. The aim of this study was to assess the quantitative accuracy of CZT-based pre-clinical SPECT for four isotopes: 201Tl, 99mTc, 123I, and 111In. The quantitative accuracy of the CZT-based Triumph X-SPECT (Gamma-Medica Ideas, Northridge, CA, U.S.A.) was compared with that of a conventional SPECT using GATE simulation. Quantitative errors due to the attenuation and scatter effects were evaluated for all four isotopes with energy windows of 5%, 10%, and 20%. A spherical source containing the isotope was placed at the center of the air-or-water-filled mouse-sized cylinder phantom. The CZT-based pre-clinical SPECT was more accurate than the conventional SPECT. For example, in the conventional SPECT with an energy window of 10%, scatter effects degraded quantitative accuracy by up to 11.52%, 5.10%, 2.88%, and 1.84% for 201Tl, 99mTc, 123I, and 111In, respectively. However, with the CZT-based pre-clinical SPECT, the degradations were only 9.67%, 5.45%, 2.36%, and 1.24% for 201Tl, 99mTc, 123I, and 111In, respectively. As the energy window was increased, the quantitative errors increased in both SPECT systems. Additionally, the isotopes with lower energy of photon emissions had greater quantitative error. Our results demonstrated that the CZT-based pre-clinical SPECT had lower overall quantitative errors due to reduced scatter and high detection efficiency. Furthermore, the results of this systematic assessment quantifying the accuracy of these SPECT

  15. Core systems of geometry in animal minds

    OpenAIRE

    Spelke, Elizabeth S.; Lee, Sang Ah

    2012-01-01

    Research on humans from birth to maturity converges with research on diverse animals to reveal foundational cognitive systems in human and animal minds. The present article focuses on two such systems of geometry. One system represents places in the navigable environment by recording the distance and direction of the navigator from surrounding, extended surfaces. The other system represents objects by detecting the shapes of small-scale forms. These two systems show common signatures across a...

  16. Human Language and Animal Communication System

    Institute of Scientific and Technical Information of China (English)

    杨蕴哲

    2016-01-01

    Human language differs from animal communication in many ways. Hockett isolated 16 features that characterize human language and which distinguish it from other communication systems. The following passage will introduce some of these features, and by comparing language with animal communication systems, we can have a better understanding of the nature of language.

  17. Analytical, experimental, and Monte Carlo system response matrix for pinhole SPECT reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Pablo, E-mail: pablo.aguiar.fernandez@sergas.es [Fundación Ramón Domínguez, Medicina Nuclear, CHUS, Spain and Grupo de Imaxe Molecular, IDIS, Santiago de Compostela 15706 (Spain); Pino, Francisco [Unitat de Biofísica, Facultat de Medicina, Universitat de Barcelona, Spain and Servei de Física Médica i Protecció Radiológica, Institut Catalá d' Oncologia, Barcelona 08036 (Spain); Silva-Rodríguez, Jesús [Fundación Ramón Domínguez, Medicina Nuclear, CHUS, Santiago de Compostela 15706 (Spain); Pavía, Javier [Servei de Medicina Nuclear, Hospital Clínic, Barcelona (Spain); Institut d' Investigacions Biomèdiques August Pí i Sunyer (IDIBAPS) (Spain); CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona 08036 (Spain); Ros, Doménec [Unitat de Biofísica, Facultat de Medicina, Casanova 143 (Spain); Institut d' Investigacions Biomèdiques August Pí i Sunyer (IDIBAPS) (Spain); CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona 08036 (Spain); Ruibal, Álvaro [Servicio Medicina Nuclear, CHUS (Spain); Grupo de Imaxe Molecular, Facultade de Medicina (USC), IDIS, Santiago de Compostela 15706 (Spain); Fundación Tejerina, Madrid (Spain); and others

    2014-03-15

    Purpose: To assess the performance of two approaches to the system response matrix (SRM) calculation in pinhole single photon emission computed tomography (SPECT) reconstruction. Methods: Evaluation was performed using experimental data from a low magnification pinhole SPECT system that consisted of a rotating flat detector with a monolithic scintillator crystal. The SRM was computed following two approaches, which were based on Monte Carlo simulations (MC-SRM) and analytical techniques in combination with an experimental characterization (AE-SRM). The spatial response of the system, obtained by using the two approaches, was compared with experimental data. The effect of the MC-SRM and AE-SRM approaches on the reconstructed image was assessed in terms of image contrast, signal-to-noise ratio, image quality, and spatial resolution. To this end, acquisitions were carried out using a hot cylinder phantom (consisting of five fillable rods with diameters of 5, 4, 3, 2, and 1 mm and a uniform cylindrical chamber) and a custom-made Derenzo phantom, with center-to-center distances between adjacent rods of 1.5, 2.0, and 3.0 mm. Results: Good agreement was found for the spatial response of the system between measured data and results derived from MC-SRM and AE-SRM. Only minor differences for point sources at distances smaller than the radius of rotation and large incidence angles were found. Assessment of the effect on the reconstructed image showed a similar contrast for both approaches, with values higher than 0.9 for rod diameters greater than 1 mm and higher than 0.8 for rod diameter of 1 mm. The comparison in terms of image quality showed that all rods in the different sections of a custom-made Derenzo phantom could be distinguished. The spatial resolution (FWHM) was 0.7 mm at iteration 100 using both approaches. The SNR was lower for reconstructed images using MC-SRM than for those reconstructed using AE-SRM, indicating that AE-SRM deals better with the

  18. Feasibility and Initial Performance of Simultaneous SPECT-CT Imaging Using a Commercial Multi-Modality Preclinical Imaging System

    OpenAIRE

    Osborne, Dustin R.; Derek W. Austin

    2015-01-01

    Multi-modality imaging provides coregistered PET-CT and SPECT-CT images; however such multi-modality workflows usually consist of sequential scans from the individual imaging components for each modality. This typical workflow may result in long scan times limiting throughput of the imaging system. Conversely, acquiring multi-modality data simultaneously may improve correlation and registration of images, improve temporal alignment of the acquired data, increase imaging throughput, and benefi...

  19. Dynamic molecular imaging of cardiac innervation using a dual head pinhole SPECT system

    International Nuclear Information System (INIS)

    Typically 123I-MIBG is used for the study of innervation and function of the sympathetic nervous system in heart failure. The protocol involves two studies: first a planar or SPECT scan is performed to measure initial uptake of the tracer, followed some 3-4 hours later by another study measuring the wash-out of the tracer from the heart. A fast wash-out is indicative of a compromised heart. In this work, a dual head pinhole SPECT system was used for imaging the distribution and kinetics of 123I-MIBG in the myocardium of spontaneous hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats. The system geometry was calibrated based on a nonlinear point projection fitting method using a three-point source phantom. The angle variation effect of the parameters was modeled with a sinusoidal function. A dynamic acquisition was performed by injecting 123I-MIBG into rats immediately after starting the data acquisition. The detectors rotated continuously performing a 360o data acquisition every 90 seconds. We applied the factor analysis (FA)method and region of interest (ROI) sampling method to obtain time activity curves (TACs)in the blood pool and myocardium and then applied two-compartment modeling to estimate the kinetic parameters. Since the initial injection bolus is too fast for obtaining a consistent tomographic data set in the first few minutes of the study, we applied the FA method directly to projections during the first rotation. Then the time active curves for blood and myocardial tissue were obtained from ROI sampling. The method was applied to determine if there were differences in the kinetics between SHR and WKY rats and requires less time by replacing the delayed scan at 3-4 hours after injection with a dynamic acquisition over 90 to 120 minutes. The results of a faster washout and a smaller distribution volume of 123I-MIBG near the end of life in the SHR model of hypertrophic cardiomyopthy may be indicative of a failing heart in late stages of heart

  20. A modular data acquisition and position analysis system for a multi-bar cylindrical SPECT scanner

    International Nuclear Information System (INIS)

    This paper reports on a modular data acquisition and position analysis system (DAPAS) designed and tested for a multi-bar cylindrical SPECT scanner. The detector assembly is a position-sensitive cylindrical gamma camera comprised of multiple detector modules, each of which contains multiple NaI(Tl) bars. An array of PMTs is coupled on the outside of the detector cylinder for position analysis. The major components of the module data acquisition system are: a regional pulse height summation network for each detector module; an analog multiplexer/encoder network to select the output of the relevant PMTs; an ADC system to digitize the selected PMT outputs and store in FIFOs. The position analysis, performed in real-time by a digital signal processor (DSP), involves identifying the bar in the detector module and calculating axial position along the bar for each accepted scintillation event. Throughput rate for the position analysis of the DSP is estimated to be 35 kHz

  1. In vivo imaging of brain dopaminergic neurotransmission system in small animals with high-resolution single photon emission computed tomography

    International Nuclear Information System (INIS)

    High-resolution single photon emission computed tomography (SPECT) provides a unique capability to image the biodistribution of radiolabeled molecules in small laboratory animals. Thus, we applied the high-resolution SPECT to in vivo imaging of the brain dopaminergic neurotransmission system in common marmosets using two radiolabeled ligands, [123I]2β-carbomethoxy-3β-(4-iodophenyl)tropane (β-CIT) as a dopamine transporter(DAT) ligand and [123I]iodobenzamide (IBZM) as a dopamine D2 receptor (D2R) ligand. Specific images of the striatum, a region with a high density of dopaminergic synapses, were obtained at 240 min and 60 min after injection of [123I]β-CIT and [123I]IBZM, respectively. Furthermore, a significantly low accumulation of [123I]β-CIT in the striatum was observed in MPTP-treated animals compared with results for a control group, and a similar accumulation in the control group was observed with the pretreatment of deprenyl in the MPTP-treated animals. However, the striatal accumulation of [123I]IBZM showed no changes among the control, MPTP-treated, and deprenyl-MPTP-treated groups. These SPECT imaging results agreed well with those of DA concentration and motor behavior. Since MPTP destroys nigrostriatal dopamine nerves and produces irreversible neurodegeneration associated with Parkinsonian syndrome, SPECDT imaging data in this study demonstrated that deprenyl shows its neuroprotective effect on Parkinsonism by protecting against the destruction of presynaptic dopamine neutrons. (author)

  2. Directed animals, quadratic and rewriting systems

    OpenAIRE

    Marckert, Jean-François

    2011-01-01

    A directed animal is a percolation cluster in the directed site percolation model. The aim of this paper is to exhibit a strong relation between the problem of computing the generating function $\\G$ of directed animals on the square lattice, counted according to the area and the perimeter, and the problem of solving a system of quadratic equations involving unknown matrices. We present some solid evidence that some infinite explicit matrices, the fixed points of a rewriting like system are th...

  3. 201Tl brain SPECT in differentiating central nervous system lymphoma from toxoplasmosis in AIDS patients

    International Nuclear Information System (INIS)

    In AIDS patients, toxoplasmosis and lymphoma are the leading causes of CNS mass lesions. It is important to make the correct diagnosis expeditiously, since the two diseases require markedly different treatments and have different prognoses. In general, CT and MR imaging have failed to provide specific distinguishing characteristics to differentiate CNS lymphoma from toxoplasmosis, and it is difficult to differentiate these entities clinically. We performed 201Tl brain SPECT in order to differentiate two diseases. Counts ratio of a lesion to the normal brain (L/N ratio) was elevated in patients of lymphoma compared in patients of toxoplasmosis. 201Tl brain SPECT is useful to differentiate CNS lymphoma from toxoplasmosis. (author)

  4. Evaluation of the D-SPECT System: geometry considerations and respiratory motion

    OpenAIRE

    Salvado, Débora Sofia Almeida Silva

    2012-01-01

    O D-SPECT é um sistema de aquisição SPECT (do inglês Single Photon Emission Computed Tomography), desenvolvido especificamente para imagiologia cardíaca e está apenas disponível em alguns países no mundo. Este sistema tem uma configuração curva para se adaptar ao lado esquerdo do torso do paciente, que é onde se localiza o coração. É constituído por 9 detectores CZT (cádmio-zinco-telúrio), montados verticalmente e que têm a possibilidade de rodar individualmente sobre o seu eixo. Esta capacid...

  5. Molecular imaging agents for SPECT (and SPECT/CT)

    Energy Technology Data Exchange (ETDEWEB)

    Gnanasegaran, Gopinath [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); Ballinger, James R. [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2014-05-15

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  6. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Justin S. [Oak Ridge National Laboratory; Endres, Christopher J. [Johns Hopkins, Baltimore; Foss, Catherine A. [Johns Hopkins, Baltimore; Nimmagadda, Sridhar [Johns Hopkins, Baltimore; Jung, Hyeyun [Johns Hopkins, Baltimore; Goddard, James S. [Oak Ridge National Laboratory; Lee, Seung Joon [JLAB; McKisson, John [JLAB; Smith, Mark F. [University of Maryland; Stolin, Alexander V. [West Virginia University; Weisenberger, Andrew G. [JLAB; Pomper, Martin G. [Johns Hopkins, Baltimore

    2013-06-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a ^99mTc-pertechnetate phantom, ^99mTc-methylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand ^123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of ^123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.

  7. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Justin S [ORNL; Endres, Christopher [Johns Hopkins University; Foss, Catherine [Johns Hopkins University; Nimmagadda, Sridhar [Johns Hopkins University; Jung, Hyeyun [Johns Hopkins University; Goddard Jr, James Samuel [ORNL; Lee, Seung Joon [Jefferson Lab; McKisson, John [Jefferson Lab; Smith, Mark F. [University of Maryland School of Medicine, The, Baltimore, MD; Stolin, Alexander [West Virginia University, Morgantown; Weisenberger, Andrew G. [Jefferson Lab; Pomper, Martin [Johns Hopkins University

    2013-01-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a 99mTc-pertechnetate phantom, 99mTcmethylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand 123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of 123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.

  8. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    Science.gov (United States)

    Baba, Justin S.; Endres, Christopher J.; Foss, Catherine A.; Nimmagadda, Sridhar; Jung, Hyeyun; Goddard, James S.; Lee, Seungjoon; McKisson, John; Smith, Mark F.; Stolin, Alexander V.; Weisenberger, Andrew G.; Pomper, Martin G.

    2014-01-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a 99mTc-pertechnetate phantom, 99mTcmethylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand 123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of 123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake. PMID:23536223

  9. Evaluation of Multiple System Atrophy and Early Parkinson's Disease Using {sup 123}I-FP-CIT SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Oh, So Won; Kim, Yu Kyeong; Lee, Byung Chul; Kim, Bom Sahn; Kim, Ji Sun; Kim, Jong Min; Kim, Sang Eun [Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2009-02-15

    We investigated quantification of dopaminergic transporter (DAT) and serotonergic transporter (SERT) on {sup 123}I-FP-CIT SPECT for differentiating between multiple systemic atrophy (MSA) and idiopathic Parkinson's disease (IPD). N.fluoropropyl-2{beta}-carbomethoxy-3{beta}-4-[{sup 123}I]-iodophenylnortropane SPECT ({sup 123}I-FP-CIT SPECT) was performed in 8 patients with MSA (mean age: 64.0{+-}4.5yrs, m:f=6:2), 13 with early IPD (mean age: 65.5{+-}5.3yrs, m:f=9:4), and 12 healthy controls (mean age: 63.3{+-}5.7yrs, m:f=8:4). Standard regions of interests (ROIs) of striatum to evaluate DAT, and hypothalamus and midbrain for SERT were drawn on standard template images and applied to each image taken 4 hours after radiotracer injection. Striatal specific binding for DAT and hypothalamic and midbrain specific binding for SERT were calculated using region/reference ratio based on the transient equilibrium method. Group differences were tested using ANOVA with the postHoc analysis. DAT in the whole striatum and striatal subregions were significantly decreased in both patient groups with MSA and early IPD, compared with healthy control (p<0.05 in all). In early IPD, a significant increase in the uptake ratio in anterior and posterior putamen and a trend of increase in caudate to putamen ratio was observed. In MSA, the decrease of DAT was accompanied with no difference in the striatal uptake pattern compared with healthy controls. Regarding the brain regions where {sup 123}I-FP-CIT binding was predominant by SERT, MSA patients showed a decrease in the binding of {sup 123}I-FP-CIT in the pons compared with controls as well as early IPD patients (MSA: 0.22{+-}0.1 healthy controls: 0.33{+-}0.19, IPD: 0.29{+-}0.19), however, it did not reach the statistical significance. In this study, the differential patterns in the reduction of DAT in the striatum and the reduction of pontine {sup 123}I- FP-CIT binding predominant by SERT could be observed in MSA patients on {sup 123

  10. Do Animal Communication Systems Have Phonemes?

    Science.gov (United States)

    Bowling, Daniel L; Fitch, W Tecumseh

    2015-10-01

    Biologists often ask whether animal communication systems make use of conceptual entities from linguistics, such as semantics or syntax. A new study of an Australian bird species argues that their communication system has phonemes, but we argue that imposing linguistic concepts obscures, rather than clarifyies, communicative function. PMID:26346993

  11. The SPECT imaging shows the accumulation of neural progenitor cells into internal organs after systemic administration in middle cerebral artery occlusion rats.

    Science.gov (United States)

    Lappalainen, Riikka S; Narkilahti, Susanna; Huhtala, Tuulia; Liimatainen, Timo; Suuronen, Tiina; Närvänen, Ale; Suuronen, Riitta; Hovatta, Outi; Jolkkonen, Jukka

    2008-08-01

    The regenerative potential of stem cells from various sources has been under intense investigation in the experimental models of cerebral ischemia. To end up with a restorative therapeutic treatment, it is crucial to get the cell transplants to the site of injury. Here, we evaluated the feasibility of small animal SPECT/CT in assessing the definite accumulation of (111)In-oxine-labeled human embryonic stem (ES) cell-derived neural progenitors and rat hippocampal progenitors after intravenous or intra-arterial administration (femoral vein vs. common carotid artery) in middle cerebral artery occlusion (MCAO) and sham-operated rats. Cell detection was carried out immediately and 24h after the infusion using a SPECT/CT device. The results showed that after intravenous injections both cell types accumulated primarily into internal organs, instead of brain. In contrast, after intra-arterial injection, a weak signal was detected in the ischemic hemisphere. Additional studies showed that the detection sensitivity of SPECT/CT device was approximately 1000 (111)In-oxine-labeled cells and labeling did not affect the cell viability. In conclusion, a small animal SPECT is powerful technique to study the whole body biodistribution of cell-based therapies. Our data showed that intravenous administration is not an optimal route to deliver neural progenitor cell-containing transplants into the brain after MCAO in rats. PMID:18572314

  12. Rapid construction of pinhole SPECT system matrices by distance-weighted Gaussian interpolation method combined with geometric parameter estimations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ming-Wei; Chen, Yi-Chun, E-mail: ycchen@dop.ncu.edu.tw

    2014-02-11

    In pinhole SPECT applied to small-animal studies, it is essential to have an accurate imaging system matrix, called H matrix, for high-spatial-resolution image reconstructions. Generally, an H matrix can be obtained by various methods, such as measurements, simulations or some combinations of both methods. In this study, a distance-weighted Gaussian interpolation method combined with geometric parameter estimations (DW-GIMGPE) is proposed. It utilizes a simplified grid-scan experiment on selected voxels and parameterizes the measured point response functions (PRFs) into 2D Gaussians. The PRFs of missing voxels are interpolated by the relations between the Gaussian coefficients and the geometric parameters of the imaging system with distance-weighting factors. The weighting factors are related to the projected centroids of voxels on the detector plane. A full H matrix is constructed by combining the measured and interpolated PRFs of all voxels. The PRFs estimated by DW-GIMGPE showed similar profiles as the measured PRFs. OSEM reconstructed images of a hot-rod phantom and normal rat myocardium demonstrated the effectiveness of the proposed method. The detectability of a SKE/BKE task on a synthetic spherical test object verified that the constructed H matrix provided comparable detectability to that of the H matrix acquired by a full 3D grid-scan experiment. The reduction in the acquisition time of a full 1.0-mm grid H matrix was about 15.2 and 62.2 times with the simplified grid pattern on 2.0-mm and 4.0-mm grid, respectively. A finer-grid H matrix down to 0.5-mm spacing interpolated by the proposed method would shorten the acquisition time by 8 times, additionally. -- Highlights: • A rapid interpolation method of system matrices (H) is proposed, named DW-GIMGPE. • Reduce H acquisition time by 15.2× with simplified grid scan and 2× interpolation. • Reconstructions of a hot-rod phantom with measured and DW-GIMGPE H were similar. • The imaging study of normal

  13. Directed animals, quadratic and rewriting systems

    CERN Document Server

    Marckert, Jean-François

    2011-01-01

    A directed animal is a percolation cluster in the directed site percolation model. The aim of this paper is to exhibit a strong relation between in one hand, the problem of computing the generating function $\\G$ of directed animals on the square lattice, counted according to the area and the perimeter, and on the other hand, the problem to find a solution to a system of quadratic equations involving unknown matrices. The matrices solution of this problem can be finite or infinite. We were unable to find finite solutions. We present some solid clues that some infinite explicit matrices, fix points of a rewriting like system are the natural solutions of this system of equations: some strong evidences are given that the problem of finding $\\G$ reduces then to the problem of finding an eigenvector to an explicit infinite matrix. Similar properties are shown for other combinatorial questions concerning directed animals, and for different lattices.

  14. Hybrid pixel-waveform CdTe/CZT detector for use in an ultrahigh resolution MRI compatible SPECT system

    OpenAIRE

    Cai, Liang; Meng, Ling-Jian

    2012-01-01

    In this paper, we will present a new small pixel CdTe/CZT detector for sub-500 μm resolution SPECT imaging application inside MR scanner based on a recently developed hybrid pixel-waveform (HPWF) readout circuitry. The HPWF readout system consists of a 2-D multi-pixel circuitry attached to the anode pixels to provide the X–Y positions of interactions, and a high-speed digitizer to read out the pulse-waveform induced on the cathode. The digitized cathode waveform could provide energy depositio...

  15. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    OpenAIRE

    Baba, Justin S.; Endres, Christopher J.; Foss, Catherine A.; Nimmagadda, Sridhar; Jung, Hyeyun; Goddard, James S.; Lee, Seungjoon; McKisson, John; Smith, Mark F.; Stolin, Alexander V.; Weisenberger, Andrew G.; Pomper, Martin G.

    2013-01-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques.

  16. MO-G-17A-02: Computer Simulation Studies for On-Board Functional and Molecular Imaging of the Prostate Using a Robotic Multi-Pinhole SPECT System

    International Nuclear Information System (INIS)

    Purpose: To investigate prostate imaging onboard radiation therapy machines using a novel robotic, 49-pinhole Single Photon Emission Computed Tomography (SPECT) system. Methods: Computer-simulation studies were performed for region-of-interest (ROI) imaging using a 49-pinhole SPECT collimator and for broad cross-section imaging using a parallel-hole SPECT collimator. A male XCAT phantom was computersimulated in supine position with one 12mm-diameter tumor added in the prostate. A treatment couch was added to the phantom. Four-minute detector trajectories for imaging a 7cm-diameter-sphere ROI encompassing the tumor were investigated with different parameters, including pinhole focal length, pinhole diameter and trajectory starting angle. Pseudo-random Poisson noise was included in the simulated projection data, and SPECT images were reconstructed by OSEM with 4 subsets and up to 10 iterations. Images were evaluated by visual inspection, profiles, and Root-Mean- Square-Error (RMSE). Results: The tumor was well visualized above background by the 49-pinhole SPECT system with different pinhole parameters while it was not visible with parallel-hole SPECT imaging. Minimum RMSEs were 0.30 for 49-pinhole imaging and 0.41 for parallelhole imaging. For parallel-hole imaging, the detector trajectory from rightto- left yielded slightly lower RMSEs than that from posterior to anterior. For 49-pinhole imaging, near-minimum RMSEs were maintained over a broader range of OSEM iterations with a 5mm pinhole diameter and 21cm focal length versus a 2mm diameter pinhole and 18cm focal length. The detector with 21cm pinhole focal length had the shortest rotation radius averaged over the trajectory. Conclusion: On-board functional and molecular prostate imaging may be feasible in 4-minute scan times by robotic SPECT. A 49-pinhole SPECT system could improve such imaging as compared to broadcross-section parallel-hole collimated SPECT imaging. Multi-pinhole imaging can be improved by

  17. Calibration of gamma camera systems for a multicentre European 123I-FP-CIT SPECT normal database

    International Nuclear Information System (INIS)

    A joint initiative of the European Association of Nuclear Medicine (EANM) Neuroimaging Committee and EANM Research Ltd. aimed to generate a European database of [123I]FP-CIT single photon emission computed tomography (SPECT) scans of healthy controls. This study describes the characterization and harmonization of the imaging equipment of the institutions involved. 123I SPECT images of a striatal phantom filled with striatal to background ratios between 10:1 and 1:1 were acquired on all the gamma cameras with absolute ratios measured from aliquots. The images were reconstructed by a core lab using ordered subset expectation maximization (OSEM) without corrections (NC), with attenuation correction only (AC) and additional scatter and septal penetration correction (ACSC) using the triple energy window method. A quantitative parameter, the simulated specific binding ratio (sSBR), was measured using the ''Southampton'' methodology that accounts for the partial volume effect and compared against the actual values obtained from the aliquots. Camera-specific recovery coefficients were derived from linear regression and the error of the measurements was evaluated using the coefficient of variation (COV). The relationship between measured and actual sSBRs was linear across all systems. Variability was observed between different manufacturers and, to a lesser extent, between cameras of the same type. The NC and AC measurements were found to underestimate systematically the actual sSBRs, while the ACSC measurements resulted in recovery coefficients close to 100% for all cameras (AC range 69-89%, ACSC range 87-116%). The COV improved from 46% (NC) to 32% (AC) and to 14% (ACSC) (p < 0.001). A satisfactory linear response was observed across all cameras. Quantitative measurements depend upon the characteristics of the SPECT systems and their calibration is a necessary prerequisite for data pooling. Together with accounting for partial volume, the correction for scatter and septal

  18. Evaluation of cerebral perfusion in patients with neuropsychiatric systemic lupus erythematosus using 123I-IMP SPECT

    International Nuclear Information System (INIS)

    In the course of systemic lupus erythematosus (SLE), central nervous system (CNS) complications occur at a high frequency. An accurate diagnosis of CNS lupus, differentiated from secondary CNS involvement, is difficult. CNS lupus is indicative of advancing primary disease and is treated by steroid pulse therapy or increased dosage of steroids. In contrast, if symptoms are caused by secondary CNS complications, it is possible to observe or treat these complications using symptomatic therapy. We examined whether quantitative cerebral blood flow (CBF) measured using cerebral perfusion single photon emission computed tomography (SPECT) can be used to differentiate CNS lupus from secondary CNS involvement. We divided 18 SLE patients with CNS symptoms into a CNS lupus group and a non-CNS lupus group, and then compared the mean cerebral blood flow (mCBF) of each group of patients. SPECT was performed with N-isopropyl-p-[123I] iodoamphetamine (IMP), with quantitation carried out by table look-up and autoradiographic methods. The mCBF of both groups was decreased; however, the mCBF of patients with CNS lupus was significantly lower than that of non-CNS lupus patients. Quantitative CBF may provide a useful tool to distinguish CNS lupus from non-CNS lupus. (author)

  19. SPECT/CT with a hybrid imaging system in the study of lower gastrointestinal bleeding with technetium-99m red blood cells

    International Nuclear Information System (INIS)

    Aim. Lower gastrointestinal (G I) hemorrhage is a complex clinical problem that requires disciplined evaluation for successful management. This study was conducted to evaluate the applicability of single photon emission computed tomography/computed tomography (SPECT/CT) in patients with acute lower gastrointestinal bleeding undergoing scintigraphy with 99m Tc-labelled red blood cells (RBC), and to assess the additional clinical value of fused images when compared to the standard radionuclide scan. Methods. Twenty-seven patients presenting with acute lower G I tract hemorrhage were studied with conventional dynamic and planar 99m Tc-RBC imaging. In 19 patients with positive findings on scans taken within 6 hours, a SPECT/CT study was immediately performed using a hybrid system composed of a dual-head, variable angle gamma camera and an X-ray tube. The number of patients in whom SPECT/CT changed the scintigraphic interpretation with regard to the presence or site of G I blood loss as confirmed by other diagnostic or therapeutical procedures was recorded. Results. Image fusion was easy and successful in all patients showing perfect correspondence between SPECT and CT data and allowing precise anatomical localization of the sites of 99m Tc-RBC extravasation. SPECT/CT had significant impact on the scintigraphic results in 7/19 patients (36.8%): in 6 patients it precisely localized the bleeding foci whose location could not be identified in standard scans and in one it excluded the presence of an active G I hemorrhage. Conclusion. SPECT/CT with a hybrid system is feasible and useful for facilitating imaging interpretation and improving the accuracy of 99m Tc-RBC scintigraphy in patients with acute lower G I bleeding.

  20. PET and SPECT imaging of the opioid system: receptors, radioligands and avenues for drug discovery and development.

    Science.gov (United States)

    Lever, John R

    2007-01-01

    As we celebrate the bicentennial of the isolation of morphine by Sertürner, opioids continue to dominate major sectors of the analgesic market worldwide. The pharmaceutical industry stands to benefit greatly from molecular imaging in preclinical and early clinical trials of new or improved opioid drugs. At this juncture, it seems fitting to summarize the past twenty or so years of research on molecular imaging of the opioid system from the viewpoint of drug discovery and development. Opioid receptors were first imaged in human volunteers by positron emission tomography (PET) in 1984. Now, quantitative PET imaging of the major opioid receptor types (micro, delta , kappa) is possible in the brain and peripheral organs of healthy persons and patient populations. Radioligands are under development for single photon emission computed tomography (SPECT) of opioid receptors as well. These functional, nuclear imaging techniques can trace the fate of radiolabeled molecules directly, but non-invasively, and allow precise pharmacokinetic and pharmacodynamic measurements. Molecular imaging provides unique data that can aid in selecting the best drug candidates, determining optimal dosing regimens, clearing regulatory hurdles and lowering risks of failure. Using a historical perspective, this review touches on opioid receptors as drug targets, and focuses on the status and use of radiotracers for opioid receptor PET and SPECT. Selected studies are discussed to illustrate the power of molecular imaging for facilitating opioid drug discovery and development. PMID:17266587

  1. SU-E-I-79: Effect of Number of Pinholes in Onboard Robotic Multi-Pinhole SPECT System

    International Nuclear Information System (INIS)

    Purpose: To study the effect of number of pinholes for a novel Single Photon Emission Computed Tomography (SPECT) system for onboard molecular and functional imaging. Methods: Comparison studies were performed using simulation for the 49-pinhole SPECT system and a series of reductions in number of pinholes. Trajectories about the breast of a supine patient were considered. Minimum distances, radii of rotation (RORs), were determined by requirements to fully view the region of interest (ROI) and to avoid collision between the detector and the patient. Reductions in RORs translate into improvements in sensitivity. Starting from the 49-pinhole system, pinholes were removed pod by pod. The furthest two end pods in the Sup-Inf direction were removed first for their higher likelihood of alleviating the collision avoidance criteria. After iterating through different combinations of pinhole pods, and selecting three combinations, the corresponding RORs were used to analytically calculate sensitivities. Results: Based on the Methods procedure, 3 combination of pods removal were identified: 1) Superior peripheral pod 2) Inferior peripheral pod 3) both pods. RORs were reduced at only one multi-pinhole stop. Analytic calculation showed that sensitivities were reduced from 0.032 for the 49-pinhole system to 0.028 for 42-pinhole and to 0.023 for 39-pinhole system respectively. The sensitivity per pinhole detector was approximately the same for all three cases. Conclusion: For the trajectories considered, only minimal improvements in RORs were identified by removing pinhole pods. Consequently, sensitivities decreased in proportion to the number of pinholes. Studies of other anatomical sites are needed to determine if in some cases sensitivity per pinhole can be improved by removing some pinholes. PHS/NIH/NCI grant R21-CA156390-01A1

  2. Three-dimensional quantitation of regional cerebral blood flow in mice using a high-resolution pinhole SPECT system and 123I-iodoamphetamine

    International Nuclear Information System (INIS)

    Introduction: This study is intended to evaluate the feasibility of using a high-resolution pinhole SPECT system and iodine-123-N-isopropyl-4-iodoamphetamine (123I-IMP) for three-dimensional (3D) absolute quantitation of regional cerebral blood flow (rCBF) in mice. Methods: The pinhole SPECT system consists of a rotating stage and a pinhole collimator attached to a clinical gamma camera. The collimator's focal length is 251 mm. Phantom studies were performed to evaluate sensitivity and full-width half-maximum (FWHM) spatial resolution. The aperture-to-object distance was 15 mm. Six mice were studied. Cerebral infarctions were induced by ligating and disconnecting the distal portion of the left middle cerebral artery. Ex vivo SPECT studies were performed using harvested brains and skulls. The CBF volumetric image was computed using the standardized input function. Results: Excellent spatial resolution of 0.9-mm FWHM and uniform sensitivity throughout the 3D volume were demonstrated in the phantom experiments. The CBF images showed a defect in the infarcted areas and a reduction of CBF values in the infarcted region as compared with the control region. Conclusions: This study demonstrated the feasibility of the 3D quantitation of rCBF in mice using a high-resolution pinhole SPECT system and 123I-IMP.

  3. Theory and realization of a 2D high resolution and high sensitivity SPECT system with an angle-encoding attenuator pattern

    Science.gov (United States)

    Feng, Tao; Wang, Jizhe; Tsui, Benjamin M. W.

    2016-04-01

    The camera of the conventional SPECT system requires a collimator to allow incoming photons from a specific range of incident angle to reach the detector. It is the major factor that determines the spatial resolution of the camera. Moreover, it also greatly reduces the number of detected photons and hence increases statistical fluctuations in the acquired image data. The goal of this paper is to propose a theory and design for a novel high resolution and high sensitivity SPECT system without conventional collimators. The key is to resolve the incident photons from all directional angles and detected by every detector bin. Special ‘attenuators’ were designed to ‘encode’ the incoming photons from different directions similar to coded aperture to form projection data for image reconstruction. Each encoded angular pattern of detected photons was recorded as one measurement. Different angular patterns were achieved by changing the configurations of the attenuators so that angular pattern of different measurements or measurement matrix (MM) is invertible, which guarantee a unique reconstructed image. In simulation, the attenuators were fitted on a virtual full-ring gamma camera, as an alternative to the collimators in conventional SPECT systems. To evaluate the performance of the new SPECT system, analytical simulated projection data in 2D scenario were generated from the XCAT phantom. Noisy simulation using 100 noise realizations suggests that the new attenuator design provides much improved image quality in terms of contrast-noise trade-offs (~30% improvement). The results suggest that the new design of using attenuators to replace collimator is feasible and could potentially improve sensitivity without sacrificing resolution in today’s SPECT systems.

  4. Dosimetry of an animal irradiation system

    International Nuclear Information System (INIS)

    Radiation therapy uses ionizing radiation for cancer treatment, but its effectiveness may be limited by the consequent appearance of radiodermatitis. This problem may present several degrees: the highest among them is radionecrosis. Therefore, a model of study for the animal irradiation system (AIS) was built, generating radionecrosis on rat backs. The AIS is comprised by: a) a shield between the 60Co irradiator metallic guide and the animal immobilizer (AI), with holes exposing the rat skin; b) a shield on the AI posterior part and (c) the AIS angle. The doses were measured with alanine pellets in seven positions (two external and five internal) and different heights, in axial planes along the AI, and irradiated with 85 Gy. The similarity in the geometry of the AIs made it possible to relate the doses of positions 1-7 with the same height among the AISs. The AISs equidistance to the source allowed simultaneous animal exposure. Minimizing the shielding and maximizing the angles among the AISs provided average doses almost identical in position 1. A small variation among the mean doses for each of the AISs enabled to replace them by the average doses of the three AISs at position 1. Shields allowed the attenuation of the uncertainties in the alanine pellet in the AI, reduction of the exposure time without compromising rat security and the rise of the dose in measurement positions 1 and 2. The maximization of the angles among the AISs reduced the shielding secondary radiation contribution. (author)

  5. Dosimetry of an animal irradiation system

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Nelson M.; Funari, Ana P.; Miranda, Jurandir T.; Napolitano, Celia M.; Goncalves, Josemary A.C.; Bueno, Carmen C.; Mathor, Monica B., E-mail: nelsonnininho@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Radiation therapy uses ionizing radiation for cancer treatment, but its effectiveness may be limited by the consequent appearance of radiodermatitis. This problem may present several degrees: the highest among them is radionecrosis. Therefore, a model of study for the animal irradiation system (AIS) was built, generating radionecrosis on rat backs. The AIS is comprised by: a) a shield between the {sup 60}Co irradiator metallic guide and the animal immobilizer (AI), with holes exposing the rat skin; b) a shield on the AI posterior part and (c) the AIS angle. The doses were measured with alanine pellets in seven positions (two external and five internal) and different heights, in axial planes along the AI, and irradiated with 85 Gy. The similarity in the geometry of the AIs made it possible to relate the doses of positions 1-7 with the same height among the AISs. The AISs equidistance to the source allowed simultaneous animal exposure. Minimizing the shielding and maximizing the angles among the AISs provided average doses almost identical in position 1. A small variation among the mean doses for each of the AISs enabled to replace them by the average doses of the three AISs at position 1. Shields allowed the attenuation of the uncertainties in the alanine pellet in the AI, reduction of the exposure time without compromising rat security and the rise of the dose in measurement positions 1 and 2. The maximization of the angles among the AISs reduced the shielding secondary radiation contribution. (author)

  6. Packaging systems for animal origin food

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available The main task of food packaging is to protect the product during storage and transport against the action of biological, chemical and mechanical factors. The paper presents packaging systems for food of animal origin. Vacuum and modified atmosphere packagings were characterised together with novel types of packagings, referred to as intelligent packaging and active packaging. The aim of this paper was to present all advantages and disadvantages of packaging used for meat products. Such list enables to choose the optimal type of packaging for given assortment of food and specific conditions of the transport and storing.

  7. Rugged Video System For Inspecting Animal Burrows

    Science.gov (United States)

    Triandafils, Dick; Maples, Art; Breininger, Dave

    1992-01-01

    Video system designed for examining interiors of burrows of gopher tortoises, 5 in. (13 cm) in diameter or greater, to depth of 18 ft. (about 5.5 m), includes video camera, video cassette recorder (VCR), television monitor, control unit, and power supply, all carried in backpack. Polyvinyl chloride (PVC) poles used to maneuver camera into (and out of) burrows, stiff enough to push camera into burrow, but flexible enough to bend around curves. Adult tortoises and other burrow inhabitants observable, young tortoises and such small animals as mice obscured by sand or debris.

  8. Simulation of the expected performance of INSERT: A new multi-modality SPECT/MRI system for preclinical and clinical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Busca, P., E-mail: busca@elet.polimi.it [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano (Italy); Fiorini, C., E-mail: carlo.fiorini@polimi.it [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano (Italy); Butt, A.D.; Occhipinti, M.; Peloso, R.; Quaglia, R.; Schembari, F.; Trigilio, P. [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano (Italy); Nemeth, G.; Major, P. [Mediso Medical Imaging Systems, Alsotorokvesz 14, H-1022 Budapest (Hungary); Erlandsson, K. [University College London, Gower Street, WC1E 6BT London (United Kingdom); Hutton, B.F. [University College London, Gower Street, WC1E 6BT London (United Kingdom); Centre for Medical Radiation Physics, University of Wollongong, NSW 2522 (Australia)

    2014-01-11

    A new multi-modality imaging tool is under development in the framework of the INSERT (INtegrated SPECT/MRI for Enhanced Stratification in Radio-chemo Therapy) project, supported by the European Community. The final goal is to develop a custom SPECT apparatus, that can be used as an insert for commercially available MRI systems such as 3 T MRI with 59 cm bore diameter. INSERT is expected to offer more effective and earlier diagnosis with potentially better outcome in survival for the treatment of brain tumors, primarily glioma. Two SPECT prototypes will be developed, one dedicated to preclinical imaging, the second one dedicated to clinical imaging. The basic building block of the SPECT detector ring is a small 5 cm×5 cm gamma camera, based on the well-established Anger architecture with a continuous scintillator readout by an array of silicon photodetectors. Silicon Drift Detectors (SDDs) and Silicon PhotoMultipliers (SiPM) are being considered as possible scintillator readout, considering that the detector choice plays a predominant role for the final performance of the system, such as energy and spatial resolution, as well as the useful field of view of the camera. Both solutions are therefore under study to evaluate their performances in terms of field of view (FOV), spatial and energy resolution. Preliminary simulations for both the preclinical and clinical systems have been carried out to evaluate resolution and sensitivity. -- Highlights: • We introduce INSERT, a new multi-modality SPECT/MRI instrument. • We propose two possible photodetectors (SDD, SiPM) for the scintillators readout. • We show possible results for INSERT, based on simulations.

  9. SPECT/CT and pulmonary embolism

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, Jann [Copenhagen University Hospital, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen (Denmark); The Faroese National Hospital, Department of Medicine, Torshavn (Faroe Islands); Gutte, Henrik [Copenhagen University Hospital, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen (Denmark); Herlev Hospital, Copenhagen University Hospital, Department of Radiology, Copenhagen (Denmark); University of Copenhagen, Cluster for Molecular Imaging, Faculty of Health Sciences, Copenhagen (Denmark)

    2014-05-15

    Acute pulmonary embolism (PE) is diagnosed either by ventilation/perfusion (V/P) scintigraphy or pulmonary CT angiography (CTPA). In recent years both techniques have improved. Many nuclear medicine centres have adopted the single photon emission CT (SPECT) technique as opposed to the planar technique for diagnosing PE. SPECT has been shown to have fewer indeterminate results and a higher diagnostic value. The latest improvement is the combination of a low-dose CT scan with a V/P SPECT scan in a hybrid tomograph. In a study comparing CTPA, planar scintigraphy and SPECT alone, SPECT/CT had the best diagnostic accuracy for PE. In addition, recent developments in the CTPA technique have made it possible to image the pulmonary arteries of the lungs in one breath-hold. This development is based on the change from a single-detector to multidetector CT technology with an increase in volume coverage per rotation and faster rotation. Furthermore, the dual energy CT technique is a promising modality that can provide functional imaging in combination with anatomical information. Newer high-end CT scanners and SPECT systems are able to visualize smaller subsegmental emboli. However, consensus is lacking regarding the clinical impact and treatment. In the present review, SPECT and SPECT in combination with low-dose CT, CTPA and dual energy CT are discussed in the context of diagnosing PE. (orig.)

  10. SPECT/CT and pulmonary embolism.

    Science.gov (United States)

    Mortensen, Jann; Gutte, Henrik

    2014-05-01

    Acute pulmonary embolism (PE) is diagnosed either by ventilation/perfusion (V/P) scintigraphy or pulmonary CT angiography (CTPA). In recent years both techniques have improved. Many nuclear medicine centres have adopted the single photon emission CT (SPECT) technique as opposed to the planar technique for diagnosing PE. SPECT has been shown to have fewer indeterminate results and a higher diagnostic value. The latest improvement is the combination of a low-dose CT scan with a V/P SPECT scan in a hybrid tomograph. In a study comparing CTPA, planar scintigraphy and SPECT alone, SPECT/CT had the best diagnostic accuracy for PE. In addition, recent developments in the CTPA technique have made it possible to image the pulmonary arteries of the lungs in one breath-hold. This development is based on the change from a single-detector to multidetector CT technology with an increase in volume coverage per rotation and faster rotation. Furthermore, the dual energy CT technique is a promising modality that can provide functional imaging in combination with anatomical information. Newer high-end CT scanners and SPECT systems are able to visualize smaller subsegmental emboli. However, consensus is lacking regarding the clinical impact and treatment. In the present review, SPECT and SPECT in combination with low-dose CT, CTPA and dual energy CT are discussed in the context of diagnosing PE. PMID:24213621

  11. Optimization of an ultra-high-resolution parallel-hole collimator for CdTe semiconductor SPECT system

    International Nuclear Information System (INIS)

    Recently, there has been an increase in the demand for semiconductor detectors in the field of nuclear medicine imaging. The development of semiconductor detectors using materials such as CdTe that allowed for improved spatial resolution greatly advanced the field. However, the pinhole collimator that allows for high spatial resolution compromises the sensitivity due to the small size of the hole. An improvement in both sensitivity and spatial resolution may be achieved by using a pixelated parallel-hole collimator where the hole and pixel sizes are the same. The purpose of this study was to optimize the design of a detector and collimator system to achieve excellent resolution and high sensitivity for a SPECT detector based on a CdTe detector. We performed a simulation study of the PID 350 (Ajat Oy Ltd., Finland) CdTe detector by using a Geant4 Application for Tomographic Emission (GATE). In addition to the above-mentioned pixelated parallel-hole collimator, we also designed a hexagonal parallel-hole collimator with similar hole size, and we evaluated the sensitivity and spatial resolution of each to determine which set-up was optimal for the PID 350 CdTe detector. Our results indicated that the average sensitivity and spatial resolution were 33.48% and 10.97% higher for the pixelated parallel-hole collimator than for the hexagonal parallel-hole collimator, respectively. We resolved a diameter of 0.5 mm in hot-rod phantom images with the pixelated parallel-hole collimator at a distance of 2 cm. Based on our results, we recommend the pixelated parallel-hole collimator for improving the sensitivity and spatial resolution of SPECT systems with CdTe semiconductor detectors.

  12. Organ volume estimation using SPECT

    CERN Document Server

    Zaidi, H

    1996-01-01

    Knowledge of in vivo thyroid volume has both diagnostic and therapeutic importance and could lead to a more precise quantification of absolute activity contained in the thyroid gland. In order to improve single-photon emission computed tomography (SPECT) quantitation, attenuation correction was performed according to Chang's algorithm. The dual-window method was used for scatter subtraction. We used a Monte Carlo simulation of the SPECT system to accurately determine the scatter multiplier factor k. Volume estimation using SPECT was performed by summing up the volume elements (voxels) lying within the contour of the object, determined by a fixed threshold and the gray level histogram (GLH) method. Thyroid phantom and patient studies were performed and the influence of 1) fixed thresholding, 2) automatic thresholding, 3) attenuation, 4) scatter, and 5) reconstruction filter were investigated. This study shows that accurate volume estimation of the thyroid gland is feasible when accurate corrections are perform...

  13. PET and SPECT in neurology

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, Rudi A.J.O. [Groningen University Medical Center (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Ghent Univ. (Belgium). Dept. of Radiology and Nuclear Medicine; Vries, Erik F.J. de; Waarde, Aren van [Groningen University Medical Center (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Otte, Andreas (ed.) [Univ. of Applied Sciences Offenburg (Germany). Faculty of Electrical Engineering and Information Technology

    2014-07-01

    PET and SPECT in Neurology highlights the combined expertise of renowned authors whose dedication to the investigation of neurological disorders through nuclear medicine technology has achieved international recognition. Classical neurodegenerative disorders are discussed as well as cerebrovascular disorders, brain tumors, epilepsy, head trauma, coma, sleeping disorders, and inflammatory and infectious diseases of the CNS. The latest results in nuclear brain imaging are detailed. Most chapters are written jointly by a clinical neurologist and a nuclear medicine specialist to ensure a multidisciplinary approach. This state-of-the-art compendium will be valuable to anybody in the field of neuroscience, from the neurologist and the radiologist/nuclear medicine specialist to the interested general practitioner and geriatrician. It is the second volume of a trilogy on PET and SPECT imaging in the neurosciences, the other volumes covering PET and SPECT in psychiatry and in neurobiological systems.

  14. PET and SPECT in neurology

    International Nuclear Information System (INIS)

    PET and SPECT in Neurology highlights the combined expertise of renowned authors whose dedication to the investigation of neurological disorders through nuclear medicine technology has achieved international recognition. Classical neurodegenerative disorders are discussed as well as cerebrovascular disorders, brain tumors, epilepsy, head trauma, coma, sleeping disorders, and inflammatory and infectious diseases of the CNS. The latest results in nuclear brain imaging are detailed. Most chapters are written jointly by a clinical neurologist and a nuclear medicine specialist to ensure a multidisciplinary approach. This state-of-the-art compendium will be valuable to anybody in the field of neuroscience, from the neurologist and the radiologist/nuclear medicine specialist to the interested general practitioner and geriatrician. It is the second volume of a trilogy on PET and SPECT imaging in the neurosciences, the other volumes covering PET and SPECT in psychiatry and in neurobiological systems.

  15. Complete Isolation System for Laboratory Infectious Animal

    Institute of Scientific and Technical Information of China (English)

    Jean; Pierre

    2005-01-01

    Contents:Duringthe development of biological medical science,a great number of research experiments are carried out andthe various infectious animal experiments are necessary part of them.For lab animal experiments,it is necessary tochoose proper isolation equipments accordingto experiment hazardlevels.1.FunctionsAnimal isolation systemare used broadlyin laboratory research,pharmaceuticals and medical areas.The isolationsystemhas become excellent equipmentsin animal breeding,disease diagnosis,analysis,test ...

  16. A Distant Solar System (Artist's Concept Animation)

    Science.gov (United States)

    2004-01-01

    This animation portrays an artist's concept of a distant hypothetical solar system, about the same age as our own. It begins close to the star, and then moves out past a number of planets. Though 'extrasolar' planets are too small to be seen with telescopes, astronomers have detected more than 100 gas giants like Jupiter via their gravitational tug on their parent stars. The view pulls back to reveal the outer fringes of the system and a ring of dusty debris that circles the star. This debris is all that remains of the planet-forming disk from which the planets evolved. Planets are formed when dusty material in a large disk surrounding a young star clumps together. Leftover material is eventually blown out by solar wind or pushed out by gravitational interactions with planets. Billions of years later, only an outer disk of debris remains. These outer debris disks are too faint to be imaged directly by visible-light telescopes. They are washed out by the glare of the Sun. However, NASA's Spitzer Space Telescope can detect their heat, or excess thermal emission, in infrared light. This allows astronomers to study the aftermath of planet building in distant solar systems like our own.

  17. Performance evaluation of Siemens E.CAM(R) SPECT system at Korle-Bu Teaching Hospital (Ghana)

    International Nuclear Information System (INIS)

    Performance evaluation tests on Siemens e.cam(R) Signature Series Single Photon Emission Computed Tomography (SPECT)System at Korle-Bu Teaching Hospital (Ghana) were conducted for compliance with Manufacturer's specifications and user's requirements. The tests were performed according to National Electrical Manufacturer's Association protocols, and different measuring instruments and phantoms containing 99m-Tc were used. Extrinsic uniformity, system energy resolution, system spatial resolution (without scattering), detector shield leakage and system planar sensitivity were evaluated. The system energy resolution measured was 9.38 % as against manufacturer's specification of ≤ 9.9 %, Planar sensitivity value measured was 232.92 c/min/mCi while manufacturers' specification was 202 c/min/mCi, and detector shield leakage values measured were 0.001 %, 0.002 % and 0.025 % against an accepted value of < 1 %. The performance evaluation confirmed that the system met requirements for clinical nuclear medicine imaging, and the values could be used as database for future quality control measurements. (au)

  18. Simulation study on a stationary data acquisition SPECT system with multi-pinhole collimators attached to a triple-head gamma camera system

    International Nuclear Information System (INIS)

    The aim of the study was to develop a new SPECT system that makes it possible to acquire projection data stationary using a triple-head gamma camera system. We evaluated several data acquisition geometry with multi-pinhole collimators attached to a triple-head gamma camera system. The number of pinholes for each camera was three to twelve, and we located these holes on collimator plates adequately. These collimator holes were tilted by predefined angles to efficiently cover the field of view of the data acquisition system. Acquired data were reconstructed with the OS-EM method. In the simulations, we used a three-dimensional point source phantom, brain phantom, and myocardial phantom. Attenuation correction was conducted with the x-ray CT image of the corresponding slice. Reconstructed images of the point source phantom showed that the spatial resolution could be improved with the small number of pinholes. On the other hand, reconstructed images of the brain phantom showed that the large number of pinholes yielded images with less artifact. The results of the simulations with the myocardial phantom showed that more than eight pinholes could yield an accurate distribution of activity when the source was distributed only in the myocardium. The results of the simulations confirmed that more than eight pinholes for each detector were required to reconstruct an artifact free image in the triple-head SPECT system for imaging of brain and myocardium. (author)

  19. Modeling dopamine system dysfunction in experimental animals

    International Nuclear Information System (INIS)

    Quite a substantial number of human disorders have been associated with a primary or a secondary impairment of one or several of the dopaminergic pathways. Among disorders associated with a primary impairment of dopaminergic transmission are Parkinson's disease, striatonigral degeneration, progressive supranuclear palsy, and possibly schizophrenia. Diseases of secondary dopamine dysfunction are chiefly represented by Huntington's disease in which dopaminergic transmission is being interrupted by progressive loss of the striatal neurons bearing the postsynaptic D1- and D2-dopamine receptors. Central dopaminergic systems have anatomical as well as organizational properties that render them unique by comparison to other neurotransmission systems, making them able to play a pivotal role in the modulation of various important brain functions such as locomotor activity, attention, and some cognitive abilities. These properties of dopamine neurons have obviously several implications in the clinical expression of human disorders involving dopamine neuron dysfunction. In addition, they can greatly influence the clinical/behavioral consequences of experimental lesions in animal models of dopamine dysfunctions

  20. Progress In The Development Of A Tomographic SPECT System For Online Dosimetry In BNCT

    International Nuclear Information System (INIS)

    In boron neutron capture therapy (BNCT) the delivered dose to the patient depends both on the neutron beam characteristics and on the 10B body distribution which, in turn, is governed by the tumor specificity of the 10B drug-carrier. BNCT dosimetry is a complex matter due to the several interactions that neutrons can undergo with the different nuclei present in tissue. However the boron capture reaction 10B(n,α)7Li accounts for about 80 % of the total dose in a tumor with 40 ppm in 10B concentration. Present dosimetric methods are indirect, based on drug biodistribution statistical data and subjected to inter and intra-patient variability. In order to overcome the consequences of the concomitant high dosimetric uncertainties, we propose a SPECT (Single Photon Emission Tomography) approach based on the detection of the prompt gamma-ray (478 keV) emitted in 94 % of the cases from 7Li. For this purpose we designed, built and tested a prototype based on LaBr3(Ce) scintillators. Measurements on a head and tumor phantom were performed in the accelerator-based BNCT facility of the University of Birmingham (UK). They result in the first tomographic image of the 10B capture distribution obtained in a BNCT facility.

  1. SPECT in psychiatry. SPECT in der Psychiatrie

    Energy Technology Data Exchange (ETDEWEB)

    Barocka, A. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany)); Feistel, H. (Nuklearmedizinische Klinik, Erlangen (Germany)); Ebert, D. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany)); Lungershausen, E. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany))

    1993-08-13

    This review presents Single Photon Emission Computed Tomography (SPECT) as a powerful tool for clinical use and research in psychiatry. Its focus is on regional cerebral blood flow, measured with technetium labelled HMPAO. In addition, first results with brain receptor imaging, concerning dopamin-D[sub 2] and benzodiazepine receptors, are covered. Due to major improvements in image quality, and impressive number of results has been accumulated in the past three years. The authors caution against using SPECT results as markers for disease entities. A finding like 'hypofrontality' is considered typical of a variety of mental disorders. Clearly both, more experience with SPECT and contributions from psychopathology, are needed. (orig.)

  2. Hybrid pixel-waveform CdTe/CZT detector for use in an ultrahigh resolution MRI compatible SPECT system

    Science.gov (United States)

    Cai, Liang; Meng, Ling-Jian

    2013-02-01

    In this paper, we will present a new small pixel CdTe/CZT detector for sub-500 μm resolution SPECT imaging application inside MR scanner based on a recently developed hybrid pixel-waveform (HPWF) readout circuitry. The HPWF readout system consists of a 2-D multi-pixel circuitry attached to the anode pixels to provide the X-Y positions of interactions, and a high-speed digitizer to read out the pulse-waveform induced on the cathode. The digitized cathode waveform could provide energy deposition information, precise timing and depth-of-interaction information for gamma ray interactions. Several attractive features with this HPWF detector system will be discussed in this paper. To demonstrate the performance, we constructed several prototype HPWF detectors with pixelated CZT and CdTe detectors of 2-5 mm thicknesses, connected to a prototype readout system consisting of energy-resolved photon-counting ASIC for readout anode pixels and an Agilent high-speed digitizer for digitizing the cathode signals. The performances of these detectors based on HPWF are discussed in this paper.

  3. Hybrid pixel-waveform CdTe/CZT detector for use in an ultrahigh resolution MRI compatible SPECT system

    International Nuclear Information System (INIS)

    In this paper, we will present a new small pixel CdTe/CZT detector for sub-500 μm resolution SPECT imaging application inside MR scanner based on a recently developed hybrid pixel-waveform (HPWF) readout circuitry. The HPWF readout system consists of a 2-D multi-pixel circuitry attached to the anode pixels to provide the X–Y positions of interactions, and a high-speed digitizer to read out the pulse-waveform induced on the cathode. The digitized cathode waveform could provide energy deposition information, precise timing and depth-of-interaction information for gamma ray interactions. Several attractive features with this HPWF detector system will be discussed in this paper. To demonstrate the performance, we constructed several prototype HPWF detectors with pixelated CZT and CdTe detectors of 2–5 mm thicknesses, connected to a prototype readout system consisting of energy-resolved photon-counting ASIC for readout anode pixels and an Agilent high-speed digitizer for digitizing the cathode signals. The performances of these detectors based on HPWF are discussed in this paper

  4. Hybrid pixel-waveform CdTe/CZT detector for use in an ultrahigh resolution MRI compatible SPECT system

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Liang, E-mail: cai7@illinois.edu [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana Champaign, 216 Talbot Laboratory, 104 S Wrig, Urbana, Urbana, Illinois 61801 (United States); Meng, Ling-Jian [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana Champaign, 216 Talbot Laboratory, 104 S Wrig, Urbana, Urbana, Illinois 61801 (United States)

    2013-02-21

    In this paper, we will present a new small pixel CdTe/CZT detector for sub-500 μm resolution SPECT imaging application inside MR scanner based on a recently developed hybrid pixel-waveform (HPWF) readout circuitry. The HPWF readout system consists of a 2-D multi-pixel circuitry attached to the anode pixels to provide the X–Y positions of interactions, and a high-speed digitizer to read out the pulse-waveform induced on the cathode. The digitized cathode waveform could provide energy deposition information, precise timing and depth-of-interaction information for gamma ray interactions. Several attractive features with this HPWF detector system will be discussed in this paper. To demonstrate the performance, we constructed several prototype HPWF detectors with pixelated CZT and CdTe detectors of 2–5 mm thicknesses, connected to a prototype readout system consisting of energy-resolved photon-counting ASIC for readout anode pixels and an Agilent high-speed digitizer for digitizing the cathode signals. The performances of these detectors based on HPWF are discussed in this paper.

  5. [123I]Iodobenzamide binding to the rat dopamine D2 receptor in competition with haloperidol and endogenous dopamine - an in vivo imaging study with a dedicated small animal SPECT

    International Nuclear Information System (INIS)

    This study assessed [123I]iodobenzamide binding to the rat dopamine D2 receptor in competition with haloperidol and endogenous dopamine using a high-resolution small animal SPECT. Subsequent to baseline quantifications of D2 receptor binding, imaging studies were performed on the same animals after pre-treatment with haloperidol and methylphenidate, which block D2 receptors and dopamine transporters, respectively. Striatal baseline equilibrium ratios (V3'') of [123I]iodobenzamide binding were 1.42±0.31 (mean±SD). After pre-treatment with haloperidol and methylphenidate, V3'' values decreased to 0.54±0.46 (p123I]iodobenzamide binding induced by pre-treatment with haloperidol reflects D2 receptor blockade, whereas the decrease in receptor binding induced by pre-treatment with methylphenidate can be interpreted in terms of competition between [123I]IBZM and endogenous dopamine. Findings show that multiple in vivo measurements of [123I]iodobenzamide binding to D2 receptors in competition with exogenous and endogenous ligands are feasible in the same animal. This may be of future relevance for the in vivo evaluation of novel radioligands as well as for studying the interrelations between pre- and/or postsynaptic radioligand binding and different levels of endogenous dopamine. (orig.)

  6. Myocardial Infarction Area Quantification using High-Resolution SPECT Images in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luciano Fonseca Lemos de [Divisão de Cardiologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Mejia, Jorge [Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP (Brazil); Carvalho, Eduardo Elias Vieira de; Lataro, Renata Maria; Frassetto, Sarita Nasbine [Divisão de Cardiologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Fazan, Rubens Jr.; Salgado, Hélio Cesar [Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Galvis-Alonso, Orfa Yineth [Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP (Brazil); Simões, Marcus Vinícius, E-mail: msimoes@fmrp.usp.br [Divisão de Cardiologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2013-07-15

    Imaging techniques enable in vivo sequential assessment of the morphology and function of animal organs in experimental models. We developed a device for high-resolution single photon emission computed tomography (SPECT) imaging based on an adapted pinhole collimator. To determine the accuracy of this system for quantification of myocardial infarct area in rats. Thirteen male Wistar rats (250 g) underwent experimental myocardial infarction by occlusion of the left coronary artery. After 4 weeks, SPECT images were acquired 1.5 hours after intravenous injection of 555 MBq of 99mTc-Sestamibi. The tomographic reconstruction was performed by using specially developed software based on the Maximum Likelihood algorithm. The analysis of the data included the correlation between the area of perfusion defects detected by scintigraphy and extent of myocardial fibrosis assessed by histology. The images showed a high target organ/background ratio with adequate visualization of the left ventricular walls and cavity. All animals presenting infarction areas were correctly identified by the perfusion images. There was no difference of the infarct area as measured by SPECT (21.1 ± 21.2%) and by histology (21.7 ± 22.0%; p=0.45). There was a strong correlation between individual values of the area of infarction measured by these two methods. The developed system presented adequate spatial resolution and high accuracy for the detection and quantification of myocardial infarction areas, consisting in a low cost and versatile option for high-resolution SPECT imaging of small rodents.

  7. PET and SPECT in psychiatry

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, Rudi A.J.O. [University Medical Center Groningen (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Ghent Univ. (Belgium); Otte, Andreas [Univ. of Applied Sciences Offenburg (Germany). Faculty of Electrical Engineering and Information Technology; Vries, Erik F.J. de; Waarde, Aren van (eds.) [University Medical Center Groningen (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging

    2014-09-01

    Covers classical psychiatric disorders as well as other subjects such as suicide, sleep, eating disorders, and autism. Emphasis on a multidisciplinary approach. Written by internationally acclaimed experts. PET and SPECT in Psychiatry showcases the combined expertise of renowned authors whose dedication to the investigation of psychiatric disease through nuclear medicine technology has achieved international recognition. The classical psychiatric disorders as well as other subjects - such as suicide, sleep, eating disorders, and autism - are discussed and the latest results in functional neuroimaging are detailed. Most chapters are written jointly by a clinical psychiatrist and a nuclear medicine expert to ensure a multidisciplinary approach. This state of the art compendium will be valuable to all who have an interest in the field of neuroscience, from the psychiatrist and the radiologist/nuclear medicine specialist to the interested general practitioner and cognitive psychologist. It is the first volume of a trilogy on PET and SPECT imaging in the neurosciences; other volumes will focus on PET and SPECT in neurology and PET and SPECT of neurobiological systems.

  8. PET and SPECT in psychiatry

    International Nuclear Information System (INIS)

    Covers classical psychiatric disorders as well as other subjects such as suicide, sleep, eating disorders, and autism. Emphasis on a multidisciplinary approach. Written by internationally acclaimed experts. PET and SPECT in Psychiatry showcases the combined expertise of renowned authors whose dedication to the investigation of psychiatric disease through nuclear medicine technology has achieved international recognition. The classical psychiatric disorders as well as other subjects - such as suicide, sleep, eating disorders, and autism - are discussed and the latest results in functional neuroimaging are detailed. Most chapters are written jointly by a clinical psychiatrist and a nuclear medicine expert to ensure a multidisciplinary approach. This state of the art compendium will be valuable to all who have an interest in the field of neuroscience, from the psychiatrist and the radiologist/nuclear medicine specialist to the interested general practitioner and cognitive psychologist. It is the first volume of a trilogy on PET and SPECT imaging in the neurosciences; other volumes will focus on PET and SPECT in neurology and PET and SPECT of neurobiological systems.

  9. Initial Investigation of Preclinical Integrated SPECT and MR Imaging

    OpenAIRE

    Hamamura, Mark J.; Ha, Seunghoon; Roeck, Werner W.; Wagenaar, Douglas J.; Meier, Dirk; Patt, Bradley E.; Nalcioglu, Orhan

    2010-01-01

    Single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high-spatial resolution anatomical information as well as complementary functional information. In this study, we utilized a dual modality SPECT/MRI (MRSPECT) system to investigate the integration of SPECT and MRI for improved image accuracy. The MRSPECT system consisted of a cadmium-zinc-telluride (CZT) nuclear radiation detector interfaced with a ...

  10. Sci—Thur PM: Imaging — 04: An iterative triple energy window (TEW) approach to cross talk correction in quantitative small animal Tc99m and In111 SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Prior, P [Carleton University (Canada); Timmins, R [University of Ottawa Heart Institute (Canada); Wells, R G [Carleton University (Canada); University of Ottawa Heart Institute (Canada)

    2014-08-15

    Dual isotope SPECT allows simultaneous measurement of two different tracers in vivo. With In111 (emission energies of 171keV and 245keV) and Tc99m (140keV), quantification of Tc99m is degraded by cross talk from the In111 photons that scatter and are detected at an energy corresponding to Tc99m. TEW uses counts recorded in two narrow windows surrounding the Tc99m primary window to estimate scatter. Iterative TEW corrects for the bias introduced into the TEW estimate resulting from un-scattered counts detected in the scatter windows. The contamination in the scatter windows is iteratively estimated and subtracted as a fraction of the scatter-corrected primary window counts. The iterative TEW approach was validated with a small-animal SPECT/CT camera using a 2.5mL plastic container holding thoroughly mixed Tc99m/In111 activity fractions of 0.15, 0.28, 0.52, 0.99, 2.47 and 6.90. Dose calibrator measurements were the gold standard. Uncorrected for scatter, the Tc99m activity was over-estimated by as much as 80%. Unmodified TEW underestimated the Tc99m activity by 13%. With iterative TEW corrections applied in projection space, the Tc99m activity was estimated within 5% of truth across all activity fractions above 0.15. This is an improvement over the non-iterative TEW, which could not sufficiently correct for scatter in the 0.15 and 0.28 phantoms.

  11. Sci—Thur PM: Imaging — 04: An iterative triple energy window (TEW) approach to cross talk correction in quantitative small animal Tc99m and In111 SPECT

    International Nuclear Information System (INIS)

    Dual isotope SPECT allows simultaneous measurement of two different tracers in vivo. With In111 (emission energies of 171keV and 245keV) and Tc99m (140keV), quantification of Tc99m is degraded by cross talk from the In111 photons that scatter and are detected at an energy corresponding to Tc99m. TEW uses counts recorded in two narrow windows surrounding the Tc99m primary window to estimate scatter. Iterative TEW corrects for the bias introduced into the TEW estimate resulting from un-scattered counts detected in the scatter windows. The contamination in the scatter windows is iteratively estimated and subtracted as a fraction of the scatter-corrected primary window counts. The iterative TEW approach was validated with a small-animal SPECT/CT camera using a 2.5mL plastic container holding thoroughly mixed Tc99m/In111 activity fractions of 0.15, 0.28, 0.52, 0.99, 2.47 and 6.90. Dose calibrator measurements were the gold standard. Uncorrected for scatter, the Tc99m activity was over-estimated by as much as 80%. Unmodified TEW underestimated the Tc99m activity by 13%. With iterative TEW corrections applied in projection space, the Tc99m activity was estimated within 5% of truth across all activity fractions above 0.15. This is an improvement over the non-iterative TEW, which could not sufficiently correct for scatter in the 0.15 and 0.28 phantoms

  12. Quantitative simultaneous 99mTc-ECD/123I-FP-CIT SPECT in Parkinson's disease and multiple system atrophy

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate the feasibility and utility of dual-isotope SPECT for differential diagnosis of idiopathic Parkinson's disease (IPD) and multiple system atrophy (MSA). Simultaneous 99mTc-ECD/123I-FP-CIT studies were performed in nine normal controls, five IPD patients, and five MSA patients. Projections were corrected for scatter, cross-talk, and high-energy penetration, and iteratively reconstructed while correcting for patient-specific attenuation and variable collimator response. Perfusion and dopamine transporter (DAT) function were assessed using voxel-based statistical parametric mapping (SPM2) and volume of interest quantitation. DAT binding potential (BP) and asymmetry index (AI) were estimated in the putamen and caudate nucleus. Striatal BP was lower in IPD (55%) and MSA (23%) compared to normal controls (p<0.01), and in IPD compared to MSA (p<0.05). AI was greater for IPD than for MSA and controls in both the caudate nucleus and the putamen (p<0.05). There was significantly decreased perfusion in the left and right nucleus lentiformis in MSA compared to IPD and controls (p<0.05). Dual-isotope studies are both feasible in and promising for the diagnosis of parkinsonian syndromes. (orig.)

  13. Combined 201Tl and 67Ga brain SPECT in patients with suspected central nervous system lymphoma or germinoma. Clinical and economic value

    International Nuclear Information System (INIS)

    Surgical resection is costly and an unfavorable prognostic factor for primary central nervous system (CNS) lymphoma and germinoma patients. The purpose of this study was to assess the diagnostic and economic impact of combined 201Tl and 67Ga brain SPECT on the management of patients suspected of having CNS lymphoma or germinoma. Sequential 201Tl and 67Ga brain SPECT was performed in 40 patients with cranial tumors to assess the diagnostic and economic impact of combined 201Tl and 67Ga SPECT on the management of patients suspected of having CNS lymphoma or germinoma. All intracranial masses were pathologically confirmed. The final diagnoses of a total of 47 foci were: 11 non-Hodgkin's lymphomas in 10 patients, 3 germinomas in 2 patients, 10 glioblastomas in 9 patients, 10 cerebral metastases in 8 patients, 13 meningiomas in 11 patients. Decision-tree sensitivity analysis for pretest probability regarding expected cost saving was performed for introduction of the combined study. All but one focus of CNS lymphomas or germinomas (92.9%, 13/14) exhibited more intense uptake of 67Ga than of 201Tl (p201Tl than of 67Ga (p67Ga-positive and 201Tl-positive pattern with more intense uptake of 67Ga than 201Tl probably suggests CNS lymphoma or germinoma. This combination study appears to be cost-effective only in patients highly suspected of having CNS lymphoma or germinoma. (author)

  14. Software Solutions for Nuclear Imaging Systems in Cardiology, Small Animal Research and Education

    OpenAIRE

    Valastyán, Iván

    2010-01-01

    The sensitivity for observing physiological processes makes nuclear imaging an important tool in medical diagnostics. Different types of nuclear imaging modalities, with emphasis on the software components and image reconstructions, are presented in this thesis:  the Cardiotom for myocardial heart studies at the Karolinska University Hospital, the small animal Positron Emission Tomograph (PET) scanners for research and the SPECT, PET, spiral CT and Cardiotom demonstrators for the Royal Instit...

  15. Brain SPECT with Tl-201 DDC

    International Nuclear Information System (INIS)

    The development, animal and human experiments and the first clinical results of a new blood flow tracer thallium-201 diethyldithiocarbamate (Tl-201 DDC) are discussed for functional brain imaging with single-photon emission computed tomography (SPECT). 325 refs.; 43 figs.; 22 tabs

  16. Drug delivery systems in domestic animal species.

    Science.gov (United States)

    Brayden, David J; Oudot, Emilie J M; Baird, Alan W

    2010-01-01

    Delivery of biologically active agents to animals is often perceived to be the poor relation of human drug delivery. Yet this field has a long and successful history of species-specific device and formulation development, ranging from simple approaches and devices used in production animals to more sophisticated formulations and approaches for a wide range of species. While several technologies using biodegradable polymers have been successfully marketed in a range of veterinary and human products, the transfer of delivery technologies has not been similarly applied across species. This may be due to a combination of specific technical requirements for use of devices in different species, inter-species pharmacokinetic, pharmacodynamic and physiological differences, and distinct market drivers for drug classes used in companion and food-producing animals. This chapter reviews selected commercialised and research-based parenteral and non-parenteral veterinary drug delivery technologies in selected domestic species. Emphasis is also placed on the impact of endogenous drug transporters on drug distribution characteristics in different species. In vitro models used to investigate carrier-dependent transport are reviewed. Species-specific expression of transporters in several tissues can account for inter-animal or inter-species pharmacokinetic variability, lack of predictability of drug efficacy, and potential drug-drug interactions. PMID:20204584

  17. SPECT quantification of regional radionuclide distributions

    International Nuclear Information System (INIS)

    SPECT quantification of regional radionuclide activities within the human body is affected by several physical and instrumental factors including attenuation of photons within the patient, Compton scattered events, the system's finite spatial resolution and object size, finite number of detected events, partial volume effects, the radiopharmaceutical biokinetics, and patient and/or organ motion. Furthermore, other instrumentation factors such as calibration of the center-of-rotation, sampling, and detector nonuniformities will affect the SPECT measurement process. These factors are described, together with examples of compensation methods that are currently available for improving SPECT quantification. SPECT offers the potential to improve in vivo estimates of absorbed dose, provided the acquisition, reconstruction, and compensation procedures are adequately implemented and utilized. 53 references, 2 figures

  18. Animals

    International Nuclear Information System (INIS)

    The radionuclides of most concern with respect to contamination of animals after a nuclear accident are radioiodine, radiocaesium and radiostrontium (ICRP 30, 1979). Of the other significant anthropogenic radionuclides likely to be released in most accidents, only small proportions of that ingested will be absorbed in an animals gut, and the main animal products, milk and meat, will not normally be contaminated to a significant extent. Animal products will mostly be contaminated as a result of ingestion of contaminated feed and possibly, but to a much lesser extent, from inhalation (for radioiodine only). Direct external contamination of animals is of little or no consequence in human food production. Radioiodine and radiostrontium are important with respect to contamination of milk; radiocaesium contaminates both milk and meat. The physical and chemical form of a radionuclide can influence its absorption in the animal gut. For example, following the Chernobyl accident radiocaesium incorporated into vegetation by root uptake was more readily absorbed than that associated with the original deposit. The transfer of radiocaesium and radiostrontium to animals will be presented both as transfer coefficients and aggregated transfer coefficients. For most animal meat products, only radiocaesium is important as other radionuclides do not significantly contaminate muscle. Farm animal products are the most important foodstuff determining radiocaesium intake by the average consumer in the Nordic countries. The major potential source of radioiodine and radiostrontium to humans is milk and milk products. Of the different species, the smaller animals have the highest transfer of radiocaesium from fodder to meat and milk. (EG)

  19. A comparative study on PET and SPECT image formation systems for a proper scanner choice in a considered PET center

    International Nuclear Information System (INIS)

    In the last twenty years, the developed technology is being applied, making available better diagnoses and therapy to a variety of diseases. Since then the short-lived radionuclides were available only in the large physics research centers. The increasing clinical applications of radiopharmaceuticals have led to the rapid rise in the number of compact cyclotrons throughout the world. All medical cyclotrons currently available are suitable for sustaining programs for PET research and clinical application. To date, up to 122 medical cyclotrons have been established worldwide, and Brazil is about to install a new dedicated cyclotron (RDS111 from CTI), to its first PET Center, in Rio de Janeiro. Also the number of scanners in use in the world has increased, mainly those based on the positrons emission and annihilation. The better result gotten in the final contrast of the object imposes necessarily a comparative study and analysis of the image formation process, either in a system based on a Single Photon Emission Computerized Tomography (SPECT), as well as on Positron Emission Tomography (PET.) This comparative study should at least follow same increasing rates of the new devices with technological advances. That kind of study can be helpful on the decision of what type of scan should be the proper one, to a PET Center, on a specific region. Obviously, many other parameters are involved in that decision, and this discussion and analyses are the main subject of the present work. The objective is to make available a realistic comparative scenario, considering as many as possible the parameters involving. Many of the new devices have been introduced making great progresses. As an example, in the new PET scanners, the reduction of examination time, and the remarkable improvement on the diagnoses based on images. As a consequence, we have a broadening on the field of application, better performance, and making possible the precocious discovery of males. Presently multi

  20. Animal models for diseases of respiratory system

    Directory of Open Access Journals (Sweden)

    R. Adil

    2012-07-01

    Full Text Available Latest trends in understanding of respiratory diseases in human beings can be derived from thorough clinical studies of these diseases occurring in man, but conducting such studies in man is difficult in terms of experimental manipulation. In the last 2 decades, various types of experimental respiratory disease models has been developed and utilized by investigators, which have contributed a lot to the understanding of respiratory diseases in man, but only little investigation has been done on the naturally occurring pulmonary diseases of animals as potential models which could have added to our knowledge. There are certain selected examples of spontaneous pulmonary disease in animals that may serve as exploitable models for human chronic bronchitis, bronchiectasis, emphysema, interstitial lung disease, hypersensitivity pneumonitis, hyaline membrane disease, and bronchial asthma.

  1. Fluorescence-enhanced optical tomography and nuclear imaging system for small animals

    Science.gov (United States)

    Tan, I.-Chih; Lu, Yujie; Darne, Chinmay; Rasmussen, John C.; Zhu, Banghe; Azhdarinia, Ali; Yan, Shikui; Smith, Anne M.; Sevick-Muraca, Eva M.

    2012-03-01

    Near-infrared (NIR) fluorescence is an alternative modality for molecular imaging that has been demonstrated in animals and recently in humans. Fluorescence-enhanced optical tomography (FEOT) using continuous wave or frequency domain photon migration techniques could be used to provide quantitative molecular imaging in vivo if it could be validated against "gold-standard," nuclear imaging modalities, using dual-labeled imaging agents. Unfortunately, developed FEOT systems are not suitable for incorporation with CT/PET/SPECT scanners because they utilize benchtop devices and require a large footprint. In this work, we developed a miniaturized fluorescence imaging system installed in the gantry of the Siemens Inveon PET/CT scanner to enable NIR transillumination measurements. The system consists of a CCD camera equipped with NIR sensitive intensifier, a diode laser controlled by a single board compact controller, a 2-axis galvanometer, and RF circuit modules for homodyne detection of the phase and amplitude of fluorescence signals. The performance of the FEOT system was tested and characterized. A mouse-shaped solid phantom of uniform optical properties with a fluorescent inclusion was scanned using CT, and NIR fluorescence images at several projections were collected. The method of high-order approximation to the radioactive transfer equation was then used to reconstruct the optical images. Dual-labeled agents were also used on a tumor bearing mouse to validate the results of the FEOT against PET/CT image. The results showed that the location of the fluorophore obtained from the FEOT matches the location of tumor obtained from the PET/CT images. Besides validation of FEOT, this hybrid system could allow multimodal molecular imaging (FEOT/PET/CT) for small animal imaging.

  2. Comparative analysis of the sensitivity of the scanner rSPECT: using GAMOS: a Geant4-based framework

    International Nuclear Information System (INIS)

    The molecular imaging of cellular processes in vivo using preclinical animal studies and SPECT technique is one of the main reasons for the design of new devices with high spatial resolution. As an auxiliary tool, Monte Carlo simulation has allowed the characterization and optimization of those medical imaging systems effectively. At present there is a new simulation framework called GAMOS (GEANT4-based Architecture for Medicine-Oriented Simulations); which code, libraries and particle transport method correspond to those developed by GEANT4 and contains specific applications for nuclear medicine. This tool has been already validated for PET technique by comparison with experimental data, while not yet been done the correct evaluation of GAMOS for SPECT systems. Present work have demonstrated the potential of GAMOS in obtaining simulated realistic data using this nuclear imaging technique. For this purpose, simulation of a novel installation 'rSPECT' ,dedicated to the study of rodents, has been done. The study comprises the collimation and detection geometries and the fundamental characteristics of the previous published experimental measurements for rSPECT installation. Studies have been done using 99mTc and 20% energy window. Sensitivity values obtained by simulation revealed an acceptable agreement with experimental values. Therefore we can conclude that simulation results have shown good agreement with the real data. This fact allowed to estimate the behavior of the new GEANT4 simulation platform 'GAMOS' in SPECT applications and have demonstrated the feasibility of reproducing experimental data. (author)

  3. Quantification of dopaminergic neurotransmission SPECT studies with {sup 123}I-labelled radioligands. A comparison between different imaging systems and data acquisition protocols using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Crespo, Cristina; Aguiar, Pablo [Universitat de Barcelona - IDIBAPS, Unitat de Biofisica i Bioenginyeria, Departament de Ciencies Fisiologiques I, Facultat de Medicina, Barcelona (Spain); Gallego, Judith [Universitat Politecnica de Catalunya, Institut de Tecniques Energetiques, Barcelona (Spain); Institut de Bioenginyeria de Catalunya, Barcelona (Spain); Cot, Albert [Universitat de Barcelona - IDIBAPS, Unitat de Biofisica i Bioenginyeria, Departament de Ciencies Fisiologiques I, Facultat de Medicina, Barcelona (Spain); Universitat Politecnica de Catalunya, Seccio d' Enginyeria Nuclear, Departament de Fisica i Enginyeria Nuclear, Barcelona (Spain); Falcon, Carles; Ros, Domenec [Universitat de Barcelona - IDIBAPS, Unitat de Biofisica i Bioenginyeria, Departament de Ciencies Fisiologiques I, Facultat de Medicina, Barcelona (Spain); CIBER en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain); Bullich, Santiago [Hospital del Mar, Center for Imaging in Psychiatry, CRC-MAR, Barcelona (Spain); Pareto, Deborah [CIBER en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain); PRBB, Institut d' Alta Tecnologia, Barcelona (Spain); Sempau, Josep [Universitat Politecnica de Catalunya, Institut de Tecniques Energetiques, Barcelona (Spain); CIBER en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain); Lomena, Francisco [IDIBAPS, Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); Calvino, Francisco [Universitat Politecnica de Catalunya, Institut de Tecniques Energetiques, Barcelona (Spain); Universitat Politecnica de Catalunya, Seccio d' Enginyeria Nuclear, Departament de Fisica i Enginyeria Nuclear, Barcelona (Spain); Pavia, Javier [CIBER en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain); IDIBAPS, Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain)

    2008-07-15

    {sup 123}I-labelled radioligands are commonly used for single-photon emission computed tomography (SPECT) imaging of the dopaminergic system to study the dopamine transporter binding. The aim of this work was to compare the quantitative capabilities of two different SPECT systems through Monte Carlo (MC) simulation. The SimSET MC code was employed to generate simulated projections of a numerical phantom for two gamma cameras equipped with a parallel and a fan-beam collimator, respectively. A fully 3D iterative reconstruction algorithm was used to compensate for attenuation, the spatially variant point spread function (PSF) and scatter. A post-reconstruction partial volume effect (PVE) compensation was also developed. For both systems, the correction for all degradations and PVE compensation resulted in recovery factors of the theoretical specific uptake ratio (SUR) close to 100%. For a SUR value of 4, the recovered SUR for the parallel imaging system was 33% for a reconstruction without corrections (OSEM), 45% for a reconstruction with attenuation correction (OSEM-A), 56% for a 3D reconstruction with attenuation and PSF corrections (OSEM-AP), 68% for OSEM-AP with scatter correction (OSEM-APS) and 97% for OSEM-APS plus PVE compensation (OSEM-APSV). For the fan-beam imaging system, the recovered SUR was 41% without corrections, 55% for OSEM-A, 65% for OSEM-AP, 75% for OSEM-APS and 102% for OSEM-APSV. Our findings indicate that the correction for degradations increases the quantification accuracy, with PVE compensation playing a major role in the SUR quantification. The proposed methodology allows us to reach similar SUR values for different SPECT systems, thereby allowing a reliable standardisation in multicentric studies. (orig.)

  4. Brain SPECT in psychiatry: Delusion or reality?

    International Nuclear Information System (INIS)

    Aim: The need for functional information is becoming increasingly evident for proper therapeutic approaches to the treatment and follow up of psychiatric diseases. While data on this subject already exists, there is a general lack of consensus about the use of brain SPECT in this domain and also a considerable negative prejudice due to a number of factors including poor quality imaging and unrealistic expectations. Based on a large group of brain SPECT-s performed over the past 3 years we attempted to sort and refine the indications for SPECT in psychiatry. Materials and Methods: High resolution brain SPECT was performed with triple head gamma camera, super-high resolution fan beam collimator and Tc-HMPAO. A comprehensive semiquantitative color, 3D surface as well as multi-thresholded volume display was routinely used and supplemented by automatic realignment in case of longitudinal follow-up. Results: 470 brain SPECT-s done on 432 patients were all referred by psychiatrists or neuro-psychiatrists for a wide spectrum of psychiatric diseases and ranged in age from 7 to 88 years. The most common primary reasons for referral were : attention deficit hyperactive disorder (ADHD); anxiety; obsessive-compulsive disease, depression (refractory, chronic, bipolar ), impulse control problems; oppositional defiance, post traumatic brain injury; seizures, learning difficulties, pervasive development disorders, memory loss and differential of dementia. Among common denominators were long duration of the disease, unresponsiveness to treatment, worsening of clinical status, and presence of multiple conditions at the same time. The multiparametric display used enabled a comprehensive evaluation of the brain volume which included the hemispheric surfaces; the basal ganglia (striatum) and the thalamus, several components of the limbic and paralimbic systems: anterior and posterior cingulate and their respective subdivisions, insula-s and their subdivisions, apical and mesial

  5. SPECT assay of radiolabeled monoclonal antibodies

    International Nuclear Information System (INIS)

    The accurate determination of the biodistribution of radiolabeled monoclonal antibodies (MoAbs) is important for calculation of dosimetry and evaluation of pharmacokinetic variables such as antibody dose and route of administration. The hypothesis of this application is that the biodistribution of radiolabeled monoclonal antibodies (MoAbs) can be quantitatively determined using single photon emission computed tomography (SPECT). The major thrusts during the third year include the continued development and evaluation of improved 3D SPECT acquisition and reconstruction approaches to improve quantitative imaging of radiolabeled monoclonal antibodies (MoAbs), and the implementation and evaluation of algorithms to register serial SPECT image data sets, or to register 3D SPECT images with 3D image data sets acquired from positron emission tomography (PEI) and magnetic resonance images (MRI). The research has involved the investigation of statistical models and iterative reconstruction algorithms that accurately account for the physical characteristics of the SPECT acquisition system. It is our belief that SPECT quantification can be improved by accurately modeling the physical processes such as attenuation, scatter, geometric collimator response, and other factors that affect the measured projection data

  6. ENVISION, developing SPECT imaging for particle therapy

    CERN Multimedia

    2013-01-01

    Particle therapy is an advanced technique of cancer radiation therapy, using protons or other ions to target the cancerous mass. ENVISION aims at developing medical imaging tools to improve the dose delivery to the patient, to ensure a safer and more effective treatment. The animation illustrates the use of Single Photon Emission Computed Tomography (SPECT) for monitoring the dose during treatment. Produced by: CERN KT/Life Sciences and ENVISION Project Management: Manuela Cirilli 3D animation: Jeroen Huijben, Nymus3d

  7. Calibration of gamma camera systems for a multicentre European ¹²³I-FP-CIT SPECT normal database

    DEFF Research Database (Denmark)

    Tossici-Bolt, Livia; Dickson, John C; Sera, Terez;

    2011-01-01

    A joint initiative of the European Association of Nuclear Medicine (EANM) Neuroimaging Committee and EANM Research Ltd. aimed to generate a European database of [(123)I]FP-CIT single photon emission computed tomography (SPECT) scans of healthy controls. This study describes the characterization and...

  8. [{sup 123}I]Iodobenzamide binding to the rat dopamine D{sub 2} receptor in competition with haloperidol and endogenous dopamine - an in vivo imaging study with a dedicated small animal SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaus, Susanne; Larisch, Rolf; Wirrwar, Andreas; Jamdjeu-Noune, Marlyse; Antke, Christina; Beu, Markus; Mueller, Hans-Wilhelm [Heinrich-Heine University, Clinic of Nuclear Medicine, Duesseldorf (Germany); Schramm, Nils [Research Center Juelich, Central Laboratory for Electronics, Juelich (Germany)

    2005-11-01

    This study assessed [{sup 123}I]iodobenzamide binding to the rat dopamine D{sub 2} receptor in competition with haloperidol and endogenous dopamine using a high-resolution small animal SPECT. Subsequent to baseline quantifications of D{sub 2} receptor binding, imaging studies were performed on the same animals after pre-treatment with haloperidol and methylphenidate, which block D{sub 2} receptors and dopamine transporters, respectively. Striatal baseline equilibrium ratios (V{sub 3}{sup ''}) of [{sup 123}I]iodobenzamide binding were 1.42{+-}0.31 (mean{+-}SD). After pre-treatment with haloperidol and methylphenidate, V{sub 3}{sup ''} values decreased to 0.54{+-}0.46 (p<0.0001) and 0.98{+-}0.48 (p=0.009), respectively. The decrease in [{sup 123}I]iodobenzamide binding induced by pre-treatment with haloperidol reflects D{sub 2} receptor blockade, whereas the decrease in receptor binding induced by pre-treatment with methylphenidate can be interpreted in terms of competition between [{sup 123}I]IBZM and endogenous dopamine. Findings show that multiple in vivo measurements of [{sup 123}I]iodobenzamide binding to D{sub 2} receptors in competition with exogenous and endogenous ligands are feasible in the same animal. This may be of future relevance for the in vivo evaluation of novel radioligands as well as for studying the interrelations between pre- and/or postsynaptic radioligand binding and different levels of endogenous dopamine. (orig.)

  9. A Monte Carlo simulation study of the feasibility of a high resolution parallel-hole collimator with a CdTe pixelated semiconductor SPECT system

    International Nuclear Information System (INIS)

    It is recommended that a pixelated parallel-hole collimator in which the hole and pixel sizes are equal be used to improve the sensitivity and spatial resolution when using a small pixel size and a single-photon emission computed tomography (SPECT) system with pixelated semiconductor detector materials (e.g., CdTe and CZT). However, some significant problems arise in the manufacturing of a pixelated parallel-hole collimator. Therefore, we sought to simulate a pixelated semiconductor SPECT system with various collimator geometric designs. The purpose of this study was to compare the quality of images generated with a pixelated semiconductor SPECT system simulated with pixelated parallel-hole collimators of various geometric designs. The sensitivity and spatial resolution of the various collimator geometric designs with varying septal heights and hole sizes were measured. Moreover, to evaluate the overall performance of the imaging system, a hot-rod phantom was designed using a Monte Carlo simulation. According to the results, the average sensitivity using a 15 mm septal height was 1.80, 2.87, and 4.16 times higher than that obtained with septal heights of 20, 25, and 30 mm, respectively. Also, the average spatial resolution using the 30 mm septal height was 44.33, 22.08, and 9.26% better than that attained with 15, 20, and 25 mm septal heights, respectively. When the results acquired with 0.3 and 0.6 mm hole sizes were compared, the average sensitivity with the 0.6 mm hole size was 3.97 times higher than that obtained with the 0.3 mm hole size, and the average spatial resolution with the 0.3 mm hole size was 45.76% better than that with the 0.6 mm hole size. We have presented the pixelated parallel-hole collimators of various collimator geometric designs and evaluations. Our results showed that the effect of various collimator geometric designs can be investigated by Monte Carlo simulation so as to evaluate the feasibility of a high resolution parallel

  10. A Monte Carlo simulation study of the feasibility of a high resolution parallel-hole collimator with a CdTe pixelated semiconductor SPECT system

    Science.gov (United States)

    Lee, Y.-J.; Park, S.-J.; Lee, S.-W.; Kim, D.-H.; Kim, Y.-S.; Jo, B.-D.; Kim, H.-J.

    2013-03-01

    It is recommended that a pixelated parallel-hole collimator in which the hole and pixel sizes are equal be used to improve the sensitivity and spatial resolution when using a small pixel size and a single-photon emission computed tomography (SPECT) system with pixelated semiconductor detector materials (e.g., CdTe and CZT). However, some significant problems arise in the manufacturing of a pixelated parallel-hole collimator. Therefore, we sought to simulate a pixelated semiconductor SPECT system with various collimator geometric designs. The purpose of this study was to compare the quality of images generated with a pixelated semiconductor SPECT system simulated with pixelated parallel-hole collimators of various geometric designs. The sensitivity and spatial resolution of the various collimator geometric designs with varying septal heights and hole sizes were measured. Moreover, to evaluate the overall performance of the imaging system, a hot-rod phantom was designed using a Monte Carlo simulation. According to the results, the average sensitivity using a 15 mm septal height was 1.80, 2.87, and 4.16 times higher than that obtained with septal heights of 20, 25, and 30 mm, respectively. Also, the average spatial resolution using the 30 mm septal height was 44.33, 22.08, and 9.26% better than that attained with 15, 20, and 25 mm septal heights, respectively. When the results acquired with 0.3 and 0.6 mm hole sizes were compared, the average sensitivity with the 0.6 mm hole size was 3.97 times higher than that obtained with the 0.3 mm hole size, and the average spatial resolution with the 0.3 mm hole size was 45.76% better than that with the 0.6 mm hole size. We have presented the pixelated parallel-hole collimators of various collimator geometric designs and evaluations. Our results showed that the effect of various collimator geometric designs can be investigated by Monte Carlo simulation so as to evaluate the feasibility of a high resolution parallel

  11. SPECT in psychiatry

    International Nuclear Information System (INIS)

    This review presents Single Photon Emission Computed Tomography (SPECT) as a powerful tool for clinical use and research in psychiatry. Its focus is on regional cerebral blood flow, measured with technetium labelled HMPAO. In addition, first results with brain receptor imaging, concerning dopamin-D2 and benzodiazepine receptors, are covered. Due to major improvements in image quality, and impressive number of results has been accumulated in the past three years. The authors caution against using SPECT results as markers for disease entities. A finding like 'hypofrontality' is considered typical of a variety of mental disorders. Clearly both, more experience with SPECT and contributions from psychopathology, are needed. (orig.)

  12. Optimization of the SPECT systems based on a CdTe pixelated semiconductor detector using novel parallel-hole collimators

    International Nuclear Information System (INIS)

    , and based on our results, we recommend using 4:1 ratio with CdTe pixelated semiconductor detector in SPECT system

  13. A comparative study on PET and SPECT image formation systems for a proper scanner choice in a considered PET center

    International Nuclear Information System (INIS)

    Full text: In the last twenty years, the conjunction of technology and research had provided exceptional conditions for improvements on the quality of life, specially on nuclear medicine. In this area, the developed technology is being applied, making available better diagnoses and therapy to a variety of diseases. Since then the short-lived radionuclides were available only in the large physics research centers. The increasing clinical applications have led to the rapid rise in the number of compact cyclotrons throughout the world. All medical cyclotrons currently are suitable for sustaining programs for PET research and clinical application. To date, up to 122 medical cyclotrons have been established worldwide, and Brazil is about to install a new dedicated cyclotron (RDS111 from CTI), to its first PET Center, in Rio de Janeiro. Also the number of scanners worldwide has increased, mainly those based on the positrons emission and annihilation. The better result gotten in the final contrast of the object imposes a comparative study and analysis of the image formation process, either in a system based on a Single Photon Emission Computerized Tomography (SPECT), as well as on Positron Emission Tomography (PET.) This comparative study should at least follow same increasing rates of the new devices with technological advances. That kind of study can be helpful on the decision of what type of scan should be the proper one, to a PET Center, on a specific region. Obviously, many other parameters are involved in that decision, and this discussion and analyses are the main subject of the present work. The objective is to make available a realistic comparative scenario. Many of the new devices have been introduced making progresses. As an example, in the new PET scanners, the reduction of examination time, and the remarkable improvement on the diagnoses based on images. As a consequence, we have a broadening on application, better performance, and making possible the

  14. AIRS: The Medical Imaging Software for Segmentation and Registration in SPECT/CT

    Science.gov (United States)

    Widita, R.; Kurniadi, R.; Haryanto, F.; Darma, Y.; Perkasa, Y. S.; Zasneda, S. S.

    2010-06-01

    We have been successfully developed a new software, Automated Image Registration and Segmentation (AIRS), to fuse the CT and SPECT images. It is designed to solve different registration and segmentation problems that arises in tomographic data sets. AIRS is addressed to obtain anatomic information to be applied to NanoSpect system which is imaging for nano-tissues or small animals. It will be demonstrated that the information obtained by SPECT/CT is more accurate in evaluating patients/objects than that obtained from either SPECT or CT alone. The registration methods developed here are for both two-dimensional and three-dimensional registration. We used normalized mutual information (NMI) which is amenable for images produced by different modalities and having unclear boundaries between tissues. The segmentation components used in this software is region growing algorithms which have proven to be an effective approach for image segmentation. The implementations of region growing developed here are connected threshold and neighborhood connected. Our method is designed to perform with clinically acceptable speed, using accelerated techniques (multiresolution).

  15. Usefulness of CT based SPECT Fusion Image in the lung Disease : Preliminary Study

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hoon Hee; Lyu, Kwang Yeul [Dept. of Radiological Technology, Shingu University, Seoul (Korea, Republic of); Kim, Tae Hyung [Dept. of Radiological Science, Kangwon National University, Samcheok (Korea, Republic of); Shin, Ji Yun [Dept. of Biomedical Engineering, Cheongju National University, Cheongju (Korea, Republic of)

    2012-03-15

    Recently, SPECT/CT system has been applied to many diseases, however, the application is not extensively applied at pulmonary disease. Especially, in case that, the pulmonary embolisms suspect at the CT images, SPECT is performed. For the accurate diagnosis, SPECT/CT tests are subsequently undergoing. However, without SPECT/CT, there are some limitations to apply these procedures. With SPECT/CT, although, most of the examination performed after CT. Moreover, such a test procedures generate unnecessary dual irradiation problem to the patient. In this study, we evaluated the amount of unnecessary irradiation, and the usefulness of fusion images of pulmonary disease, which independently acquired from SPECT and CT. Using NEMA PhantomTM (NU2-2001), SPECT and CT scan were performed for fusion images. From June 2011 to September 2010, 10 patients who didn't have other personal history, except lung disease were selected (male: 7, female: 3, mean age: 65.3{+-}12.7). In both clinical patient and phantom data, the fusion images scored higher than SPECT and CT images. The fusion images, which is combined with pulmonary vessel images from CT and functional images from SPECT, can increase the detection possibility in detecting pulmonary embolism in the resin of lung parenchyma. It is sure that performing SPECT and CT in integral SPECT/CT system were better. However, we believe this protocol can give more informative data to have more accurate diagnosis in the hospital without integral SPECT/CT system.

  16. Usefulness of CT based SPECT Fusion Image in the lung Disease : Preliminary Study

    International Nuclear Information System (INIS)

    Recently, SPECT/CT system has been applied to many diseases, however, the application is not extensively applied at pulmonary disease. Especially, in case that, the pulmonary embolisms suspect at the CT images, SPECT is performed. For the accurate diagnosis, SPECT/CT tests are subsequently undergoing. However, without SPECT/CT, there are some limitations to apply these procedures. With SPECT/CT, although, most of the examination performed after CT. Moreover, such a test procedures generate unnecessary dual irradiation problem to the patient. In this study, we evaluated the amount of unnecessary irradiation, and the usefulness of fusion images of pulmonary disease, which independently acquired from SPECT and CT. Using NEMA PhantomTM (NU2-2001), SPECT and CT scan were performed for fusion images. From June 2011 to September 2010, 10 patients who didn't have other personal history, except lung disease were selected (male: 7, female: 3, mean age: 65.3±12.7). In both clinical patient and phantom data, the fusion images scored higher than SPECT and CT images. The fusion images, which is combined with pulmonary vessel images from CT and functional images from SPECT, can increase the detection possibility in detecting pulmonary embolism in the resin of lung parenchyma. It is sure that performing SPECT and CT in integral SPECT/CT system were better. However, we believe this protocol can give more informative data to have more accurate diagnosis in the hospital without integral SPECT/CT system.

  17. Computer-assisted system for diagnosing degenerative dementia using cerebral blood flow SPECT and 3D-SSP. A multicenter study

    International Nuclear Information System (INIS)

    Due to increasing numbers of patients with dementia, more physicians who do not specialize in brain nuclear medicine are being asked to interpret SPECT images of cerebral blood flow. We conducted a multicenter study to determine whether a computer-assisted diagnostic system Z-score summation analysis method (ZSAM) using three-dimensional stereotactic surface projections (3D-SSP) can differentiate Alzheimer's disease (AD)/dementia with Lewy bodies (DLB) and non-AD/DLB in institutions using various types of gamma cameras. We determined the normal thresholds of Z-sum (summed Z-score) within a template region of interest for each single photon emission computed tomography (SPECT) device and then compared them with the Z-sums of patients and calculated the accuracy of the differential diagnosis by ZSAM. We compared the diagnostic accuracy between ZSAM and visual assessment. We enrolled 202 patients with AD (mean age, 76.8 years), 40 with DLB (mean age 76.3 years) and 36 with non-AD/DLB (progressive supranuclear palsy, n=10; frontotemporal dementia, n=20; slowly progressive aphasia, n=2 and one each with idiopathic normal pressure hydrocephalus, corticobasal degeneration, multiple system atrophy and Parkinson's disease) who underwent N-isopropyl-p-[123I] iodoamphetamine cerebral blood flow SPECT imaging at each participating institution. The ZSAM sensitivity to differentiate between AD/DLB and non-AD/DLB in all patients, as well as those with mini-mental state examination scores of ≥24 and 20-23 points were 88.0, 78.0 and 88.4%, respectively, with specificity of 50.0, 44.4 and 60.0%, respectively. The diagnostic accuracy rates were 83.1, 72.9 and 84.2%, respectively. The areas under receiver operating characteristics curves for visual inspection by four expert raters were 0.74-0.84, 0.66-0.85 and 0.81-0.93, respectively, in the same patient groups. The diagnostic accuracy rates were 70.9-89.2%, 50.9-84.8% and 76.2-93.1%, respectively. The diagnostic accuracy

  18. 76 FR 72897 - Privacy Act Systems of Records; APHIS Animal Health Surveillance and Monitoring System

    Science.gov (United States)

    2011-11-28

    ... Service Agency, APHIS' Wildlife Services, or from State veterinary health officials and animal testing... Animal and Plant Health Inspection Service Privacy Act Systems of Records; APHIS Animal Health Surveillance and Monitoring System AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice...

  19. Animals

    Institute of Scientific and Technical Information of China (English)

    杨光

    2000-01-01

    The largest animal ever to live on the earth is the blue whale(蓝鲸)It weighs about 80 tons--more than 24 elephants. It is more than 30 metres long. A newborn baby whale weighs as much as a big elephant.

  20. An image guided small animal stereotactic radiotherapy system

    Science.gov (United States)

    Sha, Hao; Udayakumar, Thirupandiyur S.; Johnson, Perry B.; Dogan, Nesrin; Pollack, Alan; Yang, Yidong

    2016-01-01

    Small animal radiotherapy studies should be performed preferably on irradiators capable of focal tumor irradiation and healthy tissue sparing. In this study, an image guided small animal arc radiation treatment system (iSMAART) was developed which can achieve highly precise radiation targeting through the utilization of onboard cone beam computed tomography (CBCT) guidance. The iSMAART employs a unique imaging and radiation geometry where animals are positioned upright. It consists of a stationary x-ray tube, a stationary flat panel detector, and a rotatable and translational animal stage. System performance was evaluated in regards to imaging, image guidance, animal positioning, and radiation targeting using phantoms and tumor bearing animals. The onboard CBCT achieved good signal, contrast, and sub-millimeter spatial resolution. The iodine contrast CBCT accurately delineated orthotopic prostate tumors. Animal positioning was evaluated with ∼0.3 mm vertical displacement along superior-inferior direction. The overall targeting precision was within 0.4 mm. Stereotactic radiation beams conformal to tumor targets can be precisely delivered from multiple angles surrounding the animal. The iSMAART allows radiobiology labs to utilize an image guided precision radiation technique that can focally irradiate tumors while sparing healthy tissues at an affordable cost. PMID:26958942

  1. An image guided small animal stereotactic radiotherapy system.

    Science.gov (United States)

    Sha, Hao; Udayakumar, Thirupandiyur S; Johnson, Perry B; Dogan, Nesrin; Pollack, Alan; Yang, Yidong

    2016-04-01

    Small animal radiotherapy studies should be performed preferably on irradiators capable of focal tumor irradiation and healthy tissue sparing. In this study, an image guided small animal arc radiation treatment system (iSMAART) was developed which can achieve highly precise radiation targeting through the utilization of onboard cone beam computed tomography (CBCT) guidance. The iSMAART employs a unique imaging and radiation geometry where animals are positioned upright. It consists of a stationary x-ray tube, a stationary flat panel detector, and a rotatable and translational animal stage. System performance was evaluated in regards to imaging, image guidance, animal positioning, and radiation targeting using phantoms and tumor bearing animals. The onboard CBCT achieved good signal, contrast, and sub-millimeter spatial resolution. The iodine contrast CBCT accurately delineated orthotopic prostate tumors. Animal positioning was evaluated with ~0.3 mm vertical displacement along superior-inferior direction. The overall targeting precision was within 0.4 mm. Stereotactic radiation beams conformal to tumor targets can be precisely delivered from multiple angles surrounding the animal. The iSMAART allows radiobiology labs to utilize an image guided precision radiation technique that can focally irradiate tumors while sparing healthy tissues at an affordable cost. PMID:26958942

  2. Forage based animal production systems and sustainability, an invited keynote

    Directory of Open Access Journals (Sweden)

    Abdul Shakoor Chaudhry

    2008-07-01

    Full Text Available Forages are essential for the successful operation of animal production systems. This is more relevant to ruminants which are heavily dependant upon forages for their health and production in a cost-effective and sustainable manner. While forages are an economical source of nutrients for animal production, they also help conserve the soil integrity, water supply and air quality. Although the role of these forages for animal production could vary depending upon the regional preferences for the animal and forage species, climate and resources, their importance in the success of ruminant production is acknowledged. However with the increasing global human population and urbanisation, the sustainability of forage based animal production systems is sometimes questioned due to the interrelationship between animal production and the environment. It is therefore vital to examine the suitability of these systems for their place in the future to supply quality food which is safe for human consumption and available at a competitive price to the growing human population. Grassland and forage crops are recognised for their contribution to the environment, recreation and efficiency of meat and milk production,. To maintain sustainability, it is crucial that such farming systems remain profitable and environmentally friendly while producing nutritious foods of high economical value. Thus, it is pertinent to improve the nutritive value of grasses and other forage plants in order to enhance animal production to obtain quality food. It is also vital to develop new forages which are efficiently utilised and wasted less by involving efficient animals. A combination of forage legumes, fresh or conserved grasses, crop residues and other feeds could help develop an animal production system which is economically efficient, beneficial and viable. Also, it is crucial to use efficient animals, improved forage conservation methods, better manure handling, and minimum

  3. ANIMALS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mammals(哺乳动物)Mammals are the world's most dominant(最占优势的)animal.They are extremely(非常)diverse(多种多样的)creatures(生物,动物)that include(包括)the biggest ever animal (the blue whale鲸,which eats up to 6 tons every day),the smallest(leaf-nosed bat小蹄蝠) and the laziest(sloth树獭,who spends 80% of their time sleeping).There are over 4,600 kinds of mammals and they live in very different environments(环境)—oceans(海洋),rivers,the jungle(丛林),deserts,and plains(平原).

  4. 18F-DG PET and RCBF SPECT in epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, C. [Dept. of Nuclear Medicine, Univ. Bonn (Germany); Gruenwald, F. [Dept. of Nuclear Medicine, Univ. Bonn (Germany); Shih, W.J. [Dept. of Diagnostic Radiology, Nuclear Medicine Div., Kentucky Univ., KY (United States); Biersack, H.J. [Dept. of Nuclear Medicine, Univ. Bonn (Germany)

    1994-12-31

    Functional imaging of cortical metabolism and perfusion is of growing importance in the presurgical evaluation of patients suffering from intractable epilepsy. PET and SPECT are of proven value in functional imaging prior to epilepsy surgery. To date the best clinical experience was gained by using 18-fluorodeoxyglucose for PET and tracers for measurement of regional cerebral blood flow (rCBF) like 99mTc-HMPO or 99mTc-ECD for SPECT respectively. Their relative contribution towards detection of a probable focus site in epilepsy is still controversial. To determine the relative value of both procedures the literature has been reviewed with special respect to ictal SPECT studies. With regard to different standards used for correlation a relative sensitivity of 62.4% was found for interictal rCBF SPECT. 71% for 18-FDG-PET and 87% for ictal rCBF SPECT studies. In conclusion, earlier reported advantages of PET over SPECT seem to closely reflect the better spatial resolution of PET. Modern SPECT systems, dedicated for brain SPECT, provide appropriate and almost equal sensitivity. Regarding the limited specificity of interictal studies, both rCBF SPECT and FDG-PET need precise indications. However, further to detection of a probable focus site, metabolism and rCBF studies seem to be of value to predicit the post-surgical patients outcome as to seizure frequency and mental functions secondarily affected by epilepsy surgery such as memory impairment. Ictal rCBF SPECT provides higher sensitivity and specificity and virtually allows the detection lateralisation in almost every case. This means that a relatively precise anatomical localisation of an epileptogenic focus is being found in a rising number of patients. (orig.) [Deutsch] Die Bedeutung der funktionellen Bildgebung unter Verwendung der PET und der SPECT zum Nachweis einer gestoerten regionalen Durchblutung oder eines Zerebralen Hyopmetabolismus von Glukose hat heute einen festen Platz in der praechirurgischen

  5. Feasibility of small animal cranial irradiation with the microRT system

    International Nuclear Information System (INIS)

    Purpose: To develop and validate methods for small-animal CNS radiotherapy using the microRT system. Materials and Methods: A custom head immobilizer was designed and built to integrate with a pre-existing microRT animal couch. The Delrin couch-immobilizer assembly, compatible with multiple imaging modalities (CT, microCT, microMR, microPET, microSPECT, optical), was first imaged via CT in order to verify the safety and reproducibility of the immobilization method. Once verified, the subject animals were CT-scanned while positioned within the couch-immobilizer assembly for treatment planning purposes. The resultant images were then imported into CERR, an in-house-developed research treatment planning system, and registered to the microRTP treatment planning space using rigid registration. The targeted brain was then contoured and conformal radiotherapy plans were constructed for two separate studies: (1) a whole-brain irradiation comprised of two lateral beams at the 90 degree sign and 270 degree sign microRT treatment positions and (2) a hemispheric (left-brain) irradiation comprised of a single A-P vertex beam at the 0 degree sign microRT treatment position. During treatment, subject animals (n=48) were positioned to the CERR-generated treatment coordinates using the three-axis microRT motor positioning system and were irradiated using a clinical Ir-192 high-dose-rate remote after-loading system. The radiation treatment course consisted of 5 Gy fractions, 3 days per week. 90% of the subjects received a total dose of 30 Gy and 10% received a dose of 60 Gy. Results: Image analysis verified the safety and reproducibility of the immobilizer. CT scans generated from repeated reloading and repositioning of the same subject animal in the couch-immobilizer assembly were fused to a baseline CT. The resultant analysis revealed a 0.09 mm average, center-of-mass translocation and negligible volumetric error in the contoured, murine brain. The experimental use of the head

  6. [The Optimal Reconstruction Parameters by Scatter and Attenuation Corrections Using Multi-focus Collimator System in Thallium-201 Myocardial Perfusion SPECT Study].

    Science.gov (United States)

    Shibutani, Takayuki; Onoguchi, Masahisa; Funayama, Risa; Nakajima, Kenichi; Matsuo, Shinro; Yoneyama, Hiroto; Konishi, Takahiro; Kinuya, Seigo

    2015-11-01

    The aim of this study was to reveal the optimal reconstruction parameters of ordered subset conjugates gradient minimizer (OSCGM) by no correction (NC), attenuation correction (AC), and AC+scatter correction (ACSC) using IQ-single photon emission computed tomography (SPECT) system in thallium-201 myocardial perfusion SPECT. Myocardial phantom acquired two patterns, with or without defect. Myocardial images were performed 5-point scale visual score and quantitative evaluations using contrast, uptake, and uniformity about the subset and update (subset×iteration) of OSCGM and the full width at half maximum (FWHM) of Gaussian filter by three corrections. We decided on optimal reconstruction parameters of OSCGM by three corrections. The number of subsets to create suitable images were 3 or 5 for NC and AC, 2 or 3 for ACSC. The updates to create suitable images were 30 or 40 for NC, 40 or 60 for AC, and 30 for ACSC. Furthermore, the FWHM of Gaussian filters were 9.6 mm or 12 mm for NC and ACSC, 7.2 mm or 9.6 mm for AC. In conclusion, the following optimal reconstruction parameters of OSCGM were decided; NC: subset 5, iteration 8 and FWHM 9.6 mm, AC: subset 5, iteration 8 and FWHM 7.2 mm, ACSC: subset 3, iteration 10 and FWHM 9.6 mm. PMID:26596202

  7. Design optimization of multi-pinhole micro-SPECT configurations by signal detection tasks and system performance evaluations for mouse cardiac imaging

    International Nuclear Information System (INIS)

    An optimized configuration of multi-pinhole aperture can improve the spatial resolution and the sensitivity of pinhole SPECT simultaneously. In this study, an optimization strategy of the multi-pinhole configuration with a small detector is proposed for mouse cardiac imaging. A 14 mm-diameter spherical field-of-view (FOV) is used to accommodate the mouse heart. To accelerate the optimization process, the analytic models are applied to rapidly obtain the projection areas of the FOV, the sensitivities and the spatial resolutions of numerous system designs. The candidates of optimal multi-pinhole configuration are then decided by the preliminary evaluations with the analytic models. Subsequently, the pinhole SPECT systems equipped with the designed multi-pinhole apertures are modeled in GATE to generate the imaging system matrices (H matrices) for the system performance assessments. The area under the ROC curves (AUC) of the designed systems is evaluated by signal-known-exactly/background-known-statistically detection tasks with their corresponding H matrices. In addition, the spatial resolutions are estimated by the Fourier crosstalk approach, and the sensitivities are calculated with the H matrices of designed systems, respectively. Furthermore, a series of OSEM reconstruction images of synthetic phantoms, including the hot-rod phantom, mouse heart phantom and Defrise phantom, are reconstructed with the H matrices of designed systems. To quantify the sensitivity and resolution competition in the optimization process, the AUC from the detection tasks and the resolution estimated by the Fourier crosstalk are used as the figure of merits. A trade-off function of AUC and resolution is introduced to find the optimal multi-pinhole configuration. According to the examining results, a 22.5° rotated detector plus a 4-pinhole aperture with 22.5° rotation, 20% multiplexing and 1.52X magnification is the optimized multi-pinhole configuration for the micro pinhole-SPECT

  8. Design optimization of multi-pinhole micro-SPECT configurations by signal detection tasks and system performance evaluations for mouse cardiac imaging

    Science.gov (United States)

    Lee, M.-W.; Lin, W.-T.; Chen, Y.-C.

    2015-01-01

    An optimized configuration of multi-pinhole aperture can improve the spatial resolution and the sensitivity of pinhole SPECT simultaneously. In this study, an optimization strategy of the multi-pinhole configuration with a small detector is proposed for mouse cardiac imaging. A 14 mm-diameter spherical field-of-view (FOV) is used to accommodate the mouse heart. To accelerate the optimization process, the analytic models are applied to rapidly obtain the projection areas of the FOV, the sensitivities and the spatial resolutions of numerous system designs. The candidates of optimal multi-pinhole configuration are then decided by the preliminary evaluations with the analytic models. Subsequently, the pinhole SPECT systems equipped with the designed multi-pinhole apertures are modeled in GATE to generate the imaging system matrices (H matrices) for the system performance assessments. The area under the ROC curves (AUC) of the designed systems is evaluated by signal-known-exactly/background-known-statistically detection tasks with their corresponding H matrices. In addition, the spatial resolutions are estimated by the Fourier crosstalk approach, and the sensitivities are calculated with the H matrices of designed systems, respectively. Furthermore, a series of OSEM reconstruction images of synthetic phantoms, including the hot-rod phantom, mouse heart phantom and Defrise phantom, are reconstructed with the H matrices of designed systems. To quantify the sensitivity and resolution competition in the optimization process, the AUC from the detection tasks and the resolution estimated by the Fourier crosstalk are used as the figure of merits. A trade-off function of AUC and resolution is introduced to find the optimal multi-pinhole configuration. According to the examining results, a 22.5° rotated detector plus a 4-pinhole aperture with 22.5° rotation, 20% multiplexing and 1.52X magnification is the optimized multi-pinhole configuration for the micro pinhole-SPECT

  9. Binding of [123I]iodobenzamide to the rat D2 receptor after challenge with various doses of methylphenidate: an in vivo imaging study with dedicated small animal SPECT

    International Nuclear Information System (INIS)

    The effect of various doses of methylphenidate on the binding of [123I]iodobenzamide ([123I]IBZM) to the rat D2 receptor was assessed using small animal SPECT. D2 receptor binding was measured at baseline and after pretreatment with various doses of methylphenidate. For baseline and methylphenidate challenge, striatal equilibrium ratios (V3'') were computed as an estimation of the binding potential. After methylphenidate, striatal V3'' was 1.61 ± 0.61 (mean ± SD; 0.3 mg/kg), 0.91 ± 0.44 (3 mg/kg), 1.01 ± 0.44 (10 mg/kg), 0.91 ± 0.34 (30 mg/kg) and 0.99 ± 0.51 (60 mg/kg). Baseline values amounted to 1.73 ± 0.48, 1.32 ± 0.35, 1.50 ± 0.27, 1.82 ± 0.55 and 1.66 ± 0.41, respectively. Differences between baseline and methylphenidate were significant for the doses 3, 10, 30 and 60 mg/kg, whereas no significant difference was obtained for 0.3 mg/kg methylphenidate. Between-group differences of percentage reduction of D2 receptor binding were only significant for the groups pretreated with 0.3 and 30 mg/kg methylphenidate, respectively. Methylphenidate between 0.3 and 60 mg/kg decreased D2 receptor binding with a maximum reduction after 30 mg/kg. As no between-group differences were evident between the groups pretreated with 3, 10, 30 and 60 mg/kg, it may be inferred that doses ≥ 3 mg/kg were sufficient to induce maximum dopamine concentration in the synaptic cleft. Further investigations are needed in order to clarify whether the variation between subjects can be accounted for by different synaptic mechanisms at the presynaptic binding site. (orig.)

  10. Validation of a short-scan-time imaging protocol for thallium-201 myocardial SPECT with a multifocal collimator

    International Nuclear Information System (INIS)

    IQ-SPECT (Siemens AG, Munich, Germany) is a highly sensitive single-photon-emission computed tomography (SPECT) myocardial perfusion imaging (MPI) system that uses a multifocal collimator. We searched for a suitable protocol for short-time imaging by IQ-SPECT in thallium-201 (Tl-201) MPI by evaluating phantom images and also by comparing human IQ-SPECT images with conventional SPECT images as reference standards. We assessed the image quality using the normalized mean square error (NMSE) and drew up count profiles in Tl-201 SPECT images acquired with IQ-SPECT in a phantom study. We also performed Tl-201 stress myocardial SPECT/CT in 21 patients and compared delayed images acquired by using IQ-SPECT with 36 or 17 views per head with images obtained by using conventional SPECT. The NMSE of SPECT images from IQ-SPECT with 36 views was approximately one-fifth of that with 17 views. The myocardial count profile of images with 17 views was lower than those of images with 36 or 104 views in some regions. Defect scores were significantly lower, and image quality scores higher, in images from conventional SPECT than in those from IQ-SPECT with 17 views. Defect scores and image quality scores were equivalent in images from conventional SPECT and those from IQ-SPECT with 36 views. Agreement with the results of conventional SPECT in terms of coronary artery territory-based defect judgment was the best in IQ-SPECT with 36 views with computed tomography-derived attenuation correction (CTAC): the kappa values for IQ-SPECT with 36 views were 0.76 (without CTAC) and 0.83 (with CTAC), and those for IQ-SPECT with 17 views were 0.62 (without CTAC) and 0.59 (with CTAC). The difference in quantitative tracer uptake between conventional SPECT images and IQ-SPECT images was significantly greater for IQ-SPECT images with 17 views than for those with 36 views. Scanning with 36 views per head with CTAC may be appropriate for Tl-201 MPI using IQ-SPECT, because it provides images equivalent to

  11. Lipid-Calcium Phosphate Nanoparticles for Delivery to the Lymphatic System and SPECT/CT Imaging of Lymph Node Metastases

    OpenAIRE

    Tseng, Yu-cheng; Xu, Zhenghong; Guley, Kevin; Yuan, Hong; Huang, Leaf

    2014-01-01

    A lipid/calcium/phosphate (LCP) nanoparticle (NP) formulation (particle diameter ~25 nm) with superior siRNA delivery efficiency was developed and reported previously. Here, we describe the successful formulation of 111In into LCP for SPECT/CT imaging. Imaging and biodistribution studies showed that, polyethylene glycol grafted 111In-LCP preferentially accumulated in the lymph nodes at ~70% ID/g in both C57BL/6 and nude mice when the improved surface coating method was used. Both the liver an...

  12. Method and system for estimating herbage uptake of an animal

    DEFF Research Database (Denmark)

    2011-01-01

    The invention relates to a method and a system for estimating the feeding value or the amount of consumed herbage of grazing animals. The estimated herbage uptake is based on measured and possibly estimated data which is supplied as input data to a mathematical model. Measured input data may be...... acceleration data of the head of the animal, the length of herbage and the quality, i.e. feeding value, of herbage. Estimated input data may be the frequency of the reciprocate head motion of the animal and the in-active or active grazing status of the cow. Alternatively, the estimated data may be determined...... by the model and possibly provided as output data. Measurements may be obtained by a sensor module carried by the animal and the measurements may be wirelessly transmitted from the sensor module to a receiver, possibly via relay transceivers....

  13. Design and performance of a small-animal imaging system using synthetic collimation

    OpenAIRE

    Havelin, R J; Miller, B W; Barrett, H. H.; Furenlid, L.R.; Murphy, J M; Foley, M J

    2013-01-01

    This work outlines the design and construction of a single-photon emission computed tomography (SPECT) imaging system based on the concept of synthetic collimation. A focused multi-pinhole collimator is constructed using rapid-prototyping and casting techniques. The collimator projects the centre of the field of view (FOV) through forty-six pinholes when the detector is adjacent to the collimator, with the number reducing towards the edge of the FOV. The detector is then moved further from th...

  14. SPECT in psychiatry

    International Nuclear Information System (INIS)

    In the last fifteen years different attempts have been undertaken to understand the biological basis of major psychiatric disorders. One important tool to determine patterns of brain dysfunction is single emission computed tomography (SPECT). Whereas SPECT investigations are already a valuable diagnostic instrument for the diagnosis of dementia of the Alzheimer Type (DAT) there have not been consistent findings that can be referred to as specific for any other particular psychiatric diagnostic entity. Nevertheless, SPECT studies have been able to demonstrate evidence of brain dysfunction in patients with schizophrenia, depression, anxiety disorders, and substance abuse in which other methods showed no clear abnormality of brain function. Our manuscript reviews the data which are currently available in the literature and stresses the need for further studies, especially for prediction and monitoring psychiatric treatment modalities. (orig.)

  15. Un-collimated single-photon imaging system for high-sensitivity small animal and plant imaging

    Science.gov (United States)

    Walker, Katherine L.; Judenhofer, Martin S.; Cherry, Simon R.; Mitchell, Gregory S.

    2015-01-01

    In preclinical single-photon emission computed tomography (SPECT) system development the primary objective has been to improve spatial resolution by using novel parallel-hole or multi-pinhole collimator geometries. However, such high-resolution systems have relatively poor sensitivity (typically 0.01-0.1%). In contrast, a system that does not use collimators can achieve very high-sensitivity. Here we present a high-sensitivity un-collimated detector single-photon imaging (UCD-SPI) system for the imaging of both small animals and plants. This scanner consists of two thin, closely spaced, pixelated scintillator detectors that use NaI(Tl), CsI(Na), or BGO. The performance of the system has been characterized by measuring sensitivity, spatial resolution, linearity, detection limits, and uniformity. With 99mTc (140 keV) at the center of the field of view (20 mm scintillator separation), the sensitivity was measured to be 31.8% using the NaI(Tl) detectors and 40.2% with CsI(Na). The best spatial resolution (FWHM when the image formed as the geometric mean of the two detector heads, 20 mm scintillator separation) was 19.0 mm for NaI(Tl) and 11.9 mm for CsI(Na) at 140 keV, and 19.5 mm for BGO at 1116 keV, which is somewhat degraded compared to the cm-scale resolution obtained with only one detector head and a close source. The quantitative accuracy of the system’s linearity is better than 2% with detection down to activity levels of 100 nCi. Two in vivo animal studies (a renal scan using 99mTc MAG-3 and a thyroid scan with 123I) and one plant study (a 99mTcO4- xylem transport study) highlight the unique capabilities of this UCD-SPI system. From the renal scan, we observe approximately a one thousand-fold increase in sensitivity compared to the Siemens Inveon SPECT/CT scanner. UCD-SPI is useful for many imaging tasks that do not require excellent spatial resolution, such as high-throughput screening applications, simple radiotracer uptake studies in tumor

  16. Un-collimated single-photon imaging system for high-sensitivity small animal and plant imaging

    International Nuclear Information System (INIS)

    In preclinical single-photon emission computed tomography (SPECT) system development the primary objective has been to improve spatial resolution by using novel parallel-hole or multi-pinhole collimator geometries. However, such high-resolution systems have relatively poor sensitivity (typically 0.01–0.1%). In contrast, a system that does not use collimators can achieve very high-sensitivity. Here we present a high-sensitivity un-collimated detector single-photon imaging (UCD-SPI) system for the imaging of both small animals and plants. This scanner consists of two thin, closely spaced, pixelated scintillator detectors that use NaI(Tl), CsI(Na), or BGO. The performance of the system has been characterized by measuring sensitivity, spatial resolution, linearity, detection limits, and uniformity. With 99mTc (140 keV) at the center of the field of view (20 mm scintillator separation), the sensitivity was measured to be 31.8% using the NaI(Tl) detectors and 40.2% with CsI(Na). The best spatial resolution (FWHM when the image formed as the geometric mean of the two detector heads, 20 mm scintillator separation) was 19.0 mm for NaI(Tl) and 11.9 mm for CsI(Na) at 140 keV, and 19.5 mm for BGO at 1116 keV, which is somewhat degraded compared to the cm-scale resolution obtained with only one detector head and a close source. The quantitative accuracy of the system’s linearity is better than 2% with detection down to activity levels of 100 nCi. Two in vivo animal studies (a renal scan using 99mTc MAG-3 and a thyroid scan with 123I) and one plant study (a 99mTcO4− xylem transport study) highlight the unique capabilities of this UCD-SPI system. From the renal scan, we observe approximately a one thousand-fold increase in sensitivity compared to the Siemens Inveon SPECT/CT scanner. UCD-SPI is useful for many imaging tasks that do not require excellent spatial resolution, such as high-throughput screening applications, simple radiotracer uptake studies in

  17. Diagnosis of myocardial involvement in patients with systemic myopathies with 15-(p-[I-123]iodophenyl) pentadecanoic acid (IPPA) SPECT

    International Nuclear Information System (INIS)

    Involvement of the myocardium in non-infectious myopathies presents in most cases as systolic dysfunction or a disturbed cardiac rhythm. We are interested in exploring how often cardiac involvement can be evaluated with various diagnostic techniques in patients with proven myopathy. We investigated 41 patients with myopathies of various etiology, including mitochondrial and congenital myopathies, Curshmann-Steinert disease, muscular dystrophy, and others. Myopathy was proven by muscular biopsy usually from the bicep. Fatty acid imaging was performed with 15-(p-[I-123]iodophenyl)pentadecanoic acid (IP-PA) and sequential SPECT-scintigraphy with a 180 deg. rotation starting at the 45 deg. RAO position. 190 MBq were injected at the maximal stage of a submaximal exercise. Filtered backprojection and reorientation of the slices were achieved by standard techniques. The quantitative comparison of the oblique slices (bulls-eye technique) of the SPECT-studies revealed turnover-rates as a qualitative measure of β-oxidation. Serum levels of lactate (L), pyruvate (P), glucose (G) and triglycerides (TG) were measured at rest and stress. Ventricular function was investigated by radionuclide ventriculography (MUGA) at rest and under stress with Tc-99m labeled red blood cells. In addition, ECG, 24 hour-ECG, and echocardiography were also performed with standard techniques

  18. 18F-DG PET and RCBF SPECT in epilepsy

    International Nuclear Information System (INIS)

    Functional imaging of cortical metabolism and perfusion is of growing importance in the presurgical evaluation of patients suffering from intractable epilepsy. PET and SPECT are of proven value in functional imaging prior to epilepsy surgery. To date the best clinical experience was gained by using 18-fluorodeoxyglucose for PET and tracers for measurement of regional cerebral blood flow (rCBF) like 99mTc-HMPO or 99mTc-ECD for SPECT respectively. Their relative contribution towards detection of a probable focus site in epilepsy is still controversial. To determine the relative value of both procedures the literature has been reviewed with special respect to ictal SPECT studies. With regard to different standards used for correlation a relative sensitivity of 62.4% was found for interictal rCBF SPECT. 71% for 18-FDG-PET and 87% for ictal rCBF SPECT studies. In conclusion, earlier reported advantages of PET over SPECT seem to closely reflect the better spatial resolution of PET. Modern SPECT systems, dedicated for brain SPECT, provide appropriate and almost equal sensitivity. Regarding the limited specificity of interictal studies, both rCBF SPECT and FDG-PET need precise indications. However, further to detection of a probable focus site, metabolism and rCBF studies seem to be of value to predicit the post-surgical patients outcome as to seizure frequency and mental functions secondarily affected by epilepsy surgery such as memory impairment. Ictal rCBF SPECT provides higher sensitivity and specificity and virtually allows the detection lateralisation in almost every case. This means that a relatively precise anatomical localisation of an epileptogenic focus is being found in a rising number of patients. (orig.)

  19. Usefulness of brain SPECT

    International Nuclear Information System (INIS)

    Brain SPECT was not effectively exploited until I-123 isopropyl amphetamine (IAMP), indicator able to penetrate the blood brain barrier, became available. Although the experience of research teams working with IAMP is quite restricted due to the high cost of the indicator, some applications now appear to be worth the cost and in some cases provide data which cannot be obtained with routine techniques, especially in cerebrovascular patients, in epilepsy and some cases of tumor. Brain SPECT appears as an atraumatic test which is useful to establish a functional evaluation of the cerebral parenchyma, and which is a complement to arteriography, X-ray scan and regional cerebral blood flow measurement

  20. Performance evaluation of high-resolution square parallel-hole collimators with a CZT room temperature pixelated semiconductor SPECT system: a Monte Carlo simulation study

    International Nuclear Information System (INIS)

    The pixelated semiconductor based on cadmium zinc telluride (CZT) is a promising imaging device that provides many benefits compared with conventional scintillation detectors. By using a high-resolution square parallel-hole collimator with a pixelated semiconductor detector, we were able to improve both sensitivity and spatial resolution. Here, we present a simulation of a CZT pixleated semiconductor single-photon emission computed tomography (SPECT) system with a high-resolution square parallel-hole collimator using various geometric designs of 0.5, 1.0, 1.5, and 2.0 mm X-axis hole size. We performed a simulation study of the eValuator-2500 (eV Microelectronics Inc., Saxonburg, PA, U.S.A.) CZT pixelated semiconductor detector using a Geant4 Application for Tomographic Emission (GATE). To evaluate the performances of these systems, the sensitivity and spatial resolution was evaluated. Moreover, to evaluate the overall performance of the imaging system, a hot-rod phantom was designed. Our results showed that the average sensitivity of the 2.0 mm collimator X-axis hole size was 1.34, 1.95, and 3.92 times higher than that of the 1.5, 1.0, and 0.5 mm collimator X-axis hole size, respectively. Also, the average spatial resolution of the 0.5 mm collimator X-axis hole size was 28.69, 44.65, and 55.73% better than that of the 1.0, 1.5, and 2.0 mm collimator X-axis hole size, respectively. We discuss the high-resolution square parallel-hole collimator of various collimator geometric designs and our evaluations. In conclusion, we have successfully designed a high-resolution square parallel-hole collimator with a CZT pixelated semiconductor SPECT system

  1. Performance evaluation of high-resolution square parallel-hole collimators with a CZT room temperature pixelated semiconductor SPECT system: a Monte Carlo simulation study

    Science.gov (United States)

    Lee, Y.; Kang, W.

    2015-07-01

    The pixelated semiconductor based on cadmium zinc telluride (CZT) is a promising imaging device that provides many benefits compared with conventional scintillation detectors. By using a high-resolution square parallel-hole collimator with a pixelated semiconductor detector, we were able to improve both sensitivity and spatial resolution. Here, we present a simulation of a CZT pixleated semiconductor single-photon emission computed tomography (SPECT) system with a high-resolution square parallel-hole collimator using various geometric designs of 0.5, 1.0, 1.5, and 2.0 mm X-axis hole size. We performed a simulation study of the eValuator-2500 (eV Microelectronics Inc., Saxonburg, PA, U.S.A.) CZT pixelated semiconductor detector using a Geant4 Application for Tomographic Emission (GATE). To evaluate the performances of these systems, the sensitivity and spatial resolution was evaluated. Moreover, to evaluate the overall performance of the imaging system, a hot-rod phantom was designed. Our results showed that the average sensitivity of the 2.0 mm collimator X-axis hole size was 1.34, 1.95, and 3.92 times higher than that of the 1.5, 1.0, and 0.5 mm collimator X-axis hole size, respectively. Also, the average spatial resolution of the 0.5 mm collimator X-axis hole size was 28.69, 44.65, and 55.73% better than that of the 1.0, 1.5, and 2.0 mm collimator X-axis hole size, respectively. We discuss the high-resolution square parallel-hole collimator of various collimator geometric designs and our evaluations. In conclusion, we have successfully designed a high-resolution square parallel-hole collimator with a CZT pixelated semiconductor SPECT system.

  2. SPECT/CT in diagnostics of the hand joint; SPECT/CT in der Handgelenkdiagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Huellner, M.W.; Strobel, K.; Veit-Haibach, P. [Luzerner Kantonsspital, Institut fuer Radiologie und Nuklearmedizin, Luzern (Switzerland); Hug, U.; Wartburg, U. von [Luzerner Kantonsspital, Abteilung fuer Hand- und Plastische Chirurgie, Luzern (Switzerland)

    2012-07-15

    Hand and wrist pain remains a diagnostic challenge, both for hand surgeons and for radiologists. Especially chronic wrist pain is often hard to localize clinically and further cross-sectional imaging is often indispensable. The well-established standard for non-invasive diagnostic imaging in chronic wrist pain is magnetic resonance imaging (MRI). Recently, state-of-the-art single photon emission computed tomography/computed tomography (SPECT/CT) systems have been introduced into the diagnostic array for musculoskeletal conditions. Besides morphological data SPECT/CT also provides metabolic information. SPECT/CT allows an exact detection and precise anatomical mapping of different pathologies of the wrist, which is often crucial for therapy. In patients with chronic wrist pain, SPECT/CT is more specific than MRI. It is also beneficial in patients with posttraumatic conditions and metal implants and may serve as a problem-solving tool in difficult cases. It is considered that SPECT/CT imaging is useful if MRI results are equivocal or present no clearly leading pathology. A primary examination with SPECT/CT seems to be a reasonable option for patients with certain bone pathologies, metal implants and non-specific wrist pain. (orig.) [German] Handgelenkschmerzen sind eine diagnostische Herausforderung fuer Handchirurgen und Radiologen. Insbesondere chronische Handgelenkschmerzen sind oft nur schwer einer genauen Lokalisation zuzuordnen, eine Schnittbildgebung ist deshalb oft unerlaesslich. Der etablierte Standard zur nichtinvasiven Diagnostik chronischer Handgelenkschmerzen ist die Magnetresonanztomographie. In den letzten Jahren ist mit der ''single photon emission computed tomography''/CT (SPECT/CT) eine neue Modalitaet zum diagnostischen Spektrum muskuloskelettaler Veraenderungen hinzugetreten, welche neben morphologischen Daten auch metabolische Informationen liefert. Die SPECT/CT ermoeglicht eine genaue Detektion und praezise anatomische

  3. A Real-time Monitoring System for Programming Education using a Generator of Program Animation Systems

    OpenAIRE

    Youzou Miyadera; Kunimi Kurasawa; Shoichi Nakamura; Nobuyoshi Yonezawa; Setsuo Yokoyama

    2007-01-01

    We have developed a meta-system that generates program animation systems. The generated animation systems visually display changes in program actions and help students (novice programmers) understand them. The animation systems also accumulate historical records of the students’ operations as they execute a program step by step while trying to understand it. By analyzing accumulated records, the meta-system pinpoints common areas of dif- ficulty and their causes for the lecturer. To develop t...

  4. Monte Carlo simulation of the scanner rSPECT using GAMOS: a Geant4 based-framework

    International Nuclear Information System (INIS)

    The molecular imaging of cellular processes in vivo using preclinical animal studies and SPECT technique is one of the main reasons for the design of new devices with high spatial resolution. As an auxiliary tool, Monte Carlo simulation has allowed the characterization and optimization of those medical imaging systems. GAMOS (Geant4-based Architecture for Medicine-Oriented Simulations) has been proved as a powerful and effective toolkit to reproduce experimental data obtained with PET (Positron Emission Tomography) systems. This work aims to demonstrate the potential of this new simulation framework to generate reliable simulated data using SPECT (Single Photon Emission Tomography) applications package. For this purpose, simulation of a novel installation, dedicated to preclinical studies with rodents 'sPECT' has been done. The study comprises collimation, detection geometries, spatial distribution and activity of the source in correspondence with experimental measurements. Studies have been done using 99mTc, 20% energy window and two collimators: 1. hexagonal parallel holes and 2. pinhole. Performance evaluation of the facility was focused to calculate spatial resolution and sensitivity as function of source-collimator distance. Simulated values had been compared with experimental ones. A micro-Derenzo phantom was recreated in order to carry out tomographic reconstruction using Single Slice ReBinning (SSRB) algorithm. It was concluded that simulation shows good agreement with experimental data, which proves GAMOS feasibility in reproducing SPECT data. (Author)

  5. Cost-efficiency of animal welfare in broiler production systems

    NARCIS (Netherlands)

    Gocsik, Éva; Brooshooft, Suzanne D.; Jong, de Ingrid C.; Saatkamp, Helmut W.

    2016-01-01

    Broiler producers operate in a highly competitive and cost-price driven environment. In addition, in recent years the societal pressure to improve animal welfare (AW) in broiler production systems is increasing. Hence, from an economic and decision making point of view, the cost-efficiency of imp

  6. Computed tomography of the central nervous system in small animals

    International Nuclear Information System (INIS)

    With computed tomography in 44 small animals some well defined anatomical structures and pathological processes of the central nervous system are described. Computed tomography is not only necessary for the diagnosis of tumors; malformations, inflammatory, degenerative and vascular diseases and traumas are also visible

  7. SPECT/CT - Technical aspects and optimization possibilities

    International Nuclear Information System (INIS)

    In contrast to positron emission tomography/computed tomography (PET/CT), the currently available single photon emission computed tomography/computed tomography (SPECT/CT) systems are very heterogeneous. On the side of the gamma cameras, dual-head systems are established, which are not very different from one manufacturer to the other. For the CT component, there are low dose tubes on the one side and flat detector-based cone beam CT and multislice-CT on the other. The CT image data can be used for anatomic correlation of suspicious findings as well as for attenuation correction of SPECT data. Attenuation correction enables on the one hand enhancement of SPECT image quality and on the other hand quantification of the radioactivity concentration becomes possible. Modern iterative reconstruction algorithms allow scatter correction and attenuation correction of SPECT data using the density values from CT. It still has to be shown to what extent attenuation-corrected whole body SPECT/CT studies will be able to improve the sensitivity of scintigraphy studies. As SPECT/CT primarily aims at morphologic correlation and not detection of additional lesions, an attempt should be made to balance the necessary anatomic information and the additional radiation exposure. Besides SPECT-guided CT all technical possibilities for dose reduction should be exhausted. (orig.)

  8. Dual SPECT of dopamine system using [99mTc]TRODAT-1 and [123I]IBZM in normal and 6-OHDA-lesioned formosan rock monkeys

    International Nuclear Information System (INIS)

    Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by a severe loss of the dopaminergic neurons in the substantia nigra pars compacta. In this study, we evaluated pre- and post-synaptic binding sites of the dopamine system in three normal and one parkinsonian monkeys using simultaneous [99mTc]TRODAT-1 and [123I]IBZM imaging. The parkinsonian monkey was induced by injecting 6-hydroxydopamine (6-OHDA) bilaterally into the medial forebrain bundle under MRI guidance. [99mTc]TRODAT-1 (targeting dopamine transporters) and [123I]IBZM (targeting D2/D3 receptors) were administered almost simultaneously and the SPECT images were acquired over 4 h using a dual-headed gamma camera equipped with ultra-high resolution fan-beam collimators. Data were obtained using energy window of 15% centered on 140 keV for 99mTc in conjunction with 10% asymmetric energy window in a lower bound at 159 keV for 123I. Single SPECT studies of [99mTc]TRODAT-1 and [123I]IBZM were also performed. We found a comparable image quality and uptake ratios between single- and dual-isotope studies. There are higher TRODAT-1 uptakes in the control monkeys than the 6-OHDA-lesioned monkey. The uptake of [123I] IBZM showed no significant difference between controls and 6-OHDA-lesioned monkey. Our results suggest that dual isotope imaging using [99mTc]TRODAT-1 and [123I]IBZM may be a useful means in evaluating the changes of both pre- and post-synaptic dopamine system in a primate model of parkinsonism

  9. Method and system for estimating herbage uptake of an animal

    OpenAIRE

    S. Nadimi, Esmaeil; Jørgensen, Rasmus Nyholm; Oudshoorn, Frank Willem

    2011-01-01

    The invention relates to a method and a system for estimating the feeding value or the amount of consumed herbage of grazing animals. The estimated herbage uptake is based on measured and possibly estimated data which is supplied as input data to a mathematical model. Measured input data may be acceleration data of the head of the animal, the length of herbage and the quality, i.e. feeding value, of herbage. Estimated input data may be the frequency of the reciprocate head motion of the anima...

  10. Ready for prime time? Dual tracer PET and SPECT imaging

    Science.gov (United States)

    Fakhri, Georges El

    2012-01-01

    Dual isotope single photon emission computed tomography (SPECT) and dual tracer positron emission tomography (PET) imaging have great potential in clinical and molecular applications in the pediatric as well as the adult populations in many areas of brain, cardiac, and oncologic imaging as it allows the exploration of different physiological and molecular functions (e.g., perfusion, neurotransmission, metabolism, apoptosis, angiogenesis) under the same physiological and physical conditions. This is crucial when the physiological functions studied depend on each other (e.g., perfusion and metabolism) hence requiring simultaneous assessment under identical conditions, and can reduce greatly the quantitation errors associated with physical factors that can change between acquisitions (e.g., human subject or animal motion, change in the attenuation map as a function of time) as is detailed in this editorial. The clinical potential of simultaneous dual isotope SPECT, dual tracer PET and dual SPECT/PET imaging are explored and summarized. In this issue of AJNMMI (http://www.ajnmmi.us), Chapman et al. explore the feasibility of simultaneous and sequential SPECT/PET imaging and conclude that down-scatter and crosstalk from 511 keV photons preclude obtaining useful SPECT information in the presence of PET radiotracers. They report on an alternative strategy that consists of performing sequential SPECT and PET studies in hybrid microPET/SPECT/CT scanners, now widely available for molecular imaging. They validate their approach in a phantom consisting of a 96-well plate with variable 99mTc and 18F concentrations and illustrate the utility of such approaches in two sequential SPECT-PET/CT studies that include 99mTc-MAA/18F-NaF and 99mTc-Pentetate/18F-NaF. These approaches will need to be proven reproducible, accurate and robust to variations in the experimental conditions before they can be accepted by the molecular imaging community and be implemented in routine molecular

  11. Binding of [{sup 123}I]iodobenzamide to the rat D{sub 2} receptor after challenge with various doses of methylphenidate: an in vivo imaging study with dedicated small animal SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaus, Susanne; Antke, Christina; Beu, Markus; Wirrwar, Andreas; Mueller, Hans-Wilhelm [University Hospital Duesseldorf, Clinic of Nuclear Medicine, Duesseldorf (Germany); Kley, Konstantin [Institute of Radiology and Nuclear Medicine, Moenchengladbach (Germany); Huston, Joseph P. [Heinrich Heine University, Center for Behavioural Neuroscience, Duesseldorf (Germany)

    2011-04-15

    The effect of various doses of methylphenidate on the binding of [{sup 123}I]iodobenzamide ([{sup 123}I]IBZM) to the rat D{sub 2} receptor was assessed using small animal SPECT. D{sub 2} receptor binding was measured at baseline and after pretreatment with various doses of methylphenidate. For baseline and methylphenidate challenge, striatal equilibrium ratios (V{sub 3}'') were computed as an estimation of the binding potential. After methylphenidate, striatal V{sub 3}'' was 1.61 {+-} 0.61 (mean {+-} SD; 0.3 mg/kg), 0.91 {+-} 0.44 (3 mg/kg), 1.01 {+-} 0.44 (10 mg/kg), 0.91 {+-} 0.34 (30 mg/kg) and 0.99 {+-} 0.51 (60 mg/kg). Baseline values amounted to 1.73 {+-} 0.48, 1.32 {+-} 0.35, 1.50 {+-} 0.27, 1.82 {+-} 0.55 and 1.66 {+-} 0.41, respectively. Differences between baseline and methylphenidate were significant for the doses 3, 10, 30 and 60 mg/kg, whereas no significant difference was obtained for 0.3 mg/kg methylphenidate. Between-group differences of percentage reduction of D{sub 2} receptor binding were only significant for the groups pretreated with 0.3 and 30 mg/kg methylphenidate, respectively. Methylphenidate between 0.3 and 60 mg/kg decreased D{sub 2} receptor binding with a maximum reduction after 30 mg/kg. As no between-group differences were evident between the groups pretreated with 3, 10, 30 and 60 mg/kg, it may be inferred that doses {>=} 3 mg/kg were sufficient to induce maximum dopamine concentration in the synaptic cleft. Further investigations are needed in order to clarify whether the variation between subjects can be accounted for by different synaptic mechanisms at the presynaptic binding site. (orig.)

  12. Anatomically standardized statistical mapping of 123I-IMP SPECT in brain tumors

    International Nuclear Information System (INIS)

    123I-iodoamphetamine Single Photon Emission Computed Tomography (IMP SPECT) is used to evaluate cerebral blood flow. However, application of IMP SPECT to patients with brain tumors has been rarely reported. Primary central nervous system lymphoma (PCNSL) is a rare tumor that shows delayed IMP uptake. The relatively low spatial resolution of SPECT is a clinical problem in diagnosing brain tumors. We examined anatomically standardized statistical mapping of IMP SPECT in patients with brain lesions. This study included 49 IMP SPECT images for 49 patients with brain lesions: 20 PCNSL, 1 Burkitt's lymphoma, 14 glioma, 4 other tumor, 7 inflammatory disease and 3 without any pathological diagnosis but a clinical diagnosis of PCNSL. After intravenous injection of 222 MBq of 123I-IMP, early (15 minutes) and delayed (4 hours) images were acquired using a multi-detector SPECT machine. All SPECT data were transferred to a newly developed software program iNeurostat+ (Nihon Medi-physics). SPECT data were anatomically standardized on normal brain images. Regions of increased uptake of IMP were statistically mapped on the tomographic images of normal brain. Eighteen patients showed high uptake in the delayed IMP SPECT images (16 PCNSL, 2 unknown). Other tumor or diseases did not show high uptake of delayed IMP SPECT, so there were no false positives. Four patients with pathologically proven PCNSL showed no uptake in original IMP SPECT. These tumors were too small to detect in IMP SPECT. However, statistical mapping revealed IMP uptake in 18 of 20 pathologically verified PCNSL patients. A heterogeneous IMP uptake was seen in homogenous tumors in MRI. For patients with a hot IMP uptake, statistical mapping showed clearer uptake. IMP SPECT is a sensitive test to diagnose of PCNSL, although it produced false negative results for small posterior fossa tumor. Anatomically standardized statistical mapping is therefore considered to be a useful method for improving the diagnostic

  13. Animal nutrition in a systems context - the way forward

    International Nuclear Information System (INIS)

    Full text: Secondary production (i.e. milk, meat, wool and eggs) in animal production systems is a function of complex interactions between animal potential and the environmental conditions (biotic and abiotic). A major factor limiting secondary production is animal nutrition. Obviously, in the absence of food, the animal will stop producing and eventually die; consequently, the investment in it, to that point, is lost. Supplying only enough nutrients to maintain the animal results in no productive output, and thus the marginal cost of production is infinite, i.e. animal input costs are incurred but no return is harvested. Provision of nutrients in excess of maintenance allows the animal to become productive thus generating a return on the investment. Animals differ in their nutrient requirements according to their inherent genetic potential and the desired level of production. There are multiple combinations of dietary ingredients that can meet an animal's nutrient requirements, which create variation in dietary costs when food resources are finite in supply. Optimization algorithms can be utilized to solve for maximum production or economic return given a set of constraints. For animals, these constraints include nutrient requirements and the availability and accessibility of food supplies. Temporal fluctuations of abiotic environmental conditions may directly impact key components of the primary production systems. For example seasonal drought diminishes and changes the seasonal pattern of herbage growth, altering or limiting the nutrient availability from local sources such as pasture. Thus, it is important that animal performance models are capable of accurately predicting secondary production responses to varying and dynamic feed inputs. The accuracy and precision of current nutrient requirement models for animals has improved over time. Although static in form, these models can and have been utilized to predict secondary production from a set of inputs

  14. Juvenile spondylolysis: a comparative analysis of CT, SPECT and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, R.S.D. [Royal Liverpool University Hospital, Department of Radiology, Liverpool (United Kingdom); Grainger, A.J. [Leeds General Infirmary, Department of Radiology, Leeds (United Kingdom); Hide, I.G. [Freeman Hospital, Department of Radiology, Newcastle upon Tyne (United Kingdom); Papastefanou, S. [James Cook University Hospital, Department Radiology, Middlesbrough (United Kingdom); Greenough, C.G. [James Cook University Hospital, Department of Trauma and Orthopaedics, Middlesbrough (United Kingdom)

    2005-02-01

    To evaluate whether MRI correlates with CT and SPECT imaging for the diagnosis of juvenile spondylolysis, and to determine whether MRI can be used as an exclusive image modality. Juveniles and young adults with a history of extension low back pain were evaluated by MRI, CT and SPECT imaging. All images were reviewed blindly. Correlative analyses included CT vs MRI for morphological grading and SPECT vs MRI for functional grading. Finally, an overall grading system compared MRI vs CT and SPECT combined. Statistical analysis was performed using the kappa statistic. Seventy-two patients (mean age 16 years) were recruited. Forty pars defects were identified in 22 patients (31%), of which 25 were chronic non-union, five acute complete defects and ten acute incomplete fractures. Kappa scores demonstrated a high level of agreement for all comparative analyses. MRI vs SPECT (kappa: 0.794), MRI vs CT (kappa: 0.829) and MRI vs CT/SPECT (kappa: 0.786). The main causes of discrepancy were between MRI and SPECT for the diagnosis of stress reaction in the absence of overt fracture, and distinguishing incomplete fractures from intact pars or complete defects. MRI can be used as an effective and reliable first-line image modality for diagnosis of juvenile spondylolysis. However, localised CT is recommended as a supplementary examination in selected cases as a baseline for assessment of healing and for evaluation of indeterminate cases. (orig.)

  15. Proceedings of clinical SPECT [single photon emission computed tomography] symposium

    International Nuclear Information System (INIS)

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluation of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base

  16. CdZnTe strip detector SPECT imaging with a slit collimator

    International Nuclear Information System (INIS)

    In this paper, we propose a CdZnTe rotating and spinning gamma camera attached with a slit collimator. This imaging system acquires convergent planar integrals of a radioactive distribution. Two analytical image reconstruction algorithms are proposed. Preliminary phantom studies show that our small CdZnTe camera with a slit collimator outperforms a larger NaI(Tl) camera with a pinhole collimator in terms of spatial resolution in the reconstructed images. The main application of this system is small animal SPECT imaging

  17. Monte Carlo scatter correction for SPECT

    Science.gov (United States)

    Liu, Zemei

    The goal of this dissertation is to present a quantitatively accurate and computationally fast scatter correction method that is robust and easily accessible for routine applications in SPECT imaging. A Monte Carlo based scatter estimation method is investigated and developed further. The Monte Carlo simulation program SIMIND (Simulating Medical Imaging Nuclear Detectors), was specifically developed to simulate clinical SPECT systems. The SIMIND scatter estimation (SSE) method was developed further using a multithreading technique to distribute the scatter estimation task across multiple threads running concurrently on multi-core CPU's to accelerate the scatter estimation process. An analytical collimator that ensures less noise was used during SSE. The research includes the addition to SIMIND of charge transport modeling in cadmium zinc telluride (CZT) detectors. Phenomena associated with radiation-induced charge transport including charge trapping, charge diffusion, charge sharing between neighboring detector pixels, as well as uncertainties in the detection process are addressed. Experimental measurements and simulation studies were designed for scintillation crystal based SPECT and CZT based SPECT systems to verify and evaluate the expanded SSE method. Jaszczak Deluxe and Anthropomorphic Torso Phantoms (Data Spectrum Corporation, Hillsborough, NC, USA) were used for experimental measurements and digital versions of the same phantoms employed during simulations to mimic experimental acquisitions. This study design enabled easy comparison of experimental and simulated data. The results have consistently shown that the SSE method performed similarly or better than the triple energy window (TEW) and effective scatter source estimation (ESSE) methods for experiments on all the clinical SPECT systems. The SSE method is proven to be a viable method for scatter estimation for routine clinical use.

  18. Mnemonic activation by SPECT

    International Nuclear Information System (INIS)

    Data of literature show that SPECT is able to detect cerebral activations induced by sensory-motor stimuli. The facts are not clearly established in what concerns the cognitive activations the amplitude of which is lower. We have studied an activation paradigm such as the Grober and Bruschke test which implies the long term explicit memory. It comprises a visual presentation of words followed by their indexed recall. By using a two-day protocol, 2 SPECTs were achieved in 4 healthy right-handed voluntaries as follows: one of activation (A) and one of control (B). The fifth subject benefited by a SPECT B and of an MRI. The injection for the examination A has been done during the indexed recall stage and for the examination B at the moment when the patient repeated several times the same 3 words. The SPECT data were collected 1 hour after the injection of 370 MBq of ECD making use of a 3-head camera equipped with UHR fan collimators and ending by a LMH on the reconstructed images of 8 mm. The MRI has been achieved by means of a Signa 1.5 Tesla magnet. The SPECT A and B of the subjects 1 to 4 were matched elastically to that of the subject 5 and that of the subject 5 was rigidly matched on its MRI. In this way the individual activation cards of the 4 subjects could be averaged and superimposed on the MRI of the 5. subject. One observes an internal temporal activation (maximal activation of left tonsil, +25% and right uncus, +23%) and a right cingulum activation (maximal activation, +25%), in agreement with the neuro-physiological data. The elastic matching makes possible the inter-subject averaging, what increases the signal-to-noise ratio of activation. The inter-modality rigid matching facilitates the anatomical localisation of the activation site. With these adapted tools, the cognitive activation is thus possible by SPECT and opens perspectives for early diagnosis of neurological troubles, namely of Alzheimer's disease

  19. Objective evaluation of reconstruction methods for quantitative SPECT imaging in the absence of ground truth

    OpenAIRE

    Jha, Abhinav K.; Song, Na; Caffo, Brian; Frey, Eric C.

    2015-01-01

    Quantitative single-photon emission computed tomography (SPECT) imaging is emerging as an important tool in clinical studies and biomedical research. There is thus a need for optimization and evaluation of systems and algorithms that are being developed for quantitative SPECT imaging. An appropriate objective method to evaluate these systems is by comparing their performance in the end task that is required in quantitative SPECT imaging, such as estimating the mean activity concentration in a...

  20. Toxoplasma gondii Infection in Animal-Friendly Pig Production Systems

    OpenAIRE

    Kijlstra, A.; Eissen, O.A.; Cornelissen, J.B.W.J.; Munniksma, K.; Eijck, I.A.J.M.; Kortbeek, T.

    2004-01-01

    PURPOSE. Consumption of undercooked pork meat products has been considered a major risk factor for contracting toxoplasmosis in humans. Indoor farming and improved hygiene have drastically reduced Toxoplasma infections in pigs over the past decades. Whether introduction of animal-friendly production systems will lead to a reemergence of Toxoplasma infections in pigs is not yet known. Investigating this possibility was the purpose of this study. METHODS. Blood was obtained from pigs raised...

  1. TDA: A new trainable trajectory formation system for facial animation

    OpenAIRE

    Govokhina, Oxana; Bailly, Gérard; Breton, Gaspard; Bagshaw, Paul

    2006-01-01

    A new trainable trajectory formation system - named TDA - for facial animation is here proposed that dissociates parametric spaces and methods for movement planning and execution. Movement planning is achieved by HMM-based trajectory formation. This module essentially plans configurations of lip geometry (aperture, spreading and protrusion). Movement execution is performed by concatenation of multi-represented diphones. This module is responsible for selecting and concatenating detailed facia...

  2. Animal models of systemic sclerosis: their utility and limitations

    OpenAIRE

    Artlett, Carol

    2014-01-01

    Carol M Artlett Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA Abstract: Without doubt, animal models have provided significant insights into our understanding of the rheumatological diseases; however, no model has accurately replicated all aspects of any autoimmune disease. Recent years have seen a plethora of knockouts and transgenics that have contributed to our knowledge of the initiating events of systemic sclerosis, an autoimmune...

  3. Bioluminescent system for dynamic imaging of cell and animal behavior

    International Nuclear Information System (INIS)

    Highlights: ► We combined a yellow variant of GFP and firefly luciferase to make ffLuc-cp156. ► ffLuc-cp156 showed improved photon yield in cultured cells and transgenic mice. ► ffLuc-cp156 enabled video-rate bioluminescence imaging of freely-moving animals. ► ffLuc-cp156 mice enabled tracking real-time drug delivery in conscious animals. -- Abstract: The current utility of bioluminescence imaging is constrained by a low photon yield that limits temporal sensitivity. Here, we describe an imaging method that uses a chemiluminescent/fluorescent protein, ffLuc-cp156, which consists of a yellow variant of Aequorea GFP and firefly luciferase. We report an improvement in photon yield by over three orders of magnitude over current bioluminescent systems. We imaged cellular movement at high resolution including neuronal growth cones and microglial cell protrusions. Transgenic ffLuc-cp156 mice enabled video-rate bioluminescence imaging of freely moving animals, which may provide a reliable assay for drug distribution in behaving animals for pre-clinical studies.

  4. Bioluminescent system for dynamic imaging of cell and animal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hara-Miyauchi, Chikako [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, Saitama 351-0198 (Japan); Department of Biophysics and Biochemistry, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo 113-8510 (Japan); Tsuji, Osahiko [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Hanyu, Aki [Division of Biochemistry, The Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550 (Japan); Okada, Seiji [Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Yasuda, Akimasa [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Fukano, Takashi [Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, Saitama 351-0198 (Japan); Akazawa, Chihiro [Department of Biophysics and Biochemistry, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo 113-8510 (Japan); Nakamura, Masaya [Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Imamura, Takeshi [Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 (Japan); Core Research for Evolutional Science and Technology, The Japan Science and Technology Corporation, Tokyo 135-8550 (Japan); Matsuzaki, Yumi [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Okano, Hirotaka James, E-mail: hjokano@jikei.ac.jp [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Division of Regenerative Medicine Jikei University School of Medicine, Tokyo 150-8461 (Japan); and others

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer We combined a yellow variant of GFP and firefly luciferase to make ffLuc-cp156. Black-Right-Pointing-Pointer ffLuc-cp156 showed improved photon yield in cultured cells and transgenic mice. Black-Right-Pointing-Pointer ffLuc-cp156 enabled video-rate bioluminescence imaging of freely-moving animals. Black-Right-Pointing-Pointer ffLuc-cp156 mice enabled tracking real-time drug delivery in conscious animals. -- Abstract: The current utility of bioluminescence imaging is constrained by a low photon yield that limits temporal sensitivity. Here, we describe an imaging method that uses a chemiluminescent/fluorescent protein, ffLuc-cp156, which consists of a yellow variant of Aequorea GFP and firefly luciferase. We report an improvement in photon yield by over three orders of magnitude over current bioluminescent systems. We imaged cellular movement at high resolution including neuronal growth cones and microglial cell protrusions. Transgenic ffLuc-cp156 mice enabled video-rate bioluminescence imaging of freely moving animals, which may provide a reliable assay for drug distribution in behaving animals for pre-clinical studies.

  5. Intraoperative 3-D mapping of parathyroid adenoma using freehand SPECT

    OpenAIRE

    Rahbar, K.; Colombo-Benkmann, M. (Mario); Haane, C. (Christina); Wenning, C. (Christian); Vrachimis, A. (Alexis); Weckesser, J.M. (Jochen); Schober, O.

    2013-01-01

    Background: Freehand single photon emission computed tomography (fSPECT) is a three-dimensional (3-D) tomographic imaging modality based on data acquisition with a handheld detector that is moved freely, in contrast to conventional, gantry-mounted gamma camera systems. In this pilot study, we evaluated the feasibility of fSPECT for intraoperative 3-D mapping in patients with parathyroid adenomas. Methods: Three patients (range 30 to 45 years) diagnosed with hyperparathyroidism (one primary...

  6. Dopamine transporter imaging in the aged rat: a [123I]FP-CIT SPECT study

    International Nuclear Information System (INIS)

    Introduction: Rodent models are extensively used to assess the biochemical and physiological changes associated with aging. They play a major role in the development of therapies for age-related pathologies such as Parkinson's disease. To validate the usefulness of these animal models in aging or age-related disease research, the consistency of cerebral aging processes across species must be evaluated. The dopaminergic system seems particularly susceptible to the aging process. One of the results of this susceptibility is a decline in striatal dopamine transporter (DAT) availability. Methods: We sought to ascertain whether similar age changes could be detected in-vivo in rats, using molecular imaging techniques such as single photon emission computed tomography (SPECT) with [123I]FP-CIT. Results: A significant decrease of 17.21% in the striatal specific uptake ratio was observed in the aged rats with respect to the young control group. Conclusions: Our findings suggest that age-related degeneration in the nigrostriatal track is similar in humans and rats, which supports the use of this animal in models to evaluate the effect of aging on the dopaminergic system. Advances in Knowledge and Implications for patient Care: Our findings indicate that age-related degeneration in the nigrostriatal track is similar in humans and rats and that these changes can be monitored in vivo using small animal SPECT with [123I]FP-CIT, which could facilitate the translational research in rat models of age related disorders of dopaminergic system

  7. High-resolution single photon planar and spect imaging of brain and neck employing a system of two co-registered opposed gamma imaging heads

    Science.gov (United States)

    Majewski, Stanislaw; Proffitt, James

    2011-12-06

    A compact, mobile, dedicated SPECT brain imager that can be easily moved to the patient to provide in-situ imaging, especially when the patient cannot be moved to the Nuclear Medicine imaging center. As a result of the widespread availability of single photon labeled biomarkers, the SPECT brain imager can be used in many locations, including remote locations away from medical centers. The SPECT imager improves the detection of gamma emission from the patient's head and neck area with a large field of view. Two identical lightweight gamma imaging detector heads are mounted to a rotating gantry and precisely mechanically co-registered to each other at 180 degrees. A unique imaging algorithm combines the co-registered images from the detector heads and provides several SPECT tomographic reconstructions of the imaged object thereby improving the diagnostic quality especially in the case of imaging requiring higher spatial resolution and sensitivity at the same time.

  8. Quantitative High-Efficiency Cadmium-Zinc-Telluride SPECT with Dedicated Parallel-Hole Collimation System in Obese Patients: Results of a Multi-Center Study

    Science.gov (United States)

    Nakazato, Ryo; Slomka, Piotr J.; Fish, Mathews; Schwartz, Ronald G.; Hayes, Sean W.; Thomson, Louise E.J.; Friedman, John D.; Lemley, Mark; Mackin, Maria L.; Peterson, Benjamin; Schwartz, Arielle M.; Doran, Jesse A.; Germano, Guido; Berman, Daniel S.

    2014-01-01

    Background Obesity is a common source of artifact on conventional SPECT myocardial perfusion imaging (MPI). We evaluated image quality and diagnostic performance of high-efficiency (HE) cadmium-zinc-telluride (CZT) parallel-hole SPECT-MPI for coronary artery disease (CAD) in obese patients. Methods and Results 118 consecutive obese patients at 3 centers (BMI 43.6±8.9 kg/m2, range 35–79.7 kg/m2) had upright/supine HE-SPECT and ICA >6 months (n=67) or low-likelihood of CAD (n=51). Stress quantitative total perfusion deficit (TPD) for upright (U-TPD), supine (S-TPD) and combined acquisitions (C-TPD) was assessed. Image quality (IQ; 5=excellent; SPECT MPI with dedicated parallel-hole collimation demonstrated high image quality, normalcy rate, and diagnostic accuracy for CAD by quantitative analysis of combined upright/supine acquisitions. PMID:25388380

  9. STUDY ON MULTIMEDIA ANIMATION SYSTEM OF ACUPOINT ANATOMY WITH FLASH

    Institute of Scientific and Technical Information of China (English)

    WANG Bin; LUO Zhi-yong; PU Yu-feng; HONG Hong; ZUO Zhi-xiong

    2006-01-01

    Mastering anatomic structures of acupoints is of active significance for avoiding blindly needling and preventing accidents of acupuncture and moxibustion. This multimedia animation system of acupoint anatomy adopts Flash software as developing tool and can dynamically display anatomic layers of needle insertion, with objectivity, convenient operation and English-Chinese control, higher reliability, easy to study and master anatomic knowledge of acupoint anatomy, increase teaching efficiency, and richen teaching ways. This system can be used as a teaching tool of acupuncture and moxibustion, a software of studying anatomy of acupoints and an adjuvant tool of medical workers in studying anatomy.

  10. Interest of the SPECT-CT hybrid imaging in the management of thyroid differentiated carcinomas

    International Nuclear Information System (INIS)

    Purpose: Images merging, associating SPECT and CT, integers functional and anatomical data. The purpose of our study was to evaluate the SPECT contribution coupled to CT in our daily practice of the management thyroid differentiated carcinomas. Conclusions: SPECT/CT merging got by a hybrid system allows a better anatomical location and improves the diagnostic value of examination in the extension assessment of thyroid differentiated carcinomas. (N.C.)

  11. Development of a Magnetoencephalograph System for Small Animals

    International Nuclear Information System (INIS)

    We developed a four-channel first order gradiometer system to measure magnetoencephalogram for mice. We used double relaxation oscillation SQUID (DROS). The diameter of the pickup coil is 4 mm and the distance between the coils is 5 mm. Coil distance was designed to have good spatial resolution for a small mouse brain. We evaluated the current dipole localization confidence region for a mouse brain, using the spherical conductor model. The white noise of the measurement system was about 30 fT/Hz1/2/cm when measured in a magnetically shielded room. We measured magnetic signal from a phantom having the same size of a mouse brain, which was filled with 0.9% saline solution. The results suggest that the developed system has a feasibility to study the functions of brain of small animals.

  12. SPECT and PET imaging in Parkinson's disease

    International Nuclear Information System (INIS)

    Parkinson disease (PD) is the second most common neurodegenerative disorder after Alzheimer's dementia (AD) with a prevalence of 2/1000 in the whole population. This number increases to 2/100 in the aging population and the total number of patients will rise further with increasing life expectancy. Modern imaging techniques such as SPECT (single photon emission tomography) and PET(positron emission tomography) can visualize function and molecular structures in the living human brain and are important clinical and research tools in the evaluation of FP. Because the brain dopamine (DA) system plays a pivotal role in the pathogenesis of PD and related disorders most SPECT and PET studies in PD deal with different aspects of DA-ergic function. However, PD also affects noradrenaline (NA) and serotonin (5HT) producing neurons which contribute to non-motor symptoms. Recent SPECT and PET studies also address this issue. SPECT is a technique which is widely available and is increasingly used in the clinical evaluation of PF patients. With SPECT and specific 123I labelled ligands pre- and postsynaptic structures of the nigrostriatal DA-ergic system can be labelled and visualized. Thus, it is possible to detect and to quantify lesions of the DA-ergic system on the one hand and lesions of the striatal output neurons on the other. This technique also enables studies of pharmacological interactions at the receptor level. With the help of β-CIT, a cocaine derivative, and other similar ligands DA transporters (DATs) can be labelled on DA-ergic nerve terminals. DAT imaging clearly differentiates between normal controls and PD patients even in early stages of the disease. Patients with subcortical vascular encephalopathy presenting with symptoms resembling PD ('lower body Parkinson') can be distinguished with high specificity and sensitivity. PET has the advantage of a better resolution and quantification and a larger number of tracers have mainly been used as a research tool. With

  13. Using adaptive neuro-fuzzy inference system technique for crosstalk correction in simultaneous 99mTc/201Tl SPECT imaging: A Monte Carlo simulation study

    International Nuclear Information System (INIS)

    This work presents a simulation based study by Monte Carlo which uses two adaptive neuro-fuzzy inference systems (ANFIS) for cross talk compensation of simultaneous 99mTc/201Tl dual-radioisotope SPECT imaging. We have compared two neuro-fuzzy systems based on fuzzy c-means (FCM) and subtractive (SUB) clustering. Our approach incorporates eight energy-windows image acquisition from 28 keV to 156 keV and two main photo peaks of 201Tl (77±10% keV) and 99mTc (140±10% keV). The Geant4 application in emission tomography (GATE) is used as a Monte Carlo simulator for three cylindrical and a NURBS Based Cardiac Torso (NCAT) phantom study. Three separate acquisitions including two single-isotopes and one dual isotope were performed in this study. Cross talk and scatter corrected projections are reconstructed by an iterative ordered subsets expectation maximization (OSEM) algorithm which models the non-uniform attenuation in the projection/back-projection. ANFIS-FCM/SUB structures are tuned to create three to sixteen fuzzy rules for modeling the photon cross-talk of the two radioisotopes. Applying seven to nine fuzzy rules leads to a total improvement of the contrast and the bias comparatively. It is found that there is an out performance for the ANFIS-FCM due to its acceleration and accurate results

  14. Using adaptive neuro-fuzzy inference system technique for crosstalk correction in simultaneous 99mTc/201Tl SPECT imaging: A Monte Carlo simulation study

    Science.gov (United States)

    Heidary, Saeed; Setayeshi, Saeed

    2015-01-01

    This work presents a simulation based study by Monte Carlo which uses two adaptive neuro-fuzzy inference systems (ANFIS) for cross talk compensation of simultaneous 99mTc/201Tl dual-radioisotope SPECT imaging. We have compared two neuro-fuzzy systems based on fuzzy c-means (FCM) and subtractive (SUB) clustering. Our approach incorporates eight energy-windows image acquisition from 28 keV to 156 keV and two main photo peaks of 201Tl (77±10% keV) and 99mTc (140±10% keV). The Geant4 application in emission tomography (GATE) is used as a Monte Carlo simulator for three cylindrical and a NURBS Based Cardiac Torso (NCAT) phantom study. Three separate acquisitions including two single-isotopes and one dual isotope were performed in this study. Cross talk and scatter corrected projections are reconstructed by an iterative ordered subsets expectation maximization (OSEM) algorithm which models the non-uniform attenuation in the projection/back-projection. ANFIS-FCM/SUB structures are tuned to create three to sixteen fuzzy rules for modeling the photon cross-talk of the two radioisotopes. Applying seven to nine fuzzy rules leads to a total improvement of the contrast and the bias comparatively. It is found that there is an out performance for the ANFIS-FCM due to its acceleration and accurate results.

  15. Using adaptive neuro-fuzzy inference system technique for crosstalk correction in simultaneous {sup 99m}Tc/{sup 201}Tl SPECT imaging: A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Heidary, Saeed, E-mail: saeedheidary@aut.ac.ir; Setayeshi, Saeed, E-mail: setayesh@aut.ac.ir

    2015-01-11

    This work presents a simulation based study by Monte Carlo which uses two adaptive neuro-fuzzy inference systems (ANFIS) for cross talk compensation of simultaneous {sup 99m}Tc/{sup 201}Tl dual-radioisotope SPECT imaging. We have compared two neuro-fuzzy systems based on fuzzy c-means (FCM) and subtractive (SUB) clustering. Our approach incorporates eight energy-windows image acquisition from 28 keV to 156 keV and two main photo peaks of {sup 201}Tl (77±10% keV) and {sup 99m}Tc (140±10% keV). The Geant4 application in emission tomography (GATE) is used as a Monte Carlo simulator for three cylindrical and a NURBS Based Cardiac Torso (NCAT) phantom study. Three separate acquisitions including two single-isotopes and one dual isotope were performed in this study. Cross talk and scatter corrected projections are reconstructed by an iterative ordered subsets expectation maximization (OSEM) algorithm which models the non-uniform attenuation in the projection/back-projection. ANFIS-FCM/SUB structures are tuned to create three to sixteen fuzzy rules for modeling the photon cross-talk of the two radioisotopes. Applying seven to nine fuzzy rules leads to a total improvement of the contrast and the bias comparatively. It is found that there is an out performance for the ANFIS-FCM due to its acceleration and accurate results.

  16. Clinical results of neurotransmission SPECT in extra-pyramidal diseases

    International Nuclear Information System (INIS)

    We present some methodological aspects and clinical applications of dopamine D2 receptor and transporter SPECT using new radiotracers radiolabeled with iodine 123. The gamma camera quality control and standardisation has to be adapted to the small volume and deep location of striata, where receptors and transporters are present. Phantom containing hollow spheres of different diameters which can be filled with different amounts of 99mTc or 123I. The semi quantitation of receptor and transporter molecular concentration is based on an equilibrium binding model. According to this model, the binding potential (Bmax. Ka) is equal to the ratio between specific binding in the striatum and circulating activity in a reference region of interest in the occipital cortex. By comparing ECD and ILIS SPECT, it has been shown that striatal ILIS binding does not depend on the local perfusion. The clinical applications mainly concern the extra-pyramidal pathology: ILIS and IBZM SPECT are able to differentiate pre- and post-synaptic lesions. In Parkinson disease the nigrostriatal pathway is damaged and D2 receptors are normal or increased, as shown by normal or elevated IBZM or ILIS uptake. In other extra pyramidal degenerative diseases as progressive supra nuclear palsy or multiple system atrophy striatal D2 receptors are damaged as shown by decreased IBZM or ILIS uptake. In our experience, 88 per cent of patients are correctly classified by ILIS SPECT and 86 per cent with IBZM SPECT. Dopamine transporter SPECT with βCIT and PE2I provides an evaluation of the presynaptic neuronal density in the striatum. One can expect an help for the early diagnosis and the evaluation of Parkinson disease. Another potential application of dopaminergic neurotransmission SPECT is the evaluation of neuronal loss after hypoxo-ischemia. We conclude that dopaminergic neurotransmission SPECT using specific ligands should become a useful diagnosis tool to study a large number of brain dysfunctions. (author)

  17. New SPECT and PET dementia tracers

    International Nuclear Information System (INIS)

    Single photon emission tomography (SPECT) and positron emission tomography (PET) are techniques to study in vivo neurotransmitter systems, neuro inflammation and amyloid deposits in normal human brain and in dementia. These methods used to explore the integrity of dopaminergic, cholinergic and serotonergic systems in Alzheimer's disease and in other dementias allowed to understand how the neurotransmission was modified in these disorders. Progress in the understanding of pathophysiological and clinical signs of dementia requires an evolution of the radioligands used to carry out an increasingly early and differential diagnosis in addition to monitoring the progression of disease and the effects of therapies. New emerging radiotracers for neuro inflammation or amyloid deposits are essential. In this article, new SPECT and PET tracers are presented. (authors)

  18. Animal protection in the legal system of the Czech Republic

    OpenAIRE

    Vrbická, Markéta

    2012-01-01

    This thesis is focused on the summary of the law regulation of animal protection in the Czech Republic. In the introductory part the thesis defines basic causes and aims of the law regulation of animal protection and summaries the history of animals regulation in the Czech republic. After outlining the most significant international treaties and sources of European law in the area of animal protection, the substantial chapter dealing with the definition of animal and related terms in the czec...

  19. Progression of dopamine transporter decline in patients with the Parkinson variant of multiple system atrophy: a voxel-based analysis of [123I]β-CIT SPECT

    International Nuclear Information System (INIS)

    We characterized the progression of dopamine transporter (DAT) decline in the striatum and extrastriatal regions including the midbrain and pons of patients with the Parkinson variant of multiple system atrophy (MSA-P) and compared longitudinally collected SPECT results with those in a cohort of patients with Parkinson's disease (PD). Eight patients with MSA-P (age 60.4 ± 7.7 years, disease duration 2.4 ± 1 years, UPDRS-III motor score 39.7 ± 4.7), and 11 patients with PD (age 61.2 ± 6.4 years, disease duration 2.4 ± 1.1 years, UPDRS-III motor score 18.9 ± 7.6) underwent a baseline and follow-up [123I]β-CIT SPECT investigation within a time period of 1.3 years. Statistical parametric mapping (SPM) and a repetitive ANOVA design were used to objectively localize the decline in DAT availability without having to make an a priori hypothesis as to its location. SPM localized significant reductions in [123I]β-CIT uptake in the dorsal brainstem of MSA-P patients compared to PD patients (p < 0.001) at baseline. Additional reductions in the DAT signal were localized in the caudate and anterior putamen of patients with MSA-P patients compared to PD patients at the follow-up examination (p < 0.001). Relative decline in tracer binding was evident in the caudate and anterior putamen of MSA-P patients compared to PD patients in the longitudinal analysis (p < 0.05), whereas no significant relative signal alteration was observed in the brainstem. In contrast to PD, the relatively higher rate of signal reduction in the caudate and anterior putamen is consistent with the faster disease progression reported in MSA-P. At baseline, the tracer uptake in the brainstem was already at very low levels in the MSA-P patients compared to that in healthy control subjects and did not progress any further, suggesting that the degeneration of monoaminergic neurons is almost complete early in the disease course. (orig.)

  20. Progression of dopamine transporter decline in patients with the Parkinson variant of multiple system atrophy: a voxel-based analysis of [{sup 123}I]{beta}-CIT SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Nocker, Michael; Seppi, Klaus; Wenning, Gregor K.; Poewe, Werner; Scherfler, Christoph [Innsbruck Medical University, Department of Neurology, Innsbruck (Austria); Donnemiller, Eveline; Virgolini, Irene [Innsbruck Medical University, Department of Nuclear Medicine, Innsbruck (Austria)

    2012-06-15

    We characterized the progression of dopamine transporter (DAT) decline in the striatum and extrastriatal regions including the midbrain and pons of patients with the Parkinson variant of multiple system atrophy (MSA-P) and compared longitudinally collected SPECT results with those in a cohort of patients with Parkinson's disease (PD). Eight patients with MSA-P (age 60.4 {+-} 7.7 years, disease duration 2.4 {+-} 1 years, UPDRS-III motor score 39.7 {+-} 4.7), and 11 patients with PD (age 61.2 {+-} 6.4 years, disease duration 2.4 {+-} 1.1 years, UPDRS-III motor score 18.9 {+-} 7.6) underwent a baseline and follow-up [{sup 123}I]{beta}-CIT SPECT investigation within a time period of 1.3 years. Statistical parametric mapping (SPM) and a repetitive ANOVA design were used to objectively localize the decline in DAT availability without having to make an a priori hypothesis as to its location. SPM localized significant reductions in [{sup 123}I]{beta}-CIT uptake in the dorsal brainstem of MSA-P patients compared to PD patients (p < 0.001) at baseline. Additional reductions in the DAT signal were localized in the caudate and anterior putamen of patients with MSA-P patients compared to PD patients at the follow-up examination (p < 0.001). Relative decline in tracer binding was evident in the caudate and anterior putamen of MSA-P patients compared to PD patients in the longitudinal analysis (p < 0.05), whereas no significant relative signal alteration was observed in the brainstem. In contrast to PD, the relatively higher rate of signal reduction in the caudate and anterior putamen is consistent with the faster disease progression reported in MSA-P. At baseline, the tracer uptake in the brainstem was already at very low levels in the MSA-P patients compared to that in healthy control subjects and did not progress any further, suggesting that the degeneration of monoaminergic neurons is almost complete early in the disease course. (orig.)

  1. Coregistration of datasets from a micro-SPECT/CT and a preclinical 1.5 T MRI

    Energy Technology Data Exchange (ETDEWEB)

    Dillenseger, J.-P. [UF6237 Preclinical Imaging Laboratory, Hôpitaux Universitaires de Strasbourg, CHU Hautepierre, 1, Avenue Molière, 67098 Strasbourg (France); Guillaud, B. [RS2D, 24, Rue des Couturières, 67240 Bischwiller (France); Goetz, C. [UF6237 Preclinical Imaging Laboratory, Hôpitaux Universitaires de Strasbourg, CHU Hautepierre, 1, Avenue Molière, 67098 Strasbourg (France); Institut de Mécanique des Fluides et des Solides, CNRS, 2 rue Boussingault, 67000 Strasbourg (France); Sayeh, A. [UF6237 Preclinical Imaging Laboratory, Hôpitaux Universitaires de Strasbourg, CHU Hautepierre, 1, Avenue Molière, 67098 Strasbourg (France); Schimpf, R. [RS2D, 24, Rue des Couturières, 67240 Bischwiller (France); Constantinesco, A. [UF6237 Preclinical Imaging Laboratory, Hôpitaux Universitaires de Strasbourg, CHU Hautepierre, 1, Avenue Molière, 67098 Strasbourg (France); Choquet, P., E-mail: pchoquet@unistra.fr [UF6237 Preclinical Imaging Laboratory, Hôpitaux Universitaires de Strasbourg, CHU Hautepierre, 1, Avenue Molière, 67098 Strasbourg (France); Institut de Mécanique des Fluides et des Solides, CNRS, 2 rue Boussingault, 67000 Strasbourg (France)

    2013-02-21

    An universal tool was designed for small animal SPECT/CT/MR coregistration. It was tested on a preclinical MRI (OPTImouse, RS2D, Bischwiller, France) and a micro-SPECT/CT (eXplore speCZT Vision 120, GE, Waukesha, USA), closed to each other, thanks to the short extension of the MRI magnet fringe field. The tool consists of a curved catheter describing many rigid loops, and fixed on a plastic sheet. During acquisitions, it is placed around the animal, in an isolated imaging cell, and filled with a solution containing iodine, copper sulfate and radioisotope. Multimodality imaging is achieved sequentially by moving the cell from one system to the other, in about 20 s. Acquisitions on phantom demonstrate the resolution accuracy of the coregistration process. Whole body trimodal SPECT/CT/MR acquisitions on live mice were coregistrated as well. A simple, cheap tool, easy to fill, could efficiently help for rigid coregistration of preclinical images, acquired on separate imaging apparatus.

  2. Coregistration of datasets from a micro-SPECT/CT and a preclinical 1.5 T MRI

    International Nuclear Information System (INIS)

    An universal tool was designed for small animal SPECT/CT/MR coregistration. It was tested on a preclinical MRI (OPTImouse, RS2D, Bischwiller, France) and a micro-SPECT/CT (eXplore speCZT Vision 120, GE, Waukesha, USA), closed to each other, thanks to the short extension of the MRI magnet fringe field. The tool consists of a curved catheter describing many rigid loops, and fixed on a plastic sheet. During acquisitions, it is placed around the animal, in an isolated imaging cell, and filled with a solution containing iodine, copper sulfate and radioisotope. Multimodality imaging is achieved sequentially by moving the cell from one system to the other, in about 20 s. Acquisitions on phantom demonstrate the resolution accuracy of the coregistration process. Whole body trimodal SPECT/CT/MR acquisitions on live mice were coregistrated as well. A simple, cheap tool, easy to fill, could efficiently help for rigid coregistration of preclinical images, acquired on separate imaging apparatus

  3. SPECT/CT in diagnostics of the hand joint

    International Nuclear Information System (INIS)

    Hand and wrist pain remains a diagnostic challenge, both for hand surgeons and for radiologists. Especially chronic wrist pain is often hard to localize clinically and further cross-sectional imaging is often indispensable. The well-established standard for non-invasive diagnostic imaging in chronic wrist pain is magnetic resonance imaging (MRI). Recently, state-of-the-art single photon emission computed tomography/computed tomography (SPECT/CT) systems have been introduced into the diagnostic array for musculoskeletal conditions. Besides morphological data SPECT/CT also provides metabolic information. SPECT/CT allows an exact detection and precise anatomical mapping of different pathologies of the wrist, which is often crucial for therapy. In patients with chronic wrist pain, SPECT/CT is more specific than MRI. It is also beneficial in patients with posttraumatic conditions and metal implants and may serve as a problem-solving tool in difficult cases. It is considered that SPECT/CT imaging is useful if MRI results are equivocal or present no clearly leading pathology. A primary examination with SPECT/CT seems to be a reasonable option for patients with certain bone pathologies, metal implants and non-specific wrist pain. (orig.)

  4. PET/SPECT imaging: From carotid vulnerability to brain viability

    Energy Technology Data Exchange (ETDEWEB)

    Meerwaldt, Robbert [Department of Surgery, Isala Clinics, Zwolle (Netherlands); Slart, Riemer H.J.A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands); Dam, Gooitzen M. van [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands); Luijckx, Gert-Jan [Department of Neurology, University Medical Center Groningen, Groningen (Netherlands); Tio, Rene A. [Department of Cardiology, University Medical Center Groningen, Groningen (Netherlands); Zeebregts, Clark J. [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands)], E-mail: czeebregts@hotmail.com

    2010-04-15

    Background: Current key issues in ischemic stroke are related to carotid plaque vulnerability, brain viability, and timing of intervention. The treatment of ischemic stroke has evolved into urgent active interventions, as 'time is brain'. Functional imaging such as positron emission tomography (PET)/single photon emission computed tomography (SPECT) could improve selection of patients with a vulnerable plaque and evaluation of brain viability in ischemic stroke. Objective: To describe the current applications of PET and SPECT as a diagnostic tool in relation to ischemic stroke. Methods: A literature search using PubMed identified articles. Manual cross-referencing was also performed. Results: Several papers, all observational studies, identified PET/SPECT to be used as a tool to monitor systemic atheroma modifying treatment and to select high-risk patients for surgery regardless of the degree of luminal stenosis in carotid lesions. Furthermore, PET/SPECT is able to quantify the penumbra region during ischemic stroke and in this way may identify those patients who may benefit from timely intervention. Discussion: Functional imaging modalities such as PET/SPECT may become important tools for risk-assessment and evaluation of treatment strategies in carotid plaque vulnerability and brain viability. Prospective clinical studies are needed to evaluate the diagnostic accuracy of PET/SPECT.

  5. PET/SPECT imaging: From carotid vulnerability to brain viability

    International Nuclear Information System (INIS)

    Background: Current key issues in ischemic stroke are related to carotid plaque vulnerability, brain viability, and timing of intervention. The treatment of ischemic stroke has evolved into urgent active interventions, as 'time is brain'. Functional imaging such as positron emission tomography (PET)/single photon emission computed tomography (SPECT) could improve selection of patients with a vulnerable plaque and evaluation of brain viability in ischemic stroke. Objective: To describe the current applications of PET and SPECT as a diagnostic tool in relation to ischemic stroke. Methods: A literature search using PubMed identified articles. Manual cross-referencing was also performed. Results: Several papers, all observational studies, identified PET/SPECT to be used as a tool to monitor systemic atheroma modifying treatment and to select high-risk patients for surgery regardless of the degree of luminal stenosis in carotid lesions. Furthermore, PET/SPECT is able to quantify the penumbra region during ischemic stroke and in this way may identify those patients who may benefit from timely intervention. Discussion: Functional imaging modalities such as PET/SPECT may become important tools for risk-assessment and evaluation of treatment strategies in carotid plaque vulnerability and brain viability. Prospective clinical studies are needed to evaluate the diagnostic accuracy of PET/SPECT.

  6. A Miniature Telemetric System for Freely Roaming Animals

    Institute of Scientific and Technical Information of China (English)

    Zhan-Ping Wang; Chun-Peng Zhang; Guang-Zhan Fang; Yang Xia; Tie-Jun Liu; De-Zhong Yao

    2009-01-01

    Telemetric monitoring and control are the two critical aspects for a robot-rat.Development in this work is a telemetric system to record the electro-encephalogram (EEG) from adult freely roaming animals.The system consists of two separated components:the transmit-end system,which consists of the preamplifier,the LPF (low-pass filter) and the transmitter,and the receive-end system,which consists of the receiver,the interface of receive-end and PC.The transmit-end system with light weight (10 g including battery) and small size (20 mm?50 mm) is fettered on the back of the rat.The EEG signal is modulated at the RF frequency of 2.4 GHz by nRF24E1 and transmitted by the antenna.The system can measure the EEG signal of the rat in freely roaming over a wireless transmission distance up to 8 m,and provide a new platform for behavioral and neurophysiological experiments.

  7. Quantitative simultaneous {sup 99m}Tc-ECD/{sup 123}I-FP-CIT SPECT in Parkinson's disease and multiple system atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Fakhri, Georges El; Kijewski, Marie Foley [Harvard Medical School and Brigham and Women' s Hospital, Division of Nuclear Medicine, Department of Radiology, Boston, MA (United States); Habert, Marie-Odile; Maksud, Philippe; Malek, Zoulikha [CHU Pitie-Salpetriere, U678 INSERM - UPMC, Paris (France); CHU Pitie-Salpetriere, Department of Nuclear Medicine, Paris (France); Kas, Aurelie [CHU Pitie-Salpetriere, Department of Nuclear Medicine, Paris (France); Lacomblez, Lucette [CHU Pitie-Salpetriere, Federation des Maladies du Systeme Nerveux, Paris (France); CHU Pitie-Salpetriere, Department of Pharmacology, Paris (France)

    2006-01-01

    The purpose of this study was to investigate the feasibility and utility of dual-isotope SPECT for differential diagnosis of idiopathic Parkinson's disease (IPD) and multiple system atrophy (MSA). Simultaneous {sup 99m}Tc-ECD/{sup 123}I-FP-CIT studies were performed in nine normal controls, five IPD patients, and five MSA patients. Projections were corrected for scatter, cross-talk, and high-energy penetration, and iteratively reconstructed while correcting for patient-specific attenuation and variable collimator response. Perfusion and dopamine transporter (DAT) function were assessed using voxel-based statistical parametric mapping (SPM2) and volume of interest quantitation. DAT binding potential (BP) and asymmetry index (AI) were estimated in the putamen and caudate nucleus. Striatal BP was lower in IPD (55%) and MSA (23%) compared to normal controls (p<0.01), and in IPD compared to MSA (p<0.05). AI was greater for IPD than for MSA and controls in both the caudate nucleus and the putamen (p<0.05). There was significantly decreased perfusion in the left and right nucleus lentiformis in MSA compared to IPD and controls (p<0.05). Dual-isotope studies are both feasible in and promising for the diagnosis of parkinsonian syndromes. (orig.)

  8. Cerebral blood flow assessed by brain SPECT with 99mTc-HMPAO utilising the acetazolamide test in systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Background: Cerebrovascular diseases are one of the most important complications of systemic lupus erythematosus (SLE). The diagnostic imaging of neuropsychiatric SLE complications presents many problems. This study was undertaken to investigate cerebral blood flow char s and its reactivity to hypercapnia by means of acetazolamide test in SLE patients. Methods: Brain SPECT studies using 99mTc-HMPAO were performed in 50 patients with SLE. Acetazolamide test was performed in 35 patients 3 days after the baseline study by means of repetitive scanning 20 min after i.v. injection of 1.0 g of acetazolamide. Results: Significant interhemispheric hypoperfusion areas were shown in 76.3% of all patients, 83.8% symptomatic and 63.1% asymptomatic. Patients with antiphospholipid syndrome showed multifocal perfusion deficits. The reaction of cerebral perfusion to acetazolamide was heterogenous and showed increase, decrease, no change or mixed reaction of baseline-study-found focal hypoperfusion. Acetazolamide test revealed hypoperfusion in two patients with normal baseline study. MRI scanning revealed cerebral lesions in 41% of patients. Conclusions: CBF asymmetries in symptomatic and asymptomatic patients with SLE are frequent. Regional CBF alterations seem to be different in patients with and without antiphospholipid syndrome. The part of the patients with SLE shows no or paradoxically inversed reaction to acetazolamide. (author)

  9. Neuropharmacological studies with SPECT in neuropsychiatric disorders

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, Andreas; Jones, Douglas W.; Raedler, Thomas; Coppola, Richard; Knable, Michael B.; Weinberger, Daniel R. E-mail: weinberd@intra.nimh.nih.gov

    2000-10-01

    The last decade saw a rapid development of single photon emission computed tomography (SPECT) from a tool to assess cerebral blood flow to the study of specific neurotransmitter systems. Because of the relatively long half-life of SPECT radioisotopes, it is practical to measure the availability of neuroreceptors and transporters in conditions approaching equilibrium. The cost-efficiency of SPECT allowed studies in relatively large samples of patients with various neuropsychiatric disorders. We have applied this approach in studies of dopaminergic, serotonergic, and muscarinergic neurotransmission in patients with dementia, extrapyramidal disorders, schizophrenia, and alcoholism. No simple associations were observed between a single defect in one neurotransmitter system and a certain neuropsychiatric disease. Instead, complex dysfunction of several neurotransmitter systems in multiple, partially connected brain circuits have been implicated. Treatment effects also have been characterized. Microdialysis and neurotransmitter depletion studies showed that most radioligands and endogenous neurotransmitters compete for binding at receptors and transporters. Future research directions include the assessment of endogenous neurotransmitter concentrations measured by depletion studies and of genetic effects on neuroreceptor and transporter expression.

  10. The dopaminergic system in patients with functional dyspepsia analysed by single photon emission computed tomography (SPECT) and an alpha-methyl-para-tyrosine (AMPT) challenge test

    Energy Technology Data Exchange (ETDEWEB)

    Braak, Breg; Klooker, Tamira K. [Academic Medical Center, Department of Gastroenterology and Hepatology, Amsterdam (Netherlands); Booij, Jan [Academic Medical Center, Department of Nuclear Medicine, Amsterdam (Netherlands); Wijngaard, Rene M.J. van den [Academic Medical Center, Tytgat Institute of Liver and Intestinal Research, Amsterdam (Netherlands); Boeckxstaens, Guy E.E. [Academic Medical Center, Department of Gastroenterology and Hepatology, Amsterdam (Netherlands); University Hospital Leuven, Catholic University Leuven, Department of Gastroenterology, Leuven (Belgium)

    2012-04-15

    Functional dyspepsia (FD) is a chronic condition characterized by upper abdominal symptoms without an identifiable cause. While the serotonergic system is thought to play a key role in the regulation of gut physiology, the role of the dopaminergic system, which is important in the regulation of visceral pain and stress, is under-studied. Therefore, this study investigated the dopaminergic system and its relationship with drinking capacity and symptoms in FD patients. In FD patients and healthy volunteers (HV) the dopaminergic system was investigated by in-vivo assessment of central dopamine D2 receptors (D2Rs) with [{sup 123}I]IBZM SPECT and by an acute, but reversible, dopamine depletion alpha-methyl-para-tyrosine (AMPT) challenge test. A nutrient drink test was performed to investigate the association between maximal ingested volume, evoked symptoms, and D2Rs. The HV subjects comprised 12 women and 8 men (mean age 31 {+-} 3 years), and the FD patients comprised 5 women and 3 men (mean age 39 {+-} 5 years). The FD patients had a lower left plus right average striatal binding potential (BP{sub NP}) for the caudate nucleus (p = 0.02), but not for putamen (p = 0.15), which in the FD patients was correlated with maximal ingested volume (r = 0.756, p = 0.03). The D2R BP{sub NP} in the putamen was correlated with nausea (r = 0.857, p = 0.01). The acute dopamine depletion test, however, failed to reveal differences in prolactin release between the FD patients and the HV subjects. These preliminary data suggest that chronic rather than acute alterations in the dopaminergic system may be involved in the pathogenesis of FD. Further studies are required to reproduce our novel findings and to evaluate to what extent the dopaminergic changes may be secondary to abnormalities in serotonergic pathways. (orig.)

  11. The dopaminergic system in patients with functional dyspepsia analysed by single photon emission computed tomography (SPECT) and an alpha-methyl-para-tyrosine (AMPT) challenge test

    International Nuclear Information System (INIS)

    Functional dyspepsia (FD) is a chronic condition characterized by upper abdominal symptoms without an identifiable cause. While the serotonergic system is thought to play a key role in the regulation of gut physiology, the role of the dopaminergic system, which is important in the regulation of visceral pain and stress, is under-studied. Therefore, this study investigated the dopaminergic system and its relationship with drinking capacity and symptoms in FD patients. In FD patients and healthy volunteers (HV) the dopaminergic system was investigated by in-vivo assessment of central dopamine D2 receptors (D2Rs) with [123I]IBZM SPECT and by an acute, but reversible, dopamine depletion alpha-methyl-para-tyrosine (AMPT) challenge test. A nutrient drink test was performed to investigate the association between maximal ingested volume, evoked symptoms, and D2Rs. The HV subjects comprised 12 women and 8 men (mean age 31 ± 3 years), and the FD patients comprised 5 women and 3 men (mean age 39 ± 5 years). The FD patients had a lower left plus right average striatal binding potential (BPNP) for the caudate nucleus (p = 0.02), but not for putamen (p = 0.15), which in the FD patients was correlated with maximal ingested volume (r = 0.756, p = 0.03). The D2R BPNP in the putamen was correlated with nausea (r = 0.857, p = 0.01). The acute dopamine depletion test, however, failed to reveal differences in prolactin release between the FD patients and the HV subjects. These preliminary data suggest that chronic rather than acute alterations in the dopaminergic system may be involved in the pathogenesis of FD. Further studies are required to reproduce our novel findings and to evaluate to what extent the dopaminergic changes may be secondary to abnormalities in serotonergic pathways. (orig.)

  12. Hybrid SPECT/CT imaging in neurology.

    Science.gov (United States)

    Ciarmiello, Andrea; Giovannini, Elisabetta; Meniconi, Martina; Cuccurullo, Vincenzo; Gaeta, Maria Chiara

    2014-01-01

    In recent years, the SPECT/CT hybrid modality has led to a rapid development of imaging techniques in nuclear medicine, opening new perspectives for imaging staff and patients as well. However, while, the clinical role of positron emission tomography-computed tomography (PET-CT) is well consolidated, the diffusion and the consequent value of single-photon emission tomography-computed tomography (SPECT-CT) has yet to be weighed, Hence, there is a need for a careful analysis, comparing the "potential" benefits of the hybrid modality with the "established" ones of the standalone machine. The aim of this article is to analyze the impact of this hybrid tool on the diagnosis of diseases of the central nervous system, comparing strengths and weaknesses of both modalities through the use of SWOT analysis. PMID:25143053

  13. Spect in epilepsy

    International Nuclear Information System (INIS)

    In the Federal Republic of Germany it is assumed that about 80 000 patients suffer from a focal form of epilepsy which can not be sufficiently controlled with medication. As potential candidates for surgery, these patients undergo stepwise monitoring procedure in which the epileptic focus is located by means of increasingly invasive methods. In Erlangen the periictal SPECT is performed, whereby the perfusion tracer is injected after onset (ictal SPECT), immediately after cessation of the seizure (postictal scan) or between the seizures (interictal scan). To administer the tracer strongly in ictal or postictal state a close functional cooperation between the neurology and nuclear medicine department must be arranged. Injection inside the monitoring unit must be attuned to federal antiradiation precaution law. In temporal lobe epilepsy, different injection-times demonstrate a large area of hyperperfusion after ictal onset, which refines in the first two postictal minutes to the generating focus together with a decreased parietal blood flow pattern. Later, the entire temporal lobe epilepsy an early tracer injection within 40 seconds has to be achieved, otherwise an ictal propagation into distant brain areas, possibly contralateral, may occur. Extratemporal epilepsy is often linked to trauma or congenital malformations, and is difficult to categorize. In difficult cases with equivocal results, efforts can be undertaken by means of receptor scintigraphy with, for example, iomazenil, to localize the focus as a cold lesion caused by neuronal loss. (orig.)

  14. Neuropsychiatry: PET and SPECT

    International Nuclear Information System (INIS)

    Functional brain imaging with PET and SPECT have a definitive and well established role in the investigation of a variety of conditions such as dementia, epilepsy and drug addiction. With these methods it is possible to detect early rCBF (regional Cerebral Blood Flow) changes seen in dementia (even before clinical symptoms) and differentiate Alzheimer's disease from other dementias by means of the rCBF pattern change. 18-F-FDG PET imaging is a useful tool in partial epilepsy because both rCBF and brain metabolism are compromised at the epileptogenic focus. During the seizure, rCBF dramatically increases locally. Using SPECT it is possible to locate such foci with 97% accuracy. In drug addiction, particularly with cocaine, functional imaging has proven to be very sensitive to detect brain flow and metabolism derangement early in the course of this condition. These findings are important in many ways: prognostic value, they are used as a powerful reinforcement tool and to monitor functional recovery with rehabilitation. There are many other conditions in which functional brain imaging is of importance such as acute stroke treatment assessment, trauma rehabilitation and in psychiatric and abnormal movement diseases specially with the development of receptor imaging (au)

  15. Method and apparatus for animal positioning in imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Hadjioannou, Arion-Xenofon; Stout, David B.; Silverman, Robert W.

    2013-01-01

    An apparatus for imaging an animal includes a first mounting surface, a bed sized to support the animal and releasably secured to or integral with the first mounting surface. The apparatus also includes a plurality of straps, each having a first end in a fixed position relative to the bed and a second end for tightening around a limb of the animal. A method for in-vivo imaging of an animal includes providing an animal that has limbs, providing a first mounting surface, and providing a bed removably secured to or integral with the mounting surface and sized to support the animal as well as being coupled to a plurality of straps. The method also includes placing the animal on the bed between the plurality of straps and tightening at least two of the plurality of straps around at least two of the limbs such that the animal is substantially secured in place relative to the bed.

  16. SPECT and PET in paediatrics

    International Nuclear Information System (INIS)

    SPECT and PET are useful tools in paediatrics as well as in adults, improving the sensitivity and the diagnostic accuracy. Both techniques have a special interest for the the correlative image, improving the clinical usefulness of both metabolic (SPECT and PET) and anatomic images (MRI, CT, US). SPECT tomographic images are useful in most of the paediatric fields, but specially in oncology, neurology, orthopaedia and cardiology. In paediatric oncology, SPECT images obtained after the injection of metabolic tracers as MIBG, sodium iodine or octreotide allows us to detect residual tumour (neuroblastoma, thyroid tumour or carcinoid). SPECT increases the sensitivity to detect small lesions, lesions closed to bigger tumours, deep lesions or lung metastasis of osteosarcoma. Radioguided surgery is an emerging field in Nuclear Medicine. In Paediatrics, SPECT and SPECT-CT (or SPECT-MR) are useful to assist the surgeon to localize residual tumoral mass (neuroblastoma, thyroid cancer lymph nodes) as well as radioguides biopsy (lymphoma). The usefulness of brain SPECT in paediatric neurology is well known. Brain SPECT images are routinely used to localize epileptic foci, but also for a better understanding of most of the neuropsychologic paediatric diseases (brain death, trauma, vascular diseases, encephalitis, brain maturation, language disorders, obsessive-compulsive disorder, attention deficit disorderhyperactivity, etc.). In benign bone diseases, like Perthes disease, osteoid osteoma, bone infection or bone fractures, SPECT images improve the sensitivity and accuracy of bone scan and white blood cell scintigraphy. The tomographic frames, alone or fused with CT or MRI, provide important clinical information referred to the lesion extension or localization (v.g. radioguided surgery for an optimal removal of the nidus in osteoid osteoma). In nephrourology, the benefit of SPECT images compared to DMSA cortical renal scintigraphy is not well accepted by most of the authors

  17. SPECT detectors: the Anger Camera and beyond.

    Science.gov (United States)

    Peterson, Todd E; Furenlid, Lars R

    2011-09-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous sodium iodide scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic. PMID:21828904

  18. SPECT detectors: the Anger Camera and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Todd E [Institute of Imaging Science, Department of Radiology and Radiological Sciences, Department of Physics, and Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN (United States); Furenlid, Lars R, E-mail: todd.e.peterson@vanderbilt.edu [Center for Gamma-Ray Imaging, Department of Radiology, and College of Optical Sciences, University of Arizona, Tucson, AZ (United States)

    2011-09-07

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous sodium iodide scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic. (topical review)

  19. The role of preclinical SPECT in oncological and neurological research in combination with either CT or MRI

    International Nuclear Information System (INIS)

    Preclinical imaging with SPECT combined with CT or MRI is used more and more frequently and has proven to be very useful in translational research. In this article, an overview of current preclinical research applications and trends of SPECT combined with CT or MRI, mainly in tumour imaging and neuroscience imaging, is given and the advantages and disadvantages of the different approaches are described. Today SPECT and CT systems are often integrated into a single device (commonly called a SPECT/CT system), whereas at present combined SPECT and MRI is almost always carried out with separate systems and fiducial markers to combine the separately acquired images. While preclinical SPECT/CT is most widely applied in oncology research, SPECT combined with MRI (SPECT/MRI when integrated in one system) offers the potential for both neuroscience applications and oncological applications. Today CT and MRI are still mainly used to localize radiotracer binding and to improve SPECT quantification, although both CT and MRI have additional potential. Future technology developments may include fast sequential or simultaneous acquisition of (dynamic) multimodality data, spectroscopy, fMRI along with high-resolution anatomic MRI, advanced CT procedures, and combinations of more than two modalities such as combinations of SPECT, PET, MRI and CT all together. This will all strongly depend on new technologies. With further advances in biology and chemistry for imaging molecular targets and (patho)physiological processes in vivo, the introduction of new imaging procedures and promising new radiopharmaceuticals in clinical practice may be accelerated. (orig.)

  20. The role of preclinical SPECT in oncological and neurological research in combination with either CT or MRI

    Energy Technology Data Exchange (ETDEWEB)

    Bernsen, Monique R.; Jong, Marion de [Erasmus MC, Department of Nuclear Medicine, Rotterdam (Netherlands); Erasmus MC, Department of Radiology, Rotterdam (Netherlands); Vaissier, Pieter E.B. [Delft University of Technology, Section Radiation Detection and Medical Imaging, Delft (Netherlands); Holen, Roel van [Ghent University, iMinds, ELIS Department, MEDISIP, Ghent (Belgium); Booij, Jan [University of Amsterdam, Department of Nuclear Medicine, Academic Medical Center, Amsterdam (Netherlands); Beekman, Freek J. [Delft University of Technology, Section Radiation Detection and Medical Imaging, Delft (Netherlands); MILabs B.V., Utrecht (Netherlands)

    2014-05-15

    Preclinical imaging with SPECT combined with CT or MRI is used more and more frequently and has proven to be very useful in translational research. In this article, an overview of current preclinical research applications and trends of SPECT combined with CT or MRI, mainly in tumour imaging and neuroscience imaging, is given and the advantages and disadvantages of the different approaches are described. Today SPECT and CT systems are often integrated into a single device (commonly called a SPECT/CT system), whereas at present combined SPECT and MRI is almost always carried out with separate systems and fiducial markers to combine the separately acquired images. While preclinical SPECT/CT is most widely applied in oncology research, SPECT combined with MRI (SPECT/MRI when integrated in one system) offers the potential for both neuroscience applications and oncological applications. Today CT and MRI are still mainly used to localize radiotracer binding and to improve SPECT quantification, although both CT and MRI have additional potential. Future technology developments may include fast sequential or simultaneous acquisition of (dynamic) multimodality data, spectroscopy, fMRI along with high-resolution anatomic MRI, advanced CT procedures, and combinations of more than two modalities such as combinations of SPECT, PET, MRI and CT all together. This will all strongly depend on new technologies. With further advances in biology and chemistry for imaging molecular targets and (patho)physiological processes in vivo, the introduction of new imaging procedures and promising new radiopharmaceuticals in clinical practice may be accelerated. (orig.)

  1. 75 FR 50987 - Privacy Act System of Records; National Animal Health Laboratory Network (NAHLN)

    Science.gov (United States)

    2010-08-18

    ... information about the owner of or person having primary responsibility for an animal undergoing testing in a... responsibility for an animal undergoing testing in a networked laboratory, the following information ] will be... Animal and Plant Health Inspection Service Privacy Act System of Records; National Animal...

  2. Comprehending emergent systems phenomena through direct-manipulation animation

    Science.gov (United States)

    Aguirre, Priscilla Abel

    This study seeks to understand the type of interaction mode that best supports learning and comprehension of emergent systems phenomena. Given that the literature has established that students hold robust misconceptions of such phenomena, this study investigates the influence of using three types of interaction; speed-manipulation animation (SMN), post-manipulation animation (PMA) and direct-manipulation animation (DMA) for increasing comprehension and testing transfer of the phenomena, by looking at the effect of simultaneous interaction of haptic and visual channels on long term and working memories when seeking to comprehend emergent phenomena. The questions asked were: (1) Does the teaching of emergent phenomena, with the aid of a dynamic interactive modeling tool (i.e., SMA, PMA or DMA), improve students' mental model construction of systems, thus increasing comprehension of this scientific concept? And (2) does the teaching of emergent phenomena, with the aid of a dynamic interactive modeling tool, give the students the necessary complex cognitive skill which can then be applied to similar (near transfer) and/or novel, but different, (far transfer) scenarios? In an empirical study undergraduate and graduate students were asked to participate in one of three experimental conditions: SMA, PMA, or DMA. The results of the study found that it was the participants of the SMA treatment condition that had the most improvement in post-test scores. Students' understanding of the phenomena increased most when they used a dynamic model with few interactive elements (i.e., start, stop, and speed) that allowed for real time visualization of one's interaction on the phenomena. Furthermore, no indication was found that the learning of emergent phenomena, with the aid of a dynamic interactive modeling tool, gave the students the necessary complex cognitive skill which could then be applied to similar (near transfer) and/or novel, but different, (far transfer) scenarios

  3. Development of a new RF coil and γ-ray radiation shielding assembly for improved MR image quality in SPECT/MRI

    International Nuclear Information System (INIS)

    Magnetic resonance (MR)-based multimodality imaging systems, such as single-photon emission tomography (SPECT)/magnetic resonance imaging (MRI) or positron emission tomography (PET)/MRI, face many difficulties because of problems with the compatibility of the nuclear detector system with the MR system. However, several studies have reported on the design considerations of MR-compatible nuclear detectors for combined SPECT/MRI. In this study, we developed a new radiofrequency (RF) coil and γ-ray radiation shielding assembly to advance the practical implementation of SPECT/MRI in providing high sensitivity while minimizing the interference between the MRI and SPECT systems. The proposed assembly consists of a three-channel receive-only RF coil and γ-ray radiation shields made of a specialized lead composite powder designed to reduce conductivity and thus minimizing any effect on the magnetic field arising from the induced eddy currents. A conventional birdcage RF coil was also tested for comparison with the proposed RF coil. Quality (Q)-factors were measured using both RF coils without any shielding, with solid lead shielding, and with our composite lead shielding. Signal-to-noise ratios (SNRs) were calculated using 4 T MR images of phantoms both with and without the new γ-ray radiation shields. The Q-factor and SNR measurements demonstrate the improved MRI performance due to the new RF coil/γ-ray radiation shield assembly designed for SPECT/MRI, making it a useful addition to multimodality imaging technology not only for animal studies but also for in vivo study of humans.

  4. Accelerated GPU based SPECT Monte Carlo simulations.

    Science.gov (United States)

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-01

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational

  5. Accelerated GPU based SPECT Monte Carlo simulations

    Science.gov (United States)

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-01

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: 99m Tc, 111In and 131I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency

  6. Absolute quantification in multi-pinhole micro-SPECT for different isotopes

    OpenAIRE

    Vandeghinste, Bert; Vanhove, Christian; De Beenhouwer, Jan; Van Holen, Roel; Vandenberghe, Stefaan; Staelens, Steven

    2011-01-01

    In preclinical Single Photon Emission Tomography (SPECT), absolute quantification is interesting, expressed in percentage of injected radioactive dose per gram of tissue. This allows for accurate evaluation of disease progression and precise follow-up studies without the need for sacrificing animals. Accurate modeling of image degrading effects is currently under development for isotopes different from 99mTc. The aim of this work is to develop absolute micro-SPECT quantification for three dif...

  7. Voxel-based investigations of regional cerebral blood flow abnormalities in Alzheimer's disease using a single-detector SPECT system Investigações voxel-a-voxel de anormalidades de fluxo sanguíneo cerebral regional na doença de Alzheimer usando equipamento de SPECT de detector único

    Directory of Open Access Journals (Sweden)

    Fabio L. S. Duran

    2007-01-01

    Full Text Available PURPOSE: To evaluate the feasibility of using the Statistical Parametric Mapping (SPM program for an automated, voxel-by-voxel assessment of regional cerebral blood flow (rCBF deficits in Alzheimer's disease (AD subjects relative to age-matched controls studied with a conventional, single-detector SPECT system. METHODS: We used a databank of 99mTc-HMPAO images of 19 patients with a diagnosis of probable AD and 15 elderly healthy volunteers; data were acquired using an Orbiter-Siemens single-detector SPECT system. Using SPM, images were transformed spatially, smoothed (12mm, and the data were compared on a voxel-by-voxel basis with t-tests. RESULTS: There were significant rCBF reductions in AD patients relative to controls involving regions predicted a priori to be affected in AD, namely the left temporal and parietal neocortices, and the right posterior cingulate gyrus (pOBJETIVO: Avaliar a viabilidade de emprego do programa Statistical Parametric Mapping (SPM para investigar de forma automatizada, voxel-a-voxel, a presença de déficits de fluxo sanguíneo cerebral regional (FSCr em pacientes com doença de Alzheimer (DA comparados a sujeitos-controle pareados para idade, usando imagens de SPECT adquiridas com um equipamento convencional de detector único. MÉTODOS: Foi utilizado um banco de imagens adquiridas após injeção de 99mTc-HMPAO em 19 pacientes com diagnóstico provável de DA e 15 voluntários idosos saudáveis, usando um equipamento de SPECT Orbiter-Siemens de detector único. Empregando o programa SPM, as imagens foram transformadas espacialmente, suavizadas (12mm FWHM, e comparadas estatisticamente voxel-a-voxel entre os dois grupos, usando o teste de T. RESULTADOS: Foram identificadas reduções significativas de FSCr nos pacientes com DA comparados aos controles em regiões previstas a priori como afetadas por esta forma de demência, quais sejam os neocórtices temporal e parietal em hemisfério esquerdo e o c

  8. Multipinhole SPECT helical scan parameters and imaging volume

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Rutao, E-mail: rutaoyao@buffalo.edu; Deng, Xiao [Department of Nuclear Medicine, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Wei, Qingyang; Dai, Tiantian; Ma, Tianyu [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Lecomte, Roger [Department of Nuclear Medicine and Radiobiology, Sherbrooke Molecular Imaging Center, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4 (Canada)

    2015-11-15

    Purpose: The authors developed SPECT imaging capability on an animal PET scanner using a multiple-pinhole collimator and step-and-shoot helical data acquisition protocols. The objective of this work was to determine the preferred helical scan parameters, i.e., the angular and axial step sizes, and the imaging volume, that provide optimal imaging performance. Methods: The authors studied nine helical scan protocols formed by permuting three rotational and three axial step sizes. These step sizes were chosen around the reference values analytically calculated from the estimated spatial resolution of the SPECT system and the Nyquist sampling theorem. The nine helical protocols were evaluated by two figures-of-merit: the sampling completeness percentage (SCP) and the root-mean-square (RMS) resolution. SCP was an analytically calculated numerical index based on projection sampling. RMS resolution was derived from the reconstructed images of a sphere-grid phantom. Results: The RMS resolution results show that (1) the start and end pinhole planes of the helical scheme determine the axial extent of the effective field of view (EFOV), and (2) the diameter of the transverse EFOV is adequately calculated from the geometry of the pinhole opening, since the peripheral region beyond EFOV would introduce projection multiplexing and consequent effects. The RMS resolution results of the nine helical scan schemes show optimal resolution is achieved when the axial step size is the half, and the angular step size is about twice the corresponding values derived from the Nyquist theorem. The SCP results agree in general with that of RMS resolution but are less critical in assessing the effects of helical parameters and EFOV. Conclusions: The authors quantitatively validated the effective FOV of multiple pinhole helical scan protocols and proposed a simple method to calculate optimal helical scan parameters.

  9. Multipinhole SPECT helical scan parameters and imaging volume

    International Nuclear Information System (INIS)

    Purpose: The authors developed SPECT imaging capability on an animal PET scanner using a multiple-pinhole collimator and step-and-shoot helical data acquisition protocols. The objective of this work was to determine the preferred helical scan parameters, i.e., the angular and axial step sizes, and the imaging volume, that provide optimal imaging performance. Methods: The authors studied nine helical scan protocols formed by permuting three rotational and three axial step sizes. These step sizes were chosen around the reference values analytically calculated from the estimated spatial resolution of the SPECT system and the Nyquist sampling theorem. The nine helical protocols were evaluated by two figures-of-merit: the sampling completeness percentage (SCP) and the root-mean-square (RMS) resolution. SCP was an analytically calculated numerical index based on projection sampling. RMS resolution was derived from the reconstructed images of a sphere-grid phantom. Results: The RMS resolution results show that (1) the start and end pinhole planes of the helical scheme determine the axial extent of the effective field of view (EFOV), and (2) the diameter of the transverse EFOV is adequately calculated from the geometry of the pinhole opening, since the peripheral region beyond EFOV would introduce projection multiplexing and consequent effects. The RMS resolution results of the nine helical scan schemes show optimal resolution is achieved when the axial step size is the half, and the angular step size is about twice the corresponding values derived from the Nyquist theorem. The SCP results agree in general with that of RMS resolution but are less critical in assessing the effects of helical parameters and EFOV. Conclusions: The authors quantitatively validated the effective FOV of multiple pinhole helical scan protocols and proposed a simple method to calculate optimal helical scan parameters

  10. Animation of multi-flexible body systems and its use in control system design

    Science.gov (United States)

    Juengst, Carl; Stahlberg, Ron

    1993-01-01

    Animation can greatly assist the structural dynamicist and control system analyst with better understanding of how multi-flexible body systems behave. For multi-flexible body systems, the structural characteristics (mode frequencies, mode shapes, and damping) change, sometimes dramatically with large angles of rotation between bodies. With computer animation, the analyst can visualize these changes and how the system responds to active control forces and torques. A characterization of the type of system we wish to animate is presented. The lack of clear understanding of the above effects was a key element leading to the development of a multi-flexible body animation software package. The resulting animation software is described in some detail here, followed by its application to the control system analyst. Other applications of this software can be determined on an individual need basis. A number of software products are currently available that make the high-speed rendering of rigid body mechanical system simulation possible. However, such options are not available for use in rendering flexible body mechanical system simulations. The desire for a high-speed flexible body visualization tool led to the development of the Flexible Or Rigid Mechanical System (FORMS) software. This software was developed at the Center for Simulation and Design Optimization of Mechanical Systems at the University of Iowa. FORMS provides interactive high-speed rendering of flexible and/or rigid body mechanical system simulations, and combines geometry and motion information to produce animated output. FORMS is designed to be both portable and flexible, and supports a number of different user interfaces and graphical display devices. Additional features have been added to FORMS that allow special visualization results related to the nature of the flexible body geometric representations.

  11. NEUROPSIQUIATRIA: PET Y SPECT

    Directory of Open Access Journals (Sweden)

    Juan Carlos Quintana F

    2002-01-01

    Full Text Available Existen numerosas indicaciones claramente establecidas para el uso del SPECT y PET en patología neuro-psiquiátrica, particularmente en el estudio de demencias, epilepsia y adicción a drogas. Estos métodos permiten detectar precozmente (aun antes de las manifestaciones clínicas cambios en la perfusión y metabolismo cerebral en pacientes con demencias. Es posible además diferenciar la enfermedad de Alzheimer de otras causas de demencia, analizando el patrón de la alteración neuro- funcional. En epilepsia parcial, tanto el metabolismo como la perfusión están alterados en el foco epileptogénico, lo que puede ser detectado con F-18FDG PET. Durante la crisis epiléptica, el flujo sanguíneo puede aumentar dramáticamente en el foco epileptogénico, lo que puede ser detectado con SPECT con 97% de certeza. En pacientes drogadictos, especialmente a la cocaína, estos métodos han demostrado ser muy sensibles para la detección precoz de cambios en el flujo y metabolismo cerebral, lo que es clínicamente importante en varios aspectos: 1 Tiene valor pronóstico (neuro-funcional, 2 Se puede usar para aumentar la adherencia a la terapia y 3 Permite evaluar objetivamente la recuperación funcional. Existen muchas otras indicaciones presentes y futuras, por ejemplo: en la monitorización de la revascularización en accidentes vasculares cerebrales agudos, rehabilitación post TEC, estudio de patología psiquiátrica y movimientos anormales especialmente con el desarrollo de radioligandosFunctional brain imaging with PET and SPECT have a definitive and well established role in the investigation of a variety of conditions such as dementia, epilepsy and drug addiction. With these methods it is possible to detect early rCBF (regional Cerebral Blood Flow changes seen in dementia (even before clinical symptoms and differentiate Alzheimer's disease from other dementias by means of the rCBF pattern change. 18-F-FDG PET imaging is a useful tool in partial

  12. Radiopharmaceuticals for SPECT cancer detection

    Science.gov (United States)

    Chernov, V. I.; Medvedeva, A. A.; Zelchan, R. V.; Sinilkin, I. G.; Stasyuk, E. S.; Larionova, L. A.; Slonimskaya, E. M.; Choynzonov, E. L.

    2016-08-01

    The purpose of the study was to assess the efficacy of single photon emission computed tomography (SPECT) with 199Tl and 99mTc-MIBI in the detection of breast, laryngeal and hypopharyngeal cancers. A total of 220 patients were included into the study: 120 patients with breast lesions (100 patients with breast cancer and 20 patients with benign breast tumors) and 100 patients with laryngeal/hypopharyngeal diseases (80 patients with laryngeal/hypopharyngeal cancer and 20 patients with benign laryngeal/hypopharyngeal lesions). No abnormal 199Tl uptake was seen in all patients with benign breast and laryngeal lesions, indicating a 100% specificity of 199Tl SPECT. In the breast cancer patients, the increased 199Tl uptake in the breast was visualized in 94.8% patients, 99mTc-MIBI—in 93.4% patients. The increased 199Tl uptake in axillary lymph nodes was detected in 60% patients, and 99mTc-MIBI—in 93.1% patients. In patients with laryngeal/hypopharyngeal cancer, the sensitivity of SPECT with 199Tl and 99mTc-MIBI was 95%. The 199Tl SPECT sensitivity in identification of regional lymph node metastases in the patients with laryngeal/hypopharyngeal cancer was 75% and the 99mTc-MIBI SPECT sensitivity was 17%. The data obtained showed that SPECT with 199Tl and 99mTc-MIBI can be used as one of the additional imaging methods in detection of tumors.

  13. Quantitative cardiac SPECT

    International Nuclear Information System (INIS)

    This thesis studied automated statistical mapping in myocardial perfusion SPECT to detect coronary artery disease (CAD). Registering myocardial studies to a 3D template allows an analysis on a voxel by voxel basis. Normal mean and standard deviation templates were created for each sex by registering 25 male and 25 female studies to a standard shape and position. A test group of 104 patients undergoing dipyridamole technetium-99m tetrofosmin SPECT and angiography were used to assess the automated method. Patients were divided into those with angiographic evidence of CAD (n=56) and those without (n=48). The test studies were registered to the templates and count normalized by minimizing the sum of absolute differences. A Z-score map of the statistical differences between registered study and template were calculated for all voxels within the myocardium. The contrast (Z-score) and extent (number of voxels in a cluster exceeding the contrast threshold) thresholds for detection of CAD were optimized using receiver operating characteristic (ROC) analysis. The optimal thresholds resulted in a sensitivity of 73% and a specificity of 92% for automatic detection of CAD. The area under the fitted ROC curve (±1 SE) was 0.86±0.08 for a Z-score contrast threshold of 5. The performance of this method and that of three experienced observers was compared by continuous ROC analysis. There was no statistically significant difference between the performances of the three observers and that of automatic detection in terms of the area under the ROC curves (p≥0.25). The use of this automated statistical mapping approach shows a performance comparable with experienced observers, but avoids observer variability

  14. Tc-99m RBC SPECT in hepatic cavernous hemangioma

    International Nuclear Information System (INIS)

    Hepatic cavernous hemangioma (HCH) is the most common benign hepatic tumor which is detected incidentally during ultrasonography (US) done at health check-up and computed tomography (CT) done for evaluation of metastasis. The aim of the study is to evaluate retrospectively the accuracy of the modality in the diagnosis of HCH at our institution. 229 patients underwent Tc-99m RBC liver SPECT from Nov 16, 1994 to Sep 24, 2001. There were 127 males and 103 females. Their ages ranges from 82 to 17 years with a mean age of 45.8 years. Twenty millicuries of Tc-99m RBCs autologously labeled were injected. SPECT was done in 2-3 hours after the tracer administration and several hours delayed scan was also obtained in some patients. SPECT was performed with low energy high resolution collimators and triple-head gamma camera (MultiSPECT, Siemens medical systems, Inc., Hoffman Estate, III. USA). SPECT was evaluated visually and results were compared with US, CT, MRI, and clinical follow-up. Of the 156 patients a total of 210 hemangiomas were found in RBC liver SPECT. With regard to the distribution of the lesions, 113 cases revealed single; 43 cases depicted multiple HCHs, with 164 in the right lobe and 46 in the left lobe. The size of lesions ranges from 0.9 to 10 cm. Regarding the size of the lesions on radiographic image, 11 were less than 1cm, 144 were 1 to 4 cm, and the others were more than 4 cm in diameter. RBC liver SPECT is none-invasive and very useful method in the diagnosis of hepatic hemangioma in patients with sonographic and computed tomographic suspicion, if the size is more than 1 cm in diameter. The method is used often for confirmation of HCH in our institution

  15. Proceedings of clinical SPECT (single photon emission computed tomography) symposium

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-01

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluation of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base. (TEM)

  16. Evaluation of a CZT gamma-ray detection module concept for SPECT

    International Nuclear Information System (INIS)

    CZT detectors are the basic building block of a variety of new SPECT systems. Their modularity allows to adapt system architecture to specific applications such as cardiac, breast, brain or small animal imaging. Thanks to their high quantum yield, these direct conversion detectors exhibit better energy and spatial resolutions than usual scintillation detectors based on NaI(Tl). However, it remains often unclear if SPECT imaging really can take profit of that performance gain. We propose here to conduct a case study based on the latest results obtained in our laboratory with current state of the art ICs and CZT crystals to investigate the system performance of a classical module dimensioning of 5 mm thick CZT with a segmented anode at a 2.5 * 2.5 mm pitch. This dimensioning, though being quite conservative, allows an easy integration in terms of crystal hybridization or PCB layout but still allows to obtain impressive results. Compared with X-ray counting were the only information retrieved is the occurrence of a photon interaction, spectrometric imaging performance is not only determined by photon statistics but also by readout noise, that ultimately limits time, energy and spatial resolutions associated with each photon event. After a first part dealing with the noise performance achieved by integrated circuits and a discussion on the key limiting factors, we present the typical readout architecture used and show how the signal processing is optimized for multiple parameter estimation. In a subsequent part, multi-pixel data acquisition scheme is discussed to show how raw channel data is used to extract photon parameters (energy, time-stamp, and 3D position) while taking into account material non-uniformities. We will show how such data can be used to build images and quantify resulting improvement. Finally, we open the discussion on SPECT collimation and architecture by demonstrating with simulations how a tomographical system dimensioning depends on detector

  17. GATE simulation of a LYSO-based SPECT imager: Validation and detector optimization

    Science.gov (United States)

    Li, Suying; Zhang, Qiushi; Xie, Zhaoheng; Liu, Qi; Xu, Baixuan; Yang, Kun; Li, Changhui; Ren, Qiushi

    2015-02-01

    This paper presents a small animal SPECT system that is based on cerium doped lutetium-yttrium oxyorthosilicate (LYSO) scintillation crystal, position sensitive photomultiplier tubes (PSPMTs) and parallel hole collimator. Spatial resolution test and animal experiment were performed to demonstrate the imaging performance of the detector. Preliminary results indicated a spatial resolution of 2.5 mm at FWHM that cannot meet our design requirement. Therefore, we simulated this gamma camera using GATE (GEANT 4 Application for Tomographic Emission) aiming to make detector spatial resolution less than 2 mm. First, the GATE simulation process was validated through comparison between simulated and experimental data. This also indicates the accuracy and effectiveness of GATE simulation for LYSO-based gamma camera. Then the different detector sampling methods (crystal size with 1.5, and 1 mm) and collimator design (collimator height with 30, 34.8, 38, and 43 mm) were studied to figure out an optimized parameter set. Detector sensitivity changes were also focused on with different parameters set that generated different spatial resolution results. Tradeoff curves of spatial resolution and sensitivity were plotted to determine the optimal collimator height with different sampling methods. Simulation results show that scintillation crystal size of 1 mm and collimator height of 38 mm, which can generate a spatial resolution of ~1.8 mm and sensitivity of ~0.065 cps/kBq, can be an ideal configuration for our SPECT imager design.

  18. GATE simulation of a LYSO-based SPECT imager: Validation and detector optimization

    International Nuclear Information System (INIS)

    This paper presents a small animal SPECT system that is based on cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal, position sensitive photomultiplier tubes (PSPMTs) and parallel hole collimator. Spatial resolution test and animal experiment were performed to demonstrate the imaging performance of the detector. Preliminary results indicated a spatial resolution of 2.5 mm at FWHM that cannot meet our design requirement. Therefore, we simulated this gamma camera using GATE (GEANT 4 Application for Tomographic Emission) aiming to make detector spatial resolution less than 2 mm. First, the GATE simulation process was validated through comparison between simulated and experimental data. This also indicates the accuracy and effectiveness of GATE simulation for LYSO-based gamma camera. Then the different detector sampling methods (crystal size with 1.5, and 1 mm) and collimator design (collimator height with 30, 34.8, 38, and 43 mm) were studied to figure out an optimized parameter set. Detector sensitivity changes were also focused on with different parameters set that generated different spatial resolution results. Tradeoff curves of spatial resolution and sensitivity were plotted to determine the optimal collimator height with different sampling methods. Simulation results show that scintillation crystal size of 1 mm and collimator height of 38 mm, which can generate a spatial resolution of ∼1.8 mm and sensitivity of ∼0.065 cps/kBq, can be an ideal configuration for our SPECT imager design

  19. GATE simulation of a LYSO-based SPECT imager: Validation and detector optimization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Suying [Department of Biomedicine and Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871 (China); Zhang, Qiushi [Institute for Drug and Instrument Control of Health Department GLD of PLA, No. 17 Fengtai West Road, Beijing 100071 (China); Xie, Zhaoheng; Liu, Qi [Department of Biomedicine and Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871 (China); Xu, Baixuan [The General Hospital of Chinese People’s Liberation Army, No. 28 Fuxing Road, Beijing 100039 (China); Yang, Kun; Li, Changhui [Department of Biomedicine and Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871 (China); Ren, Qiushi, E-mail: renqsh@coe.pku.edu.cn [Department of Biomedicine and Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871 (China)

    2015-02-11

    This paper presents a small animal SPECT system that is based on cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal, position sensitive photomultiplier tubes (PSPMTs) and parallel hole collimator. Spatial resolution test and animal experiment were performed to demonstrate the imaging performance of the detector. Preliminary results indicated a spatial resolution of 2.5 mm at FWHM that cannot meet our design requirement. Therefore, we simulated this gamma camera using GATE (GEANT 4 Application for Tomographic Emission) aiming to make detector spatial resolution less than 2 mm. First, the GATE simulation process was validated through comparison between simulated and experimental data. This also indicates the accuracy and effectiveness of GATE simulation for LYSO-based gamma camera. Then the different detector sampling methods (crystal size with 1.5, and 1 mm) and collimator design (collimator height with 30, 34.8, 38, and 43 mm) were studied to figure out an optimized parameter set. Detector sensitivity changes were also focused on with different parameters set that generated different spatial resolution results. Tradeoff curves of spatial resolution and sensitivity were plotted to determine the optimal collimator height with different sampling methods. Simulation results show that scintillation crystal size of 1 mm and collimator height of 38 mm, which can generate a spatial resolution of ∼1.8 mm and sensitivity of ∼0.065 cps/kBq, can be an ideal configuration for our SPECT imager design.

  20. Assessment of brain SPECT neuropsychiatric involvement in collagen-vascular diseases

    International Nuclear Information System (INIS)

    Objective: To study the value of brain SPECT in the diagnosis and follow up of SNC involvement in systemic connective tissue diseases (SCTD) with neuropsychiatric symptoms (NPS). Materials and methods: We retrospectively analyzed 31 consecutive patients with SCTD presenting with NPS who underwent 99mTc-ECD SPECT and statistical surface maps. 21 patients had systemic lupus erythematosus and 3 had Behcet disease. Results were compared to those of CT (18/31), MRI (8/31) and neuropsychological examination (NPE). 6 patients had follow-up SPECT scans. Results: Twenty-eight patients had abnormal SPECT studies. CT was abnormal in 3/18 patients (sensitivity 90.3% vs. 16.7%; p<0.001). MRI showed alterations in 5/8 patients and NPE in 7/10. Although all these patients presented abnormal SPECT scans, sensitivity values were not statistically different. Patients with major NPS presented more extensive perfusion defects (p<0.035). Patients with follow-up SPECT scans showed perfusion improvement with response to treatment and progression of the alterations when symptoms relapsed. Conclusion:Brain SPECT presents high sensitivity for the detection of neurological involvement in SCTD. SPECT usefulness may extend to follow-up and evaluation of response to treatment

  1. SPECT Imaging of patients with parkinsonian syndromes; SPECT-Untersuchungen bei Patienten mit Parkinson-Syndromen

    Energy Technology Data Exchange (ETDEWEB)

    Tatsch, K. [Klinik und Poliklinik fuer Nuklearmedizin, Klinikum der Univ. Muenchen-Grosshardern (Germany)

    2002-09-01

    Stimulated by the commercial availability of specific radioligands in vivo characterization of the dopaminergic system with single-photon emission tomography (SPECT) has gained clinical importance in the diagnostic work-up of patiens with parkinsonism. Currently interest is focused on two aspects of the dopaminergic neurotransmission: Cocaine analogues bind to the presynaptically located striatal dopamine transporter and herewith allow to assess the structural integrity of the presynaptic terminals which are the striatal projections of neurons originating in the substantia nigra. For functional assessment of the postsynaptic aspect of the dopaminergic synapse binding of specific receptor antagonists to postsynaptically located D2 receptors is analyzed. Depending on the clinical question and the pathology expected both methods - either each one alone or a combination of both - provide valuable diagnostic information. Currently those SPECT methods are applied to confirm or exclude a Parkinsonian syndrome, in the early and differential diagnosis of Parkinsonian syndromes, to assess disease severity and measure disease progression, and to monitor the effects of therapy e.g. with potentially neuroprotective drugs. This paper offers a comprehensive summary of the SPECT results reported in the literature dealing with the mentioned clinical applications. (orig.) [German] Stimuliert durch die kommerzielle Verfuegbarkeit spezifischer Radioliganden gewinnt die In-vivo-Charakterisierung des dopaminergen Systems mit der single-photon-emissions-computertomographie (SPECT) bei der diagnostischen Abklaerung von Parkinson-Syndromen zunehmend an Bedeutung. Hierbei stehen zwei Aspekte der dopaminergen Neurotransmission im Blickpunkt des Interesses: Die Bindung von Kokainanaloga an den praesynaptischen Dopamintransporter laesst Rueckschluesse auf die Integritaet von Neuronen der Substantia nigra mit ihren zum Corpus striatum projizierenden Axonen (praesynaptische Nervenfasern) zu. Die

  2. State of the art in both in vitro and in vivo aspects of small animal imaging

    International Nuclear Information System (INIS)

    Full text: In vivo imaging for small animals is dramatically expanding due to the coincidence of mainly three technical factors: 1. the explosion in computer power 2. the enhancement in image processing 3. the accessibility and affordability of digital autoradiography systems and small-animal scanners. Among these imaging techniques let us mention the anatomical imaging techniques such as ultrasonography, X-rays and IRM and the functional imaging radioisotopic techniques SPECT and TEP. The main advantage of the first group of imaging techniques is essentially linked to the high resolution of the anatomical images (with the drawback of the necessity of putting the animal at rest using anaesthesia). The main advantages of SPECT and PET are their high sensitivity and the vast number of functions or metabolism they allow to image. The applications for isotopic functional imaging in small animals are increasing rapidly. Factors contributing to this dramatic expansion include the three previous technical factors plus, at least, three methodological factors: 1. the drug discovery process based on receptor / mechanism of action 2. the increasing number of rodent models of human diseases (SCID mice implanted with human tumors, gene knock-out mice, transgene mice) 3. the advances in isotope and validated tracer availability performances Small animal radioisotopic functional imaging for drug development. In vivo quantification of biological processes to measure the mechanism of action of a potential drug and its concentration at the site of action has become mandatory for developing a drug. Rational and efficient means of confirming mechanisms of action are required. For this purpose, PET and/or SPECT functional - biochemical - molecular imaging in small animals are tools of choice for economical reasons (in the domain of drug development, industry is suffering huge opportunity costs by failing to weed out non-performing new active substances until late phases II and III) and

  3. An isolated working heart system for large animal models.

    Science.gov (United States)

    Schechter, Matthew A; Southerland, Kevin W; Feger, Bryan J; Linder, Dean; Ali, Ayyaz A; Njoroge, Linda; Milano, Carmelo A; Bowles, Dawn E

    2014-01-01

    Since its introduction in the late 19(th) century, the Langendorff isolated heart perfusion apparatus, and the subsequent development of the working heart model, have been invaluable tools for studying cardiovascular function and disease(1-15). Although the Langendorff heart preparation can be used for any mammalian heart, most studies involving this apparatus use small animal models (e.g., mouse, rat, and rabbit) due to the increased complexity of systems for larger mammals(1,3,11). One major difficulty is ensuring a constant coronary perfusion pressure over a range of different heart sizes - a key component of any experiment utilizing this device(1,11). By replacing the classic hydrostatic afterload column with a centrifugal pump, the Langendorff working heart apparatus described below allows for easy adjustment and tight regulation of perfusion pressures, meaning the same set-up can be used for various species or heart sizes. Furthermore, this configuration can also seamlessly switch between constant pressure or constant flow during reperfusion, depending on the user's preferences. The open nature of this setup, despite making temperature regulation more difficult than other designs, allows for easy collection of effluent and ventricular pressure-volume data. PMID:24962492

  4. Three-dimensional modeler for animated images display system

    International Nuclear Information System (INIS)

    The mv3d software allows the modeling and display of three dimensional objects in interpretative mode with animation possibility in real time. This system is intended for a graphical extension of a FORTH interpreter (implemented by CEA/IRDI/D.LETI/DEIN) in order to control a specific hardware (3.D card designed and implemented by DEIN) allowing the generation of three dimensional objects. The object description is carried out with a specific graphical language integrated in the FORTH interpreter. Objects are modeled using elementary solids called basic forms (cube, cone, cylinder...) assembled with classical geometric transformations (rotation, translation and scaling). These basic forms are approximated by plane polygonal facets further divided in triangles. Coordinates of the summits of triangles constitute the geometrical data. These are sent to the 3.D. card for processing and display. Performed processing are: geometrical transformations on display, hidden surface elimination, shading and clipping. The mv3d software is not an entire modeler but a simple, modular and extensible tool, to which other specific functions may be easily added such as: robots motion, collisions... (author)

  5. SPM analysis of cerebrovascular reserve capacity after stimulation with acetazolamide measured by Tc-99m ECD SPECT in normal brain MRI patient

    International Nuclear Information System (INIS)

    This study was undertaken to evaluate normal response of acetazolamide in normal individuals, whose brain MRI is normal, using SPM99. In total, 10 Tc- 99m ECD brain SPECT were evaluated retrospectively. The half of the patients were male. Their mean age was 47.1 years old with a range of 33-61 years. They all visited our neurology department to evaluate stroke symptom. Their brain MRI was normal. Rest/acetazolamide brain SPECT was perfomed using Tc-99m ECD and the sequential injection and subtraction method. SPECT was acquired using fanbeam collimators and triple-head gamma camera (MultiSPECT III, Siemens medical systems, Inc. Hoffman Estates, III, USA). Chang's attenuation correction was applied their brain SPECT revealed normal rCBF pattern in visual analysis by two nuclear physician and they were diagnosed clinically normal. Using SPM method, we compared rest brain SPECT images with those of acetazolamide brain SPECT and measured the extent of the area with significant perfusion change (P<0.05) in predefined 34 cerebral regions. Acetazolamide brain SPECT showed no significant decreased region in comparison to rest brain SPECT. Only small portion of left mid temporal gyrus revealed increased rCBF on acetazolamide brain SPECT in comparison to rest brain SPECT. It apperas that there is no significant change in rCBF between rest and acetazolamide brain SPECT using Tc-99m ECD. The small number of this study is limitation of our study

  6. 'Double-layer' method to improve image quality of industria SPECT

    International Nuclear Information System (INIS)

    Recently a lab-scale single photon emission computed tomography (SPECT) system was constructed to study the details of the image formation process in an industrial SPECT system. The industrial SPECT system differs from a medical SPECT system in that it uses relatively large detectors and collimators in order to effectively detect high-energy gammas with enough collimation power, resulting always, however, in low-quality images. In this paper, a simple but very effective 'double-layer' method is proposed as a means of improving the image quality of the industrial SPECT system. The rationale of the double-layer method is to simultaneously employ two layers of identical SPECT systems to increase the number of measurements points and, thereby, increase the image quality. The performance results of the double-layer method, as evaluated by Geant4 Monte Carlo simulations, showed dramatic improvement in image quality over those offered by the single-layer SPECT system. The improvement, additionally, was more marked for more complicated and higher-energy gamma sources.

  7. Optimization of detector size and collimator for PG-SPECT

    International Nuclear Information System (INIS)

    A current absorbed dose evaluation method in a Boron Neutron Capture Therapy demands boron reaction rate from a boron concentration of an affected part supposed from a neutron flux and a boron concentration in blood measured by an activation method of a gold wire indirectly and converts it into an absorbed dose. So we devised a PG-SEPCT (Prompt Gamma-ray Single Photon Emission Computed Tomography) system to evaluate an absorbed dose directly by measuring prompt gamma-rays. Ordinary SPECT system uses a big NaI scintillator for detector so that measurement is done in low background gamma-ray environment. However, a conventional detector and collimator system cannot be just applied to PG-SPECT system because a background radiation coexists abundantly (PG-SPECT system is set in irradiation room). Accordingly PG-SPECT system requires a dedicated detector and collimator system. In order to reduce efficiency for background gamma-rays, we arranged detectors in a collimator to shield from background gamma-rays. We examined the most suitable collimator shape. The optimization condition of a dedicated collimator system is as follows: 1) the smallest particle size that can be distinguished is 1 cm. 2) necessary counts at measurement target center is not less than 10,000. (author)

  8. SPECT of brain blood flow

    International Nuclear Information System (INIS)

    Morphological observation of the brain became possible by CT and various informations on vascularity and damages in brain blood barrier (BBB) became obtainable by the combined use of contrast medium. Then the appearance of MRI had enabled to discriminate the cortex and the medula of the brain and to perform MR angiography. However, it was still difficult to observe the cerebral tissue in detail. Recently, nuclear medical procedures have been developed and applied to diagnosis. SPECT images attributable to the distribution of γ-ray from a tracer, which monitors the blood flow and various metabolisms. Thus, investigations of cerebral functions including blood flow metabolism and neural transmission etc. became possible by the technique. Here, SPECT by Xe-133 clearance and 99mTc HMPAO methods were reviewed. For Xe-133 method, subjects positioned in SPECT instrument underwent bolus inhalation of Xe-133, 1850 Mbq followed by washout respiration of room air. During these treatment, cerebral projection and determination of the concentration of Xe-133 CO2 in the expired air were continuously carried out. And the blood flow level per pixel was estimated from SPECT images and the end-tidal Xe-133 concentration curve. This method was thought to be the most excellent method for the determination of local blood flow in respect of accuracy and reproducibility. The tracer distribution expressed the functional level of the stagnant state of blood flow. SPECT provides useful informations to investigate the physiological functions and pathology in the brain. (M.N.)

  9. Performance evaluation of a novel high performance pinhole array detector module using NEMA NU-4 image quality phantom for four head SPECT Imaging

    Science.gov (United States)

    Rahman, Tasneem; Tahtali, Murat; Pickering, Mark R.

    2015-03-01

    Radiolabeled tracer distribution imaging of gamma rays using pinhole collimation is considered promising for small animal imaging. The recent availability of various radiolabeled tracers has enhanced the field of diagnostic study and is simultaneously creating demand for high resolution imaging devices. This paper presents analyses to represent the optimized parameters of a high performance pinhole array detector module using two different characteristics phantoms. Monte Carlo simulations using the Geant4 application for tomographic emission (GATE) were executed to assess the performance of a four head SPECT system incorporated with pinhole array collimators. The system is based on a pixelated array of NaI(Tl) crystals coupled to an array of position sensitive photomultiplier tubes (PSPMTs). The detector module was simulated to have 48 mm by 48 mm active area along with different pinhole apertures on a tungsten plate. The performance of this system has been evaluated using a uniform shape cylindrical water phantom along with NEMA NU-4 image quality (IQ) phantom filled with 99mTc labeled radiotracers. SPECT images were reconstructed where activity distribution is expected to be well visualized. This system offers the combination of an excellent intrinsic spatial resolution, good sensitivity and signal-to-noise ratio along with high detection efficiency over an energy range between 20-160 keV. Increasing number of heads in a stationary system configuration offers increased sensitivity at a spatial resolution similar to that obtained with the current SPECT system design with four heads.

  10. 40 CFR 160.90 - Animal and other test system care.

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Testing Facilities Operation § 160.90 Animal and other test... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Animal and other test system care. 160... as raw data. (h) Bedding used in animal cages or pens shall not interfere with the purpose or...

  11. Development, validation and implementation of animal health information systems in an environment without uniquely identified animals in transitional countries

    International Nuclear Information System (INIS)

    The veterinary activities for control of animal diseases are based on the Low for Veterinary Health [2], the Programme for control and eradication of especially dangerous diseases in animals [3] and the special programmes designed for specific diseases, which are in accordance with the EU legislative. This legislative is defining a division of the country into 30 Epidemiological Areas (EAs) and 123 Epidemiological Units (EUs). Each village belongs to a defined EU, which further belongs to a defined EA. Two animal health information systems were developed in Macedonia, the National Epidemiological Information System (NEIS) and the Laboratory Information System (LABIS). Both systems were aimed on collection/interpretation of animal disease data, in a country where animals are not uniquely identified. The development of NEIS was based on the existing legislation of compulsatory notification of infectious diseases. Field records are collected via the designated veterinary practices (DVP) and entered into the NEIS via the veterinary inspectors (VIs), (employees of the MAFWE). Sources of data for NEIS are obligatory disease control programs (Annual order), Endemic diseases, Outbreaks, Slaughterhouses and Laboratory results of annual surveys. LABIS is a separate database for managing laboratory results. It collects data from samples submitted by DVPs. The samples can be then analyzed in different laboratories, using different methods and given a 'final status' by authorized person. The final status is linked to the previously performed tests and entered into the NEIS. By this concept, the Veterinary department is capable to trace back the background for each individual sample, by reviewing the analyses performed on it. Both systems are designed as a referential integrity databases, where the field result is linked to the animal, owner, village (n = 1803), epidemiological units (n = 123) and epidemiological areas (n = 30) in the country. NEIS can also present the same data

  12. The application of PET, SPECT and MRS in Parkinson's disease

    International Nuclear Information System (INIS)

    PET and SPECT provide the means to studying in vivo the neurochemical, hemodynamic or metabolic consequences of the degeneration of the nigrostriatal dopamineric system in Parkinson's disease (PD). Activation studies using cerebral blood flow and metabolism measurements during a motor task reveal an impaired ability to activate the supplementary motor area and dorsolateral prefrontal cortex in PD. The extent of striatal dopaminergic denervation can be quantified with PET and SPECT. Striatal uptake of 18F-dopa is markedly decreased in PD, more in the putamen than in the caudate nucleus, and inversely correlates with the severity of motor signs and with duration of disease. PET and SPECT make possible the assessment by noninvasive means of the changes in dopamine receptor density. Meanwhile, MRS can reveal changes in concentration of several hydrogenate and phosphoric compounds in the brain. The functional information of brain in PD can be obtained with these complementary techniques. (authors)

  13. Development, validation and implementation of animal health information systems in an environment without uniquely identified animals in transitional countries

    International Nuclear Information System (INIS)

    Two animal health information systems were developed in Macedonia, the National Epidemiological Information System (NEIS) and the Laboratory Information System (LABIS). Both systems were aimed at collecting/interpreting animal disease data in a country where animals are not uniquely identified. The development of NEIS was based on the existing legislation of compulsory notification of infectious diseases. Field records are collected via the designated veterinary practices and entered into the NEIS via the veterinary inspectors who are employees of the Ministry of Agriculture, Forestry and Water Economy. Sources of data for NEIS are obligatory disease control programmes (Annual Order), endemic diseases, outbreaks, slaughterhouses and laboratory results of annual surveys. LABIS is a separate database for managing laboratory results. It collects data from samples submitted by Designated Veterinary Practices (DVPs). The samples can then be analysed in different laboratories using different methods and given a 'final status' by an authorised person. The final status is linked to the previously performed tests and entered into the NEIS. Using this concept, the Veterinary Department can trace back the background for each individual sample by reviewing the analyses performed on it. Both systems are designed as a referential integrity databases, where the field result is linked to the animal, owner, village (n = 1 803), epidemiological unit (n = 123) and epidemiological area (n = 30) in the country. NEIS can also present the same data in geographical maps, showing the infected village as the smallest unit of observation. Both systems have also different levels of authorisation access, allowing precise tracing of entered data. (author)

  14. SPECT in Focal Epilepsies

    Directory of Open Access Journals (Sweden)

    Roderick Duncan

    2000-01-01

    Full Text Available Brain perfusion changes during seizures were first observed in the 1930s. Single Photon Emission Computed Tomography (SPECT was developed in the 1970s, and tracers suitable for the imaging of regional cerebral perfusion (rCP became available in the 1980s. The method was first used to study rCP in the interictal phase, and this showed areas of low perfusion in a proportion of cases, mainly in patients with temporal lobe epilepsies. However, the trapping paradigm of tracers such as hexamethyl propyleneamine oxime (HMPAO provided a practicable method of studying changes in rCP during seizures, and a literature was established in the late 1980s and early 1990s showing a typical sequence of changes during and after seizures of mesial temporal lobe origin; the ictal phase was associated with large increases in perfusion throughout the temporal lobe, with first the lateral, then the mesial temporal lobe becoming hypoperfused in the postictal phase. Activation and inhibition of other structures, such as the basal ganglia and frontal cortex, were also seen. Studies of seizures originating elsewhere in the brain have shown a variety of patterns of change, according to the structures involved. These changes have been used practically to aid the process of localisation of the epileptogenic zone so that epilepsy surgery can be planned.

  15. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    International Nuclear Information System (INIS)

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  16. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Bowsher, James, E-mail: james.bowsher@duke.edu; Giles, William; Yin, Fang-Fang [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Yan, Susu [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Roper, Justin [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-01-15

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  17. Technetium-99m-labelled red blood cell imaging in the diagnosis of hepatic haemangiomas: the role of SPECT/CT with a hybrid camera

    International Nuclear Information System (INIS)

    Delayed liver single-photon emission computed tomography (SPECT) after 99mTc red blood cell (RBC) labelling is helpful in detecting hepatic haemangiomas; however, diagnosis can be difficult when lesions are situated adjacent to structures like the inferior vena cava, the heart or hepatic vessels, where blood activity persists. The aims of this study were to evaluate the usefulness of RBC SPECT and transmission computed tomography (RBC SPECT/CT) performed simultaneously with a hybrid imaging system for correct characterisation of hepatic lesions in patients with suspected haemangioma, and to assess the additional value of fused images compared with SPECT alone. Twelve patients with 24 liver lesions were studied. The acquisitions of both anatomical (CT) and functional (SPECT) data were performed during a single session. SPECT images were first interpreted alone and then re-evaluated after adding the transmission anatomical maps. Image fusion was successful in all patients, with perfect correspondence between SPECT and CT data, allowing the precise anatomical localisation of sites of increased blood pool activity. SPECT/CT had a significant impact on results in four patients (33.3%) with four lesions defined as indeterminate on SPECT images, accurately characterising the hot spot foci located near vascular structures. In conclusion, RBC SPECT/CT imaging using this hybrid SPECT/CT system is feasible and useful in the identification or exclusion of suspected hepatic haemangiomas located near regions with high vascular activity. (orig.)

  18. Technetium-99m-labelled red blood cell imaging in the diagnosis of hepatic haemangiomas: the role of SPECT/CT with a hybrid camera

    Energy Technology Data Exchange (ETDEWEB)

    Schillaci, Orazio; Danieli, Roberta; Manni, Carlo; Capoccetti, Francesca; Simonetti, Giovanni [Department of Biopathology and Diagnostic Imaging, University ' ' Tor Vergata' ' , Rome (Italy)

    2004-07-01

    Delayed liver single-photon emission computed tomography (SPECT) after {sup 99m}Tc red blood cell (RBC) labelling is helpful in detecting hepatic haemangiomas; however, diagnosis can be difficult when lesions are situated adjacent to structures like the inferior vena cava, the heart or hepatic vessels, where blood activity persists. The aims of this study were to evaluate the usefulness of RBC SPECT and transmission computed tomography (RBC SPECT/CT) performed simultaneously with a hybrid imaging system for correct characterisation of hepatic lesions in patients with suspected haemangioma, and to assess the additional value of fused images compared with SPECT alone. Twelve patients with 24 liver lesions were studied. The acquisitions of both anatomical (CT) and functional (SPECT) data were performed during a single session. SPECT images were first interpreted alone and then re-evaluated after adding the transmission anatomical maps. Image fusion was successful in all patients, with perfect correspondence between SPECT and CT data, allowing the precise anatomical localisation of sites of increased blood pool activity. SPECT/CT had a significant impact on results in four patients (33.3%) with four lesions defined as indeterminate on SPECT images, accurately characterising the hot spot foci located near vascular structures. In conclusion, RBC SPECT/CT imaging using this hybrid SPECT/CT system is feasible and useful in the identification or exclusion of suspected hepatic haemangiomas located near regions with high vascular activity. (orig.)

  19. Remote Laboratory and Animal Behaviour: An Interactive Open Field System

    Science.gov (United States)

    Fiore, Lorenzo; Ratti, Giovannino

    2007-01-01

    Remote laboratories can provide distant learners with practical acquisitions which would otherwise remain precluded. Our proposal here is a remote laboratory on a behavioural test (open field test), with the aim of introducing learners to the observation and analysis of stereotyped behaviour in animals. A real-time video of a mouse in an…

  20. A Novel System for Non-Invasive Method of Animal Tracking and Classification in Designated Area Using Intelligent Camera System

    OpenAIRE

    S. Matuska; Hudec, R.; P. Kamencay; M. Benco; M. Radilova

    2016-01-01

    This paper proposed a novel system for non-invasive method of animal tracking and classification in designated area. The system is based on intelligent devices with cameras, which are situated in a designated area and a main computing unit (MCU) acting as a system master. Intelligent devices track animals and then send data to MCU to evaluation. The main purpose of this system is detection and classification of moving animals in a designated area and then creation of migration corridors of wi...

  1. Comparison of Intrahepatic and Pancreatic Perfusion on Fusion Images Using a Combined SPECT/CT System and Assessment of Efficacy of Combined Continuous Arterial Infusion and Systemic Chemotherapy in Advanced Pancreatic Carcinoma

    International Nuclear Information System (INIS)

    Purpose. The purpose of this study was to compare intrahepatic and pancreatic perfusion on fusion images using a combined single-photon emission computed tomography (SPECT)/CT system and to evaluate the efficacy of combined continuous transcatheter arterial infusion (CTAI) and systemic chemotherapy in the treatment of advanced pancreatic carcinoma. Materials and Methods. CTAI was performed in 33 patients (22 men, 11 women; age range, 35-77 years; mean age, 60 years) with stage IV pancreatic cancer with liver metastasis. The reservoir was transcutaneously implanted with the help of angiography. The systemic administration of gemcitabine was combined with the infusion of 5-fluorouracil via the reservoir. In all patients we obtained fusion images using a combined SPECT/CT system. Pancreatic perfusion on fusion images was classified as perfusion presence or as perfusion absent in the pancreatic cancer. Using WHO criteria we recorded the tumor response after 3 months on multislice helical CT scans. Treatment effects were evaluated based on the pancreatic cancer, liver metastasis, and factors such as intrahepatic and pancreatic perfusion on fusion images. For statistical analysis we used the chi-square test; survival was evaluated by the Kaplan Meier method (log-rank test). Results. On fusion images, pancreatic and intrahepatic perfusion was recorded as hot spot and as homogeneous distribution, respectively, in 18 patients (55%) and as cold spot and heterogeneous distribution, respectively, in 15 (45%). Patients with hot spot in the pancreatic tumor and homogeneous distribution in the liver manifested better treatment results (p < 0.05 and p < 0.01, respectively). Patients with hot spot both in the pancreatic cancer and in the liver survived longer than those with cold spot in the pancreatic cancer and heterogeneous distribution in the liver (median ± SD, 16.0 ± 3.7 vs. 8.0 ± 1.4 months; p < 0.05). Conclusions. We conclude that in patients with advanced pancreatic

  2. An Arbitrary Waveform Wearable Neuro-stimulator System for Neurophysiology Research on Freely Behaving Animals

    OpenAIRE

    Samani, Mohsen Mosayebi; Mahnam, Amin; Hosseini, Nasrin

    2014-01-01

    Portable wireless neuro-stimulators have been developed to facilitate long-term cognitive and behavioral studies on the central nervous system in freely moving animals. These stimulators can provide precisely controllable input(s) to the nervous system, without distracting the animal attention with cables connected to its body. In this study, a low power backpack neuro-stimulator was developed for animal brain researches that can provides arbitrary stimulus waveforms for the stimulation, whil...

  3. A role of advanced image data logger systems in marine animal studies

    OpenAIRE

    Naito, Yasuhiko

    2006-01-01

    To fulfill information gaps of underwater animal behavior, variety of animal-borne observation systems have been developed in last several decades, which revealed diving behavior, foraging behavior of many endotherms, particularly seals and penguins by providing information on many dive parameters, such as dive depth, dive angles, dive profiles, swim speed, body motion, body postures, ambient temperatures, 3D dive paths and so on. Above advanced animal-borne systems supported us to obtain rel...

  4. Hyperpolarized singlet NMR on a small animal imaging system

    OpenAIRE

    Laustsen, Christoffer; Pileio, Giuseppe; Tayler, Michael C. D.; Brown, Lynda J.; Brown, Richard C. D.; Levitt, Malcolm H.; Ardenkjaer-Larsen, Jan H.

    2012-01-01

    Nuclear spin hyperpolarization makes a significant advance toward overcoming the sensitivity limitations of in vivo magnetic resonance imaging, particularly in the case of low-gamma nuclei. The sensitivity may be improved further by storing the hyperpolarization in slowly relaxing singlet populations of spin-1/2 pairs. Here, we report hyperpolarized 13C spin order transferred into and retrieved from singlet spin order using a small animal magnetic resonance imaging scanner. For spins in sites...

  5. ras activation in human tumors and in animal model systems.

    OpenAIRE

    Corominas, M; Sloan, S R; Leon, J.; Kamino, H; Newcomb, E W; Pellicer, A

    1991-01-01

    Environmental agents such as radiation and chemicals are known to cause genetic damage. Alterations in a limited set of cellular genes called proto-oncogenes lead to unregulated proliferation and differentiation. We have studied the role of the ras gene family in carcinogenesis using two different animal models. In one case, thymic lymphomas were induced in mice by either gamma or neutron radiation, and in the other, keratoacanthomas were induced in rabbit skin with dimethylbezanthracene. Hum...

  6. Definition of animal breeding goals for sustainable production systems

    OpenAIRE

    Olesen, I.; Groen, A.F.; GJERDE, B.

    2000-01-01

    What we do is determined by the way we "view" a complex issue and what sample of issues or events we choose to deal with. In this paper, a model based on a communal, cultural, or people-centered worldview, informed by a subjective epistemology and a holistic ontology, is considered. Definitions and interpretations of sustainable agriculture are reviewed. Common elements in published definitions of sustainable agriculture and animal production among those who seek long-term and equitable solut...

  7. Detection models for freehand SPECT reconstruction

    International Nuclear Information System (INIS)

    Nuclear imaging modalities are commonly used tools in today’s diagnostics and therapy planning. However for interventional use they suffer from drawbacks which limit their application. Freehand SPECT was developed to provide 3D functional imaging during interventions. It combines a nuclear detector with an optical tracking system to obtain its position and orientation in space and synchronizes this with the detector readings. This information can be used to compute a 3D tomographic reconstruction of an activity distribution of a nuclear tracer. As there is no fixed geometry, the system matrix has to be computed on the fly. This is done with models of the detection process for completely arbitrary freehand acquisitions. The accuracy of the reconstructions is highly dependent on the used models of the detection process. Different models of the detection process were developed and evaluated in this work, in particular two analytical models as well as lookup tables generated from either real measurements or Monte Carlo simulations. We showed that it is possible to perform acceptable reconstructions with a simple but efficient analytical model. The use of lookup tables to generate the system matrix in Freehand SPECT is a fast solution with good accuracy. (paper)

  8. Collimator design for a multipinhole brain SPECT insert for MRI

    International Nuclear Information System (INIS)

    Purpose: Brain single photon emission computed tomography (SPECT) imaging is an important clinical tool, with unique tracers for studying neurological diseases. Nowadays, most commercial SPECT systems are combined with x-ray computed tomography (CT) in so-called SPECT/CT systems to obtain an anatomical background for the functional information. However, while CT images have a high spatial resolution, they have a low soft-tissue contrast, which is an important disadvantage for brain imaging. Magnetic resonance imaging (MRI), on the other hand, has a very high soft-tissue contrast and does not involve extra ionizing radiation. Therefore, the authors designed a brain SPECT insert that can operate inside a clinical MRI. Methods: The authors designed and simulated a compact stationary multipinhole SPECT insert based on digital silicon photomultiplier detector modules, which have shown to be MR-compatible and have an excellent intrinsic resolution (0.5 mm) when combined with a monolithic 2 mm thick LYSO crystal. First, the authors optimized the different parameters of the SPECT system to maximize sensitivity for a given target resolution of 7.2 mm in the center of the field-of-view, given the spatial constraints of the MR system. Second, the authors performed noiseless simulations of two multipinhole configurations to evaluate sampling and reconstructed resolution. Finally, the authors performed Monte Carlo simulations and compared the SPECT insert with a clinical system with ultrahigh-resolution (UHR) fan beam collimators, based on contrast-to-noise ratio and a visual comparison of a Hoffman phantom with a 9 mm cold lesion. Results: The optimization resulted in a stationary multipinhole system with a collimator radius of 150.2 mm and a detector radius of 172.67 mm, which corresponds to four rings of 34 diSPM detector modules. This allows the authors to include eight rings of 24 pinholes, which results in a system volume sensitivity of 395 cps/MBq. Noiseless simulations

  9. Collimator design for a multipinhole brain SPECT insert for MRI

    Energy Technology Data Exchange (ETDEWEB)

    Van Audenhaege, Karen; Van Holen, Roel; Vanhove, Christian; Vandenberghe, Stefaan [Department of Electronics and Information Systems, Ghent University-iMinds Medical IT, MEDISIP-IBiTech, De Pintelaan 185 block B/5, Ghent B-9000 (Belgium)

    2015-11-15

    Purpose: Brain single photon emission computed tomography (SPECT) imaging is an important clinical tool, with unique tracers for studying neurological diseases. Nowadays, most commercial SPECT systems are combined with x-ray computed tomography (CT) in so-called SPECT/CT systems to obtain an anatomical background for the functional information. However, while CT images have a high spatial resolution, they have a low soft-tissue contrast, which is an important disadvantage for brain imaging. Magnetic resonance imaging (MRI), on the other hand, has a very high soft-tissue contrast and does not involve extra ionizing radiation. Therefore, the authors designed a brain SPECT insert that can operate inside a clinical MRI. Methods: The authors designed and simulated a compact stationary multipinhole SPECT insert based on digital silicon photomultiplier detector modules, which have shown to be MR-compatible and have an excellent intrinsic resolution (0.5 mm) when combined with a monolithic 2 mm thick LYSO crystal. First, the authors optimized the different parameters of the SPECT system to maximize sensitivity for a given target resolution of 7.2 mm in the center of the field-of-view, given the spatial constraints of the MR system. Second, the authors performed noiseless simulations of two multipinhole configurations to evaluate sampling and reconstructed resolution. Finally, the authors performed Monte Carlo simulations and compared the SPECT insert with a clinical system with ultrahigh-resolution (UHR) fan beam collimators, based on contrast-to-noise ratio and a visual comparison of a Hoffman phantom with a 9 mm cold lesion. Results: The optimization resulted in a stationary multipinhole system with a collimator radius of 150.2 mm and a detector radius of 172.67 mm, which corresponds to four rings of 34 diSPM detector modules. This allows the authors to include eight rings of 24 pinholes, which results in a system volume sensitivity of 395 cps/MBq. Noiseless simulations

  10. 3-D Rat Brain Phantom for High-Resolution Molecular Imaging: Experimental studies aimed at advancing understanding of human brain disease and malfunction, and of behavior problems, may be aided by computer models of small laboratory animals

    NARCIS (Netherlands)

    Beekman, F.J.; Vastenhouw, B.; Van der Wilt, G.; Vervloet, M.; Visscher, R.; Booij, J.; Gerrits, M.; Ji, C.; Ramakers, R.; Van der Have, F.

    2009-01-01

    With the steadily improving resolution of novel small-animal single photon emission computed tomography (SPECT) and positron emission tomography devices, highly detailed phantoms are required for testing and optimizing these systems. We present a three-dimensional (3-D) digital and physical phantom

  11. Evaluating brain tumors with SPECT

    International Nuclear Information System (INIS)

    The evaluation of cerebral blood flow and metabolism using functional imaging in combination with morphological imaging by CT and MRI has recently been attracting attention in neuroradiological diagnosis of brain tumor. This report assesses the clinical usefulness of SPECT for brain tumor. Because 201TlCl SPECT is useful in determining the degree of brain tumor malignancy and clearly reflects tumor metabolism after radiochemotherapy, it is capable of determining therapeutic outcomes earlier than MRI. To increase the diagnostic performance of 201TlCl SPECT, time-course accumulation dynamics were investigated using early and delayed imaging. Three-dimensional SPECT imaging using N-isopropyl-p[123I]-iodoamphetamine (123I-IMP) is a new diagnostic method that not only visually evaluates the lesion but also quantifies the expansion volume of the hypoperfusion area associated with the lesion. Development of functional imaging may lead to a new therapeutic method by providing clinical images that more faithfully reproduce the pathological state. (author)

  12. SPECT og PET i neurobiologien

    DEFF Research Database (Denmark)

    Paulson, O.B.; Lassen, N.A.

    1997-01-01

    PET (positron emission tomography) and SPECT (single photon emission computed tomography) are isotopic methods in which the distribution is registered of radiolabelled tracers given in such small amounts that they are without effect on the organism or the organism's disposal of them. Thus, a series...

  13. Plants and Animals as Concept Generators for the Development of Biomimetic Cable Entry Systems

    Institute of Scientific and Technical Information of China (English)

    Tom Masseiter; Uwe Scharf; Thomas Speck

    2008-01-01

    Many animals and plants have high potential to serve as concept generators for developing biomimetic materials and structures. We present some ideas based on structural and functional properties of plants and animals that led to the development of two types of biomimetic cable entry systems. Those systems have been realized on the level of functional demonstrators.

  14. 40 CFR 792.90 - Animal and other test system care.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Animal and other test system care. 792... SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Testing Facilities Operation § 792.90 Animal and other test system care. (a) There shall be standard operating procedures for the...

  15. Regional cerebral blood flow in SPECT pattern in Parkinson's disease

    International Nuclear Information System (INIS)

    The purpose of our work was to compare the regional cerebral blood flow (rCBF) in SPECT examination in Parkinson's disease with (17 cases) and without (7 cases) dementia and in various clinical stages of the disease. The patients underwent SPECT examination 5-40 min after intravenous application of HMPAO (Ceretec, Amersham) with 740 Mbq (20 mCi) pertechnate 99mTc. SPECT was performed with a Siemens Diacam single-head rotating gamma camera coupled to a high resolution collimator and Icon computer system provided by the manufacturer. The results were defined in relative values of ROI in relation to cerebellum. Patients with Parkinson's disease showed hypoperfusion in cerebral lobes and in deep cerebral structures including the basal ganglia. Regional perfusion deficit in SPECT was seen with and without associated dementia and already in early stage of the disease. Parkinson's disease is provoked by the lesions of dopaminergic neurons of the central nervous system leading to domination of extrapyramidal symptoms. There are many indications that also the neurotransmitters associated with cognitive functions as acetylcholine demonstrate some abnormalities. However, only in some cases of Parkinson's disease dementia is the dominating symptom. Our results of regional cerebral blood flow testify that in Parkinson's disease the dysfunction of the central nervous system is more diffuse than has previously been suggested. (author)

  16. U-SPECT-BioFluo: an integrated radionuclide, bioluminescence, and fluorescence imaging platform

    NARCIS (Netherlands)

    Van Oosterom, M.N.; Kreuger, R.; Buckle, T.; Mahn, W.A.; Bunschoten, A.; Josephson, L.; Van Leeuwen, F.W.B.; Beekman, F.J.

    2014-01-01

    Background: In vivo bioluminescence, fluorescence, and single-photon emission computed tomography (SPECT) imaging provide complementary information about biological processes. However, to date these signatures are evaluated separately on individual preclinical systems. In this paper, we introduce a

  17. Scatter and crosstalk corrections for {sup 99m}Tc/{sup 123}I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Peng [Department of Diagnostic Radiology, Yale University, New Haven, Connecticut 06520 and Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Hutton, Brian F. [Institute of Nuclear Medicine, University College London, London WC1E 6BT, United Kingdom and Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia); Holstensson, Maria [Department of Nuclear Medicine, Karolinska University Hospital, Stockholm 14186 (Sweden); Ljungberg, Michael [Department of Medical Radiation Physics, Lund University, Lund 222 41 (Sweden); Hendrik Pretorius, P. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Prasad, Rameshwar; Liu, Chi, E-mail: chi.liu@yale.edu [Department of Diagnostic Radiology, Yale University, New Haven, Connecticut 06520 (United States); Ma, Tianyu; Liu, Yaqiang; Wang, Shi [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Thorn, Stephanie L.; Stacy, Mitchel R.; Sinusas, Albert J. [Department of Internal Medicine, Yale Translational Research Imaging Center, Yale University, New Haven, Connecticut 06520 (United States)

    2015-12-15

    Purpose: The energy spectrum for a cadmium zinc telluride (CZT) detector has a low energy tail due to incomplete charge collection and intercrystal scattering. Due to these solid-state detector effects, scatter would be overestimated if the conventional triple-energy window (TEW) method is used for scatter and crosstalk corrections in CZT-based imaging systems. The objective of this work is to develop a scatter and crosstalk correction method for {sup 99m}Tc/{sup 123}I dual-radionuclide imaging for a CZT-based dedicated cardiac SPECT system with pinhole collimators (GE Discovery NM 530c/570c). Methods: A tailing model was developed to account for the low energy tail effects of the CZT detector. The parameters of the model were obtained using {sup 99m}Tc and {sup 123}I point source measurements. A scatter model was defined to characterize the relationship between down-scatter and self-scatter projections. The parameters for this model were obtained from Monte Carlo simulation using SIMIND. The tailing and scatter models were further incorporated into a projection count model, and the primary and self-scatter projections of each radionuclide were determined with a maximum likelihood expectation maximization (MLEM) iterative estimation approach. The extracted scatter and crosstalk projections were then incorporated into MLEM image reconstruction as an additive term in forward projection to obtain scatter- and crosstalk-corrected images. The proposed method was validated using Monte Carlo simulation, line source experiment, anthropomorphic torso phantom studies, and patient studies. The performance of the proposed method was also compared to that obtained with the conventional TEW method. Results: Monte Carlo simulations and line source experiment demonstrated that the TEW method overestimated scatter while their proposed method provided more accurate scatter estimation by considering the low energy tail effect. In the phantom study, improved defect contrasts were

  18. Scatter and crosstalk corrections for 99mTc/123I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators

    International Nuclear Information System (INIS)

    Purpose: The energy spectrum for a cadmium zinc telluride (CZT) detector has a low energy tail due to incomplete charge collection and intercrystal scattering. Due to these solid-state detector effects, scatter would be overestimated if the conventional triple-energy window (TEW) method is used for scatter and crosstalk corrections in CZT-based imaging systems. The objective of this work is to develop a scatter and crosstalk correction method for 99mTc/123I dual-radionuclide imaging for a CZT-based dedicated cardiac SPECT system with pinhole collimators (GE Discovery NM 530c/570c). Methods: A tailing model was developed to account for the low energy tail effects of the CZT detector. The parameters of the model were obtained using 99mTc and 123I point source measurements. A scatter model was defined to characterize the relationship between down-scatter and self-scatter projections. The parameters for this model were obtained from Monte Carlo simulation using SIMIND. The tailing and scatter models were further incorporated into a projection count model, and the primary and self-scatter projections of each radionuclide were determined with a maximum likelihood expectation maximization (MLEM) iterative estimation approach. The extracted scatter and crosstalk projections were then incorporated into MLEM image reconstruction as an additive term in forward projection to obtain scatter- and crosstalk-corrected images. The proposed method was validated using Monte Carlo simulation, line source experiment, anthropomorphic torso phantom studies, and patient studies. The performance of the proposed method was also compared to that obtained with the conventional TEW method. Results: Monte Carlo simulations and line source experiment demonstrated that the TEW method overestimated scatter while their proposed method provided more accurate scatter estimation by considering the low energy tail effect. In the phantom study, improved defect contrasts were observed with both

  19. Imaging recognition of multidrug resistance in human breast tumors using {sup 99m}Tc-labeled monocationic agents and a high-resolution stationary SPECT system

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhonglin E-mail: zliu@radiology.arizona.edu; Stevenson, Gail D.; Barrett, Harrison H.; Kastis, George A.; Bettan, Michael; Furenlid, Lars R.; Wilson, Donald W.; Woolfenden, James M

    2004-01-01

    Imaging recognition of multidrug-resistance by {sup 99m}Tc-labeled sestamibi, tetrofosmin and furifosmin in mice bearing human breast tumors was evaluated using a high-resolution SPECT, FASTSPECT. Imaging results showed that the washout rates in drug-resistant MCF7/D40 tumors were significantly greater than that in drug-sensitive MCF7/S tumors. Furifosmin exhibited greater washout from both MCF7/S and MCF7/D40 than sestamibi, while tetrofosmin washout was greater than sestamibi in MCF7/D40 only. Feasibility of the monocationic agents for characterizing MDR expression was well clarified with FASTSPECT imaging.

  20. Single-Metabolite Bio-Nano-Sensors and System for Remote Monitoring in Animal Models

    OpenAIRE

    Carrara, Sandro; Bolomey, Léandre; Boero, Cristina; Cavallini, Andrea; Meurville, Eric; De Micheli, Giovanni; Rezzonico, Tanja; Proietti, Michele; Grassi, Fabio

    2011-01-01

    A novel system for remote monitoring of metabolism in animal model is proposed in this paper. The system is obtained by integrating Bio-Nano-Sensors to detect single- metabolites, an electrochemical front-end made with off- the-shelf components, an RF communication sub-system, and an antenna of new design. The system has been calibrated and tested for continuous monitoring of four different metabolites: glucose, lactate, glutamate, and adenosine triphosphate (ATP). Tests with animal models (m...

  1. Remote System for Monitoring Animal Models With Single-Metabolite Bio-Nano-Sensors

    OpenAIRE

    Carrara, Sandro; Bolomey, Léandre; Boero, Cristina; Cavallini, Andrea; Meurville, Eric; De Micheli, Giovanni; Rezzonico Jost, Tanja; Proietti, Michele; Grassi, Fabio

    2013-01-01

    A novel system for remote monitoring of metabolism in an animal model is proposed in this paper. The system is obtained by integrating bio-nano-sensors to detect single- metabolites, an electrochemical front-end made with off-the-shelf components, a radio frequency communication sub-system, and an antenna of new design. The system has been calibrated and tested for continuous monitoring of four different metabolites: glucose, lactate, glutamate, and adenosine triphosphate. Tests using animal ...

  2. Indeterminate lesions on planar bone scintigraphy in lung cancer patients: SPECT, CT or SPECT-CT?

    International Nuclear Information System (INIS)

    The objective of the present study was to compare the role of single photon emission computed tomography (SPECT), computed tomography (CT) and SPECT-CT of selected volume in lung cancer patients with indeterminate lesions on planar bone scintigraphy (BS)

  3. Citizens’ View on Veal Calves’ Fattening System in Italy and Animal Welfare

    Directory of Open Access Journals (Sweden)

    Marta Brscic

    2013-09-01

    Full Text Available Aims of this study were to assess citizens’ view on the current veal calves’ fattening system in Italy and on animal welfare, and to find relationships with veal meat consumption. Socio-demographic characteristics, veal meat consumption habits, knowledge of veal calves rearing system and animal welfare attitudes of 100 citizens were investigated through a questionnaire submitted on a voluntary base in supermarkets/butcher shops. Results showed that 61 respondents were veal meat consumers and the remaining 39 were non-consumers. A large proportion of respondents were aware of the modern veal calves rearing system but their knowledge as such did not affect veal meat consumption. Non-consumers declared they didn’t like veal meat organoleptic characteristics, opposed the production system or considered it too expensive. Most citizens sustained animal welfare but no correlations were found between concerns for animal welfare and veal meat consumption/purchase (rs 0.05. Citizens conceptualized animal welfare through the aspects of care animals received by the farmer and veterinarian and of healthy feed for animals. It could be concluded that consumers don’t really think of animal welfare while buying or having meat, and they still have idealised notions of naturality, traditional farming, free-range and small scale production linked to farm animal production.

  4. Evaluation of peritumoral area associated with brain tumor in posterior cranial fossa using three dimensional SPECT

    International Nuclear Information System (INIS)

    We measured peritumoral hypoperfusion volume associated with brain tumor in posterior cranial fossa using SPECT and compared the result with volumes of tumor and peritumoral edema on MRI. Seventeen patients with brain tumor in posterior cranial fossa, who underwent 123 I-IMP SPECT and MRI before operation, were studied. The SPECT images were performed in three dimension using a panning visualization software (application visualization system medical viewer: AVS-MV). The peritumoral hypoperfusion area on three dimensional SPECT was larger than the volume of edema on MRI with a statistical different (p<0.001). Acoustic tumor cases showed a good correlation between the volume of peritumoral hypoperfusion area on three dimensional SPECT and the volume of edema on MRI. These results suggest tumor volume in posterior cranial fossa affects cerebral circulation. It is assumed that pressure exerted by the tumor may contribute to the reduction in cerebral blood flow. The large amount of data provided by three dimensional SPECT images, gives reliable results and furthermore, makes objective evaluation possible because it eliminates the need to set region of interest (ROI) in the analysis. The application of SPECT to assess the extent of hypoperfusion volume, is considered a new and clinically useful tool. (author)

  5. A single CdZnTe detector for simultaneous CT/SPECT imaging

    International Nuclear Information System (INIS)

    Clinical CT/SPECT systems acquire CT and SPECT data sequentially using different detectors in close proximity to minimise patient movement and interscan delay. We have developed a prototype simultaneous CT/SPECT imager, using a single CdZnTe detector, with the goal of improving image coregistration and decreasing scan time. A 16-pixel CdZnTe detector was operated in pulse-counting mode with 50 ns shaping time. Energy discrimination is used to separate the CT and SPECT data. Simultaneous SPECT and CT images were obtained for a phantom with the X-ray flux limited to reduce pulse pile-up in the radionuclide energy window. At 140 keV, the efficiency and energy resolution are 70% and 10%, respectively, and were constant for fluence rates up to 103 cps per detector element for 140 keV gamma rays, but degrade rapidly at higher fluence rates. In pulse-counting mode, the maximum count rate of 103 cps per element from the CdZnTe detector is sufficient for SPECT imaging, but is considerably lower than the fluence rates encountered in CT. The smallest lesion visually detectable in SPECT is 9 mm and the CT spatial resolution is smaller than 4.5 mm. Image registration is intrinsic because the data can be acquired simultaneously with a single detector with the same reconstruction geometry

  6. Microbiomes: unifying animal and plant systems through the lens of community ecology theory

    OpenAIRE

    Natalie eChristian; Briana Kathleen Whitaker; Keith eClay

    2015-01-01

    The field of microbiome research is arguably one of the fastest growing in biology. Bacteria feature prominently in studies on animal health, but fungi appear to be the more prominent functional symbionts for plants. Despite the similarities in the ecological organization and evolutionary importance of animal-bacterial and plant-fungal microbiomes, there is a general failure across disciplines to integrate the advances made in each system. Researchers studying bacterial symbionts in animals b...

  7. Microbiomes: unifying animal and plant systems through the lens of community ecology theory

    OpenAIRE

    Christian, Natalie; Whitaker, Briana K.; Clay, Keith

    2015-01-01

    The field of microbiome research is arguably one of the fastest growing in biology. Bacteria feature prominently in studies on animal health, but fungi appear to be the more prominent functional symbionts for plants. Despite the similarities in the ecological organization and evolutionary importance of animal-bacterial and plant–fungal microbiomes, there is a general failure across disciplines to integrate the advances made in each system. Researchers studying bacterial symbionts in animals b...

  8. A Detector for Combined SPECT/CT. Final Technical Report

    International Nuclear Information System (INIS)

    The goal of the Phase I research was to demonstrate the feasibility of developing a high performance SPECT/CT detector module based on a combination of microcolumnar CsI(Tl) scintillator coupled to an EMCCD readout. We are very pleased to report that our Phase I research has demonstrated the technical feasibility of our approach with a very high degree of success. Specifically, we were able to implement a back-thinned EMCCD with a fiberoptic window which was successfully used to demonstrate the feasibility of near simultaneous radionuclide/CT using the proposed concept. Although significantly limited in imaging area (24 x 24 mm2) and pixel resolution (512 x 512), this prototype has shown exceptional capabilities such as a single optical photon sensitivity, very low noise, an intrinsic resolution of 64 (micro)m for radionuclide imaging, and a resolution in excess of 10 lp/mm for x-ray imaging. Furthermore, the combination of newly developed, thick, microcolumnar CsI and an EMCCD has shown to be capable of operating in a photon counting mode, and that the position and energy information obtained from these data can be used to improve resolution in radionuclide imaging. Finally, the prototype system has successfully been employed for near simultaneous SPECT/CT imaging using both, 125I and 99mTc radioisotopes. The tomographic reconstruction data obtained using a mouse heart phantom and other phantoms clearly demonstrate the feasibility and efficacy of the detector in small animal research. The following were the objectives specified in the Phase I proposal: (1) In consultation with Professor Hasegawa, develop specifications for the Phase I/Phase II prototype detector; (2) Modify current vapor deposition protocols to fabricate ∼2 mm thick microcolumnar CsI(Tl) scintillators with excellent columnar structure, high light yield, and high spatial resolution; (3) Perform detailed characterization of the film morphology, light output, and spatial resolution, and use these

  9. Nonlinear dual reconstruction of SPECT activity and attenuation images.

    Science.gov (United States)

    Liu, Huafeng; Guo, Min; Hu, Zhenghui; Shi, Pengcheng; Hu, Hongjie

    2014-01-01

    In single photon emission computed tomography (SPECT), accurate attenuation maps are needed to perform essential attenuation compensation for high quality radioactivity estimation. Formulating the SPECT activity and attenuation reconstruction tasks as coupled signal estimation and system parameter identification problems, where the activity distribution and the attenuation parameter are treated as random variables with known prior statistics, we present a nonlinear dual reconstruction scheme based on the unscented Kalman filtering (UKF) principles. In this effort, the dynamic changes of the organ radioactivity distribution are described through state space evolution equations, while the photon-counting SPECT projection data are measured through the observation equations. Activity distribution is then estimated with sub-optimal fixed attenuation parameters, followed by attenuation map reconstruction given these activity estimates. Such coupled estimation processes are iteratively repeated as necessary until convergence. The results obtained from Monte Carlo simulated data, physical phantom, and real SPECT scans demonstrate the improved performance of the proposed method both from visual inspection of the images and a quantitative evaluation, compared to the widely used EM-ML algorithms. The dual estimation framework has the potential to be useful for estimating the attenuation map from emission data only and thus benefit the radioactivity reconstruction. PMID:25225796

  10. Veterinary information management system (VIMS) in the process of notification and management of animal diseases

    OpenAIRE

    Plavšić Budimir; Nedić D.; Mićović Z.; Tešić M.; Stanojević S.; Ašanin Ružica; Krnjaić D.; Tajdić Nada; Milanović S.

    2009-01-01

    A prerequisite to the development of an efficient animal health, food safety and traceability management system in the animal food production chain is the implementation of an integrated veterinary informational management system (VIMS) capable for the capture, storage, analysis and retrieval of data and providing the opportunity for the cumulative gathering of the knowledge and capability for its competent interpretation. Such a system will enable collecting appropriate data, including quali...

  11. Rcos.java: a simulated operating system with animations

    OpenAIRE

    Jones, David; Newman, Andrew

    2001-01-01

    RCOS.java (Ron Chernich's Operating System) is a Java-based, simulated operating system designed to address student difficulties in understanding operating systems concepts. This paper describes the rationale, design, features and planned use of RCOS.java. The intent with RCOS.java is to emphasise active, student-based learning and the development of the higher level learning skills of analysis, synthesis, evaluation or problem solving.

  12. Evaluation of a Wobbling Method Applied to Correcting Defective Pixels of CZT Detectors in SPECT Imaging.

    Science.gov (United States)

    Xie, Zhaoheng; Li, Suying; Yang, Kun; Xu, Baixuan; Ren, Qiushi

    2016-01-01

    In this paper, we propose a wobbling method to correct bad pixels in cadmium zinc telluride (CZT) detectors, using information of related images. We build up an automated device that realizes the wobbling correction for small animal Single Photon Emission Computed Tomography (SPECT) imaging. The wobbling correction method is applied to various constellations of defective pixels. The corrected images are compared with the results of conventional interpolation method, and the correction effectiveness is evaluated quantitatively using the factor of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In summary, the proposed wobbling method, equipped with the automatic mechanical system, provides a better image quality for correcting defective pixels, which could be used for all pixelated detectors for molecular imaging. PMID:27240368

  13. Systems Biology in Animal Breeding: Identifying relationships among markers, genes, and phenotypes

    Science.gov (United States)

    The Breeding and Genetics Symposium titled “Systems Biology in Animal Breeding: Identifying relationships among markers, genes, and phenotypes” was held at the Joint Annual Meeting of the American Dairy Science Association and the American Society of Animal Science in Phoenix, AZ, July 15 to 19, 201...

  14. SPECT/CT diagnostics for skeletal infections

    International Nuclear Information System (INIS)

    Skeletal infections are often a diagnostic and clinical challenge. Nuclear imaging modalities used in the diagnostic workup of acute and chronic skeletal infections include three-phase bone scintigraphy and scintigraphy with labelled leucocytes. The introduction of hybrid technologies, such as single photon emission computed tomography/computed tomography (SPECT/CT) has dramatically changed nuclear medical imaging of infections. In general SPECT/CT leads to a considerably more accurate diagnosis than planar or SPECT imaging. Given the integrated acquisition of metabolic, functional and morphological information, SPECT/CT has increased in particular the specificity of three-phase skeletal scanning and scintigraphy with labeled leucocytes. (orig.)

  15. Development of a SiPM-based PET imaging system for small animals

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanye [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Yang, Kun, E-mail: yangkun9999@hotmail.com [Department of Control Technology and Instrumentation, College of Quality and Technical Supervision, Hebei University, Baoding, 071000 (China); Zhou, Kedi; Zhang, Qiushi; Pang, Bo [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Ren, Qiushi, E-mail: renqsh@coe.pku.edu.cn [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2014-04-11

    Advances in small animal positron emission tomography (PET) imaging have been accelerated by many new technologies such as the successful incorporation of silicon photomultiplier (SiPM). In this paper, we have developed a compact, lightweight PET imaging system that is based on SiPM detectors for small animals imaging, which could be integrated into a multi-modality imaging system. This PET imaging system consists of a stationary detector gantry, a motor-controlled animal bed module, electronics modules, and power supply modules. The PET detector, which was designed as a multi-slice circular ring geometry of 27 discrete block detectors, is composed of a cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal and SiPM arrays. The system has a 60 mm transaxial field of view (FOV) and a 26 mm axial FOV. Performance tests (e.g. spatial resolution, energy resolution, and sensitivity) and phantom and animal imaging studies were performed to evaluate the imaging performance of the PET imaging system. The performance tests and animal imaging results demonstrate the feasibility of an animal PET system based on SiPM detectors and indicate that SiPM detectors can be promising photodetectors in animal PET instrumentation development.

  16. Development of a SiPM-based PET imaging system for small animals

    International Nuclear Information System (INIS)

    Advances in small animal positron emission tomography (PET) imaging have been accelerated by many new technologies such as the successful incorporation of silicon photomultiplier (SiPM). In this paper, we have developed a compact, lightweight PET imaging system that is based on SiPM detectors for small animals imaging, which could be integrated into a multi-modality imaging system. This PET imaging system consists of a stationary detector gantry, a motor-controlled animal bed module, electronics modules, and power supply modules. The PET detector, which was designed as a multi-slice circular ring geometry of 27 discrete block detectors, is composed of a cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal and SiPM arrays. The system has a 60 mm transaxial field of view (FOV) and a 26 mm axial FOV. Performance tests (e.g. spatial resolution, energy resolution, and sensitivity) and phantom and animal imaging studies were performed to evaluate the imaging performance of the PET imaging system. The performance tests and animal imaging results demonstrate the feasibility of an animal PET system based on SiPM detectors and indicate that SiPM detectors can be promising photodetectors in animal PET instrumentation development

  17. WAHIS-Wild and its interface: the OIE worldwide monitoring system for wild animal diseases.

    Science.gov (United States)

    Jebara, Karim Ben

    2016-06-30

    Wild animal diseases are a global growing concern, given the threat that they pose to animal health and their zoonotic potential. The World Organisation for Animal Health (OIE) was among the first organisations to recognise the importance of having a comprehensive knowledge of the disease situation in wild animals, collecting information on wildlife diseases worldwide since 1993, when for the first time an annual questionnaire was distribute by OIE to members Countries in order to collect qualitative and quantitative data on selected diseases in wild animals. Starting with 2008 until 2012 an updated version of questionnaire was circulated to allow for identifying wildlife species by their Latin name and by their common names in the 3 OIE official languages (English, French, and Spanish). This specific functionality was then implemented in the World Animal Health Information System (WAHIS) in 2012, when this information was made available to the public through WAHIS-Wild Interface. PMID:27393871

  18. Animal models for the study of the effects of spaceflight on the immune system

    Science.gov (United States)

    Sonnenfeld, G.

    2003-10-01

    Animal models have been used to determine the effects of spaceflight on the immune system. Rats and rhesus monkeys have been the primary animals used for actual space flight studies, but mice have also been utilized for studies in ground-based models. The primary ground based model used has been hindlimb unloading of rodents, which is similar to the chronic bed-rest model for humans. A variety of immune responses have been shown to be modified when animals are hindlimb unloaded. These results parallel those observed when animals are flown in space. In general, immune responses are depressed in animals maintained in the hindlimb unloading model or flown in space. These results raise the possibility that spaceflight could result in decreased resistance to infection in animals.

  19. ON-FARM MANAGEMENT SYSTEMS IN ANIMAL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Aleksandra Jug

    2000-06-01

    Full Text Available The on-farm management systems under development in order to insure data collection, regular data processing needed on a farm as well as automatic data exchange between farm and computing centre. The core of information system presents relational database (RDBMS accompanied with tools developed in APIIS. A system analysis method has been done on two pig industrial units, on national selection program for swine in Slovenia, and compared with examples from other countries and species. Public domain software like PostgreSQL, Perl and Linux have been chosen for use on farms and can be replaced with commercial software like Oracle for more demanding central systems. The system contains at this stage applications for entering, managing, and viewing the data as well as transferring the information between local and central databases.

  20. Telocytes in female reproductive system (human and animal).

    Science.gov (United States)

    Aleksandrovych, Veronika; Walocha, Jerzy A; Gil, Krzysztof

    2016-06-01

    Telocytes (TCs) are a newly discovered type of cell with numerous functions. They have been found in a large variety of organs: heart (endo-, myo-, epi- and pericardium, myocardial sleeves, heart valves); digestive tract and annex glands (oesophagus, stomach, duodenum, jejunum, liver, gallbladder, salivary gland, exocrine pancreas); respiratory system (trachea and lungs); urinary system (kidney, renal pelvis, ureters, bladder, urethra); female reproductive system (uterus, Fallopian tube, placenta, mammary gland); vasculature (blood vessels, thoracic duct); serous membranes (mesentery and pleura); and other organs (skeletal muscle, meninges and choroid plexus, neuromuscular spindles, fascia lata, skin, eye, prostate, bone marrow). Likewise, TCs are widely distributed in vertebrates (fish, reptiles, birds, mammals, including human). This review summarizes particular features of TCs in the female reproductive system, emphasizing their involvement in physiological and pathophysiological processes. PMID:27060783

  1. U-SPECT-BioFluo: an integrated radionuclide, bioluminescence, and fluorescence imaging platform

    OpenAIRE

    2014-01-01

    Background In vivo bioluminescence, fluorescence, and single-photon emission computed tomography (SPECT) imaging provide complementary information about biological processes. However, to date these signatures are evaluated separately on individual preclinical systems. In this paper, we introduce a fully integrated bioluminescence-fluorescence-SPECT platform. Next to an optimization in logistics and image fusion, this integration can help improve understanding of the optical imaging (OI) resul...

  2. The magnetic shielding for the neutron decay spectrometer aSPECT

    OpenAIRE

    Konrad, Gertrud; Guardia, Fidel Ayala; Baeßler, Stefan(Physics Department, University of Virginia, 382 McCormick Road, Charlottesville, VA 22904, USA); Borg, Michael; Glück, Ferenc; Heil, Werner; Hiebel, Stefan; Horta, Raquel Munoz; Sobolev, Yury

    2014-01-01

    Many experiments in nuclear and neutron physics are confronted with the problem that they use a superconducting magnetic spectrometer which potentially affects other experiments by their stray magnetic field. The retardation spectrometer aSPECT consists, inter alia, of a superconducting magnet system that produces a strong longitudinal magnetic field of up to 6.2T. In order not to disturb other experiments in the vicinity of aSPECT, we had to develop a magnetic field return yoke for the magne...

  3. Cervical SPECT Camera for Parathyroid Imaging

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-08-31

    Primary hyperparathyroidism characterized by one or more enlarged parathyroid glands has become one of the most common endocrine diseases in the world affecting about 1 per 1000 in the United States. Standard treatment is highly invasive exploratory neck surgery called Parathyroidectomy. The surgery has a notable mortality rate because of the close proximity to vital structures. The move to minimally invasive parathyroidectomy is hampered by the lack of high resolution pre-surgical imaging techniques that can accurately localize the parathyroid with respect to surrounding structures. We propose to develop a dedicated ultra-high resolution (~ 1 mm) and high sensitivity (10x conventional camera) cervical scintigraphic imaging device. It will be based on a multiple pinhole-camera SPECT system comprising a novel solid state CZT detector that offers the required performance. The overall system will be configured to fit around the neck and comfortably image a patient.

  4. Development of Optical Molecular Imaging System for the Acquisition of Bioluminescence Signals from Small Animals

    International Nuclear Information System (INIS)

    Optical imaging is providing great advance and improvement in genetic and molecular imaging of animals and humans. Optical imaging system consists of optical imaging devices, which carry out major function for monitoring, tracing, and imaging in most of molecular in-vivo researches. In bio-luminescent imaging, small animals containing luciferase gene locally irradiate light, and emitted photons transmitted through skin of the small animals are imaged by using a high sensitive charged coupled device (CCD) camera. In this paper, we introduced optical imaging system for the image acquisition of bio-luminescent signals emitted from small animals. In the system, Nikon lens and four LED light sources were mounted at the inside of a dark box. A cooled CCD camera equipped with a control module was used. We tested the performance of the optical imaging system using effendorf tube and light emitting bacteria which injected intravenously into CT26 tumor bearing nude mouse. The performance of implemented optical imaging system for bio-luminescence imaging was demonstrated and the feasibility of the system in small animal imaging application was proved. We anticipate this system could be a useful tool for the molecular imaging of small animals adaptable for various experimental conditions in future

  5. Development of Optical Molecular Imaging System for the Acquisition of Bioluminescence Signals from Small Animals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Il; Kim, Hyeon Sik; Jeong, Hye Jin; Lee, Hyung Jae; Moon, Seung Min; Kwon, Seung Young; Jeong, Shin Young; Bom, Hee Seung; Min, Jung Joon [Chonnam National University Hospital, Gwangju (Korea, Republic of); Choi, Eun Seo [Chosun University, Gwangju (Korea, Republic of)

    2009-08-15

    Optical imaging is providing great advance and improvement in genetic and molecular imaging of animals and humans. Optical imaging system consists of optical imaging devices, which carry out major function for monitoring, tracing, and imaging in most of molecular in-vivo researches. In bio-luminescent imaging, small animals containing luciferase gene locally irradiate light, and emitted photons transmitted through skin of the small animals are imaged by using a high sensitive charged coupled device (CCD) camera. In this paper, we introduced optical imaging system for the image acquisition of bio-luminescent signals emitted from small animals. In the system, Nikon lens and four LED light sources were mounted at the inside of a dark box. A cooled CCD camera equipped with a control module was used. We tested the performance of the optical imaging system using effendorf tube and light emitting bacteria which injected intravenously into CT26 tumor bearing nude mouse. The performance of implemented optical imaging system for bio-luminescence imaging was demonstrated and the feasibility of the system in small animal imaging application was proved. We anticipate this system could be a useful tool for the molecular imaging of small animals adaptable for various experimental conditions in future

  6. A Roadmap for the Development of Alternative (Non-Animal) Methods for Systemic Toxicity Testing

    Science.gov (United States)

    Systemic toxicity testing forms the cornerstone for the safety evaluation of substances. Pressures to move from traditional animal models to novel technologies arise from various concerns, including: the need to evaluate large numbers of previously untested chemicals and new prod...

  7. Assessment of anatomic relation between pulmonary perfusion and morphology in pulmonary emphysema with breath-hold SPECT-CT fusion images

    International Nuclear Information System (INIS)

    Anatomic relation between pulmonary perfusion and morphology in pulmonary emphysema was assessed on deep-inspiratory breath-hold (DIBrH) perfusion single-photon emission computed tomography (SPECT)-CT fusion images. Subjects were 38 patients with pulmonary emphysema and 11 non-smoker controls, who successfully underwent DIBrH and non-BrH perfusion SPECT using a dual-headed SPECT system during the period between January 2004 and June 2006. DIBrH SPECT was three-dimensionally co-registered with DIBrH CT to comprehend the relationship between lung perfusion defects and CT low attenuation areas (LAA). By comparing the appearance of lung perfusion on DIBrH with non-BrH SPECT, the correlation with the rate constant for the alveolar-capillary transfer of carbon monoxide (DLCO/VA) was compared between perfusion abnormalities on these SPECTs and LAA on CT. DIBrH SPECT provided fairly uniform perfusion in controls, but significantly enhanced perfusion heterogeneity when compared with non-BrH SPECT in pulmonary emphysema patients (P<0.001). The reliable DIBrH SPECT-CT fusion images confirmed more extended perfusion defects than LAA on CT in majority (73%) of patients. Perfusion abnormalities on DIBrH SPECT were more closely correlated with DLCO/VA than LAA on CT (P<0.05). DIBrH SPECT identifies affected lungs with perfusion abnormality better than does non-BrH SPECT in pulmonary emphysema. DIBrH SPECT-CT fusion images are useful for more accurately localizing affected lungs than morphologic CT alone in this disease. (author)

  8. Environmental and Social Management System Implementation Handbook : Animal Production

    OpenAIRE

    International Finance Corporation

    2014-01-01

    Environmental and social responsibility is becoming more and more important in todayapos;s global economy. There are thousands of environmental and social codes and standards in the world today. The codes and standards define the rules and the objectives. But the challenge is in the implementation. An environmental and social management system (ESMS) helps companies to integrate the ru...

  9. ANIMATION AND VISUALIZATION OF WATER QUALITY IN DISTRIBUTION SYSTEMS

    Science.gov (United States)

    Water may undergo a number of changes in the distribution system, making the quality of the water at the customer's tap different from the quality of the water that leaves the treatment plant. Such changes in quality may be caused by chemical or biological variations or by a loss...

  10. Citizens’ View on Veal Calves’ Fattening System in Italy and Animal Welfare

    OpenAIRE

    Marta Brscic; Flaviana Gottardo; Giulio Cozzi

    2013-01-01

    Aims of this study were to assess citizens’ view on the current veal calves’ fattening system in Italy and on animal welfare, and to find relationships with veal meat consumption. Socio-demographic characteristics, veal meat consumption habits, knowledge of veal calves rearing system and animal welfare attitudes of 100 citizens were investigated through a questionnaire submitted on a voluntary base in supermarkets/butcher shops. Results showed that 61 respondents were veal meat consumers and ...

  11. Assessing nutrient cycling in the soil/plant/animal system of semi-arid pasture lands

    International Nuclear Information System (INIS)

    Isotopic labelling is helpful in understanding the fate of nutrient fertilizers and determining the chemical and biochemical mechanisms that affect nutrient cycling through the soil/plant/animal system. Use of isotopic P and S in grassland systems is briefly discussed. Plant growth is discussed in response to nutrient levels in soil extracts and plant tissue. Optimizing plant growth will generally ensure high yields of quality forage that will result in good animal performance. (author)

  12. A reference system for animal biometrics: application to the northern leopard frog

    Science.gov (United States)

    Petrovska-Delacretaz, D.; Edwards, A.; Chiasson, J.; Chollet, G.; Pilliod, D.S.

    2014-01-01

    Reference systems and public databases are available for human biometrics, but to our knowledge nothing is available for animal biometrics. This is surprising because animals are not required to give their agreement to be in a database. This paper proposes a reference system and database for the northern leopard frog (Lithobates pipiens). Both are available for reproducible experiments. Results of both open set and closed set experiments are given.

  13. Testing alternative designs for a roadside animal detection system using a driving simulator

    OpenAIRE

    Molly K. Grace; Smith, Daniel J; Reed F Noss

    2015-01-01

    Objectives: A Roadside Animal Detection System (RADS) was installed in January 2012 along Highway 41 through Big Cypress National Preserve in Florida, USA in an attempt to reduce wildlife-vehicle collisions. The system uses flashing warning signs to alert drivers when a large animal is near the road. However, we suspected that the RADS warning signs could be ignored by drivers because they resemble other conventional signs. We hypothesized that word-based warning signs (current design) are le...

  14. Potential application of electronic olfaction systems in feedstuffs analysis and animal nutrition

    OpenAIRE

    Vittorio Dell'Orto; Anna Campagnoli

    2013-01-01

    Electronic Olfaction Systems (EOSs) based on a variety of gas-sensing technologies have been developed to simulate in a simplified manner animal olfactory sensing systems. EOSs have been successfully applied to many applications and fields, including food technology and agriculture. Less information is available for EOS applications in the feed technology and animal nutrition sectors. Volatile Organic Compounds (VOCs), which are derived from both forages and concentrate ingredients of farm an...

  15. Pre-reconstruction restoration of SPECT projection images by a neural network

    International Nuclear Information System (INIS)

    In single photon emission computed tomography (SPECT) the projection images obtained at view angles surrounding the patient are degraded due to the geometric response of the imaging system (a spatially-variant blur), Compton scatter, Poisson noise, and other factors. Various methods have been proposed for compensating for the spatially varying geometric response of the camera. In this study the authors examine restoration of SPECT projection images using an artificial neural network. A three layer feed-forward neural network is trained to compute the spatially-variant standard deviations of a symmetric Gaussian blur. A Hopfield network is then used to restore the projection images in which the restoration problem is formulated as a minimization of an error function of the network. Results from applying this restoration procedure on SPECT projection images are presented and the resulting SPECT reconstruction are analyzed

  16. An integrated multimodality image-guided robot system for small-animal imaging research

    International Nuclear Information System (INIS)

    We design and construct an image-guided robot system for use in small-animal imaging research. This device allows the use of co-registered small-animal PET-MRI images to guide the movements of robotic controllers, which will accurately place a needle probe at any predetermined location inside, for example, a mouse tumor, for biological readouts without sacrificing the animal. This system is composed of three major components: an automated robot device, a CCD monitoring mechanism, and a multimodality registration implementation. Specifically, the CCD monitoring mechanism was used for correction and validation of the robot device. To demonstrate the value of the proposed system, we performed a tumor hypoxia study that involved FMISO small-animal PET imaging and the delivering of a pO2 probe into the mouse tumor using the image-guided robot system. During our evaluation, the needle positioning error was found to be within 0.153±0.042 mm of desired placement; the phantom simulation errors were within 0.693±0.128 mm. In small-animal studies, the pO2 probe measurements in the corresponding hypoxia areas showed good correlation with significant, low tissue oxygen tensions (less than 6 mmHg). We have confirmed the feasibility of the system and successfully applied it to small-animal investigations. The system could be easily adapted to extend to other biomedical investigations in the future.

  17. An integrated multimodality image-guided robot system for small-animal imaging research

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Wen-Lin [Department of Radiology, Tzu-Chi University and Radiation Oncology, Buddhist Tzu-Chi General Hospital Hualien, Taiwan (China); Hsin Wu, Tung [Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei, Taiwan (China); Hsu, Shih-Ming [Department of Biomedical Imaging and Radiological Sciences, China Medical University, Taichung, Taiwan (China); Chen, Chia-Lin [Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan (China); Lee, Jason J.S., E-mail: jslee@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei, Taiwan (China); Huang, Yung-Hui, E-mail: yhhuang@isu.edu.tw [Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung, Taiwan (China)

    2011-10-01

    We design and construct an image-guided robot system for use in small-animal imaging research. This device allows the use of co-registered small-animal PET-MRI images to guide the movements of robotic controllers, which will accurately place a needle probe at any predetermined location inside, for example, a mouse tumor, for biological readouts without sacrificing the animal. This system is composed of three major components: an automated robot device, a CCD monitoring mechanism, and a multimodality registration implementation. Specifically, the CCD monitoring mechanism was used for correction and validation of the robot device. To demonstrate the value of the proposed system, we performed a tumor hypoxia study that involved FMISO small-animal PET imaging and the delivering of a pO{sub 2} probe into the mouse tumor using the image-guided robot system. During our evaluation, the needle positioning error was found to be within 0.153{+-}0.042 mm of desired placement; the phantom simulation errors were within 0.693{+-}0.128 mm. In small-animal studies, the pO{sub 2} probe measurements in the corresponding hypoxia areas showed good correlation with significant, low tissue oxygen tensions (less than 6 mmHg). We have confirmed the feasibility of the system and successfully applied it to small-animal investigations. The system could be easily adapted to extend to other biomedical investigations in the future.

  18. Interest of the SPECT-CT to D.M.S.A.-V images merging in the management of thyroid medullary carcinomas

    International Nuclear Information System (INIS)

    Purpose: hybrid imaging associating SPECT and CT, integers functional and anatomical data. The aim of this communication is to present the contribution of the SPECT coupled to CT with D.M.S.A. V. in our daily practice of the medullary thyroid carcinomas management. Conclusions: the SPECT/CT got by a system of images merging allows a better anatomical location and improves the management of thyroid medullary carcinomas. (N.C.)

  19. National survey of patient doses from hybrid methods in nuclear medicine - SPECT-CT and PET-CT

    International Nuclear Information System (INIS)

    Recent years two types of hybrid systems were installed in Bulgaria - Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET), combined with an X-ray computed tomography (CT) system. The aim of this work is to perform national survey of patient doses from SPECT-CT and PET-CT procedures, to explore potential for optimization and to elaborate national diagnostic reference levels. The survey included all hybrid systems in the country - four SPECT-CT and two PET-CT. Effective doses were estimated for total of 540 patients. Ten types of SPECT-CT and two types of PET-CT examinations were considered. Effective doses from the nuclear medicine component were calculated applying the ICRP 53 and ICRP 80 conversion coefficients. Computed tomography dose index (CTDI) and dose length product (DLP) were retrospectively obtained from the archives of the systems. Effective doses from the CT component were calculated with CT-Expo software. Parallel estimation of CT component contribution with the NRPB conversion coefficients was done where applicable. Big differences in SPECT-CT practice were found with potential for optimization. The CT protocols and activities applied differ even for the systems of the same model. Effective doses from PET-CT have close values for both systems. Comparison with literature data reveals that PET-CT doses are relatively low. National diagnostic reference levels are elaborated for SPECT-CT and PET-CT procedures. (authors) Key words: SPECT-CT. PET-CT. PATIENT DOSES. DRL

  20. Role of nervous system on immunological response of animal

    International Nuclear Information System (INIS)

    Autoantibodies occur more frequently in old age. Both organ and non organ specific antibodies have been reported to occur in increasing frequency in sera of diseased free men and mice relatively late in life. The prevalence of auto-anti-thyroglobulin antibodies in various thyroid abnormalities are common regardless of age. The investigation reported in the present study was aimed to provide some insights on virtually unexplored area of auto-anti-thyroglobulin as related to central nervous system using various radio immunological and serological techniques for the determination of antibody formation and toter, in artificial case of auto-immunity developed by induced T G immunity in rabbits

  1. Quantification of GABAA receptors in the rat brain with [123I]Iomazenil SPECT from factor analysis-denoised images

    International Nuclear Information System (INIS)

    Purpose: In vivo imaging of GABAA receptors is essential for the comprehension of psychiatric disorders in which the GABAergic system is implicated. Small animal SPECT provides a modality for in vivo imaging of the GABAergic system in rodents using [123I]Iomazenil, an antagonist of the GABAA receptor. The goal of this work is to describe and evaluate different quantitative reference tissue methods that enable reliable binding potential (BP) estimations in the rat brain to be obtained. Methods: Five male Sprague–Dawley rats were used for [123I]Iomazenil brain SPECT scans. Binding parameters were obtained with a one-tissue compartment model (1TC), a constrained two-tissue compartment model (2TCc), the two-step Simplified Reference Tissue Model (SRTM2), Logan graphical analysis and analysis of delayed-activity images. In addition, we employed factor analysis (FA) to deal with noise in data. Results: BPND obtained with SRTM2, Logan graphical analysis and delayed-activity analysis was highly correlated with BPF values obtained with 2TCc (r = 0.954 and 0.945 respectively, p c and SRTM2 in raw and FA-denoised images (r = 0.961 and 0.909 respectively, p ND values from raw images while scans of only 70 min are sufficient from FA-denoised images. These images are also associated with significantly lower standard errors of 2TCc and SRTM2 BP values. Conclusion: Reference tissue methods such as SRTM2 and Logan graphical analysis can provide equally reliable BPND values from rat brain [123I]Iomazenil SPECT. Acquisitions, however, can be much less time-consuming either with analysis of delayed activity obtained from a 20-minute scan 50 min after tracer injection or with FA-denoising of images

  2. [Distribution of the different patterns of aging over the system of animal world].

    Science.gov (United States)

    Popov, I Iu

    2011-01-01

    Since the system of animal world reflects evolutionary trends, an analysis of distribution of patterns of aging over this system provides information on the causes of the formation of differences among them. In this paper the system of the main animal groups in form of a table is presented, and the distribution of patterns demonstrating minimum and maximum of aging is discussed. Meanwhile the colonial animals are considered as a "minimum of aging", the animals demonstrating drastic self-liquidation after reproduction are considered as a "maximum of aging" (the most well-known example is the pink salmon). It is shown, that as far as the degree of difference from the simplest ancestor increases in process of evolution, the increase of the manifestations of aging takes place. Slow aging of relatively simple organisms cannot be a direct source of measures to prevent aging of complex ones. PMID:21957572

  3. Clinical applications of SPECT-CT

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadzadehfar, Hojjat; Biersack, Hans-Juergen (eds.) [University Hospital Bonn (Germany). Dept. of Nuclear Medicine

    2014-06-01

    Covers the full spectrum of clinical applications of SPECT/CT in diagnosis of benign and malignant diseases. Includes chapters on the use of SPECT/CT for dosimetry and for therapy planning. Completely up to date. Many helpful illustrations. SPECT/CT cameras have considerably improved diagnostic accuracy in recent years. Such cameras allow direct correlation of anatomic and functional information, resulting in better localization and definition of scintigraphic findings. In addition to this anatomic referencing, CT coregistration provides superior quantification of radiotracer uptake based on the attenuation correction capabilities of CT. Useful applications of SPECT/CT have been identified not only in oncology but also in other specialties such as orthopedics and cardiology. This book covers the full spectrum of clinical applications of SPECT/CT in diagnosis and therapy planning of benign and malignant diseases. Opening chapters discuss the technology and physics of SPECT/CT and its use for dosimetry. The role of SPECT/CT in the imaging of a range of pathologic conditions is then addressed in detail. Applications covered include, among others, imaging of the thyroid, bone, and lungs, imaging of neuroendocrine tumors, cardiac scintigraphy, and sentinel node scintigraphy. Individual chapters are also devoted to therapy planning in selective internal radiation therapy of liver tumors and bremsstrahlung SPECT/CT. Readers will find this book to be an essential and up-to-date source of information on this invaluable hybrid imaging technique.

  4. Use of animal models for space flight physiology studies, with special focus on the immune system

    Science.gov (United States)

    Sonnenfeld, Gerald

    2005-01-01

    Animal models have been used to study the effects of space flight on physiological systems. The animal models have been used because of the limited availability of human subjects for studies to be carried out in space as well as because of the need to carry out experiments requiring samples and experimental conditions that cannot be performed using humans. Experiments have been carried out in space using a variety of species, and included developmental biology studies. These species included rats, mice, non-human primates, fish, invertebrates, amphibians and insects. The species were chosen because they best fit the experimental conditions required for the experiments. Experiments with animals have also been carried out utilizing ground-based models that simulate some of the effects of exposure to space flight conditions. Most of the animal studies have generated results that parallel the effects of space flight on human physiological systems. Systems studied have included the neurovestibular system, the musculoskeletal system, the immune system, the neurological system, the hematological system, and the cardiovascular system. Hindlimb unloading, a ground-based model of some of the effects of space flight on the immune system, has been used to study the effects of space flight conditions on physiological parameters. For the immune system, exposure to hindlimb unloading has been shown to results in alterations of the immune system similar to those observed after space flight. This has permitted the development of experiments that demonstrated compromised resistance to infection in rodents maintained in the hindlimb unloading model as well as the beginning of studies to develop countermeasures to ameliorate or prevent such occurrences. Although there are limitations to the use of animal models for the effects of space flight on physiological systems, the animal models should prove very valuable in designing countermeasures for exploration class missions of the future.

  5. The impact of broiler production system practices on consumer perceptions of animal welfare.

    Science.gov (United States)

    de Jonge, Janneke; van Trijp, Hans C M

    2013-12-01

    This research explores the extent to which different farm management practices influence the perceived animal friendliness of broiler production systems, and how this differs between individuals. Using a conjoint design with paired comparisons, respondents evaluated broiler production systems that were described on the basis of 7 animal welfare-related practices. It was found that practices in the area of outdoor access, stocking density, and day-night rhythm were overall perceived to have a larger impact on perceptions of animal friendliness than other practices, such as transport duration or the type of breed used. However, individuals differed regarding the extent to which they believed the different farm management practices influenced the animal friendliness of the production system. Differences between individuals regarding their knowledge about and familiarity with livestock farming, degree of anthropomorphism, and their moral beliefs regarding animal welfare partly explained the relative importance individuals attached to farm management practices. The obtained insight into which welfare-related farm management practices, in consumers' minds, most strongly contribute to animal welfare, and the existence of differences between consumers, can be helpful in the development of animal welfare-based certification schemes that are appealing to consumers, as well as the positioning of welfare concepts in the market. PMID:24235215

  6. Systems biology: a new tool for farm animal science.

    Science.gov (United States)

    Hollung, Kristin; Timperio, Anna M; Olivan, Mamen; Kemp, Caroline; Coto-Montes, Ana; Sierra, Veronica; Zolla, Lello

    2014-03-01

    It is rapidly emerging that the tender meat phenotype is affected by an enormous amount of variables, not only tied to genetics (livestock breeding selection), but also to extrinsic factors, such as feeding conditions, physical activity, rearing environment, administration of hormonal growth promotants, pre-slaughter handling and stress. Proteomics has been widely accepted by meat scientists over the last years and is now commonly used to shed light on the postmortem processes involved in meat tenderization. This review discusses the latest findings with the use of proteomics and systems biology to study the different biochemical pathways postmortem aiming at understanding the concerted action of different molecular mechanisms responsible for meat quality. The conversion of muscle to meat postmortem can be described as a sequence of events involving molecular pathways controlled by a complex interplay of many factors. Among the different pathways emerging are the influence of apoptosis and lately also the role of autophagy in muscle postmortem development. This review thus, focus on how systems-wide integrated investigations (metabolomics, transcriptomics, interactomics, phosphoproteomics, mathematical modeling), which have emerged as complementary tools to proteomics, have helped establishing a few milestones in our understanding of the events leading from muscle to meat conversion. PMID:24555891

  7. Farewell to Animal Testing: Innovations on Human Intestinal Microphysiological Systems

    Directory of Open Access Journals (Sweden)

    Tae Hyun Kang

    2016-06-01

    Full Text Available The human intestine is a dynamic organ where the complex host-microbe interactions that orchestrate intestinal homeostasis occur. Major contributing factors associated with intestinal health and diseases include metabolically-active gut microbiota, intestinal epithelium, immune components, and rhythmical bowel movement known as peristalsis. Human intestinal disease models have been developed; however, a considerable number of existing models often fail to reproducibly predict human intestinal pathophysiology in response to biological and chemical perturbations or clinical interventions. Intestinal organoid models have provided promising cytodifferentiation and regeneration, but the lack of luminal flow and physical bowel movements seriously hamper mimicking complex host-microbe crosstalk. Here, we discuss recent advances of human intestinal microphysiological systems, such as the biomimetic human “Gut-on-a-Chip” that can employ key intestinal components, such as villus epithelium, gut microbiota, and immune components under peristalsis-like motions and flow, to reconstitute the transmural 3D lumen-capillary tissue interface. By encompassing cutting-edge tools in microfluidics, tissue engineering, and clinical microbiology, gut-on-a-chip has been leveraged not only to recapitulate organ-level intestinal functions, but also emulate the pathophysiology of intestinal disorders, such as chronic inflammation. Finally, we provide potential perspectives of the next generation microphysiological systems as a personalized platform to validate the efficacy, safety, metabolism, and therapeutic responses of new drug compounds in the preclinical stage.

  8. Segmentation and visual analysis of whole-body mouse skeleton microSPECT

    OpenAIRE

    Khmelinskii, A.; Groen, H.C.; de Jong, M.; Lelieveldt, B.P.F.

    2012-01-01

    Whole-body SPECT small animal imaging is used to study cancer, and plays an important role in the development of new drugs. Comparing and exploring whole-body datasets can be a difficult and time-consuming task due to the inherent heterogeneity of the data (high volume/throughput, multi-modality, postural and positioning variability). The goal of this study was to provide a method to align and compare side-by-side multiple whole-body skeleton SPECT datasets in a common reference, thus elimina...

  9. Segmentation and visual analysis of whole-body mouse skeleton microSPECT :

    OpenAIRE

    Khmelinskii, Artem; Groen, Harald C; Baiker, Martin; de Jong, Marion; Lelieveldt, Boudewijn P. F.

    2012-01-01

    textabstractWhole-body SPECT small animal imaging is used to study cancer, and plays an important role in the development of new drugs. Comparing and exploring whole-body datasets can be a difficult and time-consuming task due to the inherent heterogeneity of the data (high volume/throughput, multi-modality, postural and positioning variability). The goal of this study was to provide a method to align and compare side-by-side multiple whole-body skeleton SPECT datasets in a common reference, ...

  10. Alterações anátomo-funcionais do sistema nervoso central no transtorno autístico: um estudo com RNM e SPECT Anatomical and functional abnormalities of central nervous system in autistic disorder: a MRI and SPECT study

    OpenAIRE

    Marbene Guedes Machado; Hélio Araújo Oliveira; Rosana Cipolotti; Clara Augusta Garcia Moreno Santos; Emanoella Faro de Oliveira; Robert Moraes Donald; Miriam Peres de Oliveira Krauss

    2003-01-01

    Apresentamos um estudo das alterações anátomo-funcionais do sistema nervoso central (SNC) de pacientes com transtorno autístico (TA), através da ressonância nuclear magnética (RNM) e da tomografia computadorizada por emissão de fóton único (SPECT). Foram estudados 24 pacientes, sendo 15 (62,5%) do sexo masculino e 9 (17,5%) do feminino, com idade média de 9 anos. Todos os pacientes foram submetidos à RNM e apenas em 19 foi realizado o SPECT. Dos pacientes que realizaram RNM, 75% apresentaram ...

  11. A Pilot System for Environmental Monitoring Through Domestic Animals

    Science.gov (United States)

    Schwabe, Calvin W.; Sawyer, John; Martin, Wayne

    1971-01-01

    A pilot system for environmental monitoring is in its early phases of development in Northern California. It is based upon the existing nation wide Federal-State Market Cattle Testing (14CT) program for brucellosis in cattle. This latter program depends upon the collection of blood program at the time of identified cattle. As the cattle Population of California is broadly distributed throughout the state, we intend to utilize these blood samples to biologically monitor the distribution and intensity of selected environmental pollutants. In a 2-year preliminary trial, the feasibility of retrieving, utilizing for a purpose similar to this, and tracing back to their geographic areas of origin of MCT samples have been demonstrated.

  12. A case of cerebral infarction showing interesting SPECT images

    International Nuclear Information System (INIS)

    A case of cerebral infarction showing interesting SPECT images was reported. One month after stroke, 81mKr and 99mTc-HMPAO-SPECT were showed post ischemic high flow area as hot lesion, but 123I-IMP-SPECT was showed as cold lesion in early scan. Two months after stroke, all SPECT images showed infarction as cold area. (author)

  13. MR guided spatial normalization of SPECT scans

    International Nuclear Information System (INIS)

    Full text: In SPECT population studies where magnetic resonance (MR) scans are also available, the higher resolution of the MR scans allows for an improved spatial normalization of the SPECT scans. In this approach, the SPECT images are first coregistered to their corresponding MR images by a linear (affine) transformation which is calculated using SPM's mutual information maximization algorithm. Non-linear spatial normalization maps are then computed either directly from the MR scans using SPM's built in spatial normalization algorithm, or, from segmented TI MR images using DARTEL, an advanced diffeomorphism based spatial normalization algorithm. We compare these MR based methods to standard SPECT based spatial normalization for a population of 27 fibromyalgia patients and 25 healthy controls with spin echo T1 scans. We identify significant perfusion deficits in prefrontal white matter in FM patients, with the DARTEL based spatial normalization procedure yielding stronger statistics than the standard SPECT based spatial normalization. (author)

  14. SPECT/CT and pulmonary embolism

    DEFF Research Database (Denmark)

    Mortensen, Jann; Borgwardt, Henrik Gutte

    2014-01-01

    Acute pulmonary embolism (PE) is diagnosed either by ventilation/perfusion (V/P) scintigraphy or pulmonary CT angiography (CTPA). In recent years both techniques have improved. Many nuclear medicine centres have adopted the single photon emission CT (SPECT) technique as opposed to the planar...... technique for diagnosing PE. SPECT has been shown to have fewer indeterminate results and a higher diagnostic value. The latest improvement is the combination of a low-dose CT scan with a V/P SPECT scan in a hybrid tomograph. In a study comparing CTPA, planar scintigraphy and SPECT alone, SPECT/CT had the...... best diagnostic accuracy for PE. In addition, recent developments in the CTPA technique have made it possible to image the pulmonary arteries of the lungs in one breath-hold. This development is based on the change from a single-detector to multidetector CT technology with an increase in volume...

  15. MRI and SPECT fusion for epilepsy lateralization

    Science.gov (United States)

    Jafari-Khouzani, Kourosh; Soltanian-Zadeh, Hamid; Elisevich, Kost

    2005-04-01

    This paper presents a study on the SPECT images of the brain with the aim of determining the hippocampus abnormality and consequently applying timely treatment. Intensity and volume features of the hippocampus from brain MRI have been shown to be useful in detecting the abnormal hippocampus in TLE. In this study, we evaluate the intensity information of the SPECT images of the brain for the purpose of early detection of abnormal hippocampus, before the brain tissue is damaged and MRI features change. The hippocampi are segmented manually by an expert from T1-weighted MR images. The segmented regions are mapped on the corresponding SPECT images using the mutual information technique. The mean and standard deviation of the hippocampi from SPECT images are used to determine abnormal hippocampus. The experimental results show that SPECT images analyzed along with MRI generate quantitative information useful for the treatment and evaluation of epileptic patients.

  16. PET and SPECT investigations in Alzheimer's disease

    International Nuclear Information System (INIS)

    Nuclear medicine offers a wide range of possibilities to investigate dementia. Various SPECT and PET tracers will be introduced in this article first. Different questions concerning evaluation of dementia are discussed taking Alzheimer's disease (AD) as an example. It is important to perform nuclear medicine investigations on high technical level, using standardized methods as statistical parametric mapping (SPM) for evaluation. If neuroprotective therapies are available, an early diagnosis, the determination of risk factors and longitudinal investigations will be the focus of interest and the main goal of nuclear medicine. Apart from measuring cerebral perfusion and glucose metabolism the development of new ligands, concerning the cholinergic system and the visualization of amyloid plaques, is of great importance. (orig.)

  17. Anamorphic preclinical SPECT imaging with high-resolution silicon double-sided strip detectors

    Science.gov (United States)

    Durko, Heather L.

    Preclinical single-photon emission computed tomography (SPECT) is an essential tool for studying progression, response to treatment, and physiological changes in small animal models of human disease. The wide range of imaging applications is often limited by the static design of many preclinical SPECT systems. We have developed a prototype imaging system that replaces the standard static pinhole aperture with two sets of movable, keel-edged copper-tungsten blades configured as crossed (skewed) slits. These apertures can be positioned independently between the object and detector, producing an anamorphic image in which the axial and transaxial magnications are not constrained to be equal. We incorporated a 60 mm x 60 mm, millimeter-thick megapixel silicon double-sided strip detector that permits ultrahigh-resolution imaging. While the stopping power of silicon is low for many common clinical radioisotopes, its performance is sufficient in the range of 20-60 keV to allow practical imaging experiments. The low-energy emissions of 125I fall within this energy window, and the 60-day half life provides an advantage for longitudinal studies. The flexible nature of this system allows the future application of adaptive imaging techniques. We have demonstrated ˜225-mum axial and ˜175-mum transaxial resolution across a 2.65 cm3 cylindrical field of view, as well as the capability for simultaneous multi-isotope acquisitions. We describe the key advancements that have made this system operational, including bringing up a new detector readout ASIC, development of detector control software and data-processing algorithms, and characterization of operating characteristics. We describe design and fabrication of the adjustable slit aperture platform, as well as the development of an accurate imaging forward model and its application in a novel geometric calibration technique and a GPU-based ultrahigh-resolution reconstruction code.

  18. Animal Hospital Management System Design Based on C/S/S Structure

    Institute of Scientific and Technical Information of China (English)

    HUANG Jing; ZHAO Jie; WEI Xiaoli

    2008-01-01

    By analysis of the functions of animal hospital's departments,combining with management information development truth,the paper developed animal hospital management system.The system included six modules, like system management module, basic information management module,sections management module,and so on.The paper used Visual C++6.0 and SQL Server 2000,and ODBC database accessing technology,which can encapsulate any database table and operation into class.The system could make any window to share table's operation to realize hospital management quickly and efficiency.

  19. The cGMP system in irradiated animals

    International Nuclear Information System (INIS)

    Changes in the functioning of the cGMP system of the thymocytes and liver of mice subjected to 8 Gy roentgen irradiation were found. Within one hour after irradiation an increase in the cGMP level in thymocytes was noted; two rises in the cGMP concentration in the liver were established, at 0.5 and 24 hours after irradiation. These changes in the cGMP level were correlated to an increase in the guanylate cyclase activities in the thymocytes and liver of the mice subjected to irradiation, and to a lesser extent to changes in the activities of cGMP phosphodiesterase in these tissues. A post-irradiation increase in the rat liver guanylate cyclase activity was also observed. A decrease in cGMP phosphodiesterase activity in the liver of the irradiated mice was followed by a change in the enzymatic kinetics and an increase in cGMP phosphodiesterase thermolability. The post-irradiational rise in guanylate cyclase activity was produced by activation of the enzyme. (orig.)

  20. Effects of Pronunciation Practice System Based on Personalized CG Animations of Mouth Movement Model

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2012-06-01

    Full Text Available Pronunciation practice system based on personalized Computer Graphics: CG animation of mouth movement model is proposed. The system enables a learner to practice pronunciation by looking at personalized CG animations of mouth movement model , and allows him/her to compare them with his/her own mouth movements. In order to evaluate the effectiveness of the system by using personalized CG animation of mouth movement model, Japanese vowel and consonant sounds were read by 8 infants before and after practicing with the proposed system, and their pronunciations were examined. Remarkable improvement on their pronunciations is confirmed through a comparison to their pronunciation without the proposed system based on identification test by subjective basis.

  1. Validation of automatic SPECT-to-MRI registration in brain studies

    International Nuclear Information System (INIS)

    Full text: Registration of brain SPECT to modalities with high anatomical resolution is becoming increasingly important for the accurate quantification of brain SPECT. The 'AMIR' program (Ardekani et al, JCAT, 1995, 19, 615) uses an automatic algorithm which does not require fiducial markers or manual landmark selection, but uses the structures within the whole brain to achieve registration. This has been validated for PET to MRI but not SPECT to MRI registration. We attached 6 external markers to each of two subjects who underwent SPECT and MRI scanning within a 2 hour period. In each marker, a 5 microliter cavity (2mm x 2mm cylinder) located 5.5 mm from the skin was charged with 80 kBq Tc-99m mixed with 0.5 millimolar gadodiamide MRI contrast SPECT with 3.56 mm voxel size was acquired on a triple headed system with ultra-high resolution fan beam collimators. After Butterworth pre-filtering (cutoff 0.7 cycles/cm, order 6.0) and lower window scatter subtraction, projections were rebinned and reconstructed with uniform attenuation correction. The SPECT images were registered to 124x128x128 MRI T1 images of the brain with voxel size 1 .72x1 .72x1.50 mm. To measure registration accuracy, an IDL program was written to compute the relative location in the two modalities of each source using a 'center-of-gravity' algorithm within 7x7x7 pixel (SPECT) and 3x3x3 pixel (MRI) volumes around the manually selected central pixels. The mean error in the point source locations after registration was 2.0 mm (maximum 2.9 mm) which compares favourably with the published PET-MRI mean error of 2.8 mm. Thus 'AMIR' provides accurate SPECT to MRI registration

  2. A novel SPECT camera for molecular imaging of the prostate

    Science.gov (United States)

    Cebula, Alan; Gilland, David; Su, Li-Ming; Wagenaar, Douglas; Bahadori, Amir

    2011-10-01

    The objective of this work is to develop an improved SPECT camera for dedicated prostate imaging. Complementing the recent advancements in agents for molecular prostate imaging, this device has the potential to assist in distinguishing benign from aggressive cancers, to improve site-specific localization of cancer, to improve accuracy of needle-guided prostate biopsy of cancer sites, and to aid in focal therapy procedures such as cryotherapy and radiation. Theoretical calculations show that the spatial resolution/detection sensitivity of the proposed SPECT camera can rival or exceed 3D PET and further signal-to-noise advantage is attained with the better energy resolution of the CZT modules. Based on photon transport simulation studies, the system has a reconstructed spatial resolution of 4.8 mm with a sensitivity of 0.0001. Reconstruction of a simulated prostate distribution demonstrates the focal imaging capability of the system.

  3. MRI compatible small animal monitoring and trigger system for whole body scanners

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Karl-Heinz; Krumbein, Ines; Reichenbach, Juergen R. [Jena University Hospital (Germany). Medical Physics Group; Pfeiffer, Norman [Jena University Hospital (Germany). Medical Physics Group; Ernst-Abbe-Fachhochschule Jena (Germany); Herrmann, Lutz [Ernst-Abbe-Fachhochschule Jena (Germany)

    2014-03-01

    Performing magnetic resonance imaging (MRI) experiments with small animals requires continuous monitoring of vital parameters, especially the respiration rate. Clinical whole-body MR scanners represent an attractive option for preclinical imaging as dedicated animal scanners are cost-intensive in both investment and maintenance, thus limiting their availability. Even though impressive image quality is achievable with clinical MR systems in combination with special coils, their built-in physiologic monitoring and triggering units are often not suited for small animal imaging. In this work, we present a simple, MRI compatible low cost solution to monitor the respiration and heart rate of small animals in a clinical whole-body MR scanner. The recording and processing of the biosignals as well as the optimisation of the respiratory trigger generation is described. Additionally rat and mouse in-vivo MRI experiments are presented to illustrate the effectiveness of the monitoring and respiratory trigger system in suppressing motion artifacts. (orig.)

  4. Management Systems for Organic EggProduction - Aiming to Improve AnimalHealth and Welfare

    DEFF Research Database (Denmark)

    Hegelund, Lene

    one production period. In the second part of the project a generic HACCP system was developed, using an expert panel analysis. The two management tools have very different approaches to improving animal health and welfare, and subsequently different methods, cost and advantages. This makes them......Animal health and welfare is an important part of organic husbandry, both in terms of the organic principles and owing to the consumer interest. But problems in the organic egg production resulting in high mortality and feather pecking, have led to the need for management tools in order to secure...... animal health and welfare. The aim of the project is to develop management tools for the organic egg production, aimed to secure animal health and welfare in the flocks. In the first part of the project a welfare assessment system for organic egg production was developed and tested on 10 fl ocks during...

  5. MRI compatible small animal monitoring and trigger system for whole body scanners

    International Nuclear Information System (INIS)

    Performing magnetic resonance imaging (MRI) experiments with small animals requires continuous monitoring of vital parameters, especially the respiration rate. Clinical whole-body MR scanners represent an attractive option for preclinical imaging as dedicated animal scanners are cost-intensive in both investment and maintenance, thus limiting their availability. Even though impressive image quality is achievable with clinical MR systems in combination with special coils, their built-in physiologic monitoring and triggering units are often not suited for small animal imaging. In this work, we present a simple, MRI compatible low cost solution to monitor the respiration and heart rate of small animals in a clinical whole-body MR scanner. The recording and processing of the biosignals as well as the optimisation of the respiratory trigger generation is described. Additionally rat and mouse in-vivo MRI experiments are presented to illustrate the effectiveness of the monitoring and respiratory trigger system in suppressing motion artifacts. (orig.)

  6. Potential Application of Electronic Olfaction Systems in Feedstuffs Analysis and Animal Nutrition

    Directory of Open Access Journals (Sweden)

    Vittorio Dell'Orto

    2013-10-01

    Full Text Available Electronic Olfaction Systems (EOSs based on a variety of gas-sensing technologies have been developed to simulate in a simplified manner animal olfactory sensing systems. EOSs have been successfully applied to many applications and fields, including food technology and agriculture. Less information is available for EOS applications in the feed technology and animal nutrition sectors. Volatile Organic Compounds (VOCs, which are derived from both forages and concentrate ingredients of farm animal rations, are considered and described in this review as olfactory markers for feedstock quality and safety evaluation. EOS applications to detect VOCs from feedstuffs (as analytical matrices are described, and some future scenarios are hypothesised. Furthermore, some EOS applications in animal feeding behaviour and organoleptic feed assessment are also described.

  7. Comparison of myocardial blood flows using 99mTc-MIBI myocardial SPECT and 15O-water PET

    International Nuclear Information System (INIS)

    Myocardial SPECT is widely used in the diagnosis and evaluation of coronary artery disease (CAD). However. due to the results expressed as relative values, myocardial SPECT has limitation in multi-vessel disease and diffuse CAD. Water PET is used in estimating the coronary blood flow non-invasively. In this study, we investigated the coronary blood flow relationship between myocardial SPECT and water PET. 99mTc-MIBI myocardial SPECT and 15O-water PET were done in 15 patients with suspected CAD (M:F=10:5, Mean age 61±8yrs) under conditions of rest and adenosine stress, respectively. SPECT scan was performed using low energy high resolution collimator dual head SPECT camera (Vertex EPIC, Philips-ADAC Labs, Milpitas, USA) and images were analyzed using automated software (AutoQUANT, ADAC Labs., CA, U.S.A.). PET scan was performed using ECAT EXACT camera (CTI, Knoxville, TN/ Siemens Medical System, Inc., Hoffman Estates, IL, USA). Left myocardium was extracted using ensemble independent component analysis, and the 9 ROIs were drawn (apex, 4 mid walls and 4 basal walls). Fourteen segments of myocardial SPECT excluding basal segments were matched with 9 PET segments. No correlation was found between myocardial SPECT and water PET in both rest and stress, in the analysis of a total of 135 segments. However, in the analysis of segments with myocardial blood flow under or equal to 1 ml/g/min in the stress water PET (n=22), there were statistically significant correlation between myocardial SPECT and water PET in both rest (Pearson correlation=0.58. p<0.01) and stress (Pearson correlation=0.58. p<0.01), respectively. In segments with decreased myocardial blood flow in the stress water PET, there were statistically significant correlation between myocardial SPECT and water PET, in both rest and stress

  8. LABAQM - A SYSTEM FOR QUALITATIVE MODELLING AND ANALYSIS OF ANIMAL BEHAVIOUR

    OpenAIRE

    Matetić, Maja; Ribarić, Slobodan; Ipšić, Ivo

    2002-01-01

    Tracking of a laboratory animal and its behaviour interpretation based on frame sequence analysis have been traditionally quantitative and typically generates large amounts of temporally evolving data. In our work we are dealing with higher-level approaches such as conceptual clustering and qualitative modelling in order to represent data obtained by tracking. We present the LABAQM system developed for the analysis of laboratory animal behaviours. It is based on qualitative modelling of anima...

  9. The oxytocin system in drug discovery for autism: Animal models and novel therapeutic strategies