WorldWideScience

Sample records for animal model system

  1. Modeling dopamine system dysfunction in experimental animals

    International Nuclear Information System (INIS)

    Quite a substantial number of human disorders have been associated with a primary or a secondary impairment of one or several of the dopaminergic pathways. Among disorders associated with a primary impairment of dopaminergic transmission are Parkinson's disease, striatonigral degeneration, progressive supranuclear palsy, and possibly schizophrenia. Diseases of secondary dopamine dysfunction are chiefly represented by Huntington's disease in which dopaminergic transmission is being interrupted by progressive loss of the striatal neurons bearing the postsynaptic D1- and D2-dopamine receptors. Central dopaminergic systems have anatomical as well as organizational properties that render them unique by comparison to other neurotransmission systems, making them able to play a pivotal role in the modulation of various important brain functions such as locomotor activity, attention, and some cognitive abilities. These properties of dopamine neurons have obviously several implications in the clinical expression of human disorders involving dopamine neuron dysfunction. In addition, they can greatly influence the clinical/behavioral consequences of experimental lesions in animal models of dopamine dysfunctions

  2. Animal models for diseases of respiratory system

    Directory of Open Access Journals (Sweden)

    R. Adil

    2012-07-01

    Full Text Available Latest trends in understanding of respiratory diseases in human beings can be derived from thorough clinical studies of these diseases occurring in man, but conducting such studies in man is difficult in terms of experimental manipulation. In the last 2 decades, various types of experimental respiratory disease models has been developed and utilized by investigators, which have contributed a lot to the understanding of respiratory diseases in man, but only little investigation has been done on the naturally occurring pulmonary diseases of animals as potential models which could have added to our knowledge. There are certain selected examples of spontaneous pulmonary disease in animals that may serve as exploitable models for human chronic bronchitis, bronchiectasis, emphysema, interstitial lung disease, hypersensitivity pneumonitis, hyaline membrane disease, and bronchial asthma.

  3. Animal models

    DEFF Research Database (Denmark)

    Gøtze, Jens Peter; Krentz, Andrew

    2014-01-01

    In this issue of Cardiovascular Endocrinology, we are proud to present a broad and dedicated spectrum of reviews on animal models in cardiovascular disease. The reviews cover most aspects of animal models in science from basic differences and similarities between small animals and the human...

  4. Animal models of systemic sclerosis: their utility and limitations

    OpenAIRE

    Artlett, Carol

    2014-01-01

    Carol M Artlett Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA Abstract: Without doubt, animal models have provided significant insights into our understanding of the rheumatological diseases; however, no model has accurately replicated all aspects of any autoimmune disease. Recent years have seen a plethora of knockouts and transgenics that have contributed to our knowledge of the initiating events of systemic sclerosis, an autoimmune...

  5. Three-dimensional modeler for animated images display system

    International Nuclear Information System (INIS)

    The mv3d software allows the modeling and display of three dimensional objects in interpretative mode with animation possibility in real time. This system is intended for a graphical extension of a FORTH interpreter (implemented by CEA/IRDI/D.LETI/DEIN) in order to control a specific hardware (3.D card designed and implemented by DEIN) allowing the generation of three dimensional objects. The object description is carried out with a specific graphical language integrated in the FORTH interpreter. Objects are modeled using elementary solids called basic forms (cube, cone, cylinder...) assembled with classical geometric transformations (rotation, translation and scaling). These basic forms are approximated by plane polygonal facets further divided in triangles. Coordinates of the summits of triangles constitute the geometrical data. These are sent to the 3.D. card for processing and display. Performed processing are: geometrical transformations on display, hidden surface elimination, shading and clipping. The mv3d software is not an entire modeler but a simple, modular and extensible tool, to which other specific functions may be easily added such as: robots motion, collisions... (author)

  6. An isolated working heart system for large animal models.

    Science.gov (United States)

    Schechter, Matthew A; Southerland, Kevin W; Feger, Bryan J; Linder, Dean; Ali, Ayyaz A; Njoroge, Linda; Milano, Carmelo A; Bowles, Dawn E

    2014-01-01

    Since its introduction in the late 19(th) century, the Langendorff isolated heart perfusion apparatus, and the subsequent development of the working heart model, have been invaluable tools for studying cardiovascular function and disease(1-15). Although the Langendorff heart preparation can be used for any mammalian heart, most studies involving this apparatus use small animal models (e.g., mouse, rat, and rabbit) due to the increased complexity of systems for larger mammals(1,3,11). One major difficulty is ensuring a constant coronary perfusion pressure over a range of different heart sizes - a key component of any experiment utilizing this device(1,11). By replacing the classic hydrostatic afterload column with a centrifugal pump, the Langendorff working heart apparatus described below allows for easy adjustment and tight regulation of perfusion pressures, meaning the same set-up can be used for various species or heart sizes. Furthermore, this configuration can also seamlessly switch between constant pressure or constant flow during reperfusion, depending on the user's preferences. The open nature of this setup, despite making temperature regulation more difficult than other designs, allows for easy collection of effluent and ventricular pressure-volume data. PMID:24962492

  7. ras activation in human tumors and in animal model systems.

    OpenAIRE

    Corominas, M; Sloan, S R; Leon, J.; Kamino, H; Newcomb, E W; Pellicer, A

    1991-01-01

    Environmental agents such as radiation and chemicals are known to cause genetic damage. Alterations in a limited set of cellular genes called proto-oncogenes lead to unregulated proliferation and differentiation. We have studied the role of the ras gene family in carcinogenesis using two different animal models. In one case, thymic lymphomas were induced in mice by either gamma or neutron radiation, and in the other, keratoacanthomas were induced in rabbit skin with dimethylbezanthracene. Hum...

  8. Single-Metabolite Bio-Nano-Sensors and System for Remote Monitoring in Animal Models

    OpenAIRE

    Carrara, Sandro; Bolomey, Léandre; Boero, Cristina; Cavallini, Andrea; Meurville, Eric; De Micheli, Giovanni; Rezzonico, Tanja; Proietti, Michele; Grassi, Fabio

    2011-01-01

    A novel system for remote monitoring of metabolism in animal model is proposed in this paper. The system is obtained by integrating Bio-Nano-Sensors to detect single- metabolites, an electrochemical front-end made with off- the-shelf components, an RF communication sub-system, and an antenna of new design. The system has been calibrated and tested for continuous monitoring of four different metabolites: glucose, lactate, glutamate, and adenosine triphosphate (ATP). Tests with animal models (m...

  9. Animal models for the study of the effects of spaceflight on the immune system

    Science.gov (United States)

    Sonnenfeld, G.

    2003-10-01

    Animal models have been used to determine the effects of spaceflight on the immune system. Rats and rhesus monkeys have been the primary animals used for actual space flight studies, but mice have also been utilized for studies in ground-based models. The primary ground based model used has been hindlimb unloading of rodents, which is similar to the chronic bed-rest model for humans. A variety of immune responses have been shown to be modified when animals are hindlimb unloaded. These results parallel those observed when animals are flown in space. In general, immune responses are depressed in animals maintained in the hindlimb unloading model or flown in space. These results raise the possibility that spaceflight could result in decreased resistance to infection in animals.

  10. Remote System for Monitoring Animal Models With Single-Metabolite Bio-Nano-Sensors

    OpenAIRE

    Carrara, Sandro; Bolomey, Léandre; Boero, Cristina; Cavallini, Andrea; Meurville, Eric; De Micheli, Giovanni; Rezzonico Jost, Tanja; Proietti, Michele; Grassi, Fabio

    2013-01-01

    A novel system for remote monitoring of metabolism in an animal model is proposed in this paper. The system is obtained by integrating bio-nano-sensors to detect single- metabolites, an electrochemical front-end made with off-the-shelf components, a radio frequency communication sub-system, and an antenna of new design. The system has been calibrated and tested for continuous monitoring of four different metabolites: glucose, lactate, glutamate, and adenosine triphosphate. Tests using animal ...

  11. The oxytocin system in drug discovery for autism: Animal models and novel therapeutic strategies

    OpenAIRE

    Modi, Meera E.; Young, Larry J.

    2011-01-01

    Animal models and behavioral paradigms are critical for elucidating the neural mechanism involved in complex behaviors, including social cognition. Both genotype and phenotype based models have implicated the neuropeptide oxytocin (OT) in the regulation of social behavior. Based on the findings in animal models, alteration of the OT system has been hypothesized to play a role in the social deficits associated with autism and other neuropsychiatric disorders. While the evidence linking the pep...

  12. Animal models of tinnitus.

    Science.gov (United States)

    Brozoski, Thomas J; Bauer, Carol A

    2016-08-01

    Presented is a thematic review of animal tinnitus models from a functional perspective. Chronic tinnitus is a persistent subjective sound sensation, emergent typically after hearing loss. Although the sensation is experientially simple, it appears to have central a nervous system substrate of unexpected complexity that includes areas outside of those classically defined as auditory. Over the past 27 years animal models have significantly contributed to understanding tinnitus' complex neurophysiology. In that time, a diversity of models have been developed, each with its own strengths and limitations. None has clearly become a standard. Animal models trace their origin to the 1988 experiments of Jastreboff and colleagues. All subsequent models derive some of their features from those experiments. Common features include behavior-dependent psychophysical determination, acoustic conditions that contrast objective sound and silence, and inclusion of at least one normal-hearing control group. In the present review, animal models have been categorized as either interrogative or reflexive. Interrogative models use emitted behavior under voluntary control to indicate hearing. An example would be pressing a lever to obtain food in the presence of a particular sound. In this type of model animals are interrogated about their auditory sensations, analogous to asking a patient, "What do you hear?" These models require at least some training and motivation management, and reflect the perception of tinnitus. Reflexive models, in contrast, employ acoustic modulation of an auditory reflex, such as the acoustic startle response. An unexpected loud sound will elicit a reflexive motor response from many species, including humans. Although involuntary, acoustic startle can be modified by a lower-level preceding event, including a silent sound gap. Sound-gap modulation of acoustic startle appears to discriminate tinnitus in animals as well as humans, and requires no training or

  13. Use of animal models for space flight physiology studies, with special focus on the immune system

    Science.gov (United States)

    Sonnenfeld, Gerald

    2005-01-01

    Animal models have been used to study the effects of space flight on physiological systems. The animal models have been used because of the limited availability of human subjects for studies to be carried out in space as well as because of the need to carry out experiments requiring samples and experimental conditions that cannot be performed using humans. Experiments have been carried out in space using a variety of species, and included developmental biology studies. These species included rats, mice, non-human primates, fish, invertebrates, amphibians and insects. The species were chosen because they best fit the experimental conditions required for the experiments. Experiments with animals have also been carried out utilizing ground-based models that simulate some of the effects of exposure to space flight conditions. Most of the animal studies have generated results that parallel the effects of space flight on human physiological systems. Systems studied have included the neurovestibular system, the musculoskeletal system, the immune system, the neurological system, the hematological system, and the cardiovascular system. Hindlimb unloading, a ground-based model of some of the effects of space flight on the immune system, has been used to study the effects of space flight conditions on physiological parameters. For the immune system, exposure to hindlimb unloading has been shown to results in alterations of the immune system similar to those observed after space flight. This has permitted the development of experiments that demonstrated compromised resistance to infection in rodents maintained in the hindlimb unloading model as well as the beginning of studies to develop countermeasures to ameliorate or prevent such occurrences. Although there are limitations to the use of animal models for the effects of space flight on physiological systems, the animal models should prove very valuable in designing countermeasures for exploration class missions of the future.

  14. LABAQM - A SYSTEM FOR QUALITATIVE MODELLING AND ANALYSIS OF ANIMAL BEHAVIOUR

    OpenAIRE

    Matetić, Maja; Ribarić, Slobodan; Ipšić, Ivo

    2002-01-01

    Tracking of a laboratory animal and its behaviour interpretation based on frame sequence analysis have been traditionally quantitative and typically generates large amounts of temporally evolving data. In our work we are dealing with higher-level approaches such as conceptual clustering and qualitative modelling in order to represent data obtained by tracking. We present the LABAQM system developed for the analysis of laboratory animal behaviours. It is based on qualitative modelling of anima...

  15. Animal Models for imaging

    OpenAIRE

    Croft, Barbara Y.

    2002-01-01

    Animal models can be used in the study of disease. This chapter discusses imaging animal models to elucidate the process of human disease. The mouse is used as the primary model. Though this choice simplifies many research choices, it necessitates compromises for in vivo imaging. In the future, we can expect improvements in both animal models and imaging techniques.

  16. Animal Models of Atherosclerosis

    OpenAIRE

    Godfrey S Getz; Reardon, Catherine A

    2012-01-01

    Atherosclerosis is a chronic inflammatory disorder that is the underlying cause of most cardiovascular disease. Both cells of the vessel wall and cells of the immune system participate in atherogenesis. This process is heavily influenced by plasma lipoproteins, genetics and the hemodynamics of the blood flow in the artery. A variety of small and large animal models have been used to study the atherogenic process. No model is ideal as each has its own advantages and limitations with respect to...

  17. Effects of Pronunciation Practice System Based on Personalized CG Animations of Mouth Movement Model

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2012-06-01

    Full Text Available Pronunciation practice system based on personalized Computer Graphics: CG animation of mouth movement model is proposed. The system enables a learner to practice pronunciation by looking at personalized CG animations of mouth movement model , and allows him/her to compare them with his/her own mouth movements. In order to evaluate the effectiveness of the system by using personalized CG animation of mouth movement model, Japanese vowel and consonant sounds were read by 8 infants before and after practicing with the proposed system, and their pronunciations were examined. Remarkable improvement on their pronunciations is confirmed through a comparison to their pronunciation without the proposed system based on identification test by subjective basis.

  18. Animal models of dementia

    DEFF Research Database (Denmark)

    Olsson, I. Anna S.; Sandøe, Peter

    2011-01-01

    are here distinguished. These serve as points of orientation in the following discussion of four more specific ethical questions: Does animal species matter? How effective is disease modelling in delivering the benefits claimed for it? What can be done to minimize potential harm to animals in research? Who......This chapter aims to encourage scientists and others interested in the use of animal models of disease – specifically, in the study of dementia – to engage in ethical reflection. It opens with a general discussion of the moral acceptability of animal use in research. Three ethical approaches...... bears responsibility for the use of animals in disease models?...

  19. Comparative systems biology between human and animal models based on next-generation sequencing methods

    Institute of Scientific and Technical Information of China (English)

    Yu-Qi ZHAO; Gong-Hua LI; Jing-Fei HUANG

    2013-01-01

    Animal models provide myriad benefits to both experimental and clinical research.Unfortunately,in many situations,they fall short of expected results or provide contradictory results.In part,this can be the result of traditional molecular biological approaches that are relatively inefficient in elucidating underlying molecular mechanism.To improve the efficacy of animal models,a technological breakthrough is required.The growing availability and application of the high-throughput methods make systematic comparisons between human and animal models easier to perform.In the present study,we introduce the concept of the comparative systems biology,which we define as "comparisons of biological systems in different states or species used to achieve an integrated understanding of life forms with all their characteristic complexity of interactions at multiple levels".Furthermore,we discuss the applications of RNA-seq and ChIP-seq technologies to comparative systems biology between human and animal models and assess the potential applications for this approach in the future studies.

  20. Animal models of asthma

    OpenAIRE

    Bates, Jason H.T.; Rincon, Mercedes; Irvin, Charles G.

    2009-01-01

    Studies in animal models form the basis for much of our current understanding of the pathophysiology of asthma, and are central to the preclinical development of drug therapies. No animal model completely recapitulates all features of the human disease, however. Research has focused primarily on ways to generate allergic inflammation by sensitizing and challenging animals with a variety of foreign proteins, leading to an increased understanding of the immunological factors that mediate the in...

  1. Animal Model of Dermatophytosis

    OpenAIRE

    Tsuyoshi Shimamura; Nobuo Kubota; Kazutoshi Shibuya

    2012-01-01

    Dermatophytosis is superficial fungal infection caused by dermatophytes that invade the keratinized tissue of humans and animals. Lesions from dermatophytosis exhibit an inflammatory reaction induced to eliminate the invading fungi by using the host’s normal immune function. Many scientists have attempted to establish an experimental animal model to elucidate the pathogenesis of human dermatophytosis and evaluate drug efficacy. However, current animal models have several issues. In the presen...

  2. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Yamilé eLópez Hernández

    2015-02-01

    Full Text Available Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as a valuate tools to explore host-pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio, and non-vertebrate insects and nematodes (e.g. Caenorhabditis elegans in the study of diverse infectious agents that affect humans. Here we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favour of the use of these alternative animal models of infection to reveal the molecular signatures of host-pathogen interactions.

  3. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens.

    Science.gov (United States)

    López Hernández, Yamilé; Yero, Daniel; Pinos-Rodríguez, Juan M; Gibert, Isidre

    2015-01-01

    Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as valuable tools to explore host-pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio), and non-vertebrate insects and nematodes (e.g., Caenorhabditis elegans) in the study of diverse infectious agents that affect humans. Here, we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favor of the use of these alternative animal models of infection to reveal the molecular signatures of host-pathogen interactions. PMID:25699030

  4. Environmental implications of animal agriculture: The need for integrated systems and the modelling of energy flow

    International Nuclear Information System (INIS)

    The design of sustainable livestock strategies must be judged according to the likely impact on economic, ecological, ethological and sociological issues. Technologies for tropical animal agriculture should incorporate the following elements: (a) crops that have the maximum capacity to (i) incorporate atmospheric carbon dioxide into biomass, which in turn can be fractionated into components suitable for food, feed and fuel needs, (ii) fix atmospheric nitrogen, and (iii) maintain soil fertility; (b) selection of animal species (priority to be given to monogastric animals) and feeding and management systems (strategic supplementation of ruminants; multi-rather than special-purpose animals) which maximize product:methane ratios; (c) integration of crop, livestock and fuel production from biomass in systems which permit recycling of wastes and residues and cogeneration of fuel, food and feed. Integrated production of sugar cane, multipurpose trees and water plants, and their use for production of feed for pigs and sheep (or dual purpose cattle) and fuel satisfy the constraints outlined above. They are applicable in models suitable for family farms of 1-2 ha, for entrepreneurial farms of 20-25 ha and for an emergency agroindustry (the biomass refinery) offering renewable resources as alternatives to present fossil fuel based technologies for chemical and energy needs. Elements of the proposed systems are having increasing impact in many tropical countries. 16 refs, 7 figs, 2 tabs

  5. Animal Models of Fibromyalgia

    OpenAIRE

    Nagakura, Yukinori; Ito, Hiroyuki; Shimizu, Yasuaki

    2012-01-01

    Animal models of disease states are valuable tools for developing new treatments and investigating underlying mechanisms. They should mimic the symptoms and pathology of the disease and importantly be predictive of effective treatments. Fibromyalgia is characterized by chronic widespread pain with associated co-morbid symptoms that include fatigue, depression, anxiety and sleep dysfunction. In this review, we present different animal models that mimic the signs and symptoms of fibromyalgia. T...

  6. Animal models of schizophrenia

    OpenAIRE

    Jones, CA; Watson, DJG; Fone, KCF

    2011-01-01

    Developing reliable, predictive animal models for complex psychiatric disorders, such as schizophrenia, is essential to increase our understanding of the neurobiological basis of the disorder and for the development of novel drugs with improved therapeutic efficacy. All available animal models of schizophrenia fit into four different induction categories: developmental, drug-induced, lesion or genetic manipulation, and the best characterized examples of each type are reviewed herein. Most rod...

  7. Full modelling of the MOSAIC animal PET system based on the GATE Monte Carlo simulation code

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) systems dedicated to animal imaging are now widely used for biological studies. The scanner performance strongly depends on the design and the characteristics of the system. Many parameters must be optimized like the dimensions and type of crystals, geometry and field-of-view (FOV), sampling, electronics, lightguide, shielding, etc. Monte Carlo modelling is a powerful tool to study the effect of each of these parameters on the basis of realistic simulated data. Performance assessment in terms of spatial resolution, count rates, scatter fraction and sensitivity is an important prerequisite before the model can be used instead of real data for a reliable description of the system response function or for optimization of reconstruction algorithms. The aim of this study is to model the performance of the Philips Mosaic(TM) animal PET system using a comprehensive PET simulation code in order to understand and describe the origin of important factors that influence image quality. We use GATE, a Monte Carlo simulation toolkit for a realistic description of the ring PET model, the detectors, shielding, cap, electronic processing and dead times. We incorporate new features to adjust signal processing to the Anger logic underlying the Mosaic(TM) system. Special attention was paid to dead time and energy spectra descriptions. Sorting of simulated events in a list mode format similar to the system outputs was developed to compare experimental and simulated sensitivity and scatter fractions for different energy thresholds using various models of phantoms describing rat and mouse geometries. Count rates were compared for both cylindrical homogeneous phantoms. Simulated spatial resolution was fitted to experimental data for 18F point sources at different locations within the FOV with an analytical blurring function for electronic processing effects. Simulated and measured sensitivities differed by less than 3%, while scatter fractions agreed

  8. Animal models of ADHD.

    Science.gov (United States)

    Bari, A; Robbins, T W

    2011-01-01

    Studies employing animal models of attention-deficit/hyperactivity disorder (ADHD) present clear inherent advantages over human studies. Animal models are invaluable tools for the study of underlying neurochemical, neuropathological and genetic alterations that cause ADHD, because they allow relatively fast, rigorous hypothesis testing and invasive manipulations as well as selective breeding. Moreover, especially for ADHD, animal models with good predictive validity would allow the assessment of potential new therapeutics. In this chapter, we describe and comment on the most frequently used animal models of ADHD that have been created by genetic, neurochemical and physical alterations in rodents. We then discuss that an emerging and promising direction of the field is the analysis of individual behavioural differences among a normal population of animals. Subjects presenting extreme characteristics related to ADHD can be studied, thereby avoiding some of the problems that are found in other models, such as functional recovery and unnecessary assumptions about aetiology. This approach is justified by the theoretical need to consider human ADHD as the extreme part of a spectrum of characteristics that are distributed normally in the general population, as opposed to the predominant view of ADHD as a separate pathological category. PMID:21287324

  9. Animal models of portal hypertension

    Institute of Scientific and Technical Information of China (English)

    Juan G Abraldes; Marcos Pasarín; Juan Carlos; García-Pagán

    2006-01-01

    Animal models have allowed detailed study of hemodynamic alterations typical of portal hypertension and the molecular mechanisms involved in abnormalities in splanchnic and systemic circulation associated with this syndrome. Models of prehepatic portal hypertension can be used to study alterations in the splanchnic circulation and the pathophysiology of the hyperdynamic circulation. Models of cirrhosis allow study of the alterations in intrahepatic microcirculation that lead to increased resistance to portal flow. This review summarizes the currently available literature on animal models of portal hypertension and analyzes their relative utility. The criteria for choosing a particular model,depending on the specific objectives of the study, are also discussed.

  10. Predator-scent stress, ethanol consumption and the opioid system in an animal model of PTSD.

    Science.gov (United States)

    Manjoch, Hadar; Vainer, Ella; Matar, Michael; Ifergane, Gal; Zohar, Joseph; Kaplan, Zeev; Cohen, Hagit

    2016-06-01

    Emerging literature points to stress exposure as a potential contributor to the development of alcohol abuse, but animal models have yielded inconsistent results. Converging experimental data indicate that the endogenous opioid system modulates alcohol consumption and stress regulation. The aim of the present study is to examine the interplay between stress exposure, behavioral stress responses, ethanol (EtOH) consumption and the endogenous opioid system in an animal model of posttraumatic stress disorder. Rats were exposed to stress and then tested in a two-bottle free choice (TBC) assay or in a conditioned place preference paradigm. In some experiments, the endogenous opioid system was pharmacologically manipulated prior to stress exposure. The behavioral outcomes of stress exposure were assessed in an elevated plus-maze, with the acoustic startle response, and by monitoring the freezing response to trauma reminder. Immunoreactivity of phosphorylated opioid receptors in hippocampal subregions was also measured. Stress significantly increased the consumption of EtOH in the TBC assay. The severity of the behavioral response to stress was associated with EtOH consumption, cue-triggered freezing response to a trauma reminder, and endogenous levels of phosphorylated opioid receptors in the hippocampus. Pharmacologically manipulating the endogenous opioid system prior to stress exposure attenuated trauma cue-triggered freezing responses and blocked predator scent stress-induced potentiation of EtOH consumption. These data demonstrate a stress-induced potentiation of EtOH self-administration and reveal a clear association between individual patterns of the behavioral response to stress and alcohol preference, while indicating a role for the endogenous opioid system in the neurobiological response to stress. PMID:26965572

  11. The Future of Animals, Cells, Models, and Systems in Research, Development, Education, and Testing: Proceedings of a Symposium.

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC. Inst. of Lab. Animal Resources.

    This volume contains the prepared papers and discussions of a National Academy of Sciences - National Research Council Symposium on the Future of Animals, Cells, Models, and Systems in Research, Development, Education, and Testing. The purpose of the symposium was to examine the past, present, and future contributions of animals to human health…

  12. Accurate and efficient modeling of the detector response in small animal multi-head PET systems

    International Nuclear Information System (INIS)

    In fully three-dimensional PET imaging, iterative image reconstruction techniques usually outperform analytical algorithms in terms of image quality provided that an appropriate system model is used. In this study we concentrate on the calculation of an accurate system model for the YAP-(S)PET II small animal scanner, with the aim to obtain fully resolution- and contrast-recovered images at low levels of image roughness. For this purpose we calculate the system model by decomposing it into a product of five matrices: (1) a detector response component obtained via Monte Carlo simulations, (2) a geometric component which describes the scanner geometry and which is calculated via a multi-ray method, (3) a detector normalization component derived from the acquisition of a planar source, (4) a photon attenuation component calculated from x-ray computed tomography data, and finally, (5) a positron range component is formally included. This system model factorization allows the optimization of each component in terms of computation time, storage requirements and accuracy. The main contribution of this work is a new, efficient way to calculate the detector response component for rotating, planar detectors, that consists of a GEANT4 based simulation of a subset of lines of flight (LOFs) for a single detector head whereas the missing LOFs are obtained by using intrinsic detector symmetries. Additionally, we introduce and analyze a probability threshold for matrix elements of the detector component to optimize the trade-off between the matrix size in terms of non-zero elements and the resulting quality of the reconstructed images. In order to evaluate our proposed system model we reconstructed various images of objects, acquired according to the NEMA NU 4-2008 standard, and we compared them to the images reconstructed with two other system models: a model that does not include any detector response component and a model that approximates analytically the depth of interaction

  13. Animal models of sepsis

    OpenAIRE

    Fink, Mitchell P.

    2013-01-01

    Sepsis remains a common, serious, and heterogeneous clinical entity that is difficult to define adequately. Despite its importance as a public health problem, efforts to develop and gain regulatory approval for a specific therapeutic agent for the adjuvant treatment of sepsis have been remarkably unsuccessful. One step in the critical pathway for the development of a new agent for adjuvant treatment of sepsis is evaluation in an appropriate animal model of the human condition. Unfortunately, ...

  14. Animal Models of Narcolepsy

    OpenAIRE

    Chen, Lichao; Brown, Ritchie E.; McKenna, James T.; McCARLEY, ROBERT W.

    2009-01-01

    Narcolepsy is a debilitating sleep disorder with excessive daytime sleepiness and cataplexy as its two major symptoms. Although this disease was first described about one century ago, an animal model was not available until the 1970s. With the establishment of the Stanford canine narcolepsy colony, researchers were able to conduct multiple neurochemical studies to explore the pathophysiology of this disease. It was concluded that there was an imbalance between monoaminergic and cholinergic sy...

  15. XX. Animal models of pneumocystosis

    DEFF Research Database (Denmark)

    Dei-Cas, E.; Brun-Pascaud, M.; Bille-Hansen, Vivi;

    1998-01-01

    As in vitro culture systems allowing to isolate Pneumocystis samples from patients or other mammal hosts are still not available, animal models have critical importance in Pneumocystis research. The parasite was reported in numerous mammals but P. carinii pneumonia (PCP) experimental models were...... source of parasites taxonomically related to P. carinii sp. f hominis. Moreover, primates might be used as experimental hosts to human Pneumocystis. A marked variability of parasite levels among corticosteroid-treated animals and the fact that the origin of the parasite strain remains unknown, are...... important drawbacks of the corticosteroid-treated models. For these reasons, inoculated animal models of PCP were developed. The intratracheal inoculation of lung homogenates containing viable parasites in corticosteroid-treated non-latently infected rats resulted in extensive, reproducible Pneumocystis...

  16. Modeling animal landscapes.

    Science.gov (United States)

    Porter, W P; Ostrowski, S; Williams, J B

    2010-01-01

    There is an increasing need to assess the effects of climate and land-use change on habitat quality, ideally from a mechanistic basis. The symposium "Molecules to Migration: Pressures of Life" at the Fourth International Conference in Africa for Comparative Physiology and Biochemistry, Maasai Mara National Reserve, Kenya, 2008, illustrated how the principles of biophysical ecology can capture the mechanistic links between organisms, climate, and other habitat features. These principles provide spatially explicit assessments of habitat quality from a physiological perspective (i.e., "animal landscapes") that can be validated independently of the data used to derive and parameterize them. The contents of this symposium showcased how the modeling of animal landscapes can be used to assess key issues in applied and theoretical ecology. The presentations included applications to amphibians, reptiles, birds, and mammals. The rare Arabian oryx on the Arabian Peninsula is used as an example for energetic calculations and their implications for behavior on the landscape. PMID:20670170

  17. A new animal model of placebo analgesia: involvement of the dopaminergic system in reward learning.

    Science.gov (United States)

    Lee, In-Seon; Lee, Bombi; Park, Hi-Joon; Olausson, Håkan; Enck, Paul; Chae, Younbyoung

    2015-01-01

    We suggest a new placebo analgesia animal model and investigated the role of the dopamine and opioid systems in placebo analgesia. Before and after the conditioning, we conducted a conditioned place preference (CPP) test to measure preferences for the cues (Rooms 1 and 2), and a hot plate test (HPT) to measure the pain responses to high level-pain after the cues. In addition, we quantified the expression of tyrosine hydroxylase (TH) in the ventral tegmental area (VTA) and c-Fos in the anterior cingulate cortex (ACC) as a response to reward learning and pain response. We found an enhanced preference for the low level-pain paired cue and enhanced TH expression in the VTA of the Placebo and Placebo + Naloxone groups. Haloperidol, a dopamine antagonist, blocked these effects in the Placebo + Haloperidol group. An increased pain threshold to high-heat pain and reduced c-Fos expression in the ACC were observed in the Placebo group only. Haloperidol blocked the place preference effect, and naloxone and haloperidol blocked the placebo analgesia. Cue preference is mediated by reward learning via the dopamine system, whereas the expression of placebo analgesia is mediated by the dopamine and opioid systems. PMID:26602173

  18. Needs for animal models of human diseases of the respiratory system.

    OpenAIRE

    Reid, L. M.

    1980-01-01

    Animal models are of two types those that occur spontaneously and those that the scientist produces by artefact. One value of spontaneously occurring models is that if pathogenetic mechanisms are identified, they give new leads for the study of human disease. There is a need for spontaneously occurring examples of so-called primary or idiopathic pulmonary fibrosis, pulmonary hypertension (arterial or venous), and emphysema. Acquired or artefactual models of each of these conditions are availa...

  19. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens

    OpenAIRE

    López Hernández, Yamilé; Yero, Daniel; Pinos-Rodríguez, Juan M.; Gibert, Isidre

    2015-01-01

    Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the vir...

  20. Development of FAME Animation System

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yukihiro; Hamamatsu, Kiyotaka; Shirai, Hiroshi; Matsuda, Toshiaki [Department of Fusion Plasma Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan); Watanabe, Hideto; Itakura, Hirofumi; Tahata, Yasunori

    1999-02-01

    In order to monitor an animation of magnetohydrodynamic equilibrium calculated by the FAME-II (Fast Analyzer for Magnetohydrodynamic Equilibrium-II) system, a FAME Animation System was developed. This system provides automatically the animation on workstations connected to network with the same period of JT-60U discharge sequence. Then, the system can supply the important information for JT-60U operators to determine control parameters of the succeeding discharge. This report describes the overview of the FAME Animation System. (author)

  1. Directed animals and Gas Models Revisited

    OpenAIRE

    Le Borgne, Yvan; Marckert, Jean-François

    2007-01-01

    In this paper, we revisit the enumeration of directed animals using gas models. We show that there exists a natural construction of random directed animals on any directed graph together with a particle system that explains at the level of objects the formal link known between the density of the gas model and the generating function of directed animals counted according to the area. This provides some new methods to compute the generating function of directed animals counted according to area...

  2. Animal Models in Burn Research

    OpenAIRE

    Abdullahi, A.; Amini-Nik, S.; Jeschke, M.G

    2014-01-01

    Burn injury is a severe form of trauma affecting more than two million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the...

  3. Experimental Autoimmune Vasculitis : An Animal Model of Anti-neutrophil Cytoplasmic Autoantibody-Associated Systemic Vasculitis

    OpenAIRE

    Little, Mark A.; Smyth, Lucy; Salama, Alan D; Mukherjee, Sriparna; Smith, Jennifer; Haskard, Dorian; Nourshargh, Sussan; Cook, H. Terence; Charles D. Pusey

    2009-01-01

    The morbidity burden associated with anti-neutrophil cytoplasmic autoantibody-associated vasculitis is increasing, and many novel biological therapies are now entering the drug development pipeline. There is thus an urgent need to develop a representative animal model to facilitate testing of these agents. We previously examined the effect of antineutrophil cytoplasmic autoantibody on leukocyte-endothelial interactions in WKY rats via immunization with human myeloperoxidase. We now seek to ex...

  4. Stochastic modelling of animal movement

    OpenAIRE

    Smouse, Peter E.; Focardi, Stefano; Moorcroft, Paul R.; Kie, John G.; Forester, James D.; Morales, Juan M.

    2010-01-01

    Modern animal movement modelling derives from two traditions. Lagrangian models, based on random walk behaviour, are useful for multi-step trajectories of single animals. Continuous Eulerian models describe expected behaviour, averaged over stochastic realizations, and are usefully applied to ensembles of individuals. We illustrate three modern research arenas. (i) Models of home-range formation describe the process of an animal ‘settling down’, accomplished by including one or more focal poi...

  5. Animal Models of Neuropsychiatric Disorders

    OpenAIRE

    Nestler, Eric J.; Steven E Hyman

    2010-01-01

    Modeling of human neuropsychiatric disorders in animals is extremely challenging given the subjective nature of many key symptoms, the lack of biomarkers and objective diagnostic tests, and the early state of the relevant neurobiology and genetics. Nonetheless, progress in understanding pathophysiology and in treatment development would benefit greatly from improved animal models. Here we review the current state of animal models of mental illness, with a focus on schizophrenia, depression, a...

  6. Evaluation of an animal model system for cryptosporidiosis: therapeutic efficacy of paromomycin and hyperimmune bovine colostrum-immunoglobulin.

    OpenAIRE

    Tzipori, S; Rand, W; Griffiths, J.; Widmer, G; Crabb, J

    1994-01-01

    Several immunodeficient rodent models currently exist in which persistent, largely asymptomatic, Cryptosporidium parvum infections can be established. Piglets, in contrast, develop a self-limiting diarrheal illness. We have consequently developed an animal model system in which scid mice were used to screen drugs for inhibitory activity against C. parvum, after which the drugs' therapeutic potential was evaluated with piglets. Paromomycin and hyperimmune bovine colostrum-immunoglobulin were s...

  7. Animal models and conserved processes

    Directory of Open Access Journals (Sweden)

    Greek Ray

    2012-09-01

    Full Text Available Abstract Background The concept of conserved processes presents unique opportunities for using nonhuman animal models in biomedical research. However, the concept must be examined in the context that humans and nonhuman animals are evolved, complex, adaptive systems. Given that nonhuman animals are examples of living systems that are differently complex from humans, what does the existence of a conserved gene or process imply for inter-species extrapolation? Methods We surveyed the literature including philosophy of science, biological complexity, conserved processes, evolutionary biology, comparative medicine, anti-neoplastic agents, inhalational anesthetics, and drug development journals in order to determine the value of nonhuman animal models when studying conserved processes. Results Evolution through natural selection has employed components and processes both to produce the same outcomes among species but also to generate different functions and traits. Many genes and processes are conserved, but new combinations of these processes or different regulation of the genes involved in these processes have resulted in unique organisms. Further, there is a hierarchy of organization in complex living systems. At some levels, the components are simple systems that can be analyzed by mathematics or the physical sciences, while at other levels the system cannot be fully analyzed by reducing it to a physical system. The study of complex living systems must alternate between focusing on the parts and examining the intact whole organism while taking into account the connections between the two. Systems biology aims for this holism. We examined the actions of inhalational anesthetic agents and anti-neoplastic agents in order to address what the characteristics of complex living systems imply for inter-species extrapolation of traits and responses related to conserved processes. Conclusion We conclude that even the presence of conserved processes is

  8. Animal Models of Colorectal Cancer

    Science.gov (United States)

    Johnson, Robert L.; Fleet, James C.

    2012-01-01

    Colorectal cancer is a heterogeneous disease that afflicts a large number of people in the United States. The use of animal models has the potential to increase our understanding of carcinogenesis, tumor biology, and the impact of specific molecular events on colon biology. In addition, animal models with features of specific human colorectal cancers can be used to test strategies for cancer prevention and treatment. In this review we provide an overview of the mechanisms driving human cancer, we discuss the approaches one can take to model colon cancer in animals, and we describe a number of specific animal models that have been developed for the study of colon cancer. We believe that there are many valuable animal models to study various aspects of human colorectal cancer. However, opportunities for improving upon these models exist. PMID:23076650

  9. Refining Animal Models to Enhance Animal Welfare

    Institute of Scientific and Technical Information of China (English)

    Patricia V.Turner

    2012-01-01

    The use of animals in research will be necessary for scientific advances in the basic and biomedical sciences for the foreseeable future.As we learn more about the ability of animals to experience pain,suffering,and distress,and particularly for mammals,it becomes the responsibility of scientists,institutions,animal caregivers,and veterinarians to seek ways to improve the lives of research animals and refine their care and use.Refinement is one of the three R's emphasized by Russell and Burch,and refers to modification of procedures to minimise the potential for pain,suffering and distress. It may also refer to procedures used to enhance animal comfort. This paper summarizes considerations for refinements in research animal.

  10. An animal model to study toxicity of central nervous system therapy for childhood acute lymphoblastic leukemia: Effects on behavior

    International Nuclear Information System (INIS)

    Central nervous system prophylactic therapy used in the treatment of acute lymphoblastic leukemia can reduce intelligence quotient scores and impair memory and attention in children. Cranial irradiation, intrathecal methotrexate, and steroids are commonly utilized in acute lymphoblastic leukemia therapy. How they induce neurotoxicity is unknown. This study employs an animal model to explore the induction of neurotoxicity. Male and female Sprague-Dawley rats at 17 and 18 days of age were administered 18 mg/kg prednisolone, 2 mg/kg methotrexate, and 1000 cGy cranial irradiation. Another 18-day-old group was administered 1000 cGy cranial irradiation but no drugs. Matching controls received saline and/or a sham exposure to radiation. All animals at 6 weeks and 4 months of age were tested for alterations in spontaneous behavior. A computer pattern recognition system automatically recorded and classified individual behavioral acts displayed during exploration of a novel environment. Measures of behavioral initiations, total time, and time structure were used to compare treated and control animals. A permanent sex-specific change in the time structure of behavior was induced by the prednisolone, methotrexate, and radiation treatment but not by radiation alone. Unlike hyperactivity, the effect consisted of abnormal clustering and dispersion of acts in a pattern indicative of disrupted development of sexually dimorphic behavior. This study demonstrates the feasibility of an animal model delineating the agent/agents responsible for the neurotoxicity of central nervous system prophylactic therapy

  11. An animal model to study toxicity of central nervous system therapy for childhood acute lymphoblastic leukemia: Effects on behavior

    Energy Technology Data Exchange (ETDEWEB)

    Mullenix, P.J.; Kernan, W.J.; Tassinari, M.S.; Schunior, A.; Waber, D.P.; Howes, A.; Tarbell, N.J. (Forsyth Research Institute, Boston, MA (USA))

    1990-10-15

    Central nervous system prophylactic therapy used in the treatment of acute lymphoblastic leukemia can reduce intelligence quotient scores and impair memory and attention in children. Cranial irradiation, intrathecal methotrexate, and steroids are commonly utilized in acute lymphoblastic leukemia therapy. How they induce neurotoxicity is unknown. This study employs an animal model to explore the induction of neurotoxicity. Male and female Sprague-Dawley rats at 17 and 18 days of age were administered 18 mg/kg prednisolone, 2 mg/kg methotrexate, and 1000 cGy cranial irradiation. Another 18-day-old group was administered 1000 cGy cranial irradiation but no drugs. Matching controls received saline and/or a sham exposure to radiation. All animals at 6 weeks and 4 months of age were tested for alterations in spontaneous behavior. A computer pattern recognition system automatically recorded and classified individual behavioral acts displayed during exploration of a novel environment. Measures of behavioral initiations, total time, and time structure were used to compare treated and control animals. A permanent sex-specific change in the time structure of behavior was induced by the prednisolone, methotrexate, and radiation treatment but not by radiation alone. Unlike hyperactivity, the effect consisted of abnormal clustering and dispersion of acts in a pattern indicative of disrupted development of sexually dimorphic behavior. This study demonstrates the feasibility of an animal model delineating the agent/agents responsible for the neurotoxicity of central nervous system prophylactic therapy.

  12. Symptomatic animal models for dystonia

    OpenAIRE

    Wilson, Bethany K.; Hess, Ellen J.

    2013-01-01

    Symptomatic animal models have clinical features consistent with human disorders and are often used to identify the anatomical and physiological processes involved in the expression of symptoms and to experimentally demonstrate causality where it would be infeasible in the patient population. Rodent and primate models of dystonia have identified basal ganglia abnormalities, including alterations in striatal GABAergic and dopaminergic transmission. Symptomatic animal models have also establish...

  13. Putting the "Biology" Back into "Neurobiology": The Strength of Diversity in Animal Model Systems for Neuroscience Research.

    Science.gov (United States)

    Keifer, Joyce; Summers, Cliff H

    2016-01-01

    Current trends in neuroscience research have moved toward a reliance on rodent animal models to study most aspects of brain function. Such laboratory-reared animals are highly inbred, have been disengaged from their natural environments for generations and appear to be of limited predictive value for successful clinical outcomes. In this Perspective article, we argue that research on a rich diversity of animal model systems is fundamental to new discoveries in evolutionarily conserved core physiological and molecular mechanisms that are the foundation of human brain function. Analysis of neural circuits across phyla will reveal general computational solutions that form the basis for adaptive behavioral responses. Further, we stress that development of ethoexperimental approaches to improve our understanding of behavioral nuance will help to realign our research strategies with therapeutic goals and improve the translational validity of specific animal models. Finally, we suggest that neuroscience has a role in environmental conservation of habitat and fauna that will preserve and protect the ecological settings that drive species-specific behavioral adaptations. A rich biodiversity will enhance our understanding of human brain function and lead in unpredicted directions for development of therapeutic treatments for neurological disorders. PMID:27597819

  14. Animal models of cerebral ischemia

    Science.gov (United States)

    Khodanovich, M. Yu.; Kisel, A. A.

    2015-11-01

    Cerebral ischemia remains one of the most frequent causes of death and disability worldwide. Animal models are necessary to understand complex molecular mechanisms of brain damage as well as for the development of new therapies for stroke. This review considers a certain range of animal models of cerebral ischemia, including several types of focal and global ischemia. Since animal models vary in specificity for the human disease which they reproduce, the complexity of surgery, infarct size, reliability of reproduction for statistical analysis, and adequate models need to be chosen according to the aim of a study. The reproduction of a particular animal model needs to be evaluated using appropriate tools, including the behavioral assessment of injury and non-invasive and post-mortem control of brain damage. These problems also have been summarized in the review.

  15. Animal models in peritoneal dialysis

    Science.gov (United States)

    Nikitidou, Olga; Peppa, Vasiliki I.; Leivaditis, Konstantinos; Eleftheriadis, Theodoros; Zarogiannis, Sotirios G.; Liakopoulos, Vassilios

    2015-01-01

    Peritoneal dialysis (PD) has been extensively used over the past years as a method of kidney replacement therapy for patients with end stage renal disease (ESRD). In an attempt to better understand the properties of the peritoneal membrane and the mechanisms involved in major complications associated with PD, such as inflammation, peritonitis and peritoneal injury, both in vivo and ex vivo animal models have been used. The aim of the present review is to briefly describe the animal models that have been used, and comment on the main problems encountered while working with these models. Moreover, the differences characterizing these animal models, as well as, the differences with humans are highlighted. Finally, it is suggested that the use of standardized protocols is a necessity in order to take full advantage of animal models, extrapolate their results in humans, overcome the problems related to PD and help promote its use. PMID:26388781

  16. Animal Models in Peritoneal Dialysis

    Directory of Open Access Journals (Sweden)

    OLGA eNIKITIDOU

    2015-09-01

    Full Text Available Peritoneal dialysis (PD has been extensively used over the past years as a method of kidney replacement therapy for patients with end stage renal disease. In an attempt to better understand the properties of the peritoneal membrane and the mechanisms involved in major complications associated with PD, such as inflammation, peritonitis and peritoneal injury, both in vivo and ex vivo animal models have been used. The aim of the present review is to briefly describe the animal models that have been used, and comment on the main problems encountered while working with these models. Moreover, the differences characterizing these animal models, as well as, the differences with humans are highlighted. Finally, it is suggested that the use of standardized protocols is a necessity in order to take full advantage of animal models, extrapolate their results in humans, overcome the problems related to PD and help promote its use.

  17. Animal models of spontaneous activity in the healthy and impaired auditory system

    Directory of Open Access Journals (Sweden)

    Jos J Eggermont

    2015-04-01

    Full Text Available Spontaneous neural activity in the auditory nerve fibers and in auditory cortex in healthy animals is discussed with respect to the question: Is spontaneous activity noise or information carrier? The studies reviewed suggest strongly that spontaneous activity is a carrier of information. Subsequently, I review the numerous findings in the impaired auditory system, particularly with reference to noise trauma and tinnitus. Here the common assumption is that tinnitus reflects increased noise in the auditory system that among others affects temporal processing and interferes with the gap-startle reflex, which is frequently used as a behavioral assay for tinnitus. It is, however, more likely that the increased spontaneous activity in tinnitus, firing rate as well as neural synchrony, carries information that shapes the activity of downstream structures, including non-auditory ones, and leading to the tinnitus percept. The main drivers of that process are bursting and synchronous firing, which facilitates transfer of activity across synapses, and allows formation of auditory objects, such as tinnitus

  18. Animal Models of Ricin Toxicosis

    OpenAIRE

    Roy, Chad J; Song, Kejing; Sivasubramani, Satheesh K.; Gardner, Donald J.; Seth H Pincus

    2012-01-01

    Animal models of ricin toxicosis are necessary for testing the efficacy of therapeutic measures, as well studying the mechanisms by which ricin exerts its toxicity in intact animals. Because ricin can serve as a particularly well-characterized model of tissue damage, and the host response to that damage, studies of the mechanisms of ricin toxicity may have more general applicability. For example, our studies of the molecular mechanisms underlying the development of ricin-induced hypoglycemia ...

  19. Animal models for human diseases.

    Science.gov (United States)

    Rust, J H

    1982-01-01

    The use of animal models for the study of human disease is, for the most part, a recent development. This discussion of the use of animal models for human diseases directs attention to the sterile period, early advances, some personal experiences, the human as the model, biological oddities among common laboratory animals, malignancies in laboratory animals, problems created by federal regulations, cancer tests with animals, and what the future holds in terms of the use of animal models as an aid to understanding human disease. In terms of early use of animal models, there was a school of rabbis, some of whom were also physicians, in Babylon who studied and wrote extensively on ritual slaughter and the suitability of birds and beasts for food. Considerable detailed information on animal pathology, physiology, anatomy, and medicine in general can be found in the Soncino Babylonian Talmudic Translations. The 1906 edition of the "Jewish Encyclopedia," has been a rich resource. Although it has not been possible to establish what diseases of animals were studied and their relationship to the diseases of humans, there are fascinating clues to pursue, despite the fact that these were sterile years for research in medicine. The quotation from the Talmud is of interest: "The medical knowledge of the Talmudist was based upon tradition, the dissection of human bodies, observation of disease and experiments upon animals." A bright light in the lackluster years of medical research was provided by Galen, considered the originator of research in physiology and anatomy. His dissection of animals and work on apes and other lower animals were models for human anatomy and physiology and the bases for many treatises. Yet, Galen never seemed to suggest that animals could serve as models for human diseases. Most early physicians who can be considered to have been students of disease developed their medical knowledge by observing the sick under their care. 1 early medical investigator

  20. Animal Models for Candidiasis

    OpenAIRE

    Conti, Heather R.; Huppler, Anna R.; Whibley, Natasha; Gaffen, Sarah L

    2014-01-01

    Multiple forms of candidiasis are clinically important in humans. Established murine models of disseminated, oropharyngeal, vaginal, and cutaneous candidiasis caused by Candida albicans are described in this unit. Detailed materials and methods for C. albicans growth and detection are also described.

  1. Animal models of asthma

    OpenAIRE

    Akkoç, Tunç

    2014-01-01

    ABSTRACT: Allergic disease such as asthma, rhinitis, and eczema are increasing prevelanceand affect up to 15% of population in Westernized countries. Among them, asthma is achronic inflammatory disease of airways and the underlying physiological and immunologicalprocesses are not fully understood. Mouse models of asthma dupicates many featuresof human asthma, including airway hyperreactivity, andairway inflammation. Therefore, relevantmodels for asthma are important to understand the mechanis...

  2. The serotonin system in autism spectrum disorder: From biomarker to animal models.

    Science.gov (United States)

    Muller, C L; Anacker, A M J; Veenstra-VanderWeele, J

    2016-05-01

    Elevated whole blood serotonin, or hyperserotonemia, was the first biomarker identified in autism spectrum disorder (ASD) and is present in more than 25% of affected children. The serotonin system is a logical candidate for involvement in ASD due to its pleiotropic role across multiple brain systems both dynamically and across development. Tantalizing clues connect this peripheral biomarker with changes in brain and behavior in ASD, but the contribution of the serotonin system to ASD pathophysiology remains incompletely understood. Studies of whole blood serotonin levels in ASD and in a large founder population indicate greater heritability than for the disorder itself and suggest an association with recurrence risk. Emerging data from both neuroimaging and postmortem samples also indicate changes in the brain serotonin system in ASD. Genetic linkage and association studies of both whole blood serotonin levels and of ASD risk point to the chromosomal region containing the serotonin transporter (SERT) gene in males but not in females. In ASD families with evidence of linkage to this region, multiple rare SERT amino acid variants lead to a convergent increase in serotonin uptake in cell models. A knock-in mouse model of one of these variants, SERT Gly56Ala, recapitulates the hyperserotonemia biomarker and shows increased brain serotonin clearance, increased serotonin receptor sensitivity, and altered social, communication, and repetitive behaviors. Data from other rodent models also suggest an important role for the serotonin system in social behavior, in cognitive flexibility, and in sensory development. Recent work indicates that reciprocal interactions between serotonin and other systems, such as oxytocin, may be particularly important for social behavior. Collectively, these data point to the serotonin system as a prime candidate for treatment development in a subgroup of children defined by a robust, heritable biomarker. PMID:26577932

  3. Animal models in myopia research.

    Science.gov (United States)

    Schaeffel, Frank; Feldkaemper, Marita

    2015-11-01

    Our current understanding of the development of refractive errors, in particular myopia, would be substantially limited had Wiesel and Raviola not discovered by accident that monkeys develop axial myopia as a result of deprivation of form vision. Similarly, if Josh Wallman and colleagues had not found that simple plastic goggles attached to the chicken eye generate large amounts of myopia, the chicken model would perhaps not have become such an important animal model. Contrary to previous assumptions about the mechanisms of myopia, these animal models suggested that eye growth is visually controlled locally by the retina, that an afferent connection to the brain is not essential and that emmetropisation uses more sophisticated cues than just the magnitude of retinal blur. While animal models have shown that the retina can determine the sign of defocus, the underlying mechanism is still not entirely clear. Animal models have also provided knowledge about the biochemical nature of the signal cascade converting the output of retinal image processing to changes in choroidal thickness and scleral growth; however, a critical question was, and still is, can the results from animal models be applied to myopia in children? While the basic findings from chickens appear applicable to monkeys, some fundamental questions remain. If eye growth is guided by visual feedback, why is myopic development not self-limiting? Why does undercorrection not arrest myopic progression even though positive lenses induce myopic defocus, which leads to the development of hyperopia in emmetropic animals? Why do some spectacle or contact lens designs reduce myopic progression and others not? It appears that some major differences exist between animals reared with imposed defocus and children treated with various optical corrections, although without the basic knowledge obtained from animal models, we would be lost in an abundance of untestable hypotheses concerning human myopia. PMID:26769177

  4. Development of an Animal Model for Burn-Blast Combined Injury and Cardiopulmonary System Changes in the Early Shock Stage.

    Science.gov (United States)

    Hu, Quan; Chai, Jiake; Hu, Sen; Fan, Jun; Wang, Hong-Wei; Ma, Li; Duan, Hong-Jie; Liu, Lingying; Yang, Hongming; Li, Bai-Ling; Wang, Yi-He

    2015-12-01

    The purposes of this study were to establish an animal model for burn-blast combined injury research and elaborate cardiopulmonary system changes in the early shock stage. In this study, royal demolition explosive or RDX (hexagon, ring trimethylene nitramine) was used as an explosive source, and the injury conditions of the canine test subjects at various distances to the explosion (30, 50, and 70 cm) were observed by gross anatomy and pathology to determine a larger animal model of moderate blast injury. The canines were then subjected to a 35 % total body surface area (TBSA) full-thickness flame injury using napalm, which completed the development of a burn-blast combined injury model. Based on this model, the hemodynamic changes and arterial blood gas analysis after the burn-blast combined injury were measured to identify the cardiopulmonary system characteristics. In this research, RDX explosion and flame injury were used to develop a severe burn-blast injury animal model that was stable, close to reality, and easily controllable. The hemodynamic and arterial blood gas changes in the canine subjects after burn-blast injury changed distinctly from the burn and blast injuries. Blood pressure and cardiac output fluctuated, and the preload was significantly reduced, whereas the afterload significantly increased. Meanwhile, the oxygen saturation (SO2) decreased markedly with carbon dioxide partial pressure (PCO2), and lactic acid (Lac) rose, and oxygen partial pressure (PO2) reduced. These changes suggested that immediate clinical treatment is important during burn-blast injury both to stabilize cardiac function and supply blood volume and to reduce the vascular permeability, thereby preventing acute pneumonedema or other complications. PMID:27011494

  5. Modelling group dynamic animal movement

    DEFF Research Database (Denmark)

    Langrock, Roland; Hopcraft, J. Grant C.; Blackwell, Paul G.;

    2014-01-01

    , to date, practical statistical methods which can include group dynamics in animal movement models have been lacking. We consider a flexible modelling framework that distinguishes a group-level model, describing the movement of the group's centre, and an individual-level model, such that each individual...... makes its movement decisions relative to the group centroid. The basic idea is framed within the flexible class of hidden Markov models, extending previous work on modelling animal movement by means of multi-state random walks. While in simulation experiments parameter estimators exhibit some bias...... in an encamped state. Though the attraction to the group centroid is relatively weak, our model successfully captures group-influenced movement dynamics. Specifically, as compared to a regular mixture of correlated random walks, the group dynamic model more accurately predicts the non-diffusive behaviour...

  6. NOVEL DELIVERY SYSTEM ENHANCES EFFICACY OF ANTIRETROVIRAL THERAPY IN ANIMAL MODEL FOR HIV-1 ENCEPHALITIS (HIVE)

    OpenAIRE

    Spitzenberger, Timothy J.; Heilman, David; Diekmann, Casey; Batrakova, Elena; Kabanov, Alexander; Gendelman, Howard E.; Elmquist, William F.; Persidsky, Yuri

    2006-01-01

    Most potent anti-retroviral drugs (e.g., HIV-1 protease inhibitors) poorly penetrate the blood-brain barrier. Brain distribution can be limited by the efflux transporter, P-glycoprotein (P-gp). The ability of a novel drug delivery system (block co-polymer P85) that inhibits P-gp, to increase the efficacy of anti-retroviral drugs in brain was examined using a severe combined immunodeficiency (SCID) mouse model of HIV-1 encephalitis (HIVE). SCID mice inoculated with HIV-1 infected human monocyt...

  7. ANIMAL MODELS FOR FOOD ALLERGY

    Science.gov (United States)

    Animal models have been used to provide insight into the complex immunological and pathophysioligical mechanisms of human Type 1 allergic diseases. Research efforts that include mechanistic studies in search of new therapies and screening models for hazard identification of potential allergens in a...

  8. Use of animal models in musculoskeletal research.

    OpenAIRE

    Neyt, J. G.; Buckwalter, J. A.; Carroll, N. C.

    1998-01-01

    Understanding of the human musculoskeletal system and common clinical disorders of bones, joints and soft tissues has been enhanced by the use of experimental animal models. Articles reporting on the results of these biomedical experiments frequently include conclusions that are based on the assumption that the biology of the animal model is similar to that of a human being for the disease process under investigation. The purpose of this investigation was to study the criteria and the conside...

  9. Directed animals, quadratic and rewriting systems

    OpenAIRE

    Marckert, Jean-François

    2011-01-01

    A directed animal is a percolation cluster in the directed site percolation model. The aim of this paper is to exhibit a strong relation between the problem of computing the generating function $\\G$ of directed animals on the square lattice, counted according to the area and the perimeter, and the problem of solving a system of quadratic equations involving unknown matrices. We present some solid evidence that some infinite explicit matrices, the fixed points of a rewriting like system are th...

  10. Animal models of cardiac cachexia.

    Science.gov (United States)

    Molinari, Francesca; Malara, Natalia; Mollace, Vincenzo; Rosano, Giuseppe; Ferraro, Elisabetta

    2016-09-15

    Cachexia is the loss of body weight associated with several chronic diseases including chronic heart failure (CHF). The cachectic condition is mainly due to loss of skeletal muscle mass and adipose tissue depletion. The majority of experimental in vivo studies on cachexia rely on animal models of cancer cachexia while a reliable and appropriate model for cardiac cachexia has not yet been established. A critical issue in generating a cardiac cachexia model is that genetic modifications or pharmacological treatments impairing the heart functionality and used to obtain the heart failure model might likely impair the skeletal muscle, this also being a striated muscle and sharing with the myocardium several molecular and physiological mechanisms. On the other hand, often, the induction of heart damage in the several existing models of heart failure does not necessarily lead to skeletal muscle loss and cachexia. Here we describe the main features of cardiac cachexia and illustrate some animal models proposed for cardiac cachexia studies; they include the genetic calsequestrin and Dahl salt-sensitive models, the monocrotaline model and the surgical models obtained by left anterior descending (LAD) ligation, transverse aortic constriction (TAC) and ascending aortic banding. The availability of a specific animal model for cardiac cachexia is a crucial issue since, besides the common aspects of cachexia in the different syndromes, each disease has some peculiarities in its etiology and pathophysiology leading to cachexia. Such peculiarities need to be unraveled in order to find new targets for effective therapies. PMID:27317993

  11. Modelling group dynamic animal movement

    OpenAIRE

    Langrock, Roland; Hopcraft, Grant; Blackwell, Paul; Goodall, Victoria; King, Ruth; Niu, Mu; Patterson, Toby; Pedersen, Martin; Skarin, Anna; Schick, Robert Schilling

    2013-01-01

    1). Group dynamics are a fundamental aspect of many species' movements. The need to adequately model individuals' interactions with other group members has been recognized, particularly in order to differentiate the role of social forces in individual movement from environmental factors. However, to date, practical statistical methods, which can include group dynamics in animal movement models, have been lacking. 2). We consider a flexible modelling framework that distinguishes a group-level ...

  12. Design of an advanced positron emission tomography detector system and algorithms for imaging small animal models of human disease

    Science.gov (United States)

    Foudray, Angela Marie Klohs

    Detecting, quantifying and visualizing biochemical mechanism in a living system without perturbing function is the goal of the instrument and algorithms designed in this thesis. Biochemical mechanisms of cells have long been known to be dependent on the signals they receive from their environment. Studying biological processes of cells in-vitro can vastly distort their function, since you are removing them from their natural chemical signaling environment. Mice have become the biological system of choice for various areas of biomedical research due to their genetic and physiological similarities with humans, the relatively low cost of their care, and their quick breeding cycle. Drug development and efficacy assessment along with disease detection, management, and mechanism research all have benefited from the use of small animal models of human disease. A high resolution, high sensitivity, three-dimensional (3D) positioning positron emission tomography (PET) detector system was designed through device characterization and Monte Carlo simulation. Position-sensitive avalanche photodiodes (PSAPDs) were characterized in various packaging configurations; coupled to various configurations of lutetium oxyorthosilicate (LSO) scintillation crystals. Forty novelly packaged final design devices were constructed and characterized, each providing characteristics superior to commercially available scintillation detectors used in small animal imaging systems: ˜1mm crystal identification, 14-15% of 511 keV energy resolution, and averaging 1.9 to 5.6 ns coincidence time resolution. A closed-cornered box-shaped detector configuration was found to provide optimal photon sensitivity (˜10.5% in the central plane) using dual LSO-PSAPD scintillation detector modules and Monte Carlo simulation. Standard figures of merit were used to determine optimal system acquisition parameters. A realistic model for constituent devices was developed for understanding the signals reported by the

  13. Animal models of CNS disorders.

    Science.gov (United States)

    McGonigle, Paul

    2014-01-01

    There is intense interest in the development and application of animal models of CNS disorders to explore pathology and molecular mechanisms, identify potential biomarkers, and to assess the therapeutic utility, estimate safety margins and establish pharmacodynamic and pharmacokinetic parameters of new chemical entities (NCEs). This is a daunting undertaking, due to the complex and heterogeneous nature of these disorders, the subjective and sometimes contradictory nature of the clinical endpoints and the paucity of information regarding underlying molecular mechanisms. Historically, these models have been invaluable in the discovery of therapeutics for a range of disorders including anxiety, depression, schizophrenia, and Parkinson's disease. Recently, however, they have been increasingly criticized in the wake of numerous clinical trial failures of NCEs with promising preclinical profiles. These failures have resulted from a number of factors including inherent limitations of the models, over-interpretation of preclinical results and the complex nature of clinical trials for CNS disorders. This review discusses the rationale, strengths, weaknesses and predictive validity of the most commonly used models for psychiatric, neurodegenerative and neurological disorders as well as critical factors that affect the variability and reproducibility of these models. It also addresses how progress in molecular genetics and the development of transgenic animals has fundamentally changed the approach to neurodegenerative disorder research. To date, transgenic animal models\\have not been the panacea for drug discovery that many had hoped for. However continual refinement of these models is leading to steady progress with the promise of eventual therapeutic breakthroughs. PMID:23811310

  14. Animal Models of Williams Syndrome

    OpenAIRE

    Osborne, Lucy R.

    2010-01-01

    In recent years, researchers have generated a variety of mouse models in an attempt to dissect the contribution of individual genes to the complex phenotype associated with Williams syndrome (WS). The mouse genome is easily manipulated to produce animals that are copies of humans with genetic conditions, be it with null mutations, hypomorphic mutations, point mutations, or even large deletions encompassing many genes. The existing mouse models certainly seem to implicate hemizygosity for ELN,...

  15. Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi.

    Directory of Open Access Journals (Sweden)

    Eleftherios Mylonakis

    2007-07-01

    Full Text Available Experiments with insects, protozoa, nematodes, and slime molds have recently come to the forefront in the study of host-fungal interactions. Many of the virulence factors required for pathogenicity in mammals are also important for fungal survival during interactions with non-vertebrate hosts, suggesting that fungal virulence may have evolved, and been maintained, as a countermeasure to environmental predation by amoebae and nematodes and other small non-vertebrates that feed on microorganisms. Host innate immune responses are also broadly conserved across many phyla. The study of the interaction between invertebrate model hosts and pathogenic fungi therefore provides insights into the mechanisms underlying pathogen virulence and host immunity, and complements the use of mammalian models by enabling whole-animal high throughput infection assays. This review aims to assist researchers in identifying appropriate invertebrate systems for the study of particular aspects of fungal pathogenesis.

  16. Evaluation of Aloevera Gel for its Anti Inflammatory activity in Diabetes Mellitus using Animal Model System

    Directory of Open Access Journals (Sweden)

    M.Vanitha

    2013-03-01

    Full Text Available The aim of the present study was to evaluate the anti inflammatory potential of Aloe vera in alloxan induced diabetes in rats. Experimental Diabetes was induced in rats with alloxan. The animals were divided into four groups of six each (n=6. Group I: Normal, Group II: Alloxan induced diabetic rats, Group III: Diabetic rats supplemented with AV gel extract for 21 days, Group IV: diabetic rats treated with glibenclamide. All the drugs were administered orally (using an intra gastric tube in a single dose in the morning for 21 days. Blood samples were collected from the overnight fasted rats. Oral administration of Aloe barbadensis gel significantly decreased the level of homocysteine and the level of folic acid was significantly elevated when compared to diabetic control. The results suggest potent anti-inflammatory potential of Aloe barbadensis gel in experimental diabetes, and thus Aloe vera can be used as an alternative remedy for treatment of diabetes mellitus and its complications.

  17. ANIMAL BEHAVIORAL MODELS OF TINNITUS

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chao; WANG Qiuju; SUN Wei

    2014-01-01

    The pathophysiology of tinnitus is poorly understood and treatments are often unsuccessful. A number of animal models have been developed in order to gain a better understanding of tinnitus. A great deal has been learned from these models re-garding the electrophysiological and neuroanatomical correlates of tinnitus following exposure to noise or ototoxic drugs. Re-liable behavioral data is important for determining whether such electrophysiological or neuroanatomical changes are indeed related to tinnitus. Of the many documented tinnitus animal behavioral paradigms, the acoustic startle reflex had been pro-posed as a simple method to identify the presence or absence of tinnitus. Several behavioral models based on conditioned re-sponse suppression paradigms have also been developed. In addition to determining the presence or absence of tinnitus, some of the behavioral paradigms have provided signs of the onset, frequency, and intensity of tinnitus in animals. Although none of these behavioral models have been proved to be a perfect model, these studies provide useful information on understanding the neural mechanisms underlying tinnitus.

  18. Analysis of the effect of renal excretory system cooling during thermal radiofrequency ablation in an animal model

    Directory of Open Access Journals (Sweden)

    Andre Meireles

    2014-01-01

    Full Text Available Objective: Analysis of renal excretory system integrity and efficacy of radiofrequency ablation with and without irrigation with saline at 2 o C (SF2. Materials and Methods: The median third of sixteen kidneys were submitted to radiofrequency (exposition of 1 cm controlled by intra-surgical ultrasound, with eight minutes cycles and median temperature of 90 o C in eight female pigs. One excretory renal system was cooled with SF2, at a 30ml/min rate, and the other kidney was not. After 14 days of post-operatory, the biggest diameters of the lesions and the radiological aspects of the excretory system were compared by bilateral ascending pyelogram and the animals were sacrificed in order to perform histological analysis. Results: There were no significant differences between the diameters of the kidney lesions whether or not exposed to cooling of the excretory system. Median diameter of the cooled kidneys and not cooled kidneys were respectively (in mm: anteroposterior: 11.46 vs. 12.5 (p = 0.23; longitudinal: 17.94 vs. 18.84 (p = 0.62; depth: 11.38 vs. 12.25 (p = 0.47. There was no lesion of the excretory system or signs of leakage of contrast media or hydronephrosis at ascending pyelogram. Conclusion: Cooling of excretory system during radiofrequency ablation does not significantly alter generated coagulation necrosis or affect the integrity of the excretory system in the studied model.

  19. Effects of Low-Dose-Gamma Rays on the Immune System of Different Animal Models of Disease

    OpenAIRE

    Shimura, Noriko; Kojima, Shuji

    2014-01-01

    We reviewed the beneficial or harmful effects of low-dose ionizing radiation on several diseases based on a search of the literature. The attenuation of autoimmune manifestations in animal disease models irradiated with low-dose γ-rays was previously reported by several research groups, whereas the exacerbation of allergic manifestations was described by others. Based on a detailed examination of the literature, we divided animal disease models into two groups: one group consisting of collage...

  20. Hippocampal dysfunction and disruption of dopamine system regulation in an animal model of schizophrenia

    OpenAIRE

    Lodge, Daniel J; Grace, Anthony A.

    2008-01-01

    Studies into the pathophysiology of schizophrenia have consistently demonstrated a dysfunction of dopamine (DA) system regulation in this disorder. This includes hyper-responsivity to DA agonists, the therapeutic efficacy of DA antagonists, and augmented striatal DA release in response to amphetamine. Nonetheless, there is little evidence for a pathological alteration with the DA system itself in schizophrenia. Instead, it is suggested that the disturbance lies in the manner by which the DA s...

  1. Bridging Animal and Human Models

    OpenAIRE

    Barkley-Levenson, Amanda M.; Crabbe, John C.

    2012-01-01

    Genetics play an important role in the development and course of alcohol abuse, and understanding genetic contributions to this disorder may lead to improved preventative and therapeutic strategies in the future. Studies both in humans and in animal models are necessary to fully understand the neurobiology of alcoholism from the molecular to the cognitive level. By dissecting the complex facets of alcoholism into discrete, well-defined phenotypes that are measurable in both human populations ...

  2. Animal models of eating disorders

    OpenAIRE

    Kim, Sangwon F.

    2012-01-01

    Feeding is a fundamental process for basic survival, and is influenced by genetics and environmental stressors. Recent advances in our understanding of behavioral genetics have provided a profound insight on several components regulating eating patterns. However, our understanding of eating disorders such as anorexia nervosa, bulimia nervosa, and binge eating is still poor. The animal model is an essential tool in the investigation of eating behaviors and their pathological forms, yet develop...

  3. Modeling Autistic Features in Animals

    OpenAIRE

    Patterson, Paul H.

    2011-01-01

    A variety of features of autism can be simulated in rodents, including the core behavioral hallmarks of stereotyped and repetitive behaviors, and deficits in social interaction and communication. Other behaviors frequently found in autism spectrum disorders (ASD) such as neophobia, enhanced anxiety, abnormal pain sensitivity and eye blink conditioning, disturbed sleep patterns, seizures, and deficits in sensorimotor gating are also present in some of the animal models. Neuropathology and some...

  4. Animal models for microbicide studies

    OpenAIRE

    Veazey, Ronald S.; Shattock, Robin J.; Klasse, Per Johan; Moore, John P.

    2012-01-01

    There have been encouraging recent successes in the development of safe and effective topical microbicides to prevent vaginal or rectal HIV-1 transmission, based on the use of anti-retroviral drugs. However, much work remains to be accomplished before a microbicide becomes a standard element of prevention science strategies. Animal models should continue to play an important role in pre-clinical testing, with emphasis on safety, pharmacokinetic and efficacy testing.

  5. Integration of mathematical and information modelling approaches for decision support in African animal production and health systems

    International Nuclear Information System (INIS)

    The use of tools such as mathematical models, databases and expert systems has an important role to play in the provision of relevant expertise and technologies to farmers in developing countries. However, these tools are often deficient when used in isolation; their full potentials can only be realized through integration. The integration of tools is not, in itself, sufficient to ensure the effective and efficient use of information. The specific information needs of different decision makers will vary, and one cannot afford to create distinct systems for each type of user. These differences may be more apparent than real, representing different routes through the same information structure. The concept of information integration describes an attempt to organize data and knowledge in a single cohesive unit. The resultant complexity requires the provision of tools which provide appropriate access to, and navigation within, the information structure. Such an integrated information system is currently under development for the domain of African livestock production. It is anticipated that a system will enhance the diagnosis, treatment and management of cattle disease, increase understanding of animal nutrition and allow health and productivity records to be more effectively maintained. The paper illustrates the types of integration described above through the development of an integrated information system. (author)

  6. Animal Models of Human Granulocyte Diseases

    OpenAIRE

    Schäffer, Alejandro A.; Klein, Christoph

    2012-01-01

    In vivo animal models have proven very useful to understand basic biological pathways of the immune system, a prerequisite for the development of innovate therapies. This manuscript addresses currently available models for defined human monogenetic defects of neutrophil granulocytes, including murine, zebrafish and larger mammalian species. Strengths and weaknesses of each system are summarized, and clinical investigators may thus be inspired to develop further lines of research to improve di...

  7. Antibody to endotoxin core glycolipid reverses reticuloendothelial system depression in an animal model of severe sepsis and surgical injury

    International Nuclear Information System (INIS)

    To study the effect of severe sepsis on the function of the reticuloendothelial system (RES) we have measured the clearance kinetics and organ distribution of both low-dose technetium tin colloid (TTC) and 75selenomethionine-labelled E. coli in rabbits 24 hours after either sham laparotomy or appendix devascularization. Sepsis resulted in similar delayed blood clearance and reduced liver (Kupffer cell) uptake of both TTC and E. coli. To investigate the ability of polyclonal antibody to E. coli-J-5 (core glycolipid) to improve RES function in the same model of sepsis, further animals were pretreated with either core glycolipid antibody or control serum (10 ml IV) 2 hours before induction of sepsis. TTC clearance kinetics were determined 24 hours later. Antibody pretreated animals showed: a reduced incidence of bacteremia; normalization of the rate of blood clearance and liver uptake of TTC; and a 'rebound' increase in splenic uptake of TTC. We conclude that antibody to E. coli-J-5 enhances bacterial clearance by the RES

  8. The nematode C. elegans - A model animal system for the detection of genetic and developmental lesions

    Science.gov (United States)

    Nelson, Gregory A.; Marshall, Tamara M.; Schubert, Wayne W.

    1989-01-01

    The effects of ionizing and nonionizing radiation effects on cell reproduction, differentiation, and mutation in vivo are studied using the nematode C. elegans. The relationships between fluence/dose and response and quality factor and linear energy transfer are analyzed. The data reveal that there is a complex repair pathway in the nematode and that mutants can be used to direct the sensitivity of the system to specific mutagens/radiation types.

  9. Animal Models of Allergic Diseases

    Directory of Open Access Journals (Sweden)

    Domenico Santoro

    2014-12-01

    Full Text Available Allergic diseases have great impact on the quality of life of both people and domestic animals. They are increasing in prevalence in both animals and humans, possibly due to the changed lifestyle conditions and the decreased exposure to beneficial microorganisms. Dogs, in particular, suffer from environmental skin allergies and develop a clinical presentation which is very similar to the one of children with eczema. Thus, dogs are a very useful species to improve our understanding on the mechanisms involved in people’s allergies and a natural model to study eczema. Animal models are frequently used to elucidate mechanisms of disease and to control for confounding factors which are present in studies with patients with spontaneously occurring disease and to test new therapies that can be beneficial in both species. It has been found that drugs useful in one species can also have benefits in other species highlighting the importance of a comprehensive understanding of diseases across species and the value of comparative studies. The purpose of the current article is to review allergic diseases across species and to focus on how these diseases compare to the counterpart in people.

  10. Alterations in the hippocampal glycinergic system in an animal model of posttraumatic stress disorder.

    Science.gov (United States)

    Yamamoto, Shigeto; Morinobu, Shigeru; Iwamoto, Yasuyuki; Ueda, Yuto; Takei, Shiro; Fujita, Yosuke; Yamawaki, Shigeto

    2010-11-01

    Previous studies have demonstrated that rats subjected to single prolonged stress (SPS) exhibit posttraumatic stress disorder (PTSD)-like symptoms, such as enhanced contextual fear in response to trauma-related and trauma-unrelated events. Furthermore, we previously reported that upregulation of hippocampal glycine transporter 1 (GlyT-1) mRNA after context exposure could be the initial mechanism underlying impaired fear extinction in SPS rats. To clarify the involvement of the hippocampal glycinergic system in impaired fear extinction in SPS rats, we measured the time course of changes in the duration of freezing and the hippocampal levels of Gly-T1 mRNA using contextual fear conditioning (FC) and extinction training. We also used in vivo microdialysis to measure the concentration of extracellular glycine in the hippocampus during the time interval between FC and the first context exposure. SPS rats exhibited increased and sustained contextual fear responses. The enhanced contextual fear response in SPS rats was associated with a sustained increase in hippocampal levels of Gly-T1 mRNA after FC relative to sham rats, and by a decrease in the extracellular glycine concentration. GlyT-1 mRNA levels in rats that underwent repeated extinction training were significantly lower than in rats that did not undergo extinction training. These findings indicate that reduced activity of the hippocampal glycinergic system could be closely involved in impaired fear extinction in SPS rats, suggesting that activation of the glycinergic system by d-cycloserine or GlyT-1 inhibitors may ameliorate the impairment of fear extinction. PMID:20427053

  11. Multiple-pinhole SPECT/CBCT system and its application on animal model on tumor

    Science.gov (United States)

    Bao, Shanglian; Li, Jun

    2011-12-01

    Characterized by wisdom and creativity, human beings are huge, complex, giant systems. Each person's life is experienced the process of birth, growth, aging and death. The genetic stability keeps human beings no change, and the mutation keeps the human beings in progress. The balance between stability and mutation are controlled by the nature laws automatically. But the balance often broken because the body's biochemical processes is out of order in vivo, which is scaled by quantitative concentrations for all molecular in human body. Now day, the biomedical imaging tools can investigate these process quantitatively.

  12. Comparative immune systems in animals.

    Science.gov (United States)

    Yuan, Shaochun; Tao, Xin; Huang, Shengfeng; Chen, Shangwu; Xu, Anlong

    2014-02-01

    Animal immune systems can be classified into those of innate immunity and those of adaptive immunity. It is generally thought that the former are universal for all animals and depend on germline-encoded receptors that recognize highly conserved pathogen-associated molecular patterns (PAMPs), whereas the latter are vertebrate specific and are mediated primarily by lymphocytes bearing a unique antigen receptor. However, novel adaptive or adaptive-like immunities have been found in invertebrates and jawless vertebrates, and extraordinarily complex innate immunities, created through huge expansions of many innate gene families, have recently been found in the cephalochordate amphioxus and the echinoderm sea urchin. These studies not only inspire immunologists to seek novel immune mechanisms in invertebrates but also raise questions about the origin and evolution of vertebrate immunities. PMID:25384142

  13. Directed animals, quadratic and rewriting systems

    CERN Document Server

    Marckert, Jean-François

    2011-01-01

    A directed animal is a percolation cluster in the directed site percolation model. The aim of this paper is to exhibit a strong relation between in one hand, the problem of computing the generating function $\\G$ of directed animals on the square lattice, counted according to the area and the perimeter, and on the other hand, the problem to find a solution to a system of quadratic equations involving unknown matrices. The matrices solution of this problem can be finite or infinite. We were unable to find finite solutions. We present some solid clues that some infinite explicit matrices, fix points of a rewriting like system are the natural solutions of this system of equations: some strong evidences are given that the problem of finding $\\G$ reduces then to the problem of finding an eigenvector to an explicit infinite matrix. Similar properties are shown for other combinatorial questions concerning directed animals, and for different lattices.

  14. Evaluation of animal models of neurobehavioral disorders

    OpenAIRE

    Nordquist Rebecca E; Arndt Saskia S; van der Staay F Josef

    2009-01-01

    Abstract Animal models play a central role in all areas of biomedical research. The process of animal model building, development and evaluation has rarely been addressed systematically, despite the long history of using animal models in the investigation of neuropsychiatric disorders and behavioral dysfunctions. An iterative, multi-stage trajectory for developing animal models and assessing their quality is proposed. The process starts with defining the purpose(s) of the model, preferentiall...

  15. Animal models of gene-nutrient interactions.

    Science.gov (United States)

    Reed, Danielle R

    2008-12-01

    Food intake of humans is governed by the food's nutritional value and pleasing taste, but also by other factors such as food cost and availability, cultural imperatives, and social status. The biological determinants of human food intake are not easily parsed from these other factors, making them hard to study against the whirligig aspects of human life in a modern age. The study of animals provides a useful alternative. Humans have a history of studying animal food intake, for agricultural reasons (e.g., pigs and cows), and for personal reasons (e.g., dogs and cats), and these practical concerns have been joined with the appreciation that other models can teach us the principles of behavior, genetics, and nutrition. Thus there is a steady use of the traditional animal models in this type of research, as well as growth in the use of other systems such as worms and flies. Rats and mice occupy a special niche as animal models for two reasons; first, they share with humans a love of the same types of food, and second, they are the target of a number of well-developed genetic tools. The available genetic tools that make mice a popular model include a well-annotated genome (Mouse Build 37), profiles of RNA expression from many tissues, a diverse panel of inbred strains, and the ability to manipulate genes in the whole animal, including removing a gene only in specific tissues (e.g., Cre-lox system). Mice have been harnessed to find genotypes that contribute to sweet-liking, and other studies are underway to understand how genetic variation might at least partially explain other puzzles of human appetites. Animal models provide a way to study the genetic determinants of food selection with experimental rigor and therefore complement human genetics studies. PMID:19037208

  16. An animal model of fetishism.

    Science.gov (United States)

    Köksal, Falih; Domjan, Michael; Kurt, Adnan; Sertel, Ozlem; Orüng, Sabiha; Bowers, Rob; Kumru, Gulsen

    2004-12-01

    An animal model of sexual fetishism was developed with male Japanese quail based on persistence of conditioned sexual responding during extinction to an inanimate object made of terrycloth (Experiments 1 and 3). This persistent responding occurred only in subjects that came to copulate with the terrycloth object, suggesting that the copulatory behavior served to maintain the fetishistic behavior. Sexual conditioning was carried out by pairing a conditioned stimulus (CS) with the opportunity to copulate with a female (the unconditioned stimulus or US). Copulation with the CS object and persistent responding did not develop if the CS was a light (Experiment 1) or if conditioning was carried out with a food US (Experiment 2). In addition, subjects that showed persistence in responding to the terrycloth CS did not persist in their responding to a light CS (Experiment 3). The results are consistent with the hypothesis that conditioned copulatory behavior creates a form of self-maintenance that leads to persistent responding to an inanimate object. The development of an animal model of such fetishistic behavior should facilitate experimental analysis of the phenomenon. PMID:15500813

  17. Animal models for studying penile hemodynamics

    Institute of Scientific and Technical Information of China (English)

    HiroyaMizusawa; OsamuIshizuka

    2002-01-01

    Animal models for the study of erectile function monitoring the changes in intracavernous pressure(ICP)during penile erection was reviewed.The development of new modwls using small commercially-available experimen-tal animals,rats and mice,in the last edcade facilitated in vivo investigation of erectile physiology.The technique enabled to evaluate even subtle erectile responses by analyzing ICPand systemic blood pressure,Moreover,the method has been well improved and studies using conscious animal models without the influence of any drug or anesthesia are more appropriate in exploring the precise physiological and pharmacological mechanisms in erection.Also,more natural and physiological sexual arousal instead of electrical or pharmacological stimulation is desirable in most of the studies.This article reviewed the development of ICPstudies in rats and mice.

  18. Animal models of recurrent or bipolar depression.

    Science.gov (United States)

    Kato, T; Kasahara, T; Kubota-Sakashita, M; Kato, T M; Nakajima, K

    2016-05-01

    Animal models of mental disorders should ideally have construct, face, and predictive validity, but current animal models do not always satisfy these validity criteria. Additionally, animal models of depression rely mainly on stress-induced behavioral changes. These stress-induced models have limited validity, because stress is not a risk factor specific to depression, and the models do not recapitulate the recurrent and spontaneous nature of depressive episodes. Although animal models exhibiting recurrent depressive episodes or bipolar depression have not yet been established, several researchers are trying to generate such animals by modeling clinical risk factors as well as by manipulating a specific neural circuit using emerging techniques. PMID:26265551

  19. Involvement of opioid receptors in the systemic and peripheral antinociceptive actions of montelukast in the animal models of pain.

    Science.gov (United States)

    Ghorbanzadeh, Behnam; Mansouri, Mohammad Taghi; Sahraei, Hedayat; Alboghobeish, Soheila

    2016-05-15

    This study aimed to investigate the involvement of opioid receptors in the systemic and peripheral antinociceptive activities of montelukast in different animal models of pain. Rats and mice were injected with montelukast to produce analgesia. The formalin and acetic acid-induced writhing tests were used to assess the nociceptive activity. The results showed that i.p. administration of montelukast (0.3-10mg/kg) dose-dependently reduced flinching behavior in both the first and second phases of formalin test with mean ED50 of 0.55 and 5.31mg/kg, respectively. Also, intraplantar administration of montelukast (3-30μg/paw) produced antinociception against the two phases of formalin assay in a dose-dependent way with mean ED30 of 2.92 and 8.11μg/paw, respectively. Furthermore, pre-treatment with naloxone (a non-selective opioid receptor antagonist) significantly inhibited both the systemic and also peripheral antinociceptive actions of montelukast in formalin test. In writhing test, the results showed that intraperitoneal administration of montelukast (3-10mg/kg) significantly reduced the writhe number induced by acetic acid in mice. Moreover, co-administration of non-effective doses of montelukast (0.3 and 1mg/kg; i.p.) and morphine (0.25mg/kg; i.p.) significantly decreased the writhes number induced by acetic acid. Also, this effect was naloxone-reversible. These findings suggest that the systemic and peripheral antinociception produced by montelukast were mediated through the opioid receptors in central and peripheral nervous systems. Moreover, combination of montelukast and morphine could be noted as a new strategy for pain relief. PMID:26948314

  20. Animal models of extracranial pediatric solid tumors

    OpenAIRE

    Seitz, Guido; Armeanu-Ebinger, Sorin; WARMANN, STEVEN; Fuchs, Jörg

    2012-01-01

    Animal models, including xenografts, models of metastatic invasion, syngeneic models and transgenic models, are important tools for basic research in solid pediatric tumors, while humanized animal models are useful for novel immunotherapeutical approaches. Optical and molecular imaging techniques are used for in vivo imaging and may be used in conjunction with alternative treatment approaches, including photodynamic therapy. The aim of this review is to highlight the various animal models tha...

  1. The methods of inducing polymyositis animal model

    International Nuclear Information System (INIS)

    Objective: To investigate the methods of inducing polymyosistis(PM) animal model. Methods: In order to develope a induce PM animal model in purified guinea pia muscle myosin mixed with complete Freund adjuvant was injected subcutaneously to SD rats many times and the results of the clinical finding, the EMG, the pathologic changes and the musclar MRI changes in SD rats was assessed. Results: The PM animal models were similar to the human in clinical findings, the EMG, the pathologic changes, the musclar MRI changes and so on. Conclusion: The animal model is similar to the human PM, it is an ideal animal model to investigate PM. (authors)

  2. Intratracheal Administration of Mesenchymal Stem Cells Modulates Tachykinin System, Suppresses Airway Remodeling and Reduces Airway Hyperresponsiveness in an Animal Model.

    Directory of Open Access Journals (Sweden)

    Konrad Urbanek

    Full Text Available The need for new options for chronic lung diseases promotes the research on stem cells for lung repair. Bone marrow-derived mesenchymal stem cells (MSCs can modulate lung inflammation, but the data on cellular processes involved in early airway remodeling and the potential involvement of neuropeptides are scarce.To elucidate the mechanisms by which local administration of MSCs interferes with pathophysiological features of airway hyperresponsiveness in an animal model.GFP-tagged mouse MSCs were intratracheally delivered in the ovalbumin mouse model with subsequent functional tests, the analysis of cytokine levels, neuropeptide expression and histological evaluation of MSCs fate and airway pathology. Additionally, MSCs were exposed to pro-inflammatory factors in vitro.Functional improvement was observed after MSC administration. Although MSCs did not adopt lung cell phenotypes, cell therapy positively affected airway remodeling reducing the hyperplastic phase of the gain in bronchial smooth muscle mass, decreasing the proliferation of epithelium in which mucus metaplasia was also lowered. Decrease of interleukin-4, interleukin-5, interleukin-13 and increase of interleukin-10 in bronchoalveolar lavage was also observed. Exposed to pro-inflammatory cytokines, MSCs upregulated indoleamine 2,3-dioxygenase. Moreover, asthma-related in vivo upregulation of pro-inflammatory neurokinin 1 and neurokinin 2 receptors was counteracted by MSCs that also determined a partial restoration of VIP, a neuropeptide with anti-inflammatory properties.Intratracheally administered MSCs positively modulate airway remodeling, reduce inflammation and improve function, demonstrating their ability to promote tissue homeostasis in the course of experimental allergic asthma. Because of a limited tissue retention, the functional impact of MSCs may be attributed to their immunomodulatory response combined with the interference of neuropeptide system activation and tissue

  3. Animal models of attention-deficit hyperactivity disorder

    OpenAIRE

    Sagvolden Terje; Russell Vivienne A; Johansen Espen

    2005-01-01

    Abstract Although animals cannot be used to study complex human behaviour such as language, they do have similar basic functions. In fact, human disorders that have animal models are better understood than disorders that do not. ADHD is a heterogeneous disorder. The relatively simple nervous systems of rodent models have enabled identification of neurobiological changes that underlie certain aspects of ADHD behaviour. Several animal models of ADHD suggest that the dopaminergic system is funct...

  4. Animal Migraine Models for Drug Development

    DEFF Research Database (Denmark)

    Jansen-Olesen, Inger; Tfelt-Hansen, Peer; Olesen, Jes

    2013-01-01

    Migraine is number seven in WHO's list of all diseases causing disability and the third most costly neurological disorder in Europe. Acute attacks are treatable by highly selective drugs such as the triptans but there is still a huge unmet therapeutic need. Unfortunately, drug development for...... headache has almost come to a standstill partly because of a lack of valid animal models. Here we review previous models with emphasis on optimal characteristics of a future model. In addition to selection of animal species, the method of induction of migraine-like changes and the method of recording...... responses elicited by such measures are crucial. The most naturalistic way of inducing attacks is by infusion of endogenous signaling molecules that are known to cause migraine in patients. The most valid response is recording of neural activity in the trigeminal system. The most useful headache related...

  5. High fat diet exacerbates neuroinflammation in an animal model of multiple sclerosis by activation of the Renin Angiotensin system.

    OpenAIRE

    Timmermans, Silke; Bogie, Jeroen; Vanmierlo, Tim; Lütjohann, Dieter; Stinissen, Piet; Hellings, Niels; Hendriks, Jerome J.A.

    2014-01-01

    Epidemiological studies suggest a positive correlation between the incidence and severity of multiple sclerosis (MS) and the intake of fatty acids. It remains to be clarified whether high fat diet (HFD) indeed can exacerbate the disease pathology associated with MS and what the underlying mechanisms are. In this study, we determined the influence of HFD on the severity and pathology of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Mice were fed either normal diet (ND...

  6. Modeling alcohol's effects on organs in animal models.

    Science.gov (United States)

    Ponnappa, B C; Rubin, E

    2000-01-01

    Researchers have developed numerous animal models to investigate the development of various alcohol-related diseases. Such models have provided insights into the mechanism through which alcohol can induce liver damage. Animal models also have helped researchers explore the mechanisms by which both short-term (e.g., binge) and long-term drinking can interfere with the function of the heart, a condition referred to as alcoholic cardiomyopathy. Furthermore, animal models have provided substantial information on the causes of fetal alcohol syndrome. Such models have demonstrated that exposure to alcohol during gestation can lead to prenatal and postnatal growth retardation, characteristic facial malformations, immune system deficiencies, and alterations in the central nervous system. PMID:11199283

  7. Potency of Animal Models in KANSEI Engineering

    Science.gov (United States)

    Ozaki, Shigeru; Hisano, Setsuji; Iwamoto, Yoshiki

    Various species of animals have been used as animal models for neuroscience and provided critical information about the brain functions. Although it seems difficult to elucidate a highly advanced function of the human brain, animal models have potency to clarify the fundamental mechanisms of emotion, decision-making and social behavior. In this review, we will pick up common animal models and point to both the merits and demerits caused by the characteristics. We will also mention that wide-ranging approaches from animal models are advantageous to understand KANSEI as well as mind in humans.

  8. Uso de esteroides sistémicos en quemaduras de segundo grado en modelo animal Systemic steroid use in second degree burns in an animal model

    Directory of Open Access Journals (Sweden)

    G. Ramos-Gallardo

    2012-06-01

    rats were sacrificed at 14th day. We evaluated the presence of clinical signs of infection and the percentage of new epithelium. In the microscope we evaluated the following parameters: fibrosis, inflammatory process, presence of fibroblast and vascular proliferation. We compared both groups using Chi² test (SPSS program version 10. A p =/<. 05 was considered as statistical significant. We found no difference between each group in fibrosis (p .47, inflammatory process (p .27, or fibroblast presence (p.16. But there was a difference in vascular proliferation (p .05 against the first group (steroid group. There were no signs of infection and all of them were epithelised at the 14th day. In conclusion, the use of steroids in burns in an animal model could have a final effect in wound healing. In humans it is important to say that they can be helpful in those cases with clear evidence of benefit, as for example failure to vassopresor response in septic shock. We are not sure about the final effect in wound healing in the steroid group as for example wound contracture in long term.

  9. Animal Models for Vascular Tissue-Engineering

    OpenAIRE

    Swartz, Daniel D.; Andreadis, Stelios T.

    2013-01-01

    Due to rise in cardiovascular disease throughout the world, there is increasing demand for small diameter blood vessels as replacement grafts. The present review focuses on the animal models that have been used to test small-diameter TEVs with emphasis on the attributes of each model. Small animal models are used to test short-term patency and address mechanistic hypotheses; and large, pre-clinical animal models are employed to test long-term patency, remodeling and function in an environment...

  10. Animal Models of Compulsive Eating Behavior

    Directory of Open Access Journals (Sweden)

    Matteo Di Segni

    2014-10-01

    Full Text Available Eating disorders are multifactorial conditions that can involve a combination of genetic, metabolic, environmental, and behavioral factors. Studies in humans and laboratory animals show that eating can also be regulated by factors unrelated to metabolic control. Several studies suggest a link between stress, access to highly palatable food, and eating disorders. Eating “comfort foods” in response to a negative emotional state, for example, suggests that some individuals overeat to self-medicate. Clinical data suggest that some individuals may develop addiction-like behaviors from consuming palatable foods. Based on this observation, “food addiction” has emerged as an area of intense scientific research. A growing body of evidence suggests that some aspects of food addiction, such as compulsive eating behavior, can be modeled in animals. Moreover, several areas of the brain, including various neurotransmitter systems, are involved in the reinforcement effects of both food and drugs, suggesting that natural and pharmacological stimuli activate similar neural systems. In addition, several recent studies have identified a putative connection between neural circuits activated in the seeking and intake of both palatable food and drugs. The development of well-characterized animal models will increase our understanding of the etiological factors of food addiction and will help identify the neural substrates involved in eating disorders such as compulsive overeating. Such models will facilitate the development and validation of targeted pharmacological therapies.

  11. Animal models of compulsive eating behavior.

    Science.gov (United States)

    Di Segni, Matteo; Patrono, Enrico; Patella, Loris; Puglisi-Allegra, Stefano; Ventura, Rossella

    2014-10-01

    Eating disorders are multifactorial conditions that can involve a combination of genetic, metabolic, environmental, and behavioral factors. Studies in humans and laboratory animals show that eating can also be regulated by factors unrelated to metabolic control. Several studies suggest a link between stress, access to highly palatable food, and eating disorders. Eating "comfort foods" in response to a negative emotional state, for example, suggests that some individuals overeat to self-medicate. Clinical data suggest that some individuals may develop addiction-like behaviors from consuming palatable foods. Based on this observation, "food addiction" has emerged as an area of intense scientific research. A growing body of evidence suggests that some aspects of food addiction, such as compulsive eating behavior, can be modeled in animals. Moreover, several areas of the brain, including various neurotransmitter systems, are involved in the reinforcement effects of both food and drugs, suggesting that natural and pharmacological stimuli activate similar neural systems. In addition, several recent studies have identified a putative connection between neural circuits activated in the seeking and intake of both palatable food and drugs. The development of well-characterized animal models will increase our understanding of the etiological factors of food addiction and will help identify the neural substrates involved in eating disorders such as compulsive overeating. Such models will facilitate the development and validation of targeted pharmacological therapies. PMID:25340369

  12. Interplay between depressive-like behavior and the immune system in an animal model of prenatal dexamethasone administration

    Directory of Open Access Journals (Sweden)

    Susana eRoque

    2011-02-01

    Full Text Available Glucocorticoids, namely dexamethasone, are prescribed during late gestation in pregnancies at risk of originating premature newborns, to promote fetal lung maturation. However, adverse early life events have been reported to induce long-lasting changes in the immune and central nervous systems. The accumulating evidence on bidirectional interactions between both systems in psychiatric disorders like depression, prompted us to further investigate the long term impact of prenatal dexamethasone in depressive-like behavior, the immune system and in the ability to mount an immune response to acute infection. The adult male offspring of pregnant dams treated with dexamethasone, present depressive-like behavior concomitant with a decrease in CD8+ T lymphocytes and an increase in B and CD4+ regulatory T cells. This is accompanied by lower levels of serum interleukine-6 (IL-6 and IL-10. Despite of these differences, when spleen cells are stimulated, in vitro, with lipopolysaccharide, those from adult rats prenatally treated with dexamethasone display a stronger pro-inflammatory cytokine response. However, this immune system profile does not hamper the ability of rats prenatally treated with dexamethasone to respond to acute infection by Listeria monocytogenes. Of notice, L. monocytogenes infection triggers depressive-like behavior in control animals but does not worsen that already present in dexamethasone-treated animals. In summary, prenatal administration of dexamethasone has long lasting effects on the immune system and on behavior, which is not further aggravated by acute infection with L. monocytogenes.

  13. Thermal animal detection system (TADS)

    Energy Technology Data Exchange (ETDEWEB)

    Desholm, M.

    2003-03-01

    This report presents data from equipment tests and software development for the Thermal Animal Detection System (TADS) development project: 'Development of a method for estimating collision frequency between migrating birds and offshore wind turbines'. The technical tests were performed to investigate the performance of remote controlling, video file compression tool and physical stress of the thermal camera when operating outdoors and under the real time vibration conditions at a 2 MW turbine. Furthermore, experimental tests on birds were performed to describe the decreasing detectability with distance on free flying birds, the performance of the thermal camera during poor visibility, and finally, the performance of the thermal sensor software developed for securing high -quality data. In general, it can be concluded that the thermal camera and its related hardware and software, the TADS, are capable of recording migrating birds approaching the rotating blades of a turbine, even under conditions with poor visibility. If the TADS is used in a vertical viewing scenario it would comply with the requirements for a setup used for estimating the avian collision frequency at offshore wind turbines. (au)

  14. Animal Models Utilized in HTLV-1 Research

    OpenAIRE

    Panfil, Amanda R.; Al-Saleem, Jacob J; Green, Patrick L

    2013-01-01

    Since the isolation and discovery of human T-cell leukemia virus type 1 (HTLV-1) over 30 years ago, researchers have utilized animal models to study HTLV-1 transmission, viral persistence, virus-elicited immune responses, and HTLV-1-associated disease development (ATL, HAM/TSP). Non-human primates, rabbits, rats, and mice have all been used to help understand HTLV-1 biology and disease progression. Non-human primates offer a model system that is phylogenetically similar to humans for examinin...

  15. Animal models of tuberculosis for vaccine development.

    Science.gov (United States)

    Gupta, U D; Katoch, V M

    2009-01-01

    Animal models for testing different vaccine candidates have been developed since a long time for studying tuberculosis. Mice, guinea pigs and rabbits are animals most frequently used. Each model has its own merits for studying human tuberculosis, and none completely mimics the human disease. Different animal models are being used depending upon the availability of the space, trained manpower as well as other resources. Efforts should continue to develop a vaccine which can replace/outperform the presently available vaccine BCG. PMID:19287053

  16. Nonirradiated NOD/SCID-Human Chimeric Animal Model for Primary Human Multiple Myeloma : A Potential in Vivo Culture System

    OpenAIRE

    Huang, Shang-Yi; Tien, Hwei-Fang; Su, Fang-Hsein; Hsu, Su-Ming

    2004-01-01

    The NOD/SCID human chimeric animal model was generated by implanting of human fetal bones (FBs) into subcutaneous sites of NOD/SCID mice (NOD/SCID-hu+), followed by inoculation of primary bone marrow mononuclear cells (BMNCs) obtained from patients with multiple myeloma (MM) into the FBs. The BMNCs from 30 patients with MM were inoculated, and 28 (93%) of them revealed evidence of tumor growth of myeloma cells (MCs) in the NOD/SCID-hu+ mice. Intriguingly, 17 (61%) of the 28 patients’ BMNCs in...

  17. Neuroteratology and Animal Modeling of Brain Disorders.

    Science.gov (United States)

    Archer, Trevor; Kostrzewa, Richard M

    2016-01-01

    Over the past 60 years, a large number of selective neurotoxins were discovered and developed, making it possible to animal-model a broad range of human neuropsychiatric and neurodevelopmental disorders. In this paper, we highlight those neurotoxins that are most commonly used as neuroteratologic agents, to either produce lifelong destruction of neurons of a particular phenotype, or a group of neurons linked by a specific class of transporter proteins (i.e., dopamine transporter) or body of receptors for a specific neurotransmitter (i.e., NMDA class of glutamate receptors). Actions of a range of neurotoxins are described: 6-hydroxydopamine (6-OHDA), 6-hydroxydopa, DSP-4, MPTP, methamphetamine, IgG-saporin, domoate, NMDA receptor antagonists, and valproate. Their neuroteratologic features are outlined, as well as those of nerve growth factor, epidermal growth factor, and that of stress. The value of each of these neurotoxins in animal modeling of human neurologic, neurodegenerative, and neuropsychiatric disorders is discussed in terms of the respective value as well as limitations of the derived animal model. Neuroteratologic agents have proven to be of immense importance for understanding how associated neural systems in human neural disorders may be better targeted by new therapeutic agents. PMID:26857462

  18. Engineering large animal models of human disease

    OpenAIRE

    Whitelaw, C. Bruce A.; Timothy P Sheets; Lillico, Simon G; Telugu, Bhanu P.

    2015-01-01

    Abstract The recent development of gene editing tools and methodology for use in livestock enables the production of new animal disease models. These tools facilitate site‐specific mutation of the genome, allowing animals carrying known human disease mutations to be produced. In this review, we describe the various gene editing tools and how they can be used for a range of large animal models of diseases. This genomic technology is in its infancy but the expectation is that through the use of...

  19. Experimental Animal Models in Periodontology: A Review

    OpenAIRE

    Struillou, Xavier; Boutigny, Hervé; Soueidan, Assem; Layrolle, Pierre

    2010-01-01

    In periodontal research, animal studies are complementary to in vitro experiments prior to testing new treatments. Animal models should make possible the validation of hypotheses and prove the safety and efficacy of new regenerating approaches using biomaterials, growth factors or stem cells. A review of the literature was carried out by using electronic databases (PubMed, ISI Web of Science). Numerous animal models in different species such as rats, hamsters, rabbits, ferrets, canines and pr...

  20. Towards a reliable animal model of migraine

    DEFF Research Database (Denmark)

    Olesen, Jes; Jansen-Olesen, Inger

    2012-01-01

    The pharmaceutical industry shows a decreasing interest in the development of drugs for migraine. One of the reasons for this could be the lack of reliable animal models for studying the effect of acute and prophylactic migraine drugs. The infusion of glyceryl trinitrate (GTN) is the best validated...... and most studied human migraine model. Several attempts have been made to transfer this model to animals. The different variants of this model are discussed as well as other recent models....

  1. In an animal model nephrogenic systemic fibrosis cannot be induced by intraperitoneal injection of high-dose gadolinium based contrast agents

    Energy Technology Data Exchange (ETDEWEB)

    Langer, R.D., E-mail: rlanger@uaeu.ac.ae [Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University, Al Ain (United Arab Emirates); Lorke, D.E. [Florida International University, Miami, FL (United States); Neidl van Gorkom, K.F. [Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University, Al Ain (United Arab Emirates); Petroianu, G. [Florida International University, Miami, FL (United States); Azimullah, S.; Nurulain, S.M.; Singh, S. [Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University, Al Ain (United Arab Emirates); Fuchsjäger, M. [Al Ain Hospital, MUV-VAMED, Al Ain (United Arab Emirates)

    2012-10-15

    Aim and objective: Nephrogenic systemic fibrosis (NSF) has been reported in humans to be most likely induced by gadolinium based contrast agents (GBCA), namely by gadodiamide, gadopentetate dimeglumine, and gadoversetamide, rarely by other GBCA. The pathogenesis of NSF remains unclear; different hypotheses are under discussion. The objective of the study is to assess if in the animal model human-like NSF changes can be induced by high-dose, intraperitoneal GBCA injections over four weeks. Materials and methods: After approval by the institutional animal ethics committee, six rats each were randomly assigned to groups, and treated with seven different GBCA. Intraperitoneal (IP) injections – proven in the animal model to be effective – were chosen to prolong the animals’ exposure to the respective GBCA. GBCA doses of previous intravenous (IV) animal studies were applied. After five weeks all rats were sacrificed. Sham controls were treated with IP saline injections, employing the same regimen. Results: No findings comparable with human NSF were observed in all animals after IP treatment with all seven GBCA at daily doses of 2.5 and 5.0 mmol/kg body weight (BW). No histopathological abnormalities of all examined organs were noted. Weight loss was stated in weeks three and four with GBCA injections at doses of 5.0 mmol/kg BW, but rats regained weight after cessation of GBCA treatment. Conclusions: NSF-comparable pathological findings could not be induced by high dose intraperitoneal injection of seven GBCA.

  2. In an animal model nephrogenic systemic fibrosis cannot be induced by intraperitoneal injection of high-dose gadolinium based contrast agents

    International Nuclear Information System (INIS)

    Aim and objective: Nephrogenic systemic fibrosis (NSF) has been reported in humans to be most likely induced by gadolinium based contrast agents (GBCA), namely by gadodiamide, gadopentetate dimeglumine, and gadoversetamide, rarely by other GBCA. The pathogenesis of NSF remains unclear; different hypotheses are under discussion. The objective of the study is to assess if in the animal model human-like NSF changes can be induced by high-dose, intraperitoneal GBCA injections over four weeks. Materials and methods: After approval by the institutional animal ethics committee, six rats each were randomly assigned to groups, and treated with seven different GBCA. Intraperitoneal (IP) injections – proven in the animal model to be effective – were chosen to prolong the animals’ exposure to the respective GBCA. GBCA doses of previous intravenous (IV) animal studies were applied. After five weeks all rats were sacrificed. Sham controls were treated with IP saline injections, employing the same regimen. Results: No findings comparable with human NSF were observed in all animals after IP treatment with all seven GBCA at daily doses of 2.5 and 5.0 mmol/kg body weight (BW). No histopathological abnormalities of all examined organs were noted. Weight loss was stated in weeks three and four with GBCA injections at doses of 5.0 mmol/kg BW, but rats regained weight after cessation of GBCA treatment. Conclusions: NSF-comparable pathological findings could not be induced by high dose intraperitoneal injection of seven GBCA

  3. Overview of Vertebrate Animal Models of Fungal Infection

    OpenAIRE

    Hohl, Tobias M

    2014-01-01

    Fungi represent emerging infectious threats to human populations worldwide. Mice and other laboratory animals have proved invaluable in modeling clinical syndromes associated with superficial and life-threatening invasive mycoses. This review outlines salient features of common vertebrate animal model systems to study fungal pathogenesis, host antifungal immune responses, and antifungal compounds.

  4. Evaluation of spinal cord injury animal models

    Institute of Scientific and Technical Information of China (English)

    Ning Zhang; Marong Fang; Haohao Chen; Fangming Gou; Mingxing Ding

    2014-01-01

    Because there is no curative treatment for spinal cord injury, establishing an ideal animal model is important to identify injury mechanisms and develop therapies for individuals suffering from spinal cord injuries. In this article, we systematically review and analyze various kinds of animal models of spinal cord injury and assess their advantages and disadvantages for further studies.

  5. Animal models of polymicrobial pneumonia

    OpenAIRE

    Hraiech S; Papazian L.; Rolain JM; Bregeon F

    2015-01-01

    Sami Hraiech,1,2 Laurent Papazian,1,2 Jean-Marc Rolain,1 Fabienne Bregeon1,3IHU Méditerranée Infection, URMITE CNRS IRD INSERM UMR 7278, Marseille, France; 2Réanimation – Détresses respiratoires et Infections Sévères, APHM, CHU Nord, Marseille, France; 3Service d’Explorations Fonctionnelles Respiratoires, APHM, CHU Nord, Marseille, FranceAbstract: Pneumonia is one of the leading causes of severe and occasion...

  6. Limitations of Animal Models of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    J. A. Potashkin

    2011-01-01

    Full Text Available Most cases of Parkinson's disease (PD are sporadic. When choosing an animal model for idiopathic PD, one must consider the extent of similarity or divergence between the physiology, anatomy, behavior, and regulation of gene expression between humans and the animal. Rodents and nonhuman primates are used most frequently in PD research because when a Parkinsonian state is induced, they mimic many aspects of idiopathic PD. These models have been useful in our understanding of the etiology of the disease and provide a means for testing new treatments. However, the current animal models often fall short in replicating the true pathophysiology occurring in idiopathic PD, and thus results from animal models often do not translate to the clinic. In this paper we will explain the limitations of animal models of PD and why their use is inappropriate for the study of some aspects of PD.

  7. A REVIEW ON ANIMAL MODELS OF DEPRESSION

    OpenAIRE

    Madhu Devi* and Ramica Sharma

    2013-01-01

    As described by the world health organization (WHO), depression is the most common and serious disorder leading to suicide. Numbers of synthetic drugs are available for the treatment of this fatal disease, but are associated with serious complications. A wide diversity of animal models has been used to examine antidepressant activity. These range from relatively simple models sensitive to acute treatment, to highly sophisticated models. The number of validated animal models for affective diso...

  8. Animal models of anxiety: an ethological perspective

    Directory of Open Access Journals (Sweden)

    R.J. Rodgers

    1997-03-01

    Full Text Available In the field of anxiety research, animal models are used as screening tools in the search for compounds with therapeutic potential and as simulations for research on mechanisms underlying emotional behaviour. However, a solely pharmacological approach to the validation of such tests has resulted in distinct problems with their applicability to systems other than those involving the benzodiazepine/GABAA receptor complex. In this context, recent developments in our understanding of mammalian defensive behaviour have not only prompted the development of new models but also attempts to refine existing ones. The present review focuses on the application of ethological techniques to one of the most widely used animal models of anxiety, the elevated plus-maze paradigm. This fresh approach to an established test has revealed a hitherto unrecognized multidimensionality to plus-maze behaviour and, as it yields comprehensive behavioural profiles, has many advantages over conventional methodology. This assertion is supported by reference to recent work on the effects of diverse manipulations including psychosocial stress, benzodiazepines, GABA receptor ligands, neurosteroids, 5-HT1A receptor ligands, and panicolytic/panicogenic agents. On the basis of this review, it is suggested that other models of anxiety may well benefit from greater attention to behavioural detail

  9. Animal modelling for inherited central vision loss.

    Science.gov (United States)

    Kostic, Corinne; Arsenijevic, Yvan

    2016-01-01

    Disease-causing variants of a large number of genes trigger inherited retinal degeneration leading to photoreceptor loss. Because cones are essential for daylight and central vision such as reading, mobility, and face recognition, this review focuses on a variety of animal models for cone diseases. The pertinence of using these models to reveal genotype/phenotype correlations and to evaluate new therapeutic strategies is discussed. Interestingly, several large animal models recapitulate human diseases and can serve as a strong base from which to study the biology of disease and to assess the scale-up of new therapies. Examples of innovative approaches will be presented such as lentiviral-based transgenesis in pigs and adeno-associated virus (AAV)-gene transfer into the monkey eye to investigate the neural circuitry plasticity of the visual system. The models reported herein permit the exploration of common mechanisms that exist between different species and the identification and highlighting of pathways that may be specific to primates, including humans. PMID:26387748

  10. Core systems of geometry in animal minds

    OpenAIRE

    Spelke, Elizabeth S.; Lee, Sang Ah

    2012-01-01

    Research on humans from birth to maturity converges with research on diverse animals to reveal foundational cognitive systems in human and animal minds. The present article focuses on two such systems of geometry. One system represents places in the navigable environment by recording the distance and direction of the navigator from surrounding, extended surfaces. The other system represents objects by detecting the shapes of small-scale forms. These two systems show common signatures across a...

  11. Targeting Experimental Autoimmune Encephalomyelitis Lesions to a Predetermined Axonal Tract System Allows for Refined Behavioral Testing in an Animal Model of Multiple Sclerosis

    OpenAIRE

    Kerschensteiner, Martin; Stadelmann, Christine; Buddeberg, Bigna S.; Merkler, Doron; Bareyre, Florence M.; Anthony, Daniel C.; Linington, Christopher; Brück, Wolfgang; Schwab, Martin E.

    2004-01-01

    In multiple sclerosis (MS) the structural damage to axons determines the persistent clinical deficit patients acquire during the course of the disease. It is therefore important to test therapeutic strategies that can prevent or reverse this structural damage. The conventional animal model of MS, experimental autoimmune encephalomyelitis (EAE), typically shows disseminated inflammation in the central nervous system, which leads to a clinical deficit that cannot be directly attributed to a def...

  12. Human Language and Animal Communication System

    Institute of Scientific and Technical Information of China (English)

    杨蕴哲

    2016-01-01

    Human language differs from animal communication in many ways. Hockett isolated 16 features that characterize human language and which distinguish it from other communication systems. The following passage will introduce some of these features, and by comparing language with animal communication systems, we can have a better understanding of the nature of language.

  13. Animal Models in Studying Cerebral Arteriovenous Malformation

    Directory of Open Access Journals (Sweden)

    Ming Xu

    2015-01-01

    Full Text Available Brain arteriovenous malformation (AVM is an important cause of hemorrhagic stroke. The etiology is largely unknown and the therapeutics are controversial. A review of AVM-associated animal models may be helpful in order to understand the up-to-date knowledge and promote further research about the disease. We searched PubMed till December 31, 2014, with the term “arteriovenous malformation,” limiting results to animals and English language. Publications that described creations of AVM animal models or investigated AVM-related mechanisms and treatments using these models were reviewed. More than 100 articles fulfilling our inclusion criteria were identified, and from them eight different types of the original models were summarized. The backgrounds and procedures of these models, their applications, and research findings were demonstrated. Animal models are useful in studying the pathogenesis of AVM formation, growth, and rupture, as well as in developing and testing new treatments. Creations of preferable models are expected.

  14. An accurate and efficient system model of iterative image reconstruction in high-resolution pinhole SPECT for small animal research

    International Nuclear Information System (INIS)

    Accurate modeling of the photon acquisition process in pinhole SPECT is essential for optimizing resolution. In this work, the authors develop an accurate system model in which pinhole finite aperture and depth-dependent geometric sensitivity are explicitly included. To achieve high-resolution pinhole SPECT, the voxel size is usually set in the range of sub-millimeter so that the total number of image voxels increase accordingly. It is inevitably that a system matrix that models a variety of favorable physical factors will become extremely sophisticated. An efficient implementation for such an accurate system model is proposed in this research. We first use the geometric symmetries to reduce redundant entries in the matrix. Due to the sparseness of the matrix, only non-zero terms are stored. A novel center-to-radius recording rule is also developed to effectively describe the relation between a voxel and its related detectors at every projection angle. The proposed system matrix is also suitable for multi-threaded computing. Finally, the accuracy and effectiveness of the proposed system model is evaluated in a workstation equipped with two Quad-Core Intel X eon processors.

  15. A Brief History of Animal Modeling

    OpenAIRE

    Ericsson, Aaron C.; Crim, Marcus J; Franklin, Craig L.

    2013-01-01

    Comparative medicine is founded on the concept that other animal species share physiological, behavioral, or other characteristics with humans. Over 2,400 years ago it was recognized that by studying animals, we could learn much about ourselves. This technique has now developed to the point that animal models are employed in virtually all fields of biomedical research including, but not limited to, basic biology, immunology and infectious disease, oncology, and behavior.

  16. Animal Models in Studying Cerebral Arteriovenous Malformation

    OpenAIRE

    Ming Xu; Hongzhi Xu; Zhiyong Qin

    2015-01-01

    Brain arteriovenous malformation (AVM) is an important cause of hemorrhagic stroke. The etiology is largely unknown and the therapeutics are controversial. A review of AVM-associated animal models may be helpful in order to understand the up-to-date knowledge and promote further research about the disease. We searched PubMed till December 31, 2014, with the term “arteriovenous malformation,” limiting results to animals and English language. Publications that described creations of AVM animal ...

  17. An Integrated Approach to Flexible Modelling and Animated Simulation

    Institute of Scientific and Technical Information of China (English)

    Li Shuliang; Wu Zhenye

    1994-01-01

    Based on the software support of SIMAN/CINEMA, this paper presents an integrated approach to flexible modelling and simulation with animation. The methodology provides a structured way of integrating mathematical and logical model, statistical experinentation, and statistical analysis with computer animation. Within this methodology, an animated simulation study is separated into six different activities: simulation objectives identification , system model development, simulation experiment specification, animation layout construction, real-time simulation and animation run, and output data analysis. These six activities are objectives driven, relatively independent, and integrate through software organization and simulation files. The key ideas behind this methodology are objectives orientation, modelling flexibility,simulation and animation integration, and application tailorability. Though the methodology is closely related to SIMAN/CINEMA, it can be extended to other software environments.

  18. Dosimetry of an animal irradiation system

    International Nuclear Information System (INIS)

    Radiation therapy uses ionizing radiation for cancer treatment, but its effectiveness may be limited by the consequent appearance of radiodermatitis. This problem may present several degrees: the highest among them is radionecrosis. Therefore, a model of study for the animal irradiation system (AIS) was built, generating radionecrosis on rat backs. The AIS is comprised by: a) a shield between the 60Co irradiator metallic guide and the animal immobilizer (AI), with holes exposing the rat skin; b) a shield on the AI posterior part and (c) the AIS angle. The doses were measured with alanine pellets in seven positions (two external and five internal) and different heights, in axial planes along the AI, and irradiated with 85 Gy. The similarity in the geometry of the AIs made it possible to relate the doses of positions 1-7 with the same height among the AISs. The AISs equidistance to the source allowed simultaneous animal exposure. Minimizing the shielding and maximizing the angles among the AISs provided average doses almost identical in position 1. A small variation among the mean doses for each of the AISs enabled to replace them by the average doses of the three AISs at position 1. Shields allowed the attenuation of the uncertainties in the alanine pellet in the AI, reduction of the exposure time without compromising rat security and the rise of the dose in measurement positions 1 and 2. The maximization of the angles among the AISs reduced the shielding secondary radiation contribution. (author)

  19. Dosimetry of an animal irradiation system

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Nelson M.; Funari, Ana P.; Miranda, Jurandir T.; Napolitano, Celia M.; Goncalves, Josemary A.C.; Bueno, Carmen C.; Mathor, Monica B., E-mail: nelsonnininho@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Radiation therapy uses ionizing radiation for cancer treatment, but its effectiveness may be limited by the consequent appearance of radiodermatitis. This problem may present several degrees: the highest among them is radionecrosis. Therefore, a model of study for the animal irradiation system (AIS) was built, generating radionecrosis on rat backs. The AIS is comprised by: a) a shield between the {sup 60}Co irradiator metallic guide and the animal immobilizer (AI), with holes exposing the rat skin; b) a shield on the AI posterior part and (c) the AIS angle. The doses were measured with alanine pellets in seven positions (two external and five internal) and different heights, in axial planes along the AI, and irradiated with 85 Gy. The similarity in the geometry of the AIs made it possible to relate the doses of positions 1-7 with the same height among the AISs. The AISs equidistance to the source allowed simultaneous animal exposure. Minimizing the shielding and maximizing the angles among the AISs provided average doses almost identical in position 1. A small variation among the mean doses for each of the AISs enabled to replace them by the average doses of the three AISs at position 1. Shields allowed the attenuation of the uncertainties in the alanine pellet in the AI, reduction of the exposure time without compromising rat security and the rise of the dose in measurement positions 1 and 2. The maximization of the angles among the AISs reduced the shielding secondary radiation contribution. (author)

  20. Comparison of animal models for the evaluation of radiolabeled androgens

    International Nuclear Information System (INIS)

    Biodistribution of two 18F-labeled androgens and an 124I/125I-labeled androgen were studied in five androgen receptor (prostate) animal models with or lacking sex hormone binding globulin (SHBG). As models for androgen-receptor positive ovarian cancer, xenografts of three human ovarian cancer cell lines were tested in SCID mice. SHBG in the prostate model systems significantly affects the metabolism, clearance, and distribution of the radiolabeled androgens in several tissues, but ovarian cancer animal models were disappointing

  1. Development of osteoporosis animal model using micropigs

    OpenAIRE

    Kim, Sang-Woo; Kim, Kyoung-Shim; Solis, Chester D.; Lee, Myeong-Seop; Hyun, Byung-Hwa

    2013-01-01

    Osteoporosis is a known major health problem and a serious disease of the bone, there has been a great need to develop more and newer animal models for this disease. Among animal models used for testing drug efficacy, the minipig model has become useful and effective due to its close similarity with humans (validity), particularly with the pharmacokinetics of compounds via subcutaneous administration, the structure and function of the organs, the morphology of bone and the overall metabolic n...

  2. 3-D Human Modeling and Animation

    CERN Document Server

    Ratner, Peter

    2012-01-01

    3-D Human Modeling and Animation Third Edition All the tools and techniques you need to bring human figures to 3-D life Thanks to today's remarkable technology, artists can create and animate realistic, three-dimensional human figures that were not possible just a few years ago. This easy-to-follow book guides you through all the necessary steps to adapt your own artistic skill in figure drawing, painting, and sculpture to this exciting digital canvas. 3-D Human Modeling and Animation, Third Edition starts you off with simple modeling, then prepares you for more advanced techniques for crea

  3. Evaluation of animal models of neurobehavioral disorders

    Directory of Open Access Journals (Sweden)

    Nordquist Rebecca E

    2009-02-01

    Full Text Available Abstract Animal models play a central role in all areas of biomedical research. The process of animal model building, development and evaluation has rarely been addressed systematically, despite the long history of using animal models in the investigation of neuropsychiatric disorders and behavioral dysfunctions. An iterative, multi-stage trajectory for developing animal models and assessing their quality is proposed. The process starts with defining the purpose(s of the model, preferentially based on hypotheses about brain-behavior relationships. Then, the model is developed and tested. The evaluation of the model takes scientific and ethical criteria into consideration. Model development requires a multidisciplinary approach. Preclinical and clinical experts should establish a set of scientific criteria, which a model must meet. The scientific evaluation consists of assessing the replicability/reliability, predictive, construct and external validity/generalizability, and relevance of the model. We emphasize the role of (systematic and extended replications in the course of the validation process. One may apply a multiple-tiered 'replication battery' to estimate the reliability/replicability, validity, and generalizability of result. Compromised welfare is inherent in many deficiency models in animals. Unfortunately, 'animal welfare' is a vaguely defined concept, making it difficult to establish exact evaluation criteria. Weighing the animal's welfare and considerations as to whether action is indicated to reduce the discomfort must accompany the scientific evaluation at any stage of the model building and evaluation process. Animal model building should be discontinued if the model does not meet the preset scientific criteria, or when animal welfare is severely compromised. The application of the evaluation procedure is exemplified using the rat with neonatal hippocampal lesion as a proposed model of schizophrenia. In a manner congruent to

  4. Central Nervous System Proteomics in Animal Model of Multiple Sclerosis Revealed Down-Regulation of Mithochondrial Proteins

    Directory of Open Access Journals (Sweden)

    Abolhassan Shahzadeh Fazeli

    2009-01-01

    Full Text Available Objective: Detection of central nervous system (CNS molecular defects in an animal modelof multiple sclerosis.Materials and Methods: Experimental autoimmune encephalomyelitis (EAE was inducedby a myelin oligodendrocyte glycoprotein. Protein expression profiles in the central nervoussystem between healthy clinical scores 1 and 3 of EAE were studied using a two dimensionalelectrophoresis based proteomics approach coupled with MALDI TOF/TOF massspectrometry.Results: We identified 8 mitochondrial proteins that were differentially expressed in CNS, allof them down-regulated in scores 1 and/or 3. Of these, 5 proteins belong to the mitochondrialrespiratory chain including: NADH dehydrogenase (ubiquinone Fe-S protein 8, cytochromec oxidase Va, cytochrome c oxidase Vb, ATP5B, NADH dehydrogenase (ubiquinone flavoprotein2. We also observed down-regulation of three other mitochondrial proteins including:glutaredoxin 5, estradiol 17 beta-dehydrogenase 8 and isocitrate dehydrogenase.Conclusion: Down-regulation of mitochondrial proteins supported the hypothesis thathypoxia-like tissue injury in multiple sclerosis (MS lesions may be due to mitochondrialimpairment.

  5. The Laboratory Rat as an Animal Model for Osteoporosis Research

    OpenAIRE

    Lelovas, Pavlos P; Xanthos, Theodoros T; Thoma, Sofia E; Lyritis, George P; Dontas, Ismene A

    2008-01-01

    Osteoporosis is an important systemic disorder, affecting mainly Caucasian women, with a diverse and multifactorial etiology. A large variety of animal species, including rodents, rabbits, dogs, and primates, have been used as animal models in osteoporosis research. Among these, the laboratory rat is the preferred animal for most researchers. Its skeleton has been studied extensively, and although there are several limitations to its similarity to the human condition, these can be overcome th...

  6. Animal Models of Autoimmune Neuropathy

    OpenAIRE

    Soliven, Betty

    2014-01-01

    The peripheral nervous system (PNS) comprises the cranial nerves, the spinal nerves with their roots and rami, dorsal root ganglia neurons, the peripheral nerves, and peripheral components of the autonomic nervous system. Cell-mediated or antibody-mediated immune attack on the PNS results in distinct clinical syndromes, which are classified based on the tempo of illness, PNS component(s) involved, and the culprit antigen(s) identified. Insights into the pathogenesis of autoimmune neuropathy h...

  7. Animal models for protein respiratory sensitizers.

    Science.gov (United States)

    Ward, Marsha D W; Selgrade, Maryjane K

    2007-01-01

    Protein induced respiratory hypersensitivity, particularly atopic disease in general, and allergic asthma in particular, has increased dramatically over the last several decades in the US and other industrialized nations as a result of ill-defined changes in living conditions in modern western society. In addition, work-related asthma has become the most frequently diagnosed occupational respiratory illness. Animal models have demonstrated great utility in developing an understanding of the etiology and mechanisms of many diseases. A few models been developed as predictive models to identify a protein as an allergen or to characterize its potency. Here we describe animal models that have been used to investigate and identify protein respiratory sensitizers. In addition to prototypical experimental design, methods for exposure route, sample collection, and endpoint assessment are described. Some of the most relevant endpoints in assessing the potential for a given protein to induce atopic or allergic asthma respiratory hypersensitivity are the development of cytotropic antibodies (IgE, IgG1), eosinophil influx into the lung, and airway hyperresponsiveness to the sensitizing protein and/or to non-antigenic stimuli (Mch). The utility of technologies such as PCR and multiplexing assay systems is also described. These models and methods have been used to elucidate the potential for protein sources to induce allergy, identify environmental conditions (pollutants) to impact allergy responsiveness, and establish safe exposure limits. As an example, data are presented from an experiment designed to compare the allergenicity of a fungal biopesticide Metarhizium anisopliae (MACA) crude extract with the one of its components, conidia (CON) extract. PMID:17161304

  8. Animal Models for the Study of Osteomyelitis

    OpenAIRE

    Patel, Mitul; Rojavin, Yuri; Jamali, Amir A.; Wasielewski, Samantha J.; Salgado, Christopher J.

    2009-01-01

    Osteomyelitis is an acute or chronic inflammatory process of the bone and its related structures secondary to an infection with pyogenic organisms. Because of the variety in disease presentations and pathophysiology of osteomyelitis, it is very difficult to evaluate in clinical studies. Therefore, animal models have been created for in vivo experimentation. A PubMed and OVID search was performed on March 31, 2008, using keywords osteomyelitis, animal model (rabbit, rat, mouse, avian, dog, she...

  9. ANIMAL MODELS OF CANCER: A REVIEW

    OpenAIRE

    Archana M Navale

    2013-01-01

    Cancer is the second leading cause of death worldwide. In USA three persons out of five will develop some type of cancer. Beyond these statistics of mortality, the morbidity due to cancer presents a real scary picture. Last 50 years of research has rendered some types of cancer curable, but still the major fear factor associated with this disease is unchanged. Animal models are classified according to the method of induction of cancer in the animal. Spontaneous tumor models are the most primi...

  10. Limitations of Animal Models of Parkinson's Disease

    OpenAIRE

    J. A. Potashkin; Blume, S. R.; Runkle, N. K.

    2011-01-01

    Most cases of Parkinson's disease (PD) are sporadic. When choosing an animal model for idiopathic PD, one must consider the extent of similarity or divergence between the physiology, anatomy, behavior, and regulation of gene expression between humans and the animal. Rodents and nonhuman primates are used most frequently in PD research because when a Parkinsonian state is induced, they mimic many aspects of idiopathic PD. These models have been useful in our understanding of the etiology of t...

  11. Animal models for the study of tendinopathy

    OpenAIRE

    Warden, S. J.

    2006-01-01

    Tendinopathy is a common and significant clinical problem characterised by activity‐related pain, focal tendon tenderness and intratendinous imaging changes. Recent histopathological studies have indicated the underlying pathology to be one of tendinosis (degeneration) as opposed to tendinitis (inflammation). Relatively little is known about tendinosis and its pathogenesis. Contributing to this is an absence of validated animal models of the pathology. Animal models of tendinosis represent po...

  12. Animal models of osteoporosis - necessity and limitations

    OpenAIRE

    Turner A. Simon

    2001-01-01

    There is a great need to further characterise the available animal models for postmenopausal osteoporosis, for the understanding of the pathogenesis of the disease, investigation of new therapies (e.g. selective estrogen receptor modulators (SERMs)) and evaluation of prosthetic devices in osteoporotic bone. Animal models that have been used in the past include non-human primates, dogs, cats, rodents, rabbits, guinea pigs and minipigs, all of which have advantages and disadvantages. Sheep ar...

  13. Animal Models of Stress Urinary Incontinence

    OpenAIRE

    Jiang, Hai-Hong; Damaser, Margot S.

    2011-01-01

    Stress urinary incontinence (SUI) is a common health problem significantly affecting the quality of life of women worldwide. Animal models that simulate SUI enable the assessment of the mechanism of risk factors for SUI in a controlled fashion, including childbirth injuries, and enable preclinical testing of new treatments and therapies for SUI. Animal models that simulate childbirth are presently being utilized to determine the mechanisms of the maternal injuries of childbirth that lead to S...

  14. A cognitive model's view of animal cognition

    OpenAIRE

    Sidney D'MELLO, Stan FRANKLIN

    2011-01-01

    Although it is a relatively new field of study, the animal cognition literature is quite extensive and difficult to synthesize. This paper explores the contributions a comprehensive, computational, cognitive model can make toward organizing and assimilating this literature, as well as toward identifying important concepts and their interrelations. Using the LIDA model as an example, a framework is described within which to integrate the diverse research in animal cognition. Such a framework c...

  15. A cognitive model's view of animal cognition

    Directory of Open Access Journals (Sweden)

    Sidney D'MELLO, Stan FRANKLIN

    2011-08-01

    Full Text Available Although it is a relatively new field of study, the animal cognition literature is quite extensive and difficult to synthesize. This paper explores the contributions a comprehensive, computational, cognitive model can make toward organizing and assimilating this literature, as well as toward identifying important concepts and their interrelations. Using the LIDA model as an example, a framework is described within which to integrate the diverse research in animal cognition. Such a framework can provide both an ontology of concepts and their relations, and a working model of an animal’s cognitive processes that can compliment active empirical research. In addition to helping to account for a broad range of cognitive processes, such a model can help to comparatively assess the cognitive capabilities of different animal species. After deriving an ontology for animal cognition from the LIDA model, we apply it to develop the beginnings of a database that maps the cognitive facilities of a variety of animal species. We conclude by discussing future avenues of research, particularly the use of computational models of animal cognition as valuable tools for hypotheses generation and testing [Current Zoology 57 (4: 499–513, 2011].

  16. Animal models of osteoporosis - necessity and limitations

    Directory of Open Access Journals (Sweden)

    Turner A. Simon

    2001-06-01

    Full Text Available There is a great need to further characterise the available animal models for postmenopausal osteoporosis, for the understanding of the pathogenesis of the disease, investigation of new therapies (e.g. selective estrogen receptor modulators (SERMs and evaluation of prosthetic devices in osteoporotic bone. Animal models that have been used in the past include non-human primates, dogs, cats, rodents, rabbits, guinea pigs and minipigs, all of which have advantages and disadvantages. Sheep are a promising model for various reasons: they are docile, easy to handle and house, relatively inexpensive, available in large numbers, spontaneously ovulate, and the sheep's bones are large enough to evaluate orthopaedic implants. Most animal models have used females and osteoporosis in the male has been largely ignored. Recently, interest in development of appropriate prosthetic devices which would stimulate osseointegration into osteoporotic, appendicular, axial and mandibular bone has intensified. Augmentation of osteopenic lumbar vertebrae with bioactive ceramics (vertebroplasty is another area that will require testing in the appropriate animal model. Using experimental animal models for the study of these different facets of osteoporosis minimizes some of the difficulties associated with studying the disease in humans, namely time and behavioral variability among test subjects. New experimental drug therapies and orthopaedic implants can potentially be tested on large numbers of animals subjected to a level of experimental control impossible in human clinical research.

  17. Research progress on animal models of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Wen DONG

    2015-08-01

    Full Text Available Alzheimer's disease (AD is a degenerative disease of the central nervous system, and its pathogenesis is complex. Animal models play an important role in study on pathogenesis and treatment of AD. This paper summarized methods of building models, observation on animal models and evaluation index in recent years, so as to provide related evidence for basic and clinical research in future. DOI: 10.3969/j.issn.1672-6731.2015.08.003

  18. Research progress on animal models of Alzheimer's disease

    OpenAIRE

    Dong, Wen; Wang, Rong

    2015-01-01

    Alzheimer's disease (AD) is a degenerative disease of the central nervous system, and its pathogenesis is complex. Animal models play an important role in study on pathogenesis and treatment of AD. This paper summarized methods of building models, observation on animal models and evaluation index in recent years, so as to provide related evidence for basic and clinical research in future. DOI: 10.3969/j.issn.1672-6731.2015.08.003

  19. Animal Models of Subjective Tinnitus

    OpenAIRE

    2014-01-01

    Tinnitus is one of the major audiological diseases, affecting a significant portion of the ageing society. Despite its huge personal and presumed economic impact there are only limited therapeutic options available. The reason for this deficiency lies in the very nature of the disease as it is deeply connected to elementary plasticity of auditory processing in the central nervous system. Understanding these mechanisms is essential for developing a therapy that reverses the plastic changes und...

  20. Progress With Nonhuman Animal Models of Addiction.

    Science.gov (United States)

    Crabbe, John C

    2016-09-01

    Nonhuman animals have been major contributors to the science of the genetics of addiction. Given the explosion of interest in genetics, it is fair to ask, are we making reasonable progress toward our goals with animal models? I will argue that our goals are changing and that overall progress has been steady and seems likely to continue apace. Genetics tools have developed almost incredibly rapidly, enabling both more reductionist and more synthetic or integrative approaches. I believe that these approaches to making progress have been unbalanced in biomedical science, favoring reductionism, particularly in animal genetics. I argue that substantial, novel progress is also likely to come in the other direction, toward synthesis and abstraction. Another area in which future progress with genetic animal models seems poised to contribute more is the reconciliation of human and animal phenotypes, or consilience. The inherent power of the genetic animal models could be more profitably exploited. In the end, animal research has continued to provide novel insights about how genes influence individual differences in addiction risk and consequences. The rules of the genetics game are changing so fast that it is hard to remember how comparatively little we knew even a generation ago. Rather than worry about whether we have been wasting time and resources asking the questions we have been, we should look to the future and see if we can come up with some new ones. The valuable findings from the past will endure, and the sidetracks will be forgotten. PMID:27588527

  1. Models of breast cancer: quo vadis, animal modeling?

    International Nuclear Information System (INIS)

    Rodent models for breast cancer have for many decades provided unparalleled insights into cellular and molecular aspects of neoplastic transformation and tumorigenesis. Despite recent improvements in the fidelity of genetically engineered mice, rodent models are still being criticized by many colleagues for not being 'authentic' enough to the human disease. Motives for this criticism are manifold and range from a very general antipathy against the rodent model system to well-founded arguments that highlight physiological variations between species. Newly proposed differences in genetic pathways that cause cancer in humans and mice invigorated the ongoing discussion about the legitimacy of the murine system to model the human disease. The present commentary intends to stimulate a debate on this subject by providing the background about new developments in animal modeling, by disputing suggested limitations of genetically engineered mice, and by discussing improvements but also ambiguous expectations on the authenticity of xenograft models to faithfully mimic the human disease

  2. Ethological concepts enhance the translational value of animal models.

    Science.gov (United States)

    Peters, Suzanne M; Pothuizen, Helen H J; Spruijt, Berry M

    2015-07-15

    The translational value of animal models is an issue of ongoing discussion. We argue that 'Refinement' of animal experiments is needed and this can be achieved by exploiting an ethological approach when setting up and conducting experiments. Ethology aims to assess the functional meaning of behavioral changes, due to experimental manipulation or treatment, in animal models. Although the use of ethological concepts is particularly important for studies involving the measurement of animal behavior (as is the case for most studies on neuro-psychiatric conditions), it will also substantially benefit other disciplines, such as those investigating the immune system or inflammatory response. Using an ethological approach also involves using more optimal testing conditions are employed that have a biological relevance to the animal. Moreover, using a more biological relevant analysis of the data will help to clarify the functional meaning of the modeled readout (e.g. whether it is psychopathological or adaptive in nature). We advocate for instance that more behavioral studies should use animals in group-housed conditions, including the recording of their ultrasonic vocalizations, because (1) social behavior is an essential feature of animal models for human 'social' psychopathologies, such as autism and schizophrenia, and (2) social conditions are indispensable conditions for appropriate behavioral studies in social species, such as the rat. Only when taking these elements into account, the validity of animal experiments and, thus, the translation value of animal models can be enhanced. PMID:25823814

  3. Animal models in motion sickness research

    Science.gov (United States)

    Daunton, Nancy G.

    1990-01-01

    Practical information on candidate animal models for motion sickness research and on methods used to elicit and detect motion sickness in these models is provided. Four good potential models for use in motion sickness experiments include the dog, cat, squirrel monkey, and rat. It is concluded that the appropriate use of the animal models, combined with exploitation of state-of-the-art biomedical techniques, should generate a great step forward in the understanding of motion sickness mechanisms and in the development of efficient and effective approaches to its prevention and treatment in humans.

  4. In vivo 3D analysis of systemic effects after local heavy-ion beam irradiation in an animal model

    Science.gov (United States)

    Nagata, Kento; Hashimoto, Chika; Watanabe-Asaka, Tomomi; Itoh, Kazusa; Yasuda, Takako; Ohta, Kousaku; Oonishi, Hisako; Igarashi, Kento; Suzuki, Michiyo; Funayama, Tomoo; Kobayashi, Yasuhiko; Nishimaki, Toshiyuki; Katsumura, Takafumi; Oota, Hiroki; Ogawa, Motoyuki; Oga, Atsunori; Ikemoto, Kenzo; Itoh, Hiroshi; Kutsuna, Natsumaro; Oda, Shoji; Mitani, Hiroshi

    2016-01-01

    Radiotherapy is widely used in cancer treatment. In addition to inducing effects in the irradiated area, irradiation may induce effects on tissues close to and distant from the irradiated area. Japanese medaka, Oryzias latipes, is a small teleost fish and a model organism for evaluating the environmental effects of radiation. In this study, we applied low-energy carbon-ion (26.7 MeV/u) irradiation to adult medaka to a depth of approximately 2.2 mm from the body surface using an irradiation system at the National Institutes for Quantum and Radiological Science and Technology. We histologically evaluated the systemic alterations induced by irradiation using serial sections of the whole body, and conducted a heart rate analysis. Tissues from the irradiated side showed signs of serious injury that corresponded with the radiation dose. A 3D reconstruction analysis of the kidney sections showed reductions in the kidney volume and blood cell mass along the irradiated area, reflecting the precise localization of the injuries caused by carbon-beam irradiation. Capillary aneurysms were observed in the gill in both ventrally and dorsally irradiated fish, suggesting systemic irradiation effects. The present study provides an in vivo model for further investigation of the effects of irradiation beyond the locally irradiated area. PMID:27345436

  5. Large animal models for vaccine development and testing.

    Science.gov (United States)

    Gerdts, Volker; Wilson, Heather L; Meurens, Francois; van Drunen Littel-van den Hurk, Sylvia; Wilson, Don; Walker, Stewart; Wheler, Colette; Townsend, Hugh; Potter, Andrew A

    2015-01-01

    The development of human vaccines continues to rely on the use of animals for research. Regulatory authorities require novel vaccine candidates to undergo preclinical assessment in animal models before being permitted to enter the clinical phase in human subjects. Substantial progress has been made in recent years in reducing and replacing the number of animals used for preclinical vaccine research through the use of bioinformatics and computational biology to design new vaccine candidates. However, the ultimate goal of a new vaccine is to instruct the immune system to elicit an effective immune response against the pathogen of interest, and no alternatives to live animal use currently exist for evaluation of this response. Studies identifying the mechanisms of immune protection; determining the optimal route and formulation of vaccines; establishing the duration and onset of immunity, as well as the safety and efficacy of new vaccines, must be performed in a living system. Importantly, no single animal model provides all the information required for advancing a new vaccine through the preclinical stage, and research over the last two decades has highlighted that large animals more accurately predict vaccine outcome in humans than do other models. Here we review the advantages and disadvantages of large animal models for human vaccine development and demonstrate that much of the success in bringing a new vaccine to market depends on choosing the most appropriate animal model for preclinical testing. PMID:25991698

  6. ANIMAL MODELS OF CANCER: A REVIEW

    Directory of Open Access Journals (Sweden)

    Archana M. Navale

    2013-01-01

    Full Text Available Cancer is the second leading cause of death worldwide. In USA three persons out of five will develop some type of cancer. Beyond these statistics of mortality, the morbidity due to cancer presents a real scary picture. Last 50 years of research has rendered some types of cancer curable, but still the major fear factor associated with this disease is unchanged. Animal models are classified according to the method of induction of cancer in the animal. Spontaneous tumor models are the most primitive models. Although these models show good resemblance to the natural disease in humans, they were not capable of keeping pace with developing experimental therapeutics programs. It has therefore been necessary to take a further step towards artificiality, away from the clinical problem in the search for satisfactory testing method. From this step, the journey of artificially induced tumor models started. It is possible to induce cancer reproducibly in animals by exposing them to various agents and now, by transplanting tumor cells or tissue. The development of Genetically Engineered Animal models has provided a great help in knowing the disease. This article takes a review of present animal models used in anti-cancer drug discovery.

  7. Animal models for HCV and HBV studies

    Directory of Open Access Journals (Sweden)

    Isabelle Chemin

    2007-02-01

    Full Text Available

    The narrow host range of infection and lack of suitable tissue culture systems for the propagation of hepatitis B and C viruses are limitations that have prevented a more thorough understanding of persistent infection and the pathogenesis of chronic liver disease.

    Despite decades of intensive research and significant progresses in understanding of viral hepatitis, many basic questions and clinical problems still await to be resolved. For example, the HBV cellular receptor and related mechanisms of viral entry have not yet been identified. Little is also known about the function of certain non-structural viral products, such as the hepatitis B e antigen and the X protein, or about the role of excess hepadnavirus subviral particles circulating in the blood stream during infection. Furthermore, the molecular mechanisms involved in the development of hepatocellular carcinoma and the role of the immune system in determining the fate of infection are not fully understood.

    The reason for these drawbacks is essentially due to the lack of reliable cell-based in vitro infection systems and, most importantly, convenient animal models.

    This lack of knowledge has been partially overcome for hepatitis B virus (HBV, by the discovery and characterization of HBV-like viruses in wild animals while for hepatitis C virus (HCV, related flaviviruses have been used as surrogate systems.

    Other laboratories have developed transgenic mice that express virus gene products and/or support virus replication. Some HBV transgenic mouse models

  8. Final model of multicriterionevaluation of animal welfare

    DEFF Research Database (Denmark)

    Bonde, Marianne; Botreau, R; Bracke, MBM;

    One major objective of Welfare Quality® is to propose harmonized methods for the overall assessment of animal welfare on farm and at slaughter that are science based and meet societal concerns. Welfare is a multidimensional concept and its assessment requires measures of different aspects. Welfare...... Quality® proposes a formal evaluation model whereby the data on animals or their environment are transformed into value scores that reflect compliance with 12 subcriteria and 4 criteria of good welfare. Each animal unit is then allocated to one of four categories: excellent welfare, enhanced welfare......, acceptable welfare and not classified. This evaluation model is tuned according to the views of experts from animal and social sciences, and stakeholders....

  9. Animal models of anxiety disorders and stress

    OpenAIRE

    Campos, Alline C; Manoela V. Fogaca; Daniele C. Aguiar; Guimaraes, Francisco S.

    2013-01-01

    Anxiety and stress-related disorders are severe psychiatric conditions that affect performance in daily tasks and represent a high cost to public health. The initial observation of Charles Darwin that animals and human beings share similar characteristics in the expression of emotion raise the possibility of studying the mechanisms of psychiatric disorders in other mammals (mainly rodents). The development of animal models of anxiety and stress has helped to identify the pharmacological mecha...

  10. Animal models of contraception: utility and limitations

    OpenAIRE

    Liechty ER; Bergin IL; Bell JD

    2015-01-01

    Emma R Liechty,1 Ingrid L Bergin,1 Jason D Bell2 1Unit for Laboratory Animal Medicine, 2Program on Women's Health Care Effectiveness Research, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA Abstract: Appropriate animal modeling is vital for the successful development of novel contraceptive devices. Advances in reproductive biology have identified novel pathways for contraceptive intervention. Here we review species-specific anatomic and physiologic co...

  11. Animal models of contraception: utility and limitations

    OpenAIRE

    Bell, Jason

    2015-01-01

    Emma R Liechty,1 Ingrid L Bergin,1 Jason D Bell2 1Unit for Laboratory Animal Medicine, 2Program on Women's Health Care Effectiveness Research, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA Abstract: Appropriate animal modeling is vital for the successful development of novel contraceptive devices. Advances in reproductive biology have identified novel pathways for contraceptive intervention. Here we review species-specific anatomic and physiologi...

  12. A focused salivary gland infection with attenuated MCMV: an animal model with prevention of pathology associated with systemic MCMV infection.

    Science.gov (United States)

    Pilgrim, Mark J; Kasman, Laura; Grewal, Jasvir; Bruorton, Mary E; Werner, Phil; London, Lucille; London, Steven D

    2007-06-01

    While the salivary gland has been recognized as an important effector site of the common mucosal immune system, a useful model for studying anti-viral salivary gland immune responses in vivo and for exploring the role of the salivary gland within the common mucosal system has been lacking. Murine cytomegalovirus (MCMV) is a beta-herpesvirus that displays a strong tropism for the salivary gland and produces significant morbidity in susceptible mice when introduced by intraperitoneal (i.p.) inoculation. This study tested the hypothesis that MCMV morbidity and pathology could be reduced by injecting the virus directly the submandibular salivary gland (intraglandular (i.g.)), using either in vivo derived MCMV or the less virulent, tissue-culture-derived MCMV (tcMCMV). Peak salivary gland viral titers were completely unaffected by infection route (i.p vs. i.g.) after inoculation with either MCMV or tcMCMV. However, i.g. tcMCMV inoculation reduced viremia in all systemic tissues tested compared to i.p. inoculation. Furthermore, systemic organ pathology observed in the liver and spleen after i.p. inoculation with either MCMV or tcMCMV was completely eliminated by i.g. inoculation with tcMCMV. Cellular infiltrates in the salivary glands, after i.p. or i.g. inoculation were composed of both B and T cells, indicating the potential for a local immune response to occur in the salivary gland. These results demonstrate that a focused MCMV infection of the salivary gland without systemic organ pathology is possible using i.g. delivery of tcMCMV. PMID:17320076

  13. Pharmacokinetic modeling in aquatic animals. 1. Models and concepts

    Science.gov (United States)

    Barron, M.G.; Stehly, Guy R.; Hayton, W.L.

    1990-01-01

    While clinical and toxicological applications of pharmacokinetics have continued to evolve both conceptually and experimentally, pharmacokinetics modeling in aquatic animals has not progressed accordingly. In this paper we present methods and concepts of pharmacokinetic modeling in aquatic animals using multicompartmental, clearance-based, non-compartmental and physiologically-based pharmacokinetic models. These models should be considered as alternatives to traditional approaches, which assume that the animal acts as a single homogeneous compartment based on apparent monoexponential elimination.

  14. Comparison of animal models of hyperlipidemia

    OpenAIRE

    Xue-mei LIU

    2004-01-01

    Objective: To select the proper experimental animal model for research on prevention and treatment of hyperlipidemia. Method: Hyperlipidemia models of mouse, rat, golden hamster, guinea pig, rabbit, pigeon and quail often used in the last ten years were compared. Results: Golden hamster and guinea pig models are similar to human beings in lipid metabolism and have unique superiority in experimental study, while the models of rat, mouse, pigeon and quail have significant difference as compared...

  15. Animal Models of Depression: Molecular Perspectives

    OpenAIRE

    Krishnan, Vaishnav; Nestler, Eric J.

    2011-01-01

    Much of the current understanding about the pathogenesis of altered mood, impaired concentration and neurovegetative symptoms in major depression has come from animal models. However, because of the unique and complex features of human depression, the generation of valid and insightful depression models has been less straightforward than modeling other disabling diseases like cancer or autoimmune conditions. Today’s popular depression models creatively merge ethologically valid behavioral ass...

  16. Animal and cellular models of human disease

    OpenAIRE

    Arends, Mark; White, Eric; Whitelaw, Christopher

    2016-01-01

    In this eighteenth (2016) Annual Review Issue of The Journal of Pathology, we present a collection of 19 invited review articles that cover different aspects of cellular and animal models of disease. These include genetically-engineered models, chemically-induced models, naturally-occurring models, and combinations thereof, with the focus on recent methodological and conceptual developments across a wide range of human diseases.

  17. Phenotyping animal models of diabetic neuropathy

    DEFF Research Database (Denmark)

    Biessels, G J; Bril, V; Calcutt, N A;

    2014-01-01

    NIDDK, JDRF, and the Diabetic Neuropathy Study Group of EASD sponsored a meeting to explore the current status of animal models of diabetic peripheral neuropathy. The goal of the workshop was to develop a set of consensus criteria for the phenotyping of rodent models of diabetic neuropathy. The...

  18. Animal models of preeclampsia; uses and limitations.

    LENUS (Irish Health Repository)

    McCarthy, F P

    2012-01-31

    Preeclampsia remains a leading cause of maternal and fetal morbidity and mortality and has an unknown etiology. The limited progress made regarding new treatments to reduce the incidence and severity of preeclampsia has been attributed to the difficulties faced in the development of suitable animal models for the mechanistic research of this disease. In addition, animal models need hypotheses on which to be based and the slow development of testable hypotheses has also contributed to this poor progress. The past decade has seen significant advances in our understanding of preeclampsia and the development of viable reproducible animal models has contributed significantly to these advances. Although many of these models have features of preeclampsia, they are still poor overall models of the human disease and limited due to lack of reproducibility and because they do not include the complete spectrum of pathophysiological changes associated with preeclampsia. This review aims to provide a succinct and comprehensive assessment of current animal models of preeclampsia, their uses and limitations with particular attention paid to the best validated and most comprehensive models, in addition to those models which have been utilized to investigate potential therapeutic interventions for the treatment or prevention of preeclampsia.

  19. Groundwater Visualisation System (GVS): A software framework for integrated display and interrogation of conceptual hydrogeological models, data and time-series animation

    Science.gov (United States)

    Cox, Malcolm E.; James, Allan; Hawke, Amy; Raiber, Matthias

    2013-05-01

    Management of groundwater systems requires realistic conceptual hydrogeological models as a framework for numerical simulation modelling, but also for system understanding and communicating this to stakeholders and the broader community. To help overcome these challenges we developed GVS (Groundwater Visualisation System), a stand-alone desktop software package that uses interactive 3D visualisation and animation techniques. The goal was a user-friendly groundwater management tool that could support a range of existing real-world and pre-processed data, both surface and subsurface, including geology and various types of temporal hydrological information. GVS allows these data to be integrated into a single conceptual hydrogeological model. In addition, 3D geological models produced externally using other software packages, can readily be imported into GVS models, as can outputs of simulations (e.g. piezometric surfaces) produced by software such as MODFLOW or FEFLOW. Boreholes can be integrated, showing any down-hole data and properties, including screen information, intersected geology, water level data and water chemistry. Animation is used to display spatial and temporal changes, with time-series data such as rainfall, standing water levels and electrical conductivity, displaying dynamic processes. Time and space variations can be presented using a range of contouring and colour mapping techniques, in addition to interactive plots of time-series parameters. Other types of data, for example, demographics and cultural information, can also be readily incorporated. The GVS software can execute on a standard Windows or Linux-based PC with a minimum of 2 GB RAM, and the model output is easy and inexpensive to distribute, by download or via USB/DVD/CD. Example models are described here for three groundwater systems in Queensland, northeastern Australia: two unconfined alluvial groundwater systems with intensive irrigation, the Lockyer Valley and the upper Condamine

  20. Animal models for Gaucher disease research

    Directory of Open Access Journals (Sweden)

    Tamar Farfel-Becker

    2011-11-01

    Full Text Available Gaucher disease (GD, the most common lysosomal storage disorder (LSD, is caused by the defective activity of the lysosomal hydrolase glucocerebrosidase, which is encoded by the GBA gene. Generation of animal models that faithfully recapitulate the three clinical subtypes of GD has proved to be more of a challenge than first anticipated. The first mouse to be produced died within hours after birth owing to skin permeability problems, and mice with point mutations in Gba did not display symptoms correlating with human disease and also died soon after birth. Recently, conditional knockout mice that mimic some features of the human disease have become available. Here, we review the contribution of all currently available animal models to examining pathological pathways underlying GD and to testing the efficacy of new treatment modalities, and propose a number of criteria for the generation of more appropriate animal models of GD.

  1. Research progress on animal models with heart system syndromes of TCM%心系病证中医证候模型研究进展

    Institute of Scientific and Technical Information of China (English)

    樊讯; 王阶; 姚魁武

    2012-01-01

    中医证候动物模型是开展中医证候实验研究的必要条件,目前已越来越多地应用于中医心系疾病的实验研究,文章从应用概况、动物选择及造模方式对其进行综述.%The animal models of syndromes in traditional Chinese medicine are necessary for experimental study of TCM syndrome, and increasingly used for cardiovascular diseases experiments. The article reviewed the animal models, including Animal model; Models of syndromes; Cardiovascular disease; Experiment

  2. Differential Paradigms in Animal Models of Sepsis.

    Science.gov (United States)

    Kingsley, S Manoj Kumar; Bhat, B Vishnu

    2016-09-01

    Sepsis is a serious clinical problem involving complex mechanisms which requires better understanding and insight. Animal models of sepsis have played a major role in providing insight into the complex pathophysiology of sepsis. There have been various animal models of sepsis with different paradigms. Endotoxin, bacterial infusion, cecal ligation and puncture, and colon ascendens stent peritonitis models are the commonly practiced methods at present. Each of these models has their own advantages and also confounding factors. We have discussed the underlying mechanisms regulating each of these models along with possible reasons why each model failed to translate into the clinic. In animal models, the timing of development of the hemodynamic phases and the varied cytokine patterns could not accurately resemble the progression of clinical sepsis. More often, the exuberant and transient pro-inflammatory cytokine response is only focused in most models. Immunosuppression and apoptosis in the later phase of sepsis have been found to cause more damage than the initial acute phase of sepsis. Likewise, better understanding of the existing models of sepsis could help us create a more relevant model which could provide solution to the currently failed clinical trials in sepsis. PMID:27432263

  3. Do Animal Communication Systems Have Phonemes?

    Science.gov (United States)

    Bowling, Daniel L; Fitch, W Tecumseh

    2015-10-01

    Biologists often ask whether animal communication systems make use of conceptual entities from linguistics, such as semantics or syntax. A new study of an Australian bird species argues that their communication system has phonemes, but we argue that imposing linguistic concepts obscures, rather than clarifyies, communicative function. PMID:26346993

  4. An animal model to study toxicity of central nervous system therapy for childhood acute lymphoblastic leukemia: Effects on growth and craniofacial proportion

    International Nuclear Information System (INIS)

    Many long term survivors of childhood acute lymphoblastic leukemia have short stature, as well as craniofacial and dental abnormalities, as side effects of central nervous system prophylactic therapy. An animal model is presented to assess these adverse effects on growth. Cranial irradiation (1000 cGy) with and without prednisolone (18 mg/kg i.p.) and methotrexate (2 mg/kg i.p.) was administered to 17- and 18-day-old Sprague-Dawley male and female rats. Animals were weighed 3 times/week. Final body weight and body length were measured at 150 days of age. Femur length and craniofacial dimensions were measured directly from the bones, using calipers. For all exposed groups there was a permanent suppression of weight gain with no catch-up growth or normal adolescent growth spurt. Body length was reduced for all treated groups, as were the ratios of body weight to body length and cranial length to body length. Animals subjected to cranial irradiation exhibited microcephaly, whereas those who received a combination of radiation and chemotherapy demonstrated altered craniofacial proportions in addition to microcephaly. Changes in growth patterns and skeletal proportions exhibited sexually dimorphic characteristics. The results indicate that cranial irradiation is a major factor in the growth failure in exposed rats, but chemotherapeutic agents contribute significantly to the outcome of growth and craniofacial dimensions

  5. Novel Animal Models of Pediatric Epilepsy

    OpenAIRE

    Auvin, Stéphane; Pineda, Eduardo; Shin, Don; Gressens, Pierre; Mazarati, Andrey

    2012-01-01

    When mimicking epileptic processes in a laboratory setting, it is important to understand the differences between experimental models of seizures and epilepsy. Because human epilepsy is defined by the appearance of multiple spontaneous recurrent seizures, the induction of a single acute seizure without recurrence does not constitute an adequate epilepsy model. Animal models of epilepsy might be useful for various tasks. They allow for the investigation of pathophysiological mechanisms of the ...

  6. Animal models of focal brain ischemia

    OpenAIRE

    Sicard Kenneth M; Fisher Marc

    2009-01-01

    Abstract Stroke is a leading cause of disability and death in many countries. Understanding the pathophysiology of ischemic injury and developing therapies is an important endeavor that requires much additional research. Animal stroke models provide an important mechanism for these activities. A large number of stroke models have been developed and are currently used in laboratories around the world. These models are overviewed as are approaches for measuring infarct size and functional outcome.

  7. Renal denervation in an animal model of diabetes and hypertension: Impact on the autonomic nervous system and nephropathy

    Directory of Open Access Journals (Sweden)

    Machado Ubiratan F

    2011-04-01

    Full Text Available Abstract Background The effects of renal denervation on cardiovascular reflexes and markers of nephropathy in diabetic-hypertensive rats have not yet been explored. Methods Aim: To evaluate the effects of renal denervation on nephropathy development mechanisms (blood pressure, cardiovascular autonomic changes, renal GLUT2 in diabetic-hypertensive rats. Forty-one male spontaneously hypertensive rats (SHR ~250 g were injected with STZ or not; 30 days later, surgical renal denervation (RD or sham procedure was performed; 15 days later, glycemia and albuminuria (ELISA were evaluated. Catheters were implanted into the femoral artery to evaluate arterial pressure (AP and heart rate variability (spectral analysis one day later in conscious animals. Animals were killed, kidneys removed, and cortical renal GLUT2 quantified (Western blotting. Results Higher glycemia (p vs. nondiabetics (p vs. SHR. Conclusions Renal denervation in diabetic-hypertensive rats improved previously reduced heart rate variability. The GLUT2 equally overexpressed by diabetes and renal denervation may represent a maximal derangement effect of each condition.

  8. Henipavirus Infections: Lessons from Animal Models

    Directory of Open Access Journals (Sweden)

    Kévin P. Dhondt

    2013-04-01

    Full Text Available The Henipavirus genus contains two highly lethal viruses, the Hendra and Nipah viruses and one, recently discovered, apparently nonpathogenic member; Cedar virus. These three, negative-sense single-stranded RNA viruses, are hosted by fruit bats and use EphrinB2 receptors for entry into cells. The Hendra and Nipah viruses are zoonotic pathogens that emerged in the middle of 90s and have caused severe, and often fatal, neurologic and/or respiratory diseases in both humans and different animals; including spillover into equine and porcine species. Development of relevant models is critical for a better understanding of viral pathogenesis, generating new diagnostic tools, and assessing anti-viral therapeutics and vaccines. This review summarizes available data on several animal models where natural and/or experimental infection has been demonstrated; including pteroid bats, horses, pigs, cats, hamsters, guinea pigs, ferrets, and nonhuman primates. It recapitulates the principal features of viral pathogenesis in these animals and current knowledge on anti-viral immune responses. Lastly it describes the recently characterized murine animal model, which provides the possibility to use numerous and powerful tools available for mice to further decipher henipaviruses immunopathogenesis, prophylaxis, and treatment. The utility of different models to analyze important aspects of henipaviruses-induced disease in humans, potential routes of transmission, and therapeutic approaches are equally discussed.

  9. Henipavirus infections: lessons from animal models.

    Science.gov (United States)

    Dhondt, Kévin P; Horvat, Branka

    2013-01-01

    The Henipavirus genus contains two highly lethal viruses, the Hendra and Nipah viruses and one, recently discovered, apparently nonpathogenic member; Cedar virus. These three, negative-sense single-stranded RNA viruses, are hosted by fruit bats and use EphrinB2 receptors for entry into cells. The Hendra and Nipah viruses are zoonotic pathogens that emerged in the middle of 90s and have caused severe, and often fatal, neurologic and/or respiratory diseases in both humans and different animals; including spillover into equine and porcine species. Development of relevant models is critical for a better understanding of viral pathogenesis, generating new diagnostic tools, and assessing anti-viral therapeutics and vaccines. This review summarizes available data on several animal models where natural and/or experimental infection has been demonstrated; including pteroid bats, horses, pigs, cats, hamsters, guinea pigs, ferrets, and nonhuman primates. It recapitulates the principal features of viral pathogenesis in these animals and current knowledge on anti-viral immune responses. Lastly it describes the recently characterized murine animal model, which provides the possibility to use numerous and powerful tools available for mice to further decipher henipaviruses immunopathogenesis, prophylaxis, and treatment. The utility of different models to analyze important aspects of henipaviruses-induced disease in humans, potential routes of transmission, and therapeutic approaches are equally discussed. PMID:25437037

  10. Animal Models of Middle Ear Cholesteatoma

    OpenAIRE

    Tomomi Yamamoto-Fukuda; Haruo Takahashi; Takehiko Koji

    2011-01-01

    Middle ear acquired cholesteatoma is a pathological condition associated with otitis media, which may be associated with temporal bone resorption, otorrhea and hearing loss, and occasionally various other complications. Cholesteatoma is characterized by the enhanced proliferation of epithelial cells with aberrant morphologic characteristics. Unfortunately, our understanding of the mechanism underlying its pathogenesis is limited. To investigate its pathogenesis, different animal models have b...

  11. The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models.

    Science.gov (United States)

    Shao, Ming; Xu, Tian-Rui; Chen, Ce-Shi

    2016-07-18

    Targeted genome editing technology has been widely used in biomedical studies. The CRISPR-associated RNA-guided endonuclease Cas9 has become a versatile genome editing tool. The CRISPR/Cas9 system is useful for studying gene function through efficient knock-out, knock-in or chromatin modification of the targeted gene loci in various cell types and organisms. It can be applied in a number of fields, such as genetic breeding, disease treatment and gene functional investigation. In this review, we introduce the most recent developments and applications, the challenges, and future directions of Cas9 in generating disease animal model. Derived from the CRISPR adaptive immune system of bacteria, the development trend of Cas9 will inevitably fuel the vital applications from basic research to biotechnology and bio-medicine. PMID:27469250

  12. The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models

    Science.gov (United States)

    SHAO, Ming; XU, Tian-Rui; CHEN, Ce-Shi

    2016-01-01

    Targeted genome editing technology has been widely used in biomedical studies. The CRISPR-associated RNA-guided endonuclease Cas9 has become a versatile genome editing tool. The CRISPR/Cas9 system is useful for studying gene function through efficient knock-out, knock-in or chromatin modification of the targeted gene loci in various cell types and organisms. It can be applied in a number of fields, such as genetic breeding, disease treatment and gene functional investigation. In this review, we introduce the most recent developments and applications, the challenges, and future directions of Cas9 in generating disease animal model. Derived from the CRISPR adaptive immune system of bacteria, the development trend of Cas9 will inevitably fuel the vital applications from basic research to biotechnology and biomedicine. PMID:27469250

  13. Animal models for genetic neuromuscular diseases.

    Science.gov (United States)

    Vainzof, Mariz; Ayub-Guerrieri, Danielle; Onofre, Paula C G; Martins, Poliana C M; Lopes, Vanessa F; Zilberztajn, Dinorah; Maia, Lucas S; Sell, Karen; Yamamoto, Lydia U

    2008-03-01

    The neuromuscular disorders are a heterogeneous group of genetic diseases, caused by mutations in genes coding sarcolemmal, sarcomeric, and citosolic muscle proteins. Deficiencies or loss of function of these proteins leads to variable degree of progressive loss of motor ability. Several animal models, manifesting phenotypes observed in neuromuscular diseases, have been identified in nature or generated in laboratory. These models generally present physiological alterations observed in human patients and can be used as important tools for genetic, clinic, and histopathological studies. The mdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD). Although it is a good genetic and biochemical model, presenting total deficiency of the protein dystrophin in the muscle, this mouse is not useful for clinical trials because of its very mild phenotype. The canine golden retriever MD model represents a more clinically similar model of DMD due to its larger size and significant muscle weakness. Autosomal recessive limb-girdle MD forms models include the SJL/J mice, which develop a spontaneous myopathy resulting from a mutation in the Dysferlin gene, being a model for LGMD2B. For the human sarcoglycanopahties (SG), the BIO14.6 hamster is the spontaneous animal model for delta-SG deficiency, whereas some canine models with deficiency of SG proteins have also been identified. More recently, using the homologous recombination technique in embryonic stem cell, several mouse models have been developed with null mutations in each one of the four SG genes. All sarcoglycan-null animals display a progressive muscular dystrophy of variable severity and share the property of a significant secondary reduction in the expression of the other members of the sarcoglycan subcomplex and other components of the Dystrophin-glycoprotein complex. Mouse models for congenital MD include the dy/dy (dystrophia-muscularis) mouse and the allelic mutant dy(2J)/dy(2J) mouse

  14. Animal models for meniscus repair and regeneration.

    Science.gov (United States)

    Deponti, Daniela; Di Giancamillo, Alessia; Scotti, Celeste; Peretti, Giuseppe M; Martin, Ivan

    2015-05-01

    The meniscus plays an important role in knee function and mechanics. Meniscal lesions, however, are common phenomena and this tissue is not able to achieve spontaneous successful repair, particularly in the inner avascular zone. Several animal models have been studied and proposed for testing different reparative approaches, as well as for studying regenerative methods aiming to restore the original shape and function of this structure. This review summarizes the gross anatomy, function, ultrastructure and biochemical composition of the knee meniscus in several animal models in comparison with the human meniscus. The relevance of the models is discussed from the point of view of basic research as well as of clinical translation for meniscal repair, substitution and regeneration. Finally, the advantages and disadvantages of each model for various research directions are critically discussed. PMID:23712959

  15. A forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.C. [Department of Electrical Engineering, National Cheng-Kung University, Tainan, Taiwan (China); Chang, M.W. [Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Chang, C.P. [Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Chan, S.C.; Chang, W.Y.; Yang, C.L. [Department of Electrical Engineering, National Cheng-Kung University, Tainan, Taiwan (China); Lin, M.T. [Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan (China)

    2014-08-15

    We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use.

  16. A forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model

    International Nuclear Information System (INIS)

    We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use

  17. Animal Models of Calcific Aortic Valve Disease

    OpenAIRE

    Sider, Krista L.; Blaser, Mark C.; Simmons, Craig A.

    2011-01-01

    Calcific aortic valve disease (CAVD), once thought to be a degenerative disease, is now recognized to be an active pathobiological process, with chronic inflammation emerging as a predominant, and possibly driving, factor. However, many details of the pathobiological mechanisms of CAVD remain to be described, and new approaches to treat CAVD need to be identified. Animal models are emerging as vital tools to this end, facilitated by the advent of new models and improved understanding of the u...

  18. Update on Animal Models for HIV Research

    OpenAIRE

    Haigwood, Nancy L.

    2009-01-01

    Animal models for HIV research have been indispensible in fulfilling Koch’s postulate and in exploring issues of viral infectivity and pathogenesis, sequence divergence, route(s) of acquisition, tissue distribution and tropism, immunogenicity and protection capacity of vaccine candidates, escape from adaptive immunity, and more. Did they fail to predict the efficacy of T cell vaccines in humans? This article summarizes progress and status of models to inform and complement clinical work.

  19. Animal models of age related macular degeneration

    OpenAIRE

    Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.

    2012-01-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the ...

  20. Animal Models of Dengue Virus Infection

    OpenAIRE

    Eva Harris; Simona Zompi

    2012-01-01

    The development of animal models of dengue virus (DENV) infection and disease has been challenging, as epidemic DENV does not naturally infect non-human species. Non-human primates (NHPs) can sustain viral replication in relevant cell types and develop a robust immune response, but they do not develop overt disease. In contrast, certain immunodeficient mouse models infected with mouse-adapted DENV strains show signs of severe disease similar to the ‘vascular-leak’ syndrome seen in severe deng...

  1. Laser Acupuncture at HT7 Acupoint Improves Cognitive Deficit, Neuronal Loss, Oxidative Stress, and Functions of Cholinergic and Dopaminergic Systems in Animal Model of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Jintanaporn Wattanathorn

    2014-01-01

    Full Text Available To date, the therapeutic strategy against cognitive impairment in Parkinson’s disease (PD is still not in satisfaction level and requires novel effective intervention. Based the oxidative stress reduction and cognitive enhancement induced by laser acupuncture at HT7, the beneficial effect of laser acupuncture at HT7 against cognitive impairment in PD has been focused. In this study, we aimed to determine the effect of laser acupuncture at HT7 on memory impairment, oxidative stress status, and the functions of both cholinergic and dopaminergic systems in hippocampus of animal model of PD. Male Wistar rats, weighing 180–220 g, were induced unilateral lesion at right substantianigra by 6-OHDA and were treated with laser acupuncture continuously at a period of 14 days. The results showed that laser acupuncture at HT7 enhanced memory and neuron density in CA3 and dentate gyrus. The decreased AChE, MAO-B, and MDA together with increased GSH-Px in hippocampus of a 6-OHDA lesion rats were also observed. In conclusion, laser acupuncture at HT7 can improve neuron degeneration and memory impairment in animal model of PD partly via the decreased oxidative stress and the improved cholinergic and dopaminergic functions. More researches concerning effect of treatment duration are still required.

  2. Increased anxiety-like behaviour and altered GABAergic system in the amygdala and cerebellum of VPA rats - An animal model of autism.

    Science.gov (United States)

    Olexová, Lucia; Štefánik, Peter; Kršková, Lucia

    2016-08-26

    Anxiety is one of the associated symptoms of autism spectrum disorder. According to the literature, increases in anxiety are accompanied by GABAergic system deregulation. The aim of our study, performed using an animal model of autism in the form of rats prenatally treated with valproic acid (VPA rats), was to investigate changes in anxiety-like behaviour and the gene expression of molecules that control levels of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) in the brain. Anxiety-like behaviours were investigated using zone preferences in the open field test. The levels of the 65 and 67kDa enzymes of l-glutamic acid decarboxylase (GAD) mRNAs and type 1 GABA transporter (GAT1) were evaluated in the amygdala, as well as GABA producing enzymes in the cortex layer of the cerebellum. Our research showed that adult VPA rats spent less time in the inner zone of the testing chamber and more time in the outer zone of the testing chamber in the open field test. We also found that adult VPA rats had increased expression of GAT1 in the amygdala, as well as decreased levels of GAD65 and GAD67 mRNA in the cerebellum compared to control animals. These findings support the existence of a relationship between increased anxiety-like behaviour and changes in the regulation of the GABAergic system in VPA rats. PMID:27353514

  3. Evaluation of surrogate animal models of melioidosis

    Directory of Open Access Journals (Sweden)

    Jonathan Mark Warawa

    2010-12-01

    Full Text Available Burkholderia pseudomallei is the Gram-negative bacterial pathogen responsible for the disease melioidosis. B. pseudomallei establishes disease in susceptible individuals through multiple routes of infection, all of which may proceed to a septicemic disease associated with a high mortality rate. B. pseudomallei opportunistically infects humans and a wide range of animals directly from the environment, and modeling of experimental melioidosis has been conducted in numerous biologically relevant models including mammalian and invertebrate hosts. This review seeks to summarize published findings related to established animal models of melioidosis, with an aim to compare and contrast the virulence of B. pseudomallei in these models. The effect of the route of delivery on disease is also discussed for intravenous, intraperitoneal, subcutaneous, intranasal, aerosol, oral, and intratracheal infection methodologies, with a particular focus on how they relate to modeling clinical melioidosis. The importance of the translational validity of the animal models used in B. pseudomallei research is highlighted as these studies have become increasingly therapeutic in nature.

  4. Large genetic animal models of Huntington's Disease.

    Science.gov (United States)

    Morton, A Jennifer; Howland, David S

    2013-01-01

    The dominant nature of the Huntington's disease gene mutation has allowed genetic models to be developed in multiple species, with the mutation causing an abnormal neurological phenotype in all animals in which it is expressed. Many different rodent models have been generated. The most widely used of these, the transgenic R6/2 mouse, carries the mutation in a fragment of the human huntingtin gene and has a rapidly progressive and fatal neurological phenotype with many relevant pathological changes. Nevertheless, their rapid decline has been frequently questioned in the context of a disease that takes years to manifest in humans, and strenuous efforts have been made to make rodent models that are genetically more 'relevant' to the human condition, including full length huntingtin gene transgenic and knock-in mice. While there is no doubt that we have learned, and continue to learn much from rodent models, their usefulness is limited by two species constraints. First, the brains of rodents differ significantly from humans in both their small size and their neuroanatomical organization. Second, rodents have much shorter lifespans than humans. Here, we review new approaches taken to these challenges in the development of models of Huntington's disease in large brained, long-lived animals. We discuss the need for such models, and how they might be used to fill specific niches in preclinical Huntington's disease research, particularly in testing gene-based therapeutics. We discuss the advantages and disadvantages of animals in which the prodromal period of disease extends over a long time span. We suggest that there is considerable 'value added' for large animal models in preclinical Huntington's disease research. PMID:25063426

  5. Fantastic animals as an experimental model to teach animal adaptation

    Directory of Open Access Journals (Sweden)

    Veronesi Paola

    2007-08-01

    Full Text Available Abstract Background Science curricula and teachers should emphasize evolution in a manner commensurate with its importance as a unifying concept in science. The concept of adaptation represents a first step to understand the results of natural selection. We settled an experimental project of alternative didactic to improve knowledge of organism adaptation. Students were involved and stimulated in learning processes by creative activities. To set adaptation in a historic frame, fossil records as evidence of past life and evolution were considered. Results The experimental project is schematized in nine phases: review of previous knowledge; lesson on fossils; lesson on fantastic animals; planning an imaginary world; creation of an imaginary animal; revision of the imaginary animals; adaptations of real animals; adaptations of fossil animals; and public exposition. A rubric to evaluate the student's performances is reported. The project involved professors and students of the University of Modena and Reggio Emilia and of the "G. Marconi" Secondary School of First Degree (Modena, Italy. Conclusion The educational objectives of the project are in line with the National Indications of the Italian Ministry of Public Instruction: knowledge of the characteristics of living beings, the meanings of the term "adaptation", the meaning of fossils, the definition of ecosystem, and the particularity of the different biomes. At the end of the project, students will be able to grasp particular adaptations of real organisms and to deduce information about the environment in which the organism evolved. This project allows students to review previous knowledge and to form their personalities.

  6. Animal models of contraception: utility and limitations

    Directory of Open Access Journals (Sweden)

    Liechty ER

    2015-04-01

    Full Text Available Emma R Liechty,1 Ingrid L Bergin,1 Jason D Bell2 1Unit for Laboratory Animal Medicine, 2Program on Women's Health Care Effectiveness Research, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA Abstract: Appropriate animal modeling is vital for the successful development of novel contraceptive devices. Advances in reproductive biology have identified novel pathways for contraceptive intervention. Here we review species-specific anatomic and physiologic considerations impacting preclinical contraceptive testing, including efficacy testing, mechanistic studies, device design, and modeling off-target effects. Emphasis is placed on the use of nonhuman primate models in contraceptive device development. Keywords: nonhuman primate, preclinical, in vivo, contraceptive devices

  7. Animal models of anxiety disorders and stress

    Directory of Open Access Journals (Sweden)

    Alline C. Campos

    2013-01-01

    Full Text Available Anxiety and stress-related disorders are severe psychiatric conditions that affect performance in daily tasks and represent a high cost to public health. The initial observation of Charles Darwin that animals and human beings share similar characteristics in the expression of emotion raise the possibility of studying the mechanisms of psychiatric disorders in other mammals (mainly rodents. The development of animal models of anxiety and stress has helped to identify the pharmacological mechanisms and potential clinical effects of several drugs. Animal models of anxiety are based on conflict situations that can generate opposite motivational states induced by approach-avoidance situations. The present review revisited the main rodent models of anxiety and stress responses used worldwide. Here we defined as “ethological” the tests that assess unlearned/unpunished responses (such as the elevated plus maze, light-dark box, and open field, whereas models that involve learned/punished responses are referred to as “conditioned operant conflict tests” (such as the Vogel conflict test. We also discussed models that involve mainly classical conditioning tests (fear conditioning. Finally, we addressed the main protocols used to induce stress responses in rodents, including psychosocial (social defeat and neonatal isolation stress, physical (restraint stress, and chronic unpredictable stress.

  8. Subject-specific cardiovascular system model-based identification and diagnosis of septic shock with a minimally invasive data set: animal experiments and proof of concept

    International Nuclear Information System (INIS)

    A cardiovascular system (CVS) model and parameter identification method have previously been validated for identifying different cardiac and circulatory dysfunctions in simulation and using porcine models of pulmonary embolism, hypovolemia with PEEP titrations and induced endotoxic shock. However, these studies required both left and right heart catheters to collect the data required for subject-specific monitoring and diagnosis—a maximally invasive data set in a critical care setting although it does occur in practice. Hence, use of this model-based diagnostic would require significant additional invasive sensors for some subjects, which is unacceptable in some, if not all, cases. The main goal of this study is to prove the concept of using only measurements from one side of the heart (right) in a 'minimal' data set to identify an effective patient-specific model that can capture key clinical trends in endotoxic shock. This research extends existing methods to a reduced and minimal data set requiring only a single catheter and reducing the risk of infection and other complications—a very common, typical situation in critical care patients, particularly after cardiac surgery. The extended methods and assumptions that found it are developed and presented in a case study for the patient-specific parameter identification of pig-specific parameters in an animal model of induced endotoxic shock. This case study is used to define the impact of this minimal data set on the quality and accuracy of the model application for monitoring, detecting and diagnosing septic shock. Six anesthetized healthy pigs weighing 20–30 kg received a 0.5 mg kg−1 endotoxin infusion over a period of 30 min from T0 to T30. For this research, only right heart measurements were obtained. Errors for the identified model are within 8% when the model is identified from data, re-simulated and then compared to the experimentally measured data, including measurements not used in the

  9. Advances in Small Animal Imaging Systems

    International Nuclear Information System (INIS)

    The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to an increased interest in in vivo laboratory animal imaging during the past few years. For this purpose, new instrumentation, data acquisition strategies, and image processing and reconstruction techniques are being developed, researched and evaluated. The aim of this article is to give a short overview of the state of the art technologies for high resolution and high sensitivity molecular imaging techniques, primarily positron emission tomography (PET) and single photon emission computed tomography (SPECT). The basic needs of small animal imaging will be described. The evolution in instrumentation in the past two decades, as well as the commercially available systems will be overviewed. Finally, the new trends in detector technology and preliminary results from challenging applications will be presented. For more details a number of references are provided

  10. Towards an animal model of food addiction.

    Science.gov (United States)

    de Jong, Johannes W; Vanderschuren, Louk J M J; Adan, Roger A H

    2012-01-01

    The dramatically increasing prevalence of obesity, associated with potentially life-threatening health problems, including cardiovascular diseases and type II diabetes, poses an enormous public health problem. It has been proposed that the obesity epidemic can be explained by the concept of 'food addiction'. In this review we focus on possible similarities between binge eating disorder (BED), which is highly prevalent in the obese population, and drug addiction. Indeed, both behavioral and neural similarities between addiction and BED have been demonstrated. Behavioral similarities are reflected in the overlap in DSM-IV criteria for drug addiction with the (suggested) criteria for BED and by food addiction-like behavior in animals after prolonged intermittent access to palatable food. Neural similarities include the overlap in brain regions involved in food and drug craving. Decreased dopamine D2 receptor availability in the striatum has been found in animal models of binge eating, after cocaine self-administration in animals as well as in drug addiction and obesity in humans. To further explore the neurobiological basis of food addiction, it is essential to have an animal model to test the addictive potential of palatable food. A recently developed animal model for drug addiction involves three behavioral characteristics that are based on the DSM-IV criteria: i) extremely high motivation to obtain the drug, ii) difficulty in limiting drug seeking even in periods of explicit non-availability, iii) continuation of drug-seeking despite negative consequences. Indeed, it has been shown that a subgroup of rats, after prolonged cocaine self-administration, scores positive on these three criteria. If food possesses addictive properties, then food-addicted rats should also meet these criteria while searching for and consuming food. In this review we discuss evidence from literature regarding food addiction-like behavior. We also suggest future experiments that could

  11. Animal models of epilepsy: use and limitations

    Directory of Open Access Journals (Sweden)

    Kandratavicius L

    2014-09-01

    Full Text Available Ludmyla Kandratavicius,1 Priscila Alves Balista,1 Cleiton Lopes-Aguiar,1 Rafael Naime Ruggiero,1 Eduardo Henrique Umeoka,2 Norberto Garcia-Cairasco,2 Lezio Soares Bueno-Junior,1 Joao Pereira Leite11Department of Neurosciences and Behavior, 2Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, BrazilAbstract: Epilepsy is a chronic neurological condition characterized by recurrent seizures that affects millions of people worldwide. Comprehension of the complex mechanisms underlying epileptogenesis and seizure generation in temporal lobe epilepsy and other forms of epilepsy cannot be fully acquired in clinical studies with humans. As a result, the use of appropriate animal models is essential. Some of these models replicate the natural history of symptomatic focal epilepsy with an initial epileptogenic insult, which is followed by an apparent latent period and by a subsequent period of chronic spontaneous seizures. Seizures are a combination of electrical and behavioral events that are able to induce chemical, molecular, and anatomic alterations. In this review, we summarize the most frequently used models of chronic epilepsy and models of acute seizures induced by chemoconvulsants, traumatic brain injury, and electrical or sound stimuli. Genetic models of absence seizures and models of seizures and status epilepticus in the immature brain were also examined. Major uses and limitations were highlighted, and neuropathological, behavioral, and neurophysiological similarities and differences between the model and the human equivalent were considered. The quest for seizure mechanisms can provide insights into overall brain functions and consciousness, and animal models of epilepsy will continue to promote the progress of both epilepsy and neurophysiology research.Keywords: epilepsy, animal model, pilocarpine, kindling, neurodevelopment

  12. Potential Large Animal Models for Gene Therapy of Human Genetic Diseases of Immune and Blood Cell Systems

    OpenAIRE

    Bauer, Thomas R.; Adler, Rima L.; Hickstein, Dennis D.

    2009-01-01

    Genetic mutations involving the cellular components of the hematopoietic system—red blood cells, white blood cells, and platelets—manifest clinically as anemia, infection, and bleeding. Although gene targeting has recapitulated many of these diseases in mice, these murine homologues are limited as translational models by their small size and brief life span as well as the fact that mutations induced by gene targeting do not always faithfully reflect the clinical manifestations of such mutatio...

  13. Animal models of alcohol and drug dependence

    Directory of Open Access Journals (Sweden)

    Cleopatra S. Planeta

    2013-01-01

    Full Text Available Drug addiction has serious health and social consequences. In the last 50 years, a wide range of techniques have been developed to model specific aspects of drug-taking behaviors and have greatly contributed to the understanding of the neurobiological basis of drug abuse and addiction. In the last two decades, new models have been proposed in an attempt to capture the more genuine aspects of addiction-like behaviors in laboratory animals. The goal of the present review is to provide an overview of the preclinical procedures used to study drug abuse and dependence and describe recent progress that has been made in studying more specific aspects of addictive behavior in animals.

  14. Deformation Models Tracking, Animation and Applications

    CERN Document Server

    Torres, Arnau; Gómez, Javier

    2013-01-01

    The computational modelling of deformations has been actively studied for the last thirty years. This is mainly due to its large range of applications that include computer animation, medical imaging, shape estimation, face deformation as well as other parts of the human body, and object tracking. In addition, these advances have been supported by the evolution of computer processing capabilities, enabling realism in a more sophisticated way. This book encompasses relevant works of expert researchers in the field of deformation models and their applications.  The book is divided into two main parts. The first part presents recent object deformation techniques from the point of view of computer graphics and computer animation. The second part of this book presents six works that study deformations from a computer vision point of view with a common characteristic: deformations are applied in real world applications. The primary audience for this work are researchers from different multidisciplinary fields, s...

  15. Experimental Diabetes Mellitus in Different Animal Models.

    Science.gov (United States)

    Al-Awar, Amin; Kupai, Krisztina; Veszelka, Médea; Szűcs, Gergő; Attieh, Zouhair; Murlasits, Zsolt; Török, Szilvia; Pósa, Anikó; Varga, Csaba

    2016-01-01

    Animal models have historically played a critical role in the exploration and characterization of disease pathophysiology and target identification and in the evaluation of novel therapeutic agents and treatments in vivo. Diabetes mellitus disease, commonly known as diabetes, is a group of metabolic disorders characterized by high blood glucose levels for a prolonged time. To avoid late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic symptoms, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies. We overviewed the pathophysiological features of diabetes in relation to its complications in type 1 and type 2 mice along with rat models, including Zucker Diabetic Fatty (ZDF) rats, BB rats, LEW 1AR1/-iddm rats, Goto-Kakizaki rats, chemically induced diabetic models, and Nonobese Diabetic mouse, and Akita mice model. The advantages and disadvantages that these models comprise were also addressed in this review. This paper briefly reviews the wide pathophysiological and molecular mechanisms associated with type 1 and type 2 diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans. PMID:27595114

  16. Penile autotransplantation in rats: An animal model

    OpenAIRE

    Seyam, Raouf M.; Said A Kattan; Assad, Lina W.; Raafat M El-Sayed; Falah H Almohanna

    2013-01-01

    Context: Penile allotransplantation might be a viable option for patients who need penile reconstruction. Aims: A successful autotransplantation rat model is the first step toward proceeding for allotransplantation. We herein evaluate autotransplantation following transaction of the rat penis just distal to the urethral bulb. Settings and Design: Experimental animal study. Materials and Methods: Five Sprague-Dawely rats weighing 520 g (SD 19) were used. Utilizing a magnification o...

  17. Animal models of human herpesvirus 6 infection

    OpenAIRE

    Joséphine eReynaud; Branka eHorvat

    2013-01-01

    Human herpesvirus (HHV)-6A and HHV-6B are two enveloped DNA viruses of β-herpesvirus family, infecting over 90% of the population and associated with several diseases, including exanthema subitum (for HHV-6B), multiple sclerosis and encephalitis, particularly in immunosuppressed patients. Animal models are highly important to better understand the pathogenesis of viral infections. Naturally developed neutralizing antibodies to HHV-6 or a related virus were found in different species of monkey...

  18. Animal Models of Typical Heterotopic Ossification

    OpenAIRE

    Lixin Kan; Kessler, John A.

    2010-01-01

    Heterotopic ossification (HO) is the formation of marrow-containing bone outside of the normal skeleton. Acquired HO following traumatic events is a common and costly clinical complication. In contrast, hereditary HO is rarer, progressive, and life-threatening. Substantial effort has been directed towards understanding the mechanisms underlying HO and finding efficient treatments. However, one crucial limiting factor has been the lack of relevant animal models. This article reviews the major ...

  19. Large animal models for stem cell therapy

    OpenAIRE

    Harding, John; Roberts, R. Michael; Mirochnitchenko, Oleg

    2013-01-01

    The field of regenerative medicine is approaching translation to clinical practice, and significant safety concerns and knowledge gaps have become clear as clinical practitioners are considering the potential risks and benefits of cell-based therapy. It is necessary to understand the full spectrum of stem cell actions and preclinical evidence for safety and therapeutic efficacy. The role of animal models for gaining this information has increased substantially. There is an urgent need for nov...

  20. The wobbler mouse, an ALS animal model

    OpenAIRE

    Moser, Jakob Maximilian; Bigini, Paolo; Schmitt-John, Thomas

    2013-01-01

    This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking similarities to ALS. The cellular effects of the wobbler mutation, cellular transport defects, neurofilament aggregation, neuronal hyperexcitability and neuroinflammation closely resemble human ALS. Now,...

  1. Evaluation of Surrogate Animal Models of Melioidosis

    OpenAIRE

    Warawa, Jonathan Mark

    2010-01-01

    Burkholderia pseudomallei is the Gram-negative bacterial pathogen responsible for the disease melioidosis. B. pseudomallei establishes disease in susceptible individuals through multiple routes of infection, all of which may proceed to a septicemic disease associated with a high mortality rate. B. pseudomallei opportunistically infects humans and a wide range of animals directly from the environment, and modeling of experimental melioidosis has been conducted in numerous biologically relevant...

  2. Animal models for Gaucher disease research

    OpenAIRE

    Tamar Farfel-Becker; Vitner, Einat B.; Futerman, Anthony H.

    2011-01-01

    Gaucher disease (GD), the most common lysosomal storage disorder (LSD), is caused by the defective activity of the lysosomal hydrolase glucocerebrosidase, which is encoded by the GBA gene. Generation of animal models that faithfully recapitulate the three clinical subtypes of GD has proved to be more of a challenge than first anticipated. The first mouse to be produced died within hours after birth owing to skin permeability problems, and mice with point mutations in Gba did not display sympt...

  3. Diabetic Retinopathy: Animal Models, Therapies, and Perspectives

    OpenAIRE

    Xue Cai; McGinnis, James F.

    2016-01-01

    Diabetic retinopathy (DR) is one of the major complications of diabetes. Although great efforts have been made to uncover the mechanisms underlying the pathology of DR, the exact causes of DR remain largely unknown. Because of multifactor involvement in DR etiology, currently no effective therapeutic treatments for DR are available. In this paper, we review the pathology of DR, commonly used animal models, and novel therapeutic approaches. Perspectives and future directions for DR treatment a...

  4. Animal Models of Varicella Zoster Virus Infection

    Directory of Open Access Journals (Sweden)

    Ilhem Messaoudi

    2013-05-01

    Full Text Available Primary infection with varicella zoster virus (VZV results in varicella (chickenpox followed by the establishment of latency in sensory ganglia. Declining T cell immunity due to aging or immune suppressive treatments can lead to VZV reactivation and the development of herpes zoster (HZ, shingles. HZ is often associated with significant morbidity and occasionally mortality in elderly and immune compromised patients. There are currently two FDA-approved vaccines for the prevention of VZV: Varivax® (for varicella and Zostavax® (for HZ. Both vaccines contain the live-attenuated Oka strain of VZV. Although highly immunogenic, a two-dose regimen is required to achieve a 99% seroconversion rate. Zostavax vaccination reduces the incidence of HZ by 51% within a 3-year period, but a significant reduction in vaccine-induced immunity is observed within the first year after vaccination. Developing more efficacious vaccines and therapeutics requires a better understanding of the host response to VZV. These studies have been hampered by the scarcity of animal models that recapitulate all aspects of VZV infections in humans. In this review, we describe different animal models of VZV infection as well as an alternative animal model that leverages the infection of Old World macaques with the highly related simian varicella virus (SVV and discuss their contributions to our understanding of pathogenesis and immunity during VZV infection.

  5. Method and system for estimating herbage uptake of an animal

    DEFF Research Database (Denmark)

    2011-01-01

    The invention relates to a method and a system for estimating the feeding value or the amount of consumed herbage of grazing animals. The estimated herbage uptake is based on measured and possibly estimated data which is supplied as input data to a mathematical model. Measured input data may be...... acceleration data of the head of the animal, the length of herbage and the quality, i.e. feeding value, of herbage. Estimated input data may be the frequency of the reciprocate head motion of the animal and the in-active or active grazing status of the cow. Alternatively, the estimated data may be determined...... by the model and possibly provided as output data. Measurements may be obtained by a sensor module carried by the animal and the measurements may be wirelessly transmitted from the sensor module to a receiver, possibly via relay transceivers....

  6. Cystamine/cysteamine rescues the dopaminergic system and shows neurorestorative properties in an animal model of Parkinson's disease.

    Science.gov (United States)

    Cisbani, G; Drouin-Ouellet, J; Gibrat, C; Saint-Pierre, M; Lagacé, M; Badrinarayanan, S; Lavallée-Bourget, M H; Charest, J; Chabrat, A; Boivin, L; Lebel, M; Bousquet, M; Lévesque, M; Cicchetti, F

    2015-10-01

    The neuroprotective properties of cystamine identified in pre-clinical studies have fast-tracked this compound to clinical trials in Huntington's disease, showing tolerability and benefits on motor symptoms. We tested whether cystamine could have such properties in a Parkinson's disease murine model and now provide evidence that it can not only prevent the neurodegenerative process but also can reverse motor impairments created by a 6-hydroxydopamine lesion 3 weeks post-surgery. Importantly, we report that cystamine has neurorestorative properties 5 weeks post-lesion as seen on the number of nigral dopaminergic neurons which is comparable with treatments of cysteamine, the reduced form of cystamine used in the clinic, as well as rasagiline, increasingly prescribed in early parkinsonism. All three compounds induced neurite arborization of the remaining dopaminergic cells which was further confirmed in ex vivo dopaminergic explants derived from Pitx3-GFP mice. The disease-modifying effects displayed by cystamine/cysteamine would encourage clinical testing. PMID:26232588

  7. Proliferative retinopathies: animal models and therapeutic opportunities.

    Science.gov (United States)

    Villacampa, Pilar; Haurigot, Virginia; Bosch, Fatima

    2015-01-01

    Proliferative retinopathies are the leading causes of blindness in Western societies. The development of new, more efficacious treatments that take advantage of recent advances in the fields of gene and cell therapy requires further investigations on the mechanisms underlying disease onset and progression, and adequate animal models that recapitulate the pathogenesis of human proliferative retinopathy and allow evaluation of the long-term therapeutic benefits that these therapies can offer. Unfortunately, most models of retinal neovascularization have short-term evolution and diabetic rodents show a very mild retinal phenotype, limited to non-proliferative changes, and do not develop proliferative retinopathy at all. Transgenic mice overexpressing Insulin-like Growth Factor-I (IGF-I) in the retina (TgIGF-I) constitute the only rodent model currently available that develops most of the retinal alterations observed in diabetic eyes, with a temporal evolution that resembles that of the human disease. TgIGF-I have retinal vascular alterations that progress as animals age from non-proliferative to proliferative disease, making these mice an excellent model of proliferative retinopathy that, due to its slow progression, allows long-term evaluation of novel antiangiogenic therapies. At the molecular level, transgenic retinas recapitulate a variety of changes that are also observed in diabetic retinas, which reinforces the validity of this model. In addition to vascular and glial alterations, Tg-IGF-I mice show progressive neurodegeneration that leads to blindness in old animals. Thus, TgIGF-I are a useful model for testing the long-term efficacy and safety of innovative antiangiogenic, glial-modulating and neuroprotective therapies for the treatment of diabetic retinopathy and other retinal proliferative disorders. PMID:25760215

  8. Development of an animal model, techniques, and an exposure system to study the effects of asbestos cement dust inhalation

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, A.P.; Dagle, G.E.; Cannon, W.C.

    1978-01-01

    An aerosol exposure system and procedures for delivering asbestos cement (AC) dust to the lungs of hamsters are described. Groups of hamsters were exposed to AC aerosol concentrations of 1 and 10 ..mu..g/liter, respectively, 3 hr/day, 5 days/week, for 3 and 6 months and were sacrificed for histopathologic examination. One subgroup from both the 1- and the 10-..mu..g/liter exposure group was withdrawn from exposure after 3 months and sacrified after a 3-month recovery period to determine whether or not some of the histologic changes might be reversible. There was an apparent dose--response relationship between AC exposure and the number of asbestos bodies and small randomly distributed foci of alveolar macrophages. No other treatment-related lesions were observed. The 3-month recovery period had no apparent effect.

  9. Drug delivery systems in domestic animal species.

    Science.gov (United States)

    Brayden, David J; Oudot, Emilie J M; Baird, Alan W

    2010-01-01

    Delivery of biologically active agents to animals is often perceived to be the poor relation of human drug delivery. Yet this field has a long and successful history of species-specific device and formulation development, ranging from simple approaches and devices used in production animals to more sophisticated formulations and approaches for a wide range of species. While several technologies using biodegradable polymers have been successfully marketed in a range of veterinary and human products, the transfer of delivery technologies has not been similarly applied across species. This may be due to a combination of specific technical requirements for use of devices in different species, inter-species pharmacokinetic, pharmacodynamic and physiological differences, and distinct market drivers for drug classes used in companion and food-producing animals. This chapter reviews selected commercialised and research-based parenteral and non-parenteral veterinary drug delivery technologies in selected domestic species. Emphasis is also placed on the impact of endogenous drug transporters on drug distribution characteristics in different species. In vitro models used to investigate carrier-dependent transport are reviewed. Species-specific expression of transporters in several tissues can account for inter-animal or inter-species pharmacokinetic variability, lack of predictability of drug efficacy, and potential drug-drug interactions. PMID:20204584

  10. Animal models of alcohol and drug dependence

    OpenAIRE

    Planeta, Cleopatra S.

    2013-01-01

    Drug addiction has serious health and social consequences. In the last 50 years, a wide range of techniques have been developed to model specific aspects of drug-taking behaviors and have greatly contributed to the understanding of the neurobiological basis of drug abuse and addiction. In the last two decades, new models have been proposed in an attempt to capture the more genuine aspects of addiction-like behaviors in laboratory animals. The goal of the present review is to provide an overvi...

  11. Physically based modeling and animation of tornado

    Institute of Scientific and Technical Information of China (English)

    LIU Shi-guang; WANG Zhang-ye; GONG Zheng; CHEN Fei-fei; PENG Qun-sheng

    2006-01-01

    Realistic modeling and rendering of dynamic tornado scene is recognized as a challenging task for researchers of computer graphics. In this paper a new physically based method for simulating and animating tornado scene is presented. We first propose a Two-Fluid model based on the physical theory of tornado, then we simulate the flow of tornado and its interaction with surrounding objects such as debris, etc. Taking the scattering and absorption of light by the participating media into account, the illumination effects of the tornado scene can be generated realistically. With the support of graphics hardware, various kinds of dynamic tornado scenes can be rendered at interactive rates.

  12. Computational physics : a modeler-simulator for animated physical objects

    OpenAIRE

    Luciani, Annie; Jimenez, Stéphane; Florens, Jean-Loup; Cadoz, Claude; Raoult, Olivier

    1991-01-01

    International audience Physical modeling for animation is now firmly established. The present aim is to design and build a structured and well-defined tool rather merely specific algorithms to simulate physical knowledge. We will first define the basic functions of a modeler-simulator for physical modeling which enables operator gestural control, and where the simulation processes are real time oriented. We will then introduce the Cordis-Anima system, its constructive language, its real ti...

  13. Large Animal Models of Neurological Disorders for Gene Therapy

    OpenAIRE

    Gagliardi, Christine; Bunnell, Bruce A.

    2009-01-01

    The development of therapeutic interventions for genetic disorders and diseases that affect the central nervous system (CNS) has proven challenging. There has been significant progress in the development of gene therapy strategies in murine models of human disease, but gene therapy outcomes in these models do not always translate to the human setting. Therefore, large animal models are crucial to the development of diagnostics, treatments, and eventual cures for debilitating neurological diso...

  14. Clinical relevance of animal models of schizophrenia.

    Science.gov (United States)

    Koch, Michael

    2013-01-01

    Animal models and endophenotypes of mental disorders are regarded as preclinical heuristic approaches aiming at understanding the etiopathogenesis of these diseases, and at developing drug treatment strategies. A frequently used translational model of sensorimotor gating and its deficits in some neuropsychiatric disorders is prepulse inhibition (PPI) of startle. PPI is reduced in schizophrenia patients, but the exact relationship between symptoms and reduced PPI is still unclear. Recent findings suggest that the levels of PPI in humans and animals may be predictive of certain cognitive functions. Hence, this simple measure of reflex suppression may be of use for clinical research. PPI is the reduction of the acoustic startle response that occurs when a weak prestimulus is presented shortly prior to a startling noise pulse. It is considered a measure of sensorimotor gating and is regulated by a cortico-limbic striato-pallidal circuit. However, PPI does not only occur in the domain of startle. PPI of alpha, gamma, and theta oscillations at frontal and central locations has been found, suggesting a relationship between PPI and cognitive processes. In fact, levels of PPI in healthy subjects and in animals predict their performance in cognitive tasks mainly mediated by the frontal cortex. Taken together, PPI might reflect a more general filtering performance leading to gating of intrusive sensory, motor, and cognitive input, thereby improving cognitive function. Hence, PPI might be used in clinical settings to predict the impact of drugs or psychotherapy on cognitive performance in neuropsychiatric patients. PMID:24053035

  15. Animal models of depression: are there any?

    Science.gov (United States)

    O'Neil, Michael F; Moore, Nicholas A

    2003-06-01

    Simple tests for antidepressant-like activity, such as 5-HTP-induced syndrome or reserpine-induced hypomotility, are often mechanism-based tests, pharmacologically specific for certain known classes of therapeutically successful antidepressant agents. Many of these behavioural assays have been superseded by neurochemical techniques such as in vivo microdialysis. In contrast to these mechanistic-based models, investigators have also endeavoured to reproduce in the laboratory, factors that are believed to precipitate depression in people. It is a strong assumption in this approach that depression is a response to stress. This strategy profiles the consequences of chronic stress particularly psychosocial stress or early life events, in order to reproduce in animals the behavioural signs and pathologies associated with depression. The advances in the social psychological, clinical pathological and new areas such as neuroimaging research offer the possibility of establishing more sophisticated models for depression in animals with a broader range of biomarkers from the immunological and endocrinological to neurochemical and behavioural. Combining these novel insights with more traditional tests of depression may not only increase our understanding of the neurobiology of depression but also afford more precise and predictive preclinical models of depression. The responsiveness of different strains or genetically modified animals to stress is likely to be a key area of study. Furthermore we must look to individual differences in subjects, even within the same strain, to more fully understand why some individuals show pathological responses to stress whereas others appear unaffected. Conversely in validating our models using currently available treatments we must include the concept of non-responders so as not to disregard models that may extend therapeutic possibilities in these patients. PMID:12766928

  16. Lattice animals and the Percolation model under rotational constraint

    OpenAIRE

    Bose, Indrani

    1997-01-01

    The effect of rotational constraint on the properties of lattice models like the self-avoiding walk, lattice animals and percolation is discussed. The results obtained so far, using a variety of exact and approximate techniques, are described. Examples of the rotational constraint in real systems are also given.

  17. Animal models of craving for ethanol.

    Science.gov (United States)

    Koob, G F

    2000-08-01

    Craving has various meanings but can be defined generally in terms of a desire for the previously experienced effects of ethanol. Animal models provide a means by which to study the underlying mechanisms associated with craving and are most useful when they fulfill the requirements for predictive validity and reliability. Craving is a key part of the process of addiction that can lead to relapse and is conceptualized as having at least three components: preoccupation/anticipation, binge/intoxication and withdrawal/negative affect. Animal models of craving are hypothesized at this time to involve three domains of motivation to take drugs: excessive drinking, negative affective states and conditioned reinforcement. Excessive drinking includes the alcohol deprivation effect, drinking during withdrawal and drinking after a history of dependence. Models of the negative affective state include increases in brain reward thresholds, and conditioned reinforcement models include cue-induced resistance to extinction or cue-induced reinstatement. Experimental psychology is a rich resource of sensitive behavioral techniques by which to measure hypothetical constructs associated with the motivation to drink ethanol. Rigorous tests of predictive validity and reliability will be necessary to make them useful for understanding the neurobiology of craving and for the development of new medications for treating craving. PMID:11002904

  18. Animal Models of Human Placentation - A Review

    DEFF Research Database (Denmark)

    Carter, Anthony Michael

    2007-01-01

    This review examines the strengths and weaknesses of animal models of human placentation and pays particular attention to the mouse and non-human primates. Analogies can be drawn between mouse and human in placental cell types and genes controlling placental development. There are, however...... is no trophoblast invasion of uterine vessels, and the immunology of pregnancy may be quite different. We conclude that continued research on non-human primates is needed to clarify embryonic-endometrial interactions. The interstitial implantation of human is unusual, but the initial interaction...... and delivers poorly developed young. Guinea pig is a good alternative rodent model and among the few species known to develop pregnancy toxaemia. The sheep is well established as a model in fetal physiology but is of limited value for placental research. The ovine placenta is epitheliochorial, there...

  19. Lattice animal model of chromosome organization

    Science.gov (United States)

    Iyer, Balaji V. S.; Arya, Gaurav

    2012-07-01

    Polymer models tied together by constraints of looping and confinement have been used to explain many of the observed organizational characteristics of interphase chromosomes. Here we introduce a simple lattice animal representation of interphase chromosomes that combines the features of looping and confinement constraints into a single framework. We show through Monte Carlo simulations that this model qualitatively captures both the leveling off in the spatial distance between genomic markers observed in fluorescent in situ hybridization experiments and the inverse decay in the looping probability as a function of genomic separation observed in chromosome conformation capture experiments. The model also suggests that the collapsed state of chromosomes and their segregation into territories with distinct looping activities might be a natural consequence of confinement.

  20. Animal models of glucocorticoid-induced glaucoma.

    Science.gov (United States)

    Overby, Darryl R; Clark, Abbot F

    2015-12-01

    Glucocorticoid (GC) therapy is widely used to treat a variety of inflammatory diseases and conditions. While unmatched in their anti-inflammatory and immunosuppressive activities, GC therapy is often associated with the significant ocular side effect of GC-induced ocular hypertension (OHT) and iatrogenic open-angle glaucoma. Investigators have generated GC-induced OHT and glaucoma in at least 8 different species besides man. These models mimic many features of this condition in man and provide morphologic and molecular insights into the pathogenesis of GC-OHT. In addition, there are many clinical, morphological, and molecular similarities between GC-induced glaucoma and primary open-angle glaucoma (POAG), making animals models of GC-induced OHT and glaucoma attractive models in which to study specific aspects of POAG. PMID:26051991

  1. The wobbler mouse, an ALS animal model

    DEFF Research Database (Denmark)

    Moser, Jakob Maximilian; Bigini, Paolo; Schmitt-John, Thomas

    2013-01-01

    This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking...... disease mechanism and testing various therapeutic approaches and discuss the relevance of these advances for human ALS. The identification of the causative mutation linking the wobbler mutation to a vesicle transport factor and the research focussed on the cellular basis and the therapeutic treatment of...

  2. Haemolysis and perturbations in the systemic iron metabolism of suckling, copper-deficient mosaic mutant mice - an animal model of Menkes disease.

    Directory of Open Access Journals (Sweden)

    Małgorzata Lenartowicz

    Full Text Available The biological interaction between copper and iron is best exemplified by the decreased activity of multicopper ferroxidases under conditions of copper deficiency that limits the availability of iron for erythropoiesis. However, little is known about how copper deficiency affects iron homeostasis through alteration of the activity of other copper-containing proteins, not directly connected with iron metabolism, such as superoxide dismutase 1 (SOD1. This antioxidant enzyme scavenges the superoxide anion, a reactive oxygen species contributing to the toxicity of iron via the Fenton reaction. Here, we analyzed changes in the systemic iron metabolism using an animal model of Menkes disease: copper-deficient mosaic mutant mice with dysfunction of the ATP7A copper transporter. We found that the erythrocytes of these mutants are copper-deficient, display decreased SOD1 activity/expression and have cell membrane abnormalities. In consequence, the mosaic mice show evidence of haemolysis accompanied by haptoglobin-dependent elimination of haemoglobin (Hb from the circulation, as well as the induction of haem oxygenase 1 (HO1 in the liver and kidney. Moreover, the hepcidin-ferroportin regulatory axis is strongly affected in mosaic mice. These findings indicate that haemolysis is an additional pathogenic factor in a mouse model of Menkes diseases and provides evidence of a new indirect connection between copper deficiency and iron metabolism.

  3. Cyclodextrin-Complexed Ocimum basilicum Leaves Essential Oil Increases Fos Protein Expression in the Central Nervous System and Produce an Antihyperalgesic Effect in Animal Models for Fibromyalgia

    Directory of Open Access Journals (Sweden)

    Simone S. Nascimento

    2014-12-01

    Full Text Available O. basilicum leaves produce essential oils (LEO rich in monoterpenes. The short half-life and water insolubility are limitations for LEO medical uses. β-Cyclodextrin (β-CD has been employed to improve the pharmacological properties of LEO. We assessed the antihyperalgesic profile of LEO, isolated or complexed in β-CD (LEO/β-CD, on an animal model for fibromyalgia. Behavioral tests: mice were treated every day with either LEO/β-CD (25, 50 or 100 mg/kg, p.o., LEO (25 mg/kg, p.o., tramadol (TRM 4 mg/kg, i.p. or vehicle (saline, and 60 min after treatment behavioral parameters were assessed. Therefore, mice were evaluated for mechanical hyperalgesia (von Frey, motor coordination (Rota-rod and muscle strength (Grip Strength Metter in a mice fibromyalgia model. After 27 days, we evaluated the central nervous system (CNS pathways involved in the effect induced by experimental drugs through immunofluorescence protocol to Fos protein. The differential scanning analysis (DSC, thermogravimetry/derivate thermogravimetry (TG/DTG and infrared absorption spectroscopy (FTIR curves indicated that the products prepared were able to incorporate the LEO efficiently. Oral treatment with LEO or LEO-βCD, at all doses tested, produced a significant reduction of mechanical hyperalgesia and we were able to significantly increase Fos protein expression. Together, our results provide evidence that LEO, isolated or complexed with β-CD, produces analgesic effects on chronic non-inflammatory pain as fibromyalgia.

  4. Packaging systems for animal origin food

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available The main task of food packaging is to protect the product during storage and transport against the action of biological, chemical and mechanical factors. The paper presents packaging systems for food of animal origin. Vacuum and modified atmosphere packagings were characterised together with novel types of packagings, referred to as intelligent packaging and active packaging. The aim of this paper was to present all advantages and disadvantages of packaging used for meat products. Such list enables to choose the optimal type of packaging for given assortment of food and specific conditions of the transport and storing.

  5. Rugged Video System For Inspecting Animal Burrows

    Science.gov (United States)

    Triandafils, Dick; Maples, Art; Breininger, Dave

    1992-01-01

    Video system designed for examining interiors of burrows of gopher tortoises, 5 in. (13 cm) in diameter or greater, to depth of 18 ft. (about 5.5 m), includes video camera, video cassette recorder (VCR), television monitor, control unit, and power supply, all carried in backpack. Polyvinyl chloride (PVC) poles used to maneuver camera into (and out of) burrows, stiff enough to push camera into burrow, but flexible enough to bend around curves. Adult tortoises and other burrow inhabitants observable, young tortoises and such small animals as mice obscured by sand or debris.

  6. A Knowledge Representation Model for Video—Based Animation

    Institute of Scientific and Technical Information of China (English)

    劳志强; 潘云鹤

    1998-01-01

    In this paper,a brief survey on knowledge-based animation techniques is given.Then a VideoStream-based Knowledge Representation Model(VSKRM)for Joint Objects is presented which includes the knowledge representation of :Graphic Object,Action and VideoStream.Next a general description of the UI framework of a system is given based on the VSKRM model.Finally,a conclusion is reached.

  7. Mechanobiology of Embryonic Skeletal Development: Insights from Animal Models

    OpenAIRE

    Nowlan, Niamh C.; Sharpe, James; Karen A Roddy; Prendergast, Patrick J; Murphy, Paula

    2010-01-01

    A range of clinical conditions in which foetal movement is reduced or prevented can have a severe effect on skeletal development. Animal models have been instrumental to our understanding of the interplay between mechanical forces and skeletal development, in particular the mouse and the chick model systems. In the chick, the most commonly used means of altering the mechanical environment is by pharmaceutical agents which induce paralysis, while genetically modified mice with non-functional o...

  8. Improved Animal Models for Testing Gene Therapy for Atherosclerosis

    OpenAIRE

    Du, Liang; Zhang, Jingwan; De Meyer, Guido R. Y.; Flynn, Rowan; Dichek, David A.

    2013-01-01

    Gene therapy delivered to the blood vessel wall could augment current therapies for atherosclerosis, including systemic drug therapy and stenting. However, identification of clinically useful vectors and effective therapeutic transgenes remains at the preclinical stage. Identification of effective vectors and transgenes would be accelerated by availability of animal models that allow practical and expeditious testing of vessel-wall-directed gene therapy. Such models would include humanlike le...

  9. Mefenamic Acid Induced Nephrotoxicity: An Animal Model

    Directory of Open Access Journals (Sweden)

    Muhammad Nazrul Somchit

    2014-12-01

    Full Text Available Purpose: Nonsteroidal anti-inflammatory drugs (NSAIDs are used for the treatment of many joint disorders, inflammation and to control pain. Numerous reports have indicated that NSAIDs are capable of producing nephrotoxicity in human. Therefore, the objective of this study was to evaluate mefenamic acid, a NSAID nephrotoxicity in an animal model. Methods: Mice were dosed intraperitoneally with mefenamic acid either as a single dose (100 or 200 mg/kg in 10% Dimethyl sulfoxide/Palm oil or as single daily doses for 14 days (50 or 100 mg/kg in 10% Dimethyl sulfoxide/Palm oil per day. Venous blood samples from mice during the dosing period were taken prior to and 14 days post-dosing from cardiac puncture into heparinized vials. Plasma blood urea nitrogen (BUN and creatinine activities were measured. Results: Single dose of mefenamic acid induced mild alteration of kidney histology mainly mild glomerular necrosis and tubular atrophy. Interestingly, chronic doses induced a dose dependent glomerular necrosis, massive degeneration, inflammation and tubular atrophy. Plasma blood urea nitrogen was statistically elevated in mice treated with mefenamic acid for 14 days similar to plasma creatinine. Conclusion: Results from this study suggest that mefenamic acid as with other NSAIDs capable of producing nephrotoxicity. Therefore, the study of the exact mechanism of mefenamic acid induced severe nephrotoxicity can be done in this animal model.

  10. Animal nutrition in a systems context - the way forward

    International Nuclear Information System (INIS)

    Full text: Secondary production (i.e. milk, meat, wool and eggs) in animal production systems is a function of complex interactions between animal potential and the environmental conditions (biotic and abiotic). A major factor limiting secondary production is animal nutrition. Obviously, in the absence of food, the animal will stop producing and eventually die; consequently, the investment in it, to that point, is lost. Supplying only enough nutrients to maintain the animal results in no productive output, and thus the marginal cost of production is infinite, i.e. animal input costs are incurred but no return is harvested. Provision of nutrients in excess of maintenance allows the animal to become productive thus generating a return on the investment. Animals differ in their nutrient requirements according to their inherent genetic potential and the desired level of production. There are multiple combinations of dietary ingredients that can meet an animal's nutrient requirements, which create variation in dietary costs when food resources are finite in supply. Optimization algorithms can be utilized to solve for maximum production or economic return given a set of constraints. For animals, these constraints include nutrient requirements and the availability and accessibility of food supplies. Temporal fluctuations of abiotic environmental conditions may directly impact key components of the primary production systems. For example seasonal drought diminishes and changes the seasonal pattern of herbage growth, altering or limiting the nutrient availability from local sources such as pasture. Thus, it is important that animal performance models are capable of accurately predicting secondary production responses to varying and dynamic feed inputs. The accuracy and precision of current nutrient requirement models for animals has improved over time. Although static in form, these models can and have been utilized to predict secondary production from a set of inputs

  11. New Methods for Integrated Models of Animal Disease Control

    OpenAIRE

    Rich, Karl M.

    2007-01-01

    Accurate assessments of the epidemiological and economic impacts of an animal disease require the incorporation of feedbacks between disease spread and production incentives. This paper motivates a new modeling framework that is sensitive to the dynamics of disease, production decisions and incentives, different livestock production systems, and their interaction through the use of an integrated system dynamics framework. Preliminary simulation results are provided to demonstrate proof-of-con...

  12. Reproduction of post-weaning multi-systemic wasting syndrome in an animal disease model as a tool for vaccine testing under controlled conditions.

    Science.gov (United States)

    McKillen, John; McNair, Irene; Lagan, Paula; McKay, Karen; McClintock, Julie; Casement, Veronica; Charreyre, Catherine; Allan, Gordon

    2016-04-01

    Snatch farrowed, colostrum deprived piglets were inoculated with different combinations of porcine circovirus 2, porcine parvovirus and Erysipelothrix rhusiopathiae candidate vaccines. 10 piglets were mock-vaccinated. Following virus challenge with a combined porcine circovirus 2/porcine parvovirus inoculum, all animals were monitored and samples taken for serology, immunohistochemistry and qPCR. At 24dpc all non-vaccinated animals remaining were exhibiting signs of post-weaning multi-systemic wasting syndrome which was confirmed by laboratory analysis. Details of the study, analysis of samples and performance of the candidate vaccines are described. PMID:27033924

  13. Animal Models of Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Eva Harris

    2012-01-01

    Full Text Available The development of animal models of dengue virus (DENV infection and disease has been challenging, as epidemic DENV does not naturally infect non-human species. Non-human primates (NHPs can sustain viral replication in relevant cell types and develop a robust immune response, but they do not develop overt disease. In contrast, certain immunodeficient mouse models infected with mouse-adapted DENV strains show signs of severe disease similar to the ‘vascular-leak’ syndrome seen in severe dengue in humans. Humanized mouse models can sustain DENV replication and show some signs of disease, but further development is needed to validate the immune response. Classically, immunocompetent mice infected with DENV do not manifest disease or else develop paralysis when inoculated intracranially; however, a new model using high doses of DENV has recently been shown to develop hemorrhagic signs after infection. Overall, each model has its advantages and disadvantages and is differentially suited for studies of dengue pathogenesis and immunopathogenesis and/or pre-clinical testing of antiviral drugs and vaccines.

  14. Serotonergic pharmacology in animal models: from behavioral disorders to dyskinesia.

    Science.gov (United States)

    Beaudoin-Gobert, Maude; Sgambato-Faure, Véronique

    2014-06-01

    Serotonin (5-HT) dysfunction has been involved in both movement and behavioral disorders. Serotonin pharmacology improves dyskinetic movements as well as depressive, anxious, aggressive and anorexic symptoms. Animal models have been useful to investigate more precisely to what extent 5-HT is involved and whether drugs targeting the 5-HT system can counteract the symptoms exhibited. We review existing rodent and non-human primate (NHP) animal models in which selective 5-HT or dual 5-HT-norepinephrine (NE) transporter inhibitors, as well as specific 5-HT receptors agonists and antagonists, monoamine oxidase A inhibitors (IMAO-A) and MDMA (Ecstasy) have been used. We review overlaps between the various drug classes involved. We confront behavioral paradigms and treatment regimen. Some but not all animal models and associated pharmacological treatments have been extensively studied in the litterature. In particular, the impact of selective serotonin reuptake inhibitors (SSRI) has been extensively investigated using a variety of pharmacological or genetic rodent models of depression, anxiety, aggressiveness. But the validity of these rodent models is questioned. On the contrary, few studies did address the potential impact of targeting the 5-HT system on NHP models of behavioral disorders, despite the fact that those models may match more closely to human pathologies. Further investigations with carefull behavioral analysis will improve our understanding of neural bases underlying the pathophysiology of movement and behavioral disorders. PMID:24486710

  15. The use of suspension models and comparison with true weightlessness. [Animal Model Workshop on Gravitational Physiology

    Science.gov (United States)

    Musacchia, X. J.; Ellis, S.

    1985-01-01

    A resume is presented of various papers concerning the effect of weightlessness on particular physiological and biochemical phenomena in animal model systems. Findings from weightlessness experiments on earth using suspension models are compared with results of experiments in orbit. The biological phenomena considered include muscle atrophy, changes in the endocrine system, reduction in bone formation, and changes in the cardiovascular system.

  16. Animal models of obsessive–compulsive disorder: utility and limitations

    Directory of Open Access Journals (Sweden)

    Alonso P

    2015-08-01

    Full Text Available Pino Alonso,1–4 Clara López-Solà,1–3 Eva Real,1–3 Cinto Segalàs,1–3 José Manuel Menchón1–41OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, 2Bellvitge Biomedical Research Institute-IDIBELL, 3Centro de Investigación en Red de Salud Mental, Carlos III Health Institute, 4Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, SpainAbstract: Obsessive–compulsive disorder (OCD is a disabling and common neuropsychiatric condition of poorly known etiology. Many attempts have been made in the last few years to develop animal models of OCD with the aim of clarifying the genetic, neurochemical, and neuroanatomical basis of the disorder, as well as of developing novel pharmacological and neurosurgical treatments that may help to improve the prognosis of the illness. The latter goal is particularly important given that around 40% of patients with OCD do not respond to currently available therapies. This article summarizes strengths and limitations of the leading animal models of OCD including genetic, pharmacologically induced, behavioral manipulation-based, and neurodevelopmental models according to their face, construct, and predictive validity. On the basis of this evaluation, we discuss that currently labeled “animal models of OCD” should be regarded not as models of OCD but, rather, as animal models of different psychopathological processes, such as compulsivity, stereotypy, or perseverance, that are present not only in OCD but also in other psychiatric or neurological disorders. Animal models might constitute a challenging approach to study the neural and genetic mechanism of these phenomena from a trans-diagnostic perspective. Animal models are also of particular interest as tools for developing new therapeutic options for OCD, with the greatest convergence focusing on the glutamatergic system, the role of ovarian and related hormones, and the exploration of new

  17. ANIMAL MODELS: A REVIEW FROM THREE TESTS USED IN ANXIETY

    OpenAIRE

    Manuel Eduardo Góngora; Cristina Vargas-Irwin; Lady Andrea Polanco

    2011-01-01

    The aim of this paper is to present a review of commonly used animal models tostudy anxiety, looking to make a presentation of three instruments used in thelaboratory. It describes the importance of using animal models for understandinghuman behavior; there are two groups of animal models and the most representativetests for each of these.

  18. Method and system for estimating herbage uptake of an animal

    OpenAIRE

    S. Nadimi, Esmaeil; Jørgensen, Rasmus Nyholm; Oudshoorn, Frank Willem

    2011-01-01

    The invention relates to a method and a system for estimating the feeding value or the amount of consumed herbage of grazing animals. The estimated herbage uptake is based on measured and possibly estimated data which is supplied as input data to a mathematical model. Measured input data may be acceleration data of the head of the animal, the length of herbage and the quality, i.e. feeding value, of herbage. Estimated input data may be the frequency of the reciprocate head motion of the anima...

  19. Animal models for investigating chronic pancreatitis

    Directory of Open Access Journals (Sweden)

    Aghdassi Alexander A

    2011-12-01

    Full Text Available Abstract Chronic pancreatitis is defined as a continuous or recurrent inflammatory disease of the pancreas characterized by progressive and irreversible morphological changes. It typically causes pain and permanent impairment of pancreatic function. In chronic pancreatitis areas of focal necrosis are followed by perilobular and intralobular fibrosis of the parenchyma, by stone formation in the pancreatic duct, calcifications in the parenchyma as well as the formation of pseudocysts. Late in the course of the disease a progressive loss of endocrine and exocrine function occurs. Despite advances in understanding the pathogenesis no causal treatment for chronic pancreatitis is presently available. Thus, there is a need for well characterized animal models for further investigations that allow translation to the human situation. This review summarizes existing experimental models and distinguishes them according to the type of pathological stimulus used for induction of pancreatitis. There is a special focus on pancreatic duct ligation, repetitive overstimulation with caerulein and chronic alcohol feeding. Secondly, attention is drawn to genetic models that have recently been generated and which mimic features of chronic pancreatitis in man. Each technique will be supplemented with data on the pathophysiological background of the model and their limitations will be discussed.

  20. Animal models for investigating chronic pancreatitis.

    Science.gov (United States)

    Aghdassi, Alexander A; Mayerle, Julia; Christochowitz, Sandra; Weiss, Frank U; Sendler, Matthias; Lerch, Markus M

    2011-01-01

    Chronic pancreatitis is defined as a continuous or recurrent inflammatory disease of the pancreas characterized by progressive and irreversible morphological changes. It typically causes pain and permanent impairment of pancreatic function. In chronic pancreatitis areas of focal necrosis are followed by perilobular and intralobular fibrosis of the parenchyma, by stone formation in the pancreatic duct, calcifications in the parenchyma as well as the formation of pseudocysts. Late in the course of the disease a progressive loss of endocrine and exocrine function occurs. Despite advances in understanding the pathogenesis no causal treatment for chronic pancreatitis is presently available. Thus, there is a need for well characterized animal models for further investigations that allow translation to the human situation. This review summarizes existing experimental models and distinguishes them according to the type of pathological stimulus used for induction of pancreatitis. There is a special focus on pancreatic duct ligation, repetitive overstimulation with caerulein and chronic alcohol feeding. Secondly, attention is drawn to genetic models that have recently been generated and which mimic features of chronic pancreatitis in man. Each technique will be supplemented with data on the pathophysiological background of the model and their limitations will be discussed. PMID:22133269

  1. 人脸建模与动画的研究%Study of Face Modeling and Animation

    Institute of Scientific and Technical Information of China (English)

    王洵; 董兰芳; 万寿红

    2003-01-01

    Face modeling and animation is one of the most challenging problems in Computer Graphics. In this paper,we describe our study of face modeling and animation,especially of three-dimensional model-based facial animation.Our study includes the following aspects: developing a face model editor; realizing face model calibration; generatinga realistic face image; developing a MPEG-4 compliant facial animation system; developing two speech animation sys-tems,one is based on KD2000,the other is based on SAPI5.0.

  2. Complete Isolation System for Laboratory Infectious Animal

    Institute of Scientific and Technical Information of China (English)

    Jean; Pierre

    2005-01-01

    Contents:Duringthe development of biological medical science,a great number of research experiments are carried out andthe various infectious animal experiments are necessary part of them.For lab animal experiments,it is necessary tochoose proper isolation equipments accordingto experiment hazardlevels.1.FunctionsAnimal isolation systemare used broadlyin laboratory research,pharmaceuticals and medical areas.The isolationsystemhas become excellent equipmentsin animal breeding,disease diagnosis,analysis,test ...

  3. Dysregulation of Brain Reward Systems in Eating Disorders: Neurochemical Information from Animal Models of Binge Eating, Bulimia Nervosa, and Anorexia Nervosa

    OpenAIRE

    Avena, Nicole M.; Bocarsly, Miriam E.

    2011-01-01

    Food intake is mediated, in part, through brain pathways for motivation and reinforcement. Dysregulation of these pathways may underlay some of the behaviors exhibited by patients with eating disorders. Research using animal models of eating disorders has greatly contributed to the detailed study of potential brain mechanisms that many underlie the causes or consequences of aberrant eating behaviors. This review focuses on neurochemical evidence of reward-related brain dysfunctions obtained t...

  4. Animal models of bronchopulmonary dysplasia. The preterm baboon models

    OpenAIRE

    Yoder, Bradley A.; Coalson, Jacqueline J.

    2014-01-01

    Much of the progress in improved neonatal care, particularly management of underdeveloped preterm lungs, has been aided by investigations of multiple animal models, including the neonatal baboon (Papio species). In this article we highlight how the preterm baboon model at both 140 and 125 days gestation (term equivalent 185 days) has advanced our understanding and management of the immature human infant with neonatal lung disease. Not only is the 125-day baboon model extremely relevant to the...

  5. Animal Model of Acute Deep Vein Thrombosis

    International Nuclear Information System (INIS)

    Purpose: To develop an animal model of acute deep vein thrombosis (DVT). Methods: In part I of the study nine juvenile domestic pigs were used. Each external iliac vein was transluminally occluded with a balloon catheter. Thrombin was infused through a microcatheter in one leg according to one of the following protocols: (1) intraarterial (IA): 1250 U at 25 U/min in the common femoral artery (n= 3); (2) intravenous (IV): 5000 U in the popliteal vein at 500 U/min (n= 3), or at 100 U/min (n= 3). Saline was administered in the opposite leg. After the animals were killed, the mass of thrombus in the iliofemoral veins was measured. The pudendoepiploic (PEV), profunda femoris (PF), and popliteal veins (PV) were examined. Thrombosis in the tributaries of the superficial femoral vein (SFVt) was graded according to a three-point scale (0, +, ++). In part II of the study IV administration was further investigated in nine pigs using the following three regimens with 1000 U at 25 U/min serving as the control: (1) 1000 U at 100 U/min, (2) 250 U at 25 U/min, (3) 250 U at 6.25 U/min. Results: All animals survived. In part I median thrombus mass in the test limbs was 1.40 g as compared with 0.25 g in the controls (p= 0.01). PEV, PFV and PV were thrombosed in all limbs infused with thrombin. IV infusion was more effective in inducing thrombosis in both the parent veins (mass 1.32-1.78 g) and SVFt (++ in 4 of 6 legs), as compared with IA infusion (mass 0.0-1.16 g; SFVt ++ in 1 of 3 legs). In part II thrombus mass in axial veins ranged from 1.23 to 2.86 g, and showed no relationship with the dose of thrombin or the rate of infusion. Tributary thrombosis was less extensive with 250 U at 25 U/min than with the other regimens. Conclusion: Slow distal intravenous thrombin infusion in the hind legs of pigs combined with proximal venous occlusion induces thrombosis in the leg veins that closely resembles clinical DVT in distribution

  6. A Distant Solar System (Artist's Concept Animation)

    Science.gov (United States)

    2004-01-01

    This animation portrays an artist's concept of a distant hypothetical solar system, about the same age as our own. It begins close to the star, and then moves out past a number of planets. Though 'extrasolar' planets are too small to be seen with telescopes, astronomers have detected more than 100 gas giants like Jupiter via their gravitational tug on their parent stars. The view pulls back to reveal the outer fringes of the system and a ring of dusty debris that circles the star. This debris is all that remains of the planet-forming disk from which the planets evolved. Planets are formed when dusty material in a large disk surrounding a young star clumps together. Leftover material is eventually blown out by solar wind or pushed out by gravitational interactions with planets. Billions of years later, only an outer disk of debris remains. These outer debris disks are too faint to be imaged directly by visible-light telescopes. They are washed out by the glare of the Sun. However, NASA's Spitzer Space Telescope can detect their heat, or excess thermal emission, in infrared light. This allows astronomers to study the aftermath of planet building in distant solar systems like our own.

  7. Impulsivity in Animal Models for Drug Abuse Disorders

    OpenAIRE

    Jentsch, J. David

    2008-01-01

    Different conceptual frameworks have been generated to explain substance abuse; of relevance to this article, dysfunction of impulse control systems that are required for avoiding or stopping drug-seeking and –taking may play a key role in addiction. This review summarizes work in animal models that explains the pervasive association between impulse control and substance abuse. It further underscores the concept that impulse control may be a critical target for pharmacological intervention in...

  8. Neuronal and brain morphological changes in animal models of schizophrenia.

    Science.gov (United States)

    Flores, Gonzalo; Morales-Medina, Julio César; Diaz, Alfonso

    2016-03-15

    Schizophrenia, a severe and debilitating disorder with a high social burden, affects 1% of the adult world population. Available therapies are unable to treat all the symptoms, and result in strong side effects. For this reason, numerous animal models have been generated to elucidate the pathophysiology of this disorder. All these models present neuronal remodeling and abnormalities in spine stability. It is well known that the complexity in dendritic arborization determines the number of receptive synaptic contacts. Also the loss of dendritic spines and arbor stability are strongly associated with schizophrenia. This review evaluates changes in spine density and dendritic arborization in animal models of schizophrenia. By understanding these changes, pharmacological treatments can be designed to target specific neural systems to attenuate neuronal remodeling and associated behavioral deficits. PMID:26738967

  9. RASopathies: unraveling mechanisms with animal models

    Directory of Open Access Journals (Sweden)

    Granton A. Jindal

    2015-08-01

    Full Text Available RASopathies are developmental disorders caused by germline mutations in the Ras-MAPK pathway, and are characterized by a broad spectrum of functional and morphological abnormalities. The high incidence of these disorders (∼1/1000 births motivates the development of systematic approaches for their efficient diagnosis and potential treatment. Recent advances in genome sequencing have greatly facilitated the genotyping and discovery of mutations in affected individuals, but establishing the causal relationships between molecules and disease phenotypes is non-trivial and presents both technical and conceptual challenges. Here, we discuss how these challenges could be addressed using genetically modified model organisms that have been instrumental in delineating the Ras-MAPK pathway and its roles during development. Focusing on studies in mice, zebrafish and Drosophila, we provide an up-to-date review of animal models of RASopathies at the molecular and functional level. We also discuss how increasingly sophisticated techniques of genetic engineering can be used to rigorously connect changes in specific components of the Ras-MAPK pathway with observed functional and morphological phenotypes. Establishing these connections is essential for advancing our understanding of RASopathies and for devising rational strategies for their management and treatment.

  10. RASopathies: unraveling mechanisms with animal models.

    Science.gov (United States)

    Jindal, Granton A; Goyal, Yogesh; Burdine, Rebecca D; Rauen, Katherine A; Shvartsman, Stanislav Y

    2015-08-01

    RASopathies are developmental disorders caused by germline mutations in the Ras-MAPK pathway, and are characterized by a broad spectrum of functional and morphological abnormalities. The high incidence of these disorders (∼1/1000 births) motivates the development of systematic approaches for their efficient diagnosis and potential treatment. Recent advances in genome sequencing have greatly facilitated the genotyping and discovery of mutations in affected individuals, but establishing the causal relationships between molecules and disease phenotypes is non-trivial and presents both technical and conceptual challenges. Here, we discuss how these challenges could be addressed using genetically modified model organisms that have been instrumental in delineating the Ras-MAPK pathway and its roles during development. Focusing on studies in mice, zebrafish and Drosophila, we provide an up-to-date review of animal models of RASopathies at the molecular and functional level. We also discuss how increasingly sophisticated techniques of genetic engineering can be used to rigorously connect changes in specific components of the Ras-MAPK pathway with observed functional and morphological phenotypes. Establishing these connections is essential for advancing our understanding of RASopathies and for devising rational strategies for their management and treatment. PMID:26203125

  11. Information Learned from Animal Models of Atrial Fibrillation

    OpenAIRE

    Finet, J. Emanuel; Rosenbaum, David S.; Donahue, J. Kevin

    2009-01-01

    Animal models of atrial fibrillation have taught us about mechanisms of this common disease. A variety of animal models exist, including models of lone atrial fibrillation and models of atrial fibrillation in the setting of heart failure, aging or pericardial inflammation. This chapter reviews these various models.

  12. Microscopic transport model animation visualisation on KML base

    Science.gov (United States)

    Yatskiv, I.; Savrasovs, M.

    2012-10-01

    By reading classical literature devoted to the simulation theory it could be found that one of the greatest possibilities of simulation is the ability to present processes inside the system by animation. This gives to the simulation model additional value during presentation of simulation results for the public and authorities who are not familiar enough with simulation. That is why most of universal and specialised simulation tools have the ability to construct 2D and 3D representation of the model. Usually the development of such representation could take much time and there must be put a lot forces into creating an adequate 3D representation of the model. For long years such well-known microscopic traffic flow simulation software tools as VISSIM, AIMSUN and PARAMICS have had a possibility to produce 2D and 3D animation. But creation of realistic 3D model of the place where traffic flows are simulated, even in these professional software tools it is a hard and time consuming action. The goal of this paper is to describe the concepts of use the existing on-line geographical information systems for visualisation of animation produced by simulation software. For demonstration purposes the following technologies and tools have been used: PTV VISION VISSIM, KML and Google Earth.

  13. Animal Models of Ischemic Stroke. Part Two: Modeling Cerebral Ischemia

    OpenAIRE

    Bacigaluppi, Marco; Comi, Giancarlo; Dirk M Hermann

    2010-01-01

    Animal models of stroke provide an essential tool for the understanding of the complex cellular and molecular pathophysiology of stroke and for testing novel recanalyzing, neuroprotective, neuroregenerative or anti- inflammatory drugs in pre- clinical setting. Since the first description of the distal occlusion of the middle cerebral artery (MCA) in rats, different techniques and methods to induce focal and global ischemia of the brains have been developed and optimized. The different models,...

  14. Translational value of animal models of asthma: Challenges and promises.

    Science.gov (United States)

    Sagar, Seil; Akbarshahi, Hamid; Uller, Lena

    2015-07-15

    Asthma is a heterogeneous disease in which various environmental stimuli as well as different genes, cell types, cytokines and mediators are implicated. This chronic inflammatory disorder of the airways is estimated to affect as many as 300 million people worldwide. Animal models of asthma, despite their limitations, have contributed greatly to our understanding of disease pathology and the identification of key processes, cells and mediators in asthma. However, it is less likely to develop an animal model of asthma that takes into account all aspects of human disease. The focus in current asthma research is increasingly on severe asthma because this group of patients is not well treated today. Recent advances in studies of asthma exacerbation are thus considered. We therefore need to develop translational model systems for pharmacological evaluation and molecular target discovery of severe asthma and asthma exacerbations. In this review we attempted to discuss the different animal models of asthma, with special emphasis on ovalbumin and house dust mite models, their merits and their limitations. PMID:25823808

  15. Animal model of Mycoplasma fermentans respiratory infection

    Directory of Open Access Journals (Sweden)

    Yáñez Antonio

    2013-01-01

    Full Text Available Abstract Background Mycoplasma fermentans has been associated with respiratory, genitourinary tract infections and rheumatoid diseases but its role as pathogen is controversial. The purpose of this study was to probe that Mycoplasma fermentans is able to produce respiratory tract infection and migrate to several organs on an experimental infection model in hamsters. One hundred and twenty six hamsters were divided in six groups (A-F of 21 hamsters each. Animals of groups A, B, C were intratracheally injected with one of the mycoplasma strains: Mycoplasma fermentans P 140 (wild strain, Mycoplasma fermentans PG 18 (type strain or Mycoplasma pneumoniae Eaton strain. Groups D, E, F were the negative, media, and sham controls. Fragments of trachea, lungs, kidney, heart, brain and spleen were cultured and used for the histopathological study. U frequency test was used to compare recovery of mycoplasmas from organs. Results Mycoplasmas were detected by culture and PCR. The three mycoplasma strains induced an interstitial pneumonia; they also migrated to several organs and persisted there for at least 50 days. Mycoplasma fermentans P 140 induced a more severe damage in lungs than Mycoplasma fermentans PG 18. Mycoplasma pneumoniae produced severe damage in lungs and renal damage. Conclusions Mycoplasma fermentans induced a respiratory tract infection and persisted in different organs for several weeks in hamsters. This finding may help to explain the ability of Mycoplasma fermentans to induce pneumonia and chronic infectious diseases in humans.

  16. Varicocele-Induced Infertility in Animal Models

    Directory of Open Access Journals (Sweden)

    Mazdak Razi

    2015-07-01

    Full Text Available Varicocele is characterized by abnormal tortuosity and dilation of the veins of the pampiniform plexus within the spermatic cord. Although several reports show the mechanisms by which the varicocele exerts its infertility impact, the exact pathophysiology for varicocele-induced inflammation and its relationship with testicular endocrine disruption remain largely unknown. This review article will update previous findings by discussing the pathophysiology of long term-induced varicocele in rats. Testicular endocrine disruption in experimentally-induced varicocele, new findings related to biochemical alterations in germinal epithelium, and sperm cells apoptosis are highlighted. Recent observations show that varicocele down-regulates first and second maturation divisions, results in Leydig and Sertoli cell inflammation, and increases immune cell infiltration in the testes of the rat as an animal model. Ultimately, previous findings of our laboratory have revealed that varicocele decreased sperm motility, viability and severe DNA damage. Damage in sperm significantly lowers the animal’s fertility potential. Varicocele not only exerts its pathologic impact by lowering the testicular antioxidant capacity but it also down-regulates first and second maturation divisions by exerting biochemical alterations such as reducing the intracytoplasmic carbohydrate ratio in germinal epithelium.

  17. Animal Models of Uveal Melanoma: Methods, Applicability, and Limitations

    OpenAIRE

    Stei, Marta M.; Loeffler, Karin U.; Holz, Frank G.; Herwig, Martina C.

    2016-01-01

    Animal models serve as powerful tools for investigating the pathobiology of cancer, identifying relevant pathways, and developing novel therapeutic agents. They have facilitated rapid scientific progress in many tumor entities. However, for establishing a powerful animal model of uveal melanoma fundamental challenges remain. To date, no animal model offers specific genetic attributes as well as histologic, immunologic, and metastatic features of uveal melanoma. Syngeneic models with intraocul...

  18. Clinical Forms and Animal Models of Hypophosphatasia.

    Science.gov (United States)

    Salles, Jean Pierre

    2015-01-01

    Hypophosphatasia (HPP) is due to mutations of the tissue non-specific alkaline phosphatase (TNAP) gene expressed in the liver, kidney, and bone. TNAP substrates include inorganic pyrophosphate cleaved into inorganic phosphate (Pi) in bone, pyridoxal-5'-phosphate (PLP), the circulating form of vitamin B6, and phosphoethanolamine (PEA). As an autosomal recessive or dominant disease, HPP results in a range of clinical forms. Its hallmarks are low alkaline phosphatase (AP) and elevated PLP and PEA levels. Perinatal HPP may cause early death with respiratory insufficiency and hypomineralization resulting in deformed limbs and sometimes near-absence of bones and skull. Infantile HPP is diagnosed before 6 months of life. Respiratory failure, rib fractures and seizures due to vitamin B6 deficiency in the brain indicate poor prognosis. Craniosynostosis is frequent. Unlike in other forms of rickets, calcium and phosphorus are not decreased, resulting in hypercalciuria and nephrocalcinosis. Hypercalcemic crisis may occur. Failure to thrive and growth retardation are concerns. In infantile and adult forms of HPP, non-traumatic fractures may be the prominent manifestation, with otherwise unexplained chronic pain. Progressive myopathy has been described. Dental manifestations with early loss of teeth are usual in HPP and in a specific form, odontohypophosphatasia. HPP has been studied in knock-out mice models which mimic its severe form. Animal models have made a major contribution to the development of an original enzyme therapy for human infantile HPP, which is however essentially targeted at mineralized tissues. Better knowledge of its extraskeletal manifestations, including pain and neurological symptoms, is therefore required. PMID:26219704

  19. Surgical animal models of neuropathic pain: Pros and Cons.

    Science.gov (United States)

    Challa, Siva Reddy

    2015-03-01

    One of the biggest challenges for discovering more efficacious drugs for the control of neuropathic pain has been the diversity of chronic pain states in humans. It is now acceptable that different mechanisms contribute to normal physiologic pain, pain arising from tissue damage and pain arising from injury to the nervous system. To study pain transmission, spot novel pain targets and characterize the potential analgesic profile of new chemical entities, numerous experimental animal pain models have been developed that attempt to simulate the many human pain conditions. Among the neuropathic pain models, surgical models have paramount importance in the induction of pain states. Many surgical animal models exist, like the chronic constriction injury (CCI) to the sciatic nerve, partial sciatic nerve ligation (pSNL), spinal nerve ligation (SNL), spared nerve injury (SNI), brachial plexus avulsion (BPA), sciatic nerve transaction (SNT) and sciatic nerve trisection. Most of these models induce responses similar to those found in causalgia, a syndrome of sustained burning pain often seen in the distal extremity after partial peripheral nerve injury in humans. Researchers most commonly use these surgical models in both rats and mice during drug discovery to screen new chemical entities for efficacy in the area of neuropathic pain. However, there is scant literature that provides a comparative discussion of all these surgical models. Each surgical model has its own benefits and limitations. It is very difficult for a researcher to choose a suitable surgical animal model to suit their experimental set-up. Therefore, particular attention has been given in this review to comparatively provide the pros and cons of each model of surgically induced neuropathic pain. PMID:24831263

  20. Systematic Review of Traumatic Brain Injury Animal Models.

    Science.gov (United States)

    Phipps, Helen W

    2016-01-01

    The goals of this chapter are to provide an introduction into the variety of animal models available for studying traumatic brain injury (TBI) and to provide a concise systematic review of the general materials and methods involved in each model. Materials and methods were obtained from a literature search of relevant peer-reviewed articles. Strengths and weaknesses of each animal choice were presented to include relative cost, anatomical and physiological features, and mechanism of injury desired. Further, a variety of homologous, isomorphic/induced, and predictive animal models were defined, described, and compared with respect to their relative ease of use, characteristics, range, adjustability (e.g., amplitude, duration, mass/size, velocity, and pressure), and rough order of magnitude cost. Just as the primary mechanism of action of TBI is limitless, so are the animal models available to study TBI. With such a wide variety of available animals, types of injury models, along with the research needs, there exists no single "gold standard" model of TBI rendering cross-comparison of data extremely difficult. Therefore, this chapter reflects a representative sampling of the TBI animal models available and is not an exhaustive comparison of every possible model and associated parameters. Throughout this chapter, special considerations for animal choice and TBI animal model classification are discussed. Criteria central to choosing appropriate animal models of TBI include ethics, funding, complexity (ease of use, safety, and controlled access requirements), type of model, model characteristics, and range of control (scope). PMID:27604713

  1. Animal Models of Interferon Signature Positive Lupus.

    Science.gov (United States)

    Zhuang, Haoyang; Szeto, Christopher; Han, Shuhong; Yang, Lijun; Reeves, Westley H

    2015-01-01

    Human lupus is strongly associated with a gene expression signature characterized by over-expression of Type I interferon-regulated genes. A strong interferon signature generally is not seen in the standard mouse models of lupus, despite considerable evidence for the involvement of toll-like receptor-driven interferon production. In contrast, pristane-induced lupus exhibits a prominent TLR7-dependent interferon signature. Importantly, genetic disorders with dysregulated interferon production in both human beings and mice cause severe autoinflammatory diseases but not the typical manifestations of lupus, suggesting that interferon over-production is insufficient to cause systemic lupus erythematosus itself. Single-gene models in mice suggest that lupus-like disease may result from abnormalities in B-cell activation and the clearance of dead cells. Pristane may mimic human systemic lupus erythematosus by causing synergistic abnormalities in interferon production along with defective clearance of apoptotic cells and over-active B-cell signaling. PMID:26097482

  2. Modeling HIV Vaccine Strategy in Animals

    OpenAIRE

    Regoes, Roland R.; Longini, Ira M.; Feinberg, Mark B.; Staprans, Silvija I.

    2005-01-01

    Background Trials in macaque models play an essential role in the evaluation of biomedical interventions that aim to prevent HIV infection, such as vaccines, microbicides, and systemic chemoprophylaxis. These trials are usually conducted with very high virus challenge doses that result in infection with certainty. However, these high challenge doses do not realistically reflect the low probability of HIV transmission in humans, and thus may rule out preventive interventions that could protect...

  3. WHAT WE ARE LEARNING ON HTLV-1 PATHOGENESISFROM ANIMAL MODELS

    Directory of Open Access Journals (Sweden)

    Madeleine eDuc Dodon

    2012-08-01

    Full Text Available Isolated and identified more than 30 years ago, Human T-cell Leukemia Virus type 1 (HTLV-1 is the etiological agent of adult T-cell leukemia/lymphoma (ATL, an aggressive lymphoproliferative disease of activated CD4+ T cells, and other inflammatory disorders such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. A variety of animal models have contributed to the fundamental knowledge of HTLV-1 transmission, pathogenesis and to the design of novel therapies to treat HTLV-1 associated diseases. Small animal models (rabbits, rats, mice as well as large animal models (monkeys have been utilized to significantly advance characterization of the viral proteins and of virus-infected cells in the early steps of infection, as well as in the development of leukemogenic and immunopathogenic processes. Over the past two decades, the creation of new immuno-compromised mouse strains that are robustly reconstituted with a functional human immune system (HIS after being transplanted with human tissues or progenitor cells has revolutionized the in vivo investigation of viral infection and pathogenesis. Recent observations obtained in HTLV-1-infected humanized HIS mice that develop lymphomas provide the opportunity to study the evolution of the proviral clonality in human T cells present in different lymphoid organs. Current progress in the improvement of those humanized models will favor the testing of drugs and the development of targeted therapies against HTLV-1-associated diseases.

  4. Laboratory Animal Models for Brucellosis Research

    OpenAIRE

    Silva, Teane M. A.; Erica A Costa; Tatiane A. Paixão; Renée M. Tsolis; Santos, Renato L

    2011-01-01

    Brucellosis is a chronic infectious disease caused by Brucella spp., a Gram-negative facultative intracellular pathogen that affects humans and animals, leading to significant impact on public health and animal industry. Human brucellosis is considered the most prevalent bacterial zoonosis in the world and is characterized by fever, weight loss, depression, hepato/splenomegaly, osteoarticular, and genital infections. Relevant aspects of Brucella pathogenesis have been intensively investigated...

  5. Exploring the Validity of Valproic Acid Animal Model of Autism

    OpenAIRE

    Darine Froy N. Mabunga; Gonzales, Edson Luck T.; Kim, Ji-Woon; Kim, Ki Chan; Shin, Chan Young

    2015-01-01

    The valproic acid (VPA) animal model of autism spectrum disorder (ASD) is one of the most widely used animal model in the field. Like any other disease models, it can't model the totality of the features seen in autism. Then, is it valid to model autism? This model demonstrates many of the structural and behavioral features that can be observed in individuals with autism. These similarities enable the model to define relevant pathways of developmental dysregulation resulting from environmenta...

  6. The research methods and model of protein turnover in animal

    International Nuclear Information System (INIS)

    The author discussed the concept and research methods of protein turnover in animal body. The existing problems and the research results of animal protein turnover in recent years were presented. Meanwhile, the measures to improve the models of animal protein turnover were analyzed

  7. Animal models of traumatic brain injury : a critical evaluation

    OpenAIRE

    O'Connor, William; Smyth, Aoife; Gilchrist, M. D.

    2011-01-01

    Animal models are necessary to elucidate changes occurring after brain injury and to establish new therapeutic strategies towards a stage where drug efficacy in brain injured patients (against all classes of symptoms) can be predicted. In this review, six established animal models of head trauma, namely fluid percussion, rigid indentation, inertial acceleration, impact acceleration, weight-drop and dynamic cortical deformation are evaluated. While no single animal model is entirely successful...

  8. Animal Models of Tourette Syndrome—From Proliferation to Standardization

    OpenAIRE

    Yael, Dorin; Israelashvili, Michal; Bar-Gad, Izhar

    2016-01-01

    Tourette syndrome (TS) is a childhood onset disorder characterized by motor and vocal tics and associated with multiple comorbid symptoms. Over the last decade, the accumulation of findings from TS patients and the emergence of new technologies have led to the development of novel animal models with high construct validity. In addition, animal models which were previously associated with other disorders were recently attributed to TS. The proliferation of TS animal models has accelerated TS r...

  9. Pedigree-free animal models: the relatedness matrix reloaded

    OpenAIRE

    Frentiu, Francesca D; Clegg, Sonya M.; Chittock, John; Burke, Terry; Blows, Mark W.; Owens, Ian P. F.

    2008-01-01

    Animal models typically require a known genetic pedigree to estimate quantitative genetic parameters. Here we test whether animal models can alternatively be based on estimates of relatedness derived entirely from molecular marker data. Our case study is the morphology of a wild bird population, for which we report estimates of the genetic variance–covariance matrices (G) of six morphological traits using three methods: the traditional animal model; a molecular marker-based approach to estima...

  10. Large Animal Models of Hematopoietic Stem Cell Gene Therapy

    OpenAIRE

    Trobridge, Grant D.; Kiem, Hans-Peter

    2010-01-01

    Large animal models have been instrumental in advancing hematopoietic stem cell (HSC) gene therapy. Here we review the advantages of large animal models, their contributions to the field of HSC gene therapy, and recent progress in this field. Several properties of human HSCs including their purification, their cell-cycle characteristics, their response to cytokines, and the proliferative demands put on them after transplantation are more similar in large animal models than in mice. Progress i...

  11. Aspects of animal models for major neuropsychiatric disorders

    OpenAIRE

    Lefter Radu; Cojocaru Dumitru; Ciobica Alin; Paulet Manuel Ioan; Serban Lacramioara Ionela; Anton Emil

    2014-01-01

    We will review the main animal models for the major neuropsychiatric disorders, focusing on schizophrenia, Alzheimer’s disease, Parkinson’s disease, depression, anxiety and autism. Although these mental disorders are specifically human pathologies and therefore impossible to perfectly replicate in animals, the use of experimental animals is based on the physiological and anatomical similarities between humans and animals such as the rat, and mouse, and on t...

  12. The complete guide to blender graphics computer modeling and animation

    CERN Document Server

    Blain, John M

    2014-01-01

    Smoothly Leads Users into the Subject of Computer Graphics through the Blender GUIBlender, the free and open source 3D computer modeling and animation program, allows users to create and animate models and figures in scenes, compile feature movies, and interact with the models and create video games. Reflecting the latest version of Blender, The Complete Guide to Blender Graphics: Computer Modeling & Animation, 2nd Edition helps beginners learn the basics of computer animation using this versatile graphics program. This edition incorporates many new features of Blender, including developments

  13. Noninvasive Assessment of Tumor Cell Proliferation in Animal Models

    Directory of Open Access Journals (Sweden)

    Matthias Edinger

    1999-10-01

    Full Text Available Revealing the mechanisms of neoplastic disease and enhancing our ability to intervene in these processes requires an increased understanding of cellular and molecular changes as they occur in intact living animal models. We have begun to address these needs by developing a method of labeling tumor cells through constitutive expression of an optical reporter gene, noninvasively monitoring cellular proliferation in vivo using a sensitive photon detection system. A stable line of HeLa cells that expressed a modified firefly luciferase gene was generated, proliferation of these cells in irradiated severe combined immunodeficiency (SCID mice was monitored. Tumor cells were introduced into animals via subcutaneous, intraperitoneal and intravenous inoculation and whole body images, that revealed tumor location and growth kinetics, were obtained. The number of photons that were emitted from the labeled tumor cells and transmitted through murine tissues was sufficient to detect 1×103 cells in the peritoneal cavity, 1×104 cells at subcutaneous sites and 1×106 circulating cells immediately following injection. The kinetics of cell proliferation, as measured by photon emission, was exponential in the peritoneal cavity and at subcutaneous sites. Intravenous inoculation resulted in detectable colonies of tumor cells in animals receiving more than 1×103 cells. Our demonstrated ability to detect small numbers of tumor cells in living animals noninvasively suggests that therapies designed to treat minimal disease states, as occur early in the disease course and after elimination of the tumor mass, may be monitored using this approach. Moreover, it may be possible to monitor micrometastases and evaluate the molecular steps in the metastatic process. Spatiotemporal analyses of neoplasia will improve the predictability of animal models of human disease as study groups can be followed over time, this method will accelerate development of novel therapeutic

  14. Animation of 3D Model of Human Head

    Directory of Open Access Journals (Sweden)

    V. Michalcin

    2007-04-01

    Full Text Available The paper deals with the new algorithm of animation of 3D model of the human head in combination with its global motion. The designed algorithm is very fast and with low calculation requirements, because it does not need the synthesis of the input videosequence for estimation of the animation parameters as well as the parameters of global motion. The used 3D model Candide generates different expressions using its animation units which are controlled by the animation parameters. These ones are estimated on the basis of optical flow without the need of extracting of the feature points in the frames of the input videosequence because they are given by the selected vertices of the animation units of the calibrated 3D model Candide. The established multiple iterations inside the designed animation algorithm of 3D model of the human head between two successive frames significantly improved its accuracy above all for the large motion.

  15. A New Model for the Collective Behavior of Animals

    CERN Document Server

    Nguyen, P The; Diep, H T

    2015-01-01

    We propose a new model in order to study behaviors of self-organized system such as a group of animals. We assume that the individuals have two degrees of freedom corresponding one to their internal state and the other to their external state. The external state is characterized by its moving orientation. The rule of the interaction between the individuals is determined by the internal state which can be either in the non-excited state or in the excited state. The system is put under a source of external perturbation called "noise". To study the behavior of the model with varying noise, we use the Monte-Carlo simulation technique. The result clearly shows two first-order transitions separating the system into three phases: with increasing noise, the system undergoes a phase transition from a frozen dilute phase to an ordered compact phase and then to the disordered dispersed phase. These phases correspond to behaviors of animals: uncollected state at low noise, flocking at medium noise and runaway at high noi...

  16. Rabbit as an animal model for experimental research

    OpenAIRE

    Manjeet Mapara; Betsy Sara Thomas; Bhat, K M

    2012-01-01

    Animal experimentation is carried out in consultation with the veterinary wing but it is essential that be familiar with experimental protocols of animal model to be able to design an approriate study. This is more so in place where the veterinary facilities are not easily available.Span Rabbits are commonly used as subjects for screening implant material. They have gained favour for their numerous advantages even though they should be ideally used prior to testing in a larger animal model. T...

  17. Lessons Learned from Animal Models of Inherited Bleeding Disorders

    OpenAIRE

    Nichols, Timothy C.

    2014-01-01

    Advances in treatment of hemophilia and von Willebrand disease (VWD) depend heavily on the availability of well-characterized animal models. These animals faithfully recapitulate the severe bleeding phenotype that occurs in humans with these inherited bleeding disorders. Research in these animal models represents important early and intermediate steps of translational research aimed at addressing current limitations in treatment such as the development of inhibitory antibodies to coagulation ...

  18. Genetic animal models of dystonia: common features and diversities.

    Science.gov (United States)

    Richter, Franziska; Richter, Angelika

    2014-10-01

    Animal models are pivotal for studies of pathogenesis and treatment of disorders of the central nervous system which in its complexity cannot yet be modeled in vitro or using computer simulations. The choice of a specific model to test novel therapeutic strategies for a human disease should be based on validity of the model for the approach: does the model reflect symptoms, pathogenesis and treatment response present in human patients? In the movement disorder dystonia, prior to the availability of genetically engineered mice, spontaneous mutants were chosen based on expression of dystonic features, including abnormal muscle contraction, movements and postures. Recent discovery of a number of genes and gene products involved in dystonia initiated research on pathogenesis of the disorder, and the creation of novel models based on gene mutations. Here we present a review of current models of dystonia, with a focus on genetic rodent models, which will likely be first choice in the future either for pathophysiological or for preclinical drug testing or both. In order to help selection of a model depending on expression of a specific feature of dystonia, this review is organized by symptoms and current knowledge of pathogenesis of dystonia. We conclude that albeit there is increasing need for research on pathogenesis of the disease and development of improved models, current models do replicate features of dystonia and are useful tools to develop urgently demanded treatment for this debilitating disorder. PMID:25034123

  19. Aspects of animal models for major neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Lefter Radu

    2014-01-01

    Full Text Available We will review the main animal models for the major neuropsychiatric disorders, focusing on schizophrenia, Alzheimer’s disease, Parkinson’s disease, depression, anxiety and autism. Although these mental disorders are specifically human pathologies and therefore impossible to perfectly replicate in animals, the use of experimental animals is based on the physiological and anatomical similarities between humans and animals such as the rat, and mouse, and on the fact that 99% of human and murine genomes are shared. Pathological conditions in animals can be assessed by manipulating the metabolism of neurotransmitters, through various behavioral tests, and by determining biochemical parameters that can serve as important markers of disorders.

  20. Animal Models of Cardiac Disease and Stem Cell Therapy

    OpenAIRE

    Ou, Lailiang; Li, Wenzhong; Liu, Yi; Zhang, Yue(Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA, 91125, U.S.A.); Jie, Shen; Kong, Deling; Steinhoff, Gustav; Ma, Nan

    2010-01-01

    Animal models that mimic cardiovascular diseases are indispensable tools for understanding the mechanisms underlying the diseases at the cellular and molecular level. This review focuses on various methods in preclinical research to create small animal models of cardiac diseases, such as myocardial infarction, dilated cardiomyopathy, heart failure, myocarditis and cardiac hypertrophy, and the related stem cell treatment for these diseases.

  1. Animal Models for HIV Cure Research

    OpenAIRE

    Benjamin B Policicchio; Pandrea, Ivona; Apetrei, Cristian

    2016-01-01

    The HIV-1/AIDS pandemic continues to spread unabated worldwide, and no vaccine exists within our grasp. Effective antiretroviral therapy (ART) has been developed, but ART cannot clear the virus from the infected patient. A cure for HIV-1 is badly needed to stop both the spread of the virus in human populations and disease progression in infected individuals. A safe and effective cure strategy for human immunodeficiency virus (HIV) infection will require multiple tools, and appropriate animal ...

  2. Animal learning models as robot controllers

    OpenAIRE

    Hallam, Bridget

    2000-01-01

    Robots can do a range of wonderful things, but they can also appear really stupid. I would like my autonomous, sensor-rich, robot to be able to: complete its task whenever possible, despite distractions and disabilities; learn the best, most reliable cues for success of the various task components; have sensible default actions whenever the situation is unknown; cope with an unpredictably changing environment; and pay attention whenever I want to contact it. Dreamland? At the moment. Yet anim...

  3. Animal Models of Compulsive Eating Behavior

    OpenAIRE

    Matteo Di Segni; Enrico Patrono; Loris Patella; Stefano Puglisi-Allegra; Rossella Ventura

    2014-01-01

    Eating disorders are multifactorial conditions that can involve a combination of genetic, metabolic, environmental, and behavioral factors. Studies in humans and laboratory animals show that eating can also be regulated by factors unrelated to metabolic control. Several studies suggest a link between stress, access to highly palatable food, and eating disorders. Eating “comfort foods” in response to a negative emotional state, for example, suggests that some individuals overeat to self-medica...

  4. Animals

    International Nuclear Information System (INIS)

    The radionuclides of most concern with respect to contamination of animals after a nuclear accident are radioiodine, radiocaesium and radiostrontium (ICRP 30, 1979). Of the other significant anthropogenic radionuclides likely to be released in most accidents, only small proportions of that ingested will be absorbed in an animals gut, and the main animal products, milk and meat, will not normally be contaminated to a significant extent. Animal products will mostly be contaminated as a result of ingestion of contaminated feed and possibly, but to a much lesser extent, from inhalation (for radioiodine only). Direct external contamination of animals is of little or no consequence in human food production. Radioiodine and radiostrontium are important with respect to contamination of milk; radiocaesium contaminates both milk and meat. The physical and chemical form of a radionuclide can influence its absorption in the animal gut. For example, following the Chernobyl accident radiocaesium incorporated into vegetation by root uptake was more readily absorbed than that associated with the original deposit. The transfer of radiocaesium and radiostrontium to animals will be presented both as transfer coefficients and aggregated transfer coefficients. For most animal meat products, only radiocaesium is important as other radionuclides do not significantly contaminate muscle. Farm animal products are the most important foodstuff determining radiocaesium intake by the average consumer in the Nordic countries. The major potential source of radioiodine and radiostrontium to humans is milk and milk products. Of the different species, the smaller animals have the highest transfer of radiocaesium from fodder to meat and milk. (EG)

  5. Infectious diseases among animals : combining models with data

    OpenAIRE

    de Koeijer, A.A.

    2003-01-01

    To eradicate or control the spread of infectious diseases, knowledge on the spread of the infection between (groups of) animals is necessary. Models can include such information and can subsequently be used to observe the efficacy of various control measures in fighting the infection. However, the availability of information and data to build and quantify these models is essential for applying such models in real life. In this thesis, models on the spread of infectious diseases in animals are...

  6. Therapeutic effects of progesterone in animal models of neurological disorders.

    Science.gov (United States)

    De Nicola, Alejandro F; Coronel, Florencia; Garay, Laura I; Gargiulo-Monachelli, Gisella; Gonzalez Deniselle, Maria Claudia; Gonzalez, Susana L; Labombarda, Florencia; Meyer, Maria; Guennoun, Rachida; Schumacher, Michael

    2013-12-01

    Substantial evidence supports that progesterone exerts many functions in the central and peripheral nervous system unrelated to its classical role in reproduction. In this review we first discussed progesterone effects following binding to the classical intracellular progesterone receptors A and B and several forms of membrane progesterone receptors, the modulation of intracellular signalling cascades and the interaction of progesterone reduced metabolites with neurotransmitter receptors. We next described our results involving animal models of human neuropathologies to elucidate the protective roles of progesterone. We described: (a) the protective and promyelinating effects of progesterone in experimental spinal cord injury; (b) the progesterone protective effects exerted upon motoneurons in the degenerating spinal cord of Wobbler mouse model of amyotropic lateral sclerosis; (c) the protective and anti-inflammatory effects of progesterone in the murine experimental autoimmune encephalomyelitis model of multiple sclerosis and after lysolecithin demyelination; (d) the progesterone prevention of nociception and neuropathic pain which follow spinal cord injury; and (e) the protective effect of progesterone in experimental ischemic stroke. Whenever available, the molecular mechanisms involved in these progesterone effects were examined. The multiplicity of progesterone beneficial effects has opened new venues of research for neurological disorders. In this way, results obtained in animal models could provide the basis for novel therapeutic strategies and pre-clinical studies. PMID:24040821

  7. Animal Models of Tourette Syndrome—From Proliferation to Standardization

    Science.gov (United States)

    Yael, Dorin; Israelashvili, Michal; Bar-Gad, Izhar

    2016-01-01

    Tourette syndrome (TS) is a childhood onset disorder characterized by motor and vocal tics and associated with multiple comorbid symptoms. Over the last decade, the accumulation of findings from TS patients and the emergence of new technologies have led to the development of novel animal models with high construct validity. In addition, animal models which were previously associated with other disorders were recently attributed to TS. The proliferation of TS animal models has accelerated TS research and provided a better understanding of the mechanism underlying the disorder. This newfound success generates novel challenges, since the conclusions that can be drawn from TS animal model studies are constrained by the considerable variation across models. Typically, each animal model examines a specific subset of deficits and centers on one field of research (physiology/genetics/pharmacology/etc.). Moreover, different studies do not use a standard lexicon to characterize different properties of the model. These factors hinder the evaluation of individual model validity as well as the comparison across models, leading to a formation of a fuzzy, segregated landscape of TS pathophysiology. Here, we call for a standardization process in the study of TS animal models as the next logical step. We believe that a generation of standard examination criteria will improve the utility of these models and enable their consolidation into a general framework. This should lead to a better understanding of these models and their relationship to TS, thereby improving the research of the mechanism underlying this disorder and aiding the development of new treatments. PMID:27065791

  8. Animal Models of Tourette Syndrome-From Proliferation to Standardization.

    Science.gov (United States)

    Yael, Dorin; Israelashvili, Michal; Bar-Gad, Izhar

    2016-01-01

    Tourette syndrome (TS) is a childhood onset disorder characterized by motor and vocal tics and associated with multiple comorbid symptoms. Over the last decade, the accumulation of findings from TS patients and the emergence of new technologies have led to the development of novel animal models with high construct validity. In addition, animal models which were previously associated with other disorders were recently attributed to TS. The proliferation of TS animal models has accelerated TS research and provided a better understanding of the mechanism underlying the disorder. This newfound success generates novel challenges, since the conclusions that can be drawn from TS animal model studies are constrained by the considerable variation across models. Typically, each animal model examines a specific subset of deficits and centers on one field of research (physiology/genetics/pharmacology/etc.). Moreover, different studies do not use a standard lexicon to characterize different properties of the model. These factors hinder the evaluation of individual model validity as well as the comparison across models, leading to a formation of a fuzzy, segregated landscape of TS pathophysiology. Here, we call for a standardization process in the study of TS animal models as the next logical step. We believe that a generation of standard examination criteria will improve the utility of these models and enable their consolidation into a general framework. This should lead to a better understanding of these models and their relationship to TS, thereby improving the research of the mechanism underlying this disorder and aiding the development of new treatments. PMID:27065791

  9. The porcine animal model goes through the 3Rs: development of in vitro and ex vivo system to study vascular biology

    OpenAIRE

    Zaniboni, Andrea

    2015-01-01

    Since the publication of the book of Russell and Burch in 1959, scientific research has never stopped improving itself with regard to the important issue of animal experimentation. The European Directive 2010/63/EU “On the protection of animals used for scientific purposes” focuses mainly on the animal welfare, fixing the Russell and Burch’s 3Rs principles as the foundations of the document. In particular, the legislator clearly states the responsibility of the scientific community to impr...

  10. Hypoxic preconditioning in an autohypoxic animal model

    Institute of Scientific and Technical Information of China (English)

    Guo Shao; Guo-Wei Lu

    2012-01-01

    Hypoxic preconditioning refers to the exposure of organisms,systems,organs,tissues or cells to moderate hypoxia/ischemia that [Results]in increased resistance to a subsequent episode of severe hypoxia/ischemia.In this article,we review recent research based on a mouse model of repeated exposure to autohypoxia.Pre-exposure markedly increases the tolerance to or protection against hypoxic insult,and preserves the cellular structure of the brain.Furthermore,the hippocampal activity amplitude and frequency of electroencephalogram,latency of cortical somatosensory-evoked potential and spinal somatosensory-evoked potential progressively decrease,while spatial learning and memory improve.In the brain,detrimental neurochemicals such as free radicals are down-regulated,while beneficial ones such as adenosine are upregulated.Also,antihypoxia factor(s) and gene(s) are activated.We propose that the tolerance and protective effects depend on energy conservation and plasticity triggered by exposure to hypoxia via oxygen-sensing transduction pathways and hypoxia-inducible factor-initiated cascades.A potential path for further research is the development of devices and pharmaceuticals acting on antihypoxia factor(s) and gene(s) for the prevention and treatment of hypoxia and related syndromes.

  11. Animal Models of Substance Abuse and Addiction: Implications for Science, Animal Welfare, and Society

    OpenAIRE

    Lynch, Wendy J.; Nicholson, Katherine L.; Dance, Mario E; Morgan, Richard W; Foley, Patricia L.

    2010-01-01

    Substance abuse and addiction are well recognized public health concerns, with 2 NIH institutes (the National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism) specifically targeting this societal problem. As such, this is an important area of research for which animal experiments play a critical role. This overview presents the importance of substance abuse and addiction in society; reviews the development and refinement of animal models that address crucial...

  12. Animal models of gastrointestinal and liver diseases. Animal models of infant short bowel syndrome

    DEFF Research Database (Denmark)

    Sangild, Per Torp; Ney, Denise M; Sigalet, David L;

    2014-01-01

    enterocolitis, atresia, gastroschisis, volvulus and aganglionosis. Patient outcomes have improved, but there is a need to develop new therapies for SBS and to understand intestinal adaptation after different diseases, resection types, nutritional interventions and growth factor therapies. Animal studies may...... hormone, insulin-like growth factor 1, epidermal growth factor, keratinocyte growth factor). The greater size of rats, and especially young pigs, is an advantage for testing surgical procedures and nutritional interventions (e.g. PN, milk diets, long/short chain lipids, pre- and probiotics). Conversely......, newborn pigs and weanling rats represent a translational advantage for infant SBS due to their immature intestine. A balance among practical, economical, experimental and ethical constraints determines the choice of SBS model for each clinical or basic research question....

  13. Animal models for mucopolysaccharidosis disorders and their clinical relevance

    OpenAIRE

    Haskins, Mark E.

    2007-01-01

    Progress in understanding how a particular genotype produces the phenotype of an inborn error of metabolism, such as a mucopolysaccharidosis, in human patients has been facilitated by the study of animals with mutations in the orthologous genes. These are not just animal models, but true orthologues of the human genetic disease, with defects involving the same evolutionarily conserved genes and the same molecular, biochemical, and anatomic lesions as in human patients. These animals are often...

  14. Sex differences in animal models of psychiatric disorders

    OpenAIRE

    Kokras, N.; Dalla, C.

    2014-01-01

    Psychiatric disorders are characterized by sex differences in their prevalence, symptomatology and treatment response. Animal models have been widely employed for the investigation of the neurobiology of such disorders and the discovery of new treatments. However, mostly male animals have been used in preclinical pharmacological studies. In this review, we highlight the need for the inclusion of both male and female animals in experimental studies aiming at gender-oriented prevention, diagnos...

  15. ANIMAL MODELS OF COGNITIVE DEVELOPMENT IN NEUROTOXICITY

    Science.gov (United States)

    The thesis of this chapter has been that spatial delayed alternation versus position discrimination learning can serve as a valuable rodent model of cognitive development in neurotoxicology. his model captures dual process conceptualizations of memory in human neuropsychology and...

  16. Penile autotransplantation in rats: An animal model

    Directory of Open Access Journals (Sweden)

    Raouf M Seyam

    2013-01-01

    Conclusions: Penile autotransplantation in rats is feasible and provides the basis for evaluation of the corpora cavernosa in an allotransplantation model. Long-term urethral continuity and dorsal neurovascular bundle survival in this model is difficult to establish.

  17. Development of a Magnetoencephalograph System for Small Animals

    International Nuclear Information System (INIS)

    We developed a four-channel first order gradiometer system to measure magnetoencephalogram for mice. We used double relaxation oscillation SQUID (DROS). The diameter of the pickup coil is 4 mm and the distance between the coils is 5 mm. Coil distance was designed to have good spatial resolution for a small mouse brain. We evaluated the current dipole localization confidence region for a mouse brain, using the spherical conductor model. The white noise of the measurement system was about 30 fT/Hz1/2/cm when measured in a magnetically shielded room. We measured magnetic signal from a phantom having the same size of a mouse brain, which was filled with 0.9% saline solution. The results suggest that the developed system has a feasibility to study the functions of brain of small animals.

  18. Animal Models of Diabetic Neuropathy: Progress Since 1960s

    Directory of Open Access Journals (Sweden)

    Md. Shahidul Islam

    2013-01-01

    Full Text Available Diabetic or peripheral diabetic neuropathy (PDN is one of the major complications among some other diabetic complications such as diabetic nephropathy, diabetic retinopathy, and diabetic cardiomyopathy. The use of animal models in the research of diabetes and diabetic complications is very common when rats and mice are most commonly used for many reasons. A numbers of animal models of diabetic and PDN have been developed in the last several decades such as streptozotocin-induced diabetic rat models, conventional or genetically modified or high-fat diet-fed C57BL/Ks (db/db mice models, streptozotocin-induced C57BL6/J and ddY mice models, Chinese hamster neuropathic model, rhesus monkey PDN model, spontaneously diabetic WBN/Kob rat model, L-fucose-induced neropathic rat model, partial sciatic nerve ligated rat model, nonobese diabetic (NOD mice model, spontaneously induced Ins2 Akita mice model, leptin-deficient (ob/ob mice model, Otsuka Long-Evans Tokushima Fatty (OLETF rat model, surgically-induced neuropathic model, and genetically modified Spontaneously Diabetic Torii (SDT rat model, none of which are without limitations. An animal model of diabetic or PDN should mimic the all major pathogeneses of human diabetic neuropathy. Hence, this review comparatively evaluates the animal models of diabetic and PDN which are developed since 1960s with their advantages and disadvantages to help diabetic research groups in order to more accurately choose an appropriate model to meet their specific research objectives.

  19. Mathematical modeling for digestible protein in animal feeds for tilapia

    Directory of Open Access Journals (Sweden)

    Luiz Vítor Oliveira Vidal

    2012-06-01

    Full Text Available The objective of this study was to formulate mathematical models to estimate digestible protein in some animal feeds for tilapia. Literature results of the proximate composition of crude protein, ether extract, and mineral matter, as well as digestible protein obtained in biological assays, were used. The data were subjected to multiple linear stepwise backward regression. Path analysis was performed to measure the direct and indirect effects of each independent variable on the dependent one. To validate the model, the experience used data from independent studies and values obtained from a digestibility trial with juvenile Nile tilapia testing five meat and bone meals, using the Guelph feces collecting system and chromium oxide (III as an indicator. The obtained model used to estimate digestible protein values (DP of animal origin is: DP(g kg-1 = -204.15+1.203xCP;R² = 0.953. The path coefficients showed a high direct positive effect (0.900 of crude protein on the digestible protein content. The mineral matter content has an indirect negative effect on protein digestibility (-0.710, reducing the crude protein content and quality.

  20. Computer-aided pulmonary image analysis in small animal models

    International Nuclear Information System (INIS)

    Purpose: To develop an automated pulmonary image analysis framework for infectious lung diseases in small animal models. Methods: The authors describe a novel pathological lung and airway segmentation method for small animals. The proposed framework includes identification of abnormal imaging patterns pertaining to infectious lung diseases. First, the authors’ system estimates an expected lung volume by utilizing a regression function between total lung capacity and approximated rib cage volume. A significant difference between the expected lung volume and the initial lung segmentation indicates the presence of severe pathology, and invokes a machine learning based abnormal imaging pattern detection system next. The final stage of the proposed framework is the automatic extraction of airway tree for which new affinity relationships within the fuzzy connectedness image segmentation framework are proposed by combining Hessian and gray-scale morphological reconstruction filters. Results: 133 CT scans were collected from four different studies encompassing a wide spectrum of pulmonary abnormalities pertaining to two commonly used small animal models (ferret and rabbit). Sensitivity and specificity were greater than 90% for pathological lung segmentation (average dice similarity coefficient > 0.9). While qualitative visual assessments of airway tree extraction were performed by the participating expert radiologists, for quantitative evaluation the authors validated the proposed airway extraction method by using publicly available EXACT’09 data set. Conclusions: The authors developed a comprehensive computer-aided pulmonary image analysis framework for preclinical research applications. The proposed framework consists of automatic pathological lung segmentation and accurate airway tree extraction. The framework has high sensitivity and specificity; therefore, it can contribute advances in preclinical research in pulmonary diseases

  1. Computer-aided pulmonary image analysis in small animal models

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ziyue; Mansoor, Awais; Mollura, Daniel J. [Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda, Maryland 32892 (United States); Bagci, Ulas, E-mail: ulasbagci@gmail.com [Center for Research in Computer Vision (CRCV), University of Central Florida (UCF), Orlando, Florida 32816 (United States); Kramer-Marek, Gabriela [The Institute of Cancer Research, London SW7 3RP (United Kingdom); Luna, Brian [Microfluidic Laboratory Automation, University of California-Irvine, Irvine, California 92697-2715 (United States); Kubler, Andre [Department of Medicine, Imperial College London, London SW7 2AZ (United Kingdom); Dey, Bappaditya; Jain, Sanjay [Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Foster, Brent [Department of Biomedical Engineering, University of California-Davis, Davis, California 95817 (United States); Papadakis, Georgios Z. [Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda, Maryland 32892 (United States); Camp, Jeremy V. [Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky 40202 (United States); Jonsson, Colleen B. [National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee 37996 (United States); Bishai, William R. [Howard Hughes Medical Institute, Chevy Chase, Maryland 20815 and Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Udupa, Jayaram K. [Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2015-07-15

    Purpose: To develop an automated pulmonary image analysis framework for infectious lung diseases in small animal models. Methods: The authors describe a novel pathological lung and airway segmentation method for small animals. The proposed framework includes identification of abnormal imaging patterns pertaining to infectious lung diseases. First, the authors’ system estimates an expected lung volume by utilizing a regression function between total lung capacity and approximated rib cage volume. A significant difference between the expected lung volume and the initial lung segmentation indicates the presence of severe pathology, and invokes a machine learning based abnormal imaging pattern detection system next. The final stage of the proposed framework is the automatic extraction of airway tree for which new affinity relationships within the fuzzy connectedness image segmentation framework are proposed by combining Hessian and gray-scale morphological reconstruction filters. Results: 133 CT scans were collected from four different studies encompassing a wide spectrum of pulmonary abnormalities pertaining to two commonly used small animal models (ferret and rabbit). Sensitivity and specificity were greater than 90% for pathological lung segmentation (average dice similarity coefficient > 0.9). While qualitative visual assessments of airway tree extraction were performed by the participating expert radiologists, for quantitative evaluation the authors validated the proposed airway extraction method by using publicly available EXACT’09 data set. Conclusions: The authors developed a comprehensive computer-aided pulmonary image analysis framework for preclinical research applications. The proposed framework consists of automatic pathological lung segmentation and accurate airway tree extraction. The framework has high sensitivity and specificity; therefore, it can contribute advances in preclinical research in pulmonary diseases.

  2. Animal models of henipavirus infection: a review.

    Science.gov (United States)

    Weingartl, Hana M; Berhane, Yohannes; Czub, Markus

    2009-09-01

    Hendra virus (HeV) and Nipah virus (NiV) form a separate genus Henipavirus within the family Paramyxoviridae, and are classified as biosafety level four pathogens due to their high case fatality rate following human infection and because of the lack of effective vaccines or therapy. Both viruses emerged from their natural reservoir during the last decade of the 20th century, causing severe disease in humans, horses and swine, and infecting a number of other mammalian species. The current review summarises current published data relating to experimental infection of small and large animals, including the natural reservoir species, the Pteropus bat, with HeV or NiV. Susceptibility to infection and virus distribution in the individual species is discussed, along with the pathogenesis, pathological changes, and potential routes of transmission. PMID:19084436

  3. Reverse translational strategies for developing animal models of bipolar disorder

    OpenAIRE

    Malkesman, Oz; Austin, Daniel R.; Chen, Guang; Manji, Husseini K

    2009-01-01

    Bipolar disorder (BD) affects a significant portion of the population of the world, yet there has been limited success in developing novel treatments for the disorder. One of the major reasons for this dearth is the absence of suitable animal models for BD. Traditionally, animal models of human phenomena have been evaluated based on similarity to the human syndrome, response to appropriately corresponding medications, and the degree to which a model supports a common mechanistic theory betwee...

  4. Animal models for the study of arterial hypertension

    Indian Academy of Sciences (India)

    Waleska C Dornas; Marcelo E Silva

    2011-09-01

    Hypertension is one of the leading causes of disability or death due to stroke, heart attack and kidney failure. Because the etiology of essential hypertension is not known and may be multifactorial, the use of experimental animal models has provided valuable information regarding many aspects of the disease, which include etiology, pathophysiology, complications and treatment. The models of hypertension are various, and in this review, we provide a brief overview of the most widely used animal models, their features and their importance.

  5. Peripheral Biomarkers in Animal Models of Major Depressive Disorder

    OpenAIRE

    Lucia Carboni

    2013-01-01

    Investigations of preclinical biomarkers for major depressive disorder (MDD) encompass the quantification of proteins, peptides, mRNAs, or small molecules in blood or urine of animal models. Most studies aim at characterising the animal model by including the assessment of analytes or hormones affected in depressive patients. The ultimate objective is to validate the model to better understand the neurobiological basis of MDD. Stress hormones or inflammation-related analytes associated with M...

  6. Animal models for Alzheimer's disease and frontotemporal dementia: a perspective

    OpenAIRE

    Jürgen Götz; Naeman N Götz

    2009-01-01

    In dementia research, animal models have become indispensable tools. They not only model aspects of the human condition, but also simulate processes that occur in humans and hence provide insight into how disease is initiated and propagated. The present review discusses two prominent human neurodegenerative disorders, Alzheimer's disease and frontotemporal dementia. It discusses what we would like to model in animals and highlights some of the more recent achievements using species as ...

  7. The Use of Animal Models for Cancer Chemoprevention Drug Development

    OpenAIRE

    Steele, Vernon E.; Lubet, Ronald A.

    2010-01-01

    Animal models currently are used to assess the efficacy of potential chemopreventive agents, including synthetic chemicals, chemical agents obtained from natural products and natural product mixtures. The observations made in these models as well as other data are then used to prioritize agents to determine which are qualified to progress to clinical chemoprevention trials. Organ specific animal models are employed to determine which agents or classes of agents are likely to be the most effec...

  8. Explaining the conversion to particularly animal-friendly stabling system of farmers of the Obwalden Canton, Switzerland - Extension of the Theory of Planned Behavior within a Structural Equation Modeling Approach.

    OpenAIRE

    Tutkun, Aysel; Lehmann, Bernard

    2006-01-01

    Farmers' intentions about conversion to particularly animal-friendly stabling system (PAFS) are analyzed with a structural equation model. The Theory of Planned Behavior (ToPB, Ajzen 1985) is used as the theoretical basis of this study. Though ToPB is a well-defined theory, it is static rather than procedural and cannot model the individual decision-making as a process. Therefore, we first examine the general applicability of ToPB in an agricultural context and explain the variance in intenti...

  9. An updated overview of animal models in neuropsychiatry.

    Science.gov (United States)

    Razafsha, M; Behforuzi, H; Harati, H; Wafai, R Al; Khaku, A; Mondello, S; Gold, M S; Kobeissy, F H

    2013-06-14

    Animal models are vital tools to study the genetic, molecular, cellular, and environmental parameters involved in several neuropsychiatric disorders. Over the years, these models have expanded our understanding of the pathogenesis of many neuropsychiatric disorders and neurodegenerative diseases. Although animal models have been widely used in psychiatry, and despite several years of extensive research with these models, their validity is still being investigated and presents a challenge to both investigators and clinicians as well. In this concise review, we will describe the most common animal models utilized in neuropsychiatry, including animal models of depression, anxiety, and psychosis. In addition, we will also discuss the validity and reliability of these models and current challenges in this domain. Furthermore, this work will discuss the role of gene-environment interaction as an additional contributing factor that modulates neuropsychological outcome and its implication on animal models. This overview will give a succinct summary of animal models in psychiatry which will be useful both to the seasoned researcher, as well as novices in the field. PMID:23473749

  10. Developing better and more valid animal models of brain disorders.

    Science.gov (United States)

    Stewart, Adam Michael; Kalueff, Allan V

    2015-01-01

    Valid sensitive animal models are crucial for understanding the pathobiology of complex human disorders, such as anxiety, autism, depression and schizophrenia, which all have the 'spectrum' nature. Discussing new important strategic directions of research in this field, here we focus i) on cross-species validation of animal models, ii) ensuring their population (external) validity, and iii) the need to target the interplay between multiple disordered domains. We note that optimal animal models of brain disorders should target evolutionary conserved 'core' traits/domains and specifically mimic the clinically relevant inter-relationships between these domains. PMID:24384129

  11. A systematic review of animal models for Staphylococcus aureus osteomyelitis

    Directory of Open Access Journals (Sweden)

    W Reizner

    2014-03-01

    Full Text Available Staphylococcus aureus (S. aureus osteomyelitis is a significant complication for orthopaedic patients undergoing surgery, particularly with fracture fixation and arthroplasty. Given the difficulty in studying S. aureus infections in human subjects, animal models serve an integral role in exploring the pathogenesis of osteomyelitis, and aid in determining the efficacy of prophylactic and therapeutic treatments. Animal models should mimic the clinical scenarios seen in patients as closely as possible to permit the experimental results to be translated to the corresponding clinical care. To help understand existing animal models of S. aureus, we conducted a systematic search of PubMed and Ovid MEDLINE to identify in vivo animal experiments that have investigated the management of S. aureus osteomyelitis in the context of fractures and metallic implants. In this review, experimental studies are categorised by animal species and are further classified by the setting of the infection. Study methods are summarised and the relevant advantages and disadvantages of each species and model are discussed. While no ideal animal model exists, the understanding of a model’s strengths and limitations should assist clinicians and researchers to appropriately select an animal model to translate the conclusions to the clinical setting.

  12. Opossum as an animal model for studying radiation esophagitis

    International Nuclear Information System (INIS)

    Six opossums were evaluated as a possible animal model of radiation esophagitis. In a single exposure to the esophagus, four animals received 60Co radiation of various doses; two served as controls. Pre- and postirradiation evaluations using fiberoptic endoscopy, mucosal biopsy, barium esophagography, and manometry were performed. Esophagitis developed at one week in irradiated animals. Opossums receiving 17.5, 20, and 22.5 Gy (1,750; 2,000; and 2,250 rad) became anorexic one week postirradiation, and abnormal motility subsequently developed. The controls and the animal receiving 15 Gy (1,500 rad) remained normal. Histological changes in the irradiated opossum esophagus resembled those found in humans

  13. Classifying types of DIC: clinical features and animal models.

    Science.gov (United States)

    Asakura, Hidesaku

    2016-04-01

    Disseminated intravascular coagulation (DIC) is a pathological state in which varying degrees of fibrinolytic activation are seen simultaneously as systemic, persistent, and marked coagulation activation in the presence of an underlying disease. Suppressed-fibrinolytic-type DIC usually develops in patients with sepsis. Coagulation activation is severe, while fibrinolytic activation is mild. Enhanced-fibrinolytic-type DIC usually occurs with acute promyelocytic leukemia (APL). Both coagulation activation and fibrinolytic activation are severe in affected patients. Balanced-fibrinolytic-type DIC is usually seen in patients with solid tumors, and has a pathogenesis intermediate between those of the two aforementioned types. In animal DIC models, lipopolysaccharide (LPS)-induced forms of DIC are similar to suppressed-fibrinolytic-type DIC, whereas models of tissue factor (TF)-induced DIC have features similar to those of enhanced-fibrinolytic/balanced-fibrinolytic DIC. We are moving in the direction of more appropriate selection of treatment based on DIC type. PMID:27169441

  14. Shopping Centers as Panther Habitat: Inferring Animal Locations from Models

    Directory of Open Access Journals (Sweden)

    Jeffery L. Larkin

    2004-12-01

    Full Text Available A recent model of Florida panther (Puma concolor coryi habitat erred in arbitrarily creating buffers around radio locations collected during daylight hours on the assumption that study animals were only at rest during these times. The buffers generated by this method likely cause an overestimation of the amounts and kinds of habitats that are used by the panther. This, and other errors, could lead to the impression that unfragmented forest cover is unimportant to panther conservation, and could encourage inaccurate characterizations of panther habitat. Previous 24-hour monitoring of activity and activity readings made during routine telemetry flights indicate that high levels of activity occur in the early morning hours. Literature on the behavior of the species does not support the creation of large buffers around telemetry locations to compensate for the lack of nighttime telemetry data. A thorough examination of ongoing studies that use global positioning systems may help calibrate future Florida panther habitat models.

  15. Exploring the Validity of Valproic Acid Animal Model of Autism.

    Science.gov (United States)

    Mabunga, Darine Froy N; Gonzales, Edson Luck T; Kim, Ji-Woon; Kim, Ki Chan; Shin, Chan Young

    2015-12-01

    The valproic acid (VPA) animal model of autism spectrum disorder (ASD) is one of the most widely used animal model in the field. Like any other disease models, it can't model the totality of the features seen in autism. Then, is it valid to model autism? This model demonstrates many of the structural and behavioral features that can be observed in individuals with autism. These similarities enable the model to define relevant pathways of developmental dysregulation resulting from environmental manipulation. The uncovering of these complex pathways resulted to the growing pool of potential therapeutic candidates addressing the core symptoms of ASD. Here, we summarize the validity points of VPA that may or may not qualify it as a valid animal model of ASD. PMID:26713077

  16. The Suitability of BV2 Cells as Alternative Model System for Primary Microglia Cultures or for Animal Experiments Examining Brain Inflammation

    OpenAIRE

    Henn, Anja; Lund, Søren; Hedtjärn, Maj; Schrattenholz, André; Pörzgen, Peter; Leist, Marcel

    2009-01-01

    The role of microglia in neurodegeneration, toxicology and immunity is an expanding area of biomedical research requiring large numbers of animals. Use of a microglia-like cell line would accelerate many research programmes and reduce the necessity of continuous cell preparations and animal experimentation, provided that the cell line reproduces the in vivo situation or primary microglia (PM) with high fidelity. The immortalised murine microglial cell line BV-2 has been used frequently as a s...

  17. Instrumental and ethical aspects of experimental research with animal models

    Directory of Open Access Journals (Sweden)

    Mirian Watanabe

    2014-02-01

    Full Text Available Experimental animal models offer possibilities of physiology knowledge, pathogenesis of disease and action of drugs that are directly related to quality nursing care. This integrative review describes the current state of the instrumental and ethical aspects of experimental research with animal models, including the main recommendations of ethics committees that focus on animal welfare and raises questions about the impact of their findings in nursing care. Data show that, in Brazil, the progress in ethics for the use of animals for scientific purposes was consolidated with Law No. 11.794/2008 establishing ethical procedures, attending health, genetic and experimental parameters. The application of ethics in handling of animals for scientific and educational purposes and obtaining consistent and quality data brings unquestionable contributions to the nurse, as they offer subsidies to relate pathophysiological mechanisms and the clinical aspect on the patient.

  18. Genetic Engineering of Dystroglycan in Animal Models of Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Francesca Sciandra

    2015-01-01

    Full Text Available In skeletal muscle, dystroglycan (DG is the central component of the dystrophin-glycoprotein complex (DGC, a multimeric protein complex that ensures a strong mechanical link between the extracellular matrix and the cytoskeleton. Several muscular dystrophies arise from mutations hitting most of the components of the DGC. Mutations within the DG gene (DAG1 have been recently associated with two forms of muscular dystrophy, one displaying a milder and one a more severe phenotype. This review focuses specifically on the animal (murine and others model systems that have been developed with the aim of directly engineering DAG1 in order to study the DG function in skeletal muscle as well as in other tissues. In the last years, conditional animal models overcoming the embryonic lethality of the DG knock-out in mouse have been generated and helped clarifying the crucial role of DG in skeletal muscle, while an increasing number of studies on knock-in mice are aimed at understanding the contribution of single amino acids to the stability of DG and to the possible development of muscular dystrophy.

  19. Experimental animal data and modeling of late somatic effects

    International Nuclear Information System (INIS)

    This section is restricted to radiation-induced life shortening and cancer and mainly to studies with external radiation. The emphasis will be on the experimental data that are available and the experimental systems that could provide the type of data with which to either formulate or test models. Genetic effects which are of concern are not discussed in this section. Experimental animal radiation studies fall into those that establish general principles and those that demonstrate mechanisms. General principles include the influence of dose, radiation quality, dose rate, fractionation, protraction and such biological factors as age and gender. The influence of these factors are considered as general principles because they are independent, at least qualitatively, of the species studied. For example, if an increase in the LET of the radiation causes an increased effectiveness in cancer induction in a mouse a comparable increase in effectiveness can be expected in humans. Thus, models, whether empirical or mechanistic, formulated from experimental animal data should be generally applicable

  20. Leading compounds for the validation of animal models of psychopathology.

    Science.gov (United States)

    Micale, Vincenzo; Kucerova, Jana; Sulcova, Alexandra

    2013-10-01

    Modelling of complex psychiatric disorders, e.g., depression and schizophrenia, in animals is a major challenge, since they are characterized by certain disturbances in functions that are absolutely unique to humans. Furthermore, we still have not identified the genetic and neurobiological mechanisms, nor do we know precisely the circuits in the brain that function abnormally in mood and psychotic disorders. Consequently, the pharmacological treatments used are mostly variations on a theme that was started more than 50 years ago. Thus, progress in novel drug development with improved therapeutic efficacy would benefit greatly from improved animal models. Here, we review the available animal models of depression and schizophrenia and focus on the way that they respond to various types of potential candidate molecules, such as novel antidepressant or antipsychotic drugs, as an index of predictive validity. We conclude that the generation of convincing and useful animal models of mental illnesses could be a bridge to success in drug discovery. PMID:23942897

  1. A Roadmap for the Development of Alternative (Non-Animal) Methods for Systemic Toxicity Testing

    Science.gov (United States)

    Systemic toxicity testing forms the cornerstone for the safety evaluation of substances. Pressures to move from traditional animal models to novel technologies arise from various concerns, including: the need to evaluate large numbers of previously untested chemicals and new prod...

  2. GHRH treatment: studies in an animal model.

    Science.gov (United States)

    Shakutsui, S; Abe, H; Chihara, K

    1989-01-01

    This study examined the effects of chronic deletion of circulating growth hormone-releasing (GHRH) and/or somatostatin (SRIF) on normal growing male rats, as well as the effects of exogenous GHRH (1-29)NH2 and/or SMS 201-995 administration on the growth of rats with hypothalamic ablation. Passive immunization with anti-rat GHRH goat gamma-globulin (GHRH-Ab) for 3 weeks caused a marked decrease in the levels of pituitary GH mRNA and severe growth failure. Treatment with anti-SRIF goat gamma-globulin (SRIF-Ab) for 3 weeks produced a more modest decrease in GH mRNA levels in the pituitary and a slight but significant inhibition of normal somatic growth. Hypothalamic ablation produced a marked decrease in the level of mRNA in the pituitary. Chronic continuous administration of GHRH (1-29)NH2 stimulated pituitary GH synthesis, elevated serum levels of insulin-like growth factor I and increased body weight gain in rats with hypothalamic ablation treated with replacement doses of cortisone, testosterone and L-thyroxine. Combined treatment with GHRH (1-29)NH2 and SMS 201-995 appeared to promote the effect of GHRH on pituitary GH release and somatic growth in these animals. The results suggest that continuous administration of GHRH will be useful in the treatment of children with growth retardation resulting from hypothalamic disorders. In children with combined GHRH and somatostatin deficiencies, the addition of somatostatin to a GHRH treatment regimen may produce better results. PMID:2568726

  3. Tri-modality small animal imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, B.K.; Stolin, A.V.; Pole, J.; Baumgart, L.; Fontaine, M.; Wojcik, R.; Kross, B.; Zorn, C.; Majewski, S.; Williams, M.B.

    2006-02-01

    Our group is developing a scanner that combines x-ray, single gamma, and optical imaging on the same rotating gantry. Two functional modalities (SPECT and optical) are included because they have different strengths and weaknesses in terms of spatial and temporal decay lengths in the context of in vivo imaging, and because of the recent advent of multiple reporter gene constructs. The effect of attenuation by biological tissue on the detected intensity of the emitted signal was measured for both gamma and optical imaging. Attenuation by biological tissue was quantified for both the bioluminescent emission of luciferace and for the emission light of the near infrared fluorophore cyanine 5.5, using a fixed excitation light intensity. Experiments were performed to test the feasibility of using either single gamma or x-ray imaging to make depth-dependent corrections to the measured optical signal. Our results suggest that significant improvements in quantitation of optical emission are possible using straightforward correction techniques based on information from other modalities. Development of an integrated scanner in which data from each modality are obtained with the animal in a common configuration will greatly simplify this process.

  4. Animal Models of Uveal Melanoma: Methods, Applicability, and Limitations

    Science.gov (United States)

    Stei, Marta M.; Loeffler, Karin U.; Holz, Frank G.; Herwig, Martina C.

    2016-01-01

    Animal models serve as powerful tools for investigating the pathobiology of cancer, identifying relevant pathways, and developing novel therapeutic agents. They have facilitated rapid scientific progress in many tumor entities. However, for establishing a powerful animal model of uveal melanoma fundamental challenges remain. To date, no animal model offers specific genetic attributes as well as histologic, immunologic, and metastatic features of uveal melanoma. Syngeneic models with intraocular injection of cutaneous melanoma cells may suit best for investigating immunologic/tumor biology aspects. However, differences between cutaneous and uveal melanoma regarding genetics and metastasis remain problematic. Human xenograft models are widely used for evaluating novel therapeutics but require immunosuppression to allow tumor growth. New approaches aim to establish transgenic mouse models of spontaneous uveal melanoma which recently provided preliminary promising results. Each model provides certain benefits and may render them suitable for answering a respective scientific question. However, all existing models also exhibit relevant limitations which may have led to delayed research progress. Despite refined therapeutic options for the primary ocular tumor, patients' prognosis has not improved since the 1970s. Basic research needs to further focus on a refinement of a potent animal model which mimics uveal melanoma specific mechanisms of progression and metastasis. This review will summarise and interpret existing animal models of uveal melanoma including recent advances in the field. PMID:27366747

  5. Modeling in vivo fluorescence of small animals using TracePro software

    Science.gov (United States)

    Leavesley, Silas; Rajwa, Bartek; Freniere, Edward R.; Smith, Linda; Hassler, Richard; Robinson, J. Paul

    2007-02-01

    The theoretical modeling of fluorescence excitation, emission, and propagation within living tissue has been a limiting factor in the development and calibration of in vivo small animal fluorescence imagers. To date, no definitive calibration standard, or phantom, has been developed for use with small animal fluorescence imagers. Our work in the theoretical modeling of fluorescence in small animals using solid modeling software is useful in optimizing the design of small animal imaging systems, and in predicting their response to a theoretical model. In this respect, it is also valuable in the design of a fluorescence phantom for use in in vivo small animal imaging. The use of phantoms is a critical step in the testing and calibration of most diagnostic medical imaging systems. Despite this, a realistic, reproducible, and informative phantom has yet to be produced for use in small animal fluorescence imaging. By modeling the theoretical response of various types of phantoms, it is possible to determine which parameters are necessary for accurately modeling fluorescence within inhomogenous scattering media such as tissue. Here, we present the model that has been developed, the challenges and limitations associated with developing such a model, and the applicability of this model to experimental results obtained in a commercial small animal fluorescence imager.

  6. Comprehending emergent systems phenomena through direct-manipulation animation

    Science.gov (United States)

    Aguirre, Priscilla Abel

    This study seeks to understand the type of interaction mode that best supports learning and comprehension of emergent systems phenomena. Given that the literature has established that students hold robust misconceptions of such phenomena, this study investigates the influence of using three types of interaction; speed-manipulation animation (SMN), post-manipulation animation (PMA) and direct-manipulation animation (DMA) for increasing comprehension and testing transfer of the phenomena, by looking at the effect of simultaneous interaction of haptic and visual channels on long term and working memories when seeking to comprehend emergent phenomena. The questions asked were: (1) Does the teaching of emergent phenomena, with the aid of a dynamic interactive modeling tool (i.e., SMA, PMA or DMA), improve students' mental model construction of systems, thus increasing comprehension of this scientific concept? And (2) does the teaching of emergent phenomena, with the aid of a dynamic interactive modeling tool, give the students the necessary complex cognitive skill which can then be applied to similar (near transfer) and/or novel, but different, (far transfer) scenarios? In an empirical study undergraduate and graduate students were asked to participate in one of three experimental conditions: SMA, PMA, or DMA. The results of the study found that it was the participants of the SMA treatment condition that had the most improvement in post-test scores. Students' understanding of the phenomena increased most when they used a dynamic model with few interactive elements (i.e., start, stop, and speed) that allowed for real time visualization of one's interaction on the phenomena. Furthermore, no indication was found that the learning of emergent phenomena, with the aid of a dynamic interactive modeling tool, gave the students the necessary complex cognitive skill which could then be applied to similar (near transfer) and/or novel, but different, (far transfer) scenarios

  7. Biology of Obesity: Lessons from Animal Models of Obesity

    OpenAIRE

    Keizo Kanasaki; Daisuke Koya

    2011-01-01

    Obesity is an epidemic problem in the world and is associated with several health problems, including diabetes, cardiovascular disease, respiratory failure, muscle weakness, and cancer. The precise molecular mechanisms by which obesity induces these health problems are not yet clear. To better understand the pathomechanisms of human disease, good animal models are essential. In this paper, we will analyze animal models of obesity and their use in the research of obesity-associated human he...

  8. Animal models of drug addiction: advantages and limitations

    OpenAIRE

    Quertemont, Etienne

    2006-01-01

    Various animal models have been developed to investigate the neurobiological and behavioral mechanisms of drug addiction. The most popular of these animal models include the locomotor sensitization paradigm, the place conditioning procedure and the self-administration technique. With these techniques, it is possible to mimic in rodents the major aspects of human drug addiction. The self-administration procedure is the most widely used and show an excellent natural and predictive validity. In ...

  9. Animal Models of Diabetic Neuropathy: Progress Since 1960s

    OpenAIRE

    Md. Shahidul Islam

    2013-01-01

    Diabetic or peripheral diabetic neuropathy (PDN) is one of the major complications among some other diabetic complications such as diabetic nephropathy, diabetic retinopathy, and diabetic cardiomyopathy. The use of animal models in the research of diabetes and diabetic complications is very common when rats and mice are most commonly used for many reasons. A numbers of animal models of diabetic and PDN have been developed in the last several decades such as streptozotocin-induced diabetic rat...

  10. Animal Models in Cardiovascular Research: Hypertension and Atherosclerosis

    OpenAIRE

    Xin-Fang Leong; Chun-Yi Ng; Kamsiah Jaarin

    2015-01-01

    Hypertension and atherosclerosis are among the most common causes of mortality in both developed and developing countries. Experimental animal models of hypertension and atherosclerosis have become a valuable tool for providing information on etiology, pathophysiology, and complications of the disease and on the efficacy and mechanism of action of various drugs and compounds used in treatment. An animal model has been developed to study hypertension and atherosclerosis for several reasons. Co...

  11. Analysis of animal accelerometer data using hidden Markov models

    OpenAIRE

    Leos-Barajas, Vianey; Photopoulou, Theoni; Langrock, Roland; Patterson, Toby A; Watanabe, Yuuki; Murgatroyd, Megan; Papastamatiou, Yannis P.

    2016-01-01

    Use of accelerometers is now widespread within animal biotelemetry as they provide a means of measuring an animal's activity in a meaningful and quantitative way where direct observation is not possible. In sequential acceleration data there is a natural dependence between observations of movement or behaviour, a fact that has been largely ignored in most analyses. Analyses of acceleration data where serial dependence has been explicitly modelled have largely relied on hidden Markov models (H...

  12. Promise and Pitfalls of Animal Models of Schizophrenia

    OpenAIRE

    Feifel, David; Shilling, Paul D.

    2010-01-01

    Animal models are indispensible tools for advancing understanding of the cause of any given disease and developing new treatments. Developing animal models for schizophrenia presents formidable challenges owing to the distinctively human nature of the symptoms that define it and the thus-far-obscured underlying biological mechanisms. Nevertheless, progress has been and continues to be made in this important field of endeavor. This article discusses the challenges facing investigators who seek...

  13. What Constitutes a Relevant Animal Model of the Ketogenic Diet?

    OpenAIRE

    Gregory L Holmes

    2008-01-01

    Animal models of human disease have been enormously important in improving our understanding of the pathophysiological basis and the development of novel therapies. In epilepsy, modeling using both in vivo and in vitro preparations has provided insight into fundamental neuronal mechanisms. Indeed, much of our understanding of seizure mechanisms comes from animal studies. The conceptual advances in understanding basic mechanisms of epilepsies have been largely validated in humans, attesting to...

  14. Principles for developing animal models of military PTSD

    OpenAIRE

    Nikolaos P. Daskalakis; Yehuda, Rachel

    2014-01-01

    The extent to which animal studies can be relevant to military posttraumatic stress disorder (PTSD) continues to be a matter of discussion. Some features of the clinical syndrome are more easily modeled than others. In the animal literature, a great deal of attention is focused on modeling the characteristics of military exposures and their impact on measurable behaviors and biological parameters. There are many issues to consider regarding the ecological validity of predator, social defeat o...

  15. Animal models of post-traumatic stress disorder: face validity

    OpenAIRE

    Denis Pare

    2013-01-01

    Post-traumatic stress disorder (PTSD) is a debilitating condition that develops in a proportion of individuals following a traumatic event. Despite recent advances, ethical limitations associated with human research impede progress in understanding PTSD. Fortunately, much effort has focused on developing animal models to help study the pathophysiology of PTSD. Here, we provide an overview of animal PTSD models where a variety of stressors (physical, psychosocial, or psychogenic) are used to...

  16. Stop staring facial modeling and animation done right

    CERN Document Server

    Osipa, Jason

    2010-01-01

    The de facto official source on facial animation—now updated!. If you want to do character facial modeling and animation at the high levels achieved in today's films and games, Stop Staring: Facial Modeling and Animation Done Right, Third Edition , is for you. While thoroughly covering the basics such as squash and stretch, lip syncs, and much more, this new edition has been thoroughly updated to capture the very newest professional design techniques, as well as changes in software, including using Python to automate tasks.: Shows you how to create facial animation for movies, games, and more;

  17. The rat as an animal model of Alzheimer's disease

    DEFF Research Database (Denmark)

    Benedikz, Eirikur; Kloskowska, Ewa; Winblad, Bengt

    2009-01-01

    As a disease model, the laboratory rat has contributed enormously to neuroscience research over the years. It has also been a popular animal model for Alzheimer's disease but its popularity has diminished during the last decade, as techniques for genetic manipulation in rats have lagged behind that...... of mice. In recent years, the rat has been making a comeback as an Alzheimer's disease model and the appearance of increasing numbers of transgenic rats will be a welcome and valuable complement to the existing mouse models. This review summarizes the contributions and current status of the rat as an...... animal model of Alzheimer's disease....

  18. Animal models for information processing during sleep.

    Science.gov (United States)

    Coenen, A M L; Drinkenburg, W H I M

    2002-12-01

    Information provided by external stimuli does reach the brain during sleep, although the amount of information is reduced during sleep compared to wakefulness. The process controlling this reduction is called 'sensory' gating and evidence exists that the underlying neurophysiological processes take place in the thalamus. Furthermore, it is clear that stimuli given during sleep can alter the functional state of the brain. Two factors have been shown to play a crucial role in causing changes in the sleeping brain: the intensity and the relevance of the stimulus. Intensive stimuli arouse the brain, as well as stimuli having a high informational impact on the sleeping person. The arousal threshold for important stimuli is quite low compared to neutral stimuli. A central question in sleep research is whether associative learning, or in other words the formation of new associations between stimuli, can take place in a sleeping brain. It has been shown that simple forms of learning are still possible during sleep. In sleeping rats, it is proven that habituation, an active, simple form of learning not to respond to irrelevant stimuli, can occur. Moreover, there is evidence for the view that more complex associations can be modulated and newly formed during sleep. This is shown by two experimental approaches: an extinction paradigm and a latent inhibition (pre-exposure) paradigm. The presentation of non-reinforced stimuli during sleep causes slower extinction compared to the same presentation of these stimuli during wakefulness. Consistently, the suppressive capacity of a stimulus in the latent inhibition paradigm is less when previously pre-exposed during sleep, as compared to pre-exposure during wakefulness. Thus, while associative learning is not completely blocked during sleep, aspects of association formation are clearly altered. However, animal studies also clearly indicate that complex forms of learning are not possible during sleep. It is hypothesised that this

  19. Emerging and Evolving Ovarian Cancer Animal Models

    OpenAIRE

    Bobbs, Alexander S; Jennifer M. Cole; Cowden Dahl, Karen D.

    2015-01-01

    Ovarian cancer (OC) is the leading cause of death from a gynecological malignancy in the United States. By the time a woman is diagnosed with OC, the tumor has usually metastasized. Mouse models that are used to recapitulate different aspects of human OC have been evolving for nearly 40 years. Xenograft studies in immunocompromised and immunocompetent mice have enhanced our knowledge of metastasis and immune cell involvement in cancer. Patient-derived xenografts (PDXs) can accurately reflect ...

  20. Small animal model for HIV-1 Disease

    Institute of Scientific and Technical Information of China (English)

    Yoshio; Koyanagi

    2005-01-01

    Development of a viral infection model of the humanimmune systemusingsmall animalsis animportant goal in biomedi-cal research,especiallyinstudiesof HIV-1infection.Thisis particularlyimportant since susceptibilityto HIV-1islimit-edto humans.The C.B-17-scid/scid-mouselacks mature Tand Bcells dueto a defective rearrangement of the Tcell re-ceptor andimmunoglobulin genes.Twotypes of humanlymphoid chimeras have been establishedin scid-mice.The firstsuccess withthe human mouse chimera was achieved.Human fetal liv...

  1. [Use of animal models of clinical pain].

    Science.gov (United States)

    Guilbaud, G

    1990-11-01

    For a better understanding of clinical pain, several groups involved in the study of basic pain mechanisms have proposed the use of various experimental models close to clinical situations. They are based either on neurogenic or inflammatory processes. Data obtained with three of these models will be developed in the paper: rats rendered arthritic by Freund's adjuvant injection into the tail, rats with an intraplantar injection of carrageenin in one hind-paw, rats with a moderate ligature of one common sciatic nerve. The various pharmacological approaches revealed dramatic changes of the analgesic effects of morphine and other opioid substances, and a spectacular modification of the endogenous opioid reactivity. A further enhancement of the initial hyperalgesia was observed with high doses (1-3 mg/kg iv) of naloxone (known as an antagonist of morphine), contrasting with the paradoxical analgesia induced with the low dose (peaking up for 3 micrograms/kg iv). Electrophysiological studies emphasized dramatic changes of neuronal responsiveness in structures involved in the transmission of the nociceptive messages. In each of these models, electrophysiological data provide new insights on the physiopathological mechanisms of the related clinical pain. PMID:2092200

  2. Animal Models of Cystic Fibrosis Pathology: Phenotypic Parallels and Divergences

    Science.gov (United States)

    McElvaney, Noel G.

    2016-01-01

    Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The resultant characteristic ion transport defect results in decreased mucociliary clearance, bacterial colonisation, and chronic neutrophil-dominated inflammation. Much knowledge surrounding the pathophysiology of the disease has been gained through the generation of animal models, despite inherent limitations in each. The failure of certain mouse models to recapitulate the phenotypic manifestations of human disease has initiated the generation of larger animals in which to study CF, including the pig and the ferret. This review will summarise the basic phenotypes of three animal models and describe the contributions of such animal studies to our current understanding of CF. PMID:27340661

  3. Animal Models of Cystic Fibrosis Pathology: Phenotypic Parallels and Divergences

    Directory of Open Access Journals (Sweden)

    Gillian M. Lavelle

    2016-01-01

    Full Text Available Cystic fibrosis (CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR gene. The resultant characteristic ion transport defect results in decreased mucociliary clearance, bacterial colonisation, and chronic neutrophil-dominated inflammation. Much knowledge surrounding the pathophysiology of the disease has been gained through the generation of animal models, despite inherent limitations in each. The failure of certain mouse models to recapitulate the phenotypic manifestations of human disease has initiated the generation of larger animals in which to study CF, including the pig and the ferret. This review will summarise the basic phenotypes of three animal models and describe the contributions of such animal studies to our current understanding of CF.

  4. 76 FR 72897 - Privacy Act Systems of Records; APHIS Animal Health Surveillance and Monitoring System

    Science.gov (United States)

    2011-11-28

    ... Service Agency, APHIS' Wildlife Services, or from State veterinary health officials and animal testing... Animal and Plant Health Inspection Service Privacy Act Systems of Records; APHIS Animal Health Surveillance and Monitoring System AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice...

  5. Development of animal models for hepatobiliary nuclear imaging

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Hee; Park, Yun Hee; Ryu, Yeon Mi; Shin, Eun Kyung; Kim, Meyoung Kon [Korea University Medical College, Seoul (Korea, Republic of)

    2002-07-01

    Animal models for hepatobiliary disorders were classified into 2 different types: parenchymal hepatotoxicity and biliary-tract cholestasis. The purpose of this study was to develop animal models for hepatobiliary scintigraphy in evaluating a novel agents, such as {sup 99m}Tc-mercaptoacetyl triglycine(MAG3)-biocytin. Animal models were prepared by use of female Balb/c mice. Those were treated with 0.1, 0.5, and 2.5 ml/kg of carbon tetrachloride (CCl4) intraperitoneally for hepatotoxicity and with 30, 150, and 750 mg/kg of {alpha}-naphthylisothiocyanate (ANIT) to induce cholestasis. Dose of optimum was 0.5 ml/kg and 150 mg/kg for each model but lower (0.1 ml/kg and 30 mg/kg) and higher (2.5ml/kg and 750 mg/kg)were not be compatible for hepatobiliary models. Using these hepatobiliary models, {sup 99m}Tc-MAG3-biocytin scintigraphy was successfully carried out by using 4 parameters, e.g., peak liver/heat ratio (Rmax), peak ratio time (Tmax), half clearance time (HCT), and hepatic extraction fraction (HEF) for hepatotoxicity and cholestasis. Additionally, biochemical and histological analysis also resulted in confirming these animal models. Thus, we concluded that these animal models were highly likely to be efficient in evaluating hepatobiliary scintigraphic agent such as {sup 99m}Tc-MAG3-biocytin.

  6. Development of animal models for hepatobiliary nuclear imaging

    International Nuclear Information System (INIS)

    Animal models for hepatobiliary disorders were classified into 2 different types: parenchymal hepatotoxicity and biliary-tract cholestasis. The purpose of this study was to develop animal models for hepatobiliary scintigraphy in evaluating a novel agents, such as 99mTc-mercaptoacetyl triglycine(MAG3)-biocytin. Animal models were prepared by use of female Balb/c mice. Those were treated with 0.1, 0.5, and 2.5 ml/kg of carbon tetrachloride (CCl4) intraperitoneally for hepatotoxicity and with 30, 150, and 750 mg/kg of α-naphthylisothiocyanate (ANIT) to induce cholestasis. Dose of optimum was 0.5 ml/kg and 150 mg/kg for each model but lower (0.1 ml/kg and 30 mg/kg) and higher (2.5ml/kg and 750 mg/kg)were not be compatible for hepatobiliary models. Using these hepatobiliary models, 99mTc-MAG3-biocytin scintigraphy was successfully carried out by using 4 parameters, e.g., peak liver/heat ratio (Rmax), peak ratio time (Tmax), half clearance time (HCT), and hepatic extraction fraction (HEF) for hepatotoxicity and cholestasis. Additionally, biochemical and histological analysis also resulted in confirming these animal models. Thus, we concluded that these animal models were highly likely to be efficient in evaluating hepatobiliary scintigraphic agent such as 99mTc-MAG3-biocytin

  7. Animal models of Tourette syndrome – from proliferation to standardization

    Directory of Open Access Journals (Sweden)

    Dorin eYael

    2016-03-01

    Full Text Available Tourette syndrome (TS is a childhood onset disorder characterized by motor and vocal tics and associated with multiple comorbid symptoms. Over the last decade, the accumulation of findings from TS patients and the emergence of new technologies have led to the development of novel animal models with high construct validity. In addition, animal models which were previously associated with other disorders were recently attributed to TS. The proliferation of TS animal models has accelerated TS research and provided a better understanding of the mechanism underlying the disorder. This newfound success generates novel challenges, since the conclusions that can be drawn from TS animal model studies are constrained by the considerable variation across models. Typically, each animal model examines a specific subset of deficits and centers on one field of research (physiology/genetics/pharmacology/etc.. Moreover, different studies do not use a standard lexicon to characterize different properties of the model. These factors hinder the evaluation of individual model validity as well as the comparison across models, leading to a formation of a fuzzy, segregated landscape of TS pathophysiology. Here, we call for a standardization process in the study of TS animal models as the next logical step. We believe that a generation of standard examination criteria will improve the utility of these models and enable their consolidation into a general framework. This should lead to a better understanding of these models and their relationship to TS, thereby improving the research of the mechanism underlying this disorder and aiding the development of new treatments.

  8. Animals

    Institute of Scientific and Technical Information of China (English)

    杨光

    2000-01-01

    The largest animal ever to live on the earth is the blue whale(蓝鲸)It weighs about 80 tons--more than 24 elephants. It is more than 30 metres long. A newborn baby whale weighs as much as a big elephant.

  9. Animal models for HCV and HBV studies

    OpenAIRE

    Isabelle Chemin

    2007-01-01

    The narrow host range of infection and lack of suitable tissue culture systems for the propagation of hepatitis B and C viruses are limitations that have prevented a more thorough understanding of persistent infection and the pathogenesis of chronic liver disease.

    Despite decades o...

  10. An image guided small animal stereotactic radiotherapy system

    Science.gov (United States)

    Sha, Hao; Udayakumar, Thirupandiyur S.; Johnson, Perry B.; Dogan, Nesrin; Pollack, Alan; Yang, Yidong

    2016-01-01

    Small animal radiotherapy studies should be performed preferably on irradiators capable of focal tumor irradiation and healthy tissue sparing. In this study, an image guided small animal arc radiation treatment system (iSMAART) was developed which can achieve highly precise radiation targeting through the utilization of onboard cone beam computed tomography (CBCT) guidance. The iSMAART employs a unique imaging and radiation geometry where animals are positioned upright. It consists of a stationary x-ray tube, a stationary flat panel detector, and a rotatable and translational animal stage. System performance was evaluated in regards to imaging, image guidance, animal positioning, and radiation targeting using phantoms and tumor bearing animals. The onboard CBCT achieved good signal, contrast, and sub-millimeter spatial resolution. The iodine contrast CBCT accurately delineated orthotopic prostate tumors. Animal positioning was evaluated with ∼0.3 mm vertical displacement along superior-inferior direction. The overall targeting precision was within 0.4 mm. Stereotactic radiation beams conformal to tumor targets can be precisely delivered from multiple angles surrounding the animal. The iSMAART allows radiobiology labs to utilize an image guided precision radiation technique that can focally irradiate tumors while sparing healthy tissues at an affordable cost. PMID:26958942

  11. An image guided small animal stereotactic radiotherapy system.

    Science.gov (United States)

    Sha, Hao; Udayakumar, Thirupandiyur S; Johnson, Perry B; Dogan, Nesrin; Pollack, Alan; Yang, Yidong

    2016-04-01

    Small animal radiotherapy studies should be performed preferably on irradiators capable of focal tumor irradiation and healthy tissue sparing. In this study, an image guided small animal arc radiation treatment system (iSMAART) was developed which can achieve highly precise radiation targeting through the utilization of onboard cone beam computed tomography (CBCT) guidance. The iSMAART employs a unique imaging and radiation geometry where animals are positioned upright. It consists of a stationary x-ray tube, a stationary flat panel detector, and a rotatable and translational animal stage. System performance was evaluated in regards to imaging, image guidance, animal positioning, and radiation targeting using phantoms and tumor bearing animals. The onboard CBCT achieved good signal, contrast, and sub-millimeter spatial resolution. The iodine contrast CBCT accurately delineated orthotopic prostate tumors. Animal positioning was evaluated with ~0.3 mm vertical displacement along superior-inferior direction. The overall targeting precision was within 0.4 mm. Stereotactic radiation beams conformal to tumor targets can be precisely delivered from multiple angles surrounding the animal. The iSMAART allows radiobiology labs to utilize an image guided precision radiation technique that can focally irradiate tumors while sparing healthy tissues at an affordable cost. PMID:26958942

  12. A Focused Salivary Gland Infection with attenuated MCMV: An Animal Model with Prevention of Pathology Associated with Systemic MCMV Infection1, 2

    Science.gov (United States)

    Pilgrim, Mark J.; Kasman, Laura; Grewal, Jasvir; Bruorton, Mary E.; Werner, Phil; London, Lucille; London, Steven D.

    2010-01-01

    While the salivary gland has been recognized as an important effector site of the common mucosal immune system, a useful model for studying anti-viral salivary gland immune responses in vivo and for exploring the role of the salivary gland within the common mucosal system has been lacking. Murine cytomegalovirus (MCMV) is a beta-herpesvirus that displays a strong tropism for the salivary gland and produces significant morbidity in susceptible mice when introduced by intraperitoneal (i.p.) inoculation. This study tested the hypothesis that MCMV morbidity and pathology could be reduced by injecting the virus directly the submandibular salivary gland (intraglandular (i.g.)), using either in vivo derived MCMV or the less virulent, tissue culture-derived MCMV (tcMCMV). Peak salivary gland viral titers were completely unaffected by infection route (i.p vs. i.g.) after inoculation with either MCMV or tcMCMV. However, i.g. tcMCMV inoculation reduced viremia in all systemic tissues tested compared to i.p. inoculation. Further, systemic organ pathology observed in the liver and spleen after i.p. inoculation with either MCMV or tcMCMV was completely eliminated by i.g. inoculation with tcMCMV. Cellular infiltrates in the salivary glands, after i.p. or i.g. inoculation were composed of both B and T cells, indicating the potential for a local immune response to occur in the salivary gland. These results demonstrate that a focused MCMV infection of the salivary gland without systemic organ pathology is possible using i.g. delivery of tcMCMV. PMID:17320076

  13. Review of Animal Models of Prostate Cancer Bone Metastasis

    Directory of Open Access Journals (Sweden)

    Jessica K. Simmons

    2014-06-01

    Full Text Available Prostate cancer bone metastases are associated with a poor prognosis and are considered incurable. Insight into the formation and growth of prostate cancer bone metastasis is required for development of new imaging and therapeutic strategies to combat this devastating disease. Animal models are indispensable in investigating cancer pathogenesis and evaluating therapeutics. Multiple animal models of prostate cancer bone metastasis have been developed, but few effectively model prostatic neoplasms and osteoblastic bone metastases as they occur in men. This review discusses the animal models that have been developed to investigate prostate cancer bone metastasis, with a focus on canine models and also includes human xenograft and rodent models. Adult dogs spontaneously develop benign prostatic hyperplasia and prostate cancer with osteoblastic bone metastases. Large animal models, such as dogs, are needed to develop new molecular imaging tools and effective focal intraprostatic therapy. None of the available models fully reflect the metastatic disease seen in men, although the various models have provided important insight into the metastatic process. As additional models are developed and knowledge from the different models is combined, the molecular mechanisms of prostate cancer bone metastasis can be deciphered and targeted for development of novel therapies and molecular diagnostic imaging.

  14. Lessons Learned from Mouse Mammary Tumor Virus in Animal Models.

    Science.gov (United States)

    Dudley, Jaquelin P; Golovkina, Tatyana V; Ross, Susan R

    2016-03-31

    Mouse mammary tumor virus (MMTV), which was discovered as a milk-transmitted, infectious, cancer-inducing agent in the 1930s, has been used as an animal model for the study of retroviral infection and transmission, antiviral immune responses, and breast cancer and lymphoma biology. The main target cells for MMTV infection in vivo are cells of the immune system and mammary epithelial cells. Although the host mounts an immune response to the virus, MMTV has evolved multiple means of evading this response. MMTV causes mammary tumors when the provirus integrates into the mammary epithelial and lymphoid cell genome during viral replication and thereby activates cellular oncogene expression. Thus, tumor induction is a by-product of the infection cycle. A number of important oncogenes have been discovered by carrying out MMTV integration site analysis, some of which may play a role in human breast cancer. PMID:27034391

  15. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis

    Institute of Scientific and Technical Information of China (English)

    Yoshihisa Takahashi; Yurie Soejima; Toshio Fukusato

    2012-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a condition in which excess fat accumulates in the liver of a patient without a history of alcohol abuse.Nonalcoholic steatohepatitis (NASH),a severe form of NAFLD,can progress to liver cirrhosis and hepatocellular carcinoma.NAFLD is regarded as a hepatic manifestation of metabolic syndrome and incidence has been increasing worldwide in line with the increased prevalence of obesity,type 2 diabetes,and hyperlipemia.Animal models of NAFLD/NASH give crucial information,not only in elucidating pathogenesis of NAFLD/NASH but also in examining therapeutic effects of various agents.An ideal model of NAFLD/NASH should correctly reflect both hepatic histopathology and pathophysiology of human NAFLD/NASH.Animal models of NAFLD/NASH are divided into genetic,dietary,and combination models.In this paper,we review commonly used animal models of NAFLD/NASH referring to their advantages and disadvantages.

  16. Modeling Leadership Hierarchy in Multilevel Animal Societies

    CERN Document Server

    Ozogány, Katalin

    2014-01-01

    A typical feature of many natural and social networks is the presence of communities giving rise to multiple levels of organization. We investigate the decision-making process of a group combining self organization and social dynamics, and reproduce the simultaneous emergence of a hierarchical and modular leadership network. All individuals in the model try, with varying degrees of ability, to find a direction of movement, with the result that leader-follower relationships evolve between them, since they tend to follow the more successful ones. The harem-forming ambitions of male individuals inspired by an observed Przewalski horse herd (Hortob\\'agy, Hungary) leads to modular structure. In this approach we find that the harem-leader to harem-member ratio observed in horses corresponds to an optimal network regarding common success, and that modularly structured hierarchy is more benefical than a non-modular one, in the sense that common success is higher, and the underlying network is more hierarchical. We al...

  17. Forage based animal production systems and sustainability, an invited keynote

    Directory of Open Access Journals (Sweden)

    Abdul Shakoor Chaudhry

    2008-07-01

    Full Text Available Forages are essential for the successful operation of animal production systems. This is more relevant to ruminants which are heavily dependant upon forages for their health and production in a cost-effective and sustainable manner. While forages are an economical source of nutrients for animal production, they also help conserve the soil integrity, water supply and air quality. Although the role of these forages for animal production could vary depending upon the regional preferences for the animal and forage species, climate and resources, their importance in the success of ruminant production is acknowledged. However with the increasing global human population and urbanisation, the sustainability of forage based animal production systems is sometimes questioned due to the interrelationship between animal production and the environment. It is therefore vital to examine the suitability of these systems for their place in the future to supply quality food which is safe for human consumption and available at a competitive price to the growing human population. Grassland and forage crops are recognised for their contribution to the environment, recreation and efficiency of meat and milk production,. To maintain sustainability, it is crucial that such farming systems remain profitable and environmentally friendly while producing nutritious foods of high economical value. Thus, it is pertinent to improve the nutritive value of grasses and other forage plants in order to enhance animal production to obtain quality food. It is also vital to develop new forages which are efficiently utilised and wasted less by involving efficient animals. A combination of forage legumes, fresh or conserved grasses, crop residues and other feeds could help develop an animal production system which is economically efficient, beneficial and viable. Also, it is crucial to use efficient animals, improved forage conservation methods, better manure handling, and minimum

  18. ANIMALS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mammals(哺乳动物)Mammals are the world's most dominant(最占优势的)animal.They are extremely(非常)diverse(多种多样的)creatures(生物,动物)that include(包括)the biggest ever animal (the blue whale鲸,which eats up to 6 tons every day),the smallest(leaf-nosed bat小蹄蝠) and the laziest(sloth树獭,who spends 80% of their time sleeping).There are over 4,600 kinds of mammals and they live in very different environments(环境)—oceans(海洋),rivers,the jungle(丛林),deserts,and plains(平原).

  19. Life sciences research in space: The requirement for animal models

    Science.gov (United States)

    Fuller, C. A.; Philips, R. W.; Ballard, R. W.

    1987-01-01

    Use of animals in NASA space programs is reviewed. Animals are needed because life science experimentation frequently requires long-term controlled exposure to environments, statistical validation, invasive instrumentation or biological tissue sampling, tissue destruction, exposure to dangerous or unknown agents, or sacrifice of the subject. The availability and use of human subjects inflight is complicated by the multiple needs and demands upon crew time. Because only living organisms can sense, integrate and respond to the environment around them, the sole use of tissue culture and computer models is insufficient for understanding the influence of the space environment on intact organisms. Equipment for spaceborne experiments with animals is described.

  20. Technical Note: How to use Winbugs to infer animal models

    DEFF Research Database (Denmark)

    Damgaard, Lars Holm

    . Second, we show how this approach can be used to draw inferences from a wide range of animal models using the computer package Winbugs. Finally, we illustrate the approach in a simulation study, in which the data are generated and analyzed using Winbugs according to a linear model with i.i.d errors......This paper deals with Bayesian inferences of animal models using Gibbs sampling. First, we suggest a general and efficient method for updating additive genetic effects, in which the computational cost is independent of the pedigree depth and increases linearly only with the size of the pedigree...

  1. Rheology-based facial animation realistic face model

    Institute of Scientific and Technical Information of China (English)

    ZENG Dan; PEI Li

    2009-01-01

    This paper presents a rheology-based approach to animate realistic face model. The dynamic and biorheological characteristics of the force member (muscles) and stressed member (face) are considered. The stressed face can be modeled as viscoelastic bodies with the Hooke bodies and Newton bodies connected in a composite series-parallel manner. Then, the stress-strain relationship is derived, and the constitutive equations established. Using these constitutive equations, the face model can be animated with the force generated by muscles. Experimental results show that this method can realistically simulate the mechanical properties and motion characteristics of human face, and performance of this method is satisfactory.

  2. ANIMAL MODELS OF POST-TRAUMATIC STRESS DISORDER: FACE VALIDITY

    Directory of Open Access Journals (Sweden)

    SONAL eGOSWAMI

    2013-05-01

    Full Text Available Post-traumatic stress disorder (PTSD is a debilitating condition that develops in a proportion of individuals following a traumatic event. Despite recent advances, ethical limitations associated with human research impede progress in understanding PTSD. Fortunately, much effort has focused on developing animal models to help study the pathophysiology of PTSD. Here, we provide an overview of animal PTSD models where a variety of stressors (physical, psychosocial, or psychogenic are used to examine the long-term effects of severe trauma. We emphasize models involving predator threat because they reproduce human individual differences in susceptibility to, and in the long-term consequences of, psychological trauma.

  3. An improved animal model of orthotopic liver transplantation in swine

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shu-guo; DONG Jia-hong; LENG Jian-jun; FENG Xiao-bin; MA Zheng-wei; YAN Yi

    2005-01-01

    Objective: To establish a swine model of orthotopic liver transplantation (OLT) which has high standardization, superior reproducibility and stability. Methods: The rate of success, reproducibility and stability were investigated on the modification of OLTs in closed miniature swine with series of improvements. Results: 20 OLTs were performed on the basis of improvements in experimental animals,surgical procedures and operative monitorings. The mean operation time and anhepatic phase was (181±25.8) and (28.43.2) min respectively, which were significantly shorter than those of the previous re ports. Liver function of the animals recovered shortly after operation. One-week survival rate was 90%,and 15 animals survived more than 1 month. The incidence of vascular and biliary complications was lower in animals with long-term survival. Conclusion: The improved animal model of OLTs in swine is easy to operate with high standardization and rate of success, superior reproducibility and stability. It is an ideal model for series studies related to liver transplantation in big animals.

  4. Animal models of GM2 gangliosidosis: utility and limitations

    Directory of Open Access Journals (Sweden)

    Lawson CA

    2016-07-01

    Full Text Available Cheryl A Lawson,1,2 Douglas R Martin2,3 1Department of Pathobiology, 2Scott-Ritchey Research Center, 3Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA Abstract: GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay–Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff disease, whereas Jacob sheep are the only known laboratory animal model of Tay–Sachs disease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models are indispensable tools for further study of pathogenesis and for development of potential treatments. Though no effective treatments for gangliosidoses currently exist, animal models have been used to test promising experimental therapies. Herein, the utility and limitations of gangliosidosis animal models and how they have contributed to the development of potential new treatments are described. Keywords: GM2 gangliosidosis, Tay–Sachs disease, Sandhoff disease, lysosomal storage disorder, sphingolipidosis, brain disease

  5. Animal models of GM2 gangliosidosis: utility and limitations.

    Science.gov (United States)

    Lawson, Cheryl A; Martin, Douglas R

    2016-01-01

    GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay-Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff disease, whereas Jacob sheep are the only known laboratory animal model of Tay-Sachs disease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models are indispensable tools for further study of pathogenesis and for development of potential treatments. Though no effective treatments for gangliosidoses currently exist, animal models have been used to test promising experimental therapies. Herein, the utility and limitations of gangliosidosis animal models and how they have contributed to the development of potential new treatments are described. PMID:27499644

  6. Food allergy: What do we learn from animal models?

    NARCIS (Netherlands)

    Knippels, L.M.J.; Wijk, F. van; Penninks, A.H.

    2004-01-01

    Purpose of review This review summarizes selected articles on animal models of food allergy published in 2003. The research areas that are covered include mechanistic studies, the search for new therapies, as well as screening models for hazard identification of potential allergens. Recent findings

  7. Animal models to study the pathogenesis of human and animal Clostridium perfringens infections.

    Science.gov (United States)

    Uzal, Francisco A; McClane, Bruce A; Cheung, Jackie K; Theoret, James; Garcia, Jorge P; Moore, Robert J; Rood, Julian I

    2015-08-31

    The most common animal models used to study Clostridium perfringens infections in humans and animals are reviewed here. The classical C. perfringens-mediated histotoxic disease of humans is clostridial myonecrosis or gas gangrene and the use of a mouse myonecrosis model coupled with genetic studies has contributed greatly to our understanding of disease pathogenesis. Similarly, the use of a chicken model has enhanced our understanding of type A-mediated necrotic enteritis in poultry and has led to the identification of NetB as the primary toxin involved in disease. C. perfringens type A food poisoning is a highly prevalent bacterial illness in the USA and elsewhere. Rabbits and mice are the species most commonly used to study the action of enterotoxin, the causative toxin. Other animal models used to study the effect of this toxin are rats, non-human primates, sheep and cattle. In rabbits and mice, CPE produces severe necrosis of the small intestinal epithelium along with fluid accumulation. C. perfringens type D infection has been studied by inoculating epsilon toxin (ETX) intravenously into mice, rats, sheep, goats and cattle, and by intraduodenal inoculation of whole cultures of this microorganism in mice, sheep, goats and cattle. Molecular Koch's postulates have been fulfilled for enterotoxigenic C. perfringens type A in rabbits and mice, for C. perfringens type A necrotic enteritis and gas gangrene in chickens and mice, respectively, for C. perfringens type C in mice, rabbits and goats, and for C. perfringens type D in mice, sheep and goats. PMID:25770894

  8. Lead hepatotoxicology: a study in an animal model.

    Science.gov (United States)

    Sá, I; da Costa, M J P; Cunha, E M

    2012-03-01

    The increasing use of lead (Pb) for industrial purposes has resulted in the significant increase in environmental contamination of our planet especially in concern to water and food. In this study using the electron scanning microscopy (SEM), the authors showed the effects of this metal as a result of a chronic and cumulative process. As a primary method of detection of Pb in situ, SEM was chosen, coupled with a detection system Noran Voyager of basic microanalysis X-ray (SEM-XRM), with detection system energy dispersive spectrometry. Mice BALB/c was used as a study model. An animal model of inflammation was used, that consisted in the formation of a subcutaneous pocket of air. It was observed that 75% of Pb stock was captured by the liver, the main target organ in the capture of the metal, the kidney was the second organ to capture the Pb stock and the third was the spleen. It was verified that a low deposition of Pb was found in the lungs and the brain. The main results of this study showed how Pb is captured by different organs. We also demonstrated the vulnerability to inflammation of this metal. PMID:21665903

  9. Zebrafish: A complete animal model to enumerate the nanoparticle toxicity.

    Science.gov (United States)

    Chakraborty, Chiranjib; Sharma, Ashish Ranjan; Sharma, Garima; Lee, Sang-Soo

    2016-01-01

    Presently, nanotechnology is a multi-trillion dollar business sector that covers a wide range of industries, such as medicine, electronics and chemistry. In the current era, the commercial transition of nanotechnology from research level to industrial level is stimulating the world's total economic growth. However, commercialization of nanoparticles might offer possible risks once they are liberated in the environment. In recent years, the use of zebrafish (Danio rerio) as an established animal model system for nanoparticle toxicity assay is growing exponentially. In the current in-depth review, we discuss the recent research approaches employing adult zebrafish and their embryos for nanoparticle toxicity assessment. Different types of parameters are being discussed here which are used to evaluate nanoparticle toxicity such as hatching achievement rate, developmental malformation of organs, damage in gill and skin, abnormal behavior (movement impairment), immunotoxicity, genotoxicity or gene expression, neurotoxicity, endocrine system disruption, reproduction toxicity and finally mortality. Furthermore, we have also highlighted the toxic effect of different nanoparticles such as silver nanoparticle, gold nanoparticle, and metal oxide nanoparticles (TiO2, Al2O3, CuO, NiO and ZnO). At the end, future directions of zebrafish model and relevant assays to study nanoparticle toxicity have also been argued. PMID:27544212

  10. Evaluation and validation of new animal and behavioural models for the study of Alzheimer's disease

    OpenAIRE

    Goricanec, Irena

    2004-01-01

    The incidence of suffering from Alzheimer's disease (AD) increases steadily with augmenting life expectancy in humans, generating an enormous burden for patients, their families and the national health system. Models used in previous publications covered only parts of the AD pathology. The work presented here combines transgenic technology and selective invasive methods to identify an improved animal model for the study of AD. The suitability of animals to acquire task demands of behaviour...

  11. The LEC rat as a radiosensitive model animal

    International Nuclear Information System (INIS)

    The author described the review on the LEC rat which had been firstly established as a model animal of spontaneous hepatitis and hepatoma and had been then found to be highly sensitive to ionizing radiation by the author and his coworkers and to be similar to human AT (ataxia-telangiectasia) as for induced DNA damages. The hepatic failure was primarily caused by Cu accumulation and mutation was detected in the same gene as the causative gene of human Wilson disease. LEC rats exerted 2-times higher radiosensitivity in mortality than the control WKAH rats and this was also true in lung fibroblast and other tissue cells isolated from LEC rat fetus. Breeding experiments of LEC x WKAH and of their offspring F1 x LEC (back cross) revealed that the high radiosensitivity of LEC rats was due to the recessive autosomal gene xhs. Similar to AT cells, LEC rat cells exerted a high incidence of X ray-induced chromosome aberration. In LEC rat cells, the sensitivity spectrum to DNA damaging agents was more broad than that in WKAH cells and the rate to repair DNA damage, particularly double strand break, was slower. The extent of the decrease in DNA synthesis post irradiation was small in AT cells (radioresistant DNA synthesis), which was also seen in LEC rat cells. After the whole body X-ray irradiation, cell apoptosis was seen in spleen and thymus more frequently in LEC rats than in WKAH rats. Abnormal signal transduction system involving p53 protein induced by DNA damage post irradiation caused apoptosis and thereby induced abnormal cell cycle regulation, which was considered to be related with the radiosensitivity of AT cells. Thus the LEC rat can be a good model animal of radiosensitivity. (K.H.)

  12. Computer simulation models are implementable as replacements for animal experiments.

    Science.gov (United States)

    Badyal, Dinesh K; Modgill, Vikas; Kaur, Jasleen

    2009-04-01

    It has become increasingly difficult to perform animal experiments, because of issues related to the procurement of animals, and strict regulations and ethical issues related to their use. As a result, it is felt that the teaching of pharmacology should be more clinically oriented and that unnecessary animal experimentation should be avoided. Although a number of computer simulation models (CSMs) are available, they are not being widely used. Interactive demonstrations were conducted to encourage the departmental faculty to use CSMs. Four different animal experiments were selected, that dealt with actions of autonomic drugs. The students observed demonstrations of animal experiments involving conventional methods and the use of CSMs. This was followed by hands-on experience of the same experiment, but using CSMs in small groups, instead of hands-on experience with the animal procedures. Test scores and feedback showed that there was better understanding of the mechanisms of action of the drugs, gained in a shorter time. The majority of the students found the teaching programme used to be good to excellent. CSMs can be used repeatedly and independently by students, and this avoids unnecessary experimentation and also causing pain and trauma to animals. The CSM programme can be implemented in existing teaching schedules for pharmacology undergraduate teaching with basic infrastructure support, and is readily adaptable for use by other institutes. PMID:19453215

  13. An animal model of emotional blunting in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Charmaine Y Pietersen

    Full Text Available Schizophrenia is often associated with emotional blunting--the diminished ability to respond to emotionally salient stimuli--particularly those stimuli representative of negative emotional states, such as fear. This disturbance may stem from dysfunction of the amygdala, a brain region involved in fear processing. The present article describes a novel animal model of emotional blunting in schizophrenia. This model involves interfering with normal fear processing (classical conditioning in rats by means of acute ketamine administration. We confirm, in a series of experiments comprised of cFos staining, behavioral analysis and neurochemical determinations, that ketamine interferes with the behavioral expression of fear and with normal fear processing in the amygdala and related brain regions. We further show that the atypical antipsychotic drug clozapine, but not the typical antipsychotic haloperidol nor an experimental glutamate receptor 2/3 agonist, inhibits ketamine's effects and retains normal fear processing in the amygdala at a neurochemical level, despite the observation that fear-related behavior is still inhibited due to ketamine administration. Our results suggest that the relative resistance of emotional blunting to drug treatment may be partially due to an inability of conventional therapies to target the multiple anatomical and functional brain systems involved in emotional processing. A conceptual model reconciling our findings in terms of neurochemistry and behavior is postulated and discussed.

  14. Diabetic cardiac autonomic neuropathy: insights from animal models.

    Science.gov (United States)

    Stables, Catherine L; Glasser, Rebecca L; Feldman, Eva L

    2013-10-01

    Cardiac autonomic neuropathy (CAN) is a relatively common and often devastating complication of diabetes. The major clinical signs are tachycardia, exercise intolerance, and orthostatic hypotension, but the most severe aspects of this complication are high rates of cardiac events and mortality. One of the earliest manifestations of CAN is reduced heart rate variability, and detection of this, along with abnormal results in postural blood pressure testing and/or the Valsalva maneuver, are central to diagnosis of the disease. The treatment options for CAN, beyond glycemic control, are extremely limited and lack evidence of efficacy. The underlying molecular mechanisms are also poorly understood. Thus, CAN is associated with a poor prognosis and there is a compelling need for research to understand, prevent, and reverse CAN. In this review of the literature we examine the use and usefulness of animal models of CAN in diabetes. Compared to other diabetic complications, the number of animal studies of CAN is very low. The published studies range across a variety of species, methods of inducing diabetes, and timescales examined, leading to high variability in study outcomes. The lack of well-characterized animal models makes it difficult to judge the relevance of these models to the human disease. One major advantage of animal studies is the ability to probe underlying molecular mechanisms, and the limited numbers of mechanistic studies conducted to date are outlined. Thus, while animal models of CAN in diabetes are crucial to better understanding and development of therapies, they are currently under-used. PMID:23562143

  15. Rabbit as an animal model for experimental research

    Directory of Open Access Journals (Sweden)

    Manjeet Mapara

    2012-01-01

    Full Text Available Animal experimentation is carried out in consultation with the veterinary wing but it is essential that be familiar with experimental protocols of animal model to be able to design an approriate study. This is more so in place where the veterinary facilities are not easily available.Span Rabbits are commonly used as subjects for screening implant material. They have gained favour for their numerous advantages even though they should be ideally used prior to testing in a larger animal model. Though experimentation on rabbits seems to be easy there are many pitfalls. Our endeavor in this article is to integrate all the data about maintaining rabbits as a model and to critically analyze it on the basis of our experimentation.

  16. Engineering Large Animal Species to Model Human Diseases.

    Science.gov (United States)

    Rogers, Christopher S

    2016-01-01

    Animal models are an important resource for studying human diseases. Genetically engineered mice are the most commonly used species and have made significant contributions to our understanding of basic biology, disease mechanisms, and drug development. However, they often fail to recreate important aspects of human diseases and thus can have limited utility as translational research tools. Developing disease models in species more similar to humans may provide a better setting in which to study disease pathogenesis and test new treatments. This unit provides an overview of the history of genetically engineered large animals and the techniques that have made their development possible. Factors to consider when planning a large animal model, including choice of species, type of modification and methodology, characterization, production methods, and regulatory compliance, are also covered. © 2016 by John Wiley & Sons, Inc. PMID:27367161

  17. Minireview: Epigenetic programming of diabetes and obesity: animal models.

    Science.gov (United States)

    Seki, Yoshinori; Williams, Lyda; Vuguin, Patricia M; Charron, Maureen J

    2012-03-01

    A growing body of evidence suggests that the intrauterine (IU) environment has a significant and lasting effect on the long-term health of the growing fetus and the development of metabolic disease in later life as put forth in the fetal origins of disease hypothesis. Metabolic diseases have been associated with alterations in the epigenome that occur without changes in the DNA sequence, such as cytosine methylation of DNA, histone posttranslational modifications, and micro-RNA. Animal models of epigenetic modifications secondary to an altered IU milieu are an invaluable tool to study the mechanisms that determine the development of metabolic diseases, such as diabetes and obesity. Rodent and nonlitter bearing animals are good models for the study of disease, because they have similar embryology, anatomy, and physiology to humans. Thus, it is feasible to monitor and modify the IU environment of animal models in order to gain insight into the molecular basis of human metabolic disease pathogenesis. In this review, the database of PubMed was searched for articles published between 1999 and 2011. Key words included epigenetic modifications, IU growth retardation, small for gestational age, animal models, metabolic disease, and obesity. The inclusion criteria used to select studies included animal models of epigenetic modifications during fetal and neonatal development associated with adult metabolic syndrome. Experimental manipulations included: changes in the nutritional status of the pregnant female (calorie-restricted, high-fat, or low-protein diets during pregnancy), as well as the father; interference with placenta function, or uterine blood flow, environmental toxin exposure during pregnancy, as well as dietary modifications during the neonatal (lactation) as well as pubertal period. This review article is focused solely on studies in animal models that demonstrate epigenetic changes that are correlated with manifestation of metabolic disease, including diabetes

  18. HCV Animal Models: A Journey of More than 30 Years

    Directory of Open Access Journals (Sweden)

    Philip Meuleman

    2009-09-01

    Full Text Available In the 1970s and 1980s it became increasingly clear that blood transfusions could induce a form of chronic hepatitis that could not be ascribed to any of the viruses known to cause liver inflammation. In 1989, the hepatitis C virus (HCV was discovered and found to be the major causative agent of these infections. Because of its narrow ropism, the in vivo study of this virus was, especially in the early days, limited to the chimpanzee. In the past decade, several alternative animal models have been created. In this review we review these novel animal models and their contribution to our current understanding of the biology of HCV.

  19. HCV animal models: a journey of more than 30 years.

    Science.gov (United States)

    Meuleman, Philip; Leroux-Roels, Geert

    2009-09-01

    In the 1970s and 1980s it became increasingly clear that blood transfusions could induce a form of chronic hepatitis that could not be ascribed to any of the viruses known to cause liver inflammation. In 1989, the hepatitis C virus (HCV) was discovered and found to be the major causative agent of these infections. Because of its narrow tropism, the in vivo study of this virus was, especially in the early days, limited to the chimpanzee. In the past decade, several alternative animal models have been created. In this review we review these novel animal models and their contribution to our current understanding of the biology of HCV. PMID:21994547

  20. The Use of Animal Models for Stroke Research: A Review

    OpenAIRE

    Juliana B Casals; Pieri, Naira CG; Feitosa, Matheus LT; Ercolin, Anna CM; Roballo, Kelly CS; Barreto, Rodrigo SN; Bressan, Fabiana F; Daniele S. Martins; Maria A. Miglino; Carlos E. Ambrósio

    2011-01-01

    Stroke has been identified as the second leading cause of death worldwide. Stroke is a focal neurologic deficit caused by a change in cerebral circulation. The use of animal models in recent years has improved our understanding of the physiopathology of this disease. Rats and mice are the most commonly used stroke models, but the demand for larger models, such as rabbits and even nonhuman primates, is increasing so as to better understand the disease and its treatment. Although the basic mech...

  1. Relevance of animal models to human tardive dyskinesia

    OpenAIRE

    Blanchet Pierre J; Parent Marie-Thérèse; Rompré Pierre H; Lévesque Daniel

    2012-01-01

    Abstract Tardive dyskinesia remains an elusive and significant clinical entity that can possibly be understood via experimentation with animal models. We conducted a literature review on tardive dyskinesia modeling. Subchronic antipsychotic drug exposure is a standard approach to model tardive dyskinesia in rodents. Vacuous chewing movements constitute the most common pattern of expression of purposeless oral movements and represent an impermanent response, with individual and strain suscepti...

  2. Predictive validity of behavioural animal models for chronic pain

    OpenAIRE

    Berge, Odd-Geir

    2011-01-01

    Rodent models of chronic pain may elucidate pathophysiological mechanisms and identify potential drug targets, but whether they predict clinical efficacy of novel compounds is controversial. Several potential analgesics have failed in clinical trials, in spite of strong animal modelling support for efficacy, but there are also examples of successful modelling. Significant differences in how methods are implemented and results are reported means that a literature-based comparison between precl...

  3. Animal models and brain circuits in drug addiction.

    Science.gov (United States)

    Kalivas, Peter W; Peters, Jamie; Knackstedt, Lori

    2006-12-01

    Animal models in the field of addiction are considered to be among the best available models of neuropsychiatric disease. These models have undergone a number of refinements that allow deeper understanding of the circuitry involved in initiating drug seeking and relapse. Notably, the demonstrable involvement of classic corticostriatal habit circuitry and the engagement of prefrontal cortical circuits in extinction training may have relevance to the therapeutic modulation of habit circuitry and drug addiction in humans. PMID:17200461

  4. Contemporary Animal Models For Human Gene Therapy Applications.

    Science.gov (United States)

    Gopinath, Chitra; Nathar, Trupti Job; Ghosh, Arkasubhra; Hickstein, Dennis Durand; Remington Nelson, Everette Jacob

    2015-01-01

    Over the past three decades, gene therapy has been making considerable progress as an alternative strategy in the treatment of many diseases. Since 2009, several studies have been reported in humans on the successful treatment of various diseases. Animal models mimicking human disease conditions are very essential at the preclinical stage before embarking on a clinical trial. In gene therapy, for instance, they are useful in the assessment of variables related to the use of viral vectors such as safety, efficacy, dosage and localization of transgene expression. However, choosing a suitable disease-specific model is of paramount importance for successful clinical translation. This review focuses on the animal models that are most commonly used in gene therapy studies, such as murine, canine, non-human primates, rabbits, porcine, and a more recently developed humanized mice. Though small and large animals both have their own pros and cons as disease-specific models, the choice is made largely based on the type and length of study performed. While small animals with a shorter life span could be well-suited for degenerative/aging studies, large animals with longer life span could suit longitudinal studies and also help with dosage adjustments to maximize therapeutic benefit. Recently, humanized mice or mouse-human chimaeras have gained interest in the study of human tissues or cells, thereby providing a more reliable understanding of therapeutic interventions. Thus, animal models are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior to a gene therapy clinical trial. PMID:26415576

  5. Animal models for implant biomaterial research in bone: A review

    Directory of Open Access Journals (Sweden)

    A I Pearce

    2007-03-01

    Full Text Available Development of an optimal interface between bone and orthopaedic and dental implants has taken place for many years. In order to determine whether a newly developed implant material conforms to the requirements of biocompatibility, mechanical stability and safety, it must undergo rigorous testing both in vitro and in vivo. Results from in vitro studies can be difficult to extrapolate to the in vivo situation. For this reason the use of animal models is often an essential step in the testing of orthopaedic and dental implants prior to clinical use in humans. This review discusses some of the more commonly available and frequently used animal models such as the dog, sheep, goat, pig and rabbit models for the evaluation of bone-implant interactions. Factors for consideration when choosing an animal model and implant design are discussed. Various bone specific features are discussed including the usage of the species, bone macrostructure and microstructure and bone composition and remodelling, with emphasis being placed on the similarity between the animal model and the human clinical situation. While the rabbit was the most commonly used of the species discussed in this review, it is clear that this species showed the least similarities to human bone. There were only minor differences in bone composition between the various species and humans. The pig demonstrated a good likeness with human bone however difficulties may be encountered in relation to their size and ease of handling. In this respect the dog and sheep/goat show more promise as animal models for the testing of bone implant materials. While no species fulfils all of the requirements of an ideal model, an understanding of the differences in bone architecture and remodelling between the species is likely to assist in the selection of a suitable species for a defined research question.

  6. Combining Spatial and Telemetric Features for Learning Animal Movement Models

    CERN Document Server

    Kapicioglu, Berk; Wikelski, Martin; Broderick, Tamara

    2012-01-01

    We introduce a new graphical model for tracking radio-tagged animals and learning their movement patterns. The model provides a principled way to combine radio telemetry data with an arbitrary set of userdefined, spatial features. We describe an efficient stochastic gradient algorithm for fitting model parameters to data and demonstrate its effectiveness via asymptotic analysis and synthetic experiments. We also apply our model to real datasets, and show that it outperforms the most popular radio telemetry software package used in ecology. We conclude that integration of different data sources under a single statistical framework, coupled with appropriate parameter and state estimation procedures, produces both accurate location estimates and an interpretable statistical model of animal movement.

  7. Principles for developing animal models of military PTSD

    Directory of Open Access Journals (Sweden)

    Nikolaos P. Daskalakis

    2014-08-01

    Full Text Available The extent to which animal studies can be relevant to military posttraumatic stress disorder (PTSD continues to be a matter of discussion. Some features of the clinical syndrome are more easily modeled than others. In the animal literature, a great deal of attention is focused on modeling the characteristics of military exposures and their impact on measurable behaviors and biological parameters. There are many issues to consider regarding the ecological validity of predator, social defeat or immobilization stress to combat-related experience. In contrast, less attention has been paid to individual variation following these exposures. Such variation is critical to understand how individual differences in the response to military trauma exposure may result to PTSD or resilience. It is important to consider potential differences in biological findings when comparing extremely exposed to non-exposed animals, versus those that result from examining individual differences. Animal models of military PTSD are also critical in advancing efforts in clinical treatment. In an ideal translational approach to study deployment related outcomes, information from humans and animals, blood and brain, should be carefully considered in tandem, possibly even computed simultaneously, to identify molecules, pathways and networks that are likely to be the key drivers of military PTSD symptoms. With the use novel biological methodologies (e.g., optogenetics in the animal models, critical genes and pathways can be tuned up or down (rather than over-expressed or ablated completely in discrete brain regions. Such techniques together with pre-and post-deployment human imaging will accelerate the identification of novel pharmacological and non-pharmacological intervention strategies.

  8. Overview on available animal models for application in leukemia research

    International Nuclear Information System (INIS)

    The term ''leukemia'' encompasses a group of diseases with a variable clinical and pathological presentation. Its cellular origin, its biology and the underlying molecular genetic alterations determine the very variable and individual disease phenotype. The focus of this review is to discuss the most important guidelines to be taken into account when we aim at developing an ''ideal'' animal model to study leukemia. The animal model should mimic all the clinical, histological and molecular genetic characteristics of the human phenotype and should be applicable as a clinically predictive model. It should achieve all the requirements to be used as a standardized model adaptive to basic research as well as to pharmaceutical practice. Furthermore it should fulfill all the criteria to investigate environmental risk factors, the role of genomic mutations and be applicable for therapeutic testing. These constraints limit the usefulness of some existing animal models, which are however very valuable for basic research. Hence in this review we will primarily focus on genetically engineered mouse models (GEMMs) to study the most frequent types of childhood leukemia. GEMMs are robust models with relatively low site specific variability and which can, with the help of the latest gene modulating tools be adapted to individual clinical and research questions. Moreover they offer the possibility to restrict oncogene expression to a defined target population and regulate its expression level as well as its timely activity. Until recently it was only possible in individual cases to develop a murin model, which fulfills the above mentioned requirements. Hence the development of new regulatory elements to control targeted oncogene expression should be priority. Tightly controlled and cell specific oncogene expression can then be combined with a knock-in approach and will depict a robust murine model, which enables almost physiologic oncogene

  9. Concise Review: Stem Cell Trials Using Companion Animal Disease Models.

    Science.gov (United States)

    Hoffman, Andrew M; Dow, Steven W

    2016-07-01

    Studies to evaluate the therapeutic potential of stem cells in humans would benefit from more realistic animal models. In veterinary medicine, companion animals naturally develop many diseases that resemble human conditions, therefore, representing a novel source of preclinical models. To understand how companion animal disease models are being studied for this purpose, we reviewed the literature between 2008 and 2015 for reports on stem cell therapies in dogs and cats, excluding laboratory animals, induced disease models, cancer, and case reports. Disease models included osteoarthritis, intervertebral disc degeneration, dilated cardiomyopathy, inflammatory bowel diseases, Crohn's fistulas, meningoencephalomyelitis (multiple sclerosis-like), keratoconjunctivitis sicca (Sjogren's syndrome-like), atopic dermatitis, and chronic (end-stage) kidney disease. Stem cells evaluated in these studies included mesenchymal stem-stromal cells (MSC, 17/19 trials), olfactory ensheathing cells (OEC, 1 trial), or neural lineage cells derived from bone marrow MSC (1 trial), and 16/19 studies were performed in dogs. The MSC studies (13/17) used adipose tissue-derived MSC from either allogeneic (8/13) or autologous (5/13) sources. The majority of studies were open label, uncontrolled studies. Endpoints and protocols were feasible, and the stem cell therapies were reportedly safe and elicited beneficial patient responses in all but two of the trials. In conclusion, companion animals with naturally occurring diseases analogous to human conditions can be recruited into clinical trials and provide realistic insight into feasibility, safety, and biologic activity of novel stem cell therapies. However, improvements in the rigor of manufacturing, study design, and regulatory compliance will be needed to better utilize these models. Stem Cells 2016;34:1709-1729. PMID:27066769

  10. Animal models of human respiratory syncytial virus disease

    NARCIS (Netherlands)

    R.A. Bem; J.B. Domachowske; H.F. Rosenberg

    2011-01-01

    Infection with the human pneumovirus pathogen, respiratory syncytial virus (hRSV), causes a wide spectrum of respiratory disease, notably among infants and the elderly. Laboratory animal studies permit detailed experimental modeling of hRSV disease and are therefore indispensable in the search for n

  11. Infectious diseases among animals : combining models with data

    NARCIS (Netherlands)

    Koeijer, A.A. de

    2003-01-01

    To eradicate or control the spread of infectious diseases, knowledge on the spread of the infection between (groups of) animals is necessary. Models can include such information and can subsequently be used to observe the efficacy of various control measures in fighting the infection. However, the a

  12. An Aerosolized Brucella spp. Challenge Model for Laboratory Animals

    Science.gov (United States)

    To characterize the optimal aerosol dosage of Brucella abortus strain 2308 (S2308) and B. melitensis (S16M) in a laboratory animal model of brucellosis, dosages of 10**3 to 10**10 CFU were nebulized to mice. Although tissue weights were minimally influenced, total colony-forming units (CFU) per tis...

  13. Animal models of cerebral ischemia for evaluation of drugs.

    Science.gov (United States)

    Gupta, Y K; Briyal, Seema

    2004-10-01

    Stroke is a major cause of death and disability worldwide. The resulting burden on the society continues to grow, with increase in the incidence of stroke. Brain attack is a term introduced to describe the acute presentation of stroke, which emphasizes the need for urgent action to remedy the situation. Though a large number of therapeutic agents like thrombolytics, NMDA receptor antagonists, calcium channel blockers and antioxidants, have been used or being evaluated, there remains a large gap between the benefits by these agents and properties an ideal drug for stroke should offer. In recent years much attention is being paid towards the exploration of herbal preparation, antioxidant agents and combination therapies including COX-2 inhibitors in experimental model of stroke. For better evaluation of the drugs and enhancement of their predictability from animal experimentation to clinical settings, it has been realized that the selection of animal models, the parameters to be evaluated should be critically assessed. Focal and global cerebral ischemia represents diseases that are common in the human population. Understanding the mechanisms of injury and neuroprotection in these diseases is important to learn new target sites to treat ischemia. There are many animal models available to investigate injury mechanisms and neuroprotective strategies. In this article we attempted to summarize commonly explored animal models of focal and global cerebral ischemia and evaluate their advantages and limitations. PMID:15907047

  14. Airway Strain during Mechanical Ventilation in an Intact Animal Model

    OpenAIRE

    Sinclair, Scott E.; Molthen, Robert C.; Haworth, Steve T.; Dawson, Christopher A.; Waters, Christopher M.

    2007-01-01

    Rationale: Mechanical ventilation with large tidal volumes causes ventilator-induced lung injury in animal models. Little direct evidence exists regarding the deformation of airways in vivo during mechanical ventilation, or in the presence of positive end-expiratory pressure (PEEP).

  15. Animation Model to Conceptualize ATP Generation: A Mitochondrial Oxidative Phosphorylation

    Science.gov (United States)

    Jena, Ananta Kumar

    2015-01-01

    Adenosine triphosphate (ATP) is the molecular unit of intracellular energy and it is the product of oxidative phosphorylation of cellular respiration uses in cellular processes. The study explores the growth of the misconception levels amongst the learners and evaluates the effectiveness of animation model over traditional methods. The data…

  16. The use of animal models in multiple myeloma.

    Science.gov (United States)

    Libouban, H

    2015-06-01

    In myeloma, the understanding of the tissular, cellular and molecular mechanisms of the interactions between tumor plasma cells and bone cells have progressed from in vitro and in vivo studies. However none of the known animal models of myeloma reproduce exactly the human form of the disease. There are currently three types of animal models: (1) injection of pristane oil in BALB/c mice leads to intraperitoneal plasmacytomas but without bone marrow colonization and osteolysis; (2) injection of malignant plasma cell lines in immunodeficient mice SCID or NOD/SCID; the use of the SCID-hu or SCID-rab model allows the use of fresh plasma cells obtained from MM patients; (3) injection of allogeneic malignant plasma cells (5T2MM, 5T33) in the C57BL/KalwRij mouse induces bone marrow proliferation and osteolytic lesions. These cells did not grow in vitro and can be propagated by injection of plasma cells isolated from bone marrow of a mouse at end stage of the disease into young recipient mice. The 5TGM1 is a subclone of 5T33MM cells and can grow in vitro. Among the different models, the 5TMM models and SCID-hu/SCID-rab models were extensively used to test pathophysiological hypotheses and to assess anti-osteoclastic, anti-osteoblastic or anti-tumor therapies in myeloma. In the present review, we report the different types of animal models of MM and describe their interests and limitations. PMID:25898798

  17. Animal Models of Diabetes Mellitus for Islet Transplantation

    Directory of Open Access Journals (Sweden)

    Naoaki Sakata

    2012-01-01

    Full Text Available Due to current improvements in techniques for islet isolation and transplantation and protocols for immunosuppressants, islet transplantation has become an effective treatment for severe diabetes patients. Many diabetic animal models have contributed to such improvements. In this paper, we focus on 3 types of models with different mechanisms for inducing diabetes mellitus (DM: models induced by drugs including streptozotocin (STZ, pancreatomized models, and spontaneous models due to autoimmunity. STZ-induced diabetes is one of the most commonly used experimental diabetic models and is employed using many specimens including rodents, pigs or monkeys. The management of STZ models is well established for islet studies. Pancreatomized models reveal different aspects compared to STZ-induced models in terms of loss of function in the increase and decrease of blood glucose and therefore are useful for evaluating the condition in total pancreatomized patients. Spontaneous models are useful for preclinical studies including the assessment of immunosuppressants because such models involve the same mechanisms as type 1 DM in the clinical setting. In conclusion, islet researchers should select suitable diabetic animal models according to the aim of the study.

  18. A Real-time Monitoring System for Programming Education using a Generator of Program Animation Systems

    OpenAIRE

    Youzou Miyadera; Kunimi Kurasawa; Shoichi Nakamura; Nobuyoshi Yonezawa; Setsuo Yokoyama

    2007-01-01

    We have developed a meta-system that generates program animation systems. The generated animation systems visually display changes in program actions and help students (novice programmers) understand them. The animation systems also accumulate historical records of the students’ operations as they execute a program step by step while trying to understand it. By analyzing accumulated records, the meta-system pinpoints common areas of dif- ficulty and their causes for the lecturer. To develop t...

  19. An Experimental Animal Model for Abdominal Fascia Healing after Surgery

    DEFF Research Database (Denmark)

    Burcharth, J; Pommergaard, H-C; Klein, M;

    2013-01-01

    used to evaluate the actively healing fascia. Such an animal model may promote future research in the prevention of IH. Methods: 86 male Sprague-Dawley rats were used to establish a model involving six experiments (experiments A-F). Mechanical testing of the breaking strength of the healed fascia was......Background: Incisional hernia (IH) is a well-known complication after abdominal surgical procedures. The exact etiology of IH is still unknown even though many risk factors have been suggested. The aim of this study was to create an animal model of a weakly healed abdominal fascia that could be...... performed by testing tissue strips from the healed fascia versus the unincised control fascia 7 and 28 days postoperatively. Results: During the six experiments a healing model was created that produced significantly weaker coherent fascia when compared with the control tissue measured in terms of...

  20. Establishing of the Transplanted Animal Models for Human Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    Xingli Zhang; Jinchang Wu

    2009-01-01

    Lung cancer is the leading cause of cancer mortality worldwide.Even with the applications of excision,radiotherapy,chemotherapy,and gene therapy,the 5 year survival rate is only 15% in the USA.Clinically relevant laboratory animal models of the disease could greatly facilitate understanding of the pathogenesis of lung cancer,its progression,invasion and metastasis.Transplanted lung cancer models are of special interest and are widely used today.Such models are essential tools in accelerating development of new therapies for lung cancer.In this communication we will present a brief overview of the hosts,sites and pathways used to establish transplanted animal lung tumor models.

  1. Animal models for Alzheimer's disease and frontotemporal dementia: a perspective

    Directory of Open Access Journals (Sweden)

    Jürgen Götz

    2009-11-01

    Full Text Available In dementia research, animal models have become indispensable tools. They not only model aspects of the human condition, but also simulate processes that occur in humans and hence provide insight into how disease is initiated and propagated. The present review discusses two prominent human neurodegenerative disorders, Alzheimer's disease and frontotemporal dementia. It discusses what we would like to model in animals and highlights some of the more recent achievements using species as diverse as mice, fish, flies and worms. Advances in imaging and therapy are explored. We also discuss some anticipated new models and developments. These will reveal how key players in the pathogenesis of Alzheimer's disease and frontotemporal dementia, such as the peptide Aβ (amyloid β and the protein tau, cause neuronal dysfunction and eventually, neuronal demise. Understanding these processes fully will lead to early diagnosis and therapy.

  2. A systematic review of animal models for experimental neuroma.

    Science.gov (United States)

    Toia, Francesca; Giesen, Thomas; Giovanoli, Pietro; Calcagni, Maurizio

    2015-10-01

    Peripheral neuromas can result in an unbearable neuropathic pain and functional impairment. Their treatment is still challenging, and their optimal management is to be defined. Experimental research still plays a major role, but - although numerous neuroma models have been proposed on different animals - there is still no single model recognised as being the reference. Several models show advantages over the others in specific aspects of neuroma physiopathology, prevention or treatment, making it unlikely that a single model could be of reference. A reproducible and standardised model of peripheral neuroma would allow better comparison of results from different studies. We present a systematic review of the literature on experimental in vivo models, analysing advantages and disadvantages, specific features and indications, with the goal of providing suggestions to help their standardisation. Published models greatly differ in the animal and the nerve employed, the mechanisms of nerve injury and the evaluation methods. Specific experimental models exist for terminal neuromas and neuromas in continuity (NIC). The rat is the most widely employed animal, the rabbit being the second most popular model. NIC models are more actively researched, but it is more difficult to generate such studies in a reproducible manner. Nerve transection is considered the best method to cause terminal neuromas, whereas partial transection is the best method to cause NIC. Traditional histomorphology is the historical gold-standard evaluation method, but immunolabelling, reverse transcriptase-polymerase chain reaction (RT-PCR) and proteomics are gaining increasing popularity. Computerised gait analysis is the gold standard for motor-recovery evaluation, whereas mechanical testing of allodynia and hyperalgesia reproducibly assesses sensory recovery. This review summarises current knowledge on experimental neuroma models, and it provides a useful tool for defining experimental protocols

  3. Freshwater Planarians as an Alternative Animal Model for Neurotoxicology.

    Science.gov (United States)

    Hagstrom, Danielle; Cochet-Escartin, Olivier; Zhang, Siqi; Khuu, Cindy; Collins, Eva-Maria S

    2015-09-01

    Traditional toxicology testing has relied on low-throughput, expensive mammalian studies; however, timely testing of the large number of environmental toxicants requires new in vitro and in vivo platforms for inexpensive medium- to high-throughput screening. Herein, we describe the suitability of the asexual freshwater planarian Dugesia japonica as a new animal model for the study of developmental neurotoxicology. As these asexual animals reproduce by binary fission, followed by regeneration of missing body structures within approximately 1 week, development and regeneration occur through similar processes allowing us to induce neurodevelopment "at will" through amputation. This short time scale and the comparable sizes of full and regenerating animals enable parallel experiments in adults and developing worms to determine development-specific aspects of toxicity. Because the planarian brain, despite its simplicity, is structurally and molecularly similar to the mammalian brain, we are able to ascertain neurodevelopmental toxicity that is relevant to humans. As a proof of concept, we developed a 5-step semiautomatic screening platform to characterize the toxicity of 9 known neurotoxicants (consisting of common solvents, pesticides, and detergents) and a neutral agent, glucose, and quantified effects on viability, stimulated and unstimulated behavior, regeneration, and brain structure. Comparisons of our findings with other alternative toxicology animal models, such as zebrafish larvae and nematodes, demonstrated that planarians are comparably sensitive to the tested chemicals. In addition, we found that certain compounds induced adverse effects specifically in developing animals. We thus conclude that planarians offer new complementary opportunities for developmental neurotoxicology animal models. PMID:26116028

  4. Colony formation of C57BL/6J mice in visible burrow system: Identification of eusocial behaviors in a background strain for genetic animal models of autism

    OpenAIRE

    Arakawa, Hiroyuki; Blanchard, D. Caroline; Blanchard, Robert J.

    2006-01-01

    Deficits in social interaction are primary characteristics of autism, which has strong genetic components. Genetically-manipulated mouse models may provide a useful research tool to advance the investigation of genes associated with autism. To identify these genes using mouse models, behavioral assays for social relationships in the background strains must be developed. The present study examined colony formation in groups of one male and three female mice (Experiment 1) and, groups of three ...

  5. An Animal Model of Emotional Blunting in Schizophrenia

    OpenAIRE

    Pietersen, Charmaine Y.; Fokko J Bosker; Janine Doorduin; Jongsma, Minke E.; Folkert Postema; Joseph V Haas; Johnson, Michael P; Tineke Koch; Tony Vladusich; den Boer, Johan A.

    2007-01-01

    Schizophrenia is often associated with emotional blunting--the diminished ability to respond to emotionally salient stimuli--particularly those stimuli representative of negative emotional states, such as fear. This disturbance may stem from dysfunction of the amygdala, a brain region involved in fear processing. The present article describes a novel animal model of emotional blunting in schizophrenia. This model involves interfering with normal fear processing (classical conditioning) in rat...

  6. Large Animal Models for Batten Disease: A Review

    OpenAIRE

    Weber, Krystal; Pearce, David A.

    2013-01-01

    The neuronal ceroid lipofuscinoses, collectively referred to as Batten disease, make up a group of inherited childhood disorders that result in blindness, motor and cognitive regression, brain atrophy, and seizures, ultimately leading to premature death. So far more than 10 genes have been implicated in different forms of the neuronal ceroid lipofuscinoses. Most related research has involved mouse models, but several naturally occurring large animal models have recently been discovered. In th...

  7. Continuum modeling of the equilibrium and stability of animal flocks

    OpenAIRE

    Mecholsky, Nicholas A.; Ott, Edward; Antonsen Jr., Thomas M.; Guzdar, Parvez

    2012-01-01

    Groups of animals often tend to arrange themselves in flocks that have characteristic spatial attributes and temporal dynamics. Using a dynamic continuum model for a flock of individuals, we find equilibria of finite spatial extent where the density goes continuously to zero at a well-defined flock edge, and we discuss conditions on the model that allow for such solutions. We also demonstrate conditions under which, as the flock size increases, the interior density in our equilibria tends to ...

  8. Animal models of restricted repetitive behavior in autism

    OpenAIRE

    Lewis, Mark H.; Tanimura, Yoko; Lee, Linda W.; Bodfish, James W.

    2006-01-01

    Restricted, repetitive behavior, along with deficits in social reciprocity and communication, is diagnostic of autism. Animal models relevant to this domain generally fall into three classes: repetitive behavior associated with targeted insults to the CNS; repetitive behavior induced by pharmacological agents; and repetitive behavior associated with restricted environments and experience. The extant literature provides potential models of the repetitive behavioral phenotype in autism rather t...

  9. Tissue and Animal Models of Sudden Cardiac Death

    OpenAIRE

    Sallam, Karim; Li, Yingxin; Sager, Philip T.; Steven R. Houser; Wu, Joseph C.

    2015-01-01

    Sudden Cardiac Death (SCD) is a common cause of death in patients with structural heart disease, genetic mutations or acquired disorders affecting cardiac ion channels. A wide range of platforms exist to model and study disorders associated with SCD. Human clinical studies are cumbersome and are thwarted by the extent of investigation that can be performed on human subjects. Animal models are limited by their degree of homology to human cardiac electrophysiology including ion channel expressi...

  10. Animal models as tools to study the pathophysiology of depression

    OpenAIRE

    Abelaira, Helena M.; Gislaine Z. Reus; Joao Quevedo

    2013-01-01

    The incidence of depressive illness is high worldwide, and the inadequacy of currently available drug treatments contributes to the significant health burden associated with depression. A basic understanding of the underlying disease processes in depression is lacking; therefore, recreating the disease in animal models is not possible. Popular current models of depression creatively merge ethologically valid behavioral assays with the latest technological advances in molecular biology. Within...

  11. Functional GI disorders: from animal models to drug development

    OpenAIRE

    Mayer, E A; Bradesi, S; Chang, L; Spiegel, B. M. R.; Bueller, J A; Naliboff, B. D.

    2007-01-01

    Despite considerable efforts by academic researchers and by the pharmaceutical industry, the development of novel pharmacological treatments for irritable bowel syndrome (IBS) and other functional gastrointestinal (GI) disorders has been slow and disappointing. The traditional approach to identifying and evaluating novel drugs for these symptom-based syndromes has relied on a fairly standard algorithm using animal models, experimental medicine models and clinical trials. In the current articl...

  12. Modelos animales para el estudio de la respuesta inflamatoria sistémica y de nutrición parenteral Animal models for the study of systemic inflammatory response and parenteral nutrition

    Directory of Open Access Journals (Sweden)

    J. M. Morán Penco

    2007-04-01

    seems to be due to the activation of the toll-like receptors, specific of the inflammatory response cells, through concrete cytosolic signals which lead to a cascade of reactions acting cytokins, growing factors and others inflammatory mediators. This kind of work revewes and discusses several classifications of animals models to study the SRIS, and propose to divide these models according to concrete goals, which can be the following ones: 1º To study innate and adaptative receptors of regulatory gens in the SRIS. 2º To study signals receptors (cytokines and growing factors. 3º To study the answer to signals. 4º To study treatments through specifics antinflammatory blockage. 5º Specific models of sepsis. 6º Others inducing models of SRIS. 7º Others therapeutical models. -Antinflammatories.-Antiacoagulans: Coagulations inhibition in human assays.-Phase II Anticoagulans: Antitrombine III, PCA y TFPI. -Antibiotics. -Replacing Volume Treatments.-Surgical Treatments. As to the animals models to study Parenteral Nutrition, we could make the next classifications and sum it up: 1. Animal models to study the parenteral via of administration. 2. Models to study viability, absorption and local tolerance of the administration via. 3. Study models for complications. 4. Animal models to study pharmacodynamic, metabolization and to investigate the tolerance of new molecules or substrates.

  13. Continuity of Business Plans for Animal Disease Outbreaks: Using a Logic Model Approach to Protect Animal Health, Public Health, and Our Food Supply

    Directory of Open Access Journals (Sweden)

    Heather Allen

    2013-04-01

    Full Text Available Foreign animal diseases can have a devastating impact on the American economy and agriculture system, while significantly disrupting the food supply chain, and affecting animal health and public health. Continuity of business during an animal disease outbreak aims to mitigate these agriculture-related losses by facilitating normal business operations through the managed movement of non-infected animals and non-contaminated animal products. During a foreign animal disease outbreak, there are competing objectives of trying to control and contain the outbreak while allowing non-infected premises to continue normal business operations to the greatest extent possible. Using a logic model approach, this article discusses the importance of continuity of business planning during an animal disease outbreak, providing a detailed and transparent theoretical framework for continuity of business planning for animal agriculture stakeholders. The logic model provides a basis for continuity of business planning, which is rapidly gaining focus and interest in the animal emergency management community. This unique logic model offers a framework for effective planning and subsequent evaluation of continuity of business plans and processes, by identifying explicit stakeholders, inputs, and activities, alongside the desired outputs and outcomes of such planning.

  14. Validation of a multiple compartment model for the transport of cesium through animals

    International Nuclear Information System (INIS)

    A general multiple compartment model, which describes the transport of trace elements through animals is presented. This model considers a system of K interconnected compartments of volume Vi, i = 1,2,....,K, each containing, at a given time t, Ni molecules of a trace substance. (5 figs.)

  15. Bayesian modeling of animal- and herd-level prevalences.

    Science.gov (United States)

    Branscum, A J; Gardner, I A; Johnson, W O

    2004-12-15

    We reviewed Bayesian approaches for animal-level and herd-level prevalence estimation based on cross-sectional sampling designs and demonstrated fitting of these models using the WinBUGS software. We considered estimation of infection prevalence based on use of a single diagnostic test applied to a single herd with binomial and hypergeometric sampling. We then considered multiple herds under binomial sampling with the primary goal of estimating the prevalence distribution and the proportion of infected herds. A new model is presented that can be used to estimate the herd-level prevalence in a region, including the posterior probability that all herds are non-infected. Using this model, inferences for the distribution of prevalences, mean prevalence in the region, and predicted prevalence of herds in the region (including the predicted probability of zero prevalence) are also available. In the models presented, both animal- and herd-level prevalences are modeled as mixture distributions to allow for zero infection prevalences. (If mixture models for the prevalences were not used, prevalence estimates might be artificially inflated, especially in herds and regions with low or zero prevalence.) Finally, we considered estimation of animal-level prevalence based on pooled samples. PMID:15579338

  16. Peripheral Biomarkers in Animal Models of Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Lucia Carboni

    2013-01-01

    Full Text Available Investigations of preclinical biomarkers for major depressive disorder (MDD encompass the quantification of proteins, peptides, mRNAs, or small molecules in blood or urine of animal models. Most studies aim at characterising the animal model by including the assessment of analytes or hormones affected in depressive patients. The ultimate objective is to validate the model to better understand the neurobiological basis of MDD. Stress hormones or inflammation-related analytes associated with MDD are frequently measured. In contrast, other investigators evaluate peripheral analytes in preclinical models to translate the results in clinical settings afterwards. Large-scale, hypothesis-free studies are performed in MDD models to identify candidate biomarkers. Other studies wish to propose new targets for drug discovery. Animal models endowed with predictive validity are investigated, and the assessment of peripheral analytes, such as stress hormones or immune molecules, is comprised to increase the confidence in the target. Finally, since the mechanism of action of antidepressants is incompletely understood, studies investigating molecular alterations associated with antidepressant treatment may include peripheral analyte levels. In conclusion, preclinical biomarker studies aid the identification of new candidate analytes to be tested in clinical trials. They also increase our understanding of MDD pathophysiology and help to identify new pharmacological targets.

  17. Peripheral biomarkers in animal models of major depressive disorder.

    Science.gov (United States)

    Carboni, Lucia

    2013-01-01

    Investigations of preclinical biomarkers for major depressive disorder (MDD) encompass the quantification of proteins, peptides, mRNAs, or small molecules in blood or urine of animal models. Most studies aim at characterising the animal model by including the assessment of analytes or hormones affected in depressive patients. The ultimate objective is to validate the model to better understand the neurobiological basis of MDD. Stress hormones or inflammation-related analytes associated with MDD are frequently measured. In contrast, other investigators evaluate peripheral analytes in preclinical models to translate the results in clinical settings afterwards. Large-scale, hypothesis-free studies are performed in MDD models to identify candidate biomarkers. Other studies wish to propose new targets for drug discovery. Animal models endowed with predictive validity are investigated, and the assessment of peripheral analytes, such as stress hormones or immune molecules, is comprised to increase the confidence in the target. Finally, since the mechanism of action of antidepressants is incompletely understood, studies investigating molecular alterations associated with antidepressant treatment may include peripheral analyte levels. In conclusion, preclinical biomarker studies aid the identification of new candidate analytes to be tested in clinical trials. They also increase our understanding of MDD pathophysiology and help to identify new pharmacological targets. PMID:24167347

  18. Animal models and therapeutic molecular targets of cancer: utility and limitations

    Directory of Open Access Journals (Sweden)

    Cekanova M

    2014-10-01

    Full Text Available Maria Cekanova, Kusum Rathore Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA Abstract: Cancer is the term used to describe over 100 diseases that share several common hallmarks. Despite prevention, early detection, and novel therapies, cancer is still the second leading cause of death in the USA. Successful bench-to-bedside translation of basic scientific findings about cancer into therapeutic interventions for patients depends on the selection of appropriate animal experimental models. Cancer research uses animal and human cancer cell lines in vitro to study biochemical pathways in these cancer cells. In this review, we summarize the important animal models of cancer with focus on their advantages and limitations. Mouse cancer models are well known, and are frequently used for cancer research. Rodent models have revolutionized our ability to study gene and protein functions in vivo and to better understand their molecular pathways and mechanisms. Xenograft and chemically or genetically induced mouse cancers are the most commonly used rodent cancer models. Companion animals with spontaneous neoplasms are still an underexploited tool for making rapid advances in human and veterinary cancer therapies by testing new drugs and delivery systems that have shown promise in vitro and in vivo in mouse models. Companion animals have a relatively high incidence of cancers, with biological behavior, response to therapy, and response to cytotoxic agents similar to those in humans. Shorter overall lifespan and more rapid disease progression are factors contributing to the advantages of a companion animal model. In addition, the current focus is on discovering molecular targets for new therapeutic drugs to improve survival and quality of life in cancer patients. Keywords: mouse cancer model, companion animal cancer model, dogs, cats, molecular targets

  19. What are the best animal models for testing early intervention in cerebral palsy?

    Directory of Open Access Journals (Sweden)

    Gavin John Clowry

    2014-12-01

    Full Text Available Interventions to treat cerebral palsy should be initiated as soon as possible in order to restore the nervous system to the correct developmental trajectory. One drawback to this approach is that interventions have to undergo exceptionally rigorous assessment for both safety and efficacy prior to use in infants. Part of this process should involve research using animals but how good are our animal models? Part of the problem is that cerebral palsy is an umbrella term that covers a number of conditions. There are also many causal pathways to cerebral palsy, such as periventricular white matter injury in premature babies, perinatal infarcts of the middle cerebral artery or generalised anoxia at the time of birth, indeed multiple causes, including intra-uterine infection or a genetic predisposition to infarction, may need to interact to produce a clinically significant injury. In this review we consider which animal models best reproduce certain aspects of the condition, and the extent to which the multifactorial nature of cerebral palsy has been modelled. The degree to which the corticospinal system of various animals models human corticospinal system function and development is also explored. Where attempts have already been made to test early intervention in animal models, the outcomes are evaluated in light of the suitability of the model.

  20. Modelling animal waste pathogen transport from agricultural land to streams

    International Nuclear Information System (INIS)

    The transport of animal waste pathogens from crop land to streams can potentially elevate pathogen levels in stream water. Applying animal manure into crop land as fertilizers is a common practice in developing as well as in developed countries. Manure application into the crop land, however, can cause potential human health. To control pathogen levels in ambient water bodies such as streams, improving our understanding of pathogen transport at farm scale as well as at watershed scale is required. To understand the impacts of crop land receiving animal waste as fertilizers on stream's pathogen levels, here we investigate pathogen indicator transport at watershed scale. We exploited watershed scale hydrological model to estimate the transport of pathogens from the crop land to streams. Pathogen indicator levels (i.e., E. coli levels) in the stream water were predicted. With certain assumptions, model results are reasonable. This study can be used as guidelines for developing the models for calculating the impacts of crop land's animal manure on stream water

  1. Cost-efficiency of animal welfare in broiler production systems

    NARCIS (Netherlands)

    Gocsik, Éva; Brooshooft, Suzanne D.; Jong, de Ingrid C.; Saatkamp, Helmut W.

    2016-01-01

    Broiler producers operate in a highly competitive and cost-price driven environment. In addition, in recent years the societal pressure to improve animal welfare (AW) in broiler production systems is increasing. Hence, from an economic and decision making point of view, the cost-efficiency of imp

  2. Computed tomography of the central nervous system in small animals

    International Nuclear Information System (INIS)

    With computed tomography in 44 small animals some well defined anatomical structures and pathological processes of the central nervous system are described. Computed tomography is not only necessary for the diagnosis of tumors; malformations, inflammatory, degenerative and vascular diseases and traumas are also visible

  3. α -Synuclein Modification in an ALS Animal Model.

    Science.gov (United States)

    Yang, Eun Jin; Choi, Sun-Mi

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressively paralytic neurodegenerative disease that can be caused by mutations in Cu/Zn-superoxide dismutase 1 (SOD1). Transgenic mice that overexpress mutant SOD1 develop paralysis and accumulate aggregates of mutant protein in the brainstem and spinal cord. Bee venom (BV), which is also known as apitoxin, is extracted from honeybees and is commonly used in oriental medicine for the treatment of chronic rheumatoid arthritis and osteoarthritis. The purpose of the present study was to determine whether BV affects misfolded protein aggregates such as alpha-synuclein, which is a known pathological marker in Parkinson disease, and ubiquitin-proteasomal activity in hSOD1(G93A) mutant mice. BV was bilaterally administered into a 98-day-old hSOD1(G93A) animal model. We found that BV-treated hSOD1(G93A) transgenic mice showed reduced detergent-insoluble polymerization and phosphorylation of α -synuclein. Furthermore, phosphorylated or nitrated α -synuclein was significantly reduced in the spinal cords and brainstems of BV-treated hSOD1(G93A) mice and reduced proteasomal activity was revealed in the brainstems of BV-treated symptomatic hSOD1(G93A). From these findings, we suggest that BV treatment attenuates the dysfunction of the ubiquitin-proteasomal system in a symptomatic hSOD1(G93A) ALS model and may help to slow motor neuron loss caused by misfolded protein aggregates in ALS models. PMID:23762114

  4. Making animals alcoholic: shifting laboratory models of addiction.

    Science.gov (United States)

    Ramsden, Edmund

    2015-01-01

    The use of animals as experimental organisms has been critical to the development of addiction research from the nineteenth century. They have been used as a means of generating reliable data regarding the processes of addiction that was not available from the study of human subjects. Their use, however, has been far from straightforward. Through focusing on the study of alcoholism, where the nonhuman animal proved a most reluctant collaborator, this paper will analyze the ways in which scientists attempted to deal with its determined sobriety and account for their consistent failure to replicate the volitional consumption of ethanol to the point of physical dependency. In doing so, we will see how the animal model not only served as a means of interrogating a complex pathology, but also came to embody competing definitions of alcoholism as a disease process, and alternative visions for the very structure and purpose of a research field. PMID:25740698

  5. Tupaia belangeri as an experimental animal model for viral infection.

    Science.gov (United States)

    Tsukiyama-Kohara, Kyoko; Kohara, Michinori

    2014-01-01

    Tupaias, or tree shrews, are small mammals that are similar in appearance to squirrels. The morphological and behavioral characteristics of the group have been extensively characterized, and despite previously being classified as primates, recent studies have placed the group in its own family, the Tupaiidae. Genomic analysis has revealed that the genus Tupaia is closer to humans than it is to rodents. In addition, tupaias are susceptible to hepatitis B virus and hepatitis C virus. The only other experimental animal that has been demonstrated to be sensitive to both of these viruses is the chimpanzee, but restrictions on animal testing have meant that experiments using chimpanzees have become almost impossible. Consequently, the development of the tupaia for use as an animal infection model could become a powerful tool for hepatitis virus research and in preclinical studies on drug development. PMID:25048261

  6. Animal models for Ebola and Marburg virus infections

    Directory of Open Access Journals (Sweden)

    Eri eNakayama

    2013-09-01

    Full Text Available Ebola and Marburg hemorrhagic fevers (EHF and MHF are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus, respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4 pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using nonhuman primates (NHPs and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics.

  7. Animal Models of Fetal Alcohol Spectrum Disorders: Impact of the Social Environment

    OpenAIRE

    Kelly, Sandra J.; Goodlett, Charles R.; Hannigan, John H.

    2009-01-01

    Animal models of fetal alcohol spectrum disorder (FASD) have been used to demonstrate the specificity of alcohol’s teratogenic effects and some of the underlying changes in the central nervous system (CNS) and, more recently, to explore ways to ameliorate the effects of alcohol. The main point of this review is to highlight research findings from the animal literature which point to the impact of the social context or social behavior on the effect(s) of alcohol exposure during development, an...

  8. Immunomodulation of cytokine and chemokine production in animal models of neuroinflammatory and neurodegenerative disorders

    OpenAIRE

    Abbas Ahmed M. Gadeh EL Dum, Nagat

    2003-01-01

    Experimental autoimmune neuritis (EAN) is a CD4+ T cell-mediated autoimmune disease of the peripheral nervous system (PNS) that can be actively induced in susceptible animal species and strains by active immunization with heterogeneous peripheral nerve myelin or its component P2 or PO proteins or their peptides emulsified in Freund's complete adjuvant. EAN represents an animal model for studying the immunopathogenesis and therapy of Guillain-Barré syndrome (GBS ) which is ...

  9. A knowledge based approach to matching human neurodegenerative disease and animal models

    OpenAIRE

    Martone, Maryann E.; Mungall, Christopher J.

    2013-01-01

    Neurodegenerative diseases present a wide and complex range of biological and clinical features. Animal models are key to translational research, yet typically only exhibit a subset of disease features rather than being precise replicas of the disease. Consequently, connecting animal to human conditions using direct data-mining strategies has proven challenging, particularly for diseases of the nervous system, with its complicated anatomy and physiology. To address this challenge we have expl...

  10. What are the Best Animal Models for Testing Early Intervention in Cerebral Palsy?

    OpenAIRE

    Clowry, Gavin John; Basuodan, Reem; Chan, Felix

    2014-01-01

    Interventions to treat cerebral palsy should be initiated as soon as possible in order to restore the nervous system to the correct developmental trajectory. One drawback to this approach is that interventions have to undergo exceptionally rigorous assessment for both safety and efficacy prior to use in infants. Part of this process should involve research using animals but how good are our animal models? Part of the problem is that cerebral palsy is an umbrella term that covers a number of c...

  11. Animal models of enterovirus 71 infection: applications and limitations.

    Science.gov (United States)

    Wang, Ya-Fang; Yu, Chun-Keung

    2014-01-01

    Human enterovirus 71 (EV71) has emerged as a neuroinvasive virus that is responsible for several outbreaks in the Asia-Pacific region over the past 15 years. Appropriate animal models are needed to understand EV71 neuropathogenesis better and to facilitate the development of effective vaccines and drugs. Non-human primate models have been used to characterize and evaluate the neurovirulence of EV71 after the early outbreaks in late 1990s. However, these models were not suitable for assessing the neurovirulence level of the virus and were associated with ethical and economic difficulties in terms of broad application. Several strategies have been applied to develop mouse models of EV71 infection, including strategies that employ virus adaption and immunodeficient hosts. Although these mouse models do not closely mimic human disease, they have been applied to determine the pathogenesis of and treatment and prevention of the disease. EV71 receptor-transgenic mouse models have recently been developed and have significantly advanced our understanding of the biological features of the virus and the host-parasite interactions. Overall, each of these models has advantages and disadvantages, and these models are differentially suited for studies of EV71 pathogenesis and/or the pre-clinical testing of antiviral drugs and vaccines. In this paper, we review the characteristics, applications and limitation of these EV71 animal models, including non-human primate and mouse models. PMID:24742252

  12. Age- and Sex-Dependent Laterality of Rat Hippocampal Cholinergic System in Relation to Animal Models of Neurodevelopmental and Neurodegenerative Disorders

    Czech Academy of Sciences Publication Activity Database

    Krištofíková, Z.; Šťastný, F.; Bubeníková, V.; Druga, R.; Klaschka, Jan; Španiel, F.

    2004-01-01

    Roč. 29, č. 4 (2004), s. 671-680. ISSN 0364-3190 R&D Projects: GA MZd NF6031 Institutional research plan: CEZ:AV0Z1030915 Keywords : laterality * cholinergic * excitotoxic * rat model * schizophrenia * Alzheimer disease Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.218, year: 2004

  13. Reproduction of an animal model of landmine blast injuries

    Directory of Open Access Journals (Sweden)

    Sen ZHANG

    2014-03-01

    Full Text Available Objective To reproduce an animal model of landmine blast injuries for studying its mechanism and characteristics. Methods Fifteen healthy New Zealand white rabbits (body weight 1.9-2.4 kg were prepared as experimental animals. Punctiform burster was used to simulate the landmine, and it was electrically detonated far away to produce landmine blast injuries on unilateral hind limb of rabbits in upright state. The vital signs before and 5min, 15min, 30min, 45min, 1h, 2h, 3h, 6h, 9h and 12h after injuries were recorded. Autopsy of dead animals was performed immediately and the survivors were sacrificed for pathological examination 6h and 12h after the injury. Macroscopic and microscopic changes in the injured limb and distant organs were observed. Fifteen random adult body weights were generated by random number table, and the explosive energy of M14 landmine (about 29g TNT explosive energy was simulated, to compare the ratio of explosive force equivalent to weight calculated between experimental animals and randomly selected adults. Results No significant change in blood pressure was observed at different time points before and after injuries. A broom-like change was found in the injured limb by the general observation. The subareas and pathological changes of injured limb coincided with the typical limb injuries produced by landmine explosion. Damage in different degrees was found in distant organs, and the wound characteristics and injury of major organs were in accordance with the reports of relevant literature. The ratio of explosive equivalent to weight of experimental animals (0.50±0.04g TNT/kg was similar to that of randomly selected adults (0.51±0.05g TNT/kg. Conclusion The present animal model could simulate the landmine explosive injuries, and may be used in research of landmine explosive injuries. DOI: 10.11855/j.issn.0577-7402.2014.01.14

  14. Animal models of brain maldevelopment induced by cycad plant genotoxins.

    Science.gov (United States)

    Kisby, Glen E; Moore, Holly; Spencer, Peter S

    2013-12-01

    Cycads are long-lived tropical and subtropical plants that contain azoxyglycosides (e.g., cycasin, macrozamin) and neurotoxic amino acids (notably β-N-methylamino-l-alanine l-BMAA), toxins that have been implicated in the etiology of a disappearing neurodegenerative disease, amyotrophic lateral sclerosis and parkinsonism-dementia complex that has been present in high incidence among three genetically distinct populations in the western Pacific. The neuropathology of amyotrophic lateral sclerosis/parkinsonism-dementia complex includes features suggestive of brain maldevelopment, an experimentally proven property of cycasin attributable to the genotoxic action of its aglycone methylazoxymethanol (MAM). This property of MAM has been exploited by neurobiologists as a tool to study perturbations of brain development. Depending on the neurodevelopmental stage, MAM can induce features in laboratory animals that model certain characteristics of epilepsy, schizophrenia, or ataxia. Studies in DNA repair-deficient mice show that MAM perturbs brain development through a DNA damage-mediated mechanism. The brain DNA lesions produced by systemic MAM appear to modulate the expression of genes that regulate neurodevelopment and contribute to neurodegeneration. Epigenetic changes (histone lysine methylation) have also been detected in the underdeveloped brain after MAM administration. The DNA damage and epigenetic changes produced by MAM and, perhaps by chemically related substances (e.g., nitrosamines, nitrosoureas, hydrazines), might be an important mechanism by which early-life exposure to genotoxicants can induce long-term brain dysfunction. PMID:24339036

  15. A method of shadow puppet figure modeling and animation

    Institute of Scientific and Technical Information of China (English)

    Xiao-fang HUANG; Shou-qian SUN; Ke-jun ZHANG; Tian-ning XU; Jian-feng WU; Bin ZHU

    2015-01-01

    To promote the development of the intangible cultural heritage of the world, shadow play, many studies have focused on shadow puppet modeling and interaction. Most of the shadow puppet figures are still imaginary, spread by ancients, or carved and painted by shadow puppet artists, without consideration of real dimensions or the appearance of human bodies. This study proposes an algorithm to transform 3D human models to 2D puppet figures for shadow puppets, including automatic location of feature points, automatic segmentation of 3D models, automatic extraction of 2D contours, automatic clothes matching, and animation. Experiment proves that more realistic and attractive figures and animations of the shadow puppet can be generated in real time with this algorithm.

  16. Animal Models of Nonalcoholic Steatohepatitis: Eat, Delete, and Inflame.

    Science.gov (United States)

    Ibrahim, Samar H; Hirsova, Petra; Malhi, Harmeet; Gores, Gregory J

    2016-05-01

    With the obesity epidemic, nonalcoholic fatty liver disease (NAFLD) has become a public health problem with increasing prevalence. The mechanism of disease progression remains obscure and effective therapy is lacking. Therefore, there is a need to understand the pathogenic mechanisms responsible for disease development and progression in order to develop innovative therapies. To accomplish this goal, experimental animal models that recapitulate the human disease are necessary, especially, since causative mechanistic studies of NAFLD are more difficult or unethical to perform in humans. A large number of studies regarding the pathophysiology and treatment of nonalcoholic steatohepatitis (NASH) have been undertaken in mice to model human NAFLD and NASH. This review discusses the known dietary, genetic, and inflammation-based animal models of NASH described in recent years, with a focus on the major advances made in this field. PMID:26626909

  17. THE ROLE OF ANDROGENS AND ESTROGENS IN THE DEVELOPMENT OF BRAIN AND PERIPHERAL NERVOUS SYSTEM: APPROACHES TO DEVELOPING ANIMAL MODELS FOR SEXUALLY DIMORPHIC BEHAVIORS

    Science.gov (United States)

    This presentation provides an overview of research on the effects of hormonally active chemicals on sexual differentiation of the brain including (a) research on the role of androgens and estrogens in the development of the brain and peripheral nervous system, (b) approaches to d...

  18. A roadmap for the development of alternative (non-animal) methods for systemic toxicity testing

    OpenAIRE

    Ruhdel, Irmela; Vanparys, Philippe; Knudsen, Thomas B.; Roggen, Erwin; Oué draogo, Gladys; Basketter, David A.; Daneshian, Mardas; Eskes, Chantra; Rossi, Annamaria; Skinner, Nigel; Blaauboer, Bas; Pelkonen, Olavi; Maxwell, Gavin; Yager, James

    2012-01-01

    Systemic toxicity testing forms the cornerstone for the safety evaluation of substances. Pressures to move from traditional animal models to novel technologies arise from various concerns, including: the need to evaluate large numbers of previously untested chemicals and new products (such as nanoparticles or cell therapies), the limited predictivity of traditional tests for human health effects, duration and costs of current approaches, and animal welfare considerations. The latter holds esp...

  19. Hand Interface in Traditional Modeling and Animation Tasks

    Institute of Scientific and Technical Information of China (English)

    孙汉秋

    1996-01-01

    3-D task space in modeling and animation is usually reduced to the separate control dimensions supported by conventional interactive devices.This limitation maps only partial view of the problem to the device space at a time,and results in tedious and unnatural interface of control.This paper uses the DataGlove interface for modeling and animating scene behaviors.The modeling interface selects,scales,rotates,translates,copies and deletes the instances of the primitives.These basic modeling processes are directly performed in the task space,using hand shapes and motions.Hand shapes are recognized as discrete states that trigger the commands,and hand motion are mapped to the movement of a selected instance.The interactions through hand interface place the user as a participant in the process of behavior simulation.Both event triggering and role switching of hand are experimented in simulation.The event mode of hand triggers control signals or commands through a menu interface.The object mode of hand simulates itself as an object whose appearance or motion influences the motions of other objects in scene.The involvement of hand creates a diversity of dynamic situations for testing variable scene behaviors.Our experiments have shown the potential use of this interface directly in the 3-D modeling and animation task space.

  20. Extending animal models of fear conditioning to humans.

    Science.gov (United States)

    Delgado, M R; Olsson, A; Phelps, E A

    2006-07-01

    A goal of fear and anxiety research is to understand how to treat the potentially devastating effects of anxiety disorders in humans. Much of this research utilizes classical fear conditioning, a simple paradigm that has been extensively investigated in animals, helping outline a brain circuitry thought to be responsible for the acquisition, expression and extinction of fear. The findings from non-human animal research have more recently been substantiated and extended in humans, using neuropsychological and neuroimaging methodologies. Research across species concur that the neural correlates of fear conditioning include involvement of the amygdala during all stages of fear learning, and prefrontal areas during the extinction phase. This manuscript reviews how animal models of fear are translated to human behavior, and how some fears are more easily acquired in humans (i.e., social-cultural). Finally, using the knowledge provided by a rich animal literature, we attempt to extend these findings to human models targeted to helping facilitate extinction or abolishment of fears, a trademark of anxiety disorders, by discussing efficacy in modulating the brain circuitry involved in fear conditioning via pharmacological treatments or emotion regulation cognitive strategies. PMID:16472906

  1. Sex Differences in Animal Models: Focus on Addiction.

    Science.gov (United States)

    Becker, Jill B; Koob, George F

    2016-04-01

    The purpose of this review is to discuss ways to think about and study sex differences in preclinical animal models. We use the framework of addiction, in which animal models have excellent face and construct validity, to illustrate the importance of considering sex differences. There are four types of sex differences: qualitative, quantitative, population, and mechanistic. A better understanding of the ways males and females can differ will help scientists design experiments to characterize better the presence or absence of sex differences in new phenomena that they are investigating. We have outlined major quantitative, population, and mechanistic sex differences in the addiction domain using a heuristic framework of the three established stages of the addiction cycle: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. Female rats, in general, acquire the self-administration of drugs and alcohol more rapidly, escalate their drug taking with extended access more rapidly, show more motivational withdrawal, and (where tested in animal models of "craving") show greater reinstatement. The one exception is that female rats show less motivational withdrawal to alcohol. The bases for these quantitative sex differences appear to be both organizational, in that estradiol-treated neonatal animals show the male phenotype, and activational, in that the female phenotype depends on the effects of gonadal hormones. In animals, differences within the estrous cycle can be observed but are relatively minor. Such hormonal effects seem to be most prevalent during the acquisition of drug taking and less influential once compulsive drug taking is established and are linked largely to progesterone and estradiol. This review emphasizes not only significant differences in the phenotypes of females and males in the domain of addiction but emphasizes the paucity of data to date in our understanding of those differences. PMID:26772794

  2. Use of Animal Models in Understanding Cancer-induced Bone Pain.

    Science.gov (United States)

    Slosky, Lauren M; Largent-Milnes, Tally M; Vanderah, Todd W

    2015-01-01

    Many common cancers have a propensity to metastasize to bone. Although malignancies often go undetected in their native tissues, bone metastases produce excruciating pain that severely compromises patient quality of life. Cancer-induced bone pain (CIBP) is poorly managed with existing medications, and its multifaceted etiology remains to be fully elucidated. Novel analgesic targets arise as more is learned about this complex and distinct pain state. Over the past two decades, multiple animal models have been developed to study CIBP's unique pathology and identify therapeutic targets. Here, we review animal models of CIBP and the mechanistic insights gained as these models evolve. Findings from immunocompromised and immunocompetent host systems are discussed separately to highlight the effect of model choice on outcome. Gaining an understanding of the unique neuromolecular profile of cancer pain through the use of appropriate animal models will aid in the development of more effective therapeutics for CIBP. PMID:26339191

  3. Behavioral impairments in animal models for zinc deficiency

    Directory of Open Access Journals (Sweden)

    Simone eHagmeyer

    2015-01-01

    Full Text Available Apart from teratogenic and pathological effects of zinc deficiency such as the occurrence of skin lesions, anorexia, growth retardation, depressed wound healing, altered immune function, impaired night vision, and alterations in taste and smell acuity, characteristic behavioral changes in animal models and human patients suffering from zinc deficiency have been observed. Given that it is estimated that about 17% of the worldwide population are at risk for zinc deficiency and that zinc deficiency is associated with a variety of brain disorders and disease states in humans, it is of major interest to investigate, how these behavioral changes will affect the individual and a putative course of a disease. Thus, here, we provide a state of the art overview about the behavioral phenotypes observed in various models of zinc deficiency, among them environmentally produced zinc deficient animals as well as animal models based on a genetic alteration of a particular zinc homeostasis gene. Finally, we compare the behavioral phenotypes to the human condition of mild to severe zinc deficiency and provide a model, how zinc deficiency that is associated with many neurodegenerative and neuropsychological disorders might modify the disease pathologies.

  4. Large Animal Models for Foamy Virus Vector Gene Therapy

    Directory of Open Access Journals (Sweden)

    Peter A. Horn

    2012-12-01

    Full Text Available Foamy virus (FV vectors have shown great promise for hematopoietic stem cell (HSC gene therapy. Their ability to efficiently deliver transgenes to multi-lineage long-term repopulating cells in large animal models suggests they will be effective for several human hematopoietic diseases. Here, we review FV vector studies in large animal models, including the use of FV vectors with the mutant O6-methylguanine-DNA methyltransferase, MGMTP140K to increase the number of genetically modified cells after transplantation. In these studies, FV vectors have mediated efficient gene transfer to polyclonal repopulating cells using short ex vivo transduction protocols designed to minimize the negative effects of ex vivo culture on stem cell engraftment. In this regard, FV vectors appear superior to gammaretroviral vectors, which require longer ex vivo culture to effect efficient transduction. FV vectors have also compared favorably with lentiviral vectors when directly compared in the dog model. FV vectors have corrected leukocyte adhesion deficiency and pyruvate kinase deficiency in the dog large animal model. FV vectors also appear safer than gammaretroviral vectors based on a reduced frequency of integrants near promoters and also near proto-oncogenes in canine repopulating cells. Together, these studies suggest that FV vectors should be highly effective for several human hematopoietic diseases, including those that will require relatively high percentages of gene-modified cells to achieve clinical benefit.

  5. Animal models of enterovirus 71 infection: applications and limitations

    OpenAIRE

    Wang, Ya-Fang; Yu, Chun-Keung

    2014-01-01

    Human enterovirus 71 (EV71) has emerged as a neuroinvasive virus that is responsible for several outbreaks in the Asia-Pacific region over the past 15 years. Appropriate animal models are needed to understand EV71 neuropathogenesis better and to facilitate the development of effective vaccines and drugs. Non-human primate models have been used to characterize and evaluate the neurovirulence of EV71 after the early outbreaks in late 1990s. However, these models were not suitable for assessing ...

  6. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy.

    Science.gov (United States)

    McGreevy, Joe W; Hakim, Chady H; McIntosh, Mark A; Duan, Dongsheng

    2015-03-01

    Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder. It is caused by loss-of-function mutations in the dystrophin gene. Currently, there is no cure. A highly promising therapeutic strategy is to replace or repair the defective dystrophin gene by gene therapy. Numerous animal models of DMD have been developed over the last 30 years, ranging from invertebrate to large mammalian models. mdx mice are the most commonly employed models in DMD research and have been used to lay the groundwork for DMD gene therapy. After ~30 years of development, the field has reached the stage at which the results in mdx mice can be validated and scaled-up in symptomatic large animals. The canine DMD (cDMD) model will be excellent for these studies. In this article, we review the animal models for DMD, the pros and cons of each model system, and the history and progress of preclinical DMD gene therapy research in the animal models. We also discuss the current and emerging challenges in this field and ways to address these challenges using animal models, in particular cDMD dogs. PMID:25740330

  7. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy

    Directory of Open Access Journals (Sweden)

    Joe W. McGreevy

    2015-03-01

    Full Text Available Duchenne muscular dystrophy (DMD is a progressive muscle-wasting disorder. It is caused by loss-of-function mutations in the dystrophin gene. Currently, there is no cure. A highly promising therapeutic strategy is to replace or repair the defective dystrophin gene by gene therapy. Numerous animal models of DMD have been developed over the last 30 years, ranging from invertebrate to large mammalian models. mdx mice are the most commonly employed models in DMD research and have been used to lay the groundwork for DMD gene therapy. After ~30 years of development, the field has reached the stage at which the results in mdx mice can be validated and scaled-up in symptomatic large animals. The canine DMD (cDMD model will be excellent for these studies. In this article, we review the animal models for DMD, the pros and cons of each model system, and the history and progress of preclinical DMD gene therapy research in the animal models. We also discuss the current and emerging challenges in this field and ways to address these challenges using animal models, in particular cDMD dogs.

  8. Mesenchymal stem cells in the treatment of inflammatoryand autoimmune diseases in experimental animal models

    Institute of Scientific and Technical Information of China (English)

    Matthew W Klinker; Cheng-Hong Wei

    2015-01-01

    Multipotent mesenchymal stromal cells [also known asmesenchymal stem cells (MSCs)] are currently beingstudied as a cell-based treatment for inflammatorydisorders. Experimental animal models of humanimmune-mediated diseases have been instrumental inestablishing their immunosuppressive properties. Inthis review, we summarize recent studies examiningthe effectiveness of MSCs as immunotherapy in severalwidely-studied animal models, including type 1 diabetes,experimental autoimmune arthritis, experimentalautoimmune encephalomyelitis, inflammatory boweldisease, graft-vs -host disease, and systemic lupuserythematosus. In addition, we discuss mechanismsidentified by which MSCs mediate immune suppressionin specific disease models, and potential sources offunctional variability of MSCs between studies.

  9. ANIMAL MODELS TO EVALUATE THE CAUSE BEHIND GASTRIC ULCERS

    Directory of Open Access Journals (Sweden)

    Saini Amita

    2012-08-01

    Full Text Available Peptic ulcer is the major cause of mortality and morbidity in developing countries, characterised by imbalance between aggressive gastric luminal factor and defensive mucosal barrier. This disease is mainly associated with increase in gastric acid secretion. Numerous factors like diet, smoking, drugs like aspirin and infection are responsible for augmentation of ulcers. Still, no therapeutic intervention has been found successful. So, this review has been designed to explore various animal models to find out a suitable medication. Various synthetic Omeprazole, cemitidine and herbal drugs like tulsi, Areca catechu are employed in the management of the ulcers but still no curative treatment is available due to unknown mechanism behind ulceration. So this review has been designed to explore various animal models that depict the signalling pathway involved in ulcers and have open vista for the development of the new drugs.

  10. The search for animal models for Lassa fever vaccine development.

    Science.gov (United States)

    Lukashevich, Igor S

    2013-01-01

    Lassa virus (LASV) is the most prevalent arenavirus in West Africa and is responsible for several hundred thousand infections and thousands of deaths annually. The sizeable disease burden, numerous imported cases of Lassa fever (LF) and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Currently there is no licensed LF vaccine and research and devlopment is hampered by the high cost of nonhuman primate animal models and by biocontainment requirements (BSL-4). In addition, a successful LF vaccine has to induce a strong cell-mediated cross-protective immunity against different LASV lineages. All of these challenges will be addressed in this review in the context of available and novel animal models recently described for evaluation of LF vaccine candidates. PMID:23256740

  11. The search for animal models for Lassa fever vaccine development

    Science.gov (United States)

    Lukashevich, Igor S

    2013-01-01

    Lassa virus (LASV) is the most prevalent arenavirus in West Africa and is responsible for several hundred thousand infections and thousands of deaths annually. The sizeable disease burden, numerous imported cases of Lassa fever (LF) and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Currently there is no licensed LF vaccine and research and devlopment is hampered by the high cost of nonhuman primate animal models and by biocontainment requirements (BSL-4). In addition, a successful LF vaccine has to induce a strong cell-mediated cross-protective immunity against different LASV lineages. All of these challenges will be addressed in this review in the context of available and novel animal models recently described for evaluation of LF vaccine candidates. PMID:23256740

  12. Impaired auditory sensorimotor gating: An animal model of schizophrenia

    Institute of Scientific and Technical Information of China (English)

    LI Liang; SHAO Feng

    2003-01-01

    Establishment of animal models of schizophrenia is critical for both understanding the mechanisms underlying this severe mental disease and developing new antipsychotics. This paper starts from the theoretical root of sensory gating, the "protection-of-processing" theory, then thoroughly describes the representative studies over the past decade on the mechanism underlying prepulse inhibition and on those underlying modulation of prepulse inhibition, which is the normal startle suppression caused by the weak stimulus preceding the intense startling stimulus. The main methods for inducing prepulse inhibition deficits in experimental animals include: i ) modulations of neuro- transmission that are closely associated with schizophrenia; ii )focal lesions or pharmacological manipulations of brain structures in the cortico-striato-pallido-pontine circuit; and iii) maternal deprivation or social isolation. Six essential topics for studies in modeling schizophrenia are suggested at the last part of this review.

  13. Animal models of social anxiety disorder and their validity criteria.

    Science.gov (United States)

    Réus, Gislaine Z; Dos Santos, Maria Augusta B; Abelaira, Helena M; Quevedo, João

    2014-09-26

    Anxiety disorders pose one of the largest threats to global mental health, and they predominantly emerge early in life. Social anxiety disorder, also known as social phobia, is the most common of all anxiety disorders. Moreover, it has severe consequences and is a disabling disorder that can cause an individual to be unable to perform the tasks of daily life. Social anxiety disorder is associated with the subsequent development of major depression and other mental diseases, as well as increased substance abuse. Although some neurobiological alterations have been found to be associated with social anxiety disorder, little is known about this disorder. Animal models are useful tools for the investigation of this disorder, as well as for finding new pharmacological targets for treatment. Thus, this review will highlight the main animal models of anxiety associated with social phobia. PMID:25132362

  14. Cardiovascular Changes in Animal Models of Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Alexandre M. Lehnen

    2013-01-01

    Full Text Available Metabolic syndrome has been defined as a group of risk factors that directly contribute to the development of cardiovascular disease and/or type 2 diabetes. Insulin resistance seems to have a fundamental role in the genesis of this syndrome. Over the past years to the present day, basic and translational research has used small animal models to explore the pathophysiology of metabolic syndrome and to develop novel therapies that might slow the progression of this prevalent condition. In this paper we discuss the animal models used for the study of metabolic syndrome, with particular focus on cardiovascular changes, since they are the main cause of death associated with the condition in humans.

  15. Human task animation from performance models and natural language input

    Science.gov (United States)

    Esakov, Jeffrey; Badler, Norman I.; Jung, Moon

    1989-01-01

    Graphical manipulation of human figures is essential for certain types of human factors analyses such as reach, clearance, fit, and view. In many situations, however, the animation of simulated people performing various tasks may be based on more complicated functions involving multiple simultaneous reaches, critical timing, resource availability, and human performance capabilities. One rather effective means for creating such a simulation is through a natural language description of the tasks to be carried out. Given an anthropometrically-sized figure and a geometric workplace environment, various simple actions such as reach, turn, and view can be effectively controlled from language commands or standard NASA checklist procedures. The commands may also be generated by external simulation tools. Task timing is determined from actual performance models, if available, such as strength models or Fitts' Law. The resulting action specification are animated on a Silicon Graphics Iris workstation in real-time.

  16. Critical Behavior in a Cellular Automata Animal Disease Transmission Model

    CERN Document Server

    Morley, P D; Chang, Julius

    2003-01-01

    Using a cellular automata model, we simulate the British Government Policy (BGP) in the 2001 foot and mouth epidemic in Great Britain. When clinical symptoms of the disease appeared on a farm, there is mandatory slaughter (culling) of all livestock on an infected premise (IP). Those farms that neighbor an IP (contiguous premise, CP), are also culled, aka nearest neighbor interaction. Farms where the disease may be prevalent from animal, human, vehicle or airborne transmission (dangerous contact, DC), are additionally culled, aka next-to-nearest neighbor iteractions and lightning factor. The resulting mathematical model possesses a phase transition, whereupon if the physical disease transmission kernel exceeds a critical value, catastrophic loss of animals ensues. The non-local disease transport probability can be as low as .01% per day and the disease can still be in the high mortality phase. We show that the fundamental equation for sustainable disease transport is the criticality equation for neutron fissio...

  17. Gender Differences in Animal Models of Posttraumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    Hagit Cohen

    2011-01-01

    Full Text Available Epidemiological studies report higher prevalence rates of stress-related disorders such as acute stress disorder and post-traumatic stress disorder (PTSD in women than in men following exposure to trauma. It is still not clear whether this greater prevalence in woman reflects a greater vulnerability to stress-related psychopathology. A number of individual and trauma-related characteristics have been hypothesized to contribute to these gender differences in physiological and psychological responses to trauma, differences in appraisal, interpretation or experience of threat, coping style or social support. In this context, the use of an animal model for PTSD to analyze some of these gender-related differences may be of particular utility. Animal models of PTSD offer the opportunity to distinguish between biological and socio-cultural factors, which so often enter the discussion about gender differences in PTSD prevalence.

  18. Genetic animal models of malformations of cortical development and epilepsy.

    Science.gov (United States)

    Wong, Michael; Roper, Steven N

    2016-02-15

    Malformations of cortical development constitute a variety of pathological brain abnormalities that commonly cause severe, medically-refractory epilepsy, including focal lesions, such as focal cortical dysplasia, heterotopias, and tubers of tuberous sclerosis complex, and diffuse malformations, such as lissencephaly. Although some cortical malformations result from environmental insults during cortical development in utero, genetic factors are increasingly recognized as primary pathogenic factors across the entire spectrum of malformations. Genes implicated in causing different cortical malformations are involved in a variety of physiological functions, but many are focused on regulation of cell proliferation, differentiation, and neuronal migration. Advances in molecular genetic methods have allowed the engineering of increasingly sophisticated animal models of cortical malformations and associated epilepsy. These animal models have identified some common mechanistic themes shared by a number of different cortical malformations, but also revealed the diversity and complexity of cellular and molecular mechanisms that lead to the development of the pathological lesions and resulting epileptogenesis. PMID:25911067

  19. Modelling gait transition in two-legged animals

    Science.gov (United States)

    Pinto, Carla M. A.; Santos, Alexandra P.

    2011-12-01

    The study of locomotor patterns has been a major research goal in the last decades. Understanding how intralimb and interlimb coordination works out so well in animals' locomotion is a hard and challenging task. Many models have been proposed to model animal's rhythms. These models have also been applied to the control of rhythmic movements of adaptive legged robots, namely biped, quadruped and other designs. In this paper we study gait transition in a central pattern generator (CPG) model for bipeds, the 4-cells model. This model is proposed by Golubitsky, Stewart, Buono and Collins and is studied further by Pinto and Golubitsky. We briefly resume the work done by Pinto and Golubitsky. We compute numerically gait transition in the 4-cells CPG model for bipeds. We use Morris-Lecar equations and Wilson-Cowan equations as the internal dynamics for each cell. We also consider two types of coupling between the cells: diffusive and synaptic. We obtain secondary gaits by bifurcation of primary gaits, by varying the coupling strengths. Nevertheless, some bifurcating branches could not be obtained, emphasizing the fact that despite analytically those bifurcations exist, finding them is a hard task and requires variation of other parameters of the equations. We note that the type of coupling did not influence the results.

  20. Relevance of animal models to human tardive dyskinesia.

    Science.gov (United States)

    Blanchet, Pierre J; Parent, Marie-Thérèse; Rompré, Pierre H; Lévesque, Daniel

    2012-01-01

    Tardive dyskinesia remains an elusive and significant clinical entity that can possibly be understood via experimentation with animal models. We conducted a literature review on tardive dyskinesia modeling. Subchronic antipsychotic drug exposure is a standard approach to model tardive dyskinesia in rodents. Vacuous chewing movements constitute the most common pattern of expression of purposeless oral movements and represent an impermanent response, with individual and strain susceptibility differences. Transgenic mice are also used to address the contribution of adaptive and maladaptive signals induced during antipsychotic drug exposure. An emphasis on non-human primate modeling is proposed, and past experimental observations reviewed in various monkey species. Rodent and primate models are complementary, but the non-human primate model appears more convincingly similar to the human condition and better suited to address therapeutic issues against tardive dyskinesia. PMID:22404856

  1. Relevance of animal models to human tardive dyskinesia

    Directory of Open Access Journals (Sweden)

    Blanchet Pierre J

    2012-03-01

    Full Text Available Abstract Tardive dyskinesia remains an elusive and significant clinical entity that can possibly be understood via experimentation with animal models. We conducted a literature review on tardive dyskinesia modeling. Subchronic antipsychotic drug exposure is a standard approach to model tardive dyskinesia in rodents. Vacuous chewing movements constitute the most common pattern of expression of purposeless oral movements and represent an impermanent response, with individual and strain susceptibility differences. Transgenic mice are also used to address the contribution of adaptive and maladaptive signals induced during antipsychotic drug exposure. An emphasis on non-human primate modeling is proposed, and past experimental observations reviewed in various monkey species. Rodent and primate models are complementary, but the non-human primate model appears more convincingly similar to the human condition and better suited to address therapeutic issues against tardive dyskinesia.

  2. Therapeutic study of proton beam in vascular disease animal models

    International Nuclear Information System (INIS)

    Proton beam radiation therapy is difficult to apply to animal model. When the cells with DNA damage in the irradiated zebrafish were stained with acridine orange, green fluorescent cell death spots were increased in trunk regions compared to non-irradiated control embryos. From this study, we found that proton radiation therapy can inhibit the blood vessel growth, which is probably induced in vivo in zebrafish embryos, and vascular endothelial cell proliferation.

  3. Animal models of female pelvic organ prolapse: lessons learned

    OpenAIRE

    Couri, Bruna M.; Lenis, Andrew T.; Borazjani, Ali; Paraiso, Marie Fidela R; Damaser, Margot S.

    2012-01-01

    Pelvic organ prolapse is a vaginal protrusion of female pelvic organs. It has high prevalence worldwide and represents a great burden to the economy. The pathophysiology of pelvic organ prolapse is multifactorial and includes genetic predisposition, aberrant connective tissue, obesity, advancing age, vaginal delivery and other risk factors. Owing to the long course prior to patients becoming symptomatic and ethical questions surrounding human studies, animal models are necessary and useful. T...

  4. Colony variability under the spotlight in animal models of arthritis

    OpenAIRE

    Robinson, John H.

    2009-01-01

    A recent article by Farkas and colleagues, published in Arthritis Research & Therapy, is from the laboratory of Dr Tibor Glant and his research team in Chicago, who have investigated in considerable depth the immunopathology of experimental arthritis induced by the major cartilage component proteoglycan aggrecan in an animal model that mimics many features of human rheumatoid arthritis and ankylosing spondylitis. This present report takes our understanding a significant step forward by questi...

  5. Are NCAM deficient mice an animal model for schizophrenia?

    OpenAIRE

    Anne eAlbrecht; Oliver eStork

    2012-01-01

    Genetic and biomarker studies in patients have identified the Neural Cell Adhesion Molecule (NCAM) and its associated polysialic acid (PSA) as a susceptibility factors for schizophrenia. NCAM and polysialtransferase mutant mice have been generated that may serve as animal models for this disorder and allow to investigate underlying neurodevelopmental alterations. Indeed, various schizophrenia-relevant morphological, cognitive and emotional deficits have been observed in these mutants. Here we...

  6. Mathematical modeling for digestible protein in animal feeds for tilapia

    OpenAIRE

    Luiz Vítor Oliveira Vidal; Wilson Massamitu Furuya; Elias Nunes Martins; Tadeu Orlandi Xavier; Mariana Michelato; Themis Sakaguti Graciano

    2012-01-01

    The objective of this study was to formulate mathematical models to estimate digestible protein in some animal feeds for tilapia. Literature results of the proximate composition of crude protein, ether extract, and mineral matter, as well as digestible protein obtained in biological assays, were used. The data were subjected to multiple linear stepwise backward regression. Path analysis was performed to measure the direct and indirect effects of each independent variable on the dependent one....

  7. Is Epilepsy a Preventable Disorder? New Evidence from Animal Models

    OpenAIRE

    Giblin, Kathryn A.; Blumenfeld, Hal

    2010-01-01

    Epilepsy accounts for 0.5% of the global burden of disease, and primary prevention of epilepsy represents one of the three 2007 NINDS Epilepsy Research Benchmarks. In the past decade, efforts to understand and intervene in the process of epileptogenesis have yielded fruitful preventative strategies in animal models. This article reviews the current understanding of epileptogenesis, introduces the concept of a “critical period” for epileptogenesis, and examines strategies for epilepsy preventi...

  8. Animal models for implant biomaterial research in bone: A review

    OpenAIRE

    A I Pearce; Richards, R.G; Milz, S.; E. SCHNEIDER; S G Pearce

    2007-01-01

    Development of an optimal interface between bone and orthopaedic and dental implants has taken place for many years. In order to determine whether a newly developed implant material conforms to the requirements of biocompatibility, mechanical stability and safety, it must undergo rigorous testing both in vitro and in vivo. Results from in vitro studies can be difficult to extrapolate to the in vivo situation. For this reason the use of animal models is often an essential step in the testing o...

  9. Atherosclerosis and Thrombosis: Insights from Large Animal Models

    OpenAIRE

    Gemma Vilahur; Teresa Padro; Lina Badimon

    2011-01-01

    Atherosclerosis and its thrombotic complications are responsible for remarkably high numbers of deaths. The combination of in vitro, ex vivo, and in vivo experimental approaches has largely contributed to a better understanding of the mechanisms underlying the atherothrombotic process. Indeed, different animal models have been implemented in atherosclerosis and thrombosis research in order to provide new insights into the mechanisms that have already been outlined in isolated cells and protei...

  10. A Review of Translational Animal Models for Knee Osteoarthritis

    OpenAIRE

    Gregory, Martin H.; Nicholas Capito; Keiichi Kuroki; Aaron M. Stoker; Cook, James L.; Sherman, Seth L.

    2012-01-01

    Knee osteoarthritis remains a tremendous public health concern, both in terms of health-related quality of life and financial burden of disease. Translational research is a critical step towards understanding and mitigating the long-term effects of this disease process. Animal models provide practical and clinically relevant ways to study both the natural history and response to treatment of knee osteoarthritis. Many factors including size, cost, and method of inducing osteoarthritis are impo...

  11. Shopping Centers as Panther Habitat: Inferring Animal Locations from Models

    OpenAIRE

    Jeffery L. Larkin; David S. Maehr; John J. Cox

    2004-01-01

    A recent model of Florida panther (Puma concolor coryi) habitat erred in arbitrarily creating buffers around radio locations collected during daylight hours on the assumption that study animals were only at rest during these times. The buffers generated by this method likely cause an overestimation of the amounts and kinds of habitats that are used by the panther. This, and other errors, could lead to the impression that unfragmented forest cover is unimportant to panther conservation, and co...

  12. AN ANIMAL MODEL OF A BEHAVIORAL INTERVENTION FOR DEPRESSION

    OpenAIRE

    Pollak, Daniela D.; Monje, Francisco J.; Zuckerman, Lee; Denny, Christine A.; Drew, Michael R.; Kandel, Eric R.

    2008-01-01

    Although conditioned inhibition of fear (or learned safety) is a learning process critical for preventing chronic stress, a predisposing factor for depression and other psychopathologies, little is known about its functional purposes or molecular mechanisms. To obtain better insight into learned safety, we investigated its behavioral and molecular characteristics and found that it acts as a behavioral antidepressant in two animal models. Learned safety promotes the survival of newborn cells i...

  13. The search for animal models for Lassa fever vaccine development

    OpenAIRE

    Lukashevich, Igor S.

    2013-01-01

    Lassa virus (LASV) is the most prevalent arenavirus in West Africa and is responsible for several hundred thousand infections and thousands of deaths annually. The sizeable disease burden, numerous imported cases of Lassa fever (LF) and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Currently there is no licensed LF vaccine and research and devlopment is hampered by the high cost of nonhuman primate animal models and by bioc...

  14. Animal Models of Early Life Stress: Implications for Understanding Resilience

    OpenAIRE

    Lyons, David M.; Parker, Karen J.; Schatzberg, Alan F.

    2010-01-01

    In the mid-1950s, Levine and his colleagues reported that brief intermittent exposure to early life stress diminished indications of subsequent emotionality in rats. Here we review ongoing studies of a similar process in squirrel monkeys. Results from these animal models suggest that brief intermittent exposure to stress promotes the development of arousal regulation and resilience. Implications for programs designed to enhance resilience in human development are discussed.

  15. The role of animal models in tendon research

    OpenAIRE

    Hast, M. W.; Zuskov, A.; Soslowsky, L. J.

    2014-01-01

    Tendinopathy is a debilitating musculoskeletal condition which can cause significant pain and lead to complete rupture of the tendon, which often requires surgical repair. Due in part to the large spectrum of tendon pathologies, these disorders continue to be a clinical challenge. Animal models are often used in this field of research as they offer an attractive framework to examine the cascade of processes that occur throughout both tendon pathology and repair. This review discusses the stru...

  16. Phage therapy of staphylococcal chronic osteomyelitis in experimental animal model

    OpenAIRE

    Chandan Kishor; Raghvendra Raman Mishra; Saraf, Shyam K.; Mohan Kumar; Arvind K Srivastav; Gopal Nath

    2016-01-01

    Background & objectives: Methicillin resistant Staphylococcus aureus (MRSA) are the commonest cause of osteomyelitis. The aim of this study was to evaluate the role of an alternative therapy i.e. application of S. aureus specific bacteriophages in cases of osteomyelitis caused by MRSA in animal model. Methods: Twenty two rabbits were included in this study. The first two rabbits were used to test the safety of phage cocktail while the remaining 20 rabbits were divided into three groups; g...

  17. Naturally Occurring Animal Models with Outer Retina Phenotypes

    OpenAIRE

    Baehr, Wolfgang; Frederick, Jeanne M.

    2009-01-01

    Naturally occurring and laboratory generated animal models serve as powerful tools with which to investigate the etiology of human retinal degenerations, especially retinitis pigmentosa (RP), Leber congenital amaurosis (LCA), cone dystrophies (CD) and macular degeneration (MD). Much progress has been made in elucidating gene defects underlying disease, in understanding mechanisms leading to disease, and in designing molecules for translational research and gene-based therapy to interfere with...

  18. Study on establishment of esophageal carcinoma animal models

    OpenAIRE

    Zhao, Qiang; WEN Danyi; Sun, Jianhe

    2013-01-01

    Esophageal cancer is one of the common human gastrointestinal malignancies.In recent years,the global incidence of esophageal cancer and its mortality rise.China is the high incidence area of esophageal cancer with the highest morbidity and mortality in the world.However,the exact pathogeny of esophageal cancer has not been fully clarified yet.Thus,it is of significant importance to establish ideal and stable esophageal carcinoma animal models with similar biological characteristics to clinic...

  19. DIFFERENT ANIMAL MODELS FOR DRUGS WITH POTENTIAL ANTIDIABETIC PROPERTIES

    OpenAIRE

    Shah Tanmay A; Shah Nidhi T; Prajapati Parimal M; Bhatt Pratik B; Solanki Anil S

    2011-01-01

    The increasing worldwide incidence of diabetes mellitus in adults constitutes a global public health burden. It is predicted that by 2030, largest number of people with diabetes. Although medicinal plants have been historically used for diabetes treatment throughout the world, few of them have been validated by scientific criteria. In recent times, an outsized multiplicity of animal models has been developed to enhanced understand the pathogenesis of diabetes mellitus and new drugs have been ...

  20. NNK-Induced Lung Tumors: A Review of Animal Model

    OpenAIRE

    Hua-Chuan Zheng; Yasuo Takano

    2011-01-01

    The incidence of lung adenocarcinoma has been remarkably increasing in recent years due to the introduction of filter cigarettes and secondary-hand smoking because the people are more exposed to higher amounts of nitrogen oxides, especially 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone(NNK), which is widely applied in animal model of lung tumors. In NNK-induced lung tumors, genetic mutation, chromosome instability, gene methylation, and activation of oncogenes have been found so as to disrup...