WorldWideScience

Sample records for animal insect pests

  1. Nuclear energy against insect pests

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-07-15

    The paper presents the main topics discussed at the scientific symposium on the Use and Application of Radioisotopes and Radiation in the Control of Plant and Animal Insect Pests, held in Athens last April, jointly organized by IAEA and FAO with the co-operation of the Greek Government. The sterile male technique is discussed in details and some results from the applications are given

  2. Converting pest insects into food

    DEFF Research Database (Denmark)

    Offenberg, Hans Joachim; Wiwatwittaya, Decha

    2010-01-01

    Canopy dwelling weaver ants (Oecophylla spp.) are used to control a variety of pests in a number of tropical tree crops. What is less familiar is the existence of commercial markets where these ants and their brood are sold for (i) human consumption, (ii) pet food or (iii) traditional medicine...... on management, 32-115 kg ant brood (mainly new queens) was harvested per ha per year without detrimental effect on colony survival and worker ant densities. This suggest that ant biocontrol and ant harvest can be sustainable integrated in plantations and double benefits derived. As ant production is fuelled...... by pest insects, problematic pests are converted into food and additional earnings. To assess the profitability of providing additional food for the ants, O. smaragdina food conversion efficiency (ECI) was estimated in the laboratory. This estimate suggests the feeding of weaver ants in ant farms...

  3. Management of insect pests using semiochemical traps

    DEFF Research Database (Denmark)

    Baroffio, C. A.; Guibert, V.; Richoz, P.

    2016-01-01

    multitrap for the economical management of both of these pests at the same time. This is one of the first approaches to pest management of non-lepidopteran insect pests of horticultural crops using semiochemicals in the EU, and probably the first to target multiple species from different insect orders...

  4. Insect pests of stored grain products

    International Nuclear Information System (INIS)

    Chuaqui-Offermanns, N.

    1987-01-01

    The presence of insects in stored products is a worldwide recognized problem. In this report chemical and physical methods to control insect infestations in stored products are discussed. Special attention is given to the use of ionizing radiation to control insect pests in stored grains. The radiosensitivity of the most common insect pests at their different developmental stages is presented and discussed. The conclusions of this review are compiled in an executive summary. 62 refs

  5. Insect pests of Eucalyptus and their control

    Energy Technology Data Exchange (ETDEWEB)

    Sen-Sarma, P K; Thakur, M L

    1983-12-01

    In India, about sixty odd species of insects have so far been recorded to be associated with Eucalyptus. Important pests are some xylophagous insects, sap suckers, defoliators and termites. Of these, stem and root borer, Celostrna scabrator Fabr, and some species of termites have been recognised as key pests, whereas Apogonia coriaces Waterhouse, Mimeta mundissima Walker (Coleoptera: Scarabaeidae), Agrotis ipsilon Hufnagel (Lepidoptera: Noctuidae), Brachytrypus portenosus Lichtenstein and Gymmogryllus humeralis Walker (Orthoptera: Gryllidae) are likely to become potential pests in Eucalyptus nurseries. In this paper available information on insect pests of Eucalyptus, their bioecology and control measures have been presented.

  6. Radiations: tool for insect pest management

    International Nuclear Information System (INIS)

    Swami, Kailash Kumar; Kiradoo, M.M.; Srivastava, Meera

    2012-01-01

    The discovery that X-rays or gamma radiation could cause sufficient genetic damage to insect reproductive systems to induce sterility resulted from work conducted by H.J. Muller starting in the 1920s. The sterilizing effect of radiation was noted by scientists of the US Department of Agriculture who had been seeking a method to sterilize insects for many years. These scientists had theorized that if large numbers of the target insect species were reared, sterilized, and released into the field, the sterile insects would mate with the wild insects. These mating would result in no offspring and thus a decline in the population would be obtained. They calculated that if sufficient numbers of sterile insects were released, reproductive rate for the wild population would rapidly decline and reach zero. In simple language, birth control of insects. Radiation sterilization was the answer. In a SIT operation, radiation is used to sexually sterilize insects. Since the SIT is species specific, the selection the insect pest or group of pests on which to work is of primary importance. The Joint Division of the IAEA Food and Agriculture Organization (FAO) has been involved in the use of isotopes and radiation in insect control since 1964. Isotopes are used as tags or markers, for instance, of chemical molecules, insects, or plants. For example, with these tags one can follow the fate of insecticides within insects and the environment; the incorporation of nutrients into the insect; and the movements of insects under field conditions. They also can plants on which insects feed so that the quantity of consumed food can be measured and directly correlated with plant resistance. They can be used as well to follow parasites and predators of insects - for example, their movements, numbers, and ability to help control insect pests. Radiations therefore have come as a novel tool to combat insect pest problem and in future could be very helpful in various other ways, of be it be cost

  7. Radiation and Radioisotopes Applied to Insects of Agricultural Importance. Proceedings of the Symposium on the Use and Application of Radioisotopes and Radiation in the Control of Plant and Animal Insect Pests

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-09-15

    Since the pioneer work of the United States Department of Agriculture in the application of radiation and radioisotopes in the control of insect pests to cattle, many countries and organizations have pursued the advantages which might be gained in this field. Two years ago the IAEA organized the first international symposium in Bombay to study this problem, since when a considerable amount of basic research on the application of nuclear science in entomology and insect pest control has been undertaken. The potential gain of these studies, which would be in the form of an increased output of better food, is obvious to all Governments; hence the extensive international interest in the subject of this present Symposium, which was attended by 100 participants from 26 countries and 5 international organizations. The proceedings consist of 37 papers presented by experts from 10 countries, together with a record of the discussions, and cover the use of radioisotopes in the study of the ecology of insects, such as their dispersal, migration and life-cycle. The application of radioisotopes to insecticides covers such subjects as labelling, application, uptake, translocation, metabolism, mode of action, and the determination' of residues in plants and animals. The present position on the effects of radiation on insects is dealt with, including mutation, sterilization and the use of the sterile-male technique for the control and eradication of insect pests, and the need is emphasized for integration of chemical, biological, radiation and other methods of insect control. The emphasis of this Symposium has been mainly on aspects of crop protection and it is hoped that the next symposium will also deal with aspects of livestock protection.

  8. Insect and pest control newsletter. No. 53

    International Nuclear Information System (INIS)

    1999-07-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  9. Insect and pest control newsletter. No. 54

    International Nuclear Information System (INIS)

    2000-01-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  10. Insect and pest control newsletter. No. 56

    International Nuclear Information System (INIS)

    2001-01-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  11. Insect and pest control newsletter. No. 52

    International Nuclear Information System (INIS)

    1998-12-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  12. Insect and pest control newsletter. No. 50

    International Nuclear Information System (INIS)

    1997-10-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  13. Insect and pest control newsletter. No. 51

    International Nuclear Information System (INIS)

    1998-06-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  14. Insect and pest control newsletter. No. 56

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-01-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted.

  15. Insect and pest control newsletter. No. 55

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted.

  16. Insect and pest control newsletter. No. 55

    International Nuclear Information System (INIS)

    2000-07-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  17. Insect and pest control newsletter. No. 51

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted.

  18. Insect and Pest Control Newsletter. No. 46

    International Nuclear Information System (INIS)

    1991-08-01

    This newsletter lists the FAO/IAEA meetings in the field of pest control held between September 1990 and February 1991 and provides very brief summaries of their contents. It also features a special report on the New World Screwworm in North Africa. An eradication programme, organized by the IAEA and the FAO and based on the sterile insect technique, was implemented, and as a result it is expected that the area will be declared free of the pest during autumn 1991

  19. Insect pest control newsletter. No. 65

    International Nuclear Information System (INIS)

    2005-07-01

    The concept of Area-wide Integrated Pest Management (AW-IPM) is defined as IPM applied against an entire pest population within a delimited geographic area. Area-wide intervention strategies require more planning and ecological understanding, longer-term commitment, a minimum infrastructure and a coordinated implementation by farmers and all other stakeholders. The spatial distribution of the pest population has to be considered not only in surrounding cultivated areas, but also in non-cultivated areas. It also involves considering the temporal distribution of the pest to determine the periods when the pest is most susceptible to preventive, rather than remedial, interventions. In 1998 FAO and the Agency sponsored the First International Conference on 'Area-Wide Control of Insect Pests, Integrating the Sterile Insect and Related Nuclear and other Techniques' in Penang, Malaysia. This Conference greatly increased the interest and awareness concerning the AW-IPM approach to insect pest control. Since then, many new technical innovations have been introduced; a better regulatory framework is being developed to encourage the involvement of the private sector, and more FAO and Agency Member States are integrating insect pest control methods on an areawide basis. Over the past months we have been heavily involved in preparing for the Second FAO/IAEA International Conference on 'Area-Wide Control of Insect Pests: Integrating the Sterile Insect and Related Nuclear and Other Techniques', which was held from 9-13 May in Vienna. The response and interest of scientists and governments, as well as the private sector and sponsors were once more very encouraging. The conference took place with the participation of over 300 delegates from 86 countries, nine international organization, and eight exhibitors. It covered the area-wide approach again in a very broad sense, including the development and integration of many non-SIT technologies, as well as genetic research on cytoplasmic

  20. Insect pest control newsletter. No. 65

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The concept of Area-wide Integrated Pest Management (AW-IPM) is defined as IPM applied against an entire pest population within a delimited geographic area. Area-wide intervention strategies require more planning and ecological understanding, longer-term commitment, a minimum infrastructure and a coordinated implementation by farmers and all other stakeholders. The spatial distribution of the pest population has to be considered not only in surrounding cultivated areas, but also in non-cultivated areas. It also involves considering the temporal distribution of the pest to determine the periods when the pest is most susceptible to preventive, rather than remedial, interventions. In 1998 FAO and the Agency sponsored the First International Conference on 'Area-Wide Control of Insect Pests, Integrating the Sterile Insect and Related Nuclear and other Techniques' in Penang, Malaysia. This Conference greatly increased the interest and awareness concerning the AW-IPM approach to insect pest control. Since then, many new technical innovations have been introduced; a better regulatory framework is being developed to encourage the involvement of the private sector, and more FAO and Agency Member States are integrating insect pest control methods on an areawide basis. Over the past months we have been heavily involved in preparing for the Second FAO/IAEA International Conference on 'Area-Wide Control of Insect Pests: Integrating the Sterile Insect and Related Nuclear and Other Techniques', which was held from 9-13 May in Vienna. The response and interest of scientists and governments, as well as the private sector and sponsors were once more very encouraging. The conference took place with the participation of over 300 delegates from 86 countries, nine international organization, and eight exhibitors. It covered the area-wide approach again in a very broad sense, including the development and integration of many non-SIT technologies, as well as genetic research on cytoplasmic

  1. NIR detects, destroys insect pests

    International Nuclear Information System (INIS)

    McGraw, L.C.

    1998-01-01

    What’s good for Georgia peanuts may also be good for Kansas wheat. An electric eye that scans all food-grade peanuts for visual defects could one day do the same for wheat kernels. For peanuts, it’s a proven method for monitoring quality. In wheat, scanning with near-infrared (NIR) energy can reveal hidden insect infestations that lower wheat quality. ARS entomologists James E. Throne and James E. Baker and ARS agricultural engineer Floyd E. Dowell are the first to combine NIR with an automated grain-handling system to rapidly detect insects hidden in single wheat kernels

  2. Insect Pests of Field Crops. MP-28.

    Science.gov (United States)

    Burkhardt, Chris C.

    This document addresses the principles of field crop insect control through biological, mechanical, and chemical processes. Identification, life history, damage, pesticides, pesticide use and environmental considerations are presented for the major pests of corn, alfalfa, beans, small grains, sugar beets, and potatoes. Each section is accompanied…

  3. Insect pest management in stored grain

    Science.gov (United States)

    Stored grain is vulnerable to attach by a variety of insect pests, that can generally be classified as external or internal feeders. Infestations primarily occur after grain is stored, though there is some evidence that infestations can occur in the field right before harvest. There are a variety of...

  4. Impact of climate change on insect pests of trees

    NARCIS (Netherlands)

    Moraal, L.G.; Jagers op Akkerhuis, L.; Jagers op Akkerhuis, G.A.J.M.

    2008-01-01

    There are many interactions and it is exetremely difficult to predict the impact of climate change on insect pests in the future, but we may expect an increase of certain primary pests as well as secondary pests and invasive species

  5. Innovative Strategies for Control of Coffee Insect Pests in Tanzania ...

    African Journals Online (AJOL)

    Coffee insect pests are one of the major factors which affect coffee production and quality. globally, coffee insect pests are estimated to cause losses of about 13%. However in Africa, yield losses can be much higher, particularly where Arabica and Robusta coffee are grown for a long time. In Tanzania the major insect pests ...

  6. Insect pests of tea and their management.

    Science.gov (United States)

    Hazarika, Lakshmi K; Bhuyan, Mantu; Hazarika, Budhindra N

    2009-01-01

    Globally, 1031 species of arthropods are associated with the intensively managed tea Camellia sinensis (L.) O. Kuntze monoculture. All parts of the plant, leaf, stem, root, flower, and seed, are fed upon by at least one pest species, resulting in an 11%-55% loss in yield if left unchecked. There has been heavy use of organosynthetic pesticides since the 1950s to defend the plant against these pests, leading to rapid conversion of innocuous species into pests, development of resistance, and undesirable pesticide residues in made tea. As a result of importer and consumer concerns, pesticide residues have become a major problem for the tea industry. Integrated pest management (IPM) may help to overcome the overuse of pesticides and subsequent residues. We review the advances made in our understanding of the biology and ecology of major insect and mite pests of tea, host plant resistance, cultural practices, biocontrol measures, and need-based application of botanicals and safer pesticides to understand the present status of IPM and to identify future challenges to improvement.

  7. Insect pest control newsletter. No. 62

    International Nuclear Information System (INIS)

    2004-01-01

    The year 2003 has again been a very intense period for all of us working at the Insect Pest Control Sub-programme of the Joint FAO/IAEA Agriculture Programme. This issue reports normative activities, and the application of area-wide control and SIT. One that stands out during 2003 is the recent publication of 'Trapping Guidelines for Area-wide Fruit Fly Programmes', which responds to the request by Member States to harmonize internationally trapping procedures for Tephritid fruit flies of economic importance. These pest insects have a major impact on the international trade of fresh fruits and vegetables, and the guidelines provide strategic guidance and direction to NPPOs, RPPOs and industry on where and how to implement fruit fl y surveys. Using these guidelines in the implementation of surveys will support FAO and IAEA Member States in obtaining international recognition of their fruit fly control and quarantine activities. A new project is a world-directory of fruit fly workers. A tremendous amount of information is made available each year on Tephritid fruit flies: new technologies developed, new information on their biology and ecology; new control methods made available, new species identified, new outbreaks recorded and new operational control programmes launched. This site will attempt to collate this information and allow Tephritid fruit fly workers worldwide to keep up-to-date on the most recent developments. Another activity has been the development of more scientific methods for determining when an area achieves a pest-free status. A consultants meeting focused on this topic and a generic procedure has been developed for declaring an area to be 'pest-free' following an eradication campaign against an insect pest. This involves a probability model to deal with null trapping results and also a growth model to help verify that pest specimen were not present when control was stopped. Other normative and promotional activities under development include

  8. Insect and pest control newsletter. No. 60

    International Nuclear Information System (INIS)

    2003-01-01

    SIT methodologies have not been developed for many of the major potential invasive pest species for which it could play an important role in eradicating incipient outbreaks. Among the USDA-APHIS Exotic Pest Arthropod List for the USA, which highlights 100 high-risk pests, ca. fifty percent of this worst of the worst list are from the order Lepidoptera. Many of these Lepidoptera are not only a threat to the US but also to many other regions of the world. Nevertheless, research to develop SIT for these high risk, exotic lepidopteran pests is lacking in most cases (Asian gypsy moth being an exception). Cooperative efforts are needed to develop appropriate response strategies that would include eradication technologies in advance of invasive lepidopteran pest introductions. In collaboration with USDA scientists James Carpenter, Ken Bloem and Stephanie Bloem, FAO/IAEA has been supporting research and facilitating co-operation among scientists of different countries to develop F1 Sterility as a proactive approach for dealing with two such potential invasive lepidopteran pests. Because F1 Sterility produces competitive insects and has been reported in all lepidopteran species investigated, these studies should serve as useful models for half of the species on the 'Worst of the Worst' list. One is the false codling moth, Cryptophlebia leucotreta, which features prominently on the 'Worst of the Worst' list. It is a polyphagous key pest in South Africa and many regional plant protection organizations have expressed concern of the spread of this damaging pest as a direct result of increased international trade. Under a multi-country and multi-agency effort mass rearing methods are being improved in South Africa, and radiation biology studies are being refined to determine the optimum dose of radiation to induce F1 Sterility for use in an SIT programme as an eradication tool should this pest be introduced into a foreign country. Another good example of our ill-preparedness to

  9. Insect and pest control newsletter. No. 60

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-01-01

    SIT methodologies have not been developed for many of the major potential invasive pest species for which it could play an important role in eradicating incipient outbreaks. Among the USDA-APHIS Exotic Pest Arthropod List for the USA, which highlights 100 high-risk pests, ca. fifty percent of this worst of the worst list are from the order Lepidoptera. Many of these Lepidoptera are not only a threat to the US but also to many other regions of the world. Nevertheless, research to develop SIT for these high risk, exotic lepidopteran pests is lacking in most cases (Asian gypsy moth being an exception). Cooperative efforts are needed to develop appropriate response strategies that would include eradication technologies in advance of invasive lepidopteran pest introductions. In collaboration with USDA scientists James Carpenter, Ken Bloem and Stephanie Bloem, FAO/IAEA has been supporting research and facilitating co-operation among scientists of different countries to develop F1 Sterility as a proactive approach for dealing with two such potential invasive lepidopteran pests. Because F1 Sterility produces competitive insects and has been reported in all lepidopteran species investigated, these studies should serve as useful models for half of the species on the 'Worst of the Worst' list. One is the false codling moth, Cryptophlebia leucotreta, which features prominently on the 'Worst of the Worst' list. It is a polyphagous key pest in South Africa and many regional plant protection organizations have expressed concern of the spread of this damaging pest as a direct result of increased international trade. Under a multi-country and multi-agency effort mass rearing methods are being improved in South Africa, and radiation biology studies are being refined to determine the optimum dose of radiation to induce F1 Sterility for use in an SIT programme as an eradication tool should this pest be introduced into a foreign country. Another good example of our ill-preparedness to

  10. Farmer's knowledge and perception of horticultural insect pest ...

    African Journals Online (AJOL)

    Whilst 89% were aware of insect pest problems, only 35% used chemical treatment even though about 79% thought that pest damage ranged from mild to severe. Majority of the farmers adopt diverse number of traditional methods in pest control. Key words: Farmers, pests, horticultural crops, vegetable, control

  11. 1978 Insect Pest Management Guide: Home, Yard, and Garden. Circular 900.

    Science.gov (United States)

    Illinois Univ., Urbana. Cooperative Extension Service.

    This publication lists certain insecticides to control insect pests of food, fabrics, structures, man and animals, lawns, shrubs, trees, flowers and vegetables. Suggestions are given for selection, dosage and application of insecticides to combat infestation. (CS)

  12. Insect and pest control newsletter. No. 58

    International Nuclear Information System (INIS)

    2002-01-01

    This issue of the Newsletter announces the development of a draft international standard to facilitate the transboundary shipment of sterile insects stands out. This was developed in response to requests from Member States and the private sector for regulation of the shipping of sterile insects. The draft standard will be considered, reviewed and hopefully endorsed over the next years by the Interim Commission on Phytosanitary Measures (ICPM), the governing body of the International Plant protection Convention (IPPC). Also of significance are the Fruit Fly Trapping Guidelines that have been developed to support the harmonization of monitoring procedures for these pest insects in view of the increasing fruit fly related transboundary interactions resulting from the rapidly growing trade in agricultural commodities, as well as travel, transport and tourism. An upcoming event also in the normative area is an FAO/IAEA Expert Meeting on 'Risk Assessment of Transgenic Arthropods' to be held at FAO, Rome from 8-12 April, 2002. The objective of the meeting are to a) assess current status of transgenesis in pest arthropods; b) to assess biosafety concerns for transgenic arthropod release; c) to provide guidance for future risk assessment protocols for case by case analysis; and d) to assess the possibility of establishing a working group under IPPC for setting guidelines for development and use of transgenic insect technology. An important event at the end of 2001 was the Resolution on the Pan African Tsetse and Trypanosomosis Eradication Campaign (PATTEC) adopted by the FAO Conference held in Rome, 2-13 November 2001 (for the full text of the resolution see page 39).. The resolution acknowledges the severity of the trypanosomosis problem in sub-Saharan Africa, and the potential benefits of tsetse elimination, and calls upon affected member nations to include tsetse eradication in their Poverty Reduction Strategy Papers and for the FAO to support them in their efforts to

  13. Radioisotope labelling of several major insect pest

    International Nuclear Information System (INIS)

    Sutrisno, Singgih

    1981-01-01

    Radioisotope uptake by insects could take place through various parts i.e. mouth, cuticula, intersegmental, secretion and excretion organs. Usually insects are labelled internally by feeding them on an artificial diet containing radioisotope solution. Labelling of several insect pests of cabbage (Crocidolomia binotalis) Zell and Plutella maculipennis Curt and rice (Chilo suppressalis Walker) by dipping of the pupae in 32 P solution showed a promising result. Pupae of Crocidolomia binotalis Zell dipped in 3 ml solution of 32 P with specific activities of 1, 3, 5 and 7 μCi/ml had developed labelled adults of sufficiently high radioactivity levels for ecological studies. Similar results were also obtained with Plutella maculipennis Curt and Chilo suppressalis Walker with doses of 1, 3, 5, 7 and 9 μCi/ml 32 P solution. The best doses for radioisotope labelling by dipping of the insects Crocidolomia binotalis Zell, Plutella maculipennis Curt, and Chilo suppressalis Walker were 1, 9, and 7 μCi/ml respectivelly. (author)

  14. Insect pest control newsletter. No. 61

    International Nuclear Information System (INIS)

    2003-07-01

    In the past years it has often been pointed out that the name of the Insect and Pest Control Subprogramme of the Joint FAO/IAEA Division, and the name of this newsletter (Insect and Pest Control Newsletter) create confusion and expectations for control of rats, birds, weeds and other non-insect pests but which are not within our mandate. All work within the Subprogramme has been on insect pests, and in 1999 an external review recommended a change to Insect Pest Control Subprogramme since this is simpler, reduces confusion and retains the good recognition and high reputation that already exists. The IAEA management implemented this recommendation and consequently, as of this issue this newsletter is entitled Insect Pest Control Newsletter. There was a very constructive consultant's meeting recently held in Vienna on the development of genetic sexing strains for the codling moth, for which the demand for SIT application is significantly increasing. Based on the discussions during this meeting a real opportunity seems now to exist to move the field of Lepidoptera genetic sexing forward. The possibility of using an allele of a dominant lethal mutation, such as the temperature sensitive Notch, in the development of a genetic sexing system for codling moth is very exciting. As emerged during the meeting, if an appropriate allele of this mutation can be inserted onto the female determining chromosome of codling moth, through transformation, then it may be possible to kill female embryos with a cold temperature treatment. Another approach could be to translocate an autosomal insertion of the gene onto the female determining chromosome. If the insert of the dominant lethal mutation also included a gene expressing a fluorescent protein then the strain would also have a visible marker for the sexing procedure. This latter is very important for any use of a sexing strain in mass rearing. There appear to be few technical constraints to demonstrating 'proof of principle' for

  15. Insect Pest Control Newsletter, No. 73, July 2009

    International Nuclear Information System (INIS)

    2009-07-01

    This issue of the Newsletter reports on status of technical cooperation field projects, coordinated research projects and research coordination meetings, developments at the Entomology Unit Seibersdorf, training courses offered on insect pest control as well as news items on other activities of the Insect Pest Control Section

  16. Insect pest control newsletter, No. 71, July 2008

    International Nuclear Information System (INIS)

    2008-07-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  17. Insect pest control newsletter. No. 66, January 2006

    International Nuclear Information System (INIS)

    2006-01-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  18. Insect pest control newsletter, No. 72, January 2009

    International Nuclear Information System (INIS)

    2009-01-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  19. Insect pest control newsletter. No. 69, July 2007

    International Nuclear Information System (INIS)

    2007-07-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  20. Insect pest control newsletter. No. 68, January 2007

    International Nuclear Information System (INIS)

    2007-01-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  1. Insect pest control newsletter, No. 70, January 2008

    International Nuclear Information System (INIS)

    2008-01-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  2. Insect pest control newsletter. No. 67, July 2006

    International Nuclear Information System (INIS)

    2006-07-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  3. farmers' knowledge and perceptions of cotton insect pests and their

    African Journals Online (AJOL)

    Prince Acheampong

    A survey of 337 cotton farmers in the three northern regions of Ghana was ... five applications were made during the season. ... Keywords: cotton, farmer knowledge and perception, insect pest control, Ghana. .... bordered on tests of farmers' knowledge of cotton insect pests, their damage ..... Agricultural Experiment Station.

  4. Insect Pest Control Newsletter, No. 73, July 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-15

    This issue of the Newsletter reports on status of technical cooperation field projects, coordinated research projects and research coordination meetings, developments at the Entomology Unit Seibersdorf, training courses offered on insect pest control as well as news items on other activities of the Insect Pest Control Section.

  5. Insect Pest Control Newsletter, No. 82, January 2014

    International Nuclear Information System (INIS)

    2014-01-01

    Microbes have been the dominating forms of life, almost since the birth of our planet about 4.5 billion years ago. Being masters of chemical reactions, they regulate the recycling of all major chemicals relevant to life; manage energy sources and the production of fuels; determine the aerobic conditions of our atmosphere and influence our climate; are the catalytic factors of soil fertility, thus affecting agricultural production; and have also been of paramount importance for the health of ecosystems and of all living organisms including humans. Last, but not least, they have been the driving force of the on-going 'biotechnological revolution', which promises to produce more and healthier food, drugs and 'green' fuels. Because of all their unique metabolic properties, microbes have been driving the evolution of life on earth, either by being free-living or by establishing symbiotic associations with diverse organisms including insects. Insects are the most abundant and species-rich animal group on earth, occupying most available ecological niches. Conservative estimates suggest that about 85% of all described animal species are insects; estimates range between 2-30 million insect species and about 10 quintillion (1018) individual insects being alive at any given time (http://www.si.edu/Encyclopedia_SI/nmnh/ buginfo/bugnos.htm). During recent years it has become evident that the ecological and evolutionarily success of insects greatly depends on the sophisticated symbiotic associations they have established with diverse microorganisms, which influence all aspects of their biology, physiology, ecology and evolution. The few examples presented below aim to underline the importance of these symbiotic associations and indicate that the characterization, exploitation and management of insect-bacterial symbiotic associations can significantly contribute to the support and enhancement of sterile insect technique (SIT) programmes against agricultural pests and disease

  6. Insect Pest Control Newsletter, No. 82, January 2014

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-01-15

    Microbes have been the dominating forms of life, almost since the birth of our planet about 4.5 billion years ago. Being masters of chemical reactions, they regulate the recycling of all major chemicals relevant to life; manage energy sources and the production of fuels; determine the aerobic conditions of our atmosphere and influence our climate; are the catalytic factors of soil fertility, thus affecting agricultural production; and have also been of paramount importance for the health of ecosystems and of all living organisms including humans. Last, but not least, they have been the driving force of the on-going 'biotechnological revolution', which promises to produce more and healthier food, drugs and 'green' fuels. Because of all their unique metabolic properties, microbes have been driving the evolution of life on earth, either by being free-living or by establishing symbiotic associations with diverse organisms including insects. Insects are the most abundant and species-rich animal group on earth, occupying most available ecological niches. Conservative estimates suggest that about 85% of all described animal species are insects; estimates range between 2-30 million insect species and about 10 quintillion (1018) individual insects being alive at any given time (http://www.si.edu/Encyclopedia{sub S}I/nmnh/ buginfo/bugnos.htm). During recent years it has become evident that the ecological and evolutionarily success of insects greatly depends on the sophisticated symbiotic associations they have established with diverse microorganisms, which influence all aspects of their biology, physiology, ecology and evolution. The few examples presented below aim to underline the importance of these symbiotic associations and indicate that the characterization, exploitation and management of insect-bacterial symbiotic associations can significantly contribute to the support and enhancement of sterile insect technique (SIT) programmes against agricultural pests and disease

  7. ENTOMOLOGY - INSECTS AND OTHER PESTS IN FIELD CROPS

    Directory of Open Access Journals (Sweden)

    Marija Ivezić

    2009-12-01

    Full Text Available The academic textbook Entomology - Insects and other pests in field crops, describes the most important pests of field crops supported by many photographs. The textbook encompasses 15 chapters. Importance of entomology in intensive plant production is discussed in introductory chapter, in terms of increased threat of insects and other pests. Morphology, anatomy and physiology are given in the second and third chapter, while ways and phases of insect development are elaborated in the fourth chapter. The fifth chapter, overview of insect systematic is given. Polyphagous insects are described from the sixth to fourteenth chapter, as follows: pests of cereals, maize, sugar beet, sunflower, oil seed rape, soybean, forage crops and stored products. In the last chapter, principles of integrated pest management are described due to proper application of all control measures to obtain healthier food production.

  8. Insect pest control newsletter. No. 64

    International Nuclear Information System (INIS)

    2004-12-01

    In October 2004 the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture celebrated 40 years of existence. The creation in October 1964 of this Division, which includes the Insect Pest Control Subprogramme, marked the beginning of what is certainly a unique and arguably the best example of inter-agency cooperation within the whole UN family. The goal was to join the talents and resources of both organizations to obtain better cooperation and less duplication of efforts in assisting their Member States in applying nuclear techniques for providing people with more, better and safer food and other agricultural products, while sustaining the natural resources base. The complete press release is included under 'Special News and Reports'

  9. Strategies for Enhanced Crop Resistance to Insect Pests.

    Science.gov (United States)

    Douglas, Angela E

    2018-04-29

    Insect pests are responsible for substantial crop losses worldwide through direct damage and transmission of plant diseases, and novel approaches that complement or replace broad-spectrum chemical insecticides will facilitate the sustainable intensification of food production in the coming decades. Multiple strategies for improved crop resistance to insect pests, especially strategies relating to plant secondary metabolism and immunity and microbiome science, are becoming available. Recent advances in metabolic engineering of plant secondary chemistry offer the promise of specific toxicity or deterrence to insect pests; improved understanding of plant immunity against insects provides routes to optimize plant defenses against insects; and the microbiomes of insect pests can be exploited, either as a target or as a vehicle for delivery of insecticidal agents. Implementation of these advances will be facilitated by ongoing advances in plant breeding and genetic technologies.

  10. Gene disruption technologies have the potential to transform stored product insect pest control

    Science.gov (United States)

    Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, ...

  11. Coconut leaf bioactivity toward generalist maize insect pests

    Science.gov (United States)

    Tropical plants are often more resistant to insects than temperate plants due to evolution of robust defenses to cope with a more constant insect threat. Coconut (Cocos nucifera L.) has very few chewing leaf feeding insect pests and was tested against two omnivorous leaf feeding caterpillar species,...

  12. Nano-particles - A recent approach to insect pest control

    African Journals Online (AJOL)

    USER

    2010-06-14

    Jun 14, 2010 ... Available online at http://www.academicjournals.org/AJB ... It is now known that many insects possess ferromagnetic materials in the head ... nanoparticles in insects and their potential for use in insect pest management. ... often synthesized using chemical methods. ..... opacus termite: FMR characterization.

  13. Control of insect pests with electrons

    International Nuclear Information System (INIS)

    Hayashi, Toru; Imamura, Taro; Miyanoshita, Akihiro; Todoriki, Setsuko

    2003-01-01

    Effects of electron beams with an energy of 2.5 MeV on insect pests were slightly smaller than those of gamma-rays. Electron beams at 400 Gy inactivated all the pests for cut flowers tested; spider mite (Tetraychus urticae), mealybug (Pseudococcus comstocki), leaf miner (Liriomyza trifolii), thrips (Thrips palmi, and Thrips tabaci), cutworm (Spodoptera litura) and aphid (Myzus persicae). Carnation, alstromeria, gladiolus, tulip, statice, stock, dendrobium, prairie gentian, oncidium, campanula, gloriosa, fern, gypsophila, freesia, lobelia, triteleia and gerbera were tolerant to electron beams at 400-600 Gy, while chrysanthemum, rose, lily, calla, antherium, sweet pea and iris were intolerant. Radiation-induced deterioration of chrysanthemum could be prevented by post-irradiation treatment with commercial preservative solutions or sugar solutions. Soft-electrons at 60 keV effectively inactivated eggs, larvae and pupae of red flour beetle (Tribolium castaneum) and Indian meal moth (Plodia interpunctella) and eggs of adzuki bean weevil (Callosobruchus chinensis) at a dose of 1 kGy. The adults of T. castaneum and P. interpunctella were inactivated by electron treatment at 5.0 kGy and 7.5 kGy, respectively. Adults of C. chinensis survived at 7.5 kGy, but were inactivated having lost ability to walk at 2.5 kGy. Soft-electrons at 60 keV could not completely inactivate the larvae of C. chinensis and smaller larvae (2nd instar) of maize weevil (Stiophilus zeamais) inside beans and grains, because the electrons with low penetration did not reach the larvae due to the shield of beans or grains. However, soft-electrons at 60 keV inactivated eggs, larger larvae (4th instar) and pupae of S. zeamais in rice grains, which indicated that S. zeamais was exposed to electrons even inside the grains. (author)

  14. Field grain losses and insect pest management practices in ...

    African Journals Online (AJOL)

    Journal of Agriculture, Science and Technology ... Statistical analyses revealed that the level of crop yield losses was ... There was, however, a negative correlation between crop yield loss due to insect pests and the efficacy of PCM applied.

  15. Insect and Pest Control Newsletter, No. 78, January 2012

    International Nuclear Information System (INIS)

    2012-01-01

    The IPC Newsletter is prepared twice per year by the Insect Pest Control Subprogramme, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture. Contents: To Our Readers; Staff; Forthcoming Events; Past Events; Technical Cooperation Projects; Coordinated Research Projects and Research Coordination Meetings; Developments at the Insect Pest Control Laboratory; Reports; Announcements; In Memoriam; Other News; Relevant Published Articles; Papers in Peer Reviewed Journals; Priced and Unpriced Publications

  16. Insect and Pest Control Newsletter, No. 78, January 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-01-15

    The IPC Newsletter is prepared twice per year by the Insect Pest Control Subprogramme, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture. Contents: To Our Readers; Staff; Forthcoming Events; Past Events; Technical Cooperation Projects; Coordinated Research Projects and Research Coordination Meetings; Developments at the Insect Pest Control Laboratory; Reports; Announcements; In Memoriam; Other News; Relevant Published Articles; Papers in Peer Reviewed Journals; Priced and Unpriced Publications

  17. Agricultural production - Phase 2. Indonesia. Insect ecology studies and insect pest control

    International Nuclear Information System (INIS)

    Butt, B.

    1992-01-01

    This document reviews the activities of the Pest Control Research Group in Indonesia. Pests under study are the diamondback moth (Plutella xylostella), the rice stem borer (Chilo suppressalis), the sugar cane borer (Chilo auricilius), bean flies (Agromyza spp.), tobacco insects (Heliothis armigera and Spodoptera litura) and cotton insects, especially the pink bollworm

  18. Insect pest control newsletter. No. 63

    International Nuclear Information System (INIS)

    2004-07-01

    The Second International Conference on Areawide Insect Pest Control sponsored by FAO and IAEA will be held from 9 to 13 May, 2005 in Vienna, Austria. This conference will provide a forum for the presentation of scientific papers dealing with areawide insect management programmes, including those applying the Sterile Insect Technique (SIT) and will include significant time for plenary discussion. The framework of the conference is being developed and the announcement with details of the Conference can be found under http://www.pub.iaea.org/MTCD/Meetings/Meetings2005.asp. It is planned to hold several Research Coordination Meetings in conjunction with this meeting. The Interregional Training Course on The Use of the Sterile Insect and Related Techniques for the Integrated Areawide Management of Insect Pests, was held from 4 May to 1 June 2004 in Gainesville, Florida, USA. This is a unique course that provides participants with a complete overview of all aspects related to areawide and SIT operational programmes. Both USA and external lecturers participated with an adequate balance between theory and practical laboratory and field exercises. Third, the SIT programme in Madeira is in negotiations with a private company regarding some type of partnership to ensure sustainability of the programme when EC funding comes to an end. These developments have been followed very closely by the sub-programme and we have been involved in providing advice, developing collaborative links and interacting at the R and D and technology transfer levels. There will be ample scope for further collaboration when these initiatives become fully realized. The fifth meeting of the Working Group on Fruit Flies of the Western Hemisphere (WGFFWH) took place in Fort Lauderdale, Florida, from 16 to 21 May 2004 and more than 200 participants attended. The meeting has a very unique format where scientists, action programme managers and the industry interact, greatly encouraging discussions and

  19. Applying the sterile insect technique to the control of insect pests

    International Nuclear Information System (INIS)

    LaChance, L.E.; Klassen, W.

    1991-01-01

    The sterile insect technique (SIT) is basically a novel twentieth century approach to insect birth control. It is species specific and exploits the mate seeking behaviour of the insect. The basic principle is simple. Insects are mass reared in 'factories' and sexually sterilized by gamma rays from a 60 Co source. The sterile insects are then released in a controlled fashion into nature. Matings between the sterile insects released and native insects produced no progeny. If enough of these matings take place, reproduction of the pest population decreases. With continued release, the pest population can be controlled and in some cases eradicated. In the light of the many important applications of the SIT worldwide and the great potential that SIT concepts hold for insect and pest control in developing countries, two special benefits should be stressed. Of greatest significance is the fact that the SIT permits suppression and eradication of insect pests in an environmentally harmless manner. It combines nuclear techniques with genetic approaches and, in effect, replaces intensive use of chemicals in pest control. Although chemicals are used sparingly at the outset in some SIT programmes to reduce the size of the pest population before releases of sterilized insects are started, the total amount of chemicals used in an SIT programme is a mere fraction of what would be used without the SIT. It is also of great importance that the SIT is not designed strictly for the eradication of pest species but can readily be used in the suppression of insect populations. In fact, the SIT is ideally suited for use in conjunction with other agricultural pest control practices such as the use of parasites and predators, attractants and cultural controls (e.g. ploughing under or destruction of crop residues) in integrated pest management programmes to achieve control at the lowest possible price and with a minimum of chemical contamination of the environment

  20. Applying the sterile insect technique to the control of insect pests

    Energy Technology Data Exchange (ETDEWEB)

    LaChance, L E; Klassen, W [Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna (Austria)

    1991-09-01

    The sterile insect technique (SIT) is basically a novel twentieth century approach to insect birth control. It is species specific and exploits the mate seeking behaviour of the insect. The basic principle is simple. Insects are mass reared in 'factories' and sexually sterilized by gamma rays from a {sup 60}Co source. The sterile insects are then released in a controlled fashion into nature. Matings between the sterile insects released and native insects produced no progeny. If enough of these matings take place, reproduction of the pest population decreases. With continued release, the pest population can be controlled and in some cases eradicated. In the light of the many important applications of the SIT worldwide and the great potential that SIT concepts hold for insect and pest control in developing countries, two special benefits should be stressed. Of greatest significance is the fact that the SIT permits suppression and eradication of insect pests in an environmentally harmless manner. It combines nuclear techniques with genetic approaches and, in effect, replaces intensive use of chemicals in pest control. Although chemicals are used sparingly at the outset in some SIT programmes to reduce the size of the pest population before releases of sterilized insects are started, the total amount of chemicals used in an SIT programme is a mere fraction of what would be used without the SIT. It is also of great importance that the SIT is not designed strictly for the eradication of pest species but can readily be used in the suppression of insect populations. In fact, the SIT is ideally suited for use in conjunction with other agricultural pest control practices such as the use of parasites and predators, attractants and cultural controls (e.g. ploughing under or destruction of crop residues) in integrated pest management programmes to achieve control at the lowest possible price and with a minimum of chemical contamination of the environment.

  1. Effects of insecticide spray application on insect pest infestation and ...

    African Journals Online (AJOL)

    USER

    2010-03-15

    Mar 15, 2010 ... This study provides information on the incidence of major insect pests of cowpea as well as the minimum insecticide control intervention necessary for effectively reducing cowpea yield losses on the field. Two insecticide spray regimes (once at flowering and podding) significantly reduced insect population ...

  2. The Sterile Insect Technique as a method of pest control

    International Nuclear Information System (INIS)

    Argiles Herrero, R.

    2011-01-01

    In the Valencia community is doing one of the most ambitious project in the field of plant protection at European level: the fight against fruit fly, one of the most damaging pests of citrus and fruit; by Insect Technique Sterile. This technique consists of laboratory breeding and release into the fields of huge quantities of insects of the pest species that have previously been sterilized. Sterile insect looking for wild individuals of the same species to mate with them and the result is a clutch of viable eggs, causing a decrease in pest populations. After three years of application of the technique on an area of 150,000 hectares, the pest populations have been reduced by 90%. Other benefits have been the reduced used of insecticides and improved the quality of exported fruit. (Author)

  3. Agricultural Animal Pest Control. Bulletin 767.

    Science.gov (United States)

    Nolan, Maxcy P., Jr.

    Included in this training manual are descriptions and pictures of the following agricultural animal pests: mosquitoes, stable flies, horse flies and deer or yellow flies, house flies, horn flies, wound-infesting larvae, lice, mites, ticks, and bots and grubs. Information is given on the life-cycle and breeding habits of the pests. Methods of…

  4. Agricultural Animal Pest Control. Manual 90.

    Science.gov (United States)

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the agricultural animal pest control category. The text discusses pesticide hazards, application techniques, and pests of livestock such as mosquitoes, flies, grubs and lice. (CS)

  5. Pest insect olfaction in an insecticide-contaminated environment: info-disruption or hormesis effect.

    Science.gov (United States)

    Tricoire-Leignel, Hélène; Thany, Steeve Hervé; Gadenne, Christophe; Anton, Sylvia

    2012-01-01

    Most animals, including pest insects, live in an "odor world" and depend strongly on chemical stimuli to get information on their biotic and abiotic environment. Although integrated pest management strategies including the use of insect growth regulators (IGRs) are increasingly developed, most insect pest treatments rely on neurotoxic chemicals. These molecules are known to disrupt synaptic transmission, affecting therefore sensory systems. The wide-spread use of neurotoxic insecticides and the growing use of IGRs result in residual accumulation of low concentrations in the environment. These insecticide residues could act as an "info-disruptor" by modifying the chemical communication system, and therefore decrease chances of reproduction in target insects. However, residues can also induce a non-expected hormesis effect by enhancing reproduction abilities. Low insecticide doses might thus induce adaptive processes in the olfactory pathway of target insects, favoring the development of resistance. The effect of sublethal doses of insecticides has mainly been studied in beneficial insects such as honeybees. We review here what is known on the effects of sublethal doses of insecticides on the olfactory system of insect pests.

  6. Pest insect olfaction in an insecticide-contaminated environment : info-disruption or hormesis effect

    Directory of Open Access Journals (Sweden)

    Hélène eTricoire-Leignel

    2012-03-01

    Full Text Available Most animals, including pest insects, live in an odour world and depend strongly on chemical stimuli to get information on their biotic and abiotic environment. Although integrated pest management strategies including the use of insect growth regulators (IGRs are increasingly developed, most insect pest treatments rely on neurotoxic chemicals. These molecules are known to disrupt synaptic transmission, affecting therefore sensory systems. The wide-spread use of neurotoxic insecticides and the growing use of IGRs result in residual accumulation of low concentrations in the environment. These insecticide residues could act as an info-disruptor by modifying the chemical communication system, and therefore decrease chances of reproduction in target insects. However, residues can also induce a non-expected hormesis effect by enhancing reproduction abilities. Low insecticide doses might thus induce adaptive processes in the olfactory pathway of target insects, favouring the development of resistance. The effect of sublethal doses of insecticides has mainly been studied in beneficial insects such as honeybees. We review here what is known on the effects of sublethal doses of insecticides on the olfactory system of insect pests.

  7. Role of radioisotopes in the study of insect pests

    International Nuclear Information System (INIS)

    Mansour, M.

    2013-01-01

    Although the use of nuclear techniques, particularly radioisotopes, in entomological research is less than a century old, the contribution of radioisotopes to the science of studying insects (Entomology) is indispensable. In fact, radioisotopes provided a very important and sometimes a unique tool for solving many research problems in entomology. This article discusses the most important and widely used applications of radioisotopes in studying insect pests. In particular, it concentrates on the subject of radioisotopes used in entomological research, methods of labeling insect with radioisotopes, half life of radioisotopes, and the role of radioisotopes in physiological, ecological, biological and behavioral studies of insects. (author)

  8. Arriving at the age of pest insect transgenesis

    International Nuclear Information System (INIS)

    Atkinson, Peter W.; O'Brochta, David A.

    2000-01-01

    Technologies that enable the stable genetic transformation of insects other than the vinegar fly, Drosophila melanogaster Meigen, have been sought since D. melanogaster was initially transformed using the P transposable element (Rubin and Spradling 1982). D. melanogaster transformation can now be achieved by using Type II eukaryotic transposable elements such as P, hobo, Hermes, mariner, Minos and piggyBac (Blackman et al. 1989, Lidholm et al. 1993, Loukeris et al. 1995a, O'Brochta et al. 1996, Rubin and Spadling 1982, A. M. Handler, personal communication). The success of this strategy led to many attempts to extend it into non-drosophilid insects and this approach has recently been successful with the use of four different transposable elements to transform two non-drosophilid insect species, the Medfly, Ceratitis capitata Wied. and the yellow fever mosquito, Aedes aegypti L. (Coates et al. 1998, Handler et al. 1998, Jasinskiene et al. 1998, Loukeris et al. 1995b). The generation of these transgenic insects has, in part, arisen through the adoption of two approaches. One has been the isolation of new transposable elements from non-drosophilid insects. The second has been the implementation of mobility assays that have quickly enabled the mobility properties of these new elements in the target pest species to be determined. The success of these approaches will most likely be extended to other pest insect species over the next five years and will increase our ability to use modern genetic techniques to develop new strategies to control pest insects

  9. Gene Disruption Technologies Have the Potential to Transform Stored Product Insect Pest Control.

    Science.gov (United States)

    Perkin, Lindsey C; Adrianos, Sherry L; Oppert, Brenda

    2016-09-19

    Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, but is the most effective and economical control method, and thus is used extensively worldwide. However, many insect populations have become resistant to phosphine, in some cases to very high levels. New, environmentally benign and more effective control strategies are needed for stored product pests. RNA interference (RNAi) may overcome pesticide resistance by targeting the expression of genes that contribute to resistance in insects. Most data on RNAi in stored product insects is from the coleopteran genetic model, Tribolium castaneum, since it has a strong RNAi response via injection of double stranded RNA (dsRNA) in any life stage. Additionally, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology has been suggested as a potential resource for new pest control strategies. In this review we discuss background information on both gene disruption technologies and summarize the advances made in terms of molecular pest management in stored product insects, mainly T. castaneum, as well as complications and future needs.

  10. Gene Disruption Technologies Have the Potential to Transform Stored Product Insect Pest Control

    Directory of Open Access Journals (Sweden)

    Lindsey C. Perkin

    2016-09-01

    Full Text Available Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, but is the most effective and economical control method, and thus is used extensively worldwide. However, many insect populations have become resistant to phosphine, in some cases to very high levels. New, environmentally benign and more effective control strategies are needed for stored product pests. RNA interference (RNAi may overcome pesticide resistance by targeting the expression of genes that contribute to resistance in insects. Most data on RNAi in stored product insects is from the coleopteran genetic model, Tribolium castaneum, since it has a strong RNAi response via injection of double stranded RNA (dsRNA in any life stage. Additionally, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR technology has been suggested as a potential resource for new pest control strategies. In this review we discuss background information on both gene disruption technologies and summarize the advances made in terms of molecular pest management in stored product insects, mainly T. castaneum, as well as complications and future needs.

  11. The use of insecticides to control insect pests

    OpenAIRE

    M Wojciechowska; P Stepnowski; M Gołębiowski

    2016-01-01

    Pesticides are used as plants protection products. Among those, insecticides serve as agents to control insects. When incorrectly applied, however these substances may negatively affect people's health and natural environment. Administration routes of insecticides depend on many factors and vary from spraying to fertilizers. These different methods influence how insects prey and how pests develop. Additionally, too frequent use of the same chemicals can lead to development of resi...

  12. Sterile insect technique. Principles and practice in area-wide integrated pest management

    International Nuclear Information System (INIS)

    Dyck, V.A.; Hendrichs, J.; Robinson, A.S.

    2005-01-01

    For several major insect pests, the environment-friendly sterile insect technique (SIT) is being applied as a component of area-wide integrated pest management (AW-IPM) programmes. This technology, using radiation to sterilize insects, was first developed in the USA, and is currently applied on six continents. For four decades it has been a major subject for research and development in the Joint FAO/IAEA Programme on Nuclear Techniques in Food and Agriculture, involving both research and the transfer of this technology to Member States so that they can benefit from improved plant, animal and human health, cleaner environments, increased production of plants and animals in agricultural systems, and accelerated economic development. The socio-economic impacts of AW-IPM programmes that integrate the SIT have confirmed the usefulness of this technology. Numerous publications related to the integration of the SIT in pest management programmes, arising from research, coordinated research projects, field projects, symposia, meetings, and training activities have already provided much information to researchers, pest-control practitioners, programme managers, plant protection and animal health officers, and policy makers. However, by bringing together and presenting in a generic fashion the principles, practice, and global application of the SIT, this book will be a major reference source for all current and future users of the technology. The book will also serve as a textbook for academic courses on integrated pest management. Fifty subject experts from 19 countries contributed to the chapters, which were all peer reviewed before final editing

  13. Insect pests in asparagus; IPM perspectives!

    NARCIS (Netherlands)

    Rozen, van K.; Huiting, H.F.

    2016-01-01

    Resulting from Directive 2009/128/EC, all EU Member States have to comply with stricter guidelines regarding Integrated Pest Management before 2023. As implementation of IPM measures and strategies has a high perceived risk, demonstration of and discussion on possibilities may be a key element in

  14. Effects of insecticide spray application on insect pest infestation and ...

    African Journals Online (AJOL)

    Field studies were conducted during the 2008 - 2009 cropping season to determine the minimal insecticide application which can reduce cowpea yield losses on the field due to insect pest infestations in the Transkei region of South Africa. Treatments consisted of five cowpea varieties and four regimes of insecticide spray ...

  15. Insect pests' incidence and variations due to forest landscape ...

    African Journals Online (AJOL)

    No differences were found between the intensification zones, except for weeds, which appeared to be a greater constraint in the slightly degraded area. Within the insect pest, the greatest damage to crops according to farmers originated from borers and scales, followed by variegated grasshopper. Only the termites showed ...

  16. Advances in organic insect pest management in pecan

    Science.gov (United States)

    Pecans are economically the most important native nut crop in the USA. The market for organic pecans has been growing. However, in the Southeastern USA, there are a number of insect pests and plant diseases that challenge the ability of growers to produce organic pecans in an economically sound ma...

  17. Factors determining the use of botanical insect pest control methods ...

    African Journals Online (AJOL)

    A farm survey was conducted in three representative administrative districts of the Lake Victoria Basin (LVB), Kenya to document farmers' indigenous knowledge and the factors that influence the use of botanicals instead of synthetic insecticides in insect pest management. A total of 65 farm households were randomly ...

  18. EFFECTS OF INSECT PEST INFESTATION ON THE CAFFEINE ...

    African Journals Online (AJOL)

    The caffeine content of nuts of Cola nitida and C. acuminata infested by insect pests in four major geographical zones of Nigeria have been determined and compared with the uninfested ones using high-performance liquid chromatography (HPLC). The findings showed that the infestation has no significant effect on the ...

  19. Game theory as a conceptual framework for managing insect pests.

    Science.gov (United States)

    Brown, Joel S; Staňková, Kateřina

    2017-06-01

    For over 100 years it has been recognized that insect pests evolve resistance to chemical pesticides. More recently, managers have advocated restrained use of pesticides, crop rotation, the use of multiple pesticides, and pesticide-free sanctuaries as resistance management practices. Game theory provides a conceptual framework for combining the resistance strategies of the insects and the control strategies of the pest manager into a unified conceptual and modelling framework. Game theory can contrast an ecologically enlightened application of pesticides with an evolutionarily enlightened one. In the former case the manager only considers ecological consequences whereas the latter anticipates the evolutionary response of the pests. Broader applications of this game theory approach include anti-biotic resistance, fisheries management and therapy resistance in cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. 50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Control of wildfires, insects, pest plants... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease to...

  1. Identification and Control of Common Insect Pests of Ornamental Shrubs and Trees.

    Science.gov (United States)

    Gesell, Stanley G.

    This agriculture extension service publication from Pennsylvania State University introduces the identification and control of common ornamental insect pests. For each of the insects or insect groups (i.e. aphids) identified in this publication, information on host plants, pest description, and damage caused by the pest is given. Also a calendar…

  2. RNA interference: Applications and advances in insect toxicology and insect pest management.

    Science.gov (United States)

    Kim, Young Ho; Soumaila Issa, Moustapha; Cooper, Anastasia M W; Zhu, Kun Yan

    2015-05-01

    Since its discovery, RNA interference (RNAi) has revolutionized functional genomic studies due to its sequence-specific nature of post-transcriptional gene silencing. In this paper, we provide a comprehensive review of the recent literature and summarize the current knowledge and advances in the applications of RNAi technologies in the field of insect toxicology and insect pest management. Many recent studies have focused on identification and validation of the genes encoding insecticide target proteins, such as acetylcholinesterases, ion channels, Bacillus thuringiensis receptors, and other receptors in the nervous system. RNAi technologies have also been widely applied to reveal the role of genes encoding cytochrome P450 monooxygenases, carboxylesterases, and glutathione S-transferases in insecticide detoxification and resistance. More recently, studies have focused on understanding the mechanism of insecticide-mediated up-regulation of detoxification genes in insects. As RNAi has already shown great potentials for insect pest management, many recent studies have also focused on host-induced gene silencing, in which several RNAi-based transgenic plants have been developed and tested as proof of concept for insect pest management. These studies indicate that RNAi is a valuable tool to address various fundamental questions in insect toxicology and may soon become an effective strategy for insect pest management. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Male-killing bacteria as agents of insect pest control

    International Nuclear Information System (INIS)

    Berec, Ludek; Maxin, Daniel; Bernhauerová, Veronika

    2016-01-01

    1. Continual effort is needed to reduce the impact of exotic species in the context of increased globalization. Any innovation in this respect would be an asset. 2. We assess the potential of combining two pest control techniques: the well-established sterile insect technique (SIT) and a novel male-killing technique (MKT), which comprises inoculation of a pest population with bacteria that kill the infected male embryos. 3. Population models are developed to assess the efficiency of using the MKT for insect pest control, either alone or together with the SIT. We seek for conditions under which the MKT weakens requirements on the SIT. 4. Regarding the SIT, we consider both non-heritable and inherited sterility. In both cases, the MKT and SIT benefit one another. The MKT may prevent the SIT from failing when not enough sterilized males are released due to high production costs and/or uncertainty on their mating ability following a high irradiation dose. Conversely, with already established SIT, pest eradication can be achieved after introduction of male-killing bacteria with lower vertical transmission efficiency than if the MKT was applied alone. 5. For tephritid fruit flies with non-heritable sterility, maximal impact of the SIT is achieved when the released males are fully sterile. Conversely, for lepidopterans with inherited sterility, maximal impact of the SIT is achieved for intermediate irradiation doses. In both cases, increasing vertical transmission efficiency of male-killing bacteria benefits the SIT; high enough vertical transmission efficiency allows for pest eradication where the SIT is absent or induces only pest suppression when used alone. 6. Synthesis and applications. While both techniques can suppress or eliminate the pest on their own, combined application of the male-killing technique and the sterile insect technique substantially increases pest control efficiency. If male-killing bacteria are already established in the pest, any assessment of

  4. Insect Pests and Integrated Pest Management in Museums, Libraries and Historic Buildings.

    Science.gov (United States)

    Querner, Pascal

    2015-06-16

    Insect pests are responsible for substantial damage to museum objects, historic books and in buildings like palaces or historic houses. Different wood boring beetles (Anobium punctatum, Hylotrupes bajulus, Lyctus sp. or introduced species), the biscuit beetle (Stegobium paniceum), the cigarette beetle (Lasioderma serricorne), different Dermestides (Attagenus sp., Anthrenus sp., Dermestes sp., Trogoderma sp.), moths like the webbing clothes moth (Tineola bisselliella), Silverfish (Lepisma saccharina) and booklice (Psocoptera) can damage materials, objects or building parts. They are the most common pests found in collections in central Europe, but most of them are distributed all over the world. In tropical countries, termites, cockroaches and other insect pests are also found and result in even higher damage of wood and paper or are a commune annoyance in buildings. In this short review, an introduction to Integrated Pest Management (IPM) in museums is given, the most valuable collections, preventive measures, monitoring in museums, staff responsible for the IPM and chemical free treatment methods are described. In the second part of the paper, the most important insect pests occurring in museums, archives, libraries and historic buildings in central Europe are discussed with a description of the materials and object types that are mostly infested and damaged. Some information on their phenology and biology are highlighted as they can be used in the IPM concept against them.

  5. Insect and Pest Control Newsletter, No. 88, January 2017

    International Nuclear Information System (INIS)

    2017-01-01

    In our NL 84, we reported on the ground-breaking for the ReNuAL project (Renovation of the Nuclear Applications Laboratories), which includes the FAO/IAEA Agriculture & Biotechnology Laboratories. The laboratories are unique within the United Nations system in providing Member States with direct access to scientific training, technology and analytical services. ReNuAL is getting under way with the construction of a new Insect Pest Control Laboratory (IPCL), pictured on the previous page, due for completion by the end of 2017. In 2016, we also reported on the increasing demands from our FAO and IAEA Member States to expand our focus from developing and transferring the SIT for major crop and livestock insect pests to major disease-transmitting mosquitoes. Looking to the year ahead, we are organizing the Third FAO/IAEA International Conference on Area-wide Management of Insect Pests: Integrating the Sterile Insect and Related Nuclear and Other Techniques, at the IAEA Headquarters in Vienna, Austria, from 22–26 May 2017. The programme that is being prepared looks very promising and will cover relevant current scientific and applied topics. A number of prominent speakers have been invited to debate new developments and trends. We expect around 400 scientists from all continents and look forward to a successful conference and your active participation.

  6. Insects and Related Pests of Trees, Shrubs, and Lawns. MP-25R.

    Science.gov (United States)

    Spackman, Everett W.; Lawson, Fred A.

    This document discusses identification and control of the pests of trees and shrubs. The insects are grouped according to feeding habits and the type of damage caused to plants. Categories include the sucking insects and mites, leaf eating insects, pests attacking trunks and branches, and gall causing insects. (CS)

  7. High tunnels: protection for rather than from insect pests?

    Science.gov (United States)

    Ingwell, Laura L; Thompson, Sarah L; Kaplan, Ian; Foster, Ricky E

    2017-12-01

    High tunnels are a season extension tool creating a hybrid of field and greenhouse growing conditions. High tunnels have recently increased in the USA and thus research on their management is lacking. One purported advantage of these structures is protection from common field pests, but evidence to support this claim is lacking. We compared insect pest populations in high tunnels with field production over two years for three crops: tomato, broccoli and cucumber. Greenhouse pests (e.g. aphids, whiteflies) were more prevalent in high tunnels, compared to field plots. Hornworms (tobacco (Manduca sexta L.) and tomato (M. quinquemaculata Haworth)), a common field pest on tomato, were also more abundant in high tunnels, requiring chemical control while field populations were low. The crucifer caterpillar complex (imported cabbageworm (Pieris rapae L.), diamondback moth (Plutella xylostella L.) and cabbage looper (Trichoplusia ni Hübner)) was also more abundant in high tunnels in 2010. Cucumber beetle (striped (Acalymma vittatum F.) and spotted (Diabrotica undecimpunctata Mannerheim)) densities were higher in high tunnels in 2010 and field plots in 2011. The common assumption that high tunnels offer protection from field pests was not supported. Instead, high tunnel growing conditions may facilitate higher pest populations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Harnessing Insect-Microbe Chemical Communications To Control Insect Pests of Agricultural Systems.

    Science.gov (United States)

    Beck, John J; Vannette, Rachel L

    2017-01-11

    Insect pests cause serious economic, yield, and food safety problems to managed crops worldwide. Compounding these problems, insect pests often vector pathogenic or toxigenic microbes to plants. Previous work has considered plant-insect and plant-microbe interactions separately. Although insects are well-understood to use plant volatiles to locate hosts, microorganisms can produce distinct and abundant volatile compounds that in some cases strongly attract insects. In this paper, we focus on the microbial contribution to plant volatile blends, highlighting the compounds emitted and the potential for variation in microbial emission. We suggest that these aspects of microbial volatile emission may make these compounds ideal for use in agricultural applications, as they may be more specific or enhance methods currently used in insect control or monitoring. Our survey of microbial volatiles in insect-plant interactions suggests that these emissions not only signal host suitability but may indicate a distinctive time frame for optimal conditions for both insect and microbe. Exploitation of these host-specific microbe semiochemicals may provide important microbe- and host-based attractants and a basis for future plant-insect-microbe chemical ecology investigations.

  9. Urban warming drives insect pest abundance on street trees.

    Directory of Open Access Journals (Sweden)

    Emily K Meineke

    Full Text Available Cities profoundly alter biological communities, favoring some species over others, though the mechanisms that govern these changes are largely unknown. Herbivorous arthropod pests are often more abundant in urban than in rural areas, and urban outbreaks have been attributed to reduced control by predators and parasitoids and to increased susceptibility of stressed urban plants. These hypotheses, however, leave many outbreaks unexplained and fail to predict variation in pest abundance within cities. Here we show that the abundance of a common insect pest is positively related to temperature even when controlling for other habitat characteristics. The scale insect Parthenolecanium quercifex was 13 times more abundant on willow oak trees in the hottest parts of Raleigh, NC, in the southeastern United States, than in cooler areas, though parasitism rates were similar. We further separated the effects of heat from those of natural enemies and plant quality in a greenhouse reciprocal transplant experiment. P. quercifex collected from hot urban trees became more abundant in hot greenhouses than in cool greenhouses, whereas the abundance of P. quercifex collected from cooler urban trees remained low in hot and cool greenhouses. Parthenolecanium quercifex living in urban hot spots succeed with warming, and they do so because some demes have either acclimatized or adapted to high temperatures. Our results provide the first evidence that heat can be a key driver of insect pest outbreaks on urban trees. Since urban warming is similar in magnitude to global warming predicted in the next 50 years, pest abundance on city trees may foreshadow widespread outbreaks as natural forests also grow warmer.

  10. Insect and Pest Control Newsletter, No. 86, January 2016

    International Nuclear Information System (INIS)

    2016-01-01

    In 2015 we concluded the six-year Coordinated Research Project (CRP) on “Resolution of Cryptic Species Complexes of Tephritid Pests to Overcome Constraints to SIT Application and International Trade”. The objective of the CRP was to undertake targeted research into the systematics and diagnostics of taxonomically challenging fruit fly groups of economic importance. Close to 50 researchers from over 20 countries participated in the CRP, conducting coordinated, multidisciplinary research to address, with an integrative taxonomic framework, cryptic species complexes of major tephritid pests. One of the scientific outputs of the CRP was the accurate alignment of some biological species with taxonomic names. The resolution of some of these controversial issues has important applied implications for FAO and IAEA Member States, both in overcoming technical constraints to the application of the Sterile Insect Technique (SIT) against pest fruit flies and in facilitating international agricultural trade

  11. Insect Pest Control Newsletter, No. 76, January 2011

    International Nuclear Information System (INIS)

    2011-01-01

    During the last twelve months the Insect Pest Control Subprogramme hosted an international symposium and co-sponsored another one; organized five research coordination meetings, four regional training courses, three consultants meetings and two workshops; participated in many interesting and successful research activities; provided technical support to over thirty technical cooperation projects in FAO and IAEA Member States, and actively contributed to a number of other international events, panels and advisory committees. In this newsletter you will find information and details about some of the activities enumerated above. These reflect not only our growing commitments and increasing research and normative responsibilities, but also our expanding involvement with additional pest species, although our budget and staff have not increased in proportion. The success of the subprogramme has historically been guaranteed by its focussed approach on a few major pest problems which allowed us to provide our Member States the best support in terms of research, normative assistance and implementation of operational programmes. Despite the continuous demand of FAO and IAEA Member States to expand our support and include more pest insects, we remain conscious that diluting our human and financial resources may jeopardise the high quality service that our Member States deserve

  12. Insect Pest Control Newsletter, No. 76, January 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-01-15

    During the last twelve months the Insect Pest Control Subprogramme hosted an international symposium and co-sponsored another one; organized five research coordination meetings, four regional training courses, three consultants meetings and two workshops; participated in many interesting and successful research activities; provided technical support to over thirty technical cooperation projects in FAO and IAEA Member States, and actively contributed to a number of other international events, panels and advisory committees. In this newsletter you will find information and details about some of the activities enumerated above. These reflect not only our growing commitments and increasing research and normative responsibilities, but also our expanding involvement with additional pest species, although our budget and staff have not increased in proportion. The success of the subprogramme has historically been guaranteed by its focussed approach on a few major pest problems which allowed us to provide our Member States the best support in terms of research, normative assistance and implementation of operational programmes. Despite the continuous demand of FAO and IAEA Member States to expand our support and include more pest insects, we remain conscious that diluting our human and financial resources may jeopardise the high quality service that our Member States deserve

  13. Molecular approaches to the modification of insect pest populations

    International Nuclear Information System (INIS)

    Crampton, J.M.; Stowell, S.; Parkes, R.; Karras, M.; Sinden, R.E.

    2000-01-01

    After considerable research effort over the last decade or more, the ability to routinely introduce specific genes and other DNA constructs (such as linked promoter:gene cassettes) into a range of pest insect genomes at high efficiency using transgenic approaches is fast becoming a reality. The critical issue that now needs to be addressed is how best to incorporate these techniques into SIT in order to improve its effectiveness or efficiency. Manipulation of insect pest genomes using transgenic approaches may be used in two ways. It may be used as an analytical tool, or to introduce or modify either endogenous or heterologous genes and their expression in the pest insect of choice. In this way, new strains may be generated with a set of desired characteristics beneficial to SIT. In order to realise the full potential of the technology, a number of issues and research areas is being explored and progress to date is reviewed below. Specific examples are drawn from work on mosquito systems in order to illustrate the approaches available to identify genes and promoters of interest and the potential applications to SIT

  14. Insect and pest control newsletter. No. 59

    International Nuclear Information System (INIS)

    2002-07-01

    Analysis and implications of the meeting on 'Status and Risk Assessment of the Use of Transgenic Arthropods in Plant Protection' that took place at FAO headquarters in Rome in April 2002 are discussed in this issue. This very timely meeting was jointly organized by FAO/IAEA and the International Plant Protection Convention (IPPC) secretariat and chaired by Alan Robinson. Experts in both the technology of transformation as well as regulatory procedures and risk assessment participated. Transgenic technology is now almost routinely used in many insect species and currently arthropod transgenesis is mainly concerned with the stability and fitness of these strains. These topics will probably be the main issues to be addressed in a new Coordinated Research Project (CRP), is being proposed for initiation in 2003. From the regulatory point of view, risk assessment is mainly focused on horizontal transmission and the impact on biodiversity, and these concerns will need to be addressed when moving on a case-by-case basis, from the laboratory through field cages to open field release. Regulatory approval in the USA for the first field cage release of genetically transformed arthropod (pink bollworm) provided a timely background for the meeting. The proceedings of the meeting should provide the basis for the rational development of the use of transgenic arthropods. Following resolutions by IAEA and also FAO governing bodies in support of the PATTEC initiative, that was launched by African Heads of State (reported in previous issues), several press releases and media reports have been issued on this topic. Of particular importance is a press release issued jointly by FAO, IAEA, OAU and WHO (text given inside this newsletter) at the beginning of the World Food Summit - Five Years Later, recently held in Rome in June 2002. This joint press release acknowledges the magnitude of the tsetse problem in tsetse-infested areas of sub-Saharan Africa, where about 85 percent of the poor

  15. Insect and pest control newsletter. No. 59

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    Analysis and implications of the meeting on 'Status and Risk Assessment of the Use of Transgenic Arthropods in Plant Protection' that took place at FAO headquarters in Rome in April 2002 are discussed in this issue. This very timely meeting was jointly organized by FAO/IAEA and the International Plant Protection Convention (IPPC) secretariat and chaired by Alan Robinson. Experts in both the technology of transformation as well as regulatory procedures and risk assessment participated. Transgenic technology is now almost routinely used in many insect species and currently arthropod transgenesis is mainly concerned with the stability and fitness of these strains. These topics will probably be the main issues to be addressed in a new Coordinated Research Project (CRP), is being proposed for initiation in 2003. From the regulatory point of view, risk assessment is mainly focused on horizontal transmission and the impact on biodiversity, and these concerns will need to be addressed when moving on a case-by-case basis, from the laboratory through field cages to open field release. Regulatory approval in the USA for the first field cage release of genetically transformed arthropod (pink bollworm) provided a timely background for the meeting. The proceedings of the meeting should provide the basis for the rational development of the use of transgenic arthropods. Following resolutions by IAEA and also FAO governing bodies in support of the PATTEC initiative, that was launched by African Heads of State (reported in previous issues), several press releases and media reports have been issued on this topic. Of particular importance is a press release issued jointly by FAO, IAEA, OAU and WHO (text given inside this newsletter) at the beginning of the World Food Summit - Five Years Later, recently held in Rome in June 2002. This joint press release acknowledges the magnitude of the tsetse problem in tsetse-infested areas of sub-Saharan Africa, where about 85 percent of the poor

  16. Insect and pest control newsletter. No. 57

    International Nuclear Information System (INIS)

    2001-07-01

    Tsetse and trypanosomosis are at the root of low agricultural productivity in Sub-Saharan Africa and the removal of this factor would be a major contributor for large- scale poverty reduction in this region. Whilst removal of the disease would allow other constraining issues to become priorities such as the presence of other disease, lack of feed, poor husbandry skills and lack of markets for dairy products, without the removal of the threat of trypanosomosis there can be no progress, and for many in this region, no way out of staying hungry. Significantly though, during the past five years there has been an increasing awareness that the final elimination of the tsetse fly from areas can be achieved through the integrated use of the sterile insect technique (SIT). Reduction of tsetse fly populations has always been achievable but not sustainable. The area-wide application of SIT offers a realistic, affordable and environmentally acceptable way to complete the task by eliminating the final remaining flies. Although the effective use of SIT for fly elimination requires a reduction of fly populations by around 95%, this has often been achieved but not sustained due to the recurrent cost and logistics of fly control. The fact that use of SIT can achieve final eradication of the fly and hence the disease has been dramatically demonstrated on the island of Zanzibar. Recognizing this fact and in response to the increasing problem of African trypanosomosis, the Heads of African States and Governments, at their 36 th Summit Meeting in Lome, Togo, 10-12 July 2000, adopted a Decision on Proposal for Eradication of Tsetse Flies on the African Continent. In this decision, AHG/Dec.156 (XXXVI), the Assembly of countries that have initiated the application of the SIT for their pioneering effort, and invited the OAU to lead the establishment of a Pan- African Tsetse and Trypanosomosis Eradication Campaign (PATTEC). The Programme Against African Trypanosomosis (PAAT), which is a

  17. Insect Pest Control Newsletter, No. 81, July 2013

    International Nuclear Information System (INIS)

    2013-07-01

    In response to requests from our readers, this introduction is mainly dedicated to the ongoing efforts to develop alternatives for insect reproductive sterilization and blood sterilization for their use in insect pest control programmes with a sterile insect technique (SIT) component. Radioisotope irradiators that are loaded with either cobalt-60 or caesium-137 producing gamma rays have been routinely used for many decades and have proven to be extremely reliable and safe for these purposes in successful area-wide insect eradication or suppression programmes. These include industrial panoramic-type irradiators in larger programmes, all the way to smaller self-contained irradiators. Nevertheless, the transboundary shipment of self-contained gamma irradiators or radioactive material has become logistically more complex due to security issues. This situation was exacerbated when the production of the Gamma Cell 220 (GC220), the source most commonly used for irradiating insects for sterilization purposes, was discontinued. These events may have created the impression that the use of gamma radiation has become a less viable option, unattainable for insect pest control programmes that want to integrate the SIT. Nevertheless, some of the biggest SIT operational programmes have in recent years been equipped with new self-contained cobalt-60 sources, including the SIT programme against the pink bollworm in Phoenix, Arizona; El Pino Mediterranean fruit fly facility in Guatemala; and the screwworm programme in Panama. Thus these larger and more expensive irradiators, together with panoramic units (that are also costlier than self-contained gamma irradiators) have remained over the years a valid option, especially for larger operational programmes. In addition, the reloading of smaller units with new cobalt or the purchase of refurbished used self-contained irradiators remain viable alternatives

  18. Insect Pest Control Newsletter, No. 81, July 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-15

    In response to requests from our readers, this introduction is mainly dedicated to the ongoing efforts to develop alternatives for insect reproductive sterilization and blood sterilization for their use in insect pest control programmes with a sterile insect technique (SIT) component. Radioisotope irradiators that are loaded with either cobalt-60 or caesium-137 producing gamma rays have been routinely used for many decades and have proven to be extremely reliable and safe for these purposes in successful area-wide insect eradication or suppression programmes. These include industrial panoramic-type irradiators in larger programmes, all the way to smaller self-contained irradiators. Nevertheless, the transboundary shipment of self-contained gamma irradiators or radioactive material has become logistically more complex due to security issues. This situation was exacerbated when the production of the Gamma Cell 220 (GC220), the source most commonly used for irradiating insects for sterilization purposes, was discontinued. These events may have created the impression that the use of gamma radiation has become a less viable option, unattainable for insect pest control programmes that want to integrate the SIT. Nevertheless, some of the biggest SIT operational programmes have in recent years been equipped with new self-contained cobalt-60 sources, including the SIT programme against the pink bollworm in Phoenix, Arizona; El Pino Mediterranean fruit fly facility in Guatemala; and the screwworm programme in Panama. Thus these larger and more expensive irradiators, together with panoramic units (that are also costlier than self-contained gamma irradiators) have remained over the years a valid option, especially for larger operational programmes. In addition, the reloading of smaller units with new cobalt or the purchase of refurbished used self-contained irradiators remain viable alternatives.

  19. Insect and Pest Control Newsletter, No. 84, January 2015

    International Nuclear Information System (INIS)

    2015-01-01

    On 29 September 2014, a ceremony was held in Seibersdorf, Austria to commemorate the 50th Anniversary of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, as well as the ground-breaking for the renovation of the IAEA’s Nuclear Sciences and Applications laboratories at Seibersdorf – including the FAO/IAEA Agriculture & Biotechnology Laboratories. The enormous contributions of the Joint FAO/IAEA Division during the past 50 years were also honoured, serving stakeholders worldwide to meet the changing needs of Member States through the peaceful uses of nuclear technologies based on the shared goals of our two parent organizations and the five strategic objectives of FAO. Established on 1 October 1964, this FAO/IAEA partnership still remains unique, with its key strengths based on interagency cooperation within the United Nations family. It is a tangible joint organizational entity with a fusion of complementary mandates, common targets, a joint programme, co-funding and coordinated management geared to demand- driven and results-based services to its Members and to the international community at large. The mission of the Joint Division has proactively evolved to address new challenges in Member States and nuclear applications continue to provide added value to conventional approaches in addressing a range of agricultural problems and issues, including food safety, animal production and health, crop improvement, insect pest control and sustainable use of finite natural resources. Over the past 50 years, this partnership has brought countless successes with distinct socio-economic impact at country, regional and global levels in Member States. The 50 year anniversary was taken as an opportunity to highlight examples of tangible, sustainable results derived out of this unique partnership – beneficial to Member States of both parent organizations – and to share these with our many stakeholders around the world

  20. Insect and Pest Control Newsletter, No. 87, July 2016

    International Nuclear Information System (INIS)

    2016-07-01

    A year ago, in NL 85, we reported on the increasing demands from our FAO and IAEA Member States to expand our focus from developing and transferring the sterile insect technique (SIT) for major crop and livestock insect pests to major disease-transmitting mosquitoes. Since the mid-2000s, there have been several IAEA General Conference resolutions requesting the Joint FAO/IAEA Insect Pest Control Subprogramme to develop a complete “SIT package” for major mosquito species to be used as a component of area-wide integrated vector management (IVM) approaches. The first resolutions focussed on the malaria vector Anopheles arabiensis, but since 2010, also the dengue and chikungunya vectors Aedes aegypti and Ae. albopictus were included. In view that the traditional chemical-based vector control strategies were facing serious challenges due to increased resistance of mosquitoes to insecticides and increased public concern of insecticide use in urban areas, there was a clear need for novel methods and complementary approaches to manage mosquito populations in an effective and more environmentally friendly and sustainable way. Furthermore, due to the absence of effective vaccines and drugs against some of these diseases, vector suppression approaches are widely seen as the most effective means to reduce these mosquito-transmitted diseases that pose an enormous economic and social burden, and whose incidence has increased drastically in recent years with the spread to new regions.

  1. incidence and distribution of insect pests in rain-fed wheat in eastern

    African Journals Online (AJOL)

    ACSS

    Insect pests are some of the major constraints limiting yield of wheat (Triticum aestivum L.) in East Africa. The objective of this ... control measure applied, type of variety grown and agronomic .... development of an integrated pest management.

  2. Sampling stored product insect pests: a comparison of four statistical sampling models for probability of pest detection

    Science.gov (United States)

    Statistically robust sampling strategies form an integral component of grain storage and handling activities throughout the world. Developing sampling strategies to target biological pests such as insects in stored grain is inherently difficult due to species biology and behavioral characteristics. ...

  3. Hype or opportunity? Using microbial symbionts in novel strategies for insect pest control.

    Science.gov (United States)

    Arora, Arinder K; Douglas, Angela E

    2017-11-01

    All insects, including pest species, are colonized by microorganisms, variously located in the gut and within insect tissues. Manipulation of these microbial partners can reduce the pest status of insects, either by modifying insect traits (e.g. altering the host range or tolerance of abiotic conditions, reducing insect competence to vector disease agents) or by reducing fitness. Strategies utilizing heterologous microorganisms (i.e. derived from different insect species) and genetically-modified microbial symbionts are under development, particularly in relation to insect vectors of human disease agents. There is also the potential to target microorganisms absolutely required by the insect, resulting in insect mortality or suppression of insect growth or fecundity. This latter approach is particularly valuable for insect pests that depend on nutrients from symbiotic microorganisms to supplement their nutritionally-inadequate diet, e.g. insects feeding through the life cycle on vertebrate blood (cimicid bugs, anopluran lice, tsetse flies), plant sap (whiteflies, aphids, psyllids, planthoppers, leafhoppers/sharpshooters) and sound wood (various xylophagous beetles and some termites). Further research will facilitate implementation of these novel insect pest control strategies, particularly to ensure specificity of control agents to the pest insect without dissemination of bio-active compounds, novel microorganisms or their genes into the wider environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A cascade of destabilizations: Combining Wolbachia and Allee effects to eradicate insect pests.

    Science.gov (United States)

    Blackwood, Julie C; Vargas, Roger; Fauvergue, Xavier

    2018-01-01

    introduction of multiple Wolbachia cytotypes as well as the addition of mating disruption. Our study extends the existing literature by proposing the use of Wolbachia introductions to capitalize on pre-existing Allee effects and consequently eradicate insect pests. More generally, it highlights the importance of transient dynamics, and the relevance of manipulating a cascade of destabilizatons for pest management. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  5. Insect Pest Control Newsletter, No. 80, January 2013

    International Nuclear Information System (INIS)

    2013-01-01

    On November 28, 2012, with the participation of representatives from Member States and the press, the IAEA commemorated 50 years of IAEA's Laboratories in Seibersdorf, Austria. At a ceremony to mark the anniversary, IAEA Director General Yukiya Amano said the Laboratories in Seibersdorf have improved, in the 50 years since they opened, the lives of millions of people through work using nuclear echniques. At the eight nuclear applications laboratories, which include the five FAO/IAEA Agriculture and Biotechnology Laboratories, scientists carry out research and development, provide technical services to Member States and host fellows and scientific visitors. He stated that work at the laboratories has made a difference in controlling animal diseases and insect pests in many countries, contributed to more sustainable soil and water management technologies and the development of hardier and more nutritious crops. Scientists at the laboratories have helped communities dentify the best sources of underground water and ensure that this scarce resource is used effectively. They have worked on safe ways to preserve food, and provided vital echnical support for cancer treatment and other medical uses of nuclear technology. New challenges abound in the present and the future, Director General Yukiya Amano said. 'Member States want us to do more in almost all areas of nuclear applications'. He referred to the positive feedback received, reinforcing the critical nature of the services provided by the laboratories, and his announcement to carry out a complete modernization of the Laboratories. His proposal was supported in a resolution of the 56th General Conference, which called upon the IAEA to establish state-of-the-art facilities and equipment at Seibersdorf. The goal, according to the resolution, must be o 'ensure that maximum benefits in terms of capacity-building and technology enhancement are made available to Member States, particularly developing countries.' He pledged

  6. Insect Pest Control Newsletter, No. 80, January 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    On November 28, 2012, with the participation of representatives from Member States and the press, the IAEA commemorated 50 years of IAEA's Laboratories in Seibersdorf, Austria. At a ceremony to mark the anniversary, IAEA Director General Yukiya Amano said the Laboratories in Seibersdorf have improved, in the 50 years since they opened, the lives of millions of people through work using nuclear echniques. At the eight nuclear applications laboratories, which include the five FAO/IAEA Agriculture and Biotechnology Laboratories, scientists carry out research and development, provide technical services to Member States and host fellows and scientific visitors. He stated that work at the laboratories has made a difference in controlling animal diseases and insect pests in many countries, contributed to more sustainable soil and water management technologies and the development of hardier and more nutritious crops. Scientists at the laboratories have helped communities dentify the best sources of underground water and ensure that this scarce resource is used effectively. They have worked on safe ways to preserve food, and provided vital echnical support for cancer treatment and other medical uses of nuclear technology. New challenges abound in the present and the future, Director General Yukiya Amano said. 'Member States want us to do more in almost all areas of nuclear applications'. He referred to the positive feedback received, reinforcing the critical nature of the services provided by the laboratories, and his announcement to carry out a complete modernization of the Laboratories. His proposal was supported in a resolution of the 56th General Conference, which called upon the IAEA to establish state-of-the-art facilities and equipment at Seibersdorf. The goal, according to the resolution, must be o 'ensure that maximum benefits in terms of capacity-building and technology enhancement are made available to Member States, particularly developing countries.' He pledged

  7. incidence and distribution of insect pests in rain-fed wheat in eastern ...

    African Journals Online (AJOL)

    ACSS

    Insect pests are some of the major constraints limiting yield of wheat (Triticum aestivum L.) in East Africa. The objective of this study was to determine the species composition and distribution of insect pests, and their natural enemies associated with wheat in Eastern Africa. A survey was conducted in farmers' fields in ...

  8. The role of nuclear techniques in the control of agricultural pests and stored grains insects

    International Nuclear Information System (INIS)

    Mansour, M.

    2012-01-01

    Peaceful applications of nuclear techniques in agriculture in general, and pest control specifically, are very numerous. Although this field of science is over a century old, its rapid developments occurred only in the last few decades. In fact, the contribution of nuclear techniques to insect pest control during the last half century is one of the most important developments in this science. This article is devoted to discuss the most important and widely used applications of nuclear techniques, particularly ionizing radiation, in insect pest control. In particular, it deals with the subject of sterilizing insects for the purpose of insect pest control and/or eradication in the field and storage, irradiation disinfestation of sorted products, particularly cereals and pulses, facilitating international trade by avoiding quarantine barriers and its role in biological control of insect pests. (author)

  9. Control of key pecan insect pests using biorational pesticides.

    Science.gov (United States)

    Shapiro-Ilan, David I; Cottrell, Ted E; Jackson, Mark A; Wood, Bruce W

    2013-02-01

    Key pecan insect pests include the black pecan aphid, Melanocallis caryaefoliae (Davis), pecan weevil, Curculio caryae (Horn), and stink bugs (Hemiptera: Pentatomidae). Alternative control tactics are needed for management of these pests in organic and conventional systems. Our objective was to evaluate the potential utility of several alternative insecticides including three plant extract formulations, eucalyptus extract, citrus extract-8.92%, and citrus extract-19.4%, and two microbial insecticides, Chromobacterium subtsugae (Martin et al.) and Isaria fumosorosea (Wize). In the laboratory, eucalyptus extract, citrus extract-8.92%, citrus extract-19.4%, and C. subtsugae caused M. caryaefoliae mortality (mortality was reached approximately 78, 83, and 96%, respectively). In field tests, combined applications of I. fumosorosea with eucalyptus extract were synergistic and caused up to 82% mortality in M. caryaefoliae. In laboratory assays focusing on C. caryae suppression, C. subtsugae reduced feeding and oviposition damage, eucalyptus extract and citrus extract-19.4% were ineffective, and antagonism was observed when citrus extract-19.4% was combined with the entomopathogenic nematode, Steinernema carpocapsae (Weiser). In field tests, C. subtsugae reduced C. caryae damage by 55% within the first 3d, and caused 74.5% corrected mortality within 7 d posttreatment. In the laboratory, C. subtsugae and eucalyptus extract did not cause mortality in the brown stink bug, Euschistus servus (Say). Applications of C. subtsugae for suppression of C. caryae, and eucalyptus extract plus I. fumosorosea for control of M. caryaefoliae show promise as alternative insecticides and should be evaluated further.

  10. Pest control of ligniperdous insects by means of ionizing radiation

    International Nuclear Information System (INIS)

    Baer, M.; Koehler, W.

    1983-01-01

    Wooden objects of art and monuments are endangered by wood-destroying insects. The treatment of these objects with ionizing radiation is one way to control these pests. For this purpose the portable HWK-3 high-dose irradiation device was developed. In July 1979, a radiation experiment was made under field conditions in Potsdam-Sanssouci in order to gain experience in the operation and effectiveness of the new device. During the following 18 months the results of this experiment were evaluated by means of the SM 231 vibration measuring instrument. It became evident that a total dose of over 3 kGy would kill all of the death-watch beetles (Anobium punctatum de Geer) and doses down to 0.55 kGy would largely diminish the population, with future damages caused by death-watch beetles being highly unlikely. Delayed damages in the larvae caused by low total doses still add to the effectiveness of the pest control. (author)

  11. Application of benefit/cost analysis to insect pest control using the sterile insect technique

    International Nuclear Information System (INIS)

    Mumford, J.D.

    2005-01-01

    Before embarking on area-wide integrated pest management (AW-IPM) programmes involving eradication, exclusion, or suppression of insect pests using the sterile insect technique (SIT), and/or other area-wide control measures, not only their technical but also their economic feasibility needs to be assessed. They may require significant initial capital investments to achieve long-term returns in subsequent periods, and may raise questions about the distribution of benefits or the justification of public or private pest control efforts. A consistent and transparent system is needed to analyse the benefits and costs of such programmes and to demonstrate their value, or in some cases to assess appropriate contributions to the costs by the various stakeholders who gain the benefits. Benefit/cost analysis (BCA) provides such a framework, and has been applied to many AW-IPM programmes that integrate the SIT, in which it has been used to demonstrate the expected value of area-wide eradication, exclusion or suppression. This chapter outlines the process of BCA in which itemized future costs and benefits are compared in terms of present values. It also provides a review and examples of the application of BCA to the SIT. A checklist of BCA inputs, and some examples of benefit/cost outputs, are also presented. (author)

  12. Applying the sterile insect technique to the control of insect pests

    International Nuclear Information System (INIS)

    LaChance, L.E.; Klassen, W.

    1991-01-01

    The sterile insect technique involves the mass-rearing of insects, which are sterilized by gamma rays from a 60 Co source before being released in a controlled fashion into nature. Matings between the sterile insects released and native insects produce no progeny, and so if enough of these matings occur the pest population can be controlled or even eradicated. A modification of the technique, especially suitable for the suppression of the moths and butterflies, is called the F, or inherited sterility method. In this, lower radiation doses are used such that the released males are only partially sterile (30-60%) and the females are fully sterile. When released males mate with native females some progeny are produced, but they are completely sterile. Thus, full expression of the sterility is delayed by one generation. This article describes the use of the sterile insect technique in controlling the screwworm fly, the tsetse fly, the medfly, the pink bollworm and the melon fly, and of the F 1 sterility method in the eradication of local gypsy moth infestations. 18 refs, 5 figs, 1 tab

  13. A survey of some insect pests of cultivated vegetables in three ...

    African Journals Online (AJOL)

    DR GATSING

    ABSTRACT. The survey aimed at identifying insect pests that attack vegetables grown in three irrigation areas along Jakara River in Kano, Nigeria. The areas were Kwarin gogau, Nomansland and. Kwakwaci. Two methods of trapping the insects were employed, namely hand capture for wingless insects as well as hand net ...

  14. [Effects of insecticides on insect pest-natural enemy community in early rice fields].

    Science.gov (United States)

    Jiang, Junqi; Miao, Yong; Zou, Yunding; Li, Guiting

    2006-05-01

    This paper studied the effects of triazophos, shachongshuang, abamectin, and Bt + imidacloprid on the insect pest-natural enemy community in early rice fields in the Yangtze-Huaihe region of Anhui Province. The results showed that all of the test insecticides had significant effects in controlling the growth of major insect pest populations. The average value of insect pest-natural enemy community diversity under effects of triazophos, shachongshuang, abamectin, and Bt + imidacloprid was 1.545, 1.562, 1.691 and 1.915, respectively, while that in control plot was 1.897. After two weeks of applying insecticides, the plots applied with shachongshuang and abamectin had a similar composition of insect pest-natural enemy community, but the community composition was significantly different between the plots applied with triazophos and Bt + imidacloprid. From the viewpoints of community stability and pest control, Bt + imidacloprid had the best effect, and shachongshuang and abamectin were better than triazophos.

  15. Forest Insect Pest Management and Forest Management in China: An Overview

    Science.gov (United States)

    Ji, Lanzhu; Wang, Zhen; Wang, Xiaowei; An, Linli

    2011-12-01

    According to the Seventh National Forest Inventory (2004-2008), China's forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations— Eucalyptus, poplar and Masson pine plantations—with respect to their insect diversity, pest problems and pest management measures.

  16. Forest insect pest management and forest management in China: an overview.

    Science.gov (United States)

    Ji, Lanzhu; Wang, Zhen; Wang, Xiaowei; An, Linli

    2011-12-01

    According to the Seventh National Forest Inventory (2004-2008), China's forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations-Eucalyptus, poplar and Masson pine plantations-with respect to their insect diversity, pest problems and pest management measures.

  17. Microbial Pest Control Agents: Are they a Specific And Safe Tool for Insect Pest Management?

    Science.gov (United States)

    Deshayes, Caroline; Siegwart, Myriam; Pauron, David; Froger, Josy-Anne; Lapied, Bruno; Apaire-Marchais, Véronique

    2017-01-01

    Microorganisms (viruses, bacteria and fungi) or their bioactive agents can be used as active substances and therefore are referred as Microbial Pest Control Agents (MPCA). They are used as alternative strategies to chemical insecticides to counteract the development of resistances and to reduce adverse effects on both environment and human health. These natural entomopathogenic agents, which have specific modes of action, are generally considered safer as compared to conventional chemical insecticides. Baculoviruses are the only viruses being used as the safest biological control agents. They infect insects and have narrow host ranges. Bacillus thuringiensis (Bt) is the most widely and successfully used bioinsecticide in the integrated pest management programs in the world. Bt mainly produces crystal delta-endotoxins and secreted toxins. However, the Bt toxins are not stable for a very long time and are highly sensitive to solar UV. So genetically modified plants that express toxins have been developed and represent a large part of the phytosanitary biological products. Finally, entomopathogenic fungi and particularly, Beauveria bassiana and Metarhizium anisopliae, are also used for their insecticidal properties. Most studies on various aspects of the safety of MPCA to human, non-target organisms and environment have only reported acute but not chronic toxicity. This paper reviews the modes of action of MPCA, their toxicological risks to human health and ecotoxicological profiles together with their environmental persistence. This review is part of the special issue "Insecticide Mode of Action: From Insect to Mammalian Toxicity". Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Insect pest intervention using the sterile insect technique. Current status on research and on operational programs in the world

    International Nuclear Information System (INIS)

    Enkerlin, Walther; Bakri, Abdel; Caceres, Carlos

    2003-01-01

    The area-wide integrated approach to insect pest management (AWIPM) is increasingly gaining acceptance for major insect pests in view that agriculture and medical/veterinary pests cannot be controlled effectively at the local level, without the systematic use of conventional insecticides which disrupt the environment, affect human health and preclude access to low pesticide or organic markets. The Sterile Insect Technique (SIT) is amongst the most non-disruptive pest control methods, however, it is only effective when implementation is coordinated over larger contiguous areas to address whole target pest populations. Over the last four decades the Joint FAOI/IAEA has been promoting the AWIPM concept and supporting the development and application of the SIT against various key insect pests including fruit files, moths, screwworms and tsetse flies. There has been considerable progress in the development and integrated use of the SIT against a number of such pests, as reflected by operational programs on all five continents for eradication, for prevention, and lately increasingly for suppression. There is however, considerable scope for improving the efficiency of SIT, an indispensable requirement for increased involvement of the livestock and horticultural industry and biocontrol producers in any future application. (author)

  19. Monitoring sterile and wild insects in area-wide integrated pest management programmes

    International Nuclear Information System (INIS)

    Vreysen, M.J.B.

    2005-01-01

    Insect pest control programmes, which integrate the release of sterile insects, can be efficient only if the released insects have an optimal biological quality. Frequent monitoring of the quality of reared insects after being released in the field is an important but often neglected component of area-wide integrated pest management (AW-IPM) programmes that integrate the sterile insect technique (SIT). Parameters of sterile insects, which should be monitored regularly, are sexual competitiveness of the released insects, and related components, e.g. survival, mobility, dispersal characteristics, and spatial occupation of the habitat. A well-balanced monitoring programme will, at any given time, provide essential feedback on the progress being made. This information is prerequisite to efficient implementation of the release and cost-efficient use of sterile insects. The type of monitoring to be done will be determined largely by the particular biology of the target insect species. The most important parameter in relation to the release of sterile insects is the rate of sterility induced in the wild insect pest population; it will provide the best evidence that any observed changes, e.g. in the density of the target insect, are caused by the release of sterile insects. (author)

  20. Limited mobility of target pests crucially lowers controllability when sterile insect releases are spatiotemporally biased.

    Science.gov (United States)

    Ikegawa, Yusuke; Himuro, Chihiro

    2017-05-21

    The sterile insect technique (SIT) is a genetic pest control method wherein mass-reared sterile insects are periodically released into the wild, thereby impeding the successful reproduction of fertile pests. In Okinawa Prefecture, Japan, the SIT has been implemented to eradicate the West Indian sweet potato weevil Euscepes postfasciatus (Fairmaire), which is a flightless agricultural pest of sweet potatoes. It is known that E. postfasciatus is much less mobile than other insects to which the SIT has been applied. However, previous theoretical studies have rarely examined effects of low mobility of target pests and variation in the spatiotemporal evenness of sterile insect releases. To theoretically examine the effects of spatiotemporal evenness on the regional eradication of less mobile pests, we constructed a simple two-patch population model comprised of a pest and sterile insect moving between two habitats, and numerically simulated different release strategies (varying the number of released sterile insects and release intervals). We found that spatially biased releases allowed the pest to spatially escape from the sterile insect, and thus intensively lowered its controllability. However, we showed that the temporally counterbalancing spatially biased releases by swapping the number of released insects in the two habitats at every release (called temporal balancing) could greatly mitigate this negative effect and promote the controllability. We also showed that the negative effect of spatiotemporally biased releases was a result of the limited mobility of the target insect. Although directed dispersal of the insects in response to habitats of differing quality could lower the controllability in the more productive habitat, the temporal balancing could promote and eventually maximize the controllability as released insects increased. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Insect Pest Control Newsletter, No. 75, July 2010

    International Nuclear Information System (INIS)

    2010-07-01

    In our last newsletter we reported that the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture is experiencing important changes as part of a major reform process that is ongoing at FAO since 2009, and which will be fully implemented by 2013, resulting in a more responsive and modern organization. Also at IAEA restructuring is taking place as a result of IAEA's new leadership and external reviews that made positive recommendations. These changes directly affect the operations of the Joint Division. Up to the end of 2009, the IAEA Laboratories in Seibersdorf and Monaco were administratively under separate management, although programmatically they always have been part of their respective Divisions at headquarters. This double leadership in the management structure was a source of inefficiencies in what should be seamless programme operations. As of 1 January 2010, in order to streamline, simplify and harmonize lines of authority and accountability, laboratory activities and staff have been aligned with their respective programmes. In the case of the FAO/IAEA Agriculture and Biotechnology Laboratories in Seibersdorf, this means that its five units (including the Entomology Unit) have been fully integrated into the respective subprogrammes under the Director of the Joint Division, who was given full authority and accountability for all programmatic and administrative functions regarding the management of the activities of the FAO/IAEA Laboratories. It is expected that this streamlining will lead to more opportunities for Seibersdorf staff to play a greater role in programme development and will result in improved programme delivery to our Member States. You will notice in this newsletter that, as part of the streamlining, the name of the Entomology Unit, which has been in use since the 1960s, has been officially changed to Insect Pest Control Laboratory (IPCL). Aside from the name change we do not anticipate any real changes in the implementation

  2. Insect Pest Control Newsletter, No. 75, July 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    In our last newsletter we reported that the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture is experiencing important changes as part of a major reform process that is ongoing at FAO since 2009, and which will be fully implemented by 2013, resulting in a more responsive and modern organization. Also at IAEA restructuring is taking place as a result of IAEA's new leadership and external reviews that made positive recommendations. These changes directly affect the operations of the Joint Division. Up to the end of 2009, the IAEA Laboratories in Seibersdorf and Monaco were administratively under separate management, although programmatically they always have been part of their respective Divisions at headquarters. This double leadership in the management structure was a source of inefficiencies in what should be seamless programme operations. As of 1 January 2010, in order to streamline, simplify and harmonize lines of authority and accountability, laboratory activities and staff have been aligned with their respective programmes. In the case of the FAO/IAEA Agriculture and Biotechnology Laboratories in Seibersdorf, this means that its five units (including the Entomology Unit) have been fully integrated into the respective subprogrammes under the Director of the Joint Division, who was given full authority and accountability for all programmatic and administrative functions regarding the management of the activities of the FAO/IAEA Laboratories. It is expected that this streamlining will lead to more opportunities for Seibersdorf staff to play a greater role in programme development and will result in improved programme delivery to our Member States. You will notice in this newsletter that, as part of the streamlining, the name of the Entomology Unit, which has been in use since the 1960s, has been officially changed to Insect Pest Control Laboratory (IPCL). Aside from the name change we do not anticipate any real changes in the implementation

  3. Applicator Training Manual for: Agricultural Animal Pest Control.

    Science.gov (United States)

    Christensen, Christian M.

    This manual discusses pesticide safety and environmental considerations, pesticide toxicity, residue potential, pesticide formulations, and application techniques. In addition, descriptions of, and methods for controlling insects and related pests that attack cattle, sheep and goats, swine, horses and other equines, and poultry are given. These…

  4. Multiscale approach to pest insect monitoring: random walks, pattern formation, synchronization, and networks.

    Science.gov (United States)

    Petrovskii, Sergei; Petrovskaya, Natalia; Bearup, Daniel

    2014-09-01

    Pest insects pose a significant threat to food production worldwide resulting in annual losses worth hundreds of billions of dollars. Pest control attempts to prevent pest outbreaks that could otherwise destroy a sward. It is good practice in integrated pest management to recommend control actions (usually pesticides application) only when the pest density exceeds a certain threshold. Accurate estimation of pest population density in ecosystems, especially in agro-ecosystems, is therefore very important, and this is the overall goal of the pest insect monitoring. However, this is a complex and challenging task; providing accurate information about pest abundance is hardly possible without taking into account the complexity of ecosystems' dynamics, in particular, the existence of multiple scales. In the case of pest insects, monitoring has three different spatial scales, each of them having their own scale-specific goal and their own approaches to data collection and interpretation. In this paper, we review recent progress in mathematical models and methods applied at each of these scales and show how it helps to improve the accuracy and robustness of pest population density estimation. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Plant breeding for resistance to insect pests: Considerations about the use of induced mutations

    International Nuclear Information System (INIS)

    1978-01-01

    The Panel was intended to stimulate proposals on specific plant breeding objectives, for immediate and long term solution. Nine papers considered the host plant resistance to particular insect pests in a variety of cases. The desirability of achieving some measure of pest control via the development of disease-resistant mutants was discussed. In its conclusions, the Panel stressed the need to consider host plant resistance as one of the primary lines of defense in all pest management programmes. Consequently, resistance to insects was recommended to become an integral part of plant breeding programmes. Preference might need to be given to developing insect resistance in those crop plants for which practical control is lacking or where current methods of pest control present critical environmental hazards. The roles of the IAEA and FAO in such projects is outlined. Guidelines and recommendations on mutation breeding for resistance to insects are given in an appendix

  6. Resistance of the packing to attack of insects pest in irradiated ration

    International Nuclear Information System (INIS)

    Arthur, Paula B.; Arthur, Valter; Silva, Lucia C.A.S.; Franco, Suely S.H.

    2013-01-01

    The pests as beetles, acarids, moths and mushrooms among other, usually infest products stored as: grains, crumbs, flours, coffee, tobacco, dried fruits, animal rations, spices, dehydrated plants, causing the visual depreciation and promoting the deterioration of the products. The objective of the research was use the gamma radiation of Cobalt-60 in the disinfestation of some types of rations used for feeding of animals of small size. In the experiment packing measuring 10 cm x 20 cm with capacity of 70 grams of substrate (ration) with 4 types of existent marks in the trade: (1), (2), (3) and (4) of free samples were used. Each treatment had 10 repetitions, that were irradiated with doses of: 0 (control) 0,5; 1,0 and 2,0 kGy, to do the disinfestation of the ration samples. After the irradiation all the packing and the control were conditioned in plastic boxes of 80 cm x 50 cm with cover, where the insects: Lasioderma serricorne, Plodia interpuctella, Sitophilus zeamais and S. oryzae were liberated, in a total of 400 for each box. The boxes were maintained at room acclimatized with 27 ± 2 deg C and relative humidity of 70 ± 5%. The counting of the number of insects and holes in the packing were made after 60 days. The results showed that only the package of the ration type number 4, was susceptive to the attack of the species of insects. (author)

  7. Resistance of the packing to attack of insects pest in irradiated ration

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Paula B.; Arthur, Valter; Silva, Lucia C.A.S.; Franco, Suely S.H., E-mail: paula.arthur@hotmail.com [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Radiobiologia e Ambiente; Franco, Jose G.; Villavicencio, Anna L.H.C., E-mail: gilmita@uol.com.br, E-mail: villavic@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The pests as beetles, acarids, moths and mushrooms among other, usually infest products stored as: grains, crumbs, flours, coffee, tobacco, dried fruits, animal rations, spices, dehydrated plants, causing the visual depreciation and promoting the deterioration of the products. The objective of the research was use the gamma radiation of Cobalt-60 in the disinfestation of some types of rations used for feeding of animals of small size. In the experiment packing measuring 10 cm x 20 cm with capacity of 70 grams of substrate (ration) with 4 types of existent marks in the trade: (1), (2), (3) and (4) of free samples were used. Each treatment had 10 repetitions, that were irradiated with doses of: 0 (control) 0,5; 1,0 and 2,0 kGy, to do the disinfestation of the ration samples. After the irradiation all the packing and the control were conditioned in plastic boxes of 80 cm x 50 cm with cover, where the insects: Lasioderma serricorne, Plodia interpuctella, Sitophilus zeamais and S. oryzae were liberated, in a total of 400 for each box. The boxes were maintained at room acclimatized with 27 ± 2 deg C and relative humidity of 70 ± 5%. The counting of the number of insects and holes in the packing were made after 60 days. The results showed that only the package of the ration type number 4, was susceptive to the attack of the species of insects. (author)

  8. Insect pests of sweetpotato in Uganda: farmers' perceptions of their importance and control practices.

    Science.gov (United States)

    Okonya, Joshua Sikhu; Mwanga, Robert Om; Syndikus, Katja; Kroschel, Jürgen

    2014-01-01

    Insect pests are among the most important constraints limiting sweetpotato (Ipomoea batatas) production in Africa. However, there is inadequate information about farmers' knowledge, perceptions and practices in the management of key insect pests. This has hindered development of effective pest management approaches for smallholder farmers. A standard questionnaire was used to interview individual sweetpotato farmers (n = 192) about their perception and management practices regarding insect pests in six major sweetpotato producing districts of Uganda. The majority (93%) of farmers perceived insect pests to be a very serious problem. With the exception of Masindi and Wakiso districts where the sweetpotato butterfly (Acraea acerata) was the number one constraint, sweetpotato weevils (Cylas puncticollis and C. brunneus) were ranked as the most important insect pests. Insecticide use in sweetpotato fields was very low being highest (28-38% of households) in districts where A. acerata infestation is the biggest problem. On average, 65% and 87% of the farmers took no action to control A. acerata and Cylas spp., respectively. Farmers were more conversant with the presence of and damage by A. acerata than of Cylas spp. as they thought that Cylas spp. root damage was brought about by a prolonged dry season. Different levels of field resistance (ability of a variety to tolerate damage) of sweetpotato landraces to A. acerata (eight landraces) and Cylas spp. (six landraces) were reported by farmers in all the six districts. This perceived level of resistance to insect damage by landraces needs to be investigated. To improve farmers' capabilities for sweetpotato insect pest management, it is crucial to train them in the basic knowledge of insect pest biology and control.

  9. Using GPS instruments and GIS techniques in data management for insect pest control programs

    International Nuclear Information System (INIS)

    2006-01-01

    This interactive tutorial CD entitled 'Using GPS Instruments and GIS Techniques in Data Management for Insect Pest Control Programs' was developed by Micha silver of the Arava Development Co., Sapir, Israel, and includes step-by-step hands on lessons on the use of GPS/GIS in support of area-wide pest control operations

  10. Robust Manipulations of Pest Insect Behavior Using Repellents and Practical Application for Integrated Pest Management.

    Science.gov (United States)

    Wallingford, Anna K; Cha, Dong H; Linn, Charles E; Wolfin, Michael S; Loeb, Gregory M

    2017-10-01

    In agricultural settings, examples of effective control strategies using repellent chemicals in integrated pest management (IPM) are relatively scarce compared to those using attractants. This may be partly due to a poor understanding of how repellents affect insect behavior once they are deployed. Here we attempt to identify potential hallmarks of repellent stimuli that are robust enough for practical use in the field. We explore the literature for success stories using repellents in IPM and we investigate the mechanisms of repellency for two chemical oviposition deterrents for controlling Drosophila suzukii Matsumura, a serious pest of small fruit crops. Drosophila suzukii causes injury by laying her eggs in ripening fruit and resulting larvae make fruit unmarketable. In caged choice tests, reduced oviposition was observed in red raspberry fruit treated with volatile 1-octen-3-ol and geosmin at two initial concentrations (10% and 1%) compared to untreated controls. We used video monitoring to observe fly behavior in these caged choice tests and investigate the mode of action for deterrence through the entire behavioral repertoire leading to oviposition. We observed fewer visitors and more time elapsed before flies first landed on 1-octen-3-ol-treated fruits than control fruits and concluded that this odor primarily inhibits behaviors that occur before D. suzukii comes in contact with a potential oviposition substrate (precontact). We observed some qualitative differences in precontact behavior of flies around geosmin-treated fruits; however, we concluded that this odor primarily inhibits behaviors that occur after D. suzukii comes in contact with treated fruits (postcontact). Field trials found reduced oviposition in red raspberry treated with 1-octen-3-ol and a combination of 1-octen-3-ol and geosmin, but no effect of geosmin alone. Recommendations for further study of repellents for practical use in the field are discussed. © The Authors 2017. Published by

  11. Insect Pest Control Newsletter, No. 74, January 2010

    International Nuclear Information System (INIS)

    2010-01-01

    I would like to thank all our collaborators in many parts of the world, as well as our staff and colleagues in Vienna and Seibersdorf for a fruitful year 2009. Besides our participation and support to many events and interesting research, field, and knowledge management activities, the Insect Pest Control Subprogramme has been involved in a number of external reviews and is undergoing change as part of a major reform process at FAO and also important restructurings and new leadership at IAEA. It is now 45 years ago that FAO and IAEA joined forces in a partnership through a Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, the oldest example of institutionalized interagency cooperation in the United Nations system. The Joint Division has been developing and is building on the synergies that exist between the mandates of FAO, as the lead agency in food security, agriculture and rural development, and the IAEA, as the global forum for scientific and technical cooperation in the peaceful uses of atomic energy. Nevertheless, during the past two years, as a result of the above reform process, the Joint FAO/IAEA Division has been subject to a period of much uncertainty about the future of this partnership. I am now very pleased to be able to inform that following an exchange of formal notes between the senior management of FAO and IAEA in mid 2009, the Arrangements between the Directors General of FAO and IAEA for the Joint FAO/IAEA Division on Nuclear Techniques in Food and Agriculture remain in force. This is a confirmation of the strong support that has been received from Member States of both FAO and IAEA during the last two years requesting the continuation of the successful partnership between both organizations

  12. Insect and Pest Control Newsletter, No. 85, July 2015

    International Nuclear Information System (INIS)

    2015-07-01

    Despite the amazing progress made in science and technology during the last hundred years, humankind still faces significant challenges in combating pest insects, such as mosquitoes that are the vectors of major pathogens (arboviruses and bacterial as well as eukaryotic microorganisms). These pathogenic microorganisms cause infectious diseases resulting in severe morbidity or lethality. According to the World Health Organization (WHO), there are over 200 million cases of malaria resulting in more than 600 000 deaths annually, mainly very young children. The great majority of malaria deaths occur in sub-Saharan Africa. Currently, malaria transmission occurs in about 100 countries putting about 3.4 billion people at risk (World Malaria Report, 2013). Similarly, around 400 million people contract every year a dengue infection of which about 500 000, mainly children require hospitalization; it is estimated that 2.5% of them die. Dengue has spread globally during the last years and currently over 3 billion people are at risk in more than 100 countries in Africa, the Americas, the Eastern Mediterranean, South-east Asia and the Western Pacific. The majority of dengue cases are reported in American, Southeast Asian and the Western Pacific regions. Recently another viral mosquito-borne disease, chikungunya, has been spreading rapidly. It is a disease that causes severe chronic joint pain in patients across the globe. In the absence of effective vaccines and drugs, these mosquito- transmitted diseases pose an enormous economic and social burden worldwide and their incidence has increased drastically in recent years. In addition, the traditional chemical- based vector control strategies are facing serious challenges due to increased resistance of mosquitoes to the used insecticides and increased public concern of insecticide use in urban areas. Based on these facts, novel methods and complementary approaches are required to manage mosquito populations in an effective and more

  13. Chemical Cues in Tritrophic Interaction on Biocontrol of Insect Pest

    Directory of Open Access Journals (Sweden)

    Nurindah Nurindah

    2017-03-01

    Full Text Available Tritrophic interaction among host plant-herbivore-parasitoid involves chemical cues. The infested plant by herbivores has been reacted to produce volatiles which is a cue used by the herbivore parasitoids for host location. These volatiles can be developed to enhance natural control of insect pests, especially by optimally use of parasitoids. Egg parasitoids are biocontrol agents that play an important role in natural control of herbivores. This research used a tritrophic interaction model of rice plant-brown plant hopper (BPH-egg parasitoid of BPH. Research on analysis of chemical cues in tritrophic interactions was aimed to identify volatiles that are used by the parasitoid to find its host. The volatiles that effectively affect the parasitoid orientation behavior could be developed into a parasitoid attractant. Extraction of volatiles as the egg parasitoid cues was done using soxhlet, and identification of the volatiles using Gas Chromatography-Mass Spectrometry (GC-MS. Bioassay of the volatiles on the BPH parasitoid orientation behavior was performed using Y-tube olfactometry. The volatiles that are used for host location cues by the parasitoid affect the parasitoid orientation behavior by showing the preference of the parasitoid females to the odor of volatile. Volatiles extracted from BPH-egg-infested plants and uninfested plants contain alcohol, hydrocarbon, and ester compounds. Based on the difference of the compound composition of both extractions, five compounds of long-chain hydrocarbon, both branched and unsaturated compounds are the main volatile components which caused positive orientation behavior of the egg parasitoid. The egg parasitoids showed positive behavior orientation toward the volatiles extracted from BPH-egg-infested plant. Those hydrocarbon compounds are potential materials to be developed into bio attractants of BPH egg parasitoid.

  14. Insect Pest Control Newsletter, No. 74, January 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-01-15

    I would like to thank all our collaborators in many parts of the world, as well as our staff and colleagues in Vienna and Seibersdorf for a fruitful year 2009. Besides our participation and support to many events and interesting research, field, and knowledge management activities, the Insect Pest Control Subprogramme has been involved in a number of external reviews and is undergoing change as part of a major reform process at FAO and also important restructurings and new leadership at IAEA. It is now 45 years ago that FAO and IAEA joined forces in a partnership through a Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, the oldest example of institutionalized interagency cooperation in the United Nations system. The Joint Division has been developing and is building on the synergies that exist between the mandates of FAO, as the lead agency in food security, agriculture and rural development, and the IAEA, as the global forum for scientific and technical cooperation in the peaceful uses of atomic energy. Nevertheless, during the past two years, as a result of the above reform process, the Joint FAO/IAEA Division has been subject to a period of much uncertainty about the future of this partnership. I am now very pleased to be able to inform that following an exchange of formal notes between the senior management of FAO and IAEA in mid 2009, the Arrangements between the Directors General of FAO and IAEA for the Joint FAO/IAEA Division on Nuclear Techniques in Food and Agriculture remain in force. This is a confirmation of the strong support that has been received from Member States of both FAO and IAEA during the last two years requesting the continuation of the successful partnership between both organizations

  15. Can Prunus serotina be genetically engineered for reproductive sterility and insect pest resistance?

    Science.gov (United States)

    Ying Wang; Paula M. Pijut

    2014-01-01

    Black cherry (Prunus serotina) is a valuable hardwood timber species, and its value highly depends on the wood quality which is often threatened by insect pests. Transgenic black cherry plants that are more resistant to cambial-mining insects may reduce the occurrence of gummosis and have great economic benefits to landowners and the forest products...

  16. Development of reference transcriptomes for the major insect pests of cowpea: a toolbox for insect pest management approaches in West Africa

    Science.gov (United States)

    Cowpea crops are widely cultivated and a major nutritional source of protein for indigenous human populations in West Africa. Annual yields and longevity of grain storage is greatly reduced by feeding damage caused by a complex of insect pests that include Anoplocnemis curvipes, Aphis craccivora, Cl...

  17. Gamma radiation in the control of insects in animal feed

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Paula B.; Arthur, Valter; Silva, Lucia C.A.S.; Franco, Suely S.H., E-mail: paula.arthur@hotmail.com, E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Franco, Jose G.; Villavicencio, Anna Lucia, E-mail: gilmita@uol.com.br, E-mail: villavic@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Harder, Marcia N.C., E-mail: marcia.harder@fatec.sp.gov.br [Centro Paula Souza, Curso Superior de Tecnologia em Biocombustiveis (FATEC), Piracicaba, SP (Brazil)

    2015-07-01

    The pests as beetles, acarids, moths and mushrooms among other, usually infest products stored as: grains, crumbs, flours, coffee, tobacco, dried fruits, animal feeds, spices and dehydrated plants, causing the visual depreciation and promoting the deterioration of the products. The objective of this study was to use gamma radiation of Cobalt-60 in the disinfestation of some types of commercial feeds used for animals of small size. In the experiment, packages measuring 10 cm x 15 cm, with capacity of 30 grams of substrate with 4 types of trademarks were irradiated with doses of: 0 (control) 0.5; 1.0 and 2.0 kGy. Each treatment had 10 repetitions, infested with 10 insects for each package with the following species: Lasioderma serricorne, Plodia interpuctella, Sitophilus zeamais and S. oryzae. After the irradiation, all the packages were maintained at acclimatized room with 27 ± 2ºC and relative humidity of 70 ± 5%. The number of insects and holes in all packages were assessed after 60 days. The results showed that the dose of 0.5 kGy was sufficient to control all the species of insects in the tested feeds. (author)

  18. Gamma radiation in the control of insects in animal feed

    International Nuclear Information System (INIS)

    Arthur, Paula B.; Arthur, Valter; Silva, Lucia C.A.S.; Franco, Suely S.H.; Franco, Jose G.; Villavicencio, Anna Lucia; Harder, Marcia N.C.

    2015-01-01

    The pests as beetles, acarids, moths and mushrooms among other, usually infest products stored as: grains, crumbs, flours, coffee, tobacco, dried fruits, animal feeds, spices and dehydrated plants, causing the visual depreciation and promoting the deterioration of the products. The objective of this study was to use gamma radiation of Cobalt-60 in the disinfestation of some types of commercial feeds used for animals of small size. In the experiment, packages measuring 10 cm x 15 cm, with capacity of 30 grams of substrate with 4 types of trademarks were irradiated with doses of: 0 (control) 0.5; 1.0 and 2.0 kGy. Each treatment had 10 repetitions, infested with 10 insects for each package with the following species: Lasioderma serricorne, Plodia interpuctella, Sitophilus zeamais and S. oryzae. After the irradiation, all the packages were maintained at acclimatized room with 27 ± 2ºC and relative humidity of 70 ± 5%. The number of insects and holes in all packages were assessed after 60 days. The results showed that the dose of 0.5 kGy was sufficient to control all the species of insects in the tested feeds. (author)

  19. Phylogeny of economically important insect pests that infesting several crops species in Malaysia

    Science.gov (United States)

    Ghazali, Siti Zafirah; Zain, Badrul Munir Md.; Yaakop, Salmah

    2014-09-01

    This paper reported molecular data on insect pests of commercial crops in Peninsular Malaysia. Fifteen insect pests (Metisa plana, Calliteara horsefeldii, Cotesia vestalis, Bactrocera papayae, Bactrocera carambolae, Bactrocera latifrons, Conopomorpha cramella, Sesamia inferens, Chilo polychrysa, Rhynchophorus vulneratus, and Rhynchophorus ferrugineus) of nine crops were sampled (oil palm, coconut, paddy, cocoa, starfruit, angled loofah, guava, chili and mustard) and also four species that belong to the fern's pest (Herpetogramma platycapna) and storage and rice pests (Tribolium castaneum, Oryzaephilus surinamensis and Cadra cautella). The presented phylogeny summarized the initial phylogenetic hypothesis, which concerning by implementation of the economically important insect pests. In this paper, phylogenetic relationships among 39 individuals of 15 species that belonging to three orders under 12 genera were inferred from DNA sequences of mitochondrial marker, cytochrome oxidase subunit I (COI) and nuclear marker, ribosomal DNA 28S D2 region. The phylogenies resulted from the phylogenetic analyses of both genes are relatively similar, but differ in the sequence of evolution. Interestingly, this most recent molecular data of COI sequences data by using Bayesian Inference analysis resulted a more-resolved phylogeny that corroborated with traditional hypotheses of holometabolan relationships based on traditional hypotheses of holometabolan relationships and most of recently molecular study compared to 28S sequences. This finding provides the information on relationships of pests species, which infested several crops in Malaysia and also estimation on Holometabola's order relationships. The identification of the larval stages of insect pests could be done accurately, without waiting the emergence of adults and supported by the phylogenetic tree.

  20. Pest persistence and eradication conditions in a deterministic model for sterile insect release.

    Science.gov (United States)

    Gordillo, Luis F

    2015-01-01

    The release of sterile insects is an environment friendly pest control method used in integrated pest management programmes. Difference or differential equations based on Knipling's model often provide satisfactory qualitative descriptions of pest populations subject to sterile release at relatively high densities with large mating encounter rates, but fail otherwise. In this paper, I derive and explore numerically deterministic population models that include sterile release together with scarce mating encounters in the particular case of species with long lifespan and multiple matings. The differential equations account separately the effects of mating failure due to sterile male release and the frequency of mating encounters. When insects spatial spread is incorporated through diffusion terms, computations reveal the possibility of steady pest persistence in finite size patches. In the presence of density dependence regulation, it is observed that sterile release might contribute to induce sudden suppression of the pest population.

  1. Effects of effluent water on the abundance of cowpea insect pests.

    Science.gov (United States)

    Tiroesele, Bamphitlhi; Sitwane, Monametsi; Obopile, M; Ullah, Muhammad Irfan; Ali, Sajjad

    2017-10-03

    Botswana experiences low and unreliable rainfall. Thus, the use of effluent water in agriculture is increasingly important. Insect damage is the major constraint for cowpea grain production in the most cowpea-producing lands. We investigated the effects of effluent water on insect pest abundance on cowpea (Vigna unguiculata) under field conditions. The experiment was laid out in a randomized complete block design with 100, 75, 50, and 25% of effluent water and 0% (control-clean tap water) treatments. Treatments with 100% effluent water resulted in a significant increase in insect pest populations as compared with the control. These results show that the use of effluent water to irrigate crops may increase incidence, abundance, and damage caused by insect pests possibly by decreasing plant vigor. The use of effluent water in agriculture should be addressed in a wise way.

  2. Application of radiation and radioisotopes for the management of insect pests of economic importance

    International Nuclear Information System (INIS)

    Dongre, T.K.

    2001-01-01

    This article gives brief account of radiation and radioisotope applications in the field of insect pest management. Radiation has a direct application in controlling insect pests, through sterile insect techniques (SIT) and radiation disinfestations of food grains, whereas radioisotopes can be used in basic as well as applied studies in the field of insect physiology, ecology and metabolism. The successful implementation of SIT against New world screwworm fly and different fruit fly species has clearly demonstrated the usefulness of radiation in agriculture. Over the past 35 years, the joint FAO/IAEA committee has played a critical role in supporting member states in the development and application of SIT for the management of various economically important insect pests. BARC has developed SIT for the management of red palm weevil, Rhynchophorus ferrugineus Oliv, the most serious pest of coconut in India and date palms in Arabian countries. Now, through thematic BRNS project this technique is being evaluated under field conditions in collaboration with three Indian agricultural universities. Present status and future prospects of sterile insect technique for the area wide control of different insect species will be discussed in detail. (author)

  3. New technology for using meteorological information in forest insect pest forecast and warning systems.

    Science.gov (United States)

    Qin, Jiang-Lin; Yang, Xiu-Hao; Yang, Zhong-Wu; Luo, Ji-Tong; Lei, Xiu-Feng

    2017-12-01

    Near surface air temperature and rainfall are major weather factors affecting forest insect dynamics. The recent developments in remote sensing retrieval and geographic information system spatial analysis techniques enable the utilization of weather factors to significantly enhance forest pest forecasting and warning systems. The current study focused on building forest pest digital data structures as a platform of correlation analysis between weather conditions and forest pest dynamics for better pest forecasting and warning systems using the new technologies. The study dataset contained 3 353 425 small polygons with 174 defined attributes covering 95 counties of Guangxi province of China currently registering 292 forest pest species. Field data acquisition and information transfer systems were established with four software licences that provided 15-fold improvement compared to the systems currently used in China. Nine technical specifications were established including codes of forest districts, pest species and host tree species, and standard practices of forest pest monitoring and information management. Attributes can easily be searched using ArcGIS9.3 and/or the free QGIS2.16 software. Small polygons with pest relevant attributes are a new tool of precision farming and detailed forest insect pest management that are technologically advanced. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. PREMISE Insect Model: Integrated Population Dynamics Model for the Ex-ante Evaluation of IPM against Insect Pest

    NARCIS (Netherlands)

    Hennen, Wil; Alaphilippe, Aude

    2015-01-01

    Codling moth Cydia pomonella L. is the most serious pest of apple and pear worldwide and causes damage and decreased
    yields. To minimize this risk, IPM tools can be applied to reduce the use of chemicals. A cost-effective application of IPM depends
    on the number of insects at the time of

  5. Investigating Engineered Ribonucleoprotein Particles to Improve Oral RNAi Delivery in Crop Insect Pests

    Directory of Open Access Journals (Sweden)

    François-Xavier Gillet

    2017-04-01

    Full Text Available Genetically modified (GM crops producing double-stranded RNAs (dsRNAs are being investigated largely as an RNA interference (RNAi-based resistance strategy against crop insect pests. However, limitations of this strategy include the sensitivity of dsRNA to insect gut nucleases and its poor insect cell membrane penetration. Working with the insect pest cotton boll weevil (Anthonomus grandis, we showed that the chimeric protein PTD-DRBD (peptide transduction domain—dsRNA binding domain combined with dsRNA forms a ribonucleoprotein particle (RNP that improves the effectiveness of the RNAi mechanism in the insect. The RNP slows down nuclease activity, probably by masking the dsRNA. Furthermore, PTD-mediated internalization in insect gut cells is achieved within minutes after plasma membrane contact, limiting the exposure time of the RNPs to gut nucleases. Therefore, the RNP provides an approximately 2-fold increase in the efficiency of insect gene silencing upon oral delivery when compared to naked dsRNA. Taken together, these data demonstrate the role of engineered RNPs in improving dsRNA stability and cellular entry, representing a path toward the design of enhanced RNAi strategies in GM plants against crop insect pests.

  6. Investigating Engineered Ribonucleoprotein Particles to Improve Oral RNAi Delivery in Crop Insect Pests.

    Science.gov (United States)

    Gillet, François-Xavier; Garcia, Rayssa A; Macedo, Leonardo L P; Albuquerque, Erika V S; Silva, Maria C M; Grossi-de-Sa, Maria F

    2017-01-01

    Genetically modified (GM) crops producing double-stranded RNAs (dsRNAs) are being investigated largely as an RNA interference (RNAi)-based resistance strategy against crop insect pests. However, limitations of this strategy include the sensitivity of dsRNA to insect gut nucleases and its poor insect cell membrane penetration. Working with the insect pest cotton boll weevil ( Anthonomus grandis ), we showed that the chimeric protein PTD-DRBD (peptide transduction domain-dsRNA binding domain) combined with dsRNA forms a ribonucleoprotein particle (RNP) that improves the effectiveness of the RNAi mechanism in the insect. The RNP slows down nuclease activity, probably by masking the dsRNA. Furthermore, PTD-mediated internalization in insect gut cells is achieved within minutes after plasma membrane contact, limiting the exposure time of the RNPs to gut nucleases. Therefore, the RNP provides an approximately 2-fold increase in the efficiency of insect gene silencing upon oral delivery when compared to naked dsRNA. Taken together, these data demonstrate the role of engineered RNPs in improving dsRNA stability and cellular entry, representing a path toward the design of enhanced RNAi strategies in GM plants against crop insect pests.

  7. Landscape changes have greater effects than climate changes on six insect pests in China.

    Science.gov (United States)

    Zhao, Zihua; Sandhu, Hardev S; Ouyang, Fang; Ge, Feng

    2016-06-01

    In recent years, global changes are the major causes of frequent, widespread outbreaks of pests in mosaic landscapes, which have received substantial attention worldwide. We collected data on global changes (landscape and climate) and economic damage caused by six main insect pests during 1951-2010 in China. Landscape changes had significant effects on all six insect pests. Pest damage increased significantly with increasing arable land area in agricultural landscapes. However, climate changes had no effect on damage caused by pests, except for the rice leaf roller (Cnaphalocrocis medinalis Guenee) and armyworm (Mythimna separate (Walker)), which caused less damage to crops with increasing mean temperature. Our results indicate that there is slight evidence of possible offset effects of climate changes on the increasing damage from these two agricultural pests. Landscape changes have caused serious outbreaks of several species, which suggests the possibility of the use of landscape design for the control of pest populations through habitat rearrangement. Landscape manipulation may be used as a green method to achieve sustainable pest management with minimal use of insecticides and herbicides.

  8. Rapid evolution in insect pests: the importance of space and time in population genomics studies.

    Science.gov (United States)

    Pélissié, Benjamin; Crossley, Michael S; Cohen, Zachary Paul; Schoville, Sean D

    2018-04-01

    Pest species in agroecosystems often exhibit patterns of rapid evolution to environmental and human-imposed selection pressures. Although the role of adaptive processes is well accepted, few insect pests have been studied in detail and most research has focused on selection at insecticide resistance candidate genes. Emerging genomic datasets provide opportunities to detect and quantify selection in insect pest populations, and address long-standing questions about mechanisms underlying rapid evolutionary change. We examine the strengths of recent studies that stratify population samples both in space (along environmental gradients and comparing ancestral vs. derived populations) and in time (using chronological sampling, museum specimens and comparative phylogenomics), resulting in critical insights on evolutionary processes, and providing new directions for studying pests in agroecosystems. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Steering soil microbiomes to suppress aboveground insect pests

    NARCIS (Netherlands)

    Pineda, Ana; Kaplan, Ian; Bezemer, T. Martijn

    2017-01-01

    Soil-borne microbes affect aboveground herbivorous insects through a cascade of molecular and chemical changes in the plant, but knowledge of these microbe?plant?insect interactions is mostly limited to one or a few microbial strains. Yet, the soil microbial community comprises thousands of unique

  10. Modelling approach for biological control of insect pest by releasing infected pest

    International Nuclear Information System (INIS)

    Tan Yuanshun; Chen Lansun

    2009-01-01

    Models of biological control have a long history of theoretical development that have focused on the interactions between a predator and a prey. Here we have extended the classical epidemic model to include a continuous and impulsive pest control strategies by releasing the infected pests bred in laboratory. For the continuous model, the results imply that the susceptible pest goes to extinct if the threshold condition R 0 0 > 1, the positive equilibrium of continuous model is globally asymptotically stable. Similarly, the threshold condition which guarantees the global stability of the susceptible pest-eradication periodic solution is obtained for the model with impulsive control strategy. Consequently, based on the results obtained in this paper, the control strategies which maintain the pests below an acceptably low level are discussed by controlling the release rate and impulsive period. Finally, the biological implications of the results and the efficiency of two control strategies are also discussed

  11. The Plant Ribosome-Inactivating Proteins Play Important Roles in Defense against Pathogens and Insect Pest Attacks

    Directory of Open Access Journals (Sweden)

    Feng Zhu

    2018-02-01

    Full Text Available Ribosome-inactivating proteins (RIPs are toxic N-glycosidases that depurinate eukaryotic and prokaryotic rRNAs, thereby arresting protein synthesis during translation. RIPs are widely found in various plant species and within different tissues. It is demonstrated in vitro and in transgenic plants that RIPs have been connected to defense by antifungal, antibacterial, antiviral, and insecticidal activities. However, the mechanism of these effects is still not completely clear. There are a number of reviews of RIPs. However, there are no reviews on the biological functions of RIPs in defense against pathogens and insect pests. Therefore, in this report, we focused on the effect of RIPs from plants in defense against pathogens and insect pest attacks. First, we summarize the three different types of RIPs based on their physical properties. RIPs are generally distributed in plants. Then, we discuss the distribution of RIPs that are found in various plant species and in fungi, bacteria, algae, and animals. Various RIPs have shown unique bioactive properties including antibacterial, antifungal, antiviral, and insecticidal activity. Finally, we divided the discussion into the biological roles of RIPs in defense against bacteria, fungi, viruses, and insects. This review is focused on the role of plant RIPs in defense against bacteria, fungi, viruses, and insect attacks. The role of plant RIPs in defense against pathogens and insects is being comprehended currently. Future study utilizing transgenic technology approaches to study the mechanisms of RIPs will undoubtedly generate a better comprehending of the role of plant RIPs in defense against pathogens and insects. Discovering additional crosstalk mechanisms between RIPs and phytohormones or reactive oxygen species (ROS against pathogen and insect infections will be a significant subject in the field of biotic stress study. These studies are helpful in revealing significance of genetic control that can

  12. Insect Pests Occurring on Dacryodes edulis (Burseraceae) in Rural Areas in Gabon.

    Science.gov (United States)

    Poligui, R N; Mouaragadja, I; Vandereycken, A; Haubruge, E; Francis, F

    2014-08-01

    The inventory of pests occurring on Dacryodes edulis (Burseraceae) was carried out in rural areas in Gabon during 2009 and 2010. Yellow traps and visual observations were used to record weekly pests during the tree flowering stage, in five villages. Catches from yellow traps rose to 7,296 and 1,722 insect pests in 2009 and 2010, respectively, whereas records from visual observations corresponded to 1,812 and 171 insect pests in 2009 and 2010, respectively. During both years, abundance from traps and visual monitoring was significantly different between sampling sites (p pests' diversity between sampling sites was not significant (p > 0.05) according to traps, but significant (p ≤ 0.04) according to visual observations in 2010. Mecocorynus loripes Chevrolat (Coleoptera: Cucurlionidae) attacked the stem of D. edulis, while Oligotrophus sp. (Diptera: Cecidomyiidae), Pseudophacopteron serrifer Malenovsky and Burckhardt (Hemiptera: Phacopteronidae), and Selenothrips rubrocinctus Giard (Thysanopera: Thripidae) attacked leaves. Pseudonoorda edulis Maes and Poligui (Lepidoptera: Crambidae) and Lobesia aeolopa Meyrick (Lepidoptera: Tortricidae) infested fruits and inflorescences, respectively. These insects are specifically linked to plant patterns, and their identification provided the first basic information for developing suitable strategies to control pests of D. edulis in Gabon, as well as in neighboring central African countries.

  13. Integrated management of cowpea insect pests using elite cultivars ...

    African Journals Online (AJOL)

    Cowpea planted in June flowered and podded between early to mid-August when post-flowering pests (M. vitrata, M. sjostedti and Clarigralla tomentosicollis) densities were relatively low and produced significantly higher grain yields without insecticide protection compared to other planting dates. The flowering and pod ...

  14. Climate Change and Insect Pests: Resistance Is Not Futile?

    Science.gov (United States)

    Johnson, Scott N; Züst, Tobias

    2018-05-01

    Chemical signals produced by plants when attacked by herbivores play a crucial role in efficient plant defence. A recent study suggests that herbivore-specific R-gene resistance may be enhanced by elevated atmospheric CO 2 concentrations. Understanding how climate change affects plant resistance to herbivorous pests could be essential for future food security. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Pest control and resistance management through release of insects carrying a male-selecting transgene.

    Science.gov (United States)

    Harvey-Samuel, Tim; Morrison, Neil I; Walker, Adam S; Marubbi, Thea; Yao, Ju; Collins, Hilda L; Gorman, Kevin; Davies, T G Emyr; Alphey, Nina; Warner, Simon; Shelton, Anthony M; Alphey, Luke

    2015-07-16

    Development and evaluation of new insect pest management tools is critical for overcoming over-reliance upon, and growing resistance to, synthetic, biological and plant-expressed insecticides. For transgenic crops expressing insecticidal proteins from the bacterium Bacillus thuringiensis ('Bt crops') emergence of resistance is slowed by maintaining a proportion of the crop as non-Bt varieties, which produce pest insects unselected for resistance. While this strategy has been largely successful, multiple cases of Bt resistance have now been reported. One new approach to pest management is the use of genetically engineered insects to suppress populations of their own species. Models suggest that released insects carrying male-selecting (MS) transgenes would be effective agents of direct, species-specific pest management by preventing survival of female progeny, and simultaneously provide an alternative insecticide resistance management strategy by introgression of susceptibility alleles into target populations. We developed a MS strain of the diamondback moth, Plutella xylostella, a serious global pest of crucifers. MS-strain larvae are reared as normal with dietary tetracycline, but, when reared without tetracycline or on host plants, only males will survive to adulthood. We used this strain in glasshouse-cages to study the effect of MS male P. xylostella releases on target pest population size and spread of Bt resistance in these populations. Introductions of MS-engineered P. xylostella males into wild-type populations led to rapid pest population decline, and then elimination. In separate experiments on broccoli plants, relatively low-level releases of MS males in combination with broccoli expressing Cry1Ac (Bt broccoli) suppressed population growth and delayed the spread of Bt resistance. Higher rates of MS male releases in the absence of Bt broccoli were also able to suppress P. xylostella populations, whereas either low-level MS male releases or Bt broccoli

  16. The basic principles of the application of sterile insect technique for area-wide insect pest control

    International Nuclear Information System (INIS)

    Singgih Sutrisno

    2006-01-01

    Sterile Insect Technique (SIT) is a new insect pest control technique, potential, and compatible to other techniques. This technique includes irradiation of insect colony in the laboratory using gamma, n, or x-rays and then release them in the field periodically to obtain the increase of sterility probability level from the first generation to the dependence as the result the decrease of the fertility level in the field. The effect the release of sterile insects ( 9:1 ratio to the male indigenous and reproductive potential every single female of each generation reproduce 5 females ) to the insect reduction population model is conceptually discussed. From one million of the female parental decrease to be 26, 316; 1,907; 10; and 0 insects at the first, second, third, and the forth progeny respectively. Then if sterile insect technique integrated with chemical technique (insecticide) 90% kill, it will be much more effective compared to the application sterile insect technique only. From the number of one million population of insects will decrease to be 2,632; 189; and 0 insects at the first, second, and the third progeny respectively. In the Lepidoptera insects was found a phenomenon of inherited sterility. According to Knipling (1970) the inherited sterility in the first offspring caused by chromosome translocation in the gamete . In the individual of heterozygote will be die and in the homozygotes is still alive. Interspecific hybrid sterility first time was found by Laster (1972) from a cross between males Heliothis virescens (F) and females Heliothis subflexa Guenee. Male moths of the first offspring from the cross between H. virescens and H. subflexa is sterile and the females still remain fertile. If the female moths of the first offspring back crossed with male H. virescens the phenomenon of sterility always found will same situation as mention earlier the male offspring is sterile and the females is fertile ( the male F2 will be sterile and the females will

  17. Effect of irradiation and insect pest control on rots and sensory ...

    African Journals Online (AJOL)

    The coffee bean weevil, Araecerus fasciculatus Degeer (Coleoptera: Curculionidae) is associated with rots in stored yam tubers. The current study was designed to assess the effect of irradiation and other insect pest control strategies on rots and sensory quality of stored yams. 450 tubers each of two varieties of white yam ...

  18. Population dynamics of stored maize insect pests in warehouses in two districts of Ghana

    Science.gov (United States)

    Understanding what insect species are present and their temporal and spatial patterns of distribution is important for developing a successful integrated pest management strategy for food storage in warehouses. Maize in many countries in Africa is stored in bags in warehouses, but little monitoring ...

  19. The insect pest complex and related problems of lowland rice cultivation in South Sulawesi, Indonesia

    NARCIS (Netherlands)

    Halteren, van P.

    1979-01-01

    CHAPTER 1.

    The Department of Entomology of the Research Institute for Agriculture at Maros is concerned with insect pests of food crops, and serves the needs of farmers, most of them living near subsistance level, and of extension workers.

    South Sulawesi, formerly known as South

  20. Nonmarket economic values of forest insect pests: An updated literature review

    Science.gov (United States)

    Randall S. Rosenberger; Lauren A. Bell; Patricia A. Champ; Eric. L. Smith

    2012-01-01

    This report updates the literature review and synthesis of economic valuation studies on the impacts of forest insect pests by Rosenberger and Smith (1997). A conceptual framework is presented to establish context for the studies. This report also discusses the concept of ecosystem services; identifies key elements of each study; examines areas of future research; and...

  1. Recent advances in fumigation for control of insect pests in dried fruits and nuts

    Science.gov (United States)

    United States agricultural industries are facing, with increasing frequency, environmental and pest-related food safety requirements that are fundamentally difficult to balance. Failure to properly disinfest commodities in trade and marketing channels can result in insect- and microbial-derived dam...

  2. Insect and Pest Control Section newsletter and information circular on radiation techniques and their application to insect pests. No. 39

    International Nuclear Information System (INIS)

    1987-07-01

    The Information Circular presents preliminary reports of research and development activities in the application of nuclear energy for entomological problems and related aspects. Radiation sterilization and isotope-aided studies are stressed, however, articles relating to practical pest control or eradication are also within the scope of the Information Circular

  3. Strategic options in using sterile insects for area-wide integrated pest management

    International Nuclear Information System (INIS)

    Hendrichs, J.; Vreysen, M.J.B.; Enkerlin, W.R.; Cayol, J.P.

    2005-01-01

    The four strategic options, 'suppression', 'eradication', 'containment' and 'prevention', in which the sterile insect technique (SIT) can be deployed as part of area-wide integrated pest management (AW-IPM) interventions, are defined and described in relation to the contexts in which they are applied against exotic or naturally occurring major insect pests. Advantages and disadvantages of these strategic options are analysed, and examples of successful programmes provided. Considerations of pest status, biology and distribution affecting decision-making in relation to strategy selection are reviewed and discussed in terms of feasibility assessment, and programme planning and implementation. Unrealistic expectations are often associated with applying the SIT, resulting in high political costs to change a strategy during implementation. The choice of strategy needs to be assessed carefully, and considerable baseline data obtained to prepare for the selected strategy, before embarking on an AW-IPM programme with an SIT component. (author)

  4. Main predators of insect pests: screening and evaluation through comprehensive indices.

    Science.gov (United States)

    Yang, Tingbang; Liu, Jie; Yuan, Longyu; Zhang, Yang; Peng, Yu; Li, Daiqin; Chen, Jian

    2017-11-01

    Predatory natural enemies play key functional roles in integrated pest management. However, the screening and evaluation of the main predators of insect pests has seldom been reported in the field. Here, we employed comprehensive indices for evaluating the predation of a common pest (Ectropis obliqua) by nine common spider species in Chinese tea plantations. We established the relative dominance of the spider species and their phenological overlap with the pest species, and analyzed DNA from the nine spider species using targeted real-time quantitative polymerase chain reaction to identify the residual DNA of E. obliqua. The predation rates and predation numbers per predator were estimated by the positive rates of target fragments and the residual minimum number of E. obliqua in predators' guts, respectively. The results showed that only four spider species preyed on E. obliqua, and the order of potential of the spiders to control E. obliqua from greatest to smallest was Neoscona mellotteei, Xysticus ephippiatus, Evarcha albaria and Coleosoma octomaculatum by the Z-score method. The orb-weaving spider N. mellotteei has the maximum potential as a biological control agent of E. obliqua in an integrated pest management strategy. An approach of screening and evaluating main predators of insect pests through comprehensive indices was preliminarily established. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. The Integrated Management Of An Emerging Insect Pest Of Cashew ...

    African Journals Online (AJOL)

    Sudden death of mature cashew trees at the Cocoa Research Institute of Nigeria (CRIN), Ibadan, southwestern Nigeria, a tropical humid ecology, necessitated an urgent study to unravel the cause and evolve an integrated management strategy for the control of the problem. Morphometric examination of the adult insect ...

  6. A compendium of insect pests and natural enemies associated with ...

    African Journals Online (AJOL)

    Field studies were carried out in 1992 and 1993 late cropping seasons to identify the species of insects and their effect on soyabeans in Calabar, a humid tropical environment. Two treatments were used, (that is sprayed and un- sprayed). Nuvacron (Monocrotophos), a systemic insecticide was applied at the rate of 400g ...

  7. Sunflower disease and insect pests in Pakistan: A review | Mukhtar ...

    African Journals Online (AJOL)

    Sun flower (Helianthus annuus L.) is one of the important oil seed crops and potentially fit in agricultural system and oil production sector of Pakistan. Various diseases, insects and nematodes attack damage the sunflower crop, results a wide range of loss in production and yield. Sunflower is susceptible to diseases of ...

  8. Phytochemical feeding deterrents for stored product insect pests

    Czech Academy of Sciences Publication Activity Database

    Nawrot, J.; Harmatha, Juraj

    2012-01-01

    Roč. 11, č. 4 (2012), s. 543-566 ISSN 1568-7767 Institutional support: RVO:61388963 Keywords : insect feeding deterrence * antifeedant phytochemicals * isoprenoids * sesquiterpene lactones * polyphenols Subject RIV: CC - Organic Chemistry Impact factor: 4.147, year: 2012

  9. Insect pest situation and farmers' cultural practices in citrus orchards ...

    African Journals Online (AJOL)

    The major leaf feeders were the scale insects which infested a mean of 13 % of the trees, the leaf miners (8.7 %), aphids (10.6 %) and the swallowtail butterfly larvae (23.7 %). Termites damaged the exposed parts of roots and the woody structure of some citrus trees, and was suspected to have positively influenced the ...

  10. Resistance of rice to insect pests mediated by suppression of serotonin biosynthesis.

    Science.gov (United States)

    Lu, Hai-Ping; Luo, Ting; Fu, Hao-Wei; Wang, Long; Tan, Yuan-Yuan; Huang, Jian-Zhong; Wang, Qing; Ye, Gong-Yin; Gatehouse, Angharad M R; Lou, Yong-Gen; Shu, Qing-Yao

    2018-05-07

    Rice is one of the world's most important foods, but its production suffers from insect pests, causing losses of billions of dollars, and extensive use of environmentally damaging pesticides for their control 1,2 . However, the molecular mechanisms of insect resistance remain elusive. Although a few resistance genes for planthopper have been cloned, no rice germplasm is resistant to stem borers. Here, we report that biosynthesis of serotonin, a neurotransmitter in mammals 3 , is induced by insect infestation in rice, and its suppression confers resistance to planthoppers and stem borers, the two most destructive pests of rice 2 . Serotonin and salicylic acid derive from chorismate 4 . In rice, the cytochrome P450 gene CYP71A1 encodes tryptamine 5-hydroxylase, which catalyses conversion of tryptamine to serotonin 5 . In susceptible wild-type rice, planthopper feeding induces biosynthesis of serotonin and salicylic acid, whereas in mutants with an inactivated CYP71A1 gene, no serotonin is produced, salicylic acid levels are higher and plants are more insect resistant. The addition of serotonin to the resistant rice mutant and other brown planthopper-resistant genotypes results in a loss of insect resistance. Similarly, serotonin supplementation in artificial diet enhances the performance of both insects. These insights demonstrate that regulation of serotonin biosynthesis plays an important role in defence, and may prove valuable for breeding insect-resistant cultivars of rice and other cereal crops.

  11. Optical characterization of agricultural pest insects: a methodological study in the spectral and time domains

    Science.gov (United States)

    Li, Y. Y.; Zhang, H.; Duan, Z.; Lian, M.; Zhao, G. Y.; Sun, X. H.; Hu, J. D.; Gao, L. N.; Feng, H. Q.; Svanberg, S.

    2016-08-01

    Identification of agricultural pest insects is an important aspect in insect research and agricultural monitoring. We have performed a methodological study of how spectroscopic techniques and wing-beat frequency analysis might provide relevant information. An optical system based on the combination of close-range remote sensing and reflectance spectroscopy was developed to study the optical characteristics of different flying insects, collected in Southern China. The results demonstrate that the combination of wing-beat frequency assessment and reflectance spectral analysis has the potential to successfully differentiate between insect species. Further, studies of spectroscopic characteristics of fixed specimen of insects, also from Central China, showed the possibility of refined agricultural pest identification. Here, in addition to reflectance recordings also laser-induced fluorescence spectra were investigated for all the species of insects under study and found to provide complementary information to optically distinguish insects. In order to prove the practicality of the techniques explored, clearly fieldwork aiming at elucidating the variability of parameters, even within species, must be performed.

  12. The insect ecdysone receptor is a good potential target for RNAi-based pest control.

    Science.gov (United States)

    Yu, Rong; Xu, Xinping; Liang, Yongkang; Tian, Honggang; Pan, Zhanqing; Jin, Shouheng; Wang, Na; Zhang, Wenqing

    2014-01-01

    RNA interference (RNAi) has great potential for use in insect pest control. However, some significant challenges must be overcome before RNAi-based pest control can become a reality. One challenge is the proper selection of a good target gene for RNAi. Here, we report that the insect ecdysone receptor (EcR) is a good potential target for RNAi-based pest control in the brown planthopper Nilaparvata lugens, a serious insect pest of rice plants. We demonstrated that the use of a 360 bp fragment (NlEcR-c) that is common between NlEcR-A and NlEcR-B for feeding RNAi experiments significantly decreased the relative mRNA expression levels of NlEcR compared with those in the dsGFP control. Feeding RNAi also resulted in a significant reduction in the number of offspring per pair of N. lugens. Consequently, a transgenic rice line expressing NlEcR dsRNA was constructed by Agrobacterium- mediated transformation. The results of qRT-PCR showed that the total copy number of the target gene in all transgenic rice lines was 2. Northern blot analysis showed that the small RNA of the hairpin dsNlEcR-c was successfully expressed in the transgenic rice lines. After newly hatched nymphs of N. lugens fed on the transgenic rice lines, effective RNAi was observed. The NlEcR expression levels in all lines examined were decreased significantly compared with the control. In all lines, the survival rate of the nymphs was nearly 90%, and the average number of offspring per pair in the treated groups was significantly less than that observed in the control, with a decrease of 44.18-66.27%. These findings support an RNAi-based pest control strategy and are also important for the management of rice insect pests.

  13. Entomopathogenic Fungi Associated with Exotic Invasive Insect Pests in Northeastern Forests of the USA

    Science.gov (United States)

    Gouli, Vladimir; Gouli, Svetlana; Marcelino, José A. P.; Skinner, Margaret; Parker, Bruce L.

    2013-01-01

    Mycopathogens of economically important exotic invasive insects in forests of northeastern USA have been the subject of research at the Entomology Research Laboratory, University of Vermont, for the last 20 years. Elongate hemlock scale, European fruit lecanium, hemlock woolly adelgid and pear thrips were analyzed for the presence of mycopathogens, in order to consider the potential for managing these pests with biological control. Fungal cultures isolated from insects with signs of fungal infection were identified based on morphological characters and DNA profiling. Mycopathogens recovered from infected insects were subdivided into three groups, i.e., specialized entomopathogenic; facultative entomopathogens; ubiquitous opportunistic contaminants. Epizootics were caused by fungi in the specialized group with the exception of M. microspora, P. marquandii and I. farinosa. Inoculation of insects in laboratory and field conditions with B. bassiana, L. muscarium and Myriangium sp. caused insect mortality of 45 to 95%. Although pest populations in the field seemed severely compromised after treatment, the remnant populations re-established themselves after the winter. Although capable of inducing high mortality, a single localized aerial application of a soil-dwelling fungus does not maintain long-time suppression of pests. However, it can halt their range expansion and maintain populations below the economic threshold level without the use of expensive insecticides which have a negative impact on the environment. PMID:26462527

  14. FAO/IAEA international conference on area-wide control of insect pests integrating the sterile insect and related nuclear and other techniques. Programme book of abstracts

    International Nuclear Information System (INIS)

    1998-06-01

    The organization of this International Conference on the Areawide Approach to the Control of Insect Pests is appropriate and timely. There is increasing interest in the holistic approach to dealing with major insect pest problems. This interest has been prompted by the steady progress scientists have made in the development of the sterile insect technique for eliminating the screwworm from North America, the melon fly from Okinawa, the elimination and containment of the medfly in various countries and the progress that scientists have made in eradicating tsetse fly populations from isolated areas. Increased interest has also been shown by agriculturalists because of the realization that the farm-to-farm reactive method of insect control is only a temporary solution to problems and that pests continue to be about as numerous as ever from year-to-year. In the meantime, there is increasing public concern over the environmental hazards created by the use of broad-spectrum insecticides to deal with insect pest problems. The sterile insect technique provides a feasible way to manage total insect pest populations. However, other techniques and strategies appropriately integrated into management programs can increase the effectiveness and efficiency of area-wide management programs. These include the augmentation of massproduced biological organisms and the use of semiochemicals such as the insect sex pheromones. This conference will give pest management scientists from many countries the opportunity to exchange information on the area-wide approach to insect pest management - an approach that if fully developed can be highly effective, low in cost and at the same time make a major contribution to alleviating the environmental concerns associated with primary reliance on broad-spectrum insecticides for controlling insect pests. This document contains 200 abstracts of papers presented at the conference

  15. Transcriptome analysis in cotton boll weevil (Anthonomus grandis and RNA interference in insect pests.

    Directory of Open Access Journals (Sweden)

    Alexandre Augusto Pereira Firmino

    Full Text Available Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families' data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects.

  16. Transcriptome analysis in cotton boll weevil (Anthonomus grandis) and RNA interference in insect pests.

    Science.gov (United States)

    Firmino, Alexandre Augusto Pereira; Fonseca, Fernando Campos de Assis; de Macedo, Leonardo Lima Pepino; Coelho, Roberta Ramos; Antonino de Souza, José Dijair; Togawa, Roberto Coiti; Silva-Junior, Orzenil Bonfim; Pappas, Georgios Joannis; da Silva, Maria Cristina Mattar; Engler, Gilbert; Grossi-de-Sa, Maria Fatima

    2013-01-01

    Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi) as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families' data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects.

  17. Future pest status of an insect pest in museums, Attagenus smirnovi

    DEFF Research Database (Denmark)

    Hansen, Lise Stengård; Åkerlund, Monika; Grøntoft, Terje

    2012-01-01

    in Europe show that it is widespread and common, also in regions with a climate that does not support its survival out of doors. Thus, dispersal of this pest probably only rarely occurs by flight, but usually with human activity. Due to the widespread distribution of A. smirnovi, it is likely that damages...

  18. Area-wide integrated pest management and the sterile insect technique

    International Nuclear Information System (INIS)

    Klassen, W.

    2005-01-01

    Area-wide integrated pest management (AW-IPM) focuses on the preventive management of pest populations throughout the ecosystem. It seeks to treat all habitats of the pest population so that none produces migrants to re-establish significant infestations in areas of concern. In contrast, the conventional strategy focuses narrowly on defending the valued entity (crop, livestock, people, buildings, etc.) from direct attack by pests. AW-IPM requires multiyear planning, and an organization dedicated exclusively to its implementation, whereas conventional pest management involves minimal forward planning, tends to be reactive, and is implemented independently by individual producers, businesses, or households. AW-IPM tends to utilize advanced technologies, whereas the conventional strategy tends to rely on traditional tactics and tools. The sterile insect technique (SIT) is a species-specific form of birth control imposed on the pest population. It is a powerful tool for 'mopping up' sparse pest populations, and is most efficient when applied as a tactic in a system deployed on an area-wide basis. On environmental, economic and biological grounds, the case for the SIT is compelling. (author)

  19. Intercropping for Management of Insect Pests of Castor, Ricinus communis, in the Semi—Arid Tropics of India

    Science.gov (United States)

    Srinivasa Rao, M.; Venkateswarlu, B.

    2012-01-01

    Intercropping is one of the important cultural practices in pest management and is based on the principle of reducing insect pests by increasing the diversity of an ecosystem. On—farm experiments were conducted in villages of semi—arid tropical (SAT) India to identify the appropriate combination of castor (Ricinus communis L.) (Malpighiales: Euphorbiaceae) and intercropping in relation to pest incidence. The diversity created by introducing cluster bean, cowpea, black gram, or groundnut as intercrops in castor (1:2 ratio proportions) resulted in reduction of incidence of insect pests, namely semilooper (Achaea janata L.), leaf hopper (Empoasca flavescens Fabricius), and shoot and capsule borer (Conogethes punctiferalis Guenee). A buildup of natural enemies (Microplitis, coccinellids, and spiders) of the major pests of castor was also observed in these intercropping systems and resulted in the reduction of insect pests. Further, these systems were more efficient agronomically and economically, and were thus more profitable than a castor monocrop. PMID:22934569

  20. Insecticidal, repellent, antimicrobial activity and phytotoxicity of essential oils: With special reference to limonene and its suitability for control of insect pests

    Directory of Open Access Journals (Sweden)

    M.A. IBRAHIM

    2008-12-01

    Full Text Available The interest in the use of monoterpenes for insect pest and pathogen control originates from the need for pesticide products with less negative environmental and health impacts than highly effective synthetic pesticides. The expanding literature on the possibility of the use of these monoterpenes is reviewed and focused on the effects of limonene on various bioorganisms. Limonene is used as insecticide to control ectoparasites of pet animals, but it has activity against many insects, mites, and microorganisms. Possible attractive effects of limonene to natural enemies of pests may offer novel applications to use natural compounds for manipulation of beneficial animals in organic agriculture. However, in few cases limonene-treated plants have become attractive to plant damaging insects and phytotoxic effects on cultivated plants have been observed. As a plant-based natural product limonene and other monoterpenes might have use in pest and weed control in organic agriculture after phytotoxicity on crop plants and, effects on non-target soil animals and natural enemies of pest have been investigated

  1. Recombinant entomopathogenic agents: a review of biotechnological approaches to pest insect control.

    Science.gov (United States)

    Karabörklü, Salih; Azizoglu, Ugur; Azizoglu, Zehra Busra

    2017-12-18

    Although the use of chemical pesticides has decreased in recent years, it is still a common method of pest control. However, chemical use leads to challenging problems. The harm caused by these chemicals and the length of time that they will remain in the environment is of great concern to the future and safety of humans. Therefore, developing new pest control agents that are safer and environmentally compatible, as well as assuring their widespread use is important. Entomopathogenic agents are microorganisms that play an important role in the biological control of pest insects and are eco-friendly alternatives to chemical control. They consist of viruses (non-cellular organisms), bacteria (prokaryotic organisms), fungi and protists (eukaryotic organisms), and nematodes (multicellular organisms). Genetic modification (recombinant technology) provides potential new methods for developing entomopathogens to manage pests. In this review, we focus on the important roles of recombinant entomopathogens in terms of pest insect control, placing them into perspective with other views to discuss, examine and evaluate the use of entomopathogenic agents in biological control.

  2. The sterile insect technique in the integrated pest management of whitefly species in greenhouses

    International Nuclear Information System (INIS)

    Calvitti, M.; Remotti, P.C.; Cirio, U.

    2000-01-01

    Insect pests commonly known as whiteflies are Hemiptera belonging to the family of Aleyrodidae Trialeurodes vaporariorum Westwood (greenhouse whitefly) and the B-biotype of Bemisia tabaci Gennadius (=Bemisia argentifolii Bellows and Perring) are pests whose economic importance is constantly increasing within the European agriculture. The B-biotype of B. tabaci, in particular, has become more problematic by causing damage over a wide range, from the temperate climates of Californian squash fields to European greenhouses and field crops. In the absence of valid alternatives, many growers have resorted to intensive application of insecticides to control these pests, creating a severe environmental and health hazard. Several new environmentally safe technologies are currently available and have opened up new opportunities in the integrated pest management (IPM) of whiteflies under greenhouse conditions. In particular, biological or biologically-based control means, including a number of fungi, insects, and compounds have been recently developed. However, the limitation of whitefly population outbreaks in greenhouses is a problem that needs to be solved. The idea to extend the use of sterile insect technique (SIT) to a confined environment against whitefly species is novel, and especially when we consider that the target species undergo arrhenotoky (unfertilised females generate only male progenies). The possibility to join this approach to the Integrated Pest Management (IPM) of the whitefly species in the greenhouse may open new perspectives in the safe application of nuclear technology for pest control. The present work reviews recent advances in research and practice related to the development of SIT for the control of whiteflies in greenhouses. Explanations on whitefly radiation biology, with data on Bemisia spp. radio-sterilisation, methods for whitefly mass rearing and collection, and the definition of a complete SIT procedure tested against the greenhouse

  3. Cycad Aulacaspis Scale, a Newly Introduced Insect Pest in Indonesia

    Directory of Open Access Journals (Sweden)

    RANGASWAMY MUNIAPPAN

    2012-09-01

    Full Text Available Cycad aulacaspis scale (Aulacaspis yasumatsui Takagi (Hemiptera: Diaspididae is native to Thailand and Vietnam. Since the early 1990s it has been spreading around the world due to the trade in cycad plants for ornamental use. Infestation by this scale can kill cycads in only a few months. Its accidental introduction to Florida endangered the ornamental cycad-growing industry; and in Guam and Taiwan, endemic cycads (Cycas micronesica and C. taitungensis, respectively are currently threatened with extinction by cycad aulacaspis scale. In November 2011, an introduced scale was discovered damaging cycads in the Bogor Botanic Garden. Samples from Bogor were taken for identification of the scale, and the material was kept for some time to rear out any insect parasitoids that were present. Both the scale insects and parasitoids were prepared on microscope slides and studied microscopically for authoritative identification. The scale was confirmed as A. yasumatsui. The parasitoid Arrhenophagus chionaspidis Aurivillius (Hymenoptera: Encyrtidae and the hyperparasitoid Signiphora bifasciata Ashmead (Hymenoptera: Signiphoridae were identified from the samples. Unless immediate remedial measures are taken, several endemic species of cycad in Indonesia may be endangered by infestation by cycad aulacaspis scale.

  4. The Optimum Condition For Determination Of Radioactivity Of Pest Insects Labelled with P-32 By Using Liquid scintillation Counter

    International Nuclear Information System (INIS)

    Yarianto, S.; Susilo, Budi; Sutrisno, Singgih

    2002-01-01

    Tracer technique is needed in the control programe of pest insects especially for determining of its direction and dispersal. Radioisotopes of P-32 is frecuently used for labeling of pest insects. Liquid Scintillation Counter can be used effectively for measuring radioactivity of pest insects labelled by P-32. Optilnization of liquid compositions that consist of solvents. primary scintillation PPO and secondary scintillation POPOP were determined by examination of their compositions. Based on the research result obtained, composition of scintillator which had the highest efficiency. consists of P-Xylene solvent. primary scintillation PPO (5 g/l ) and secondary scintillation POPOP (0.5 g/l)

  5. Probability to produce animal vaccines in insect baculovirus ...

    African Journals Online (AJOL)

    The insect baculovirus expression system is a valuable tool for the production of vaccine. Many subunit vaccines have been expressed in this system. The first vaccine produced in insect cells for animal use is now in the market. In this study, we reviewed recent progress of animal's vaccine production for different expression ...

  6. Insect and Pest Control Newsletter, No. 77, July 2011

    International Nuclear Information System (INIS)

    2011-07-01

    As reported in some previous newsletters, both FAO and IAEA have been undergoing considerable transformation as a result of a major on-going reform process of FAO that started in 2009 and which is scheduled to be fully implemented by 2013. In addition, the IAEA has seen a complete change of senior management and in January 2011 Mr Daud Mohamad was appointed Deputy Director General Nuclear Sciences and Applications and Head of the Department which includes the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. The IAEA has been implementing AIPS, a new IAEA wide Information System for Programme Support, representing a drastic transformation of processes. Until recently there were over 60 different and independent internal information systems and AIPS is replacing most of them with one Oracle product. AIPS also entails the adoption of IPSAS, the International Public Sector Accounting Standards, which is used in a majority of international organizations, involving independentlymaintained standards for financial reporting, considered best practice for organizations like ours. AIPS is being introduced in stages or 'plateaus'. The first plateau is devoted to Finance, Procurement, Transportation and the operational parts of Programme and Project Management. This went live in January 2011, in tandem with our adoption of IPSAS. Plateau 2 is scheduled for 2012. In terms of new publications, a special issue of Genetica on 'Molecular Technologies to Improve the Effectiveness of the Sterile Insect Technique' was recently published. A second publication, 'Rearing Codling Moth for the Sterile Insect Technique' is a text book that was published under the FAO Plant Production and Protection Paper series.

  7. Insect and Pest Control Newsletter, No. 77, July 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-15

    As reported in some previous newsletters, both FAO and IAEA have been undergoing considerable transformation as a result of a major on-going reform process of FAO that started in 2009 and which is scheduled to be fully implemented by 2013. In addition, the IAEA has seen a complete change of senior management and in January 2011 Mr Daud Mohamad was appointed Deputy Director General Nuclear Sciences and Applications and Head of the Department which includes the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. The IAEA has been implementing AIPS, a new IAEA wide Information System for Programme Support, representing a drastic transformation of processes. Until recently there were over 60 different and independent internal information systems and AIPS is replacing most of them with one Oracle product. AIPS also entails the adoption of IPSAS, the International Public Sector Accounting Standards, which is used in a majority of international organizations, involving independentlymaintained standards for financial reporting, considered best practice for organizations like ours. AIPS is being introduced in stages or 'plateaus'. The first plateau is devoted to Finance, Procurement, Transportation and the operational parts of Programme and Project Management. This went live in January 2011, in tandem with our adoption of IPSAS. Plateau 2 is scheduled for 2012. In terms of new publications, a special issue of Genetica on 'Molecular Technologies to Improve the Effectiveness of the Sterile Insect Technique' was recently published. A second publication, 'Rearing Codling Moth for the Sterile Insect Technique' is a text book that was published under the FAO Plant Production and Protection Paper series.

  8. Insect pests associated with cowpea – sorghum intercropping system by considering the phenological stages

    Directory of Open Access Journals (Sweden)

    Diana González Aguiar

    2016-10-01

    Full Text Available The research aims to determine the main insect pest populations and their behavior in the combination cowpea - sorghum. This work took into account the phenology of each crop. The study was conducted on a Cambisol soil from the Basic Unit of Cooperative Production “Día y Noche”, which belongs to the Basic Unit of Cooperative Production “28 de Octubre”, Santa Clara municipality, Villa Clara province, Cuba. The experimental design was a random blocks included four treatments and four repetitions. The first arrangement consisted of two rows of cowpea for each row of sorghum; the second one included three rows of cowpea and one row of sorghum. The other treatments were the monocultures of cowpea and sorghum. The methodology included visual observations of plants with a weekly frequency until crop harvest to detect the presence of the insects. Also, the phenology of each crop was considered. The phytophagous insects quantified in the cowpea crop belong to the families Chrysomelidae, Pyralidae, Cicadellidae, while in the sorghum crop, these insects belong to the families Noctuidae and Aphididae. Finally, the results showed the positive effects of both spatial arrangements with a smaller incidence of insect pest populations.

  9. Analysis of virus susceptibility in the invasive insect pest Drosophila suzukii.

    Science.gov (United States)

    Lee, Kwang-Zin; Vilcinskas, Andreas

    2017-09-01

    The invasive insect pest Drosophila suzukii infests ripening fruits and causes massive agricultural damage in North America and Europe (Cini et al., 2012). Environmentally sustainable strategies are urgently needed to control the spread of this species, and entomopathogenic viruses offer one potential solution for global crop protection. Here we report the status of intrinsic and extrinsic factors that influence the susceptibility of D. suzukii to three model insect viruses: Drosophila C virus, Cricket paralysis virus and Flock house virus. Our work provides the basis for further studies using D. suzukii as a host system to develop viruses as biological control agents. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The Current Status of Baculovirus and Their Implication for Insect Pest Control

    Directory of Open Access Journals (Sweden)

    Arman Wijonarko

    2001-07-01

    Full Text Available Baculovirus have been promoted as the promising bioinsecticides for their pest control potential for more than half a century. But only a few have been successful as biological control agent, and almost none has been proven as commercial success, or widely used for large-scale insect pest control. The bioinsecticides currently represent only a small fraction of the world pesticide market. The successful of the Bt crop marked a special achievement in the bioinsecticide market growth. How about the baculoviruses? The main hurdle for baculovirus to be developed as bioinsecticide is its poor performance compare to synthetic chemical ones, include the speed of kill, and host range. It is important to understand the nature of baculovirus, and explore the possibilities to develop new way in applying the baculovirus as bioinsecticides. Key words: current status, baculovirus, insect control

  11. Integrating Soil Silicon Amendment into Management Programs for Insect Pests of Drill-Seeded Rice.

    Science.gov (United States)

    Villegas, James M; Way, Michael O; Pearson, Rebecca A; Stout, Michael J

    2017-08-13

    Silicon soil amendment has been shown to enhance plant defenses against insect pests. Rice is a silicon-accumulating graminaceous plant. In the southern United States, the rice water weevil and stem borers are important pests of rice. Current management tactics for these pests rely heavily on the use of insecticides. This study evaluated the effects of silicon amendment when combined with current management tactics for these rice insect pests in the field. Field experiments were conducted from 2013 to 2015. Rice was drill-planted in plots subjected to factorial combinations of variety (conventional and hybrid), chlorantraniliprole seed treatment (treated and untreated), and silicon amendment (treated and untreated). Silicon amendment reduced densities of weevil larvae on a single sampling date in 2014, but did not affect densities of whiteheads caused by stem borers. In contrast, insecticidal seed treatment strongly reduced densities of both weevil larvae and whiteheads. Higher densities of weevil larvae were also observed in the hybrid variety in 2014, while higher incidences of whiteheads were observed in the conventional variety in 2014 and 2015. Silicon amendment improved rice yields, as did chlorantraniliprole seed treatment and use of the hybrid variety.

  12. Use of radiation disinfestation in the control of rice insect pests during storage

    International Nuclear Information System (INIS)

    El-Kady, E.A.

    1981-01-01

    Rice weevil (Sitophilus oryzae), red flour beetle (Tribolium castaeneum), saw-toothed grain beetle (Oryzaephilus surinamensis), and flour moth (Ephestia kuehniella) are commonly found in Egyptian stored rice. The aim of this project is to carry out a study of a pilot-scale radiation disinfestation of these rice insect pests in an amount large enough to extrapolate data for later commercial practice. Fumigation treatments with phostoxin, methyl bromide and a combination treatment (methyl bromide + 7.5 krad) were also performed as a comparison to reveal the most effective way to control these rice pests. The most effective of all treatments tested was the 50-krad treatment. Complete sterility for the adults of these pests was obtained after treating rice directly, while complete mortality was reached within 30-60 days. Regarding fumigation treatments - phostoxin, methylbromide and combined treatment (methylbromide + 7.5 krad), the living stages of the four insect pests in rice varied during the storage period. However, the combination treatment gave the best results. Adults of the three Coleopteran species appeared in rice after four months because the 7.5-krad dose was not enough to kill the eggs which might have been laid by young females before being killed by fumigants. (author)

  13. FAO/IAEA international conference on area-wide control of insect pests: Integrating the sterile insect and related nuclear and other techniques. Book of extended synopses

    International Nuclear Information System (INIS)

    2005-01-01

    The successful implementation of area-wide pest control programmes integrating the use of sterile insects with other control technologies against a number of key veterinary, medical and plant insect pests, such as various fruit flies, moths, screwworms, and tsetse species, clearly demonstrates a peaceful application of nuclear technology. Over the last 40 years, FAO and IAEA have played, and they will continue to play, a critical role in supporting their Member States in the development and application of these environment-friendly pest control methods. The concept of area-wide integrated pest management, in which the total population of a pest in an area or region is targeted, is central to the effective application of the Sterile Insect Technique (SIT) and is increasingly being considered for related genetic, biological and other pest control technologies. Insect movement, occurring sometimes over long distances, is generally underestimated. As a consequence, most conventional pest control can be described as localized, un-coordinated action against segments of a pest population, resulting very often in an unsustainable spiral of insecticide application and eventual resistance. However, an area-wide integrated approach adopts a preventive rather than a reactive tactic, whereby all individuals of the pest population are targeted, requiring fewer inputs and resulting in more cost effective and sustainable control. In June 1998 FAO and IAEA sponsored the First International Conference on Area-Wide Control of Insect Pests Integrating the Sterile Insect and Related Nuclear and other Techniques in Penang, Malaysia with the participation of almost 300 participants from 63 Member States and 5 international organizations. This Conference greatly increased awareness concerning the area-wide approach for insect pest control programmes. Since then, many new technical innovations have been introduced and a better regulatory framework is being developed for integrating SIT

  14. FAO/IAEA international conference on area-wide control of insect pests: Integrating the sterile insect and related nuclear and other techniques. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The successful implementation of area-wide pest control programmes integrating the use of sterile insects with other control technologies against a number of key veterinary, medical and plant insect pests, such as various fruit flies, moths, screwworms, and tsetse species, clearly demonstrates a peaceful application of nuclear technology. Over the last 40 years, FAO and IAEA have played, and they will continue to play, a critical role in supporting their Member States in the development and application of these environment-friendly pest control methods. The concept of area-wide integrated pest management, in which the total population of a pest in an area or region is targeted, is central to the effective application of the Sterile Insect Technique (SIT) and is increasingly being considered for related genetic, biological and other pest control technologies. Insect movement, occurring sometimes over long distances, is generally underestimated. As a consequence, most conventional pest control can be described as localized, un-coordinated action against segments of a pest population, resulting very often in an unsustainable spiral of insecticide application and eventual resistance. However, an area-wide integrated approach adopts a preventive rather than a reactive tactic, whereby all individuals of the pest population are targeted, requiring fewer inputs and resulting in more cost effective and sustainable control. In June 1998 FAO and IAEA sponsored the First International Conference on Area-Wide Control of Insect Pests Integrating the Sterile Insect and Related Nuclear and other Techniques in Penang, Malaysia with the participation of almost 300 participants from 63 Member States and 5 international organizations. This Conference greatly increased awareness concerning the area-wide approach for insect pest control programmes. Since then, many new technical innovations have been introduced and a better regulatory framework is being developed for integrating SIT

  15. The sterile insect technique [videorecording]: An environment-friendly method of insect pest suppression and eradication

    International Nuclear Information System (INIS)

    2003-01-01

    Using graphic displays and clips of actual laboratory and field activities related to the sterile insect technique (SIT), the video covers various topics on the principles and applications of this technique

  16. Developing a neem-based pest management product: laboratory evaluations of neem extracts on insect pests resistance to synthetic pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Permana, A.D.; Rahadian, R.; Wibowo, S.A

    1998-12-16

    Laboratory studies has been conducted as a part of a project aimed at the development of a neem-based insecticide for pest management purposes. Permethrin, a pyrethroid insecticide, and neem (Azadirachta indica) products were tested against larvae of Diamondback Moth Plutella xylostella, and Helicoverpa armigera collected from several locations in West Java, Indonesia. The results of bioassay showed that the average LC{sub 50} values of permethrin for Plutella xylostella had been 60-100 fold higher as compared with the normal dosage recommended. Similarly, the LC{sub 50} values obtained for Helicoverpa armigera had been 46-73 fold as compared with the recommended dosage. These facts suggest that both insects have developed resistance to permethrin. The results of bioassay with neem-products tested against Plutella xylostella and Helicoverpa armigera larvae showed that statistically LC{sub 50} values of neem-products for each strain of either Plutella xylostella or Helicoverpa armigera were not significantly different one to another. We also found that neem-treated insects, even though they were not killed directly by the insecticide, were not able to molt to the next instar or pupae, so that very low percentage of adults emerged. The susceptibility of neem-products could not be easily determined by only measuring the LC{sub 50} values from the larval stage, but the disruption of the growth and development of the insect should be considered as well. Our findings suggest that neem-products could be used effectively to control insects which have developed resistance to conventional insecticide. (author)

  17. The effect of gamma irradiation on insect pest of rice in storage

    International Nuclear Information System (INIS)

    Rita Muhamad Awang; Noorma Osman.

    1987-01-01

    This study was conducted to determine the effect of gamma irradiation on insect pest of rice, stored for a period of 24 months, and packed in four different packaging materials. They were then exposed to gamma radiation using Gamma Cell 220, in a 60 Co source. Samples were randomly sampled at the initial storage period and there after at 3 months interval. At each sampling time the grain weight loss and insect count, both dead and alive, were determined. The increasing dosages of irradiation did not show any consistent effect on the insect population in all the four packaging materials which indicated that the rice was already infested even before it was irradiated. The range of percentage weight loss for all the dosages of irradiation in all of the four packaging materials is 0.99 to 2.02. (A.J.)

  18. Detection of irradiated insects - pest of stored products: locomotion activity of irradiated adult beetles

    International Nuclear Information System (INIS)

    Banasik, K.

    1994-01-01

    An indirect behavioural test (test of locomotion as a measure of vigor) to determine whether the insects have been subject to irradiation is proposed. The higher the dose applied, the lesser the locomotor activity of the treated beetles, pests of stored products. For radiation disinfestation, the doses ranging from 0.3 to 1.0 kGy are suggested. At these doses the walking speed of insects, i.e. ability to disperse, is greatly affected. The various species responded to gamma irradiation in a different way. At the first day after treatment all T. confusum Duv. beetles treated with 0.25 to 0.5 kGy doses showed the reduction of locomotor activity by more than 25%. The walking speed of the granary weevil Sitophilus granarius L. and the bean weevil Acanthoscelides obtectus Say, treated with low doses of gamma radiation, was not affected or it was even higher than the control. At the next day after treatment the walking speed of irradiated insects was negatively correlated with the dose applied. Using data on the percentage of the confused flour beetles that moved outside the 20 cm diam. circle during the first minute as well as during the next minutes, it was possible to discriminate the insects irradiated with high doses of gamma radiation from those treated with 0.25 and 0.5 kGy and untreated. The results obtained suggests that the locomotor test may be used as an identification method of irradiated insects, pests or stored products. The specific causes of decreased locomotor activity of irradiated insects and/or ability to disperse have not been yet established. However, muscles controlling locomotion (walking) seem to be damaged by radiation. (author)

  19. Insect pests management of bt cotton through the manipulation of different eco-friendly techniques

    International Nuclear Information System (INIS)

    Ahmad, N.; Khan, M.H.; Tofique, M.

    2011-01-01

    This study was designed to manage insect pests of Bt cotton through the manipulation of different eco-friendly techniques. A perusal of data, based on the overall performance of different treatments reflected that lowest population of jassids (0.29) was observed in bio-control treated Bt cotton followed by bio-control treated conventional cotton (0.41). Mean per leaf population of thrips was found lowest in insecticide treated Bt cotton (0.97) which was statically at par with bi-control treated conventional cotton (0.95), biocontrol treated Bt cotton (1.09) and colour traps treated Bt cotton (1.50). In case of white flies, bio-control treated Bt cotton and bio-control treated conventional cotton again proved effective in maintaining the population at lower levels per leaf (0.33 and 0.35 respectively). No bollworms infestation was recorded in transgenic cotton whereas higher attack of the same was observed in the untreated conventional cotton block. The best results were achieved with the application of bio-control agents in combination with Bt cotton resulting in least infestation by insect pests and maximum seed yield of 3657 kg/ha. The population of Chrysoperla carnea was significantly higher in Bt and conventional cotton treated with bio-control agents as compared to the other treatments. The parasitism percentage of Trichogramma chilonis was observed significantly higher in bio-control treated conventional cotton. The studies manifested that combination of bio-control technology with Bt cotton effectively preserves the local beneficial insect fauna indicating its potential to be used as integrated management system against different insect pests of cotton. (author)

  20. An economic comparison of biological and conventional control strategies for insect pests in cashew and mango plantations in Tanzania

    DEFF Research Database (Denmark)

    George, William Juma; Hella, Joseph; Esbjerg, Lars

    2013-01-01

    This study was undertaken to compare alternative methods of pest control for insect pests in order to determine which methods has the highest efficacy against insect pests and the least detrimental side effects, while maintaining production and profits. The analysis was based on the experimental......-test analyses show that weaver ant treatment is superior over conventional agricultural practices. The study concludes that weaver ant treatment was economically feasible and financially undertaking. Further field experimental trials will be repeated in the next two growing seasons to confirm results obtained...

  1. Insect Pests of Shade Trees and Shrubs: A Guide for Commercial Nurserymen and Arborists. Publication E-41.

    Science.gov (United States)

    Schuder, Donald L.

    This guide presents information on controlling insect pests of ornamental trees and shrubs. It is organized for easy reference by nurserymen, arborists, and others desirous of controlling insect damage. General information given includes notes on spraying and sprayers, insecticides, general purpose sprays, phytotoxicity, and health precautions.…

  2. Allergenicity and cross-reactivity of booklice (Liposcelis bostrichophila): a common household insect pest in Japan.

    Science.gov (United States)

    Fukutomi, Yuma; Kawakami, Yuji; Taniguchi, Masami; Saito, Akemi; Fukuda, Azumi; Yasueda, Hiroshi; Nakazawa, Takuya; Hasegawa, Maki; Nakamura, Hiroyuki; Akiyama, Kazuo

    2012-01-01

    Booklice (Liposcelis bostrichophila) are a common household insect pest distributed worldwide. Particularly in Japan, they infest 'tatami' mats and are the most frequently detected insect among all detectable insects, present at a frequency of about 90% in dust samples. Although it has been hypothesized that they are an important indoor allergen, studies on their allergenicity have been limited. To clarify the allergenicity of booklice and the cross-reactivity of this insect allergen with allergens of other insects, patients sensitized to booklice were identified from 185 Japanese adults with allergic asthma using skin tests and IgE-ELISA. IgE-inhibition analysis, immunoblotting and immunoblotting-inhibition analysis were performed using sera from these patients. Allergenic proteins contributing to specific sensitization to booklice were identified by two-dimensional electrophoresis and two-dimensional immunoblotting. The booklouse-specific IgE antibody was detected in sera from 41 patients (22% of studied patients). IgE inhibition analysis revealed that IgE reactivity to the booklouse allergen in the sera from one third of booklouse-sensitized patients was not inhibited by preincubation with extracts from any other environmental insects in this study. Immunoblotting identified a 26-kD protein from booklouse extract as the allergenic protein contributing to specific sensitization to booklice. The amino acid sequence of peptide fragments of this protein showed no homology to those of previously described allergenic proteins, indicating that this protein is a new allergen. Sensitization to booklice was relatively common and specific sensitization to this insect not related to insect panallergy was indicated in this population. Copyright © 2011 S. Karger AG, Basel.

  3. Identifying the impacts of climate change on key pests and diseases of plant and animal industries

    International Nuclear Information System (INIS)

    Luck, Jo; Aurambout, Jean-Philippe; Finlay, Kyla; Azuloas, Joe; Constable, Fiona; Rijswijk, Bonny Rowles-Van

    2007-01-01

    temperature data, coupled to plant physiology data and pest growth and population data for the Asian citrus psyllid (Diaphorina citri), vector of citrus greening disease, to determine the potential distribution and abundance of the insect in relation to climate change. This model will be built on to provide a more accurate prediction of the effects of climate change on plant and animal biosecurity and to develop contingency plans for government and industry to respond to and minimise the risks

  4. Soil application of neonicotinoid insecticides for control of insect pests in wine grape vineyards.

    Science.gov (United States)

    Van Timmeren, Steven; Wise, John C; Isaacs, Rufus

    2012-04-01

    Soil application of systemic neonicotinoid insecticides can provide opportunities for long-term control of insect pests in vineyards, with minimal risk of pesticide drift or worker exposure. This study compared the effectiveness of neonicotinoid insecticides applied via irrigation injection on key early-season and mid-season insect pests of vineyards in the eastern United States. On vines trained to grow on drip irrigation, early-season application of imidacloprid, clothianidin, thiamethoxam and dinotefuran provided high levels of control against the potato leafhopper, Empoasca fabae. Protection of vines against Japanese beetle, Popillia japonica, and grape berry moth, Paralobesia viteana, was also observed after mid-season applications. Efficacy was poor in commercial vineyards when treatments were applied to the soil before irrigation or rain, indicating that vines must be grown with an irrigation system for efficient uptake of the insecticide. In drip-irrigated vineyards, soil-applied neonicotinoids can be used to provide long residual control of either early-season or mid- to late-season foliage pests of vineyards. This approach can reduce the dependence on foliar-applied insecticides, with associated benefits for non-target exposure to workers and natural enemies. Copyright © 2012 Society of Chemical Industry.

  5. Role of plants and plant based products towards the control of insect pests and vectors: A novel review

    Directory of Open Access Journals (Sweden)

    Elumalai Kuppusamy

    2016-10-01

    Full Text Available Insect pests bear harmful effects causing great loss to the agricultural crops, stored agricultural products and vector mosquitoes can cause diseases to human. Plants possess an array of vast repository of phytochemicals and have been used to cure many diseases and to control the infestation of insect pests from time immemorial. Plants are easily biodegradable and ecologically safe for treating on the stored or on the field crops against pests to prevent from further damage or loss of stored products or preventing human from mosquito bites, thus preventing the spreading of dreadful diseases such as chikungunya and malaria. Hence, this review can give a clear insecticidal, pesticidal and mosquitocidal property of several plants against the insect pests and vectors.

  6. Strain improvement of fungal insecticides for controlling insect pests and vector-borne diseases.

    Science.gov (United States)

    Fang, Weiguo; Azimzadeh, Philippe; St Leger, Raymond J

    2012-06-01

    Insect pathogenic fungi play an important natural role in controlling insect pests. However, few have been successfully commercialized due to low virulence and sensitivity to abiotic stresses that produce inconsistent results in field applications. These limitations are inherent in most naturally occurring biological control agents but development of recombinant DNA techniques has made it possible to significantly improve the insecticidal efficacy of fungi and their tolerance to adverse conditions, including UV. These advances have been achieved by combining new knowledge derived from basic studies of the molecular biology of these pathogens, technical developments that enable very precise regulation of gene expression, and genes encoding insecticidal proteins from other organisms, particularly spiders and scorpions. Recent coverage of genomes is helping determine the identity, origin, and evolution of traits needed for diverse lifestyles and host switching. In future, such knowledge combined with the precision and malleability of molecular techniques will allow design of multiple pathogens with different strategies and host ranges to be used for different ecosystems, and that will avoid the possibility of the host developing resistance. With increasing public concern over the continued use of synthetic chemical insecticides, these new types of biological insecticides offer a range of environmental-friendly options for cost-effective control of insect pests. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Computational and biological characterization of fusion proteins of two insecticidal proteins for control of insect pests.

    Science.gov (United States)

    Javaid, Shaista; Naz, Sehrish; Amin, Imran; Jander, Georg; Ul-Haq, Zaheer; Mansoor, Shahid

    2018-03-19

    Sucking pests pose a serious agricultural challenge, as available transgenic technologies such as Bacillus thuringiensis crystal toxins (Bt) are not effective against them. One approach is to produce fusion protein toxins for the control of these pests. Two protein toxins, Hvt (ω-atracotoxin from Hadronyche versuta) and onion leaf lectin, were translationally fused to evaluate the negative effects of fusion proteins on Phenacoccus solenopsis (mealybug), a phloem-feeding insect pest. Hvt was cloned both N-terminally (HL) and then C-terminally (LH) in the fusion protein constructs, which were expressed transiently in Nicotiana tabacum using a Potato Virus X (PVX) vector. The HL fusion protein was found to be more effective against P. solenopsis, with an 83% mortality rate, as compared to the LH protein, which caused 65% mortality. Hvt and lectin alone caused 42% and 45%, respectively, under the same conditions. Computational studies of both fusion proteins showed that the HL protein is more stable than the LH protein. Together, these results demonstrate that translational fusion of two insecticidal proteins improved the insecticidal activity relative to each protein individually and could be expressed in transgenic plants for effective control of sucking pests.

  8. Make your trappings count: The mathematics of pest insect monitoring. Comment on “Multiscale approach to pest insect monitoring: Random walks, pattern formation, synchronization, and networks” by Petrovskii et al.

    Science.gov (United States)

    Blasius, Bernd

    2014-09-01

    Since the beginnings of agriculture the production of crops is characterized by an ongoing battle between farmers and pests [1]. Already during biblical times swarms of the desert locust, Schistocerca gregaria, were known as major pest that can devour a field of corn within an hour. Even today, harmful organisms have the potential to threaten food production worldwide. It is estimated that about 37% of all potential crops are destroyed by pests. Harmful insects alone destroy 13%, causing financial losses in the agricultural industry of millions of dollars each year [2-4]. These numbers emphasize the importance of pest insect monitoring as a crucial step of integrated pest management [1]. The main approach to gain information about infestation levels is based on trapping, which leads to the question of how to extrapolate the sparse population counts at singularly disposed traps to a spatial representation of the pest species distribution. In their review Petrovskii et al. provide a mathematical framework to tackle this problem [5]. Their analysis reveals that this seemingly inconspicuous problem gives rise to surprisingly deep mathematical challenges that touch several modern contemporary concepts of statistical physics and complex systems theory. The review does not aim for a collection of numerical recipes to support crop growers in the analysis of their trapping data. Instead the review identifies the relevant biological and physical processes that are involved in pest insect monitoring and it presents the mathematical techniques that are required to capture these processes.

  9. Gamma-radiation control of the Sitophilus-orizae insect pest in the wheat grain storage

    International Nuclear Information System (INIS)

    Ritacco, M.

    1988-01-01

    Insects produce very important grain lost in the cereal storage. This lost is highly variable according to the type of cereal and the stored time. The principal pest among coleopters is Sitophilus orizae which attacks wheat grains. Ionizing radiation allowed us to develope an alternative control method to the chemical insecticides which have serious disadvantages. Our results expressed as the DL 50 , showed a considerable reduction of adult life spanning from 250 Gy. Post-irradiation adquired sterility was observed in the stored grain due to the absence of descendents. (Autor) [es

  10. Ancient pests: the season of the Santorini Minoan volcanic eruption and a date from insect chitin

    Science.gov (United States)

    Panagiotakopulu, Eva; Higham, Thomas; Sarpaki, Anaya; Buckland, Paul; Doumas, Christos

    2013-07-01

    Attributing a season and a date to the volcanic eruption of Santorini in the Aegean has become possible by using preserved remains of the bean weevil, Bruchus rufipes, pests of pulses, from the storage jars of the West House, in the Bronze Age settlement at Akrotiri. We have applied an improved pre-treatment methodology for dating the charred insects, and this provides a date of 1744-1538 BC. This date is within the range of others obtained from pulses from the same context and confirms the utility of chitin as a dating material. Based on the nature of the insect material and the life cycle of the species involved, we argue for a summer eruption, which took place after harvest, shortly after this material was transported into the West House storeroom.

  11. Impacts of transgenic poplar-cotton agro-ecosystems upon target pests and non-target insects under field conditions.

    Science.gov (United States)

    Zhang, D J; Liu, J X; Lu, Z Y; Li, C L; Comada, E; Yang, M S

    2015-07-27

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of cotton fields in China. With increasing acres devoted to transgenic insect-resistant poplar and transgenic insect-resistant cotton, studies examining the effects of transgenic plants on target and non-target insects become increasingly important. We systematically surveyed populations of both target pests and non-target insects for 4 different combinations of poplar-cotton eco-systems over 3 years. Transgenic Bt cotton strongly resisted the target insects Fall webworm moth [Hyphantria cunea (Drury)], Sylepta derogata Fabrieius, and American bollworm (Heliothis armigera), but no clear impact on non-target insect cotton aphids (Aphis gossypii). Importantly, intercrops containing transgenic Pb29 poplar significantly increased the inhibitory effects of Bt cotton on Fall webworm moth in ecosystem IV. Highly resistant Pb29 poplar reduced populations of the target pests Grnsonoma minutara Hubner and non-target insect poplar leaf aphid (Chaitophorus po-pulialbae), while Fall webworm moth populations were unaffected. We determined the effects of Bt toxin from transgenic poplar and cotton on target and non-target pests in different ecosystems of cotton-poplar intercrops and identified the synergistic effects of such combinations toward both target and non-target insects.

  12. Self-control of insect pests: a nuclear application that is friendly to the environment in the field of combat and eradicate of agricultural pests

    International Nuclear Information System (INIS)

    Mansour, M.

    2014-01-01

    For decades, insect control methods depend primarily on insecticides, and the world consumption of insecticides is increasing by about 5% every year. Unfortunately, however, these chemicals pollute the environment, leave residues on agricultural products, and kill beneficial organisms leading to secondary pest problems and insecticide resistance. Ecological and environmental concerns have lead to new tactics in insect pest control. These tactics put more emphasis on cultural, physical and biological control methods including autocidal control where insects are used to destroy their own natural population. This article discusses the subject of autocidal control, its history, philosophy, basics, advantages, how to use it and where. It also gives an idea about its current use and future outlook. (author)

  13. Radioisotope labelling of several major insect pest. Dipping the pupae in /sup 32/P solution

    Energy Technology Data Exchange (ETDEWEB)

    Sutrisno, S. (National Atomic Energy Agency, Jakarta (Indonesia). Pasar Djumat Research Centre)

    1981-12-01

    Radioisotope uptake by insects could take place through various parts i.e. mouth, cuticula, intersegmental, secretion and excretion organs. Usually insects are labelled internally by feeding them on an artificial diet containing radioisotope solution. Labelling of several insect pests of cabbage (Crocidolomia binotalis) Zell and Plutella maculipennis Curt and rice (Chilo suppressalis Walker) by dipping of the pupae in /sup 32/P solution showed a promising result. Pupae of Crocidolomia binotalis Zell dipped in 3 ml solution of /sup 32/P with specific activities of 1, 3, 5 and 7 ..mu..Ci/ml had developed labelled adults of sufficiently high radioactivity levels for ecological studies. Similar results were also obtained with Plutella maculipennis Curt and Chilo suppressalis Walker with doses of 1, 3, 5, 7 and 9 ..mu..Ci/ml /sup 32/P solution. The best doses for radioisotope labelling by dipping of the insects Crocidolomia binotalis Zell, Plutella maculipennis Curt, and Chilo suppressalis Walker were 1, 9, and 7 ..mu..Ci/ml respectivelly.

  14. Damage by insect pests to the Djingarey Ber Mosque in Timbuktu: detection and control

    Directory of Open Access Journals (Sweden)

    Lara Maistrello

    2011-08-01

    Full Text Available The Djingarey Ber Mosque in Timbuktu (Mali is one of the most significant earthen construction in West Africa. Originally constructed in 1327, it was included in 1988 on the World Heritage UNESCO List for its unique architecture and historical importance. During its restoration, recently undertaken by the Aga Khan Trust for Culture, the wooden parts of the roof and architraves showed clear signs of threatening insect presence. In order to identify the pests responsible of the damage, evaluate its extent and suggest a proper control strategy, a detailed survey was performed inside the Mosque complex and in its immediate surroundings. The entomological inspection, performed in the dry-cold season, allowed to detect signs of insect damage in most of the wooden elements, even in the recently replaced beams, but also in walls, pillars and the precious decorated panels. Damages in the wood elements could be attributed to Amitermes evuncifer Silvestri (Termitidae, Bostrychoplites zycheli Marseuli (Bostrichidae and Lyctus africanus Lesne (Lyctidae, which were collected alive on site. Injures in the walls and decorated panels appeared to be performed by hymenopterans such as “plasterer bees” (Colletidae and Sphecidae. From the evaluation of the type and extent of damage in relation to the architecture and materials used in its construction and decoration, the most serious pest and the worse threat for the mosque is represented by termites. Control and preventive measures, in the view of a sustainable, long-lasting integrated management are suggested.

  15. Multiple origins of outbreak populations of a native insect pest in an agro-ecosystem.

    Science.gov (United States)

    Kobayashi, T; Sakurai, T; Sakakibara, M; Watanabe, T

    2011-06-01

    Native insects can become epidemic pests in agro-ecosystems. A population genetics approach was applied to analyze the emergence and spread of outbreak populations of native insect species. Outbreaks of the mirid bug, Stenotus rubrovittatus, have rapidly expanded over Japan within the last two decades. To characterize the outbreak dynamics of this species, the genetic structure of local populations was assessed using polymorphisms of the mtDNA COI gene and six microsatellite loci. Results of the population genetic analysis suggested that S. rubrovittatus populations throughout Japan were genetically isolated by geographic distance and separated into three genetic clusters occupying spatially segregated regions. Phylogeographic analysis indicated that the genetic structure of S. rubrovittatus reflected post-glacial colonization. Early outbreaks of S. rubrovittatus in the 1980s occurred independently of genetically isolated populations. The genetic structure of the populations did not fit the pattern of an outbreak expansion, and therefore the data did not support the hypothesis that extensive outbreaks were caused by the dispersal of specific pestiferous populations. Rather, the historical genetic structure prior to the outbreaks was maintained throughout the increase in abundance of the mirid bug. Our study indicated that changes in the agro-environment induced multiple outbreaks of native pest populations. This implies that, given suitable environmental conditions, local populations may have the potential to outbreak even without invasion of populations from other environmentally degraded areas.

  16. Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy.

    Science.gov (United States)

    Kumar, Suresh; Chandra, Amaresh; Pandey, K C

    2008-09-01

    Introduction of DDT (dichloro-diphenyl-trichloroethane) and following move towards indiscriminate use of synthetic chemical insecticides led to the contamination of water and food sources, poisoning of non-target beneficial insects and development of insect-pests resistant to the chemical insecticides. Increased public concems about the adverse environmental effects of indiscriminate use of chemical insecticides prompted search of altemative methods for insect-pest control. One of the promising alternatives has been the use of biological control agents. There is well-documented history of safe application of Bt (B. thuringiensis, a gram positive soil bacterium) as effective biopesticides and a number of reports of expression of delta-endotoxin gene(s) in crop plants are available. Only a few insecticidal sprays are required on Bt transgenic crops, which not only save cost and time, but also reduce health risks. Insects exhibit remarkable ability to develop resistance to different insecticidal compounds, which raises concern about the unsystematic use of Bt transgenic technology also. Though resistance to Bt products among insect species under field conditions has been rare, laboratory studies show that insects are capable of developing high levels of resistance to one ormore Cry proteins. Now it is generally agreed that 'high-dose/refuge strategy' is the most promising and practical approach to prolong the effectiveness of Bt toxins. Although manybiosafety concerns, ethical and moral issues exist, area under Bt transgenic crops is rapidly increasing and they are cultivated on more than 32 million hectares world over Even after reservation of European Union (EU) for acceptance of geneticaly modified (GM) crops, 6 out of 25 countries have already adopted Bt crops and many otherindustrial countries will adopt Bt transgenic crops in near future. While the modem biotechnology has been recognized to have a great potential for the promotion of human well-being, adoption

  17. Effect of doses and of refuge on the insecticide selectivity to predators and parasitoids of soybean insect pests

    International Nuclear Information System (INIS)

    Corso, Ivan Carlos; Gazzoni, Decio Luiz; Nery, Manoel Eugenio

    1999-01-01

    A field experiment was conducted to evaluate seasonal effect of insecticides on predators and parasitoids of soybean insect pests. A randomized block design was used, with three replications, and the experiment was set up in the experimental station of the EMBRAPA-Centro Nacional de Pesquisa de Soja, located at Londrina, PR, Brazil. Treatments consisted of insecticide application to control the velvet bean caterpillar (1/21/1993) or the stink bug complex (3/4/1993). Insect population was sampled through the shock technique, consisting of an application of a broad spectrum insecticide over the plants to be sampled, being the insects collected on cloths placed on the ground, and transferred to the laboratory to be identified and counted. Statistical analysis revealed no differences on the populations of species of predators, diptera or himenoptera as a group. No effects of pest resurgence or secondary pest outbreaks were also observed. (author)

  18. Performance of some transgenic cotton cultivars against insect pest complex, virus incidence and yield

    International Nuclear Information System (INIS)

    Babar, T.K.; Karar, H.; Hasnain, M.; Saleem, M.; Ali, A.

    2013-01-01

    Five cultivars of cotton i.e., IR4-NIBGE, IR5-NIBGE Bt-121, Sitara-10M and Sitara-11M were screened for resistance against insect pest complex and Cotton Leaf Curl Virus (CLCuV) incidence in the research area of Cotton Research Station, Multan. The result depicted that the most resistant variety against jassids was IR4-NIBGE and Sitara-11M whereas IR4-NIBGE showed the maximum resistance against whitefly infestation. The least susceptible variety to the infestation of thrips was Sitara-10M. The most susceptible variety to the prevalence of Red Cotton Bug (RCB) was IR4-NIBGE. The genotype Bt-121 showed the attack of spotted bollworm. The high population of Dusky Cotton Bug (DCB) was observed on Bt-121 throughout the season. The incidence of virus percentage increased with the passage of time; however, the variety IR5-NIBGE exhibited maximum level of tolerance. Variety Bt-121 gave the maximum yield i.e., 1852 kg per acre followed by IR5-NIBGE, Sitara-11M, Sitara-10M 1584, 1503, 1466 kg per acre respectively. Our results suggest that IR4-NIBGE and Sitara -11M are comparatively tolerant to jassids and whitefly which are the yield losing pest. So IR4-NIBGE and Sitara -11M varieties can be included in IPM programme for the management of these voracious pests. (author)

  19. Beyond insects: current status, achievements and future perspectives of RNAi in mite pests.

    Science.gov (United States)

    Niu, Jinzhi; Shen, Guangmao; Christiaens, Olivier; Smagghe, Guy; He, Lin; Wang, Jinjun

    2018-05-11

    Mites comprise a group of key agricultural pests on a wide range of crops. They cause harm through feeding on the plant and transferring dangerous pathogens, and the rapid evolution of pesticide resistance in mites highlights the need for novel control methods. Currently, RNA interference (RNAi) shows a great potential for insect pest control. Here, we review the literature associated with RNAi in mite pests. We discuss different target genes and RNAi efficiency in various mite species, a promising Varroa control program through RNAi, the synergy of RNAi with plant defense mechanisms and microorganisms, and the current understandings of systemic movement of dsRNA. Based on this, we can conclude that there is a clear potential for an RNAi-based mite control application but further research on several aspects is needed, including: (i) the factors influencing the RNAi efficiency, (ii) the mechanism of environmental RNAi and cross-kingdom dsRNA trafficking, (iii) the mechanism of possible systemic and parental RNAi, and (iv) non-target effects, specifically in predatory mites, should be considered during the RNAi target selection. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Expression of hybrid fusion protein (Cry1Ac::ASAL) in transgenic rice plants imparts resistance against multiple insect pests.

    Science.gov (United States)

    Boddupally, Dayakar; Tamirisa, Srinath; Gundra, Sivakrishna Rao; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao

    2018-05-31

    To evolve rice varieties resistant to different groups of insect pests a fusion gene, comprising DI and DII domains of Bt Cry1Ac and carbohydrate binding domain of garlic lectin (ASAL), was constructed. Transgenic rice lines were generated and evaluated to assess the efficacy of Cry1Ac::ASAL fusion protein against three major pests, viz., yellow stem borer (YSB), leaf folder (LF) and brown planthopper (BPH). Molecular analyses of transgenic plants revealed stable integration and expression of the fusion gene. In planta insect bioassays on transgenics disclosed enhanced levels of resistance compared to the control plants. High insect mortality of YSB, LF and BPH was observed on transgenics compared to that of control plants. Furthermore, honeydew assays revealed significant decreases in the feeding ability of BPH on transgenic plants as compared to the controls. Ligand blot analysis, using BPH insects fed on cry1Ac::asal transgenic rice plants, revealed a modified receptor protein-binding pattern owing to its ability to bind to additional receptors in insects. The overall results authenticate that Cry1Ac::ASAL protein is endowed with remarkable entomotoxic effects against major lepidopteran and hemipteran insects. As such, the fusion gene appears promising and can be introduced into various other crops to control multiple insect pests.

  1. Toxicity of seven foliar insecticides to four insect parasitoids attacking citrus and cotton pests.

    Science.gov (United States)

    Prabhaker, Nilima; Morse, J G; Castle, S J; Naranjo, S E; Henneberry, T J; Toscano, N C

    2007-08-01

    Laboratory studies were carried out to compare the toxicity of seven foliar insecticides to four species of adult beneficial insects representing two families of Hymenoptera: Aphelinidae (Aphytis melinus Debach, Eretmocerus eremicus Rose & Zolnerowich, and Encarsiaformosa Gahan) and Mymaridae (Gonatocerus ashmeadi Girault) that attack California red scale, Aonidiella aurantii (Maskell); sweetpotato whitefly, Bemisia tabaci (Gennadius) (both E. eremicus and E. formosa); and glassy-winged sharpshooter, Homalodisca vitripennis (Germar), respectively. Insecticides from four pesticide classes were evaluated using a petri dish bioassay technique across a range of concentrations to develop dosage-mortality regressions. Insecticides tested included acetamiprid (neonicotinoid); chlorpyrifos (organophosphate); bifenthrin, cyfluthrin, and fenpropathrin (pyrethroids); and buprofezin and pyriproxyfen (insect growth regulators [IGRs]). Chlorpyrifos was consistently the most toxic pesticide to all four species of beneficial insects tested based on LC50 values recorded 24 h posttreatment compared with 48-h LC50 values with the neonicotinoid and pyrethroids or 96 h with the IGRs. Among the three pyrethroids, fenpropathrin was usually less toxic (except similar toxicity to A. melinus) than was cyfluthrin, and it was normally less toxic (except similar toxicity with E. formosa) than was bifenthrin. Acetamiprid was generally less toxic than bifenthrin (except similar toxicity with G. ashmeadi). The IGRs buprofezin and pyriproxyfen were usually less toxic than the contact pesticides, but we did not test for possible impacts on female fecundity. For all seven pesticides tested, A. melinus was the most susceptible parasitoid of the four test species. The data presented here will provide pest managers with specific information on the compatibility of select insecticides with natural enemies attacking citrus and cotton, Gossypium hirsutum L., pests.

  2. [Bacillus thuringiensis: general aspects. An approach to its use in the biological control of lepidopteran insects behaving as agricultural pests].

    Science.gov (United States)

    Sauka, Diego H; Benintende, Graciela B

    2008-01-01

    Bacillus thuringiensis is the most widely applied biological pesticide used to control insects that affect agriculture and forestry and which transmit human and animal pathogens. During the past decades B. thuringiensis has been the subject of intensive research. These efforts have yielded considerable data about the relationships between the structure, mechanism of action, and genetics of their pesticidal crystal proteins. As a result, a coherent picture of these relationships has emerged. Other studies have focused on the ecological role of the B. thuringiensis crystal proteins and their performance in agricultural and other natural settings. With this knowledge as background and the help of biotechnological tools, researchers are now reporting promising results in the development of more useful toxins, recombinant bacteria, new formulations and transgenic plants that express pesticidal activity, in order to assure that these products are utilized with the best efficiency and benefit. This article is an attempt to integrate all these recent developments in the study of B. thuringiensis into a context of biological control of lepidopteran insect pest of agricultural importance.

  3. Area-wide control of fruit flies and other insect pests. Joint proceedings of the international conference on area-wide control of insect pests and the fifth international symposium on fruit flies of economic importance

    International Nuclear Information System (INIS)

    Tan, Keng-Hong

    2000-01-01

    With the world population attaining the six billion mark, the urgency of increasing quality food production and reducing the spread of diseases transmitted by insects, without affecting our fragile environment, will be of paramount importance. Losses currently experienced in agricultural production, due to insect pests and through diseases transmitted by insect vectors, are very high especially in developing and poor countries. Many insect pests and vectors are of economic importance, and several such as fruit flies, mosquitoes and tsetse flies have attracted international concerns. Most pests are traditionally controlled through heavy reliance on pesticides which can cause environmental pollution, pesticide resistance, and pest resurgence. The control, management or eradication of insect pests and vectors with minimal adverse impact on our food quality, environment, health and well-being should be of great concern to many agriculturists, biological and physical scientists as well as to national and international agencies responsible for pest control. Steps taken by the various concerned agencies to improve and implement the area-wide control will hopefully lead us into the next millennium free from major insect pests and vectors while at the same time protect our precarious global environment. This volume is the culmination of proceedings conducted in two recent international meetings, FAO/IAEA International Conference on Area-Wide Control of Insect Pests, 28 May - 2 June 1998, and the Fifth International Symposium on Fruit Flies of Economic Importance, 1-5 June 1998, held in Penang, Malaysia. Over three hundred papers (both oral contributions and posters) were presented at the two meetings. The manuscripts submitted by authors are divided according to broad topics into eighteen sections originally defined by the organisers as corresponding to the sessions of the meetings. The organisers identified one to several individuals in each of the sessions to deliver an

  4. COMPARATIVE EFFICACY OF SYNTHETIC AND BOTANICAL INSECTICIDES AGAINST SUCKING INSECT PEST AND THEIR NATURAL ENEMIES ON COTTON CROP

    OpenAIRE

    M. A. Baker; A. H. Makhdum; M. Nasir; A. Imran; A. Ahmad; F. Tufail

    2016-01-01

    The Synthetic and botanical insecticides are relatively safer for environment and beneficial insects. The study was conducted in Rahim Yar Khan during the cotton cropping season 2014 to evaluate the comparative efficacy of two Synthetic insecticides i.e. Nitenpyram (Jasper 10% SL) and Pyriproxyfen (Bruce 10.8% EC) and two botanical extracts of Calotropic procera and Azadirachta indica, against sucking insect pest complex of cotton and their natural enemies. Upon reaching economic thresholds, ...

  5. Ecological disequilibrium drives insect pest and pathogen accumulation in non-native trees.

    Science.gov (United States)

    Crous, Casparus J; Burgess, Treena I; Le Roux, Johannes J; Richardson, David M; Slippers, Bernard; Wingfield, Michael J

    2016-12-23

    Non-native trees have become dominant components of many landscapes, including urban ecosystems, commercial forestry plantations, fruit orchards, and as invasives in natural ecosystems. Often, these trees have been separated from their natural enemies (i.e. insects and pathogens) leading to ecological disequilibrium, that is, the immediate breakdown of historically co-evolved interactions once introduced into novel environments. Long-established, non-native tree plantations provide useful experiments to explore the dimensions of such ecological disequilibria. We quantify the status quo of non-native insect pests and pathogens catching up with their tree hosts (planted Acacia, Eucalyptus and Pinus species) in South Africa, and examine which native South African enemy species utilise these trees as hosts. Interestingly, pines, with no confamilial relatives in South Africa and the longest residence time (almost two centuries), have acquired only one highly polyphagous native pathogen. This is in contrast to acacias and eucalypts, both with many native and confamilial relatives in South Africa that have acquired more native pathogens. These patterns support the known role of phylogenetic relatedness of non-native and native floras in influencing the likelihood of pathogen shifts between them. This relationship, however, does not seem to hold for native insects. Native insects appear far more likely to expand their feeding habits onto non-native tree hosts than are native pathogens, although they are generally less damaging. The ecological disequilibrium conditions of non-native trees are deeply rooted in the eco-evolutionary experience of the host plant, co-evolved natural enemies, and native organisms from the introduced range. We should expect considerable spatial and temporal variation in ecological disequilibrium conditions among non-native taxa, which can be significantly influenced by biosecurity and management practices. Published by Oxford University Press on

  6. Management of area-wide integrated pest management programmes that integrate the sterile insect technique

    International Nuclear Information System (INIS)

    Dyck, V.A.; Vreysen, M.J.B.; Reyes Flores, J.; Regidor Fernandez, E.E.; Teruya, T.; Barnes, B.; Gomez Riera, P.; Lindquist, D.; Loosjes, M.

    2005-01-01

    Effective management of area-wide integrated pest management (AW-IPM) programmes that integrate the sterile insect technique (SIT) is key to success. Programme planning includes collection of baseline data and a feasibility assessment. The optimal management structure is where the programme can be implemented effectively and flexibly, independent of government politics, bureaucracy, and even corruption that impede timely goal achievement. Ideally, programmes include both public and private management, and require strong and steady financial support. Governments and donors are the most common sources of funds, but a mixture of public, community, and private funds is now the trend. Interrupted cash flow severely restrains programme performance. Physical support of programme operations must be reliable, and led by a maintenance professional. It is essential to have full-time, well-paid, and motivated staff led by a programme manger with technical and management experience. Programme failure is usually due to poor management and inadequate public support, and not to poor technology. (author)

  7. Effect of Nitrogen Fertilizer on Herbivores and Its Stimulation to Major Insect Pests in Rice

    Directory of Open Access Journals (Sweden)

    Zhong-xian LU

    2007-03-01

    Full Text Available Nitrogen is one of the most important factors in development of herbivore populations. The application of nitrogen fertilizer in plants can normally increase herbivore feeding preference, food consumption, survival, growth, reproduction, and population density, except few examples that nitrogen fertilizer reduces the herbivore performances. In most of the rice growing areas in Asia, the great increases in populations of major insect pests of rice, including planthoppers (Nilaparvata lugens and Sogatella furcifera, leaffolder (Cnaphalocrocis medinalis, and stem borers (Scirpophaga incertulas, Chilo suppressalis, S. innotata, C. polychrysus and Sesamia inferens were closely related to the long-term excessive application of nitrogen fertilizers. The optimal regime of nitrogen fertilizer in irrigated paddy fields is proposed to improve the fertilizer-nitrogen use efficiency and reduce the environmental pollution.

  8. Improving cluster-based methods for investigating potential for insect pest species establishment: region-specific risk factors

    Directory of Open Access Journals (Sweden)

    Michael J. Watts

    2011-09-01

    Full Text Available Existing cluster-based methods for investigating insect species assemblages or profiles of a region to indicate the risk of new insect pest invasion have a major limitation in that they assign the same species risk factors to each region in a cluster. Clearly regions assigned to the same cluster have different degrees of similarity with respect to their species profile or assemblage. This study addresses this concern by applying weighting factors to the cluster elements used to calculate regional risk factors, thereby producing region-specific risk factors. Using a database of the global distribution of crop insect pest species, we found that we were able to produce highly differentiated region-specific risk factors for insect pests. We did this by weighting cluster elements by their Euclidean distance from the target region. Using this approach meant that risk weightings were derived that were more realistic, as they were specific to the pest profile or species assemblage of each region. This weighting method provides an improved tool for estimating the potential invasion risk posed by exotic species given that they have an opportunity to establish in a target region.

  9. Unexpected Effects of Low Doses of a Neonicotinoid Insecticide on Behavioral Responses to Sex Pheromone in a Pest Insect

    Science.gov (United States)

    Rabhi, Kaouther K.; Esancy, Kali; Voisin, Anouk; Crespin, Lucille; Le Corre, Julie; Tricoire-Leignel, Hélène; Anton, Sylvia; Gadenne, Christophe

    2014-01-01

    In moths, which include many agricultural pest species, males are attracted by female-emitted sex pheromones. Although integrated pest management strategies are increasingly developed, most insect pest treatments rely on widespread use of neurotoxic chemicals, including neonicotinoid insecticides. Residual accumulation of low concentrations of these insecticides in the environment is known to be harmful to beneficial insects such as honey bees. This environmental stress probably acts as an “info-disruptor” by modifying the chemical communication system, and therefore decreases chances of reproduction in target insects that largely rely on olfactory communication. However, low doses of pollutants could on the contrary induce adaptive processes in the olfactory pathway, thus enhancing reproduction. Here we tested the effects of acute oral treatments with different low doses of the neonicotinoid clothianidin on the behavioral responses to sex pheromone in the moth Agrotis ipsilon using wind tunnel experiments. We show that low doses of clothianidin induce a biphasic effect on pheromone-guided behavior. Surprisingly, we found a hormetic-like effect, improving orientation behavior at the LD20 dose corresponding to 10 ng clothianidin. On the contrary, a negative effect, disturbing orientation behavior, was elicited by a treatment with a dose below the LD0 dose corresponding to 0.25 ng clothianidin. No clothianidin effect was observed on behavioral responses to plant odor. Our results indicate that risk assessment has to include unexpected effects of residues on the life history traits of pest insects, which could then lead to their adaptation to environmental stress. PMID:25517118

  10. Unexpected effects of low doses of a neonicotinoid insecticide on behavioral responses to sex pheromone in a pest insect.

    Directory of Open Access Journals (Sweden)

    Kaouther K Rabhi

    Full Text Available In moths, which include many agricultural pest species, males are attracted by female-emitted sex pheromones. Although integrated pest management strategies are increasingly developed, most insect pest treatments rely on widespread use of neurotoxic chemicals, including neonicotinoid insecticides. Residual accumulation of low concentrations of these insecticides in the environment is known to be harmful to beneficial insects such as honey bees. This environmental stress probably acts as an "info-disruptor" by modifying the chemical communication system, and therefore decreases chances of reproduction in target insects that largely rely on olfactory communication. However, low doses of pollutants could on the contrary induce adaptive processes in the olfactory pathway, thus enhancing reproduction. Here we tested the effects of acute oral treatments with different low doses of the neonicotinoid clothianidin on the behavioral responses to sex pheromone in the moth Agrotis ipsilon using wind tunnel experiments. We show that low doses of clothianidin induce a biphasic effect on pheromone-guided behavior. Surprisingly, we found a hormetic-like effect, improving orientation behavior at the LD20 dose corresponding to 10 ng clothianidin. On the contrary, a negative effect, disturbing orientation behavior, was elicited by a treatment with a dose below the LD0 dose corresponding to 0.25 ng clothianidin. No clothianidin effect was observed on behavioral responses to plant odor. Our results indicate that risk assessment has to include unexpected effects of residues on the life history traits of pest insects, which could then lead to their adaptation to environmental stress.

  11. Cost-benefit analysis for biological control programs that target insects pests of eucalypts in urban landscapes of California

    Science.gov (United States)

    T.D. Paine; J.G. Millar; L.M. Hanks; J. Gould; Q. Wang; K. Daane; D.L. Dahlsten; E.G. McPherson

    2015-01-01

    As well as being planted for wind breaks, landscape trees, and fuel wood, eucalypts are also widely used as urban street trees in California. They now are besieged by exotic insect herbivores of four different feeding guilds. The objective of the current analysis was to determine the return on investment from biological control programs that have targeted these pests....

  12. Improvement of pigenonpea and cowpea for drought, disease and insect pest tolerance through induced mutations

    International Nuclear Information System (INIS)

    Omanga, P.A.

    1997-01-01

    Pigeonpea and cowpea are widely grown in the semi-arid and arid regions of Kenya by small scale farmers. The average yields are usually low due to insect pests, diseases and long growth duration of the local land races. Little success has been achieved through conventional breeding methods for tolerance to insect pests and diseases despite the development of high yielding and early maturing lines. Therefore, mutation induction was initiated to widen the genetic variability in the improved lines. Seeds of three promising pigeonpea cultivars KAT 60/8, KAT 777 and KAT E31/4 and of cowpea KAT 419, K80 and M66 were subjected to three doses of gamma rays; 80, 120 and 150 Gy for pigeonpea and 160, 200 and 250 Gy for cowpea. In M 1 generation, doses of 150 Gy and 250 Gy reduced emergence by about 50% and increased seedling deformities in both crops. In M 2 generation of KAT 60/8, high yielding mutants with oval shaped seeds (T 1 P 58 ) and branching (T 3 P 28 ) were identified. Two progenies of KAT 777 (T 1 P 7 and T 1 P 11 ) had small slender leaves. Selected plant progenies in M 3 , M 4 and M 5 generation gave some promising high yielding variants. Although, the difference in days to flower and maturity of mutant progenies and untreated bulk were small, some mutant progenies of KAT 777 and KAT 60/8 showed tolerance to Fusarium wilt. None of the progenies of KAT E31/4 gave better score for Cercospora leaf-spot compared to the check. (author). 2 refs, 4 tabs

  13. Improvement of pigenonpea and cowpea for drought, disease and insect pest tolerance through induced mutations

    Energy Technology Data Exchange (ETDEWEB)

    Omanga, P A [National Dryland Farming Research Centre, Kenya Agricultural Research Inst., Machakos (Kenya)

    1997-07-01

    Pigeonpea and cowpea are widely grown in the semi-arid and arid regions of Kenya by small scale farmers. The average yields are usually low due to insect pests, diseases and long growth duration of the local land races. Little success has been achieved through conventional breeding methods for tolerance to insect pests and diseases despite the development of high yielding and early maturing lines. Therefore, mutation induction was initiated to widen the genetic variability in the improved lines. Seeds of three promising pigeonpea cultivars KAT 60/8, KAT 777 and KAT E31/4 and of cowpea KAT 419, K80 and M66 were subjected to three doses of gamma rays; 80, 120 and 150 Gy for pigeonpea and 160, 200 and 250 Gy for cowpea. In M{sub 1} generation, doses of 150 Gy and 250 Gy reduced emergence by about 50% and increased seedling deformities in both crops. In M{sub 2} generation of KAT 60/8, high yielding mutants with oval shaped seeds (T{sub 1} P{sub 58}) and branching (T{sub 3} P{sub 28}) were identified. Two progenies of KAT 777 (T{sub 1} P{sub 7} and T{sub 1} P{sub 11}) had small slender leaves. Selected plant progenies in M{sub 3}, M{sub 4} and M{sub 5} generation gave some promising high yielding variants. Although, the difference in days to flower and maturity of mutant progenies and untreated bulk were small, some mutant progenies of KAT 777 and KAT 60/8 showed tolerance to Fusarium wilt. None of the progenies of KAT E31/4 gave better score for Cercospora leaf-spot compared to the check. (author). 2 refs, 4 tabs.

  14. Simultaneous exposure of nematophagous fungi, entomopathogenic nematodes and entomopathogenic fungi can modulate belowground insect pest control.

    Science.gov (United States)

    Bueno-Pallero, Francisco Ángel; Blanco-Pérez, Rubén; Dionísio, Lídia; Campos-Herrera, Raquel

    2018-05-01

    Entomopathogenic nematodes (EPNs) and fungi (EPF) are well known biological control agents (BCAs) against insect pests. Similarly, the nematophagous fungi (NF) are considered good BCA candidates for controlling plant parasitic nematodes. Because NF can employ EPNs as food and interact with EPF, we speculate that the simultaneous application of EPNs and EPF might result in higher insect mortality, whereas the triple species combination with NF will reduce the EPN and EPF activity by predation or inhibition. Here we evaluated single, dual (EPN + EPF, EPF + NF, EPN + NF) and triple (EPN + EPF + NF) combinations of one EPN, Steinernema feltiae (Rhabditida: Steinernematidae), one EPF, Beauveria bassiana (Hypocreales: Clavicipitaceae), and two NF, Arthrobotrys musiformis (Orbiliales: Orbiliaceae) and Purpureocillium lilacinum (Hypocreales: Ophiocordycipitaceae) under laboratory conditions. First, we showed that EPF reduced the growth rate of NF and vice versa when combined in both rich and limiting media, suggesting a negative interaction when combining both fungi. Three different fungal applications (contact with mycelia-conidia, immersion in conidial suspension, and injection of conidial suspension) were tested in single, dual and triple species combinations, evaluating Galleria mellonella (Lepidoptera: Pyralidae) larval mortality and time to kill. When mycelia was presented, the EPF appeared to be the dominant in combined treatments, whereas in immersion exposure was the EPN. In both types of exposure, NF alone did not produce any effect on larvae. However, when A. musiformis was injected, it produced larval mortalities >70% in the same time span as EPN. Overall, additive effects dominated the dual and triple combinations, with the exception of injection method, where synergisms occurred for both NF species combined with EPN + EPF. This study illustrates how differences in species combination and timing of fungal arrival can modulate the action

  15. Relative efficacy of some insecticides against the sucking insect pest complex of cotton

    International Nuclear Information System (INIS)

    Asif, M.U.; Muhammad, R.; Tofique, M.

    2016-01-01

    The comparative efficacy of some conventional and neonicotinoid insecticides for the management of sucking insect pests of cotton (whitefly, jassid and thrips) was determined. Six insecticides viz., Confidor 200 SL (imidacloprid) at the rate acre /sup -1/, Karate 1.5 EC (lambda cyhalothrin) at the rate 330 ml acre /sup -1/, Nockout 25 SP (nitenpyram) at the rate 100 gm acre /sup -1/, Polytrin-C 44 EC (profenofos+cypermethrin) at the rate 600 ml acre /sup -1/, Talstar 10 EC (bifenthrin) at the rate 250 ml acre /sup -1/ and Advantage 20 EC (carbosulfan) at the rate of 1000 ml acre /sup -1/ were sprayed twice in order to ascertain the reduction of the pests population on Sadori variety of cotton sown at experimental area of Nuclear Institute of Agriculture, Tandojam. All the tested insecticides caused significant reduction of whitefly, jassid and thrips at 24 hours, 72 hours and even 7 days after application. Imidacloprid followed by the nitenpyram proved to be most effective for bringing about a significant reduction in the populations of whitefly and thrips. Nitenpyram had the highest percentage reduction (73.80%) against jassid at 7th day after application but that was nonsignificantly different from imidacloprid(63.49%). Whereas, the conventional insecticides i.e. lambda cyhalothrin, profenofos+cypermethrin, bifenthrin and carbosulfan showed 57.93%, 52.38%, 47.61% and 42.06% reduction, respectively. Maximum extrapolated yield (2.99 tons ha /sup -1/) was also obtained in imidacloprid treated plots followed by nitenpyram (2.66 tons ha /sup -1/). Thus, these two insecticides were most effective for the sucking pests and in increasing seed cotton yield as compared to the conventional ones. (author)

  16. Role of two insect growth regulators in integrated pest management of citrus scales.

    Science.gov (United States)

    Grafton-Cardwell, E E; Lee, J E; Stewart, J R; Olsen, K D

    2006-06-01

    Portions of two commercial citrus orchards were treated for two consecutive years with buprofezin or three consecutive years with pyriproxyfen in a replicated plot design to determine the long-term impact of these insect growth regulators (IGRs) on the San Joaquin Valley California integrated pest management program. Pyriproxyfen reduced the target pest, California red scale, Aonidiella aurantii Maskell, to nondetectable levels on leaf samples approximately 4 mo after treatment. Pyriproxyfen treatments reduced the California red scale parasitoid Aphytis melinus DeBach to a greater extent than the parasitoid Comperiella bifasciata Howard collected on sticky cards. Treatments of lemons Citrus limon (L.) Burm. f. infested with scale parasitized by A. melinus showed only 33% direct mortality of the parasitoid, suggesting the population reduction observed on sticky cards was due to low host density. Three years of pyriproxyfen treatments did not maintain citricola scale, Coccus pseudomagnoliarum (Kuwana), below the treatment threshold and cottony cushion scale, Icerya purchasi Maskell, was slowly but incompletely controlled. Buprofezin reduced California red scale to very low but detectable levels approximately 5 mo after treatment. Buprofezin treatments resulted in similar levels of reduction of the two parasitoids A. melinus and C. bifasciata collected on sticky cards. Treatments of lemons infested with scale parasitized by A. melinus showed only 7% mortality of the parasitoids, suggesting the population reduction observed on sticky cards was due to low host density. Citricola scale was not present in this orchard, and cottony cushion scale was slowly and incompletely controlled by buprofezin. These field plots demonstrated that IGRs can act as organophosphate insecticide replacements for California red scale control; however, their narrower spectrum of activity and disruption of coccinellid beetles can allow other scale species to attain primary pest status.

  17. Apply Pesticides Correctly, A Guide for Commercial Applicators: Agricultural Pest Control -- Animal.

    Science.gov (United States)

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    This guide contains basic information to meet specific standards for pesticide applicators. The text is concerned with the common pests of agricultural animals such as flies, ticks, bots, lice and mites. Methods for controlling these pests and appropriate pesticides are discussed. (CS)

  18. RNA interference: a new strategy in the evolutionary arms race between human control strategies and insect pests.

    Science.gov (United States)

    Machado, Vilmar; Rodríguez-García, María Juliana; Sánchez-García, Francisco Javier; Galan, Jose

    2014-01-01

    The relationship between humans and the insect pests of cultivated plants may be considered to be an indirect coevolutionary process, i.e., an arms race. Over time, humans have developed several strategies to minimize the negative impacts of insects on agricultural production. However, insects have made adaptive responses via the evolution of resistance to insecticides, and more recently against Bacillus thuriengiensis. Thus, we need to continuously invest resources in the development of new strategies for crop protection. Recent advances in genomics have demonstrated the possibility of a new weapon or strategy in this war, i.e., gene silencing, which involves blocking the expression of specific genes via mRNA inactivation. In the last decade, several studies have demonstrated the effectiveness of this strategy in the control of different species of insects. However, several technical difficulties need to be overcome to transform this potential into reality, such as the selection of target genes, the concentration of dsRNA, the nucleotide sequence of the dsRNA, the length of dsRNA, persistence in the insect body, and the life stage of the target species where gene silencing is most efficient. This study analyzes several aspects related to the use of gene silencing in pest control and it includes an overview of the inactivation process, as well as the problems that need to be resolved to transform gene silencing into an effective pest control method.

  19. Seasonal dynamics of three insect pests in the cabbage field in central Slovenia.

    Science.gov (United States)

    Trdan, Stanislav; Vidrih, Matej; Bobnar, Aleksander

    2008-01-01

    From the beginning of April until the beginning of November 2006, a seasonal dynamics of three harmful insect species--Swede midge (Contarinia nasturtii [Kieffer], Diptera, Cecidomyiidae), flea beetles (Phyllotreta spp., Coleoptera, Chrysomelidae), and diamondback moth (Plutella xylostella [L.], Lepidoptera, Plutellidae)--was investigated at the Laboratory Field of the Biotechnical Faculty in Ljubljana (Slovenia). The males were monitored with pheromone traps; the males of Swede midge were trapped with the traps of Swiss producer (Agroscope FAW, Wädenswill), while the adult flea beetles (trap type KLP+) and diamondback moths (trap type RAG) were trapped with the Hungarian traps (Plant Protection Institute, Hungarian Academy of Sciences). The pheromone capsules were changed in 4-week intervals, while the males were counted on about every 7th day. The first massive occurrence of diamondback moth (1.6 males/trap/day) was established in the second 10 days period of April, and the pest remained active until the 2nd 10 days period of September. The adults were the most numerous in the period between the end of May until the middle of June, but even then their number did not exceed three males caught per day. In the first 10 days period of May, the first adult flea beetles were recorded in the pheromone traps, while their notable number (0.8 males/trap/day) was stated in the third 10 days period of May. Absolutely the highest number of the beetles was recorded in the second (19 adults/trap/day) and in the third (25 adults/trap/day) 10 days of July, and the pest occurred until the beginning of October. The first massive occurrence of Swede midge (0.4 males/trap/day) was established in the second 10 days period of May, while the highest number of males (8/trap/day) were caught in the second 10 days period of July. In the third 10 days period of October, the last adults were found in the traps. Based on the results of monitoring of three cabbage insect pests we ascertained

  20. Induced plant resistance as a pest management tactic on piercing sucking insects of sesame crop

    Directory of Open Access Journals (Sweden)

    M. F. Mahmoud

    2013-09-01

    Full Text Available Sesame, Sesamum indicum L. is the most oil seed crop of the world and also a major oil seed crop of Egypt. One of the major constraints in its production the damage caused by insect pests, particularly sucking insects which suck the cell sap from leaves, flowers and capsules. Impact of three levels of potassin-F, salicylic acid and combination between them on reduction infestation of Stink bug Nezara viridula L., Mirid bug Creontiades sp., Green peach aphid Myzus persicae (Sulzer, Leafhopper Empoasca lybica de Berg and Whitefly Bemisia tabaci (Gennadius of sesame crop cultivar Shandawil 3 was carried out during 2010-2011 crop season at Experimental farm, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt. Also, the impacts of potassin-F and salicylic acid on yield production of sesame were studied. Results indicated that percent of reduction of infestation by N. viridula, M. persicae, Creontiades sp., E. lybicae, B. tabaci and phyllody disease were significantly higher at Level 2 (Potassin-F= 2.5 cm/l, Salicylic acid= 0.001 M and Potassin + Salicylic= 2.5 cm/l + 0.001 M and consequently higher seed yield per plant were obtained.

  1. Tissue-Specific Transcriptomics of the Exotic Invasive Insect Pest Emerald Ash Borer (Agrilus planipennis)

    Science.gov (United States)

    Mittapalli, Omprakash; Bai, Xiaodong; Bonello, Pierluigi; Herms, Daniel A.

    2010-01-01

    Background The insect midgut and fat body represent major tissue interfaces that deal with several important physiological functions including digestion, detoxification and immune response. The emerald ash borer (Agrilus planipennis), is an exotic invasive insect pest that has killed millions of ash trees (Fraxinus spp.) primarily in the Midwestern United States and Ontario, Canada. However, despite its high impact status little knowledge exists for A. planipennis at the molecular level. Methodology and Principal Findings Newer-generation Roche-454 pyrosequencing was used to obtain 126,185 reads for the midgut and 240,848 reads for the fat body, which were assembled into 25,173 and 37,661 high quality expressed sequence tags (ESTs) for the midgut and the fat body of A. planipennis larvae, respectively. Among these ESTs, 36% of the midgut and 38% of the fat body sequences showed similarity to proteins in the GenBank nr database. A high number of the midgut sequences contained chitin-binding peritrophin (248)and trypsin (98) domains; while the fat body sequences showed high occurrence of cytochrome P450s (85) and protein kinase (123) domains. Further, the midgut transcriptome of A. planipennis revealed putative microbial transcripts encoding for cell-wall degrading enzymes such as polygalacturonases and endoglucanases. A significant number of SNPs (137 in midgut and 347 in fat body) and microsatellite loci (317 in midgut and 571 in fat body) were predicted in the A. planipennis transcripts. An initial assessment of cytochrome P450s belonging to various CYP clades revealed distinct expression patterns at the tissue level. Conclusions and Significance To our knowledge this study is one of the first to illuminate tissue-specific gene expression in an invasive insect of high ecological and economic consequence. These findings will lay the foundation for future gene expression and functional studies in A. planipennis. PMID:21060843

  2. Box Tree Moth (Cydalima perspectalis, Lepidoptera; Crambidae, New Invasive Insect Pest in Croatia

    Directory of Open Access Journals (Sweden)

    Dinka Matošević

    2013-12-01

    Full Text Available Background and Purpose: Alien invasive species have been described as an outstanding global problem. Hundreds of species are intentionally and unintentionally moved worldwide and and numbers of introductions to new habitats have been accelerated all over the world due to the increasing mobility of people and goods over the past decades. Numerous alien insect species, many of them introduced only in the last 20 years, have become successfully established in various ecosystems in Croatia. Box tree moth (Cydalima perspectalis, Lepidoptera; Crambidae is an invasive pest recently introduced to Europe causing serious damage to ornamental box (Buxus sp. shrubs and trees. The aim of this paper is to describe the biology of box tree moth with prognosis of its future spread and damages in Croatia. Material and Methods: Young larvae (first and second larval stage and adults of box tree moth were collected in August and September 2013 in Arboretum Opeka and in Varaždin. They were brought to the entomological laboratory of Croatian Forest Research Institute where they were reared to pupae and then to moths. Results and Conclusions: The box tree moth was recorded for the first time in North Croatia in August 2013. Larvae were found defoliating box plants (B. sempervirens in Arboretum Opeka, Vinica and they have been identified as C. prespectalis. According to damages it can be assumed that the pest has been introduced to the region earlier (in 2011 or 2012 and that the primary infection has not been detected. At least two generations per year could be assumed in Croatia in 2013. The damage done to box tree plants on the locality of study is serious. The plants have been defoliated, particularly in the lower parts. The defoliation reduced the amenity value of plants. This is the first record of this pest and its damages in Northern Croatia and it can be expected that the pest will rapidly spread to other parts of Croatia seriously damaging box plants

  3. Seasonal Occurrence of Key Arthropod Pests and Beneficial Insects in Michigan High Tunnel and Field Grown Raspberries.

    Science.gov (United States)

    Leach, Heather; Isaacs, Rufus

    2018-06-06

    Berry crops are increasingly produced in high tunnels, which provide growers with the opportunity to extend their production season. This is particularly beneficial for the northern region of the United States with short and unpredictable growing seasons and where rainfall limits fruit quality. However, little is known about the effect of high tunnels on the community of pests, natural enemies, or pollinators, especially in berry crops, and there are few reports of the insect community in raspberries in this region. We compared the abundance of these insects during two growing seasons in field-grown and tunnel-grown floricane and primocane producing raspberries through direct observation and trapping at five sites in southwestern and central Michigan. We found eight key pests, including spotted wing Drosophila, leafhoppers, and thrips, and seven key natural enemies including parasitoid wasps, spiders, and lacewings, that were common across all sites. Pest populations were up to 6.6 times higher in tunnels, and pests typical of greenhouse systems became more dominant in this environment. Natural enemies observed on plants under tunnels were also more abundant than in the field, but this trend was reversed for natural enemies trapped on yellow sticky cards. There was also a reduction of both honey bees and wild bees under the high tunnels, which was balanced by use of commercial bumble bees. These data not only provide much-needed information on the phenology of the insect community on raspberry plantings, they also highlight the entomological implications of protected raspberry culture.

  4. Insects used for animal feed in West Africa

    Directory of Open Access Journals (Sweden)

    M. Kenis

    2014-10-01

    Full Text Available In West Africa, as in many parts of the world, livestock and fish farming suffer from the increasing cost of feed, especially protein ingredients, which are hardly available for village poultry farming and small-scale fish farming. Insects, which are a natural food source of poultry and fish and are rich in protein and other valuable nutrients, can be used to improve animal diets, a practice which is now strongly promoted by the FAO as a tool for poverty alleviation. This paper reviews practices and research on the use of insects as animal feed in West Africa and the perspectives to further develop the techniques, in particular for smallholder farmers and fish farmers. The most promising insects are flies, especially the house fly (Musca domestica (Diptera Muscidae and the black soldier fly (Hermetia illucens (Diptera Stratiomyiidae, which can be mass reared on-farm for domestic use, in small production units at the community or industrial level. Flies have the advantage over most other insects of developing on freely available waste material and could even contribute to rural sanitation. Termites are traditionally used by smallholder farmers to feed village poultry. While their mass production is problematic, methods to enhance populations on-farm and facilitate collection can be developed. In any case, new methods will need to demonstrate their economic profitability, social acceptability and environmental sustainability

  5. Comparing environmental impacts from insects for feed and food as an alternative to animal production

    DEFF Research Database (Denmark)

    Halloran, Afton Marina Szasz; Hansen, Hanne Helene; Jensen, Lars Stoumann

    2018-01-01

    This chapter systematically compares and contrasts the known environmental impacts of traditional vertebrate animal production with insect production intended for both food and animal feed. There are major physiological and biological differences between traditional livestock species and insects,...

  6. Plants attract parasitic wasps to defend themselves against insect pests by releasing hexenol.

    Directory of Open Access Journals (Sweden)

    Jianing Wei

    2007-09-01

    Full Text Available Plant volatiles play an important role in defending plants against insect attacks by attracting their natural enemies. For example, green leaf volatiles (GLVs and terpenoids emitted from herbivore-damaged plants were found to be important in the host location of parasitic wasps. However, evidence of the functional roles and mechanisms of these semio-chemicals from a system of multiple plants in prey location by the parasitoid is limited. Little is known about the potential evolutionary trends between herbivore-induced host plant volatiles and the host location of their parasitoids.The present study includes hierarchical cluster analyses of plant volatile profiles from seven families of host and non-host plants of pea leafminer, Liriomyza huidobrensis, and behavioral responses of a naive parasitic wasp, Opius dissitus, to some principal volatile compounds. Here we show that plants can effectively pull wasps, O. dissitus, towards them by releasing a universally induced compound, (Z-3-hexenol, and potentially keep these plants safe from parasitic assaults by leafminer pests, L. huidobrensis. Specifically, we found that volatile profiles from healthy plants revealed a partly phylogenetic signal, while the inducible compounds of the infested-plants did not result from the fact that the induced plant volatiles dominate most of the volatile blends of the host and non-host plants of the leafminer pests. We further show that the parasitoids are capable of distinguishing the damaged host plant from the non-host plant of the leafminers.Our results suggest that, as the most passive scenario of plant involvement, leafminers and mechanical damages evoke similar semio-chemicals. Using ubiquitous compounds, such as hexenol, for host location by general parasitoids could be an adaptation of the most conservative evolution of tritrophic interaction. Although for this, other compounds may be used to improve the precision of the host location by the parasitoids.

  7. Adaptive mechanisms of insect pests against plant protease inhibitors and future prospects related to crop protection: a review.

    Science.gov (United States)

    Macedo, Maria L R; de Oliveira, Caio F R; Costa, Poliene M; Castelhano, Elaine C; Silva-Filho, Marcio C

    2015-01-01

    The overwhelming demand for food requires the application of technology on field. An important issue that limits the productivity of crops is related to insect attacks. Hence, several studies have evaluated the application of different compounds to reduce the field losses, especially insecticide compounds from plant sources. Among them, plant protease inhibitors (PIs) have been studied in both basic and applied researches, displaying positive results in control of some insects. However, certain species are able to bypass the insecticide effects exerted by PIs. In this review, we disclosed the adaptive mechanisms showed by lepidopteran and coleopteran insects, the most expressive insect orders related to crop predation. The structural aspects involved in adaptation mechanisms are presented as well as the newest alternatives for pest control. The application of biotechnological tools in crop protection will be mandatory in agriculture, and it will be up to researchers to find the best candidates for effective control in long-term.

  8. Agriculture sows pests: how crop domestication, host shifts, and agricultural intensification can create insect pests from herbivores.

    Science.gov (United States)

    Bernal, Julio S; Medina, Raul F

    2018-04-01

    We argue that agriculture as practiced creates pests. We use three examples (Corn leafhopper, Dalbulus maidis; Western corn rootworm, Diabrotica virgifera virgifera; Cotton fleahopper, Pseudatomoscelis seriatus) to illustrate: firstly, how since its origins, agriculture has proven conducive to transforming selected herbivores into pests, particularly through crop domestication and spread, and agricultural intensification, and; secondly, that the herbivores that became pests were among those hosted by crop wild relatives or associates, and were pre-adapted either as whole species or component subpopulations. Two of our examples, Corn leafhopper and Western corn rootworm, illustrate how following a host shift to a domesticated host, emergent pests 'hopped' onto crops and rode expansion waves to spread far beyond the geographic ranges of their wild hosts. Western corn rootworm exemplifies how an herbivore-tolerant crop was left vulnerable when it was bred for yield and protected with insecticides. Cotton fleahopper illustrates how removing preferred wild host plants from landscapes and replacing them with crops, allows herbivores with flexible host preferences to reach pest-level populations. We conclude by arguing that in the new geological epoch we face, the Anthropocene, we can improve agriculture by looking to our past to identify and avoid missteps of early and recent farmers. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Planting sentinel European trees in eastern Asia as a novel method to identify potential insect pest invaders.

    Science.gov (United States)

    Roques, Alain; Fan, Jian-Ting; Courtial, Béatrice; Zhang, Yan-Zhuo; Yart, Annie; Auger-Rozenberg, Marie-Anne; Denux, Olivier; Kenis, Marc; Baker, Richard; Sun, Jiang-Hua

    2015-01-01

    Quarantine measures to prevent insect invasions tend to focus on well-known pests but a large proportion of the recent invaders were not known to cause significant damage in their native range, or were not even known to science before their introduction. A novel method is proposed to detect new potential pests of woody plants in their region of origin before they are introduced to a new continent. Since Asia is currently considered to be the main supplier of insect invaders to Europe, sentinel trees were planted in China during 2007-2011 as an early warning tool to identify the potential for additional Asian insect species to colonize European trees. Seedlings (1-1.5 m tall) of five broadleaved (Quercus petraea, Q. suber, Q. ilex, Fagus sylvatica, and Carpinus betulus) and two conifer species (Abies alba and Cupressus sempervirens) were planted in blocks of 100 seedlings at two widely separated sites (one in a nursery near Beijing and the other in a forest environment near Fuyang in eastern China), and then regularly surveyed for colonization by insects. A total of 104 insect species, mostly defoliators, were observed on these new hosts, and at least six species were capable of larval development. Although a number of the insects observed were probably incidental feeders, 38 species had more than five colonization events, mostly infesting Q. petraea, and could be considered as being capable of switching to European trees if introduced to Europe. Three years was shown to be an appropriate duration for the experiment, since the rate of colonization then tended to plateau. A majority of the identified species appeared to have switched from agricultural crops and fruit trees rather than from forest trees. Although these results are promising, the method is not appropriate for xylophagous pests and other groups developing on larger trees. Apart from the logistical problems, the identification to species level of the specimens collected was a major difficulty. This

  10. Reproductive Plasticity of an Invasive Insect Pest, Rice Water Weevil (Coleoptera: Curculionidae).

    Science.gov (United States)

    Huang, Yunshang; Ao, Yan; Jiang, Mingxing

    2017-12-05

    Reproductive plasticity is a key determinant of species invasiveness. However, there are a limited number of studies addressing this issue in exotic insects. The rice water weevil Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae), which is native to North America, is one of the most invasive insect pests in east Asia. In this study, we investigated the reproductive status of first-generation females (progeny of overwintered weevils) from five geographic regions in southern and northern China in the field, and reproductive status and ovipositional features of females provided with suitable host plants in the laboratory after collection. Under field conditions, a proportion of females oviposited, while the rest remained in diapause from all three southern regions investigated, but reproductive development did not take place in females from the two northern regions, where the weevil produces only one generation per year. However, when fed host plants in the laboratory, females from all regions laid eggs. They typically had a very short ovipositional period (3-6 d on average on rice at a temperature of 27°C), laid a low number of eggs, and did not die soon after oviposition; this was different from common reproductive females. We concluded that first-generation L. oryzophilus females, which largely enter diapause after emergence, are highly plastic in their reproductive performance and are ready to reproduce under favorable conditions. Our results indicate the significance of their reproductive plasticity for geographic spread and population development. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Radioisotopes and Radiation in Animal and Plant Insect Pest Control; Emploi des radioisotopes et des rayonnements dans la lutte contre les insectes nuisibles aux plantes et aux animaux; Ispol'zovanie radioizotopov i radiashchi v bor'be s nasekomymi-vreditelyami rastenij i zhivotnykh; Utilizacion de los radioisotopos y de las radiaciones en la lucha contra los insectos nocivos para las plantas y los animales

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, S. V.; Martens, B. K.; Samojlova, V. A.; Molchanova, Z. I. [Vsesoyuznyj Institut Zashchity Rastenij, Leningrad, SSSR (Russian Federation)

    1963-09-15

    Crop-pest control is of major economic importance and demands the aid of the latest advances in science. Radioisotopes and radiation are being employed to increase the efficiency of existing insect pest control. They are extremely valuable, since improvements to existing methods depend on having detailed data on the bioecology, toxicology, and so on. Radioactive labelling of insects has been extremely promising in bioecology; the labelling of grain pests (Eurygaster integriceps Put., Hadena sordida Skh.) and grain-pest parasites (Meniscus agnatus Crow, Pseudogonia cinerascens Rond.) has provided information about their areas of migration, habitats, sizes of population and the feeding habits. The same technique was used to determine the rate of propagation of the Colorado beetle (Leptinotarsa decemlineota Say), which is subject to quarantine controls; subsequently an extermination programme was carried out on the basis of the data obtained. It also provides a valuable means of studying the extremely complex problems of parasitism and predaceousness, in particular intermediate feeding cycles and chemotaxis. The feeding areas of field rodents have been mapped out with the help of a self-labelling, radioactive-bait technique. Pesticides synthesized with radioisotopes have been used in conjunction with radiochromatography, fluorimetry and other techniques to study the highly complex biochemical processes caused to toxicants in plants and insects. It has also been possible to determine the rate of hydrolysis of organic-phosphorus insecticide compounds of the thiphos and metaphos type as a function of the degree of development and the physiological state of plants as well as of environmental conditions. Data have been obtained on the length of time residual quantities of toxicants are retained in agriculture products following different periods of chemical treatment. Radioisotope techniques have yielded information on various metabolic processes exhibiting different

  12. Effect of cultural practices on the incidence and carry over of insect pests in rice-wheat system

    International Nuclear Information System (INIS)

    Ramzan, M.; Akhtar, M.; Hussain, S.

    2008-01-01

    Changes in cultural practices in rice-wheat system like mechanical transplanted rice, broadcasting (parachute method) of rice seedlings, direct seeding of rice, bed planting of rice and wheat and zero-till wheat sowing may affect population of insect pests and their natural enemies. The population of insect pests and their damage intensity on rice and wheat crops were determined for resource conservation technologies in rice-wheat system. Unploughed fallow fields and those planted with berseem are the major over-wintering sites of rice stem borers (RSB). Growing of wheat after rice, either by conventional or zero-tillage minimizes RSB problem. The effect of technological shifts in rice-wheat systems was discussed on leaffolder (LF) and white backed planthopper (WBPH) populations. Conservation tillage might take on preventive management as the diversity and population size of many beneficial organisms, especially soil-inhabiting predators, can be increased. (author)

  13. Monitoring Pest Insect Traps by Means of Low-Power Image Sensor Technologies

    Directory of Open Access Journals (Sweden)

    Juan J. Serrano

    2012-11-01

    Full Text Available Monitoring pest insect populations is currently a key issue in agriculture and forestry protection. At the farm level, human operators typically must perform periodical surveys of the traps disseminated through the field. This is a labor-, time- and cost-consuming activity, in particular for large plantations or large forestry areas, so it would be of great advantage to have an affordable system capable of doing this task automatically in an accurate and a more efficient way. This paper proposes an autonomous monitoring system based on a low-cost image sensor that it is able to capture and send images of the trap contents to a remote control station with the periodicity demanded by the trapping application. Our autonomous monitoring system will be able to cover large areas with very low energy consumption. This issue would be the main key point in our study; since the operational live of the overall monitoring system should be extended to months of continuous operation without any kind of maintenance (i.e., battery replacement. The images delivered by image sensors would be time-stamped and processed in the control station to get the number of individuals found at each trap. All the information would be conveniently stored at the control station, and accessible via Internet by means of available network services at control station (WiFi, WiMax, 3G/4G, etc..

  14. Monitoring Pest Insect Traps by Means of Low-Power Image Sensor Technologies

    Science.gov (United States)

    López, Otoniel; Rach, Miguel Martinez; Migallon, Hector; Malumbres, Manuel P.; Bonastre, Alberto; Serrano, Juan J.

    2012-01-01

    Monitoring pest insect populations is currently a key issue in agriculture and forestry protection. At the farm level, human operators typically must perform periodical surveys of the traps disseminated through the field. This is a labor-, time- and cost-consuming activity, in particular for large plantations or large forestry areas, so it would be of great advantage to have an affordable system capable of doing this task automatically in an accurate and a more efficient way. This paper proposes an autonomous monitoring system based on a low-cost image sensor that it is able to capture and send images of the trap contents to a remote control station with the periodicity demanded by the trapping application. Our autonomous monitoring system will be able to cover large areas with very low energy consumption. This issue would be the main key point in our study; since the operational live of the overall monitoring system should be extended to months of continuous operation without any kind of maintenance (i.e., battery replacement). The images delivered by image sensors would be time-stamped and processed in the control station to get the number of individuals found at each trap. All the information would be conveniently stored at the control station, and accessible via Internet by means of available network services at control station (WiFi, WiMax, 3G/4G, etc.). PMID:23202232

  15. The Phorbol Ester Fraction from Jatropha curcas Seed Oil: Potential and Limits for Crop Protection against Insect Pests

    Science.gov (United States)

    Ratnadass, Alain; Wink, Michael

    2012-01-01

    The physic nut shrub, Jatropha curcas (Euphorbiaceae), has been considered as a “miracle tree”, particularly as a source of alternate fuel. Various extracts of the plant have been reported to have insecticidal/acaricidal or molluscicidal/anthelminthic activities on vectors of medical or veterinary interest or on agricultural or non-agricultural pests. Among those extracts, the phorbol ester fraction from seed oil has been reported as a promising candidate for use as a plant-derived protectant of a variety of crops, from a range of pre-harvest and post-harvest insect pests. However, such extracts have not been widely used, despite the “boom” in the development of the crop in the tropics during recent years, and societal concerns about overuse of systemic chemical pesticides. There are many potential explanations to such a lack of use of Jatropha insecticidal extracts. On the one hand, the application of extracts potentially harmful to human health on stored food grain, might not be relevant. The problem of decomposition of phorbol esters and other compounds toxic to crop pests in the field needing further evaluation before such extracts can be widely used, may also be a partial explanation. High variability of phorbol ester content and hence of insecticidal activity among physic nut cultivars/ecotypes may be another. Phytotoxicity to crops may be further limitation. Apparent obstacles to a wider application of such extracts are the costs and problems involved with registration and legal approval. On the other hand, more studies should be conducted on molluscicidal activity on slugs and land snails which are major pests of crops, particularly in conservation agriculture systems. Further evaluation of toxicity to natural enemies of insect pests and studies on other beneficial insects such as pollinators are also needed. PMID:23203190

  16. The phorbol ester fraction from Jatropha curcas seed oil: potential and limits for crop protection against insect pests.

    Science.gov (United States)

    Ratnadass, Alain; Wink, Michael

    2012-11-30

    The physic nut shrub, Jatropha curcas (Euphorbiaceae), has been considered as a "miracle tree", particularly as a source of alternate fuel. Various extracts of the plant have been reported to have insecticidal/acaricidal or molluscicidal/anthelminthic activities on vectors of medical or veterinary interest or on agricultural or non-agricultural pests. Among those extracts, the phorbol ester fraction from seed oil has been reported as a promising candidate for use as a plant-derived protectant of a variety of crops, from a range of pre-harvest and post-harvest insect pests. However, such extracts have not been widely used, despite the "boom" in the development of the crop in the tropics during recent years, and societal concerns about overuse of systemic chemical pesticides. There are many potential explanations to such a lack of use of Jatropha insecticidal extracts. On the one hand, the application of extracts potentially harmful to human health on stored food grain, might not be relevant. The problem of decomposition of phorbol esters and other compounds toxic to crop pests in the field needing further evaluation before such extracts can be widely used, may also be a partial explanation. High variability of phorbol ester content and hence of insecticidal activity among physic nut cultivars/ecotypes may be another. Phytotoxicity to crops may be further limitation. Apparent obstacles to a wider application of such extracts are the costs and problems involved with registration and legal approval. On the other hand, more studies should be conducted on molluscicidal activity on slugs and land snails which are major pests of crops, particularly in conservation agriculture systems. Further evaluation of toxicity to natural enemies of insect pests and studies on other beneficial insects such as pollinators are also needed.

  17. Plant training for induced defense against insect pests: a promising tool for integrated pest management in cotton.

    Science.gov (United States)

    Llandres, Ana L; Almohamad, Raki; Brévault, Thierry; Renou, Alain; Téréta, Idrissa; Jean, Janine; Goebel, François-Regis

    2018-04-17

    Enhancing cotton pest management using plant natural defenses has been described as a promising way to improve the management of crop pests. We here reviewed different studies on cotton growing systems to illustrate how an ancient technique called plant training, which includes plant topping and pruning, may contribute to this goal. Based on examples from cotton crops, we show how trained plants could be promoted to a state of enhanced defense that causes faster and more robust activation of their defense responses. We revisit agricultural benefits associated to this technique in cotton crops, with a focus on its potential as a supplementary tool for Integrated Pest Management (IPM). Particularly, we examine its role in mediating plant interactions with conspecific neighboring plants, pests and associated natural enemies. We propose a new IPM tool, plant training for induced defense, which involves inducing plant defense by artificial injuries. Experimental evidence from various studies shows that cotton training is a promising technique, particularly for smallholders, which can be used as part of an IPM program to significantly reduce insecticide use and to improve productivity in cotton farming. This article is protected by copyright. All rights reserved.

  18. COMPARATIVE EFFICACY OF SYNTHETIC AND BOTANICAL INSECTICIDES AGAINST SUCKING INSECT PEST AND THEIR NATURAL ENEMIES ON COTTON CROP

    Directory of Open Access Journals (Sweden)

    M. A. Baker

    2016-08-01

    Full Text Available The Synthetic and botanical insecticides are relatively safer for environment and beneficial insects. The study was conducted in Rahim Yar Khan during the cotton cropping season 2014 to evaluate the comparative efficacy of two Synthetic insecticides i.e. Nitenpyram (Jasper 10% SL and Pyriproxyfen (Bruce 10.8% EC and two botanical extracts of Calotropic procera and Azadirachta indica, against sucking insect pest complex of cotton and their natural enemies. Upon reaching economic thresholds, the recommended field doses of all the insecticides were applied on cotton cultivar MNH-886. Data against sucking pests and their natural enemies was recorded 24 hours prior to insecticidal application and then 24, 48, 72 and 96 hours after insecticidal application. Results revealed that Nitenpyram was much toxic against sucking pests followed by Pyriproxyfen as compared to two botanical extracts. On the other hand, the synthetic insecticides did not prove safer for natural enemies as compared to botanical extracts. It was concluded that as an Integrated Pest Management (IPM strategy, botanical extracts can be used at low infestation levels so that ecosystem service of biological control may be sustained.

  19. Using Trichogramma Westwood (Hymenoptera: Trichogrammatidae) for insect pest biological control in cotton crops: an Australian perspective

    Science.gov (United States)

    Trichogramma Westwood egg parasitoids alone generally fail to suppress heliothine pests when released in established cotton growing regions. Factors hindering their success include indiscriminate use of detrimental insecticides, compensation for minimal pest larval hatch due to their activity via re...

  20. 1978 Insect Pest Management Guide: Field and Forage Crops. Circular 899.

    Science.gov (United States)

    Illinois Univ., Urbana. Cooperative Extension Service.

    This circular lists suggested uses of insecticides for the control of field crop pests. Suggestions are given for selection, dosage and application of insecticides to control pests in field corn, alfalfa and clover, small grains, soybeans and grain sorghum. (CS)

  1. 9 CFR 3.84 - Cleaning, sanitization, housekeeping, and pest control.

    Science.gov (United States)

    2010-01-01

    ..., and pest control. 3.84 Section 3.84 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION..., sanitization, housekeeping, and pest control. (a) Cleaning of primary enclosures. Excreta and food waste must... from becoming soiled, and to reduce disease hazards, insects, pests, and odors. Dirt floors, floors...

  2. 9 CFR 3.11 - Cleaning, sanitization, housekeeping, and pest control.

    Science.gov (United States)

    2010-01-01

    ..., and pest control. 3.11 Section 3.11 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION..., sanitization, housekeeping, and pest control. (a) Cleaning of primary enclosures. Excreta and food waste must... contained in the primary enclosures, and to reduce disease hazards, insects, pests and odors. When steam or...

  3. Guidelines for the use of mathematics in operational area-wide integrated pest management programs using the sterile insect technique with a special focus on Tephritid Fruit Flies

    Science.gov (United States)

    Pest control managers can benefit from using mathematical approaches, particularly models, when implementing area-wide pest control programs that include sterile insect technique (SIT), especially when these are used to calculate required rates of sterile releases to result in suppression or eradica...

  4. Protection of Grain Products from Sitophilus oryzae (L.) Contamination by Anti-Insect Pest Repellent Sachet Containing Allyl Mercaptan Microcapsule.

    Science.gov (United States)

    Chang, Yoonjee; Lee, Soo-Hyun; Na, Ja Hyun; Chang, Pahn-Shick; Han, Jaejoon

    2017-11-01

    The purpose of this study was to develop an anti-insect pest repellent sachet to prevent Sitophilus oryzae (L.) (Coleoptera: Curculionidae) contamination in grain packaging. The anti-insect pest activities of essential oils (EOs) from garlic (Allium Sativum), ginger (Zingiber Officinalis), black pepper (Piper nigrum), onion (Allium cepa), and fennel (Foeniculum vulgare) as well as major compounds (allyl disulfide, AD; allyl mercaptan, AM) isolated from of garlic and onion (AD and AM) were measured against S. oryzae. The results revealed that garlic EO, onion EO, AD, and AM showed strong fumigant insecticidal activities. Among these, AM showed the highest acetylcholinesterase (AChE) inhibition rate, indicating that the fumigation insecticidal efficacy of AM is related with its AChE inhibition ability. Subsequently, the microcapsules were produced with a high efficiency (80.02%) by using AM as a core material and rice flour as a wall material. Finally, sachet composed of rice flour microcapsule containing 2% AM (RAM) was produced. Repellent assay was performed to measure anti-insect pest ability of the RAM sachet, showed remarkable repelling effect within 48 h both in the presence or absence of attractant. In a release profile of RAM sachet, it was expected to last over 20 mo during the distribution period of brown rice. Moreover, RAM sachet showed no undesirable changes to the sensory properties of the rice both before and after cooking. Taken together, these results suggest that the newly developed RAM sachet could be used as a packaging material to protect grain products from S. oryzae contamination. The rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae), causes damages to stored products and its contamination in grain products has become a major problem in cereal market. To preserve brown rice, an anti-insect pest repellent sachet containing 2% allyl mercaptan was newly developed and it showed remarkable repellent abilities against S. oryzae. It

  5. Rapid genetic turnover in populations of the insect pest Bemisia tabaci Middle East: Asia Minor 1 in an agricultural landscape.

    Science.gov (United States)

    Dinsdale, A; Schellhorn, N A; De Barro, P; Buckley, Y M; Riginos, C

    2012-10-01

    Organisms differ greatly in dispersal ability, and landscapes differ in amenability to an organism's movement. Thus, landscape structure and heterogeneity can affect genetic composition of populations. While many agricultural pests are known for their ability to disperse rapidly, it is unclear how fast and over what spatial scale insect pests might respond to the temporally dynamic agricultural landscapes they inhabit. We used population genetic analyses of a severe crop pest, a member of the Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidea) cryptic species complex known as Middle East-Asia Minor 1 (commonly known as biotype B), to estimate spatial and temporal genetic diversity over four months of the 2006-2007 summer growing season. We examined 559 individuals from eight sites, which were scored for eight microsatellite loci. Temporal genetic structure greatly exceeded spatial structure. There was significant temporal change in local genetic composition from the beginning to the end of the season accompanied by heterozygote deficits and inbreeding. This temporal structure suggests entire cohorts of pests can occupy a large and variable agricultural landscape but are rapidly replaced. These rapid genetic fluctuations reinforce the concept that agricultural landscapes are dynamic mosaics in time and space and may contribute to better decisions for pest and insecticide resistance management.

  6. Analysis of variation in virulence of Beauveria bassiana against insect pests of pigeonpea using qPCR.

    Science.gov (United States)

    Senthilraja, Govindasamy; Anand, Theerthagiri; Mohankumar, Subbarayalu; Raguchander, Thiruvengadam; Samiyappan, Ramasamy

    2018-03-01

    Beauveria bassiana is a broad spectrum microbial bioagent used for the control of agriculturally important insect pests. However, in our experiments, two virulent isolates of B. bassiana (B2 and B10) showed specific preference toward Maruca vitrata and Helicoverpa armigera of pigeonpea. To better understand this feature, we developed a qPCR assay to quantify the chitinase (virulence factor) of B. bassiana during the infection process. Isolates of B. bassiana were grown on insect cuticle amended medium and minimal medium (without insect cuticle) to assess the induction of chitinase. Our results revealed a positive correlation between expression of chitinase by B. bassiana and the substrates (with or without cuticles of M. vitrata and H. armigera) used. This study showcases the methodology to quantify the chitinase and analysis of variation in virulence of B. bassiana (B2 and B10) against M. vitrata and H. armigera. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Delivery of Nucleic Acids through Embryo Microinjection in the Worldwide Agricultural Pest Insect, Ceratitis capitata.

    Science.gov (United States)

    Gabrieli, Paolo; Scolari, Francesca

    2016-10-01

    The Mediterranean fruit fly (medfly) Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) is a pest species with extremely high agricultural relevance. This is due to its reproductive behavior: females damage the external surface of fruits and vegetables when they lay eggs and the hatched larvae feed on their pulp. Wild C. capitata populations are traditionally controlled through insecticide spraying and/or eco-friendly approaches, the most successful being the Sterile Insect Technique (SIT). The SIT relies on mass-rearing, radiation-based sterilization and field release of males that retain their capacity to mate but are not able to generate fertile progeny. The advent and the subsequent rapid development of biotechnological tools, together with the availability of the medfly genome sequence, has greatly boosted our understanding of the biology of this species. This favored the proliferation of new strategies for genome manipulation, which can be applied to population control. In this context, embryo microinjection plays a dual role in expanding the toolbox for medfly control. The ability to interfere with the function of genes that regulate key biological processes, indeed, expands our understanding of the molecular machinery underlying medfly invasiveness. Furthermore, the ability to achieve germ-line transformation facilitates the production of multiple transgenic strains that can be tested for future field applications in novel SIT settings. Indeed, genetic manipulation can be used to confer desirable traits that can, for example, be used to monitor sterile male performance in the field, or that can result in early life-stage lethality. Here we describe a method to microinject nucleic acids into medfly embryos to achieve these two main goals.

  8. Influence of cover crops on insect pests and predators in conservation tillage cotton.

    Science.gov (United States)

    Tillman, Glynn; Schomberg, Harry; Phatak, Sharad; Mullinix, Benjamin; Lachnicht, Sharon; Timper, Patricia; Olson, Dawn

    2004-08-01

    In fall 2000, an on-farm sustainable agricultural research project was established for cotton, Gossypium hirsutum L., in Tift County, Georgia. The objective of our 2-yr research project was to determine the impact of several cover crops on pest and predator insects in cotton. The five cover crop treatments included 1) cereal rye, Secale cereale L., a standard grass cover crop; 2) crimson clover, Trifolium incarnatum L., a standard legume cover crop; 3) a legume mixture of balansa clover, Trifolium michelianum Savi; crimson clover; and hairy vetch, Vicia villosa Roth; 4) a legume mixture + rye combination; and 5) no cover crop in conventionally tilled fields. Three main groups or species of pests were collected in cover crops and cotton: 1) the heliothines Heliothis virescens (F.) and Helicoverpa zea (Boddie); 2) the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois); and 3) stink bugs. The main stink bugs collected were the southern green stink bug, Nezara viridula (L.); the brown stink bug, Euschistus servus (Say); and the green stink bug, Acrosternum hilare (Say). Cotton aphids, Aphis gossypii Glover, were collected only on cotton. For both years of the study, the heliothines were the only pests that exceeded their economic threshold in cotton, and the number of times this threshold was exceeded in cotton was higher in control cotton than in crimson clover and rye cotton. Heliothine predators and aphidophagous lady beetles occurred in cover crops and cotton during both years of the experiment. Geocoris punctipes (Say), Orius insidiosus (Say), and red imported fire ant, Solenopsis invicta Buren were relatively the most abundant heliothine predators observed. Lady beetles included the convergent lady beetle, Hippodamia convergens Guérin-Méneville; the sevenspotted lady beetle, Coccinella septempunctata L.; spotted lady beetle, Coleomegilla maculata (DeGeer); and the multicolored Asian lady beetle, Harmonia axyridis (Pallas). Density of G. punctipes was

  9. Draft genome of the most devastating insect pest of coffee worldwide: the coffee berry borer, Hypothenemus hampei

    KAUST Repository

    Vega, Fernando E.

    2015-07-31

    The coffee berry borer, Hypothenemus hampei, is the most economically important insect pest of coffee worldwide. We present an analysis of the draft genome of the coffee berry borer, the third genome for a Coleopteran species. The genome size is ca. 163 Mb with 19,222 predicted protein-coding genes. Analysis was focused on genes involved in primary digestion as well as gene families involved in detoxification of plant defense molecules and insecticides, such as carboxylesterases, cytochrome P450, gluthathione S-transferases, ATP-binding cassette transporters, and a gene that confers resistance to the insecticide dieldrin. A broad range of enzymes capable of degrading complex polysaccharides were identified. We also evaluated the pathogen defense system and found homologs to antimicrobial genes reported in the Drosophila genome. Ten cases of horizontal gene transfer were identified with evidence for expression, integration into the H. hampei genome, and phylogenetic evidence that the sequences are more closely related to bacterial rather than eukaryotic genes. The draft genome analysis broadly expands our knowledge on the biology of a devastating tropical insect pest and suggests new pest management strategies.

  10. Draft genome of the most devastating insect pest of coffee worldwide: the coffee berry borer, Hypothenemus hampei

    KAUST Repository

    Vega, Fernando E.; Brown, Stuart M.; Chen, Hao; Shen, Eric; Nair, Mridul B.; Ceja-Navarro, Javier A.; Brodie, Eoin L.; Infante, Francisco; Dowd, Patrick F.; Pain, Arnab

    2015-01-01

    The coffee berry borer, Hypothenemus hampei, is the most economically important insect pest of coffee worldwide. We present an analysis of the draft genome of the coffee berry borer, the third genome for a Coleopteran species. The genome size is ca. 163 Mb with 19,222 predicted protein-coding genes. Analysis was focused on genes involved in primary digestion as well as gene families involved in detoxification of plant defense molecules and insecticides, such as carboxylesterases, cytochrome P450, gluthathione S-transferases, ATP-binding cassette transporters, and a gene that confers resistance to the insecticide dieldrin. A broad range of enzymes capable of degrading complex polysaccharides were identified. We also evaluated the pathogen defense system and found homologs to antimicrobial genes reported in the Drosophila genome. Ten cases of horizontal gene transfer were identified with evidence for expression, integration into the H. hampei genome, and phylogenetic evidence that the sequences are more closely related to bacterial rather than eukaryotic genes. The draft genome analysis broadly expands our knowledge on the biology of a devastating tropical insect pest and suggests new pest management strategies.

  11. BIOLOGICAL CONTROL - AS A MEANS TO CONTROL INSECT PESTS IN AZERBAIJAN

    Directory of Open Access Journals (Sweden)

    Z. M. Mamedov

    2013-01-01

    Full Text Available Two hundreds and twenty species parasites and predators of pests of various agricultures are revealed in Azerbaijan. The complex of entomophages of certain pests of agricultures is studied: 48 species of parasites and predators of Chloridea obsoleta 21 species of entomophages of Pectinophora malvella Hb., over 160 species of entomophages of pests of ozehards and vegetables, 34 species of entomophages of pests of forests. The hundreds species of entomophages and some entomophogenous microbes and antagonists are revealed. Biology and ecology of over 60 species of entomophages and useful microorganisims which are prospective as biological control agents are studied.

  12. Multifunctional amaranth cystatin inhibits endogenous and digestive insect cysteine endopeptidases: A potential tool to prevent proteolysis and for the control of insect pests.

    Science.gov (United States)

    Valdés-Rodríguez, Silvia; Galván-Ramírez, Juan Pablo; Guerrero-Rangel, Armando; Cedro-Tanda, Alberto

    2015-01-01

    In a previous study, the amaranth cystatin was characterized. This cystatin is believed to provide protection from abiotic stress because its transcription is induced in response to heat, drought, and salinity. It has also been shown that recombinant amaranth cystatin inhibits bromelain, ficin, and cysteine endopeptidases from fungal sources and also inhibits the growth of phytopathogenic fungi. In the present study, evidence is presented regarding the potential function of amaranth cystatin as a regulator of endogenous proteinases and insect digestive proteinases. During amaranth germination and seedling growth, different proteolytic profiles were observed at different pH levels in gelatin-containing SDS-PAGE. Most of the proteolytic enzymes detected at pH 4.5 were mainly inhibited by trans-epoxysuccinyl-leucyl amido(4-guanidino)butane (E-64) and the purified recombinant amaranth cystatin. Furthermore, the recombinant amaranth cystatin was active against insect proteinases. In particular, the E-64-sensitive proteolytic digestive enzymes from Callosobruchus maculatus, Zabrotes subfasciatus, and Acanthoscelides obtectus were inhibited by the amaranth cystatin. Taken together, these results suggest multiple roles for cystatin in amaranth, specifically during germination and seedling growth and in the protection of A. hypochondriacus against insect predation. Amaranth cystatin represents a promising tool for diverse applications in the control of insect pest and for preventing undesirable proteolytic activity. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  13. Planting sentinel European trees in eastern Asia as a novel method to identify potential insect pest invaders.

    Directory of Open Access Journals (Sweden)

    Alain Roques

    Full Text Available Quarantine measures to prevent insect invasions tend to focus on well-known pests but a large proportion of the recent invaders were not known to cause significant damage in their native range, or were not even known to science before their introduction. A novel method is proposed to detect new potential pests of woody plants in their region of origin before they are introduced to a new continent. Since Asia is currently considered to be the main supplier of insect invaders to Europe, sentinel trees were planted in China during 2007-2011 as an early warning tool to identify the potential for additional Asian insect species to colonize European trees. Seedlings (1-1.5 m tall of five broadleaved (Quercus petraea, Q. suber, Q. ilex, Fagus sylvatica, and Carpinus betulus and two conifer species (Abies alba and Cupressus sempervirens were planted in blocks of 100 seedlings at two widely separated sites (one in a nursery near Beijing and the other in a forest environment near Fuyang in eastern China, and then regularly surveyed for colonization by insects. A total of 104 insect species, mostly defoliators, were observed on these new hosts, and at least six species were capable of larval development. Although a number of the insects observed were probably incidental feeders, 38 species had more than five colonization events, mostly infesting Q. petraea, and could be considered as being capable of switching to European trees if introduced to Europe. Three years was shown to be an appropriate duration for the experiment, since the rate of colonization then tended to plateau. A majority of the identified species appeared to have switched from agricultural crops and fruit trees rather than from forest trees. Although these results are promising, the method is not appropriate for xylophagous pests and other groups developing on larger trees. Apart from the logistical problems, the identification to species level of the specimens collected was a major

  14. Study of Various Extracts of Ayapana triplinervis for their Potential in Controlling Three Insect Pests of Horticultural Crops

    Directory of Open Access Journals (Sweden)

    Lalljee, B.

    2008-01-01

    Full Text Available Chemical groups of Ayapana triplinervis, extracted successively with hexane, petroleum ether, methanol, chloroform: methanol (1:1, and chloroform: methanol (4:1 were studied for their effects on Plutella xylostella, Crocidolomia binotalis and Myzus persicae, three serious pests of horticultural crops in Mauritius. The most bioactive extracts were further fractionated into groups using Thin Layer Chromatography, and seven of those exhibiting strongest activity were tested on each of the three test insects. Results showed that the alkaloids and tannins exhibited greatest feeding deterrence in P. xylostella and C. binotalis, followed by phenols and flavonoids. In the case of M. persicae, A. triplinervis extracts disrupted growth and development of the nymphs, had significant pest control properties, and were good candidates for further study on their potential as botanical pesticides, in the context of an organic farming/ sustainable agriculture system, as an environmentallyfriendly alternative to synthetic insecticides.

  15. The Management of Insect Pests in Australian Cotton: An Evolving Story.

    Science.gov (United States)

    Wilson, Lewis J; Whitehouse, Mary E A; Herron, Grant A

    2018-01-07

    The Australian cotton industry progressively embraced integrated pest management (IPM) to alleviate escalating insecticide resistance issues. A systems IPM approach was used with core principles that were built around pest ecology/biology and insecticide resistance management; together, these were integrated into a flexible, year-round approach that facilitated easy incorporation of new science, strategies, and pests. The approach emphasized both strategic and tactical elements to reduce pest abundance and rationalize decisions about pest control, with insecticides as a last resort. Industry involvement in developing the approach was vital to embedding IPM within the farming system. Adoption of IPM was facilitated by the introduction of Bt cotton, availability of selective insecticides, economic validation, and an industry-wide extension campaign. Surveys indicate IPM is now embedded in industry, confirming the effectiveness of an industry-led, backed-by-science approach. The amount of insecticide active ingredient applied per hectare against pests has also declined dramatically. Though challenges remain, pest management has transitioned from reactively attempting to eradicate pests from fields to proactively managing them year-round, considering the farm within the wider landscape.

  16. Analysis of area-wide management of insect pests based on sampling

    Science.gov (United States)

    David W. Onstad; Mark S. Sisterson

    2011-01-01

    The control of invasive species greatly depends on area-wide pest management (AWPM) in heterogeneous landscapes. Decisions about when and where to treat a population with pesticide are based on sampling pest abundance. One of the challenges of AWPM is sampling large areas with limited funds to cover the cost of sampling. Additionally, AWPM programs are often confronted...

  17. Insects & Other Arthropods. Animal Life in Action[TM]. Schlessinger Science Library. [Videotape].

    Science.gov (United States)

    2000

    This 23-minute videotape for grades 5-8, presents the myriad of animal life that exists on the planet. Students can view and perform experiments and investigations that help explain animal traits and habits. They also learn that there are more species of insects than any other animal class in the world. Insects are incredible creatures with many…

  18. 19 CFR 12.31 - Plant pests.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Plant pests. 12.31 Section 12.31 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.31 Plant pests. The importation in a...

  19. Management of a stage-structured insect pest: an application of approximate optimization.

    Science.gov (United States)

    Hackett, Sean C; Bonsall, Michael B

    2018-06-01

    Ecological decision problems frequently require the optimization of a sequence of actions over time where actions may have both immediate and downstream effects. Dynamic programming can solve such problems only if the dimensionality is sufficiently low. Approximate dynamic programming (ADP) provides a suite of methods applicable to problems of arbitrary complexity at the expense of guaranteed optimality. The most easily generalized method is the look-ahead policy: a brute-force algorithm that identifies reasonable actions by constructing and solving a series of temporally truncated approximations of the full problem over a defined planning horizon. We develop and apply this approach to a pest management problem inspired by the Mediterranean fruit fly, Ceratitis capitata. The model aims to minimize the cumulative costs of management actions and medfly-induced losses over a single 16-week season. The medfly population is stage-structured and grows continuously while management decisions are made at discrete, weekly intervals. For each week, the model chooses between inaction, insecticide application, or one of six sterile insect release ratios. Look-ahead policy performance is evaluated over a range of planning horizons, two levels of crop susceptibility to medfly and three levels of pesticide persistence. In all cases, the actions proposed by the look-ahead policy are contrasted to those of a myopic policy that minimizes costs over only the current week. We find that look-ahead policies always out-performed a myopic policy and decision quality is sensitive to the temporal distribution of costs relative to the planning horizon: it is beneficial to extend the planning horizon when it excludes pertinent costs. However, longer planning horizons may reduce decision quality when major costs are resolved imminently. ADP methods such as the look-ahead-policy-based approach developed here render questions intractable to dynamic programming amenable to inference but should be

  20. Species delimitation in asexual insects of economic importance: The case of black scale (Parasaissetia nigra, a cosmopolitan parthenogenetic pest scale insect.

    Directory of Open Access Journals (Sweden)

    Yen-Po Lin

    Full Text Available Asexual lineages provide a challenge to species delimitation because species concepts either have little biological meaning for them or are arbitrary, since every individual is monophyletic and reproductively isolated from all other individuals. However, recognition and naming of asexual species is important to conservation and economic applications. Some scale insects are widespread and polyphagous pests of plants, and several species have been found to comprise cryptic species complexes. Parasaissetia nigra (Nietner, 1861 (Hemiptera: Coccidae is a parthenogenetic, cosmopolitan and polyphagous pest that feeds on plant species from more than 80 families. Here, we implement multiple approaches to assess the species status of P. nigra, including coalescence-based analyses of mitochondrial and nuclear genes, and ecological niche modelling. Our results indicate that the sampled specimens of P. nigra should be considered to comprise at least two ecotypes (or "species" that are ecologically differentiated, particularly in relation to temperature and moisture. The presence of more than one ecotype under the current concept of P. nigra has implications for biosecurity because the geographic extent of each type is not fully known: some countries may currently have only one of the biotypes. Introduction of additional lineages could expand the geographic extent of damage by the pest in some countries.

  1. First results of the application of a new Neemazal powder formulation in hydroponics against different pest insects.

    Science.gov (United States)

    Hummel, Edmund; Kleeberg, Hubertus

    2002-01-01

    NeemAzal PC (0.5% Azadirachtin) is a new standardised powder formulation from the seed kernels of the tropical Neem tree (Azadirachta indica A. Juss) with an inert carrier. First experiments with beans--as a model-system for hydroponics--show that active ingredient is taken up by the plants through the roots and is transported efficiently with the plant sap to the leaves. After application of NeemAzal PC solution (0.01-1%) to the roots sucking (Aphis fabae Hom., Aphididae) and free feeding (Heliothis armigera Lep., Noctuidae) pest insects can be controlled efficiently. The effects are concentration and time dependent.

  2. Recent trends on sterile insect technique and area-wide integrated pest management. Economic feasibility, control projects, farmer organization and Bactrocera dorsalis complex control study

    International Nuclear Information System (INIS)

    2003-03-01

    We have invited professional papers from over the world, including Okinawa, for compilation of recent trends on Sterile Insect Techniques and Area-Wide Integrated Pest Management to further pursue environment friendly pest insects control measures in agricultural production in the Asia-Pacific region. Pest insects such as the tephritid fruit flies have long been and are still today causing serious damage to agricultural products in the Asia-Pacific region and farmers in the region apply such insecticides that are no longer allowed or being subjected to strict usage control in Japan. This, in return, may endanger the health of the very farmers, food safety and the ecosystem itself. The purpose of this report is, therefore, to clarify keys for technology transfer of so called SIT/AWIPM to potential recipients engaged in agricultural production in the region. This report focused on several topics, which make up important parts for the effective Sterile Insect Technique and Area-Wide Integrated Pest Management: economic feasibility; pest insects control projects; farmers' education; research progress in Bactrocera dorsalis complex issues specific to the Asia-Pacific region. The 12 of the papers are indexed individually. (J.P.N.)

  3. [Research progress in chemical communication among insect-resistant genetically modified plants, insect pests and natural enemies].

    Science.gov (United States)

    Liu, Qing-Song; Li, Yun-He; Chen, Xiu-Ping; Peng, Yu-Fa

    2014-08-01

    Semiochemicals released by plants or insects play an important role in the communication among plants, phytophagous insects and their natural enemies. They thus form a chemical information network which regulates intra- and inter-specific behaviors and sustains the composition and structure of plant and insect communities. The application of insect-resistant genetically modified (IRGM) crops may affect the chemical communication within and among the tritrophic levels, and thus cause disturbances to the biotic community structure and the stability of the farmland ecosystem. This has raised concerns about the environmental safety of IRGM crops and triggered research worldwide. In the current article we provided a brief summary of the chemical communication among plants, herbivores and natural enemies; analyzed the potential of IRGM crops to affect the chemical communication between plants and arthropods and the related mechanisms; and discussed the current research progress and the future prospects in this field. We hope that this will promote the research in this field by Chinese scientists and increase our understanding of the potential effects of growing of IRGM crops on the arthropod community structure.

  4. Nanoinsecticidas: Nuevas perspectivas para el control de plagas Nanoinsecticides: New perspectives on insect pest control

    Directory of Open Access Journals (Sweden)

    Teodoro Stadler

    2010-12-01

    nanoinsecticides in pest management. For example, nanostructured alumina has been shown to have insecticidal properties, and it possesses some of the characteristics of an ideal insecticide, given that it is a natural product, not reactive, economical, with reduced probabilities of generating resistance in insects, and it is more effective than other commercially available insecticidal dusts. The current use of nanotechnology in a wide array of fields and products as well as the recent discovery of their potential in crop protection suggests that nanomaterials have a great potential for development of new products that will impact agriculture. Given the recent and widespread use of nanomaterials, there is an urgent need to study the impact of these products on human health and non target organisms, as well as to research more efficient and safer delivery technologies. The current levels of application of nanoparticles and the expected developments to come, suggest that nanotechnology will have a direct impact on the evolution of pest management practices in agriculture.

  5. Pest control: A modelling approach. Comment on “Multiscale approach to pest insect monitoring: Random walks, pattern formation, synchronization, and networks” by S. Petrovskii, N. Petrovskaya and D. Bearup

    Science.gov (United States)

    Tyson, Rebecca C.

    2014-09-01

    Successful food production results in the delivery to market of beautiful produce, free of damage from insects. All of that produce however, is an excellent and plentiful food source, and nature has evolved a multitude of insects that compete with humans for access. There exist a number of management strategies to combat pests, including traditional crop rotation and companion planting techniques, as well as more sophisticated techniques including mating disruption using pheromones and the application of chemical sprays. Chemical sprays are extremely effective, and are in widespread use around the globe [1,12,20]. Indeed, pesticides are the dominant form of pest management in current use [10,20].

  6. Reducing losses inflicted by insect pests on cashew, using weaver ants as a biological control agent

    DEFF Research Database (Denmark)

    Anato, Florence; Wargui, Rosine; Sinzogan, Antonio

    2015-01-01

    BACKGROUND: Cashew (Anacardium occidentale Linnaeus) is the largest agricultural export product in Benin. However, yields and quality are lost due to inefficient pest control. Weaver ants (Oecophylla spp.) may control pests in this crop as they eat and deter pests. In Benin, cashew pest damages......, nut quality and yield were compared among: (i) trees with weaver ant (Oecophylla longinoda Latreille), (ii) trees where weaver ants were fed sugar, (iii) IPM trees with weaver ants combined with GF-120 (a natural insecticide), and (iv) control trees receiving no control measures. RESULTS: Thrips...... damages on nuts were higher than other damage symptoms and significantly lower on control trees compared to other treatments. Percentage of first quality nuts was higher in the control compared to ants treatments, but not different from the IPM-treatment. However, compared to the control treatment, ants...

  7. Structure elucidation of some insect pheromones : a contribution to the development of selective pest control agents

    NARCIS (Netherlands)

    Persoons, C.J.

    1977-01-01

    The use of pheromones is one of the methods currently being investigated intensively as an alternative method of insect control. The various ways in which pheromones might be used in insect control programmes are briefly discussed in Chapter 1.

    Chapter 2 gives a detailed description of the

  8. The trends and future of biotechnology crops for insect pest control ...

    African Journals Online (AJOL)

    Biotech crops, including those that are genetically modified (GM) with Bacillus thuringiensis (Bt) endotoxins for insect resistance, have been cultivated commercially and adopted in steadily increasing numbers of countries over the past 14 years. This review discusses the current status of insect resistant transgenic crops and ...

  9. Prospects of using Metarhizium anisopliae to check the breeding of insect pest, Oryctes rhinoceros L. in coconut leaf vermicomposting sites.

    Science.gov (United States)

    Gopal, Murali; Gupta, Alka; Thomas, George V

    2006-10-01

    During vermicomposting of coconut leaves by the earthworm Eudrilus sp., Oryctes rhinoceros L. (rhinoceros beetle), an insect pest of palms, was found to breed in the decomposing organic material. Metarhizium anisopliae var. major was tried as a biocontrol agent for management of this pest. The effect of pathogen at spore loads of 10(3), 10(4) and 10(5) per 10 g of substrate was tested in laboratory on Eudrilus sp. kept with O. rhinoceros grubs and on Eudrilus sp. alone for the pathogenic capability of the fungus on the pest and its possible toxicity towards the vermin. The efficacy of the entomopathogen was also tested in the field in vermicomposting tanks. In laboratory bioassay, 100% mycosis of O. rhinoceros grubs could be obtained while the entomopathogen had no toxic effect on the earthworms. There was a positive change in the number and weight of the earthworms on treatment with M. anisopliae. In the field, application of M. anisopliae reduced O. rhinoceros grubs in the vermicomposting tanks upto an extent of 72%. In conclusion, M. anisopliae could effectively control O. rhinoceros in vermicomposting sites and was non-hazardous to the vermicomposting process as well as the Eudrilus sp.

  10. An Insecticide Further Enhances Experience-Dependent Increased Behavioural Responses to Sex Pheromone in a Pest Insect.

    Science.gov (United States)

    Abrieux, Antoine; Mhamdi, Amel; Rabhi, Kaouther K; Egon, Julie; Debernard, Stéphane; Duportets, Line; Tricoire-Leignel, Hélène; Anton, Sylvia; Gadenne, Christophe

    2016-01-01

    Neonicotinoid insecticides are widely used to protect plants against pest insects, and insecticide residues remaining in the environment affect both target and non-target organisms. Whereas low doses of neonicotinoids have been shown to disturb the behaviour of pollinating insects, recent studies have revealed that a low dose of the neonicotinoid clothianidin can improve behavioural and neuronal sex pheromone responses in a pest insect, the male moth Agrotis ipsilon, and thus potentially improve reproduction. As male moth behaviour depends also on its physiological state and previous experience with sensory signals, we wondered if insecticide effects would be dependent on plasticity of olfactory-guided behaviour. We investigated, using wind tunnel experiments, whether a brief pre-exposure to the sex pheromone could enhance the behavioural response to this important signal in the moth A. ipsilon at different ages (sexually immature and mature males) and after different delays (2 h and 24 h), and if the insecticide clothianidin would interfere with age effects or the potential pre-exposure-effects. Brief pre-exposure to the pheromone induced an age-independent significant increase of sex pheromone responses 24 h later, whereas sex pheromone responses did not increase significantly 2 h after exposure. However, response delays were significantly shorter compared to naïve males already two hours after exposure. Oral treatment with clothianidin increased sex pheromone responses in sexually mature males, confirming previous results, but did not influence responses in young immature males. Males treated with clothianidin after pre-exposure at day 4 responded significantly more to the sex pheromone at day 5 than males treated with clothianidin only and than males pre-exposed only, revealing an additive effect of experience and the insecticide. Plasticity of sensory systems has thus to be taken into account when investigating the effects of sublethal doses of insecticides

  11. An Insecticide Further Enhances Experience-Dependent Increased Behavioural Responses to Sex Pheromone in a Pest Insect.

    Directory of Open Access Journals (Sweden)

    Antoine Abrieux

    Full Text Available Neonicotinoid insecticides are widely used to protect plants against pest insects, and insecticide residues remaining in the environment affect both target and non-target organisms. Whereas low doses of neonicotinoids have been shown to disturb the behaviour of pollinating insects, recent studies have revealed that a low dose of the neonicotinoid clothianidin can improve behavioural and neuronal sex pheromone responses in a pest insect, the male moth Agrotis ipsilon, and thus potentially improve reproduction. As male moth behaviour depends also on its physiological state and previous experience with sensory signals, we wondered if insecticide effects would be dependent on plasticity of olfactory-guided behaviour. We investigated, using wind tunnel experiments, whether a brief pre-exposure to the sex pheromone could enhance the behavioural response to this important signal in the moth A. ipsilon at different ages (sexually immature and mature males and after different delays (2 h and 24 h, and if the insecticide clothianidin would interfere with age effects or the potential pre-exposure-effects. Brief pre-exposure to the pheromone induced an age-independent significant increase of sex pheromone responses 24 h later, whereas sex pheromone responses did not increase significantly 2 h after exposure. However, response delays were significantly shorter compared to naïve males already two hours after exposure. Oral treatment with clothianidin increased sex pheromone responses in sexually mature males, confirming previous results, but did not influence responses in young immature males. Males treated with clothianidin after pre-exposure at day 4 responded significantly more to the sex pheromone at day 5 than males treated with clothianidin only and than males pre-exposed only, revealing an additive effect of experience and the insecticide. Plasticity of sensory systems has thus to be taken into account when investigating the effects of sublethal doses

  12. A simulation approach to assessing sampling strategies for insect pests: an example with the balsam gall midge.

    Directory of Open Access Journals (Sweden)

    R Drew Carleton

    Full Text Available Estimation of pest density is a basic requirement for integrated pest management in agriculture and forestry, and efficiency in density estimation is a common goal. Sequential sampling techniques promise efficient sampling, but their application can involve cumbersome mathematics and/or intensive warm-up sampling when pests have complex within- or between-site distributions. We provide tools for assessing the efficiency of sequential sampling and of alternative, simpler sampling plans, using computer simulation with "pre-sampling" data. We illustrate our approach using data for balsam gall midge (Paradiplosis tumifex attack in Christmas tree farms. Paradiplosis tumifex proved recalcitrant to sequential sampling techniques. Midge distributions could not be fit by a common negative binomial distribution across sites. Local parameterization, using warm-up samples to estimate the clumping parameter k for each site, performed poorly: k estimates were unreliable even for samples of n ∼ 100 trees. These methods were further confounded by significant within-site spatial autocorrelation. Much simpler sampling schemes, involving random or belt-transect sampling to preset sample sizes, were effective and efficient for P. tumifex. Sampling via belt transects (through the longest dimension of a stand was the most efficient, with sample means converging on true mean density for sample sizes of n ∼ 25-40 trees. Pre-sampling and simulation techniques provide a simple method for assessing sampling strategies for estimating insect infestation. We suspect that many pests will resemble P. tumifex in challenging the assumptions of sequential sampling methods. Our software will allow practitioners to optimize sampling strategies before they are brought to real-world applications, while potentially avoiding the need for the cumbersome calculations required for sequential sampling methods.

  13. Influence of entomopathogenic fungus, Metarhizium anisopliae, alone and in combination with diatomaceous earth and thiamethoxam on mortality, progeny production, mycosis, and sporulation of the stored grain insect pests.

    Science.gov (United States)

    Ashraf, Misbah; Farooq, Muhammad; Shakeel, Muhammad; Din, Naima; Hussain, Shahbaz; Saeed, Nadia; Shakeel, Qaiser; Rajput, Nasir Ahmed

    2017-12-01

    The stored grain insects cause great damage to grains under storage conditions. Synthetic insecticides and fumigants are considered as key measures to control these stored grain insect pests. However, the major issue with these chemicals is grain contamination with chemical residues and development of resistance by insect pests to these chemicals. Biological control is considered as a potential alternative to chemical control especially with the use of pathogens, alone or in combination with selective insecticides. The present study was conducted to evaluate the synergism of Metarhizium anisopliae with diatomaceous earth (DE) and thiamethoxam against four insect pests on the stored wheat grains. In the first bioassay, the M. anisopliae was applied at 1.4 × 10 4 and 1.4 × 10 6 conidia/ml alone and in integration with two concentrations (250 and 500 ppm) of tested DE. The tested fungus when combined with DE and thiamethoxam possessed synergistic impact as compared to their individual efficacy. Adult mortality increased with respect to increased exposure interval and doses. In the second bioassay, M. anisopliae was applied at 1.4 × 10 4 conidia/ml individually and in combination with three concentrations (0.50, 0.75, and 1.00 ppm) of thiamethoxam. Results concluded that M. anisopliae integrated with DE and thiamethoxam provides more effective control of stored grain insect pests.

  14. Population-level effects of fitness costs associated with repressible female-lethal transgene insertions in two pest insects.

    Science.gov (United States)

    Harvey-Samuel, Tim; Ant, Thomas; Gong, Hongfei; Morrison, Neil I; Alphey, Luke

    2014-05-01

    Genetic control strategies offer great potential for the sustainable and effective control of insect pests. These strategies involve the field release of transgenic insects with the aim of introducing engineered alleles into wild populations, either permanently or transiently. Their efficacy can therefore be reduced if transgene-associated fitness costs reduce the relative performance of released insects. We describe a method of measuring the fitness costs associated with transgenes by analyzing their evolutionary trajectories when placed in competition with wild-type alleles in replicated cage populations. Using this method, we estimated lifetime fitness costs associated with two repressible female-lethal transgenes in the diamondback moth and olive fly as being acceptable for field suppression programs. Furthermore, using these estimates of genotype-level fitness costs, we were able to project longer-term evolutionary trajectories for the transgenes investigated. Results from these projections demonstrate that although transgene-associated fitness costs will ultimately cause these transgenes to become extinct, even when engineered lethality is repressed, they may persist for varying periods of time before doing so. This implies that tetracycline-mediated transgene field persistence in these strains is unlikely and suggests that realistic estimates of transgene-associated fitness costs may be useful in trialing 'uncoupled' gene drive system components in the field.

  15. Establishment of the cytoplasmic incompatibility-inducing Wolbachia strain wMel in an important agricultural pest insect.

    Science.gov (United States)

    Zhou, Xiao-Fei; Li, Zheng-Xi

    2016-12-16

    The wMel Wolbachia strain was known for cytoplasmic incompatibility (CI)-induction and blocking the transmission of dengue. However, it is unknown whether it can establish and induce CI in a non-dipteran host insect. Here we artificially transferred wMel from Drosophila melanogaster into the whitefly Bemisia tabaci. Fluorescence in situ hybridisation demonstrated that wMel had successfully transfected the new host. Reciprocal crossing was conducted with wMel-transfected and wild-type isofemale lines, indicating that wMel could induce a strong CI without imposing significant cost on host fecundity. We then determined the maternal transmission efficiency of wMel in the offspring generations, showing a fluctuating trend over a period of 12 generations. We thus detected the titre of wMel during different developmental stages and in different generations by using real-time quantitative PCR, revealing a similar fluctuating mode, but it was not significantly correlated with the dynamics of transmission efficiency. These results suggest that wMel can be established in B.tabaci, a distantly related pest insect of agricultural importance; moreover, it can induce a strong CI phenotype in the recipient host insect, suggesting a potential for its use in biological control of B. tabaci.

  16. Highlights of Task Force meeting on irradiation as a quarantine treatment, with particular emphasis on insect pests of fresh fruits and vegetables

    International Nuclear Information System (INIS)

    Feliu, E.; Borheg, I. de

    1991-01-01

    This report highlights the discussions and recommendations of the Meeting on Irradiation as a Quarantine Treatment of Fresh Fruits and Vegetables convened 7-11 January 1991 by the International Consultative Group on Food Irradiation. The topics covered had particular emphasis on the irradiation of insect pests of fresh fruits and vegetables. The meeting concluded that low-dose irradiation can be effective as a plant quarantine treatment against fruit flies, as well as against other insect species and mites

  17. Weaver ants convert pest insects into food — prospects for the rural poor

    DEFF Research Database (Denmark)

    Offenberg, Hans Joachim; Wiwatwitaya, Decha

    2009-01-01

    harvested and eaten. In this way harmful pests are turned into valuable protein food and crops are protected without chemicals. As the weaver ant distribution envelops most of the worlds hunger hot spots this double utilization of ants for increased food production may benefit the people most in ...

  18. Improved quality management to enhance the efficacy of the sterile insect technique for lepidopteran pests

    Science.gov (United States)

    Lepidoptera are among the most severe pests of food and fibre crops in the world and are mainly controlled using broad spectrum insecticides. This does not lead to sustainable control and farmers are demanding alternative control tools which are both effective and friendly to the environment. The st...

  19. Biology and management of insect pests in North American intensively managed hardwood forest systems.

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, David R.; Nebeker, T., E.; Hart, E., R.; Mattson, W., J.

    2005-01-01

    Annu. Rev. Entomol. 50:1-29. Abstract Increasing demand for wood and wood products is putting stress on traditional forest production areas, leading to long-term economic and environmental concerns. Intensively managed hardwood forest systems (IMHFS), grown using conventional agricultural as well as forestry methods, can help alleviate potential problems in natural forest production areas. Although IMHFS can produce more biomass per hectare per year than natural forests, the ecologically simplified, monocultural systems may greatly increase the crops susceptibility to pests. Species in the genera Populus and Salix comprise the greatest acreage in IMHFS in North America, but other species, including Liquidambar styracifua and Platanus occidentalis, are also important. We discuss life histories, realized and potential damage, and management options for the most economically infuential pests that affect these hardwood species. The substantial inherent challenges associated with pest management in the monocultural environments created by IMHFS are reviewed. Finally, we discuss ways to design IMHFS that may reduce their susceptibility to pests, increase their growth and productivity potential, and create a more sustainable environment.

  20. Moving On: Farmer Education in Integrated Insect Pest and Disease Management

    NARCIS (Netherlands)

    Jiggins, J.L.S.; Mancini, F.

    2009-01-01

    This chapter explores intensive hands-on occupational education for farmers in selected European, African, Latin American countries and in south India. An Indian case study of Farmer Field Schools for Integrated Pest and Production Management (IPPM) to ensure food security and livelihood improvement

  1. Vibrational duetting mimics to trap and disrupt mating of the devastating Asian citrus psyllid insect pest

    Science.gov (United States)

    The Asian citrus psyllid (ACP) is the primary vector of a bacterium that produces a devastating disease of citrus, huanglongbing. Efficient surveillance of ACP at low population densities is essential for timely pest management programs. ACP males search for mates on tree branches by producing vibra...

  2. Labeling of Pest Insects Using Radioisotopes to Study Dispersal Pattern, Migration and Estimation of Population Density

    International Nuclear Information System (INIS)

    Singgih Sutrisno

    2008-01-01

    To study insects behaviour in their habitat such as dispersal, migration and flight range, insects are needed to be labelled to trace their movement. One of the most promising labeling methodology for internal labeling is the use of radioisotopes. Radioisotopes that have been used for labeling insects are 3 H, 32 P, 14 Ca, 45 K, 35 S, 59 Fe, 60 Co, and 14 C. Insect labeling with isotopes has more advantages as compared to dyes due to isotopes used for labeling is bonded to the tissue such as 3 H, 32 P, 14 Ca, K, 131 I. Several consideration have to be taken to determine isotopes that will be used in line with the time consuming for experiments. This have to be carried out due to the phenomenon that several isotopes are toxic to insects such as 45 Ca, 59 Fe, 86 Rb, 110 Ag, 115 Cd, and 131 J. Precautions have to be fulfilled for insect radiolabeling which are save to insects, environment, easy to apply, materials are available and acceptable to the public. Radioisotope 32 P with a correct dose is very convenience to be used in such experiments due to its relatively short half live, which is only 14.3 days. If it is an stable isotope it can be kept for a long time so the sample analyzed can be conducted convenience for long periods of time. Stable elements such as Rb can be changed to be radioisotopes by bombardment of neutrons in a nuclear reactor or accelerator. Then the element that has been activated can be identified using solid scintillation counter, multichannel analyzer or can be detected using autoradiography. (author)

  3. Public relations and political support in area-wide integrated pest management programmes that integrate the sterile insect technique

    International Nuclear Information System (INIS)

    Dyck, V.A.; Regidor Fernandez, E.E.; Reyes Flores, J.; Teruya, T.; Barnes, B.; Gomez Riera, P.; Lindquist, D.; Reuben, R.

    2005-01-01

    The public relations component of area-wide integrated pest management (AW-IPM) programmes that integrate the sterile insect technique (SIT) has a large impact on programme success. Full-time professionals should direct public relations activities and secure vital political support from governments and community organizations. Good communication among programme staff, and between programme staff and the public, is required to maintain participation and support, and to keep the work goal-oriented even when some programme activities are controversial. The media can be valuable and effective partners by informing the public about the real facts and activities of a programme, especially if this is done in a non-technical and straightforward way. Ongoing research support improves the programme technology, provides technical credibility on contentious issues, and solves operational problems. Programme failure can result from poor public relations and inadequate public support. (author)

  4. Effect of sunflower climbing bean intercroping system on insect pest incidence and crop productivity

    International Nuclear Information System (INIS)

    Tuey, R.K.; Koros, I.; Wanyonyi, W.

    2001-01-01

    Intercropping of sunflower and climping beans were evaluated for pest incidence and yield advantages during the main season of 2000/2001 at KARI-NPBRC, Njoro. Three sunflower varieties, Fedha, Record, PAN-7553 and three climbing beans varieties, Puebla, Omukingi and Flora were laid out in a complete randomised block design with four replications. Sunflower was spaced at 75 x 30 cm while the climbing beans were spaced at 50 x 37.5 cm. Assessment of pest damage on various treatments commenced 17 days after planting. Results showed that low plant germination was mainly a result of dry weather and taht cutworm damage was insignificant. There was a sunflower x climbing bean variety interaction, which regulated the aphid infestation of the climbing beans. Sunflower variety PAN-7553 recorded significantly (P<0.01) more pecked heads than the other two varieties. (author)

  5. Semiochemicals to monitor insect pests – future opportunities for an effective host plant volatile blend to attract navel orangeworm in pistachio orchards

    Science.gov (United States)

    The navel orangeworm (Amyelois transitella) has been a major insect pest of California tree nut orchards for the past five decades. In particular, almond and pistachio orchards suffer major annual economic damage due to both physical and associated fungal damage caused by navel orangeworm larvae. Un...

  6. Moisture content, insect pests and mycotoxin levels of maize at harvest and post-harvest in the Middle Belt of Ghana

    Science.gov (United States)

    Moisture content, insect pest infestation and mycotoxin contamination of maize are challenges to food safety and security, especially in the tropics where maize is a staple grain. However, very little documentation is available on the impact of these factors on maize in Ghana. This study focused on ...

  7. DETERMINATION OF THE EFFICACY OF BEST ACTION, FURADAN, AND NEEM EMULSION IN THE CONTROL OF MAJOR INSECT PESTS OF COWPEA [Vigna unguiculata (L. WALP

    Directory of Open Access Journals (Sweden)

    2016-11-01

    Full Text Available Field experiments to determine the efficacy of Best Action (30g/litre cypermethrine plus 250g/litre dimethoate as water emulsifiable concentrates, Furadan 10G (carbofuran, Neem emulsion (Azadiracta indica as insecticide treatments in the control of major insect pests of cowpea were conducted in two agro-environments simultaneously in Enugu Area, South Eastern Nigeria in 2014 cropping season using two cowpea varieties (Ife brown, and Potiskum as test crops. The experimental design was a split plot in a randomized compete block (RCB replicated three times. Best Action was more effective in controlling cowpea insect pests, followed by Furandan 10G, and Neem emulsion respectively and their effectiveness was not affected by climatic factors variations in the two agro-environments (Nsukka and Agbani. Ife brown and Potiskum did not significantly resist the attack of major insect pests of cowpea. Insecticides and cowpea varieties did not have a significant interaction effect on the control of major insect pests of cowpea.

  8. Phosphine resistance does not confer cross-resistance to sulfuryl fluoride in four major stored grain insect pests.

    Science.gov (United States)

    Jagadeesan, Rajeswaran; Nayak, Manoj K

    2017-07-01

    Susceptibility to phosphine (PH 3 ) and sulfuryl fluoride (SF) and cross-resistance to SF were evaluated in two life stages (eggs and adults) of key grain insect pests, Rhyzopertha dominca (F.), Sitophilus oryzae (L.), Cryptolestes ferrugineus (Stephens), and Tribolium castaneum (Herbst). This study was performed with an aim to integrate SF into phosphine resistance management programmes in Australia. Characterisation of susceptibility and resistance to phosphine in eggs and adults showed that C. ferrugineus was the most tolerant as well as resistant species. Mortality responses of eggs and adults to SF at 25 °C revealed T. castaneum to be the most tolerant species followed by S. oryzae, C. ferrugineus and R. dominica. A high dose range of SF, 50.8-62.2 mg L -1 over 48 h, representing c (concentration) × t (time) products of 2438-2985 gh m -3 , was required for complete control of eggs of T. castaneum, whereas eggs of the least tolerant R. dominca required only 630 gh m -3 for 48 h (13.13 mg L -1 ). Mortality response of eggs and adults of phosphine-resistant strains to SF in all four species confirmed the lack of cross-resistance to SF. Our research concludes that phosphine resistance does not confer cross-resistance to SF in grain insect pests irrespective of the variation in levels of tolerance to SF itself or resistance to phosphine in their egg and adult stages. While our study confirms that SF has potential as a 'phosphine resistance breaker', the observed higher tolerance in eggs stresses the importance of developing SF fumigation protocols with longer exposure periods. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Construction of a recombinant Bacillus velezensis strain as an integrated control agent against plant diseases and insect pests.

    Science.gov (United States)

    Roh, Jong Yul; Liu, Qin; Choi, Jae Young; Wang, Yong; Shim, Hee Jin; Xu, Hong Guang; Choi, Gyung Ja; Kim, Jin-Cheol; Je, Yeon Ho

    2009-10-01

    To construct a new recombinant strain of Bacillus velezensis that has antifungal and insecticidal activity via the expression of the insecticidal Bacillus thuringiensis crystal protein, a B. thuringiensis expression vector (pHT1K-1Ac) was generated that contained the B. thuringiensis cry1Ac gene under the control of its endogenous promoter in a minimal E. coli-B. thuringiensis shuttle vector (pHT1K). This vector was introduced into a B. velezensis isolate that showed high antifungal activities against several plant diseases, including rice blast (Magnaporthe grisea), rice sheath blight (Rhizotonia solani), tomato gray mold (Botrytis cinerea), tomato late blight (Phytophthora infestans), and wheat leaf rust (Puccinia recondita), by electroporation. The recombinant B. velezensis strain was confirmed by PCR using cry1Ac-specific primers. Additionally, the recombinant strain produced a protein approximately 130 kDa in size and parasporal inclusion bodies similar to B. thuringiensis. The in vivo antifungal activity assay demonstrated that the activity of the recombinant B. velezensis strain was maintained at the same level as that of wild-type B. velezensis. Furthermore, it exhibited high insecticidal activity against a lepidopteran pest, Plutella xylostella, although its activity was lower than that of a recombinant B. thuringiensis strain, whereas wild-type B. velezensis strain did not show any insecticidal activity. These results suggest that this recombinant B. velezensis strain can be used to control harmful insect pests and fungal diseases simultaneously in one crop.

  10. Driving Pest Insect Populations: Agricultural Chemicals Lead to an Adaptive Syndrome in Nilaparvata Lugens Stål (Hemiptera: Delphacidae).

    Science.gov (United States)

    You, Lin-Lin; Wu, You; Xu, Bing; Ding, Jun; Ge, Lin-Quan; Yang, Guo-Qin; Song, Qi-Sheng; Stanley, David; Wu, Jin-Cai

    2016-11-23

    The brown planthopper (BPH) is a devastating pest of rice throughout Asia. In this paper we document the BPH biogeographic range expansion in China over the 20-year period, 1992 to 2012. We posed the hypothesis that the range expansion is due to a syndrome of adaptations to the continuous presence of agricultural chemicals (insecticides and a fungicide) over the last 40 years. With respect to biogeography, BPH ranges have expanded by 13% from 1992 to 1997 and by another 3% from 1997 to 2012. In our view, such expansions may follow primarily from the enhancing effects of JGM, among other agricultural chemicals, and from global warming. JGM treatments led to increased thermotolerance, recorded as decreased mortality under heat stress at 40 ± 1 °C (down from 80% to 55%) and increased fecundity (by 49%) at 34 °C. At the molecular level, JGM treatments led to increased abundances of mRNA encoding Acetyl Co-A carboxylase (Acc) (up 25%) and Hsp70 (up 32%) in experimental BPH. RNAi silencing of Hsp70 and Acc eliminated the JGM effects on fecundity and silencing Hsp70 reduced JGM-induced thermotolerance. Integrated with global climate change scenarios, such syndromes in pest insect species have potential for regional- and global-scale agricultural disasters.

  11. Cost-Benefit Analysis for Biological Control Programs That Targeted Insect Pests of Eucalypts in Urban Landscapes of California.

    Science.gov (United States)

    Paine, T D; Millar, J G; Hanks, L M; Gould, J; Wang, Q; Daane, K; Dahlsten, D L; Mcpherson, E G

    2015-12-01

    As well as being planted for wind breaks, landscape trees, and fuel wood, eucalypts are also widely used as urban street trees in California. They now are besieged by exotic insect herbivores of four different feeding guilds. The objective of the current analysis was to determine the return on investment from biological control programs that have targeted these pests. Independent estimates of the total number of eucalypt street trees in California ranged from a high of 476,527 trees (based on tree inventories from 135 California cities) to a low of 190,666 trees (based on 49 tree inventories). Based on a survey of 3,512 trees, the estimated mean value of an individual eucalypt was US$5,978. Thus, the total value of eucalypt street trees in California ranged from more than US$1.0 billion to more than US$2.8 billion. Biological control programs that targeted pests of eucalypts in California have cost US$2,663,097 in extramural grants and University of California salaries. Consequently, the return derived from protecting the value of this resource through the biological control efforts, per dollar expended, ranged from US$1,070 for the high estimated number of trees to US$428 for the lower estimate. The analyses demonstrate both the tremendous value of urban street trees, and the benefits that stem from successful biological control programs aimed at preserving these trees. Economic analyses such as this, which demonstrate the substantial rates of return from successful biological control of invasive pests, may play a key role in developing both grass-roots and governmental support for future urban biological control efforts. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Impact of climate change on voltinism and prospective diapause induction of a global pest insect--Cydia pomonella (L..

    Directory of Open Access Journals (Sweden)

    Sibylle Stoeckli

    Full Text Available Global warming will lead to earlier beginnings and prolongation of growing seasons in temperate regions and will have pronounced effects on phenology and life-history adaptation in many species. These changes were not easy to simulate for actual phenologies because of the rudimentary temporal (season and spatial (regional resolution of climate model projections. We investigate the effect of climate change on the regional incidence of a pest insect with nearly worldwide distribution and very high potential for adaptation to season length and temperature--the Codling Moth, Cydia pomonella. Seasonal and regional climate change signals were downscaled to the hourly temporal scale of a pest phenology model and the spatial scale of pest habitats using a stochastic weather generator operating at daily scale in combination with a re-sampling approach for simulation of hourly weather data. Under future conditions of increased temperatures (2045-2074, the present risk of below 20% for a pronounced second generation (peak larval emergence in Switzerland will increase to 70-100%. The risk of an additional third generation will increase from presently 0-2% to 100%. We identified a significant two-week shift to earlier dates in phenological stages, such as overwintering adult flight. The relative extent (magnitude of first generation pupae and all later stages will significantly increase. The presence of first generation pupae and later stages will be prolonged. A significant decrease in the length of overlap of first and second generation larval emergence was identified. Such shifts in phenology may induce changes in life-history traits regulating the life cycle. An accordingly life-history adaptation in photoperiodic diapause induction to shorter day-length is expected and would thereby even more increase the risk of an additional generation. With respect to Codling Moth management, the shifts in phenology and voltinism projected here will require

  13. Management of insect pests: Nuclear and related molecular and genetic techniques

    International Nuclear Information System (INIS)

    1993-01-01

    The conference was organized in eight sessions: opening, genetic engineering and molecular biology, genetics, operational programmes, F 1 sterility and insect behaviour, biocontrol, research and development on the tsetse fly, and quarantine. The 64 individual contributions have been indexed separately for INIS. Refs, figs and tabs

  14. Low cost production of nematodes for biological control of insect pests

    Science.gov (United States)

    Entomopathogenic nematodes are produced in two ways: in artificial media using liquid or solid fermentation methods (in vitro) or by mass producing insect hosts to be artificially exposed to mass infection by nematodes (in vivo). The yellow mealworm (Tenebrio molitor) is a good host for in vivo nema...

  15. Probability to produce animal vaccines in insect baculovirus ...

    African Journals Online (AJOL)

    Administrator

    2011-09-07

    Sep 7, 2011 ... The insect baculovirus expression system is a valuable tool for the production of vaccine. .... vaccine expression/delivery vehicle (Yu-Chen et al., ... baculoviruses are applied in cell-based assays for drug ... Intramuscular.

  16. Insects and other invertebrates

    Science.gov (United States)

    John R. Jones; Norbert V. DeByle; Diane M. Bowers

    1985-01-01

    Quaking aspen throughout its range appears to be host to several insect and other invertebrate pests (fig. 1). It is a short-lived species that is palatable to a large variety of animals. Furniss and Carolin (1977) listed 33 insect species that use aspen as a food source. Some are quite damaging and may kill otherwise healthy stands of aspen; others feed on weakened or...

  17. Steroidal compounds as carriers of juvenile hormone bioanalogues applicable in environmentally safe insect pest control

    Czech Academy of Sciences Publication Activity Database

    Jurček, Ondřej; Wimmer, Zdeněk; Bennettová, Blanka; Kuldová, Jelena; Hrdý, Ivan; Drašar, P.

    2007-01-01

    Roč. 37, Suppl. 1 (2007), A131-A132 ISSN 1738-2297. [International Congress of Insect Biotechnology and Industry. 19.08.2007-24.08.2007, Daegu] R&D Projects: GA MŠk 2B06024 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50380511 Keywords : juvenile hormone bioanalogues * juvenoid * juvenogen Subject RIV: CC - Organic Chemistry

  18. Box Tree Moth (Cydalima perspectalis, Lepidoptera; Crambidae), New Invasive Insect Pest in Croatia

    OpenAIRE

    Matošević, Dinka

    2013-01-01

    Background and Purpose: Alien invasive species have been described as an outstanding global problem. Hundreds of species are intentionally and unintentionally moved worldwide and and numbers of introductions to new habitats have been accelerated all over the world due to the increasing mobility of people and goods over the past decades. Numerous alien insect species, many of them introduced only in the last 20 years, have become successfully established in various ecosystems in Croatia. Box t...

  19. Field efficacy of entomopathogenic fungi Beauveria bassiana (Balsamo.) for the management of mungbean insect pests

    Science.gov (United States)

    Bayu, M. S. Y. I.; Prayogo, Y.

    2018-01-01

    In order to reduce the use of insecticide, the application of Beauveria bassiana may be an alternative control. The objective of this study was to evaluate the efficacy of B. bassiana for controlling mungbean pest. The experiment was conducted in Ngale Research Station from February to May 2017, using randomized block design, seven treatments, four replicates. The treatments were frequency of application; P1= six times, P2= five times, P3= four times, P4= three times, P5= once, P6= full protection using chemical insecticide, and P7= no protection. Application of B. bassiana four to six times can suppress the population of Empoasca sp., Riptortus linearis, and Maruca testulalis, but did not significantly different with the application of chemical insecticide. Based on the seed weight, application of B. bassiana six times (659.7 g/plot) led to significantly high as compare with the application of chemical insecticide (374 g/plot). Application of B. bassiana tended to be secure to natural enemies, especially Coccinella sp., Oxyopes javanus, and Paederus fuscipes. Both of those predators were not found on the application of chemical insecticide. Hence, B. bassiana can be recommended as a biological agent in integrated pest management component on mungbean because of effective and environmentally friendly.

  20. Area-wide approaches to insect pest management: history and lessons

    International Nuclear Information System (INIS)

    Klassen, Waldemar

    2000-01-01

    World agriculture is now entering a very trying era because currently our numbers are expanding by more than 90 million additional people per year. Demographers project that our growth will not drop below 90 million people per year until about 2020 (United Nations 1993, Nygaard 1998). The challenge is to increase food production every three or four years sufficiently to feed an additional population equivalent to that of Western Europe or North America. The land available for agriculture on a per capita basis is becoming progressively more limited so than in 2010, on average, 1 hectare in developing countries will have to feed 5 people, and in South Asia, 1 hectare will have to feed 8 people (Alexandratos 1995, Klassen 1995). On an average, 66 percent of the additional food must come from increased yields, and in South Asia, fully 80 percent must come from increased yields. The balance will come from expanding the area cultivated and use of intensified cropping systems. However, this is not a simple matter since pest populations tend to be favoured by yield-boosting measures. Since population growth rates recede as people overcome poverty, and since increasing food production is the principal means of overcoming poverty in many countries, it is imperative that in the decades immediately ahead major improvements be made in reducing losses to pests and in other yield enhancing measures

  1. Insect pests and their natural enemies on spring oilseed rape in Estonia : impact of cropping systems

    Directory of Open Access Journals (Sweden)

    E. VEROMANN

    2008-12-01

    Full Text Available To investigate the impact of different cropping systems, the pests, their hymenopteran parasitoids and predatory ground beetles present in two spring rape crops in Estonia, in 2003, were compared. One crop was grown under a standard (STN cropping system and the other under a minimised (MIN system. The STN system plants had more flowers than those in the MIN system, and these attracted significantly more Meligethes aeneus, the only abundant and real pest in Estonia. Meligethes aeneus had two population peaks: the first during opening of the first flowers and the second, the new generation, during ripening of the pods. The number of new generation M. aeneus was almost four times greater in the STN than in the MIN crop. More carabids were caught in the MIN than in STN crop. The maximum abundance of carabids occurred two weeks before that of the new generation of M. aeneus, at the time when M. aeneus larvae were dropping to the soil for pupation and hence were vulnerable to predation by carabids.

  2. Formulation of A Novel Phytopesticide PONNEEM and its Potentiality to control generalist Herbivorous Lepidopteran insect pests, Spodoptera litura (Fabricius and Helicoverpa armigera (H übner (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    Susaimanickam Maria Packiam

    2012-10-01

    Full Text Available Objective: To evaluate the deterrence of oviposition potentiality of a novel phytopesticide PONNEEM against the generalist herbivorous lepidopteran insect pests Helicoverpa armigera and Spodoptera litura. Methods: Different phytopesticidal formulations were prepared at different ratio to evaluate the deterrence of oviposition activity against S. litura and H. armigera at 5, 10, 15, and 20毺 L/L concentrations. Results: The newly formulated different phytopesticides exhibited good results of oviposition deterrent activity against these two polyphagous insect pests. At 20毺 L/L concentration of PONNEEM, 77.48% of the maximum deterrence of oviposition activity was recorded, followed by formulation A (49.23%. And 68.12% was observed against H. armigera followed by A (49.52%. PONNEEM exhibited statistically significant oviposition deterrent activity compared to all other treatments. Conclusions: The newly formulated PONNEEM was found to be effective phytopesticidal formulation to control the adult of S. litura and H. armigera due to the synergistic effect of biomolecules such as azadirachtin and karanjin. This is the first report of PONNEEM which was patented under the government of India. The potential use of this novel phytopesticide could be an agent of controlling the adults of lepidopteran insect pests which can be applied in the integrated pest management programme.

  3. Insects in the Classroom: A Study of Animal Behavior

    Science.gov (United States)

    Miller, Jon S.

    2004-01-01

    These activities allow students to investigate behavioral responses of the large Milkweed bug, "Oncopeltus fasciatus," and the mealworm, "Tenebrio molitor" or "Tenebrio obscurus," to external stimuli of light, color, and temperature. During the activities, students formulate hypotheses to research questions presented. They also observe insects for…

  4. Systems of organic farming in spring vetch I: Biological response of sucking insect pests

    Directory of Open Access Journals (Sweden)

    Ivelina Nikolova

    2015-04-01

    Full Text Available Four systems of organic farming and a conventional farming system were studied over the period 2012-2014. The organic system trial variants included: I – an organic farming system without any biological products used (growth under natural soil fertility – Control; II – an organic farming system involving the use of a biological foliar fertilizer and a biological plant growth regulator (Polyversum+Biofa; III – an organic farming system in which a biological insecticide (NeemAzal T/S was used; IV – an organic farming system including a combination of three organic products: the foliar fertilizer, the plant growth regulator and the bioinsecticide (Polyversum+Biofa+NeemAzal T/S. Variant V represented a conventional farming system in which synthetic products were used in combination (foliar fertilizer, plant growth regulator and insecticide: Masterblend+Flordimex 420+Nurelle D. Treatment of vetch plants with the biological insecticide NeemAzal in combination with Biofa and Polyversum resulted in the lowest density of sucking pests, compared to all other organic farming methods tested (i.e. without NeemAzal, with NeemAzal alone, and its combination with Biofa and Polyversum. The greatest reduction in pest numbers during the vegetation period in that variant was observed in species of the order Thysanoptera (36.0-41.4%, followed by Hemiptera, and the families Aphididae (31.6-40.3% and Cicadellidae (27.3-28.6%. This combination showed an efficient synergistic interaction and an increase in biological efficacy as compared to individual application of NeemAzal. The highest toxic impact was found against Thrips tabaci, followed by Acyrthosiphon pisum. An analysis of variance regarding the efficacy against the species A. pisum, E. pteridis and T. tabaci showed that type of treatment had the most dominant influence and statistically significant impact.

  5. Countermeasure against insect pests for comfortable life; Gaichu tono tatakai (kaitekina seikatsu kukan wo mezashite)

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, M. [Sumitomo Chemical Co. Ltd., Osaka (Japan)

    1998-06-01

    Described herein are the current status and development of insecticides for domestic purposes. For aerosol type cockroach-killing insecticides, oily type is predominant in Japan whereas aqueous type in USA and other countries. They are mixtures of knockdown agents and killing agents, the former being used for their immediate and lethal effects whereas the latter for their lethal effect. In 1996, agents showing high knockdown effects, such as pyrethroids, are registered. Fumigants are used in closed spaces, which are ventilated after they are used. Bait agents contain inducing agents. Recently, ticks become social problems as an allergy source. The insecticides are generally used to remove them, although physical methods, such as cleaning and heat treatment, are effective. They are centered by aerosols and fumigants, but insecticidal sheets are used to some extent. Fleas coming from pets also cause problems. Increased resistance of insects to insecticides has led to development of new types of insecticides, such as those based on organophosphates and those aimed at prevention of their metamorphosis. Commercial insecticides are safe, as long as they are produced in compliance with the Pharmaceutical Affairs Law and used correctly. Nevertheless, however, researches for safer countermeasures against insects are needed. 3 refs., 2 figs., 1 tab.

  6. Use of geographic information systems and spatial analysis in area-wide integrated pest management programmes that integrate the sterile insect technique

    International Nuclear Information System (INIS)

    Cox, J.St.H.; Vreysen, M.J.B.

    2005-01-01

    The advantages that geographic information systems (GIS) and associated technologies can offer, in terms of the design and implementation of area-wide programmes of insect and/or disease suppression, are becoming increasingly recognised, even if the realization of this potential has not been fully exploited and for some area-wide programmes adoption appears to be progressing slowly. This chapter provides a basic introduction to the science of GIS, Global Positioning System (GPS), and satellite remote sensing (RS), and reviews the principal ways in which these technologies can be used to assist various stages of development of the sterile insect technique (SIT) as part of area-wide integrated pest management (AW-IPM) programmes - from the selection of project sites, and feasibility assessments and planning of pre-intervention surveys, to the monitoring and analysis of insect suppression programmes, and the release of sterile insects. Potential barriers to the successful deployment of GIS tools are also discussed. (author)

  7. Effects of a sex-ratio distorting endosymbiont on mtDNA variation in a global insect pest

    Directory of Open Access Journals (Sweden)

    Cook James M

    2009-03-01

    Full Text Available Abstract Background Patterns of mtDNA variation within a species reflect long-term population structure, but may also be influenced by maternally inherited endosymbionts, such as Wolbachia. These bacteria often alter host reproductive biology and can drive particular mtDNA haplotypes through populations. We investigated the impacts of Wolbachia infection and geography on mtDNA variation in the diamondback moth, a major global pest whose geographic distribution reflects both natural processes and transport via human agricultural activities. Results The mtDNA phylogeny of 95 individuals sampled from 10 countries on four continents revealed two major clades. One contained only Wolbachia-infected individuals from Malaysia and Kenya, while the other contained only uninfected individuals, from all countries including Malaysia and Kenya. Within the uninfected group was a further clade containing all individuals from Australasia and displaying very limited sequence variation. In contrast, a biparental nuclear gene phylogeny did not have infected and uninfected clades, supporting the notion that maternally-inherited Wolbachia are responsible for the mtDNA pattern. Only about 5% (15/306 of our global sample of individuals was infected with the plutWB1 isolate and even within infected local populations, many insects were uninfected. Comparisons of infected and uninfected isofemale lines revealed that plutWB1 is associated with sex ratio distortion. Uninfected lines have a 1:1 sex ratio, while infected ones show a 2:1 female bias. Conclusion The main correlate of mtDNA variation in P. xylostella is presence or absence of the plutWB1 infection. This is associated with substantial sex ratio distortion and the underlying mechanisms deserve further study. In contrast, geographic origin is a poor predictor of moth mtDNA sequences, reflecting human activity in moving the insects around the globe. The exception is a clade of Australasian individuals, which may

  8. Controlled atmospheres against insect pests in museums: a review and some considerations

    Directory of Open Access Journals (Sweden)

    Alessia Berzolla

    2011-08-01

    Full Text Available Controlled atmospheres using nitrogen represent a safe and effective method for both objects and human health. The use of this technique against pests in museums has received an increasing amount of interest during the last twenty years. This paper looks at the researches into anoxic treatments that use nitrogen from the late ‘80s until now. At the moment, the recommended protocol suggests an oxygen percentage below 1% for at least three weeks. Considering that the major practical problems of controlled atmospheres are connected to treatment time and low oxygen percentage, it is very important to develop more flexible protocols that consider higher oxygen percentages or shorter treatment times, exploiting temperature and/or relative humidity. At oxygen percentage higher than those commonly used, temperature and relative humidity are very critical to insects’ development and success. Preliminary data (unpublished show that it is possible to adapt the application of the controlled atmospheres to different situations, taking advantage of favorable conditions already present in the considered situation and at the same time to use the other parameters at more favorable levels.

  9. Effects of weed cover composition on insect pest and natural enemy abundance in a field of Dracaena marginata (Asparagales: Asparagaceae) in Costa Rica.

    Science.gov (United States)

    Sadof, Clifford S; Linkimer, Mildred; Hidalgo, Eduardo; Casanoves, Fernando; Gibson, Kevin; Benjamin, Tamara J

    2014-04-01

    Weeds and their influence on pest and natural enemy populations were studied on a commercial ornamental farm during 2009 in the Atlantic Zone of Costa Rica. A baseline survey of the entire production plot was conducted in February, along a 5 by 5 m grid to characterize and map initial weed communities of plants, cicadellids, katydids, and armored scales. In total, 50 plant species from 21 families were found. Seven weed treatments were established to determine how weed manipulations would affect communities of our targeted pests and natural enemies. These treatments were selected based on reported effects of specific weed cover on herbivorous insects and natural enemies, or by their use by growers as a cover crop. Treatments ranged from weed-free to being completely covered with endemic species of weeds. Although some weed treatments changed pest abundances, responses differed among arthropod pests, with the strongest effects observed for Caldwelliola and Empoasca leafhoppers. Removal of all weeds increased the abundance of Empoasca, whereas leaving mostly cyperacaeous weeds increased the abundance of Caldwelliola. Weed manipulations had no effect on the abundance of katydid and scale populations. No weed treatment reduced the abundance of all three of the target pests. Differential responses of the two leafhopper species to the same weed treatments support hypotheses, suggesting that noncrop plants can alter the abundance of pests through their effects on arthropod host finding and acceptance, as well as their impacts on natural enemies.

  10. Insects, isotopes and radiations

    International Nuclear Information System (INIS)

    Lingkvist, D.A.

    1987-01-01

    The IAEA activity on coordinating the IAEA member-state efforts in the field of pest control is considered. A complex program of agricultural pest control (IPM), applied in many parts of the world is developed. The program provides for the use of natural means of control and cases of critical pest numbers-the use of insecticides. When controlling certain types of insects it is advisable to apply the 'large area control' methods which provide for the insect destruction in places of their concentration prior to migration. Methods of pest control over large areas also include radiation sexual sterilization method (SSM), application of insect phoromons (sexual attractants) to prevent mating, other types of chemical attractants, traps, mass cultivation and reproduction of parasite plants and animals, destroying insects, as well as improvement of host-plant resistance. A great attention is paid to isotope and radiation application in pest control (labelling, sexual sterilization using ionising radiation, radiation application in genetic engineering, mutant plant cultivation)

  11. Low doses of a neonicotinoid insecticide modify pheromone response thresholds of central but not peripheral olfactory neurons in a pest insect.

    Science.gov (United States)

    Rabhi, Kaouther K; Deisig, Nina; Demondion, Elodie; Le Corre, Julie; Robert, Guillaume; Tricoire-Leignel, Hélène; Lucas, Philippe; Gadenne, Christophe; Anton, Sylvia

    2016-02-10

    Insect pest management relies mainly on neurotoxic insecticides, including neonicotinoids, leaving residues in the environment. There is now evidence that low doses of insecticides can have positive effects on pest insects by enhancing various life traits. Because pest insects often rely on sex pheromones for reproduction, and olfactory synaptic transmission is cholinergic, neonicotinoid residues could modify chemical communication. We recently showed that treatments with different sublethal doses of clothianidin could either enhance or decrease behavioural sex pheromone responses in the male moth, Agrotis ipsilon. We investigated now effects of the behaviourally active clothianidin doses on the sensitivity of the peripheral and central olfactory system. We show with extracellular recordings that both tested clothianidin doses do not influence pheromone responses in olfactory receptor neurons. Similarly, in vivo optical imaging does not reveal any changes in glomerular response intensities to the sex pheromone after clothianidin treatments. The sensitivity of intracellularly recorded antennal lobe output neurons, however, is upregulated by a lethal dose 20 times and downregulated by a dose 10 times lower than the lethal dose 0. This correlates with the changes of behavioural responses after clothianidin treatment and suggests the antennal lobe as neural substrate involved in clothianidin-induced behavioural changes. © 2016 The Author(s).

  12. The impact of phosphate fertilizer as a pest management tactic in ...

    African Journals Online (AJOL)

    Administrator

    2009-12-15

    Dec 15, 2009 ... Key words: Cowpea, grain yield, insect pests, pod evaluation index, phosphate fertilizer. ... We also know that it interacts with other soil nutrients such as nitrogen ... grazing of leftover crop residues by animals (IITA, 1998;.

  13. Planning pesticides usage for herbal and animal pests based on intelligent classification system with image processing and neural networks

    Directory of Open Access Journals (Sweden)

    Dimililer Kamil

    2018-01-01

    Full Text Available Pests are divided into two as herbal and animal pests in agriculture, and detection and use of minimum pesticides are quite challenging task. Last three decades, researchers have been improving their studies on these manners. Therefore, effective, efficient, and as well as intelligent systems are designed and modelled. In this paper, an intelligent classification system is designed for detecting pests as herbal or animal to use of proper pesticides accordingly. The designed system suggests two main stages. Firstly, images are processed using different image processing techniques that images have specific distinguishing geometric patterns. The second stage is neural network phase for classification. A backpropagation neural network is used for training and testing with processed images. System is tested, and experiment results show efficiency and effective classification rate. Autonomy and time efficiency within the pesticide usage are also discussed.

  14. MicroRNA and dsRNA targeting chitin synthase A reveal a great potential for pest management of the hemipteran insect Nilaparvata lugens.

    Science.gov (United States)

    Li, Tengchao; Chen, Jie; Fan, Xiaobin; Chen, Weiwen; Zhang, Wenqing

    2017-07-01

    Two RNA silencing pathways in insects are known to exist that are mediated by short interfering RNAs (siRNAs) and microRNAs (miRNAs), which have been hypothesised to be promising methods for insect pest control. However, a comparison between miRNA and siRNA in pest control is still unavailable, particularly in targeting chitin synthase gene A (CHSA). The dsRNA for Nilaparvata lugens CHSA (dsNlCHSA) and the microR-2703 (miR-2703) mimic targeting NlCHSA delivered via feeding affected the development of nymphs, reduced their chitin content and led to lethal phenotypes. The protein level of NlCHSA was downregulated after female adults were injected with dsNlCHSA or the miR-2703 mimic, but there were no significant differences in vitellogenin (NlVg) expression or in total oviposition relative to the control group. However, 90.68 and 46.13% of the eggs laid by the females injected with dsNlCHSA and miR-2703 mimic were unable to hatch, respectively. In addition, a second-generation miRNA and RNAi effect on N. lugens was observed. Ingested miR-2703 seems to be a good option for killing N. lugens nymphs, while NlCHSA may be a promising target for RNAi-based pest management. These findings provide important evidence for applications of small non-coding RNAs (snRNAs) in insect pest management. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Creatures in the Classroom: Including Insects and Small Animals in Your Preschool Gardening Curriculum

    Science.gov (United States)

    Hachey, Alyse C.; Butler, Deanna

    2012-01-01

    When doing spring planting activities, what does a teacher do while waiting for the plants to grow? This waiting time is a golden opportunity to explore another side of gardening--the creatures that make it all possible. Insects are an integral part of everyday world, having existed for over 300 million years; they are the most common animal on…

  16. Insect-specific irreversible inhibitors of acetylcholinesterase in pests including the bed bug, the eastern yellowjacket, German and American cockroaches, and the confused flour beetle.

    Science.gov (United States)

    Polsinelli, Gregory A; Singh, Sanjay K; Mishra, Rajesh K; Suranyi, Robert; Ragsdale, David W; Pang, Yuan-Ping; Brimijoin, Stephen

    2010-09-06

    Insecticides directed against acetylcholinesterase (AChE) are facing increased resistance among target species as well as increasing concerns for human toxicity. The result has been a resurgence of disease vectors, insects destructive to agriculture, and residential pests. We previously reported a free cysteine (Cys) residue at the entrance to the AChE active site in some insects but not higher vertebrates. We also reported Cys-targeting methanethiosulfonate molecules (AMTSn), which, under conditions that spared human AChE, caused total irreversible inhibition of aphid AChE, 95% inhibition of AChE from the malaria vector mosquito (Anopheles gambia), and >80% inhibition of activity from the yellow fever mosquito (Aedes aegypti) and northern house mosquito (Culex pipiens). We now find the same compounds inhibit AChE from cockroaches (Blattella germanica and Periplaneta americana), the flour beetle (Tribolium confusum), the multi-colored Asian ladybird beetle (Harmonia axyridis), the bed bug (Cimex lectularius), and a wasp (Vespula maculifrons), with IC(50) values of approximately 1-11muM. Our results support further study of Cys-targeting inhibitors as conceptually novel insecticides that may be free of resistance in a range of insect pests and disease vectors and, compared with current compounds, should demonstrate much lower toxicity to mammals, birds, and fish. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  17. POSSIBILITIES TO USE NATURAL EXTRACTS FROM MEDICINAL AND AROMATIC PLANTS (MAP LIKE BOTANICAL REPELLENT OR INSECTICIDE COMPOUNDS AGAINST PEST INSECTS IN ECOLOGICAL CROPS (II

    Directory of Open Access Journals (Sweden)

    Irina IONESCU-MĂLĂNCUŞ

    2013-12-01

    Full Text Available Botanical insecticides have long been touted as attractive alternatives to synthetic chemical insecticides for pest management because botanicals reputedly pose little threat to the environment or to human health. The body of scientific literature documenting bioactivity of plant derivatives to arthropods pests continues to expand i.e. repellents based on essential oils extracted from Chenopodium ambrosioides, Eucalyptus saligna, Rosmarinus officinalis to mosquitoes, or cinnamon oil, sandalwood oil and turmeric oil are previously reported as insect repellents evaluatede in the laboratory conditions. With the constantly increasing problems of insecticide resistance and increasing public concerns regarding pesticide safety, new, safer active ingredients are becoming necessary to replace existing compounds on the market. The present study carried out in the period 2010-2012 comprises a review of two insect repellents, followed by some new research conducted in our laboratory on plant-derived insect repellents. The two alkaloids tested against the Colorado potato beetle, Leptinotarsa decemlineata Say in laboratory conditions was obtained by water and alchohol extraction from two vegetal species, Cichorium intybus L. (Asterales:Asteraceae and Delphinium consolida L. (Ranales:Ranunculaceae. The tests carried out in laboratory and field experimentally plots under cages permit to evaluate several other compounds for repellent activity of lacctucin alkaloids.

  18. Field damage of sorghum (Sorghum bicolor) with reduced lignin levels by naturally occurring insect pests and pathogens

    Science.gov (United States)

    Mutant lines of sorghum with low levels of lignin are potentially useful for bioenergy production, but may have problems with insects or disease. Field grown normal and low lignin bmr6 and bmr12 sorghum (Sorghum bicolor) were examined for insect and disease damage in the field, and insect damage in ...

  19. Inhibitory activity of Beauveria bassiana and Trichoderma spp. on the insect pests Xylotrechus arvicola (Coleoptera: Cerambycidae) and Acanthoscelides obtectus (Coleoptera: Chrisomelidae: Bruchinae).

    Science.gov (United States)

    Rodríguez-González, Álvaro; Mayo, Sara; González-López, Óscar; Reinoso, Bonifacio; Gutierrez, Santiago; Casquero, Pedro Antonio

    2017-01-01

    Xylotrechus arvicola is an important pest in vineyards (Vitis vinifera) in the main Iberian wine-producing regions, and Acanthoscelides obtectus causes severe post-harvest losses in the common bean (Phaseolus vulgaris). Under laboratory conditions with a spray tower, the susceptibility of the immature stages of X. arvicola and A. obtectus against the entomopathogenic fungi Beauveria bassiana and four strains of Trichoderma spp. was evaluated. Both insect pests T. harzianum and B. bassiana showed a good inhibitory activity, accumulating an inhibition on the eggs of values above 85 and 82%, respectively. T. atroviride and T. citrinoviride had a lower inhibitory activity, with inhibition values of 74.1 and 73.3% respectively. These fungi can be considered a highly effective tool for the control during the immature stages of these species.

  20. Improving the cost-effectiveness, trade and safety of biological control for agricultural insect pests using nuclear techniques

    Science.gov (United States)

    If appropriately applied, biological control offers one of the most promising, environmentally sound, and sustainable control tactics for arthropod pests and weeds for application as part of an integrated pest management (IPM) approach. Public support for biological control as one of the preferred m...

  1. Novel polymeric micelles for insect pest control: encapsulation of essential oil monoterpenes inside a triblock copolymer shell for head lice control

    Directory of Open Access Journals (Sweden)

    Alejandro Lucia

    2017-04-01

    Full Text Available Background Essential oil components (EOCs are molecules with interesting application in pest control, these have been evaluated against different insect pest from more than 100 years, but their practical use is rather limited. Thus, the enhancement of their bioavailability and manageability due to their dispersion in water can open new perspective for the preparation of formulations for the control of insect pest. In this work, we studied the encapsulation of different monoterpenes in a poloxamer shell in order to prepare aqueous formulations that can be used for the development of platforms used in pest control. Methods Micellar systems containing a 5 wt% of poloxamer 407 and 1.25 wt% of the different monoterpenes were prepared. Dynamic Light Scattering (DLS experiments were carried out to characterize the dispersion of the EOCs in water. The pediculicidal activity of these micellar systems was tested on head lice using an ex vivo immersion test. Results The poloxamers allowed the dispersion of EOCs in water due to their encapsulation inside the hydrophobic core of the copolymer micelles. From this study, we concluded that it is possible to make stable micellar systems containing water (>90 wt%, 1.25 wt% of different monoterpenes and a highly safe polymer (5wt% Poloxamer 407. These formulations were effective against head lice with mortality ranging from 30 to 60%, being the most effective emulsions those containing linalool, 1,8-cineole, α-terpineol, thymol, eugenol, geraniol and nonyl alcohol which lead to mortalities above 50%. Discussion Since these systems showed good pediculicidal activity and high physicochemical stability, they could be a new route for the green fabrication of biocompatible and biosustainable insecticide formulations.

  2. Efficacy of Intercropping as a Management Tool for the Control on Insect Pests of Cabbage in Ghana 1H m 2m

    Directory of Open Access Journals (Sweden)

    Timbilla, JA.

    2001-01-01

    Full Text Available The efficacy of intercropping cabbage with other vegetables and herbs as a management tool in migitating insect pests problems of cabbage was investigated in the field at Kwadaso, Kumasi during a three season period in the forest region of Ghana. The results showed that Plutella xylostella could be effectively controlled when cabbage is intercropped with onion, spearmint and tomato. However, there is the need to control Hellula undalis in endemie areas with pesticides up to six weeks after transplanting. Both Karate (cyhalothrin and Dipel 2X (the biopesticide Bacillus thuringiensis subsp. Kurstaki were effective in mitigating the problem of H. undalis in the intercropping experiments and both are recommended.

  3. A Fungal Insecticide Engineered for Fast Per Os Killing of Caterpillars Has High Field Efficacy and Safety in Full-Season Control of Cabbage Insect Pests

    Science.gov (United States)

    Liu, Yong-Jie; Liu, Jing; Ying, Sheng-Hua; Liu, Shu-Sheng

    2013-01-01

    Fungal insecticides developed from filamentous pathogens of insects are notorious for their slow killing action through cuticle penetration, depressing commercial interest and practical application. Genetic engineering may accelerate their killing action but cause ecological risk. Here we show that a Beauveria bassiana formulation, HV8 (BbHV8), engineered for fast per os killing of caterpillars by an insect midgut-acting toxin (Vip3Aa1) overexpressed in conidia has both high field efficacy and safety in full-season protection of cabbage from the damage of an insect pest complex dominated by Pieris rapae larvae, followed by Plutella xylostella larvae and aphids. In two fields repeatedly sprayed during summer, BbHV8 resulted in overall mean efficacies of killing of 71% and 75%, which were similar or close to the 70% and 83% efficacies achieved by commercially recommended emamectin benzoate but much higher than the 31% and 48% efficacies achieved by the same formulation of the parental wild-type strain (WT). Both BbHV8 and WT sprays exerted no adverse effect on a nontarget spider community during the trials, and the sprays did not influence saprophytic fungi in soil samples taken from the field plots during 4 months after the last spray. Strikingly, BbHV8 and the WT showed low fitness when they were released into the environment because both were decreasingly recovered from the field lacking native B. bassiana strains (undetectable 5 months after the spray), and the recovered isolates became much less tolerant to high temperature and UV-B irradiation. Our results highlight for the first time that a rationally engineered fungal insecticide can compete with a chemical counterpart to combat insect pests at an affordable cost and with low ecological risk. PMID:23956386

  4. The status of honeybee pests in Uganda | Kajobe | Bulletin of Animal ...

    African Journals Online (AJOL)

    , wax moths and bee hornets. Effective methods for pest control and management applied by beekeepers included mechanical methods and bio-control. The mechanical methods included keeping the apiary tidy; avoiding throwing combs ...

  5. Enhancing Heat Treatment Efficacy for Insect Pest Control: A Case Study of a CFD Application to Improve the Design and Structure of a Flour Mill

    Directory of Open Access Journals (Sweden)

    Francesca Valenti

    2018-03-01

    Full Text Available Heat treatment of the indoor environment of flour mills is an alternative technique to chemical fumigation for controlling insect pests. The aim of this research was to assess temperature distribution inside a flour mill during a heat treatment for insect pest control by computational fluid dynamics (CFD modelling and simulation. The model was validated by using the average values of experimental data acquired during a heat treatment carried out in a flour mill, which is representative of the building materials and techniques used in the milling industry of South Italy. Simulations were carried out in steady-state conditions, and simulated data were validated by the average values of air and wall temperature measurements. Since the modelled temperature distribution in the mill fit the real one with a good accuracy (maximum error equal to 2.57 °C, the CFD model was considered reliable to simulate other operating conditions. Since it was observed that the internal surface temperatures of the mill were much lower than the value required for the success of the heat treatment, equal to 45 °C, the CFD model could be used for improving the effectiveness of heat treatments in the flour mill. Application of the proposed CFD model in the simulation of specific interventions could be aimed at improving both building performance and fan heaters’ localisatio,n in order to find the best configuration.

  6. Integrated pest management

    International Nuclear Information System (INIS)

    LaBrecque, G.C.

    1981-01-01

    An effective Integrated Pest Management (IPM) programme requires a thorough knowledge of the biology of the target species, namely information on the dispersal, population densities and dynamics as well as the ecology of the natural enemies of the pest. Studies on these can be accomplished by radiolabelling techniques. In the event that conditions prevent the use of radioisotopes the insects can be labelled with either a rare earth or stable isotopes. All insects treated with the rare earths, once captured, are exposed to neutrons which produce radioactivity in the rare earths. There are two other approaches in the practical application of radiation to the problem of insect control: the exposure of insects to lethal doses of radiation and the release of sterile insects. The Insect and Pest Control Section contributes to all aspects of the sterile insect technique (SIT) and it is involved in the Agency's Coordinated Research Programme which permits scientists from the developing countries to meet to discuss agricultural problems and to devise means of solving crop-pest infestation problems by using isotopes and radiation. The success of radiation in insect pest control was underlined and reviewed at the international symposium on the sterile insect technique and the use of radiation in genetic insect control jointly organized by the FAO and the IAEA and held in the FRG in 1981. Another important action is the BICOT programme in Nigeria between the IAEA and the Government of Nigeria on the biological control of tsetse flies by SIT

  7. Seed Treatment Combined with a Spot Application of Clothianidin Granules Prolongs the Efficacy of Controlling Piercing-Sucking Insect Pests in Cotton Fields.

    Science.gov (United States)

    Zhang, Zhengqun; Zhao, Yunhe; Wang, Yao; Li, Beixing; Lin, Jin; Zhang, Xuefeng; Mu, Wei

    2017-09-13

    Seed treatments can directly protect cotton from early season piercing-sucking insect Aphis gossypii Glover but hardly provide long-term protection against Apolygus lucorum (Meyer-Dür). Therefore, the efficacy of clothianidin seed treatments combined with spot applications of clothianidin granules at the bud stage of cotton was evaluated to control piercing-sucking pests during the entire cotton growing season. Clothianidin seed treatments (at the rate of 4 g ai/kg seed) combined with a clothianidin granular treatment (even at low rate of 0.9 kg ai/ha) at the bud stage can effectively suppress A. gossypii and A. lucorum infestations throughout the seedling and blooming stages after planting and can improve cotton yield. The spot application of clothianidin granules also reduced the population densities of Bemisia tabaci (Gennadius). The dynamic changes of clothianidin residues demonstrated that the control efficacy of clothianidin against A. gossypii and A. lucorum might be related to the residues of this neonicotinoid in cotton leaves. This pest management practice provided long-term protection against cotton piercing-sucking pests for the entire growing season of cotton plants and could supplement the short-term control efficiency of clothianidin used as a seed treatment.

  8. Community and species-specific responses of wild bees to insect pest control programs applied to a pollinator-dependent crop.

    Science.gov (United States)

    Tuell, Julianna K; Isaacs, Rufus

    2010-06-01

    Wild bee conservation is regarded as essential for sustainable production of pollinator-dependent crops, yet little is known about the effects on wild bee communities of typical insect pest management programs used postbloom. We developed an insecticide program risk (IPR) index to quantify the relative risk to wild bees of insecticide programs applied to blueberry fields. This was used to determine the relationship between IPR and the abundance, diversity, and richness of wild bee communities sampled during three successive flowering seasons. In 2 of 3 yr, bee abundance and species richness declined with increasing IPR. Bee diversity declined with IPR in one of 3 yr. These results indicate that wild bee communities are negatively affected by increasingly intensive chemical pest management activities in crop fields and that interyear variability in bee populations has the potential to mask such effects in short-term studies. When several wild bee species were analyzed separately, two of three solitary and one of three social blueberry-foraging species declined with increasing IPR values, suggesting that different life histories and nesting habits may help some bee populations escape the negative effects of insecticides applied after bloom. Pollinator conservation programs aimed strictly at reducing insecticide use may have varying success, depending on the biology of the target bee species. The IPR index provides a standard method to compare pest management programs for their potential effect on wild bee communities, with broad application for use in other agricultural systems.

  9. Guidelines for the Use of Mathematics in Operational Area-Wide Integrated Pest Management Programmes Using the Sterile Insect Technique with a Special Focus on Tephritid Fruit Flies

    International Nuclear Information System (INIS)

    Barclay, H.L.; Enkerlin, W.R.; Manoukis, N.C.; Reyes-Flores, J.

    2016-01-01

    This guideline attempts to assist managers in the use of mathematics in area-wide Integrated Pest Management (AW-IPM) programmes using the Sterile Insect Technique (SIT). It describes mathematical tools that can be used at different stages of suppression/eradication programmes. For instance, it provides simple methods for calculating the various quantities of sterile insects required in the intervention area so that more realistic sterile: fertile rates to suppress pest populations can be achieved. The calculations, for the most part, only involve high school mathematics and can be done easily with small portable computers or calculators. The guideline is intended to be a reference book, to be consulted when necessary. As such, any particular AW-IPM programme using the SIT will probably only need certain sections, and much of the book can be ignored if that is the case. For example, if the intervention area is relatively small and well isolated, then the section on dispersal can safely be ignored, as the boundedness of the area means that dispersal should not be a problem, and so the section on diffusion equations can be ignored. An overview is given in each chapter to try to let the programme manager make a decision about where to put the programme efforts. On the other hand, most SIT programmes have an information system (many of them based on GIS) that produces reliable profiles of historic information. Based on the results of past activities they describe what has happened in the last days or weeks but usually do not explain, or barely explain, what is expected in the following days or weeks. Current AW-IPM progammes using the SIT have produced over many years a vast amount of every-day data from the field operations and from the mass rearing facility and packing and sterile insect releasing centres. With the help of this guideline, that information can be used to develop predictive models for their particular conditions to better plan control measures.

  10. Effect of supplementary feeding of Oecophylla longinoda on their abundance and predatory activities against cashew insect pests

    DEFF Research Database (Denmark)

    Rashid Abdulla, Nassor; Rwegasira, Gration; Jensen, Karl-Martin Vagn

    2015-01-01

    Many studies have shown the efficiency of using weaver ants (Oecophylla species) as natural bio-control agents against agricultural pests. Supplementary feeding could promote fast growth of this ant's population and discourage them from moving away. However, such artificial feeding might slow down...... behaviour of O. longinoda. Fed O. longinoda colonies (FWA) were supplemented with a 30% sugar solution and approximately 22 g of finely ground fish meat at two-week intervals while the un-fed colonies (UWA) had access to only naturally occurring food sources. Weaver ant densities and pest damage...

  11. Role of bark and wood destroying insect pests in drying off of spruce and pines in planting weakened by smoke

    Energy Technology Data Exchange (ETDEWEB)

    Kudela, M; Wolf, R

    1963-01-01

    This paper describes a detailed study made in 1958-62, indicating the part played by smoke and the various groups and individual species of insects, in the mortality in middle-aged and mature Pine and Spruce stands.

  12. Nuclear technology in pest management

    International Nuclear Information System (INIS)

    Seth, R.K.

    2012-01-01

    Nuclear energy has been greatly explored for its use in various disciplines of entomology related to agriculture, medicine and industry. Since the ravages of the insects especially in the tropical and subtropical zones of the world are particularly serious, insect control is essential in the production of crop, animal produce and protection from dreadful communicable diseases. Presently, biological and para-biological control programmes are receiving major prominence due to insecticidal ill effects on health and environment, and due to development of insecticidal resistance in pests. The exposure to ionizing radiation is now the principal method for inducing reproductive sterility in mass-reared insects. Irradiation of insects is a relatively straightforward process with reliable quality control procedures. Using radiation may offer other advantages, such as insignificant increase in temperature during the process, use of treated insects immediately after processing, no addition of any residues harmful to human health or environment, etc. Various pragmatic perspectives of utilization of radiation as a tool in entomological research studies, in relation to noxious insects as well as ecologically beneficial insects, are highlighted. (author)

  13. Efficacy of pyramided Bt proteins Cry1F, Cry1A.105, and cry2Ab2 expressed in Smartstax corn hybrids against lepidopteran insect pests in the northern United States.

    NARCIS (Netherlands)

    Rule, D.M.; Nolting, S.P.; Prasfika, P.L.; Storer, N.P.; Hopkins, B.W.; Scherder, E.J.A.; Siebert, M.W.; Hendrix, W.H.

    2014-01-01

    Commercial field corn (Zea mays L.) hybrids transformed to express some or all of the lepidopteran insect-resistant traits present in SmartStax corn hybrids were evaluated for insecticidal efficacy against a wide range of lepidopteran corn pests common to the northern United States, during 2008 to

  14. The Transcriptome and Terpene Profile of Eucalyptus grandis Reveals Mechanisms of Defense Against the Insect Pest, Leptocybe invasa.

    Science.gov (United States)

    Oates, Caryn N; Külheim, Carsten; Myburg, Alexander A; Slippers, Bernard; Naidoo, Sanushka

    2015-07-01

    Plants have evolved complex defenses that allow them to protect themselves against pests and pathogens. However, there is relatively little information regarding the Eucalyptus defensome. Leptocybe invasa is one of the most damaging pests in global Eucalyptus forestry, and essentially nothing is known regarding the molecular mechanisms governing the interaction between the pest and host. The aim of the study was to investigate changes in the transcriptional landscape and terpene profile of a resistant and susceptible Eucalyptus genotype in an effort to improve our understanding of this interaction. We used RNA-seqencing to investigate transcriptional changes following L. invasa oviposition. Expression levels were validated using real-time quantitative PCR. Terpene profiles were investigated using gas chromatography coupled to mass spectometry on uninfested and oviposited leaves. We found 698 and 1,115 significantly differentially expressed genes from the resistant and susceptible interactions, respectively. Gene Ontology enrichment and Mapman analyses identified putative defense mechanisms including cell wall reinforcement, protease inhibitors, cell cycle suppression and regulatory hormone signaling pathways. There were significant differences in the mono- and sesquiterpene profiles between genotypes and between control and infested material. A model of the interaction between Eucalyptus and L. invasa was proposed from the transcriptomic and chemical data. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Post-mating interactions and their effects on fitness of female and male Echinothrips americanus (Thysanoptera: Thripidae), a new insect pest in China.

    Science.gov (United States)

    Li, Xiao-Wei; Jiang, Hong-Xue; Zhang, Xiao-Chen; Shelton, Anthony M; Feng, Ji-Nian

    2014-01-01

    Post-mating, sexual interactions of opposite sexes differ considerably in different organisms. Post-mating interactions such as re-mating behavior and male harassment can affect the fitness of both sexes. Echinothrips americanus is a new insect pest in Mainland China, and little is known about its post-mating interactions. In this study, we observed re-mating frequency and male harassment frequency and their effects on fitness parameters and offspring sex ratios of E. americanus females. Furthermore, we tested the impact of mating and post-mating interactions on fitness parameters of males. Our results revealed that the re-mating frequency in female adults was extremely low during a 30-day period. However, post-mating interactions between females and males, consisting mainly of male harassment and female resistance, did occur and significantly reduced female longevity and fecundity. Interestingly, increased access to males did not affect the ratio of female offspring. For males, mating dramatically reduced their longevity. However, post-mating interactions with females had no effects on the longevity of mated males. These results enrich our basic knowledge about female and male mating and post-mating behaviors in this species and provide important information about factors that may influence population regulation of this important pest species.

  16. Post-mating interactions and their effects on fitness of female and male Echinothrips americanus (Thysanoptera: Thripidae, a new insect pest in China.

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Li

    Full Text Available Post-mating, sexual interactions of opposite sexes differ considerably in different organisms. Post-mating interactions such as re-mating behavior and male harassment can affect the fitness of both sexes. Echinothrips americanus is a new insect pest in Mainland China, and little is known about its post-mating interactions. In this study, we observed re-mating frequency and male harassment frequency and their effects on fitness parameters and offspring sex ratios of E. americanus females. Furthermore, we tested the impact of mating and post-mating interactions on fitness parameters of males. Our results revealed that the re-mating frequency in female adults was extremely low during a 30-day period. However, post-mating interactions between females and males, consisting mainly of male harassment and female resistance, did occur and significantly reduced female longevity and fecundity. Interestingly, increased access to males did not affect the ratio of female offspring. For males, mating dramatically reduced their longevity. However, post-mating interactions with females had no effects on the longevity of mated males. These results enrich our basic knowledge about female and male mating and post-mating behaviors in this species and provide important information about factors that may influence population regulation of this important pest species.

  17. Integrated pest control

    International Nuclear Information System (INIS)

    Kassem, A.R.

    2009-01-01

    The hazards induced by pests are responsible for about 50% of the agricultural production. There are two types of methods for pest control. The traditional methods including chemical, biological, mechanical and physical methods. The modern methods depending on germs, phermones, hormones and genetic methods. The sterile insect technique is the most recent one and the more effective. It depends on the use of insect to destroy itself.

  18. Use of repellents formulated in Specialized Pheromone and Lure Application Technology (SPLAT®) for effective insect pest management

    Science.gov (United States)

    Agenor Mafra-Neto; Christopher J. Fettig; A. Steven Munson; Lukasz L. Stelinski

    2014-01-01

    Despite the many impediments to commercialization of insect repellents in agriculture and forestry, there are some situations where the use of repellents is desirable and warranted. ISCA Technologies (Riverside, California), together with collaborators from academic, government, and private sectors, is actively developing repellent formulations against several...

  19. Iowa Commercial Pesticide Applicator Manual, Category 7A: General and Household Pest Control. CS-19. Category 7B: Termite Control, CS-20. Category 7C: Food Industry Pest Control, CS-21. Category 7D: Community Insect Control, CS-22.

    Science.gov (United States)

    Stockdale, Harold J., Ed.; And Others

    This manual provides information needed to meet specific standards for certification as a pesticide applicator. The first section discusses general and household pest control and is concerned with parasitic pests and man, stored product pests, and irritating vertebrates. Section two is devoted to identifying and controlling structural pests such…

  20. Manufacturing of fuel gas and organic compost containing repellents for insects and other pests, by double fermentation

    Energy Technology Data Exchange (ETDEWEB)

    de Farias, R.

    1976-07-27

    Solid waste such as selected trash, harvest residues, and manure are fermented in 2 stages (aerobic fermentation at 80/sup 0/ for 8 to 15 days and anaerobic for 35 to 60 days) to produce a CH/sub 4/-contg. fuel gas with a calorific value of approx. 9500 cal/m/sup 3/, and an organic solid which has repellent effects on insects and other predators. The anaerobic fermentation is carried out in digestors with self-regulable hydraulic seals.

  1. Connection between the decline of spruce and occurrence of animal pests, especially nematodes

    Energy Technology Data Exchange (ETDEWEB)

    Timans, U.

    1986-12-01

    In various regions of Bavaria, affected by the decline of spruce, attack by insects and especially nematodes was examined on diseased and healthy spruces. A connection between harmful forest insects and the decline of spruce did not become evident, neither over wide areas nor by examination of single trees. Attack by nematodes was examined in soil and wood samples and also in fine feeder roots of diseased and healthy trees. Plant-parasitic nematodes were not found in the wood and in feeder roots. Although root-parasitic nematodes were present in soil samples, their density was too little to account for a direct damage to spruce. They occurred likewise in samples from healthy and diseased trees. Plant-parasitic nematodes can thus be excluded as a possible causal agent for the decline of spruce.

  2. Vegetable Crop Pests. MEP 311.

    Science.gov (United States)

    Kantzes, James G.; And Others

    As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common agricultural pests of vegetable crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects,…

  3. Fruit Crop Pests. MEP 312.

    Science.gov (United States)

    Weaver, Leslie O.; And Others

    As part of a cooperative extension service series by the University of Maryland this publication introduces the identification and control of common agricultural pests of fruit crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects, weeds,…

  4. Atoms for pest control

    International Nuclear Information System (INIS)

    Lindquist, D.A.

    1984-01-01

    Insects cause losses estimated at between 8% and 20% of total production of crops and livestock throughout the world. With the aim of developing technologies which can reduce such losses, the Insect and Pest Control Section of the Joint FAO/IAEA Division actively sponsors projects and conducts research through the Entomology Section of the Agricultural Biotechnology Laboratory at Seibersdorf. In its work, the Section has placed considerable emphasis on the Sterile Insect Technique (SIT). This technique involves the sterilization and release of large numbers of insects of the target species into the area where control is to be achieved. There, the sterile insects mate with the fertile wild insects, which produce no progeny: the technique is thus a highly specific form of ''birth control''. It is being used against a number of pest species in several countries

  5. Successes against insects and parasites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1967-10-15

    With more and more answers being found to intricate problems which have entailed years of research in many parts of the world, some successes can now be claimed in the fight to control insect threats to crops, animals and human beings. Nuclear techniques are playing an important part in world efforts, and recent reports show that they have been effective in pioneer work against crop pests as well as in finding an answer to some diseases caused by parasites

  6. Control of insect pests of cowpea in the savanna of Roraima, Brazil. = Controle de insetos-praga do feijão-caupi na savana de Roraima.

    Directory of Open Access Journals (Sweden)

    Deyse Cristina Oliveira da Silva

    2011-12-01

    Full Text Available The objective of this study was to evaluate the effects of the insecticides acephate, imidacloprid and neem oil to control major insect pests of cowpea in cerrado of Roraima. The experiment was installed in the experimental area of the CCA/UFRR. The planting of cowpea (c.v. BRS Guariba was carried out between the double rows of cassava (2.0 x 0.8 x 0.8 m. The rows of cowpea were spaced 0.5 m apart and 0.75 m double rows of cassava. We adopted the experimental design of randomized blocks with five treatments and four replications. The treatments were as follows: T1 - control (without application of products, T2 - Neem oil ( applied to 20, 30, 40 and 50 days after planting - DAP, T3 - Imidacloprid (20 DAP + Acephate (30 DAP + Imidacloprid (40 DAP + Acephate (50 DAP, T4 - Acephate (20 DAP + Imidacloprid (30 DAP + Acephate (40 DAP + Imidacloprid (50 DAP T5 - Imidacloprid (20 DAP + Oil nim (30 DAP + Acephate (40 DAE + neem oil (50 DAP. It measured the number of plants located in the middle row with symptoms of pest attack, and the calculation of the percentage of plants attacked. It was found that all treatments were effective in controlling Aphis craccivora, the best treatments for control of Chalcodermus bimaculatus were those who had been cunning application of neem oil, that the treatment using only the neem oil was effective in controlling Aphis craccivora, Bemisia tabaci, Empoasca kraemeri and the Chalcodermus bimaculatus. The treatments used in this study were not effective to control the Cerotoma arcuatus.

  7. A review of necrophagous insects colonising human and animal cadavers in south-east Queensland, Australia.

    Science.gov (United States)

    Farrell, Julianne F; Whittington, Andrew E; Zalucki, Myron P

    2015-12-01

    A review of insects collected from decomposing human remains in south-east Queensland yielded 32 species in three orders (Diptera, Coleoptera, Hymenoptera) and 11 families (Calliphoridae, Sarcophagidae, Muscidae, Phoridae, Sepsidae, Chironomidae, Dermestidae, Cleridae, Histeridae, Staphylinidae, Encyrtidae). There were 15 cases where remains were located indoors and five cases where remains were outdoors, in both terrestrial and aquatic environments. Coleoptera were strongly associated with outdoors remains, while dipteran species composition was similar in both indoor and outdoor habitats. Some Diptera were only associated with indoors remains, while others were similarly restricted to remains recovered outdoors. Hymenopteran parasitoids were active in both habitats. Comparative collections were made from other vertebrate remains, including road-kill and farmed animals throughout south-east Queensland (Qld) and northern New South Wales (NSW) during the same period. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Agriculture and the promotion of insect pests: rice cultivation in river floodplains and malaria vectors in The Gambia

    Directory of Open Access Journals (Sweden)

    Louca Vasilis

    2009-07-01

    Full Text Available Abstract Background Anthropogenic modification of natural habitats can create conditions in which pest species associated with humans can thrive. In order to mitigate for these changes, it is necessary to determine which aspects of human management are associated with the promotion of those pests. Anopheles gambiae, the main Africa malaria vector, often breeds in rice fields. Here the impact of the ancient practice of 'swamp rice' cultivation, on the floodplains of the Gambia River, on the production of anopheline mosquitoes was investigated. Methods Routine surveys were carried out along 500 m transects crossing rice fields from the landward edge of the floodplains to the river during the 2006 rainy season. Aquatic invertebrates were sampled using area samplers and emergence traps and fish sampled using nets. Semi-field experiments were used to investigate whether nutrients used for swamp rice cultivation affected mosquito larval abundance. Results At the beginning of the rainy season rice is grown on the landward edge of the floodplain; the first area to flood with fresh water and one rich in cattle dung. Later, rice plants are transplanted close to the river, the last area to dry out on the floodplain. Nearly all larval and adult stages of malaria vectors were collected 0–100 m from the landward edge of the floodplains, where immature rice plants were grown. These paddies contained stagnant freshwater with high quantities of cattle faeces. Semi-field studies demonstrated that cattle faeces nearly doubled the number of anopheline larvae compared with untreated water. Conclusion Swamp rice cultivation creates ideal breeding sites for malaria vectors. However, only those close to the landward edge harboured vectors. These sites were productive since they were large areas of standing freshwater, rich in nutrients, protected from fish, and situated close to human habitation, where egg-laying mosquitoes from the villages had short distances to

  9. Viral Delivery of dsRNA for Control of Insect Agricultural Pests and Vectors of Human Disease: Prospects and Challenges

    Directory of Open Access Journals (Sweden)

    Anna Kolliopoulou

    2017-06-01

    Full Text Available RNAi is applied as a new and safe method for pest control in agriculture but efficiency and specificity of delivery of dsRNA trigger remains a critical issue. Various agents have been proposed to augment dsRNA delivery, such as engineered micro-organisms and synthetic nanoparticles, but the use of viruses has received relatively little attention. Here we present a critical view of the potential of the use of recombinant viruses for efficient and specific delivery of dsRNA. First of all, it requires the availability of plasmid-based reverse genetics systems for virus production, of which an overview is presented. For RNA viruses, their application seems to be straightforward since dsRNA is produced as an intermediate molecule during viral replication, but DNA viruses also have potential through the production of RNA hairpins after transcription. However, application of recombinant virus for dsRNA delivery may not be straightforward in many cases, since viruses can encode RNAi suppressors, and virus-induced silencing effects can be determined by the properties of the encoded RNAi suppressor. An alternative is virus-like particles that retain the efficiency and specificity determinants of natural virions but have encapsidated non-replicating RNA. Finally, the use of viruses raises important safety issues which need to be addressed before application can proceed.

  10. Functional interpretation of a non-gut hemocoelic tissue aminopeptidase N (APN in a lepidopteran insect pest Achaea janata.

    Directory of Open Access Journals (Sweden)

    Thuirei Jacob Ningshen

    Full Text Available Insect midgut membrane-anchored aminopeptidases N (APNs are Zn(++ dependent metalloproteases. Their primary role in dietary protein digestion and also as receptors in Cry toxin-induced pathogenesis is well documented. APN expression in few non-gut hemocoelic tissues of lepidopteran insects has also been reported but their functions are widely unknown. In the present study, we observed specific in vitro interaction of Cry1Aa toxin with a 113 kDa AjAPN1 membrane protein of larval fat body, Malpighian tubule and salivary gland of Achaea janata. Analyses of 3D molecular structure of AjAPN1, the predominantly expressed APN isoform in these non-gut hemocoelic tissues of A. janata showed high structural similarity to the Cry1Aa toxin binding midgut APN of Bombyx mori, especially in the toxin binding region. Structural similarity was further substantiated by in vitro binding of Cry1Aa toxin. RNA interference (RNAi resulted in significant down-regulation of AjAPN1 transcript and protein expression in fat body and Malpighian tubule but not in salivary gland. Consequently, reduced AjAPN1 expression resulted in larval mortality, larval growth arrest, development of lethal larval-pupal intermediates, development of smaller pupae and emergence of viable defective adults. In vitro Cry1Aa toxin binding analysis of non-gut hemocoelic tissues of AjAPN1 knockdown larvae showed reduced interaction of Cry1Aa toxin with the 113 kDa AjAPN1 protein, correlating well with the significant silencing of AjAPN1 expression. Thus, our observations suggest AjAPN1 expression in non-gut hemocoelic tissues to play important physiological role(s during post-embryonic development of A. janata. Though specific interaction of Cry1Aa toxin with AjAPN1 of non-gut hemocoelic tissues of A. janata was demonstrated, evidences to prove its functional role as a Cry1Aa toxin receptor will require more in-depth investigation.

  11. Electrostatic Insect Sweeper for Eliminating Whiteflies Colonizing Host Plants: A Complementary Pest Control Device in An Electric Field Screen-Guarded Greenhouse.

    Science.gov (United States)

    Takikawa, Yoshihiro; Matsuda, Yoshinori; Kakutani, Koji; Nonomura, Teruo; Kusakari, Shin-Ichi; Okada, Kiyotsugu; Kimbara, Junji; Osamura, Kazumi; Toyoda, Hideyoshi

    2015-05-12

    Our greenhouse tomatoes have suffered from attacks by viruliferous whiteflies Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) over the last 10 years. The fundamental countermeasure was the application of an electric field screen to the greenhouse windows to prevent their entry. However, while the protection was effective, it was incomplete, because of the lack of a guard at the greenhouse entrance area; in fact, the pests entered from the entrance door when workers entered and exited. To address this, we developed a portable electrostatic insect sweeper as a supplementary technique to the screen. In this sweeper, eight insulated conductor wires (ICWs) were arranged at constant intervals along a polyvinylchloride (PVC) pipe and covered with a cylindrical stainless net. The ICWs and metal net were linked to a DC voltage generator (operated by 3-V alkaline batteries) inside the grip and oppositely electrified to generate an electric field between them. Whiteflies on the plants were attracted to the sweeper that was gently slid along the leaves. This apparatus was easy to operate on-site in a greenhouse and enabled capture of the whiteflies detected during the routine care of the tomato plants. Using this apparatus, we caught all whiteflies that invaded the non-guarded entrance door and minimized the appearance and spread of the viral disease in tomato plants in the greenhouse.

  12. Map-based Cloning and Characterization of the BPH18 Gene from Wild Rice Conferring Resistance to Brown Planthopper (BPH) Insect Pest.

    Science.gov (United States)

    Ji, Hyeonso; Kim, Sung-Ryul; Kim, Yul-Ho; Suh, Jung-Pil; Park, Hyang-Mi; Sreenivasulu, Nese; Misra, Gopal; Kim, Suk-Man; Hechanova, Sherry Lou; Kim, Hakbum; Lee, Gang-Seob; Yoon, Ung-Han; Kim, Tae-Ho; Lim, Hyemin; Suh, Suk-Chul; Yang, Jungil; An, Gynheung; Jena, Kshirod K

    2016-09-29

    Brown planthopper (BPH) is a phloem sap-sucking insect pest of rice which causes severe yield loss. We cloned the BPH18 gene from the BPH-resistant introgression line derived from the wild rice species Oryza australiensis. Map-based cloning and complementation test revealed that the BPH18 encodes CC-NBS-NBS-LRR protein. BPH18 has two NBS domains, unlike the typical NBS-LRR proteins. The BPH18 promoter::GUS transgenic plants exhibited strong GUS expression in the vascular bundles of the leaf sheath, especially in phloem cells where the BPH attacks. The BPH18 proteins were widely localized to the endo-membranes in a cell, including the endoplasmic reticulum, Golgi apparatus, trans-Golgi network, and prevacuolar compartments, suggesting that BPH18 may recognize the BPH invasion at endo-membranes in phloem cells. Whole genome sequencing of the near-isogenic lines (NILs), NIL-BPH18 and NIL-BPH26, revealed that BPH18 located at the same locus of BPH26. However, these two genes have remarkable sequence differences and the independent NILs showed differential BPH resistance with different expression patterns of plant defense-related genes, indicating that BPH18 and BPH26 are functionally different alleles. These findings would facilitate elucidation of the molecular mechanism of BPH resistance and the identified novel alleles to fast track breeding BPH resistant rice cultivars.

  13. Notes on the insect fauna on two species of astrocaryum (palmae, cocoeae, bactridinae in peruvian amazonia, with emphasis on potential pests of cultivated palms

    Directory of Open Access Journals (Sweden)

    1992-01-01

    plantaciones industriales de palmas en la Amazonia peruana. Insects were inventoried on two palm species, Astrocaryum chonta and Astrocaryum carnosum, respectively located in the lower Ucayali River valley near Jenaro Herrera, and in the upper Huallaga River valley near Uchiza. This fauna, which is highly diversified, includes many pests of cultivated palms, many other phytophagous species, the host plants of which were unknown, and many predators. Astrocaryum chonta and Astrocaryum carnosum are considered sources of pests for industrial palm plantations in Peruvian Amazonia.

  14. Insects, isotopes and radiation

    International Nuclear Information System (INIS)

    Lindquist, D.A.

    1987-01-01

    The article describes the increased use of nuclear techniques in controlling harmful insects. The sterile insect technique (SIT), which uses radiation to sexually sterilize insects and prevent reproduction, is particularly effective in eradication programmes. At the present time, there are approximately 10 species of insect pests being attacked by the SIT. Research and development is being conducted on other insect species and it is anticipated that the technology will be more widely used in the future

  15. A Usages of Herb Extracts by Stream Integrated with Micro-organism to Control Insect Pests and Phytophagus Mites by Biological Control

    Energy Technology Data Exchange (ETDEWEB)

    Uraisakul, Kanok [Rajamangala University of Technology Suvarnabhumi Phranakhonsiayathaya, Hantra Campus, Phranakhonsiayathaya (Thailand); Piadang, Nattaya [Office of Atoms for Peace, Bangkok (Thailand)

    2006-09-15

    A usages of herb extracts by stream integrated rith micro-organism to control insect pests and phytophagus mites by biological control was compared with insecticide to investigate the responses of chili tree and kieffer lime tree. Moreover, herb extracts were tested in controlling insect pests. Herb extracts were selected from many effective kinds such as: Azadirachta indica, Hyptis suaveolens, Citronella grass, Eucalyptus, Stemona, Galangal, Zingiber, cassumunar Roxb. Chronmolaena oderatum, Derris elyptica, Ginger, Annona seed, Malueraca sp., Andrographis paniculata, Veronia aquarrosa, Garlic, Thevetia peruviana, and Tobacco. The experiment was set at Herb Laboratory Ayutthaya Campus, Rajamangala University of Technology, Suvarnabhumi during August 2004 to June 2006. From testing herb extracts at 100 ppm. On Chili germination, the result was that the Chromolaena extracts made highest germination of 69.50%, Citronella grass at 500 ppm., made highest germination of chili seed at 86.00% within 12 days. Garlic extracts could kill 75.90% of aphids in 24 hrs., maximized in this experiments. Malueraca extracts at 500 ppm. Could kill 92.65% of chili aphids similar to the activity of insecticides action in 24 hrs. However at 5,000 ppm. It found that chemical treatment gave difference results from herbal treatments. Annona extracts could kill 64.58% of chili aphids better that others treatments. There are 18 treatment of time at 6 hrs. , 15 hrs., and 24 hrs., respectively. The results found that at 6 hrs., Kelthane could kill 93.75% of red spider mite. At 15 hrs. Stemona could kill 95.50% of red spider mite. At 24 hrs. Stemona or Chromolaena could kill 100% of red spider mite equally, Chrolaena could kill more than 83% of chili thrips at 24 hrs. Annona extracts could harvest the maximum of fruit fresh weight and numbers of fruits. After cutting leaves for producing new leaves, spraying herbal extracts was not different in statistic; however, Eucalyptus extracts, Neem plus

  16. A Usages of Herb Extracts by Stream Integrated with Micro-organism to Control Insect Pests and Phytophagus Mites by Biological Control

    International Nuclear Information System (INIS)

    Uraisakul, Kanok; Piadang, Nattaya

    2006-09-01

    A usages of herb extracts by stream integrated rith micro-organism to control insect pests and phytophagus mites by biological control was compared with insecticide to investigate the responses of chili tree and kieffer lime tree. Moreover, herb extracts were tested in controlling insect pests. Herb extracts were selected from many effective kinds such as: Azadirachta indica, Hyptis suaveolens, Citronella grass, Eucalyptus, Stemona, Galangal, Zingiber, cassumunar Roxb. Chronmolaena oderatum, Derris elyptica, Ginger, Annona seed, Malueraca sp., Andrographis paniculata, Veronia aquarrosa, Garlic, Thevetia peruviana, and Tobacco. The experiment was set at Herb Laboratory Ayutthaya Campus, Rajamangala University of Technology, Suvarnabhumi during August 2004 to June 2006. From testing herb extracts at 100 ppm. On Chili germination, the result was that the Chromolaena extracts made highest germination of 69.50%, Citronella grass at 500 ppm., made highest germination of chili seed at 86.00% within 12 days. Garlic extracts could kill 75.90% of aphids in 24 hrs., maximized in this experiments. Malueraca extracts at 500 ppm. Could kill 92.65% of chili aphids similar to the activity of insecticides action in 24 hrs. However at 5,000 ppm. It found that chemical treatment gave difference results from herbal treatments. Annona extracts could kill 64.58% of chili aphids better that others treatments. There are 18 treatment of time at 6 hrs. , 15 hrs., and 24 hrs., respectively. The results found that at 6 hrs., Kelthane could kill 93.75% of red spider mite. At 15 hrs. Stemona could kill 95.50% of red spider mite. At 24 hrs. Stemona or Chromolaena could kill 100% of red spider mite equally, Chrolaena could kill more than 83% of chili thrips at 24 hrs. Annona extracts could harvest the maximum of fruit fresh weight and numbers of fruits. After cutting leaves for producing new leaves, spraying herbal extracts was not different in statistic; however, Eucalyptus extracts, Neem plus

  17. Characterization of a digestive carboxypeptidase from the insect pest corn earworm (Helicoverpa armigera) with novel specificity towards C-terminal glutamate residues.

    Science.gov (United States)

    Bown, David P; Gatehouse, John A

    2004-05-01

    Carboxypeptidases were purified from guts of larvae of corn earworm (Helicoverpa armigera), a lepidopteran crop pest, by affinity chromatography on immobilized potato carboxypeptidase inhibitor, and characterized by N-terminal sequencing. A larval gut cDNA library was screened using probes based on these protein sequences. cDNA HaCA42 encoded a carboxypeptidase with sequence similarity to enzymes of clan MC [Barrett, A. J., Rawlings, N. D. & Woessner, J. F. (1998) Handbook of Proteolytic Enzymes. Academic Press, London.], but with a novel predicted specificity towards C-terminal acidic residues. This carboxypeptidase was expressed as a recombinant proprotein in the yeast Pichia pastoris. The expressed protein could be activated by treatment with bovine trypsin; degradation of bound pro-region, rather than cleavage of pro-region from mature protein, was the rate-limiting step in activation. Activated HaCA42 carboxypeptidase hydrolysed a synthetic substrate for glutamate carboxypeptidases (FAEE, C-terminal Glu), but did not hydrolyse substrates for carboxypeptidase A or B (FAPP or FAAK, C-terminal Phe or Lys) or methotrexate, cleaved by clan MH glutamate carboxypeptidases. The enzyme was highly specific for C-terminal glutamate in peptide substrates, with slow hydrolysis of C-terminal aspartate also observed. Glutamate carboxypeptidase activity was present in larval gut extract from H. armigera. The HaCA42 protein is the first glutamate-specific metallocarboxypeptidase from clan MC to be identified and characterized. The genome of Drosophila melanogaster contains genes encoding enzymes with similar sequences and predicted specificity, and a cDNA encoding a similar enzyme has been isolated from gut tissue in tsetse fly. We suggest that digestive carboxypeptidases with sequence similarity to the classical mammalian enzymes, but with specificity towards C-terminal glutamate, are widely distributed in insects.

  18. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption.

    Directory of Open Access Journals (Sweden)

    Dennis G A B Oonincx

    Full Text Available BACKGROUND: Greenhouse gas (GHG production, as a cause of climate change, is considered as one of the biggest problems society is currently facing. The livestock sector is one of the large contributors of anthropogenic GHG emissions. Also, large amounts of ammonia (NH(3, leading to soil nitrification and acidification, are produced by livestock. Therefore other sources of animal protein, like edible insects, are currently being considered. METHODOLOGY/PRINCIPAL FINDINGS: An experiment was conducted to quantify production of carbon dioxide (CO₂ and average daily gain (ADG as a measure of feed conversion efficiency, and to quantify the production of the greenhouse gases methane (CH₄ and nitrous oxide (N₂O as well as NH₃ by five insect species of which the first three are considered edible: Tenebrio molitor, Acheta domesticus, Locusta migratoria, Pachnoda marginata, and Blaptica dubia. Large differences were found among the species regarding their production of CO₂ and GHGs. The insects in this study had a higher relative growth rate and emitted comparable or lower amounts of GHG than described in literature for pigs and much lower amounts of GHG than cattle. The same was true for CO₂ production per kg of metabolic weight and per kg of mass gain. Furthermore, also the production of NH₃ by insects was lower than for conventional livestock. CONCLUSIONS/SIGNIFICANCE: This study therefore indicates that insects could serve as a more environmentally friendly alternative for the production of animal protein with respect to GHG and NH₃ emissions. The results of this study can be used as basic information to compare the production of insects with conventional livestock by means of a life cycle analysis.

  19. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption.

    Science.gov (United States)

    Oonincx, Dennis G A B; van Itterbeeck, Joost; Heetkamp, Marcel J W; van den Brand, Henry; van Loon, Joop J A; van Huis, Arnold

    2010-12-29

    Greenhouse gas (GHG) production, as a cause of climate change, is considered as one of the biggest problems society is currently facing. The livestock sector is one of the large contributors of anthropogenic GHG emissions. Also, large amounts of ammonia (NH(3)), leading to soil nitrification and acidification, are produced by livestock. Therefore other sources of animal protein, like edible insects, are currently being considered. An experiment was conducted to quantify production of carbon dioxide (CO₂) and average daily gain (ADG) as a measure of feed conversion efficiency, and to quantify the production of the greenhouse gases methane (CH₄) and nitrous oxide (N₂O) as well as NH₃ by five insect species of which the first three are considered edible: Tenebrio molitor, Acheta domesticus, Locusta migratoria, Pachnoda marginata, and Blaptica dubia. Large differences were found among the species regarding their production of CO₂ and GHGs. The insects in this study had a higher relative growth rate and emitted comparable or lower amounts of GHG than described in literature for pigs and much lower amounts of GHG than cattle. The same was true for CO₂ production per kg of metabolic weight and per kg of mass gain. Furthermore, also the production of NH₃ by insects was lower than for conventional livestock. This study therefore indicates that insects could serve as a more environmentally friendly alternative for the production of animal protein with respect to GHG and NH₃ emissions. The results of this study can be used as basic information to compare the production of insects with conventional livestock by means of a life cycle analysis.

  20. Sterile insect technique and radiation in insect control

    International Nuclear Information System (INIS)

    1982-01-01

    Out of 39 papers and 6 summaries of the poster presentations published in this proceeding series, 23 respectively fall within the INIS subject scope. Four main topics were covered: a review of the sterile insect technique against various insect pests; its application to tsetse flies in eradication programmes; quality control of mass-reared insects for release; and the development of genetic approaches to insect mass rearing and control. Other topics emphasized integrated pest management, computer models and radioisotope labelling

  1. Safety assessment and feeding value for pigs, poultry and ruminant animals of pest protected (Bt plants and herbicide tolerant (glyphosate, glufosinate plants: interpretation of experimental results observed worldwide on GM plants

    Directory of Open Access Journals (Sweden)

    Aimé Aumaitre

    2010-01-01

    Full Text Available New varieties of plants resistant to pests and/or tolerant to specific herbicides such as maize, soybean, cotton, sugarbeets, canola, have been recently developed by using genetic transformation (GT. These plants contain detectable specificactive recombinant DNA (rDNA and their derived protein. Since they have not been selected for a modification oftheir chemical composition, they can be considered as substantially equivalent to their parents or to commercial varietiesfor their content in nutrients and anti-nutritional factors. However, insect protected maize is less contaminated by mycotoxinsthan its parental counterpart conferring a higher degree of safety to animal feeds. The new feeds, grain and derivatives,and whole plants have been intensively tested in vivo up to 216 days for their safety and their nutritional equivalencefor monogastric farm animals (pig, poultry and ruminants (dairy cows, steers, lambs. The present article is basedon the interpretation and the summary of the scientific results published in original reviewed journals either as full papers(33 or as abstracts (33 available through September 2003. For the duration of the experiments adapted to the species,feed intake, weight gain, milk yield and nutritional equivalence expressed as feed conversion and/or digestibility of nutrientshave never been affected by feeding animals diets containing GT plants. In addition, in all the experimental animals,the body and carcass composition, the composition of milk and animal tissues, as well as the sensory properties of meatare not modified by the use of feeds derived from GT plants. Furthermore, the health of animals, their physiological characteristicsand the survival rate are also not affected.The presence of rDNA and derived proteins can be recognized and quantified in feeds in the case of glyphosate resistant soybeanand canola and in the case of insect protected maize. However, rDNA has never been recovered either in milk, or in

  2. Beneficial Insects and Insect Pollinators on Milkweed in South Georgia

    Science.gov (United States)

    Insect pollinators are essential for the reproduction of more than two-thirds of the world’s crops, and beneficial insects play an important role in managing pest insects in agricultural farmscapes. These insects depend on nectar for their survival in these farmscapes. The flowers of tropical milkwe...

  3. 7 CFR 340.2 - Groups of organisms which are or contain plant pests and exemptions.

    Science.gov (United States)

    2010-01-01

    ... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTRODUCTION OF ORGANISMS... plant pest in § 340.1. GROUP Viroids Superkingdom Prokaryotae Kingdom Virus All members of groups containing plant viruses, and all other plant and insect viruses Kingdom Monera Division Bacteria Family...

  4. Agricultural Plant Pest Control. Bulletin 763.

    Science.gov (United States)

    French, John C.; And Others

    This manual gives general information on plant pests and pesticides. First, the life-cycle and habits of some common insect pests are given. These include caterpillars, beetles and beetle larvae, and sucking insects. Next, plant diseases such as leaf diseases, wilts, root and crown rots, stem cankers, fruit rots, seed and seedling diseases, and…

  5. Agricultural Plant Pest Control. Manual 93.

    Science.gov (United States)

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides for the agricultural plant pest control category. The text discusses the insect pests including caterpillars, beetles, and soil inhabiting insects; diseases and nematodes; and weeds. Consideration is given…

  6. The Sterile Insect Technique

    International Nuclear Information System (INIS)

    Kiragu, J.

    2006-01-01

    Insect pests have caused an increasing problem in agriculture and human health through crop losses and disease transmission to man and livestock. Intervention to ensure food security and human health has relied on Integrated Pest Management (IPM) strategies to keep the pests population below economic injury levels. IPM integrate a variety of methods, but there has been over-reliance on chemical control following the discovery of insecticidal properties of DDT. It is now realized that, maintaining pest populations at controlled levels is unsustainable and eradication options is now being considered. Although the Sterile Insect Technique(SIT) could be used for insect suppression, it is gaining favour in the elimination (eradication) of the target pest population through Areawide-based IPM (Author)

  7. Forest Pest Control. Sale Publication 4072.

    Science.gov (United States)

    Stimmann, M. W., Ed.

    The forest pests discussed in this guide are weeds, insects, diseases, and vertebrates. The guide gives information about types of forests, characteristics of common forest pests, pest control methods, pesticides and application equipment used in forestry, and environmental and human hazards. (Author/BB)

  8. Pest management strategies: Area-wide and conventional

    International Nuclear Information System (INIS)

    Lindquist, D.A.

    2000-01-01

    part of the cost of an area-wide programme will be fighting the target pest away from the commercial production - before the commercial crops are susceptible - on wild or alternate hosts or abandoned orchards, untreated host plants in homeowners' gardens, etc. In most cases, area-wide insect control will be the responsibility of a separate organisation hired by the producers. A separate organisation can plan an aggressive offense against the target pest population over the entire area. High technology systems can be effectively utilised to plan the population management programme. Included will be satellite imagery to detect alternate hosts, sensitive methods to detect movement of the pest populations, computer programmes to predict changes in the pest insect population based on biological parameters, a systems approach to utilise natural enemies on an area-wide basis, genetic analysis to detect the development of resistance and utilisation of systems to delay the development of resistance over the total area. Further, area-wide programmes encourage the use of specialised methods of insect control that are not effective or are not used on a farm by farm basis. These include the sterile insect technique (SIT), male annihilation, inundative releases of parasites, mating inhibitors, large-scale trap cropping with very attractive plants, treatment of alternate hosts on public lands and hosts in private gardens, etc. The objective of area-wide control is to reduce the pest population within the target area to a non-economic level. This is accomplished by attacking the entire insect pest population in the target area. Conventional insect control attempts to protect the plant or animal, is carried out by individual producers over a small area with little planning, is short-term, low technology and is a reactive (defense) approach to insect control. Area-wide insect control attempts to reduce the pest population to a non-economic level over a large area involving many

  9. Networking of integrated pest management

    NARCIS (Netherlands)

    Lamichhane, Jay Ram; Aubertot, Jean Noël; Begg, Graham; Birch, Andrew Nicholas E.; Boonekamp, Piet; Dachbrodt-Saaydeh, Silke; Hansen, Jens Grønbech; Hovmøller, Mogens Støvring; Jensen, Jens Erik; Jørgensen, Lise Nistrup; Kiss, Jozsef; Kudsk, Per; Moonen, Anna Camilla; Rasplus, Jean Yves; Sattin, Maurizio; Streito, Jean Claude; Messéan, Antoine

    2016-01-01

    Integrated pest management (IPM) is facing both external and internal challenges. External challenges include increasing needs to manage pests (pathogens, animal pests and weeds) due to climate change, evolution of pesticide resistance as well as virulence matching host resistance. The complexity

  10. The Immune Responses of the Animal Hosts of West Nile Virus: A Comparison of Insects, Birds, and Mammals

    Directory of Open Access Journals (Sweden)

    Laura R. H. Ahlers

    2018-04-01

    Full Text Available Vector-borne diseases, including arboviruses, pose a serious threat to public health worldwide. Arboviruses of the flavivirus genus, such as Zika virus (ZIKV, dengue virus, yellow fever virus (YFV, and West Nile virus (WNV, are transmitted to humans from insect vectors and can cause serious disease. In 2017, over 2,000 reported cases of WNV virus infection occurred in the United States, with two-thirds of cases classified as neuroinvasive. WNV transmission cycles through two different animal populations: birds and mosquitoes. Mammals, particularly humans and horses, can become infected through mosquito bites and represent dead-end hosts of WNV infection. Because WNV can infect diverse species, research on this arbovirus has investigated the host response in mosquitoes, birds, humans, and horses. With the growing geographical range of the WNV mosquito vector and increased human exposure, improved surveillance and treatment of the infection will enhance public health in areas where WNV is endemic. In this review, we survey the bionomics of mosquito species involved in Nearctic WNV transmission. Subsequently, we describe the known immune response pathways that counter WNV infection in insects, birds, and mammals, as well as the mechanisms known to curb viral infection. Moreover, we discuss the bacterium Wolbachia and its involvement in reducing flavivirus titer in insects. Finally, we highlight the similarities of the known immune pathways and identify potential targets for future studies aimed at improving antiviral therapeutic and vaccination design.

  11. Introduced agricultural pests, plant and animals diseases and vectors in the Dutch Caribbean, with an alert species list

    NARCIS (Netherlands)

    Buurt, van G.; Debrot, A.O.

    2012-01-01

    Most information on invasive alien pests is available for the leeward Dutch islands while the least is known for the windward Dutch islands. The principal means of entry is the importation of unsterilized soil and plant material through container shipment, import of ornamental plants and air

  12. Accounting for spatially heterogeneous conditions in local-scale surveillance strategies: case study of the biosecurity insect pest, grape phylloxera (Daktulosphaira vitifoliae (Fitch)).

    Science.gov (United States)

    Triska, Maggie D; Powell, Kevin S; Collins, Cassandra; Pearce, Inca; Renton, Michael

    2018-04-29

    Surveillance strategies are often standardized and completed on grid patterns to detect pest incursions quickly; however, it may be possible to improve surveillance through more targeted surveillance that accounts for landscape heterogeneity, dispersal and the habitat requirements of the invading organism. We simulated pest spread at a local-scale, using grape phylloxera (Daktulosphaira vitifoliae (Fitch)) as a case study, and assessed the influence of incorporating spatial heterogeneity into surveillance strategies compared to current, standard surveillance strategies. Time to detection, spread within and spread beyond the vineyard were reduced by conducting surveys that target sampling effort in soil that is highly suitable to the invading pest in comparison to standard surveillance strategies. However, these outcomes were dependent on the virulence level of phylloxera as phylloxera is a complex pest with multiple genotypes that influence spread and detectability. Targeting surveillance strategies based on local-scale spatial heterogeneity can decrease the time to detection without increasing the survey cost and surveillance that targets highly suitable soil is the most efficient strategy for detecting new incursions. Additionally, combining targeted surveillance strategies with buffer zones and hygiene procedures, and updating surveillance strategies as additional species information becomes available, will further decrease the risk of pest spread. This article is protected by copyright. All rights reserved.

  13. Insects and Bugs

    Science.gov (United States)

    Sutherland, Karen

    2009-01-01

    They have been around for centuries. They sting, they bite. They cause intense itching or painful sores. They even cause allergic reactions and sometimes death. There are two types of insects that are pests to humans--those that sting and those that bite. The insects that bite do so with their mouths and include mosquitoes, chiggers, and ticks.…

  14. Pest Control Section Biochemical Group, Progress Report 1982-86

    International Nuclear Information System (INIS)

    1988-01-01

    Reserch efforts in the Pest Control Section, BARC, a continuator of insect sterilization and pest control section of the erstwhile Biology and Agriculture Division, were continued to develop integrated management practices for the control of important insect pests of agricultural and medical importance. Insect pests chosen are, ubiquitous potato tuberworm, a serious pest of potatoes, cotton bollworms with particular reference to spotted bollworms and a mosquito (Culex fatigans), a vector of filariasis. Keeping these insects as targets, research activities have been concentrated in the fields of biological control with parasities, pathogens and sterile insects, sex pheromones and insect plant interaction with a view to integrate pest management programme. Besides, the research activity also encompasses investigations of basic nature in the fields of insect sex pheromones, insect pathology and insect plant interaction. Studies on insect pheromones relate to the modifying influence of abiotic and biotic factors of the environment on pheromone production and perception and the possibility of insect developing resistance to pheromones. Studies in the field of insect plant interaction are directed towards identifying weak links in the insect plant relationship with a view to exploit them for developing control. Basic studies in the field of insect pathology relate to isolation and identification of entomopathogens, source of their pathogenecity, improvement in their virulence and formulation of cheaper and potent microbial insecticides. This report pertains to the period 1982-86. (Orig.). 11 tables, 5 figures

  15. Gut immunity in Lepidopteran insects.

    Science.gov (United States)

    Wu, Kai; Yang, Bing; Huang, Wuren; Dobens, Leonard; Song, Hongsheng; Ling, Erjun

    2016-11-01

    Lepidopteran insects constitute one of the largest fractions of animals on earth, but are considered pests in their relationship with man. Key to the success of this order of insects is its ability to digest food and absorb nutrition, which takes place in the midgut. Because environmental microorganisms can easily enter Lepidopteran guts during feeding, the innate immune response guards against pathogenic bacteria, virus and microsporidia that can be devoured with food. Gut immune responses are complicated by both resident gut microbiota and the surrounding peritrophic membrane and are distinct from immune responses in the body cavity, which depend on the function of the fat body and hemocytes. Due to their relevance to agricultural production, studies of Lepidopteran insect midgut and immunity are receiving more attention, and here we summarize gut structures and functions, and discuss how these confer immunity against different microorganisms. It is expected that increased knowledge of Lepidopteran gut immunity may be utilized for pest biological control in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Photodynamic and antibiotic therapy impair the pathogenesis of Enterococcus faecium in a whole animal insect model.

    Directory of Open Access Journals (Sweden)

    José Chibebe Junior

    Full Text Available Enterococcus faecium has emerged as one of the most important pathogens in healthcare-associated infections worldwide due to its intrinsic and acquired resistance to many antibiotics, including vancomycin. Antimicrobial photodynamic therapy (aPDT is an alternative therapeutic platform that is currently under investigation for the control and treatment of infections. PDT is based on the use of photoactive dye molecules, widely known as photosensitizer (PS. PS, upon irradiation with visible light, produces reactive oxygen species that can destroy lipids and proteins causing cell death. We employed Galleria mellonella (the greater wax moth caterpillar fatally infected with E. faecium to develop an invertebrate host model system that can be used to study the antimicrobial PDT (alone or combined with antibiotics. In the establishment of infection by E. faecium in G. mellonella, we found that the G. mellonella death rate was dependent on the number of bacterial cells injected into the insect hemocoel and all E. faecium strains tested were capable of infecting and killing G. mellonella. Antibiotic treatment with ampicillin, gentamicin or the combination of ampicillin and gentamicin prolonged caterpillar survival infected by E. faecium (P = 0.0003, P = 0.0001 and P = 0.0001, respectively. In the study of antimicrobial PDT, we verified that methylene blue (MB injected into the insect followed by whole body illumination prolonged the caterpillar survival (P = 0.0192. Interestingly, combination therapy of larvae infected with vancomycin-resistant E. faecium, with antimicrobial PDT followed by vancomycin, significantly prolonged the survival of the caterpillars when compared to either antimicrobial PDT (P = 0.0095 or vancomycin treatment alone (P = 0.0025, suggesting that the aPDT made the vancomycin resistant E. faecium strain more susceptible to vancomycin action. In summary, G. mellonella provides an invertebrate model host to

  17. Model-based prediction of potential distribution of the invasive insect pest, spotted lanternfly Lycorma delicatula (Hemiptera: Fulgoridae, by using CLIMEX

    Directory of Open Access Journals (Sweden)

    Jae-Min Jung

    2017-12-01

    Full Text Available Lycorma delicatula is one of the major invasive pests of Korea. Careful monitoring is required to protect domestic agriculture as this pest causes severe damage to agricultural crops, such as wilting and sooty mold. This study was designed to confirm the potential distribution of L. delicatula using the modeling software CLIMEX and to suggest fundamental data for preventing agricultural damage by L. delicatula. Our results show that Korean weather seems to be adequate for L. delicatula habitation, indicating that approximately 60% of areas examined have a very high possibility of potential distribution. Particularly, we showed that Gyeongsang-do and Jeonla-do, which have not yet been invaded by L. delicatula, were very suitable locations for its growth. Therefore, although it is necessary to set up feasible strategies for preventing further L. delicatula invasions, subsequent studies are needed for assessing other invasive species considering the impact of future climate change. Keywords: CLIMEX software, invasive pest, Lycorma delicatula, potential distribution

  18. Study of pest-predator interaction in agricultural ecosystems by using neutron activation. Part of a coordinated programme on the use of isotopes in pest management with emphasis on rice insects

    International Nuclear Information System (INIS)

    Szalay-Marzso, L.

    1984-04-01

    Several methods were investigated for using the stable element somarium, as a tracer to study insect predator/parasite-prey interactions. The element was introduced into parasite-prey by injection, by incorporation into artificial diet and by allowing prey to feed on labelled host plants. It is readily taken up by plants when in solution. Levels of somarium were found that were non-toxic to prey and that could be detected, by neutron activation, in parasites and predators that attacked the prey. Using somarium labelled prey, the author demonstrated in field tests that carabid beetles forage more efficiently for prey that are distributed horizontally than ones distributed vertically

  19. Toxins for Transgenic Resistance to Hemipteran Pests

    Science.gov (United States)

    Chougule, Nanasaheb P.; Bonning, Bryony C.

    2012-01-01

    The sap sucking insects (Hemiptera), which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic crops expressing toxins derived from the bacterium Bacillus thuringiensis (Bt) has provided effective plant protection against some insect pests, Bt toxins exhibit little toxicity against sap sucking insects. Indeed, the pest status of some Hemiptera on Bt-transgenic plants has increased in the absence of pesticide application. The increased pest status of numerous hemipteran species, combined with increased prevalence of resistance to chemical insecticides, provides impetus for the development of biologically based, alternative management strategies. Here, we provide an overview of approaches toward transgenic resistance to hemipteran pests. PMID:22822455

  20. Planthopper pests of grapevine (in French)

    Science.gov (United States)

    In the French vineyards occur two main insect pests belonging to Fulgoromorpha, Hyalesthes obsoletus Signoret (Cixiidae) and Metcalfa pruinosa (Say) (Flatidae). Hyalesthes obsoletus is inducing economic losses by transmitting a phytoplasma, called Stolbur, from wild plants (bindweed, nettle, etc.) t...

  1. Differential Expression Patterns in Chemosensory and Non-Chemosensory Tissues of Putative Chemosensory Genes Identified by Transcriptome Analysis of Insect Pest the Purple Stem Borer Sesamia inferens (Walker)

    OpenAIRE

    Zhang, Ya-Nan; Jin, Jun-Yan; Jin, Rong; Xia, Yi-Han; Zhou, Jing-Jiang; Deng, Jian-Yu; Dong, Shuang-Lin

    2013-01-01

    BACKGROUND: A large number of insect chemosensory genes from different gene subfamilies have been identified and annotated, but their functional diversity and complexity are largely unknown. A systemic examination of expression patterns in chemosensory organs could provide important information. METHODOLOGY/PRINCIPAL FINDINGS: We identified 92 putative chemosensory genes by analysing the transcriptome of the antennae and female sex pheromone gland of the purple stem borer Sesamia inferens, am...

  2. Harnessing Diversity in Wheat to Enhance Grain Yield, Climate Resilience, Disease and Insect Pest Resistance and Nutrition Through Conventional and Modern Breeding Approaches

    Science.gov (United States)

    Mondal, Suchismita; Rutkoski, Jessica E.; Velu, Govindan; Singh, Pawan K.; Crespo-Herrera, Leonardo A.; Guzmán, Carlos; Bhavani, Sridhar; Lan, Caixia; He, Xinyao; Singh, Ravi P.

    2016-01-01

    Current trends in population growth and consumption patterns continue to increase the demand for wheat, a key cereal for global food security. Further, multiple abiotic challenges due to climate change and evolving pathogen and pests pose a major concern for increasing wheat production globally. Triticeae species comprising of primary, secondary, and tertiary gene pools represent a rich source of genetic diversity in wheat. The conventional breeding strategies of direct hybridization, backcrossing and selection have successfully introgressed a number of desirable traits associated with grain yield, adaptation to abiotic stresses, disease resistance, and bio-fortification of wheat varieties. However, it is time consuming to incorporate genes conferring tolerance/resistance to multiple stresses in a single wheat variety by conventional approaches due to limitations in screening methods and the lower probabilities of combining desirable alleles. Efforts on developing innovative breeding strategies, novel tools and utilizing genetic diversity for new genes/alleles are essential to improve productivity, reduce vulnerability to diseases and pests and enhance nutritional quality. New technologies of high-throughput phenotyping, genome sequencing and genomic selection are promising approaches to maximize progeny screening and selection to accelerate the genetic gains in breeding more productive varieties. Use of cisgenic techniques to transfer beneficial alleles and their combinations within related species also offer great promise especially to achieve durable rust resistance. PMID:27458472

  3. Designing agricultural landscapes for natural pest control

    NARCIS (Netherlands)

    Steingrover, E.G.; Geertsema, W.; Wingerden, van W.K.R.E.

    2010-01-01

    The green–blue network of semi-natural non-crop landscape elements in agricultural landscapes has the potential to enhance natural pest control by providing various resources for the survival of beneficial insects that suppress crop pests. A study was done in the Hoeksche Waard to explore how

  4. Forest nursery pest management in Cuba

    Science.gov (United States)

    Rene Alberto Lopez Castilla; Angela Duarte Casanova; Celia Guerra Rivero; Haylett Cruz Escoto; Natividad Triguero Issasi

    2002-01-01

    A systematic survey of methods to detect pests in forest nurseries before they damage plants was done. These surveys recorded the most important forest nursery pests during 18 years (from 1980 to 1998) and their geographical and temporal distribution in the principal enterprises in Cuba. Approximately a dozen insect species and three fungi species responsible for the...

  5. Bioactivities of Ketones Terpenes: Antifungal Effect on F. verticillioides and Repellents to Control Insect Fungal Vector, S. zeamais

    OpenAIRE

    Pizzolitto, Romina P.; Herrera, Jimena M.; Zaio, Yesica P.; Dambolena, Jose S.; Zunino, Maria P.; Gallucci, Mauro N.; Zygadlo, Julio A.

    2015-01-01

    Maize is one the most important staple foods in the world. However, numerous pests, such as fungal pathogens, e.g., Fusarium verticillioides, and insects, such as Sitophlilus zeamais, attack maize grains during storage. Many F. verticillioides strains produce fumonisins, one of the most important mycotoxin that causes toxic effects on human and animal health. This situation is aggravated by the insect fungal vector, Sitophlilus zeamais, which contributes to the dispersal of fungal spores, and...

  6. Review of Ecologically-Based Pest Management in California Vineyards.

    Science.gov (United States)

    Wilson, Houston; Daane, Kent M

    2017-10-11

    Grape growers in California utilize a variety of biological, cultural, and chemical approaches for the management of insect and mite pests in vineyards. This combination of strategies falls within the integrated pest management (IPM) framework, which is considered to be the dominant pest management paradigm in vineyards. While the adoption of IPM has led to notable and significant reductions in the environmental impacts of grape production, some growers are becoming interested in the use of an explicitly non-pesticide approach to pest management that is broadly referred to as ecologically-based pest management (EBPM). Essentially a subset of IPM strategies, EBPM places strong emphasis on practices such as habitat management, natural enemy augmentation and conservation, and animal integration. Here, we summarize the range and known efficacy of EBPM practices utilized in California vineyards, followed by a discussion of research needs and future policy directions. EBPM should in no way be seen in opposition, or as an alternative to the IPM framework. Rather, the further development of more reliable EBPM practices could contribute to the robustness of IPM strategies available to grape growers.

  7. Insect cadaver applications: pros and cons

    Science.gov (United States)

    Application of entomopathogenic nematodes (EPNs) formulated as insect cadavers has become an alternative to aqueous application for the control of agricultural pests. In this approach, the infected insect host cadaver is applied directly to the target site and pest suppression is achieved by the inf...

  8. Differential expression patterns in chemosensory and non-chemosensory tissues of putative chemosensory genes identified by transcriptome analysis of insect pest the purple stem borer Sesamia inferens (Walker.

    Directory of Open Access Journals (Sweden)

    Ya-Nan Zhang

    Full Text Available BACKGROUND: A large number of insect chemosensory genes from different gene subfamilies have been identified and annotated, but their functional diversity and complexity are largely unknown. A systemic examination of expression patterns in chemosensory organs could provide important information. METHODOLOGY/PRINCIPAL FINDINGS: We identified 92 putative chemosensory genes by analysing the transcriptome of the antennae and female sex pheromone gland of the purple stem borer Sesamia inferens, among them 87 are novel in this species, including 24 transcripts encoding for odorant binding proteins (OBPs, 24 for chemosensory proteins (CSPs, 2 for sensory neuron membrane proteins (SNMPs, 39 for odorant receptors (ORs and 3 for ionotropic receptors (IRs. The transcriptome analyses were validated and quantified with a detailed global expression profiling by Reverse Transcription-PCR for all 92 transcripts and by Quantitative Real Time RT-PCR for selected 16 ones. Among the chemosensory gene subfamilies, CSP transcripts are most widely and evenly expressed in different tissues and stages, OBP transcripts showed a clear antenna bias and most of OR transcripts are only detected in adult antennae. Our results also revealed that some OR transcripts, such as the transcripts of SNMP2 and 2 IRs were expressed in non-chemosensory tissues, and some CSP transcripts were antenna-biased expression. Furthermore, no chemosensory transcript is specific to female sex pheromone gland and very few are found in the heads. CONCLUSION: Our study revealed that there are a large number of chemosensory genes expressed in S. inferens, and some of them displayed unusual expression profile in non-chemosensory tissues. The identification of a large set of putative chemosensory genes of each subfamily from a single insect species, together with their different expression profiles provide further information in understanding the functions of these chemosensory genes in S. inferens as

  9. Differential expression patterns in chemosensory and non-chemosensory tissues of putative chemosensory genes identified by transcriptome analysis of insect pest the purple stem borer Sesamia inferens (Walker).

    Science.gov (United States)

    Zhang, Ya-Nan; Jin, Jun-Yan; Jin, Rong; Xia, Yi-Han; Zhou, Jing-Jiang; Deng, Jian-Yu; Dong, Shuang-Lin

    2013-01-01

    A large number of insect chemosensory genes from different gene subfamilies have been identified and annotated, but their functional diversity and complexity are largely unknown. A systemic examination of expression patterns in chemosensory organs could provide important information. We identified 92 putative chemosensory genes by analysing the transcriptome of the antennae and female sex pheromone gland of the purple stem borer Sesamia inferens, among them 87 are novel in this species, including 24 transcripts encoding for odorant binding proteins (OBPs), 24 for chemosensory proteins (CSPs), 2 for sensory neuron membrane proteins (SNMPs), 39 for odorant receptors (ORs) and 3 for ionotropic receptors (IRs). The transcriptome analyses were validated and quantified with a detailed global expression profiling by Reverse Transcription-PCR for all 92 transcripts and by Quantitative Real Time RT-PCR for selected 16 ones. Among the chemosensory gene subfamilies, CSP transcripts are most widely and evenly expressed in different tissues and stages, OBP transcripts showed a clear antenna bias and most of OR transcripts are only detected in adult antennae. Our results also revealed that some OR transcripts, such as the transcripts of SNMP2 and 2 IRs were expressed in non-chemosensory tissues, and some CSP transcripts were antenna-biased expression. Furthermore, no chemosensory transcript is specific to female sex pheromone gland and very few are found in the heads. Our study revealed that there are a large number of chemosensory genes expressed in S. inferens, and some of them displayed unusual expression profile in non-chemosensory tissues. The identification of a large set of putative chemosensory genes of each subfamily from a single insect species, together with their different expression profiles provide further information in understanding the functions of these chemosensory genes in S. inferens as well as other insects.

  10. Comparative studies on physical-chemical properties and major nutritional components of rice grain in dwarf mutant resistant to insect pests and its parent

    International Nuclear Information System (INIS)

    Cui Hairui; Wu Dianxing; Shen Shengquan; Shu Qingyao

    2004-01-01

    Starch characteristics and key nutritional compositions in the dwarf mutant from transgenic rice with crylAb gene were compared with its original parent, Xiushuill. It was found that peak viscosity, hot paste viscosity and cool paste viscosity of RVA profile between the dwarf mutant and its parent were significantly different at 1% level, but apparent amylose content, gel consistence existed and breakdown viscosity of RVA profile were similar, and no significant differences existed in contents of crude protein, crude fat, total ash, amino acids and mineral compositions. It was suggested that no notable changes occurred in grain quality traits in the dwarf mutant with insect resistance. (authors)

  11. Biological aspects of Eriopis connexa (Germar (Coleoptera: Coccinellidae fed on different insect pests of maize (Zea mays L. and sorghum [Sorghum bicolor L. (Moench.

    Directory of Open Access Journals (Sweden)

    RB Silva

    Full Text Available Eriopis connexa (Germar (Coleoptera: Coccinellidae occurs in several countries of South America and its mass rearing is important for biological control programmes. This work evaluated biological aspects of E. connexa larva fed on eggs of Anagasta kuehniella (Zeller (Lepidoptera: Pyralidae and Spodoptera frugiperda (J. E. Smith (Lepidoptera: Noctuidae frozen for one day, fresh eggs of Diatraea saccharalis (Fabricius (Lepidoptera: Pyralidae, S. frugiperda newly-hatched caterpillars, nymphs of Rhopalosiphum maidis (Fitch and Schizaphis graminum (Rondani (Hemiptera: Aphididae. Duration of larva, pupa and larva to adult stages differed among prey offered, whereas the prepupa stage was similar. Larva, pupa, prepupa and larva to adult viabilities were equal or major of 87.5% in all prey, except for larva fed on newly-hatched larvae of S. frugiperda. Eriopis connexa has good adaptation to different prey corroborating its polyphagous feeding habit, which evidences the potential of this natural enemy for controlling corn and sorghum pests.

  12. Weather-based pest forecasting for efficient crop protection

    Science.gov (United States)

    Rabiu Olatinwo; Gerrit Hoogenboom

    2014-01-01

    Although insects, pathogens, mites, nematodes, weeds, vertebrates, and arthropods are different in many ways, they are regarded as pests. They are a major constraint to crop productivity and profitability around the world caused by direct and indirect damage to valuable crops. Insect pests, pathogens, and weeds account for an estimated 45% of pre- and post-harvest...

  13. A new approach to quantify semiochemical effects on insects based on energy landscapes.

    Directory of Open Access Journals (Sweden)

    Rory P Wilson

    Full Text Available Our ability to document insect preference for semiochemicals is pivotal in pest control as these agents can improve monitoring and be deployed within integrated pest management programmes for more efficacious control of pest species. However, methods used to date have drawbacks that limit their utility. We present and test a new concept for determining insect motivation to move towards, or away from, semiochemicals by noting direction and speed of movement as animals work against a defined energy landscape (environmentally dependent variation in the cost of transport requiring different powers to negotiate. We conducted trials with the pine weevils Hylobius abietis and peach-potato aphids Myzus persicae exposed to various attractants and repellents and placed so that they either moved up defined slopes against gravity or had to travel over variously rough surfaces.Linear Mixed Models demonstrated clear reductions in travel speed by insects moving along increasingly energetically taxing energy landscapes but also that responses varied according to different semiochemicals, thus highlighting the value of energy landscapes as a new concept to help measure insect motivation to access or avoid different attractants or repellents across individuals.New sensitive, detailed indicators of insect motivation derived from this approach should prove important in pest control across the world.

  14. Are We Pests? Microbial Genocide: The Effects of Abundant Use on the Environment

    OpenAIRE

    Pacheco, Eric

    2017-01-01

    This research reviews a copious amount of agricultural studies in which the effects (pros & cons) of pesticide use on the environment are measured. A pesticide is any substance used to kill, repel, or control certain forms of plant or animal life that are considered to be pests. Pesticides affect the environment in numerous ways such as: contamination of soil, water, and vegetation. In addition, pesticides are toxic to many organisms including fish, birds, beneficial insects, and even humans....

  15. Opportunities for microbial control of pulse crop pests

    Science.gov (United States)

    The insect pest complex in U.S. pulse crops is almost an “orphan” in terms of developed microbial control agents that the grower can use. There are almost no registered microbial pest control agents (MPCA) for the different pulse pests. In some cases a microbial is registered for use against specifi...

  16. Information on Pests in Schools and Their Control

    Science.gov (United States)

    Pests such as insects, rodents, fungi, and weeds can affect the school environment and the people who work and learn there. These pests can cause human health problems, and structural and plant damage. Know what pests you face before deciding on control.

  17. Problem prevention and holistic pest management [Chapter 14

    Science.gov (United States)

    Thomas D. Landis; Tara Luna; R. Kasten Dumroese; Kim M. Wilkinson

    2014-01-01

    As any experienced grower knows only too well, nursery management is a continuous process of solving problems. One recurring problem is pests. In the past, nursery managers waited for an insect or disease to appear and then sprayed some toxic chemical to wipe out the pest or disease. This approach, however, also wipes out natural predators of the pest, resulting in an...

  18. Pest repellent properties of ant pheromones

    DEFF Research Database (Denmark)

    Offenberg, Joachim

    2012-01-01

    of ant pheromones may be sufficient to repel pest insects from ant territories. The study of ant semiochemicals is in its infancy, yet, evidence for their potential use in pest management is starting to build up. Pheromones from four of five tested ant species have been shown to deter herbivorous insect...... prey and competing ant species are also deterred by ant deposits, whereas ant symbionts may be attracted to them. Based on these promising initial findings, it seems advisable to further elucidate the signaling properties of ant pheromones and to test and develop their use in future pest management....

  19. Hosting Capacity of Horticultural Plants for Insect Pests in Brazil Capacidad de Alojamiento de Plantas Hortícolas para Plagas de Insectos en Brasil

    Directory of Open Access Journals (Sweden)

    Germano L.D Leite

    2011-09-01

    Full Text Available Factors such as fertilization, allelochemicals, trichomes, weather, and natural enemies can influence pest populations. Thus, it is necessary to understand the factors that predispose vegetable species to pests and the role of polyculture, crop rotation, and neighboring plants. The objective of this research was to study the hosting capacity for pests of Abelmoschus esculentus (L., Brassica oleracea L. vars. acephala and capitata, Capsicum annuum L., Cucurbita moschata (Duchesne, Cucurbita maxima Duchesne and Cucumis sativus L., Lycopersicon esculentum Mill., Solanum gilo Raddi and Solanum melongena L., and Phaseolus vulgaris L. The higher density of Bemisia tabaci (Genn. adults on C. sativus can be due to the higher amount of pentacosane and octacosane in this plant. The occurrence of Brevicoryne brassicae (L. only in Brassica spp. can be accounted for by the nonacosane of these plants. The low trichome density and greater palmitic acid level can explain the greatest damage by Aphis gossypii Glover in A. esculentum. Empoasca sp. was more frequent in P. vulgaris followed by A. esculentum, which are plants with lower K content. Solanum melongena was attacked more by Hydrangea similis (Walker and Epitrix sp. perhaps because of higher palmitic acid and 11,14,17-eicosatrienoic methyl ester concentrations in their leaves. Frankliniella sp. exhibited more damage in C. sativus probably owing to higher pentacosane and octacosane in its leaves. Sistena sp. was more frequent in C. maxima and had higher octadecane levels and trichome density. The presence of ¥-humulene and hexacosane can explain the damage by Tuta absoluta (Meyrick on L. esculentum.Factores tales como la fertilización, aleloquímicos, tricomas, el clima y los enemigos naturales pueden influir en las poblaciones de plagas. Por lo tanto, es necesario comprender los factores que predisponen a las especies vegetales a las plagas y el papel de policultivos, rotación de cultivos y las plantas

  20. Beneficial Insects: Beetles

    OpenAIRE

    Hodgson, Erin W.; Patterson, Ron

    2007-01-01

    There are many beneficial beetles in Utah besides lady beetles or ladybugs. Beetles can significantly reduce common insect and weed problems and in some cases eliminate the need for chemical control. Examples of beneficial beetles include: ground beetles, rove beetles, tiger beetles and tortoise beetles. Many of these beetles are native to Utah, while others have been purposely introduced to help control damage from exotic insect and weed pests.

  1. Salicylic acid is required for Mi-1-mediated resistance of tomato to whitefly Bemisia tabaci, but not for basal defense to this insect pest.

    Science.gov (United States)

    Rodríguez-Álvarez, C I; López-Climent, M F; Gómez-Cadenas, A; Kaloshian, I; Nombela, G

    2015-10-01

    Plant defense to pests or pathogens involves global changes in gene expression mediated by multiple signaling pathways. A role for the salicylic acid (SA) signaling pathway in Mi-1-mediated resistance of tomato (Solanum lycopersicum) to aphids was previously identified and its implication in the resistance to root-knot nematodes is controversial, but the importance of SA in basal and Mi-1-mediated resistance of tomato to whitefly Bemisia tabaci had not been determined. SA levels were measured before and after B. tabaci infestation in susceptible and resistant Mi-1-containing tomatoes, and in plants with the NahG bacterial transgene. Tomato plants of the same genotypes were also screened with B. tabaci (MEAM1 and MED species, before known as B and Q biotypes, respectively). The SA content in all tomato genotypes transiently increased after infestation with B. tabaci albeit at variable levels. Whitefly fecundity or infestation rates on susceptible Moneymaker were not significantly affected by the expression of NahG gene, but the Mi-1-mediated resistance to B. tabaci was lost in VFN NahG plants. Results indicated that whiteflies induce both SA and jasmonic acid accumulation in tomato. However, SA has no role in basal defense of tomato against B. tabaci. In contrast, SA is an important component of the Mi-1-mediated resistance to B. tabaci in tomato.

  2. De novo transcriptome analysis and microsatellite marker development for population genetic study of a serious insect pest, Rhopalosiphum padi (L.) (Hemiptera: Aphididae).

    Science.gov (United States)

    Duan, Xinle; Wang, Kang; Su, Sha; Tian, Ruizheng; Li, Yuting; Chen, Maohua

    2017-01-01

    The bird cherry-oat aphid, Rhopalosiphum padi (L.), is one of the most abundant aphid pests of cereals and has a global distribution. Next-generation sequencing (NGS) is a rapid and efficient method for developing molecular markers. However, transcriptomic and genomic resources of R. padi have not been investigated. In this study, we used transcriptome information obtained by RNA-Seq to develop polymorphic microsatellites for investigating population genetics in this species. The transcriptome of R. padi was sequenced on an Illumina HiSeq 2000 platform. A total of 114.4 million raw reads with a GC content of 40.03% was generated. The raw reads were cleaned and assembled into 29,467 unigenes with an N50 length of 1,580 bp. Using several public databases, 82.47% of these unigenes were annotated. Of the annotated unigenes, 8,022 were assigned to COG pathways, 9,895 were assigned to GO pathways, and 14,586 were mapped to 257 KEGG pathways. A total of 7,936 potential microsatellites were identified in 5,564 unigenes, 60 of which were selected randomly and amplified using specific primer pairs. Fourteen loci were found to be polymorphic in the four R. padi populations. The transcriptomic data presented herein will facilitate gene discovery, gene analyses, and development of molecular markers for future studies of R. padi and other closely related aphid species.

  3. Peptidergic control of a fruit crop pest: the spotted-wing drosophila, Drosophila suzukii

    Science.gov (United States)

    Neuropeptides play an important role in the regulation of feeding in insects and offer potential targets for the development of new chemicals to control insect pests. A pest that has attracted much recent attention is the highly invasive Drosophila suzukii, a polyphagous pest that can cause serious...

  4. Microbial ecology-based methods to characterize the bacterial communities of non-model insects.

    Science.gov (United States)

    Prosdocimi, Erica M; Mapelli, Francesca; Gonella, Elena; Borin, Sara; Crotti, Elena

    2015-12-01

    Among the animals of the Kingdom Animalia, insects are unparalleled for their widespread diffusion, diversity and number of occupied ecological niches. In recent years they have raised researcher interest not only because of their importance as human and agricultural pests, disease vectors and as useful breeding species (e.g. honeybee and silkworm), but also because of their suitability as animal models. It is now fully recognized that microorganisms form symbiotic relationships with insects, influencing their survival, fitness, development, mating habits and the immune system and other aspects of the biology and ecology of the insect host. Thus, any research aimed at deepening the knowledge of any given insect species (perhaps species of applied interest or species emerging as novel pests or vectors) must consider the characterization of the associated microbiome. The present review critically examines the microbiology and molecular ecology techniques that can be applied to the taxonomical and functional analysis of the microbiome of non-model insects. Our goal is to provide an overview of current approaches and methods addressing the ecology and functions of microorganisms and microbiomes associated with insects. Our focus is on operational details, aiming to provide a concise guide to currently available advanced techniques, in an effort to extend insect microbiome research beyond simple descriptions of microbial communities. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Field Insect Pests and Crop Damage Assessment of Pigeon Pea (Cajanus cajan [L.] Huth grown under Ratoon and in Mixture with Maize Evaluación de Campo de Insectos Pestes y Daño del cultivo de Gandul (Cajanus cajan [L.] Huth creciendo bajo Rebrotes o en Mezcla con Maíz

    Directory of Open Access Journals (Sweden)

    Madang A Dasbak

    2012-03-01

    Full Text Available The widespread adoption of cropping systems that are sustainable and environmentally friendly is vital for the macroeconomic survival of civilization. Intercropping could ensure stability of insect populations in a system. A 3-yr (2005-2007 field trial was therefore carried out in Nigeria under regular and ratoon crops to evaluate five recently developed pigeon pea (Cajanus cajan [L.] Huth genotypes (ICPL 87, ICPL 161, ICPL 85063, ICP 7120, and ICPL 87119 from the International Crops Research Institute for Semi-Arid Tropics (ICRISAT and one local variety for their relative performance and susceptibility to insect pests. The pigeon pea genotypes were in a mixture with two maize genotypes (Zea mays L., open-pollinated and hybrid in regular crops for 2 yr (2005-2006 followed by a ratoon crop for 1 yr (2007. Termites (Odontotermes badius, crickets (Gymnogryllus lucens, and variegated grasshoppers (Zonocerus variegatus were the crop's seedling pests and caused minimal damage. Clavigralla spp. infestations were high at the reproductive stage causing 24% and 29% seed damage in regular and ratoon pigeon pea crops, respectively. Maize slightly suppressed insect pest incidence and damage to pigeon pea pods and seeds but significantly (P La extendida adopción de sistemas de cultivo que son sustentables y benignos para el medio ambiente es vital para la supervivencia macro-económica de la civilización. El intercultivo podría asegurar la estabilidad de población de insectos en un sistema. Un ensayo de campo de 3 anos (2005-2007 fue realizado en Nigeria bajo condiciones de cultivo regular y ratoon para evaluar cinco genotipos de poroto gandul (Cajanus cajan [L.] Huth: ICPL 87, ICPL 161, ICPL 85063, ICP 7120, e ICPL 87119 desde International Crops Research Institute for Semi-Arid Tropics (ICRISAT y una variedad local, por sus rendimientos y susceptibilidades relativas a insectos plaga. Los genotipos de poroto gandul estaban en mezcla con dos genotipos de

  6. Insects and human nutrition

    DEFF Research Database (Denmark)

    Roos, Nanna

    2018-01-01

    Despite high diversity in species as well as metamorphological life-­stages, edible insects are essentially an animal-source food contributing high quality protein and fat when viewed in the context of human nutrition. The nutritional contribution of insects to diets in populations where insects ...

  7. Strategic and tactical use of movement information in pest management

    Science.gov (United States)

    Knipling, E. F.

    1979-01-01

    Several insect movement problems are discussed. Much more information is needed to make a better appraisal of the practical significance of the insect dispersal problem. Data on the time, rate, and extent of movement of insects are provided. Better techniques for measuring insect movement are developed. A better understanding of the importance of insect movement in the development and implementation of more effective and ecologically acceptable pest management strategies and tactics was proved.

  8. [Phagodeterrent activity of the plants Tithonia diversifolia and Montanoa hibiscifolia (Asteraceae) on adults of the pest insect Bemisia tabaci (Homoptera: Aleyrodidae)].

    Science.gov (United States)

    Bagnarello, Gina; Hilje, Luko; Bagnarello, Vanessa; Cartín, Victor; Calvo, Marco

    2009-12-01

    Bemisia tabaci (Gennadius) is a polyphagous, cosmopolitan and worldwide relevant pest, mainly acting as a virus vector on many crops. A sound preventive approach to deal with it would be the application of repellent or deterrent substances hopefully present in tropical plants, which in turn may contribute to take advantage of the remarkable rich Mesoamerican biodiversity. Therefore, extracts of two wild plants belonging to family Asteraceae, titonia (Tithonia diversifolia) and "tora" (Montanoa hibiscifolia), were tested for phagodeterrence to B. tabaci adults. The crude leaf extract of each one, as well as four fractions thereof (hexane, dichlorometane, ethyl acetate, and methanol) were tested under greenhouse conditions; in addition, the extracts were submitted to a phytochemical screening to determine possible metabolites causing phagodeterrence. Both restricted-choice and unrestricted-choice experiments were conducted. In the former ones, each fraction was tested at four doses (0.1, 0.5, 1.0 and 1.5% v/v), which were compared with four control treatments: distilled water, endosulfan, an agricultural oil (Aceite Agricola 81 SC), and the emulsifier Citowett. Tomato plants were sprayed and placed inside sleeve cages, where 50 B. tabaci adults were released. The criterion to appraise phagodeterrence was the number of landed adults on plants at 48h. For the unrestricted-choice experiments, only the two highest doses (1.0 and 1.5%) of the crude extracts of each species were tested, and compared to distilled water and the agricultural oil. The titonia and "tora" crude extracts caused phagodeterrence, and for both plant species the methanol fraction stood out. Results suggest that metabolites causing phagodeterrence are several sesquiterpenic lactones, polyphenolic compounds (flavonoids and tannins) and saponins.

  9. Light microscopy with differential staining techniques for the characterisation and discrimination of insects versus marine arthropods processed animal proteins.

    Science.gov (United States)

    Ottoboni, Matteo; Tretola, Marco; Cheli, Federica; Marchis, Daniela; Veys, Pascal; Baeten, Vincent; Pinotti, Luciano

    2017-08-01

    The aim of this study was to evaluate the use of light microscopy with differential staining techniques for the discrimination of insect material from marine arthropods - classified as fishmeal. Specifically, three samples of single-species insect material, Hermetia illucens (HI), Bombyx mori (BM) and Tenebrio molitor (TM), and two samples of marine arthropods, shrimp material and krill, were analysed and compared after staining by two reagents to enhance fragment identification. Alizarin Red (AR) and Chlorazol Black (CB), which react respectively with calcium salts and chitin, were tested for their potential efficacy in distinguishing between insect and marine materials. Results indicated that AR failed to stain HI, BM and TM materials. By contrast, the three insect species materials tested were stained by CB. When shrimp fragments and krill were considered, AR and CB stained marine materials reddish-pink and light blue to black, respectively. By combining these results, it can be suggested that CB staining may efficiently be used to mark insect materials; AR does stain shrimp fragments but does not stain the tested insect material, indicating a possible approach for discriminating between insects and marine arthropods. However, since the present study was performed on pure materials and a small set of samples, possible implementation of this technique still needs to be confirmed in complex matrices such as compound feed.

  10. Dispersal of forest insects

    Science.gov (United States)

    Mcmanus, M. L.

    1979-01-01

    Dispersal flights of selected species of forest insects which are associated with periodic outbreaks of pests that occur over large contiguous forested areas are discussed. Gypsy moths, spruce budworms, and forest tent caterpillars were studied for their massive migrations in forested areas. Results indicate that large dispersals into forested areas are due to the females, except in the case of the gypsy moth.

  11. Insect-derived cecropins display activity against Acinetobacter baumannii in a whole-animal high-throughput Caenorhabditis elegans model.

    Science.gov (United States)

    Jayamani, Elamparithi; Rajamuthiah, Rajmohan; Larkins-Ford, Jonah; Fuchs, Beth Burgwyn; Conery, Annie L; Vilcinskas, Andreas; Ausubel, Frederick M; Mylonakis, Eleftherios

    2015-03-01

    The rise of multidrug-resistant Acinetobacter baumannii and a concomitant decrease in antibiotic treatment options warrants a search for new classes of antibacterial agents. We have found that A. baumannii is pathogenic and lethal to the model host organism Caenorhabditis elegans and have exploited this phenomenon to develop an automated, high-throughput, high-content screening assay in liquid culture that can be used to identify novel antibiotics effective against A. baumannii. The screening assay involves coincubating C. elegans with A. baumannii in 384-well plates containing potential antibacterial compounds. At the end of the incubation period, worms are stained with a dye that stains only dead animals, and images are acquired using automated microscopy and then analyzed using an automated image analysis program. This robust assay yields a Z' factor consistently greater than 0.7. In a pilot experiment to test the efficacy of the assay, we screened a small custom library of synthetic antimicrobial peptides (AMPs) that were synthesized using publicly available sequence data and/or transcriptomic data from immune-challenged insects. We identified cecropin A and 14 other cecropin or cecropin-like peptides that were able to enhance C. elegans survival in the presence of A. baumannii. Interestingly, one particular hit, BR003-cecropin A, a cationic peptide synthesized by the mosquito Aedes aegypti, showed antibiotic activity against a panel of Gram-negative bacteria and exhibited a low MIC (5 μg/ml) against A. baumannii. BR003-cecropin A causes membrane permeability in A. baumannii, which could be the underlying mechanism of its lethality. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Effect of intercropping of maize, bean, cabbage and toxicants on the population levels of some insect pests and associated predators in sugar beet plantations

    Directory of Open Access Journals (Sweden)

    S.K.M. El-Fakharany

    2012-01-01

    Full Text Available Experiments were carried out at El-Riad district, Kafr El-Sheikh Governorate in two successive growing seasons (2009/10 and 2010/11 to study the effect of intercropping of faba bean, maize and cabbage with sugar beet on the population density of Empoasca spp. (nymphs and adults, Aphis spp. (nymphs and adults, Bemisia tabaci (adults, Pegomyia mixta (eggs and larvae, Cassida vittata (larvae, pupae and adults and predators in sugar beet plantations compared with the non-intercropped plants and the resulting yield. The toxicity of certain compounds: fenitrothion, super misrona, sour orange oil, acidless orange oil, and Bermectine in reducing the population density of P. mixta and C. vittata larvae infesting sugar beet was evaluated. The rate of infestation was higher in the sole sugar beet plants than in those intercropped with faba bean, maize and cabbage plants which caused reduction of sucking pests and P. mixta eggs in the two seasons. The intercropping of faba bean plants led to higher infestation rate of P. mixta larvae in the two seasons and C. vittata (larvae, pupae and adults in the first season. The intercropping with maize led to a higher population density of Chrysoperla carnea, Paederus alfierii and Scymnus spp. in the two seasons. Low population density of true spiders was observed in sole sugar beet (control when compared with faba bean, maize and cabbage plants intercropped in the two seasons. Concerning the obtained root yield, the intercropping with maize and cabbage plants reduced the resultant yield of sugar beet roots in the two seasons. Bermectine and fenitrothion were the most effective toxicants followed by super misrona and then, sour orange that induced the lowest reduction in P. mixta larvae. Also, fenitrothion and Bermectine were the most potent compounds in reducing the population density of C. vittata larvae followed by super misrona and then, plant oil extracts. Concerning the side effects of these compounds on

  13. Recombinant DNA technology and insect control

    International Nuclear Information System (INIS)

    Seawright, J.A.; Cockburn, Andrew F.

    1989-01-01

    In the past, the most successful avenue for the use of genetics in insect control has been the employment of the sterile insect technique, in which huge numbers of a species are produced in a factory, sterilized by exposure to ionizing radiation and released into the native habitat. this method is suitable for some species, but for logistical, economical, and biological reasons this control technique is not suitable for many economically important species. Our ability to use genetic approaches to cope with the myriad of insect pests will improve in the near future because of progress in the biochemical manipulation of genes. Molecular geneticists have created bacteria, plants, animals, and fungi that have useful new properties, and many of these are being used or tested for commercial use. A reasonable forecast is that a virtual revolution will occur in the way that we currently practice and perceive the genetic control of insects. Using genetic engineering manipulations to develop control techniques for insects of agricultural and public health importance is an exciting prospect and a highly desirable goal

  14. Recombinant DNA technology and insect control

    Energy Technology Data Exchange (ETDEWEB)

    Seawright, J A; Cockburn, Andrew F [Insects Affecting Man and Animals Laboratory, Agric. Res. Serv., U.S. Department of Agriculture, Gainesville, FL (United States)

    1989-08-01

    In the past, the most successful avenue for the use of genetics in insect control has been the employment of the sterile insect technique, in which huge numbers of a species are produced in a factory, sterilized by exposure to ionizing radiation and released into the native habitat. this method is suitable for some species, but for logistical, economical, and biological reasons this control technique is not suitable for many economically important species. Our ability to use genetic approaches to cope with the myriad of insect pests will improve in the near future because of progress in the biochemical manipulation of genes. Molecular geneticists have created bacteria, plants, animals, and fungi that have useful new properties, and many of these are being used or tested for commercial use. A reasonable forecast is that a virtual revolution will occur in the way that we currently practice and perceive the genetic control of insects. Using genetic engineering manipulations to develop control techniques for insects of agricultural and public health importance is an exciting prospect and a highly desirable goal.

  15. Gene silencing in non-model insects: Overcoming hurdles using symbiotic bacteria for trauma-free sustainable delivery of RNA interference: Sustained RNA interference in insects mediated by symbiotic bacteria: Applications as a genetic tool and as a biocide.

    Science.gov (United States)

    Whitten, Miranda; Dyson, Paul

    2017-03-01

    Insight into animal biology and development provided by classical genetic analysis of the model organism Drosophila melanogaster was an incentive to develop advanced genetic tools for this insect. But genetic systems for the over one million other known insect species are largely undeveloped. With increasing information about insect genomes resulting from next generation sequencing, RNA interference is now the method of choice for reverse genetics, although it is constrained by the means of delivery of interfering RNA. A recent advance to ensure sustained delivery with minimal experimental intervention or trauma to the insect is to exploit commensal bacteria for symbiont-mediated RNA interference. This technology not only offers an efficient means for RNA interference in insects in laboratory conditions, but also has potential for use in the control of human disease vectors, agricultural pests and pathogens of beneficial insects. © 2017 WILEY Periodicals, Inc.

  16. How Insects Survive Winter in the Midwest

    Science.gov (United States)

    Understanding how insects cope with cold temperatures can not only help entomologists more accurately forecast when and where insects are active, but it may also help us understand how climate change will influence insect pests. This newsletter article provides a comprehensive overview of how Midwes...

  17. Population suppression in support of the sterile insect technique

    International Nuclear Information System (INIS)

    Mangan, R.L.

    2005-01-01

    Suppression or eradication of insect pest populations by the release of sterile insects is often dependent on supplementary methods of pest reduction to levels where the target pest population can be overflooded with sterile insects. Population suppression activities take place in advance of, or coincide with, the production of sterile insects. Supplementary methods to remove breeding opportunities, or management methods that prevent access of pests to the hosts, may reduce the population or prevent damage. Insecticides have been used widely in direct applications or applied as baits, in traps, or on specific sites where the pest makes contact or reproduces. As sterile insect release does not kill the pest, adult biting pests or fertile mated females of the pests will continue to attack hosts after the release of sterile insects. Thus supplementary pest suppression programmes and quarantine measures are essential to prevent damage or the spread of disease. Eradication or effective pest management requires that the entire population of the pest be treated, or that the programme apply immigration barriers. When supplementary pest control activities benefit the human population in areas being treated, such as in mosquito or screwworm eradication programmes, these activities are usually acceptable to the public, but when the public receives no direct benefit from supplementary control activities such as in fruit fly programmes, social resistance may develop. (author)

  18. Biological basis of the sterile insect technique

    International Nuclear Information System (INIS)

    Lance, D.R.; McInnis, D.O.

    2005-01-01

    In principle, the sterile insect technique (SIT) is applicable to controlling a wide variety of insect pests, but biological factors, interacting with socio-economic and political forces, restrict its practical use to a narrower set of pest species and situations. This chapter reviews how the biology and ecology of a given pest affect the feasibility and logistics of developing and using the SIT against that pest insect. The subjects of pest abundance, distribution, and population dynamics are discussed in relation to producing and delivering sufficient sterile insects to control target populations. Pest movement and distribution are considered as factors that influence the feasibility and design of SIT projects, including the need for population- or area-wide management approaches. Biological characteristics, that affect the ability of sterile insects to interact with wild populations, are presented, including the nature of mating systems of pests, behavioural and physiological consequences of mass production and sterilization, and mechanisms that males use to block a female's acquisition and/or use of sperm from other males. An adequate knowledge of the biology of the pest species and potential target populations is needed, both for making sound decisions on whether integration of the SIT into an area-wide integrated pest management (AW-IPM) programme is appropriate, and for the efficient and effective application of the technique. (author)

  19. Broadening the application of evolutionarily based genetic pest management.

    Science.gov (United States)

    Gould, Fred

    2008-02-01

    Insect- and tick-vectored diseases such as malaria, dengue fever, and Lyme disease cause human suffering, and current approaches for prevention are not adequate. Invasive plants and animals such as Scotch broom, zebra mussels, and gypsy moths continue to cause environmental damage and economic losses in agriculture and forestry. Rodents transmit diseases and cause major pre- and postharvest losses, especially in less affluent countries. Each of these problems might benefit from the developing field of Genetic Pest Management that is conceptually based on principles of evolutionary biology. This article briefly describes the history of this field, new molecular tools in this field, and potential applications of those tools. There will be a need for evolutionary biologists to interact with researchers and practitioners in a variety of other fields to determine the most appropriate targets for genetic pest management, the most appropriate methods for specific targets, and the potential of natural selection to diminish the effectiveness of genetic pest management. In addition to producing environmentally sustainable pest management solutions, research efforts in this area could lead to new insights about the evolution of selfish genetic elements in natural systems and will provide students with the opportunity to develop a more sophisticated understanding of the role of evolutionary biology in solving societal problems.

  20. Improving detection probabilities for pests in stored grain.

    Science.gov (United States)

    Elmouttie, David; Kiermeier, Andreas; Hamilton, Grant

    2010-12-01

    The presence of insects in stored grain is a significant problem for grain farmers, bulk grain handlers and distributors worldwide. Inspection of bulk grain commodities is essential to detect pests and thereby to reduce the risk of their presence in exported goods. It has been well documented that insect pests cluster in response to factors such as microclimatic conditions within bulk grain. Statistical sampling methodologies for grain, however, have typically considered pests and pathogens to be homogeneously distributed throughout grain commodities. In this paper, a sampling methodology is demonstrated that accounts for the heterogeneous distribution of insects in bulk grain. It is shown that failure to account for the heterogeneous distribution of pests may lead to overestimates of the capacity for a sampling programme to detect insects in bulk grain. The results indicate the importance of the proportion of grain that is infested in addition to the density of pests within the infested grain. It is also demonstrated that the probability of detecting pests in bulk grain increases as the number of subsamples increases, even when the total volume or mass of grain sampled remains constant. This study underlines the importance of considering an appropriate biological model when developing sampling methodologies for insect pests. Accounting for a heterogeneous distribution of pests leads to a considerable improvement in the detection of pests over traditional sampling models. Copyright © 2010 Society of Chemical Industry.

  1. An Integrated Molecular Database on Indian Insects.

    Science.gov (United States)

    Pratheepa, Maria; Venkatesan, Thiruvengadam; Gracy, Gandhi; Jalali, Sushil Kumar; Rangheswaran, Rajagopal; Antony, Jomin Cruz; Rai, Anil

    2018-01-01

    MOlecular Database on Indian Insects (MODII) is an online database linking several databases like Insect Pest Info, Insect Barcode Information System (IBIn), Insect Whole Genome sequence, Other Genomic Resources of National Bureau of Agricultural Insect Resources (NBAIR), Whole Genome sequencing of Honey bee viruses, Insecticide resistance gene database and Genomic tools. This database was developed with a holistic approach for collecting information about phenomic and genomic information of agriculturally important insects. This insect resource database is available online for free at http://cib.res.in. http://cib.res.in/.

  2. Development of botanical-based biopesticides and repellents against biting flies on livestock animals

    Science.gov (United States)

    Biting flies are important insect pests causing millions of dollars in losses to the livestock industry. The attack by biting flies causes significant losses in animal production and potential food contamination and disease transmission. This presentation reports our recent findings on the developme...

  3. Bacillus thuringiensis: generalidades: Un acercamiento a su empleo en el biocontrol de insectos lepidópteros que son plagas agrícolas Bacillus thuringiensis: general aspects: An approach to its use in the biological control of lepidopteran insects behaving as agricultural pests

    Directory of Open Access Journals (Sweden)

    Diego H. Sauka

    2008-06-01

    Full Text Available Bacillus thuringiensis es el insecticida biológico más aplicado en el mundo y se utiliza para controlar diversos insectos que afectan la agricultura, la actividad forestal y que transmiten patógenos humanos y animales. B. thuringiensis constituyó durante las últimas décadas un tema de investigación intensiva. Estos esfuerzos brindaron datos importantes sobre las relaciones entre la estructura, el mecanismo de acción y la genética de sus proteínas cristalinas pesticidas, y una visión más clara y coherente sobre estas relaciones ha emergido gracias a ellos. Otros estudios se centraron en el rol ecológico de las proteínas cristalinas de B. thuringiensis, su funcionamiento en sistemas agrícolas y en otros sistemas naturales. Teniendo como base todo el conocimiento generado y las herramientas de la biotecnología, los investigadores están ahora divulgando resultados prometedores sobre el desarrollo de toxinas más útiles, bacterias recombinantes, formulaciones nuevas y plantas transgénicas que expresan actividad pesticida, con el objetivo de asegurar que estos productos sean utilizados con un mayor beneficio y eficacia. Este artículo constituye una tentativa de integrar todos estos progresos recientes sobre el estudio de B. thuringiensis en un contexto de control biológico de plagas de insectos lepidópteros de importancia agrícola.Bacillus thuringiensis is the most widely applied biological pesticide used to control insects that affect agriculture and forestry and which transmit human and animal pathogens. During the past decades B. thuringiensis has been the subject of intensive research. These efforts have yielded considerable data about the relationships between the structure, mechanism of action, and genetics of their pesticidal crystal proteins. As a result, a coherent picture of these relationships has emerged. Other studies have focused on the ecological role of the B. thuringiensis crystal proteins and their performance

  4. What Do Secondary Students Really Learn during Investigations with Living Animals? Parameters for Effective Learning with Social Insects

    Science.gov (United States)

    Sammet, Rebecca; Dreesmann, Daniel

    2017-01-01

    Exemplary for social insects, "Temnothorax" ants allow for various hands-on investigations in biology classes. The aim of this study was to provide a quantitative and qualitative analysis of secondary school students' learning achievement after teaching units with ants lasting between one and six weeks. The questionnaires included…

  5. Predicting the potential establishment of two insect species using the simulation environment INSIM (INsect SIMulation)

    NARCIS (Netherlands)

    Hemerik, Lia; Nes, van Egbert H.

    2016-01-01

    Degree-day models have long been used to predict events in the life cycle of insects and therewith the timing of outbreaks of insect pests and their natural enemies. This approach assumes, however, that the effect of temperature is linear, whereas developmental rates of insects are non-linearly

  6. RNAi technology: a new platform for crop pest control.

    Science.gov (United States)

    Mamta, B; Rajam, M V

    2017-07-01

    The insect pests are big threat in meeting the food demands for future generation. The present pest control strategies, including the existing transgenic approaches show certain limitations and are not completely successful in limiting the insect pests. However, the sequence-specific gene silencing via RNA interference (RNAi) holds a great promise for effective management of agricultural pests. RNAi is naturally occurring conserved process responsible for gene regulation and defense against pathogens. The efficacy of RNAi varies among different insect orders and also depends upon various factors, including the target gene selection, method of dsRNAs delivery, expression of dsRNAs and presence of off-target effects. RNAi-mediated silencing of different insect genes involved in various physiological processes was found to be detrimental to insects growth, development and survival. In this article, we have reviewed the potential of RNAi-based strategies for effective management of insect pests. We have also discussed the various parameters, which are to be considered for host-induced RNAi-mediated control of insect pests without producing any effect on non-target organisms and environment.

  7. Diseases and pests in biomass production systems

    International Nuclear Information System (INIS)

    Royle, D.J.; Hunter, Tom; McNabb, H.S. Jr.

    1998-01-01

    The current status of disease and pest problems in willow and poplar biomass systems for energy within Canada, Sweden, the United Kingdom and the United States is described. The IEA Disease and Pest Activities within the recent Task XII (1995-1997), and previous Tasks since 1987, have provided outstanding opportunities for international co-operation which has served substantially to augment national research programmes. Work is described on recognizing different forms of an insect pest or pathogen and understanding the genetic basis of its variability, which is of fundamental importance in developing pest management strategies that exclude inputs of energy-rich materials such as pesticides. Options for more natural pest control are considered including breeding for resistance, plantation designs based on host genotype diversity and biological control 16 refs, 2 figs

  8. Mushroom flora and associated insect fauna in Nsukka Urban ...

    African Journals Online (AJOL)

    The mushroom flora and associated insect pests of mushrooms in Nsukka urban was studied. The abundance of mushrooms from sampled communites is indicaed with the family, Agaricaceae predominating “out of home” environment yielded more mushrooms (4.62) than the homestead environment (3.26). Insect pests ...

  9. Insect pest management agents: Hormonogen esters (juvenogens)

    Czech Academy of Sciences Publication Activity Database

    Wimmer, Zdeněk; Jurček, Ondřej; Jedlička, Pavel; Hanus, Robert; Kuldová, Jelena; Hrdý, Ivan; Bennettová, Blanka; Šaman, David

    2007-01-01

    Roč. 55, č. 18 (2007), s. 7387-7393 ISSN 0021-8561 R&D Projects: GA ČR GA203/05/2146 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z40550506; CEZ:AV0Z50070508 Source of funding: V - iné verejné zdroje Keywords : Pyrrhocoris apterus * Prorhinotermes simple * Reticulitermes santonensis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.532, year: 2007 http://dx.doi.org/10.1021/jf0710682

  10. Advances and Perspectives of the use of the entomopathogenic fungi beauveria bassiana and metarhizium anisopliae for the control of arthropod pests in poultry production

    Directory of Open Access Journals (Sweden)

    DGP Oliveira

    2014-03-01

    Full Text Available Global poultry production is plagued by a wide variety of arthropods. The problems associated with their chemical control have led to an increasing search for control alternatives, and entomopathogenic fungi seem to be a promising strategy. Despite the large number of insects and mites considered as important pests in animal production, studies on the use of entomopathogenic fungi for their control are still scarce compared with agricultural pests, particularly in Brazil. This article reviews some damages and control aspects of the main arthropod pests that affect Brazilian poultry production, including house flies, lesser mealworms, and feather mites, by the use of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae. Studies published in the last 20 years were reviewed, and the main problems and limitations of that pest-control strategy are discussed.

  11. Avocado pests in Florida: Not what you expected

    Science.gov (United States)

    Avocado, Persea americana Mill., is Florida's second most important fruit crop after citrus. Until recently, the complex of spider mite and insect pests that affected avocado in south Florida was under a 20 year Integrated Pest Management (IPM) program. The recent invasion of avocado orchards by a...

  12. Insects: Bugged Out!

    Science.gov (United States)

    Piehl, Kathy

    2011-01-01

    Insects really need no introduction. They have lived on earth much longer than humans and vastly outnumber people and all other animal species combined. People encounter them daily in their houses and yards. Yet, when children want to investigate insects, books can help them start their explorations. "Paleo Bugs" carries readers back to the time…

  13. Atomic war on insects intensified

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1967-06-15

    Intensive research work in many countries using nuclear methods aimed at reducing the immense food losses caused by insects have led to a number of important trial operations this year. Some are now in progress in Capri, the famous Italian tourist island, and in Central America. Both are directed against the Mediterranean fruit fly, which attacks most fruit in tropical and sub-tropical countries. Similar methods are also developing to combat other insect pests

  14. Plant Tolerance: A Unique Approach to Control Hemipteran Pests.

    Science.gov (United States)

    Koch, Kyle G; Chapman, Kaitlin; Louis, Joe; Heng-Moss, Tiffany; Sarath, Gautam

    2016-01-01

    Plant tolerance to insect pests has been indicated to be a unique category of resistance, however, very little information is available on the mechanism of tolerance against insect pests. Tolerance is distinctive in terms of the plant's ability to withstand or recover from herbivore injury through growth and compensatory physiological processes. Because plant tolerance involves plant compensatory characteristics, the plant is able to harbor large numbers of herbivores without interfering with the insect pest's physiology or behavior. Some studies have observed that tolerant plants can compensate photosynthetically by avoiding feedback inhibition and impaired electron flow through photosystem II that occurs as a result of insect feeding. Similarly, the up-regulation of peroxidases and other oxidative enzymes during insect feeding, in conjunction with elevated levels of phytohormones can play an important role in providing plant tolerance to insect pests. Hemipteran insects comprise some of the most economically important plant pests (e.g., aphids, whiteflies), due to their ability to achieve high population growth and their potential to transmit plant viruses. In this review, results from studies on plant tolerance to hemipterans are summarized, and potential models to understand tolerance are presented.

  15. Towards integrated pest management in red clover seed production.

    Science.gov (United States)

    Lundin, Ola; Rundlöf, Maj; Smith, Henrik G; Bommarco, Riccardo

    2012-10-01

    The development of integrated pest management is hampered by lack of information on how insect pest abundances relate to yield losses, and how pests are affected by control measures. In this study, we develop integrated pest management tactics for Apion spp. weevils (Coleoptera: Brentidae) in seed production of red clover, Trifolium pratense L. We tested a method to forecast pest damage, quantified the relationship between pest abundance and yield, and evaluated chemical and biological pest control in 29 Swedish red clover fields in 2008 and 2011. Pest inflorescence abundance, which had a highly negative effect on yield, could be predicted with pan trap catches of adult pests. In 2008, chemical control with typically one application of pyrethroids was ineffective both in decreasing pest abundances and in increasing yields. In 2011, when chemical control included applications of the neonicotinoid thiacloprid, pest abundances decreased and yields increased considerably in treated field zones. A post hoc analysis indicated that using pyrethroids in addition to thiacloprid was largely redundant. Infestation rates by parasitoids was higher and reached average levels of around 40% in insecticide treated field zones in 2011, which is a level of interest for biological pest control. Based on the data presented, an economic threshold for chemical control is developed, and guidelines are provided on minimum effective chemical pest control.

  16. (Precocene I) on Sunn pest, Eurygaster integriceps

    African Journals Online (AJOL)

    ONOS

    2010-09-06

    Sep 6, 2010 ... characterized by suppression of ovarian development and the cessation of ... There are evidence that JH plays a major role in regulating diapause, for ... wheat seeds (developed in insect physiology laboratory for Sunn pest rearing). ..... Action, (ed) Coats JR, New York: Academic, pp. 403-427. Bradford MM ...

  17. Marine cargo imports and forest pest introductions

    Science.gov (United States)

    Frank H. Koch

    2009-01-01

    A major pathway for the introduction of nonindigenous forest pests is accidental transport on cargo imported from overseas. Diseases may be brought into the United States via commercial trade of nursery stock or other live plant material, as has been suggested for Phytophthora ramorum, the pathogen that causes sudden oak death (Ivors and others 2006). Insects may...

  18. Genetic Engineering of Insects

    Indian Academy of Sciences (India)

    wild-type DNA resulted in the production of adults with wing ... using conventional method of breeding and selection. .... insects, birds, and other animals .... used to derive the expression of the antibiotic, tetracycline repressible transactivator.

  19. Interactive effects of pests increase seed yield.

    Science.gov (United States)

    Gagic, Vesna; Riggi, Laura Ga; Ekbom, Barbara; Malsher, Gerard; Rusch, Adrien; Bommarco, Riccardo

    2016-04-01

    Loss in seed yield and therefore decrease in plant fitness due to simultaneous attacks by multiple herbivores is not necessarily additive, as demonstrated in evolutionary studies on wild plants. However, it is not clear how this transfers to crop plants that grow in very different conditions compared to wild plants. Nevertheless, loss in crop seed yield caused by any single pest is most often studied in isolation although crop plants are attacked by many pests that can cause substantial yield losses. This is especially important for crops able to compensate and even overcompensate for the damage. We investigated the interactive impacts on crop yield of four insect pests attacking different plant parts at different times during the cropping season. In 15 oilseed rape fields in Sweden, we estimated the damage caused by seed and stem weevils, pollen beetles, and pod midges. Pest pressure varied drastically among fields with very low correlation among pests, allowing us to explore interactive impacts on yield from attacks by multiple species. The plant damage caused by each pest species individually had, as expected, either no, or a negative impact on seed yield and the strongest negative effect was caused by pollen beetles. However, seed yield increased when plant damage caused by both seed and stem weevils was high, presumably due to the joint plant compensatory reaction to insect attack leading to overcompensation. Hence, attacks by several pests can change the impact on yield of individual pest species. Economic thresholds based on single species, on which pest management decisions currently rely, may therefore result in economically suboptimal choices being made and unnecessary excessive use of insecticides.

  20. Biological control of livestock pests: Pathogens

    Science.gov (United States)

    Interest in biological methods for livestock and poultry pest management is largely motivated by the development of resistance to most of the available synthetic pesticides by the major pests. There also has been a marked increase in organic systems, and those that promote animal welfare by reducing...

  1. Training for Certification: Demonstration & Research Pest Control.

    Science.gov (United States)

    Mississippi State Univ., State College. Cooperative Extension Service.

    This Cooperative Extension Service publication from Mississippi State University is a training guide for commercial pesticide applicators. Focusing on agricultural pest control, this publication includes a full range of topics from uses of pesticides for agricultural animal pest control to the toxicity of common pesticides to fish and bees.…

  2. Biocontrol: The Potential of Entomophilic Nematodes in Insect Management

    OpenAIRE

    Webster, John M.

    1980-01-01

    A review of the development of entomophilic nematology and a commentary on the potential of entomophilic nematodes in controlling insect pests. The paper considers some of the major contributions to our knowledge of entomophilic nematology; factors involved in insect pest management and how they are applicable to the use of nematodes; nematodes which are most promising as biological control agents; and problems to be solved to facilitate the use of entomophilic nematodes in insect management.

  3. The promise of insect genomics

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, Cornelis J P; Cazzamali, Giuseppe; Williamson, Michael

    2007-01-01

    Insects are the largest animal group in the world and are ecologically and economically extremely important. This importance of insects is reflected by the existence of currently 24 insect genome projects. Our perspective discusses the state-of-the-art of these genome projects and the impacts...

  4. Transgenic plants as vital components of integrated pest management

    NARCIS (Netherlands)

    Kos, Martine; van Loon, J.J.A.; Dicke, M.; Vet, L.E.M.

    2009-01-01

    Although integrated pest management (IPM) strategies have been developed worldwide, further improvement of IPM effectiveness is required. The use of transgenic technology to create insect-resistant plants can offer a solution to the limited availability of highly insect-resistant cultivars.

  5. Big-Eyed Bugs Have Big Appetite for Pests

    Science.gov (United States)

    Many kinds of arthropod natural enemies (predators and parasitoids) inhabit crop fields in Arizona and can have a large negative impact on several pest insect species that also infest these crops. Geocoris spp., commonly known as big-eyed bugs, are among the most abundant insect predators in field c...

  6. When Eggs Don't Hatch. The Benefits of the Sterile Insect Technique

    International Nuclear Information System (INIS)

    Kilian, Lizette

    2012-01-01

    Insect pests, such as the medfly, tsetse flies and carob moth can devastate crops and infect herds, causing severe economic hardship. To suppress the insect pest population and protect their livestock and crops, farmers usually use large quantities of pesticides. However, these pesticides are expensive, a risk to public health and cause environmental damage. Another technique, however, can reduce the insect pest population using natural means that do not require toxic chemicals: the sterile insect technique, or SIT. When female insect pests mate with male partners that have been radiation sterilized, the insemination produces eggs that cannot hatch. Since mating does not produce offspring, the insect population decreases naturally. The pest population can be suppressed with little or no use of pesticides. With the help of the IAEA, farmers have applied SIT successfully in over 20 countries on five continents, for over 15 insect species worldwide.

  7. The role of allelopathy in agricultural pest management.

    Science.gov (United States)

    Farooq, Muhammad; Jabran, Khawar; Cheema, Zahid A; Wahid, Abdul; Siddique, Kadambot H M

    2011-05-01

    Allelopathy is a naturally occurring ecological phenomenon of interference among organisms that may be employed for managing weeds, insect pests and diseases in field crops. In field crops, allelopathy can be used following rotation, using cover crops, mulching and plant extracts for natural pest management. Application of allelopathic plant extracts can effectively control weeds and insect pests. However, mixtures of allelopathic water extracts are more effective than the application of single-plant extract in this regard. Combined application of allelopathic extract and reduced herbicide dose (up to half the standard dose) give as much weed control as the standard herbicide dose in several field crops. Lower doses of herbicides may help to reduce the development of herbicide resistance in weed ecotypes. Allelopathy thus offers an attractive environmentally friendly alternative to pesticides in agricultural pest management. In this review, application of allelopathy for natural pest management, particularly in small-farm intensive agricultural systems, is discussed. Copyright © 2011 Society of Chemical Industry.

  8. Threat of invasive pests from within national borders.

    Science.gov (United States)

    Paini, Dean R; Worner, Susan P; Cook, David C; De Barro, Paul J; Thomas, Matthew B

    2010-11-16

    Predicting and ranking potential invasive species present significant challenges to researchers and biosecurity agencies. Here we analyse a worldwide database of pest species assemblages to generate lists of the top 100 insect pests most likely to establish in the United States and each of its 48 contiguous states. For the United States as a whole, all of the top 100 pest species have already established. Individual states however tend to have many more 'gaps' with most states having at least 20 species absent from their top 100 list. For all but one state, every exotic pest species currently absent from a state's top 100 can be found elsewhere in the contiguous United States. We conclude that the immediate threat from known invasive insect pests is greater from within the United States than without. Our findings have potentially significant implications for biosecurity policy, emphasizing the need to consider biosecurity measures beyond established national border interventions.

  9. Prospects for managing turfgrass pests with reduced chemical inputs.

    Science.gov (United States)

    Held, David W; Potter, Daniel A

    2012-01-01

    Turfgrass culture, a multibillion dollar industry in the United States, poses unique challenges for integrated pest management. Why insect control on lawns, golf courses, and sport fields remains insecticide-driven, and how entomological research and extension can best support nascent initiatives in environmental golf and sustainable lawn care are explored. High standards for aesthetics and playability, prevailing business models, risk management-driven control decisions, and difficulty in predicting pest outbreaks fuel present reliance on preventive insecticides. New insights into pest biology, sampling methodology, microbial insecticides, plant resistance, and conservation biological control are reviewed. Those gains, and innovations in reduced-risk insecticides, should make it possible to begin constructing holistic management plans for key turfgrass pests. Nurturing the public's interest in wildlife habitat preservation, including beneficial insects, may be one means to change aesthetic perceptions and gain leeway for implementing integrated pest management practices that lend stability to turfgrass settings. Copyright © 2012 by Annual Reviews. All rights reserved.

  10. Multiorganismal insects: diversity and function of resident microorganisms.

    Science.gov (United States)

    Douglas, Angela E

    2015-01-07

    All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests.

  11. Suppressing Resistance to Bt Cotton with Sterile Insect Releases

    Energy Technology Data Exchange (ETDEWEB)

    Tabashnik, B E [Department of Entomology, University of Arizona, Tucson, AZ (United States); Sisterson, M S [USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA (United States); Ellsworth, P C [Department of Entomology, University of Arizona, Maricopa Agricultural Center, Maricopa, AZ (United States)

    2011-01-15

    Genetically engineered crops that produce insecticidal toxins from Bacillus thuringiensis (Bt) are grown widely for pest control. However, insect adaptation can reduce the toxins' efficacy. The predominant strategy for delaying pest resistance to Bt crops requires refuges of non-Bt host plants to provide susceptible insects to mate with resistant insects. Variable farmer compliance is one of the limitations of this approach. Here we report the benefits of an alternative strategy where sterile insects are released to mate with resistant insects and refuges are scarce or absent. Computer simulations show that this approach works in principle against pests with recessive or dominant inheritance of resistance. During a largescale, four-year field deployment of this strategy in Arizona, resistance of pink bollworm (Pectinophora gossypiella) to Bt cotton did not increase. A multitactic eradication program that included the release of sterile moths reduced pink bollworm abundance by >99%, while eliminating insecticide sprays against this key invasive pest. (author)

  12. Animals

    International Nuclear Information System (INIS)

    Skuterud, L.; Strand, P.; Howard, B.J.

    1997-01-01

    The radionuclides of most concern with respect to contamination of animals after a nuclear accident are radioiodine, radiocaesium and radiostrontium (ICRP 30, 1979). Of the other significant anthropogenic radionuclides likely to be released in most accidents, only small proportions of that ingested will be absorbed in an animals gut, and the main animal products, milk and meat, will not normally be contaminated to a significant extent. Animal products will mostly be contaminated as a result of ingestion of contaminated feed and possibly, but to a much lesser extent, from inhalation (for radioiodine only). Direct external contamination of animals is of little or no consequence in human food production. Radioiodine and radiostrontium are important with respect to contamination of milk; radiocaesium contaminates both milk and meat. The physical and chemical form of a radionuclide can influence its absorption in the animal gut. For example, following the Chernobyl accident radiocaesium incorporated into vegetation by root uptake was more readily absorbed than that associated with the original deposit. The transfer of radiocaesium and radiostrontium to animals will be presented both as transfer coefficients and aggregated transfer coefficients. For most animal meat products, only radiocaesium is important as other radionuclides do not significantly contaminate muscle. Farm animal products are the most important foodstuff determining radiocaesium intake by the average consumer in the Nordic countries. The major potential source of radioiodine and radiostrontium to humans is milk and milk products. Of the different species, the smaller animals have the highest transfer of radiocaesium from fodder to meat and milk. (EG)

  13. Crop domestication, global human-mediated migration, and the unresolved role of geography in pest control

    Directory of Open Access Journals (Sweden)

    Yolanda H. Chen

    2016-05-01

    Full Text Available Abstract Ecological pest management seeks to improve pest control through the manipulation of ecological processes that promote natural enemies and suppress pests. These approaches can involve cultural practices such as reduced tillage, increased use of non-crop plants that provide food and shelter for natural enemies, and intercropping to enhance the abundance and diversity of natural enemies. A major assumption of ecological pest management is that these activities can be equally effective for all insect herbivores. Here, I propose that these strategies may only be effective for a subset of pests and geographic regions because most insect pests have complex evolutionary histories that make them difficult to manage. I discuss how crop domestication and human-mediated migration are major evolutionary events that shape the geography of interactions between plants, herbivores, and natural enemies. Insect herbivores can evolve to be pests through three major modes: 1 herbivores associated with the crop wild ancestor may shift onto the domesticated crop, 2 herbivores may host-shift from native host plants onto an introduced crop, or 3 human-mediated migration can introduce insect pests into new cropping regions. The resulting geographic structure can influence the success of pest management by altering ecological factors such as: species distributions, patterns of biodiversity, community structure, and natural enemy attack rates. I discuss how the different modes of insect pest evolution structure a set of relevant questions and approaches for ecological pest management. By acknowledging how agricultural history and geography shape the ecology and evolution of insect pests, we may collectively develop a better capacity to identify where and how ecological pest management approaches can be most broadly effective.

  14. Monitoring the agricultural landscape for insect resistance

    Science.gov (United States)

    Casas, Joseph; Glaser, J. A.; Copenhaver, Ken

    Farmers in 25 countries on six continents are using plant biotechnology to solve difficult crop production challenges and conserve the environment. In fact, 13.3 million farmers, which include 90 percent of the farming in developing countries, choose to plant biotech crops. Over the past decade, farmers increased area planted in genetically modified (GM) crops by more than 10 percent each year, thus increasing their farm income by more than 44 billion US dollars (1996-2007), and achieved economic, environmental and social benefits in crops such as soybeans, canola, corn and cotton. To date, total acres of biotech crops harvested exceed more than 2 billion with a proven 13-year history of safe use. Over the next decade, expanded adoption combined with current research on 57 crops in 63 countries will broaden the advantages of genetically modified foods for growers, consumers and the environment. Genetically modified (GM) crops with the ability to produce toxins lethal to specific insect pests are covering a larger percentage of the agricultural landscape every year. The United States department of Agriculture (USDA) estimated that 63 percent of corn and 65 percent of cotton contained these specific genetic traits in 2009. The toxins could protect billions of dollars of loss from insect damage for crops valued at greater than 165 billion US dollars in 2008. The stable and efficient production of these crops has taken on even more importance in recent years with their use, not only as a food source, but now also a source of fuel. It is in the best interest of the United States Environmental Protection Agency (USEPA) to ensure the continued efficacy of toxin producing GM crops as their use reduces pesticides harmful to humans and animals. However, population genetics models have indicated the risk of insect pests developing resistance to these toxins if a high percentage of acreage is grown in these crops. The USEPA is developing methods to monitor the agricultural

  15. Efeito de doses e de refúgio sobre a seletividade de inseticidas a predadores e parasitóides de pragas de soja Effect of doses and of refuge on the insecticide selectivity to predators and parasitoids of soybean insect pests

    Directory of Open Access Journals (Sweden)

    Ivan Carlos Corso

    1999-09-01

    Full Text Available Com o objetivo de avaliar o impacto sazonal de alguns inseticidas sobre predadores e parasitóides de pragas da cultura da soja, instalou-se um experimento com delineamento de blocos ao acaso, constando de oito tratamentos e três repetições, no campo experimental da Embrapa-Centro Nacional de Pesquisa de Soja, em Londrina, PR. Os tratamentos consistiram de aplicações de inseticidas para o controle da lagarta-da-soja (pulverizados em 21/1/93 e percevejos (4/3/93. A técnica empregada para levantamento da população de insetos foi a do método do choque, que consiste na aplicação de um inseticida de alto impacto sobre a comunidade de insetos presente nas plantas, sua coleta sobre panos estendidos no solo, e sua posterior identificação e contagem em laboratório. A análise da variância revelou não haver diferenças significativas entre as populações de predadores, himenópteros e dípteros encontrados, nos diferentes tratamentos estudados. Também n��o foram verificados os fenômenos de ressurgência de pragas ou o aparecimento de elevadas populações de pragas secundárias.A field experiment was conducted to evaluate seasonal effect of insecticides on predators and parasitoids of soybean insect pests. A randomized block design was used, with three replications, and the experiment was set up in the experimental station of the Embrapa-Centro Nacional de Pesquisa de Soja, located at Londrina, PR, Brazil. Treatments consisted of insecticide application to control the velvetbean caterpillar (1/21/1993 or the stink bug complex (3/4/1993. Insect population was sampled through the shock technique, consisting of an application of a broad spectrum insecticide over the plants to be sampled, being the insects collected on cloths placed on the ground, and transferred to the laboratory to be identified and counted. Statistical analysis revealed no differences on the populations of species of predators, diptera or himenoptera as a group. No

  16. Sterilizing insects with ionizing radiation

    International Nuclear Information System (INIS)

    Bakri, A.; Mehta, K.; Lance, D.R.

    2005-01-01

    Exposure to ionizing radiation is currently the method of choice for rendering insects reproductively sterile for area-wide integrated pest management (AW-IPM) programmes that integrate the sterile insect technique (SIT). Gamma radiation from isotopic sources (cobalt-60 or caesium-137) is most often used, but high-energy electrons and X-rays are other practical options. Insect irradiation is safe and reliable when established safety and quality-assurance guidelines are followed. The key processing parameter is absorbed dose, which must be tightly controlled to ensure that treated insects are sufficiently sterile in their reproductive cells and yet able to compete for mates with wild insects. To that end, accurate dosimetry (measurement of absorbed dose) is critical. Irradiation data generated since the 1950s, covering over 300 arthropod species, indicate that the dose needed for sterilization of arthropods varies from less than 5 Gy for blaberid cockroaches to 300 Gy or more for some arctiid and pyralid moths. Factors such as oxygen level, and insect age and stage during irradiation, and many others, influence both the absorbed dose required for sterilization and the viability of irradiated insects. Consideration of these factors in the design of irradiation protocols can help to find a balance between the sterility and competitiveness of insects produced for programmes that release sterile insects. Many programmes apply 'precautionary' radiation doses to increase the security margin of sterilization, but this overdosing often lowers competitiveness to the point where the overall induced sterility in the wild population is reduced significantly. (author)

  17. Global warming presents new challenges for maize pest management

    International Nuclear Information System (INIS)

    Diffenbaugh, Noah S; Krupke, Christian H; White, Michael A; Alexander, Corinne E

    2008-01-01

    It has been conjectured that global warming will increase the prevalence of insect pests in many agro-ecosystems. In this paper, we quantitatively assess four of the key pests of maize, one of the most important systems in North American grain production. Using empirically generated estimates of pest overwintering thresholds and degree-day requirements, along with climate change projections from a high-resolution climate model, we project potential future ranges for each of these pests in the United States. Our analysis suggests the possibility of increased winter survival and greater degree-day accumulations for each of the pests surveyed. We find that relaxed cold limitation could expand the range of all four pest taxa, including a substantial range expansion in the case of corn earworm (H. zea), a migratory, cold-intolerant pest. Because the corn earworm is a cosmopolitan pest that has shown resistance to insecticides, our results suggest that this expansion could also threaten other crops, including those in high-value areas of the western United States. Because managing significant additional pressure from this suite of established pests would require additional pest management inputs, the projected decreases in cold limitation and increases in heat accumulation have the potential to significantly alter the pest management landscape for North American maize production. Further, these range expansions could have substantial economic impacts through increased seed and insecticide costs, decreased yields, and the downstream effects of changes in crop yield variability.

  18. From Pests to Pets: Social and Cultural Perceptions of Animals in Post-medieval Urban Centres in England (AD1500 – 1900

    Directory of Open Access Journals (Sweden)

    Rebecca Gordon

    2017-03-01

    Full Text Available In the past, animals and their products were prominent features of urban life. How people utilised these animals as well as their relationships has continually changed. For example, cats, dogs, pigs and other animals lived in close proximity to people in post-medieval urban centres and were viewed in terms of their functional affordances. Cats were kept to deter rodents and exploited for their fur, dogs were protectors of the home and pigs were not only food, but helped to reduce the amount of rubbish where they were kept. However, perceptions and treatment of urban animals were far from static. The emergent animal welfare movement and legislation heralded a change in the species and numbers of animals present in the urban environment and altered human-animal relationships. Now people are detached from ‘livestock’ (e.g. pigs, but have developed closer bonds with companion animals (e.g. cats, dogs, etc.. In this article I will draw upon zooarchaeological and historical evidence in an attempt to show the timing of this transition and highlight some key factors in the accompanying shift in human-animal relationships, while focusing more specifically on pet-keeping in a city context.

  19. Animator

    Science.gov (United States)

    Tech Directions, 2008

    2008-01-01

    Art and animation work is the most significant part of electronic game development, but is also found in television commercials, computer programs, the Internet, comic books, and in just about every visual media imaginable. It is the part of the project that makes an abstract design idea concrete and visible. Animators create the motion of life in…

  20. Insecticides -a cure or curse and rational use of integrated pest management in Pakistan

    International Nuclear Information System (INIS)

    Irshad, M.

    2005-01-01

    Chemical based control in crops has increased the pest problem, disturbed the agro ecosystem and has killed the non-target and environmentally friendly organisms and misuse of insecticides has led to resistance to insecticides, resurgence of secondary pests, polluting soil, water and food with contaminates. In addition to this, irrigation and drinking water, cottonseed oil, lint and cattle feed and animal milk are also contaminated having deleterious effects on human life. To reduce chemical control, Integrated Pest Management (IPM) emerged. Its emphasis is on non-disturbance of ecosystem but to manage the insect pest populations with all the available means on economic basis. IPM approach is knowledge based with in-depth information. In spite of IPM studies and work unfortunately reliance on pesticides has not been reduced in Pakistan. Conservation/augmentation, releases of new biotic agents may disturb the ecosystem. The stress on IPM is made in the developed countries primarily due to human health factor. These societies even risk the reduction in yield in the IPM fields. Successful stories of IPM in Pakistan has not been cashed to due merits. The bottlenecks must be removed so that better results can be obtained. The main reason seems to be lack of in depth involvement of the growers in this activity. (author)

  1. Animals

    Energy Technology Data Exchange (ETDEWEB)

    Skuterud, L.; Strand, P. [Norwegian Radiation Protection Authority (Norway); Howard, B.J. [Inst. of Terrestrial Ecology (United Kingdom)

    1997-10-01

    The radionuclides of most concern with respect to contamination of animals after a nuclear accident are radioiodine, radiocaesium and radiostrontium (ICRP 30, 1979). Of the other significant anthropogenic radionuclides likely to be released in most accidents, only small proportions of that ingested will be absorbed in an animals gut, and the main animal products, milk and meat, will not normally be contaminated to a significant extent. Animal products will mostly be contaminated as a result of ingestion of contaminated feed and possibly, but to a much lesser extent, from inhalation (for radioiodine only). Direct external contamination of animals is of little or no consequence in human food production. Radioiodine and radiostrontium are important with respect to contamination of milk; radiocaesium contaminates both milk and meat. The physical and chemical form of a radionuclide can influence its absorption in the animal gut. For example, following the Chernobyl accident radiocaesium incorporated into vegetation by root uptake was more readily absorbed than that associated with the original deposit. The transfer of radiocaesium and radiostrontium to animals will be presented both as transfer coefficients and aggregated transfer coefficients. For most animal meat products, only radiocaesium is important as other radionuclides do not significantly contaminate muscle. Farm animal products are the most important foodstuff determining radiocaesium intake by the average consumer in the Nordic countries. The major potential source of radioiodine and radiostrontium to humans is milk and milk products. Of the different species, the smaller animals have the highest transfer of radiocaesium from fodder to meat and milk. (EG). 68 refs.

  2. Expressed sequence tags from Atta laevigata and identification of candidate genes for the control of pest leaf-cutting ants.

    Science.gov (United States)

    Rodovalho, Cynara M; Ferro, Milene; Fonseca, Fernando Pp; Antonio, Erik A; Guilherme, Ivan R; Henrique-Silva, Flávio; Bacci, Maurício

    2011-06-17

    Leafcutters are the highest evolved within Neotropical ants in the tribe Attini and model systems for studying caste formation, labor division and symbiosis with microorganisms. Some species of leafcutters are agricultural pests controlled by chemicals which affect other animals and accumulate in the environment. Aiming to provide genetic basis for the study of leafcutters and for the development of more specific and environmentally friendly methods for the control of pest leafcutters, we generated expressed sequence tag data from Atta laevigata, one of the pest ants with broad geographic distribution in South America. The analysis of the expressed sequence tags allowed us to characterize 2,006 unique sequences in Atta laevigata. Sixteen of these genes had a high number of transcripts and are likely positively selected for high level of gene expression, being responsible for three basic biological functions: energy conservation through redox reactions in mitochondria; cytoskeleton and muscle structuring; regulation of gene expression and metabolism. Based on leafcutters lifestyle and reports of genes involved in key processes of other social insects, we identified 146 sequences potential targets for controlling pest leafcutters. The targets are responsible for antixenobiosis, development and longevity, immunity, resistance to pathogens, pheromone function, cell signaling, behavior, polysaccharide metabolism and arginine kynase activity. The generation and analysis of expressed sequence tags from Atta laevigata have provided important genetic basis for future studies on the biology of leaf-cutting ants and may contribute to the development of a more specific and environmentally friendly method for the control of agricultural pest leafcutters.

  3. Alternatives to neonicotinoid insecticides for pest control: case studies in agriculture and forestry.

    Science.gov (United States)

    Furlan, Lorenzo; Kreutzweiser, David

    2015-01-01

    Neonicotinoid insecticides are widely used for control of insect pests around the world and are especially pervasive in agricultural pest management. There is a growing body of evidence indicating that the broad-scale and prophylactic uses of neonicotinoids pose serious risks of harm to beneficial organisms and their ecological function. This provides the impetus for exploring alternatives to neonicotinoid insecticides for controlling insect pests. We draw from examples of alternative pest control options in Italian maize production and Canadian forestry to illustrate the principles of applying alternatives to neonicotinoids under an integrated pest management (IPM) strategy. An IPM approach considers all relevant and available information to make informed management decisions, providing pest control options based on actual need. We explore the benefits and challenges of several options for management of three insect pests in maize crops and an invasive insect pest in forests, including diversifying crop rotations, altering the timing of planting, tillage and irrigation, using less sensitive crops in infested areas, applying biological control agents, and turning to alternative reduced risk insecticides. Continued research into alternatives is warranted, but equally pressing is the need for information transfer and training for farmers and pest managers and the need for policies and regulations to encourage the adoption of IPM strategies and their alternative pest control options.

  4. Self-reported prevalence of pests in Dutch households and the use of the health belief model to explore householders' intentions to engage in pest control.

    Directory of Open Access Journals (Sweden)

    Stefan A Lipman

    Full Text Available Pests in the home are a health risk because they can be vectors for infectious disease, contribute to allergies and cause damage to buildings. The aims of this study were to record which categories of pests were reported in homes and to use a social cognition model, the health belief model, to investigate which psychological factors influence householders' intentions to control pests. An online questionnaire was completed by 413 respondents between 11 September and 31 November 2015. A large majority of respondents reported pests in or around their home within the previous year. The prevalences were: flying insects 98%, crawling insects 85%, rodents 62%, birds 58%, and moles 20%. Regression analysis for the health belief model revealed that perceiving greater benefits and fewer barriers to pest control and expecting severe consequences of zoonotic infections predicted higher intention to control pests. Intentions towards pest control were not influenced by perceiving oneself as susceptible to catching a disease from pests or health motivation (striving towards a healthy lifestyle. Intentions to engage in pest control were lower for households reporting bird prevalence. The findings suggest that interventions aimed at improving the effectiveness of domestic pest control should focus on increasing the benefits that individuals associate with effective pest control, lowering barriers, and on underlining the severity of the diseases that pests may carry.

  5. Self-reported prevalence of pests in Dutch households and the use of the health belief model to explore householders’ intentions to engage in pest control

    Science.gov (United States)

    Lipman, Stefan A.

    2017-01-01

    Pests in the home are a health risk because they can be vectors for infectious disease, contribute to allergies and cause damage to buildings. The aims of this study were to record which categories of pests were reported in homes and to use a social cognition model, the health belief model, to investigate which psychological factors influence householders’ intentions to control pests. An online questionnaire was completed by 413 respondents between 11 September and 31 November 2015. A large majority of respondents reported pests in or around their home within the previous year. The prevalences were: flying insects 98%, crawling insects 85%, rodents 62%, birds 58%, and moles 20%. Regression analysis for the health belief model revealed that perceiving greater benefits and fewer barriers to pest control and expecting severe consequences of zoonotic infections predicted higher intention to control pests. Intentions towards pest control were not influenced by perceiving oneself as susceptible to catching a disease from pests or health motivation (striving towards a healthy lifestyle). Intentions to engage in pest control were lower for households reporting bird prevalence. The findings suggest that interventions aimed at improving the effectiveness of domestic pest control should focus on increasing the benefits that individuals associate with effective pest control, lowering barriers, and on underlining the severity of the diseases that pests may carry. PMID:29284047

  6. Self-reported prevalence of pests in Dutch households and the use of the health belief model to explore householders' intentions to engage in pest control.

    Science.gov (United States)

    Lipman, Stefan A; Burt, Sara A

    2017-01-01

    Pests in the home are a health risk because they can be vectors for infectious disease, contribute to allergies and cause damage to buildings. The aims of this study were to record which categories of pests were reported in homes and to use a social cognition model, the health belief model, to investigate which psychological factors influence householders' intentions to control pests. An online questionnaire was completed by 413 respondents between 11 September and 31 November 2015. A large majority of respondents reported pests in or around their home within the previous year. The prevalences were: flying insects 98%, crawling insects 85%, rodents 62%, birds 58%, and moles 20%. Regression analysis for the health belief model revealed that perceiving greater benefits and fewer barriers to pest control and expecting severe consequences of zoonotic infections predicted higher intention to control pests. Intentions towards pest control were not influenced by perceiving oneself as susceptible to catching a disease from pests or health motivation (striving towards a healthy lifestyle). Intentions to engage in pest control were lower for households reporting bird prevalence. The findings suggest that interventions aimed at improving the effectiveness of domestic pest control should focus on increasing the benefits that individuals associate with effective pest control, lowering barriers, and on underlining the severity of the diseases that pests may carry.

  7. 7 CFR 330.206 - Permits for plant pest movement associated with National Defense projects.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Permits for plant pest movement associated with... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FEDERAL PLANT PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Plant Pests § 330.206...

  8. 7 CFR 330.202 - Consideration of applications for permits to move plant pests.

    Science.gov (United States)

    2010-01-01

    ... plant pests. 330.202 Section 330.202 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FEDERAL PLANT PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Plant Pests § 330.202...

  9. Perspectives on essential oil-loaded nano-delivery packaging technology for controlling stored cereal and grain pests

    Science.gov (United States)

    Insect pests and food-borne fungi and their associated toxic metabolites cause significant losses in stored food products. Plant-derived essential oils (EOs) can control the growth and proliferation of insect and fungal pests. Plant EOs are environmentally friendly and non-toxic, and their applicati...

  10. Marine insects

    National Research Council Canada - National Science Library

    Cheng, Lanna

    1976-01-01

    .... Not only are true insects, such as the Collembola and insect parasites of marine birds and mammals, considered, but also other kinds of intertidal air-breathing arthropods, notably spiders, scorpions...

  11. Managing Pests in Schools

    Science.gov (United States)

    Provides basic information on integrated pest management in schools, including information on the components of an IPM program and guidance on how to get started. Includes identification and control of pests, educational resources, and contact information

  12. Insect-resistant biotech crops and their impacts on beneficial arthropods

    Science.gov (United States)

    Gatehouse, A. M. R.; Ferry, N.; Edwards, M. G.; Bell, H. A.

    2011-01-01

    With a projected population of 10 billion by 2050, an immediate priority for agriculture is to achieve increased crop yields in a sustainable and cost-effective way. The concept of using a transgenic approach was realized in the mid-1990s with the commercial introduction of genetically modified (GM) crops. By 2010, the global value of the seed alone was US $11.2 billion, with commercial biotech maize, soya bean grain and cotton valued at approximately US $150 billion. In recent years, it has become evident that insect-resistant crops expressing δ-endotoxin genes from Bacillus thuringiensis have made a significant beneficial impact on global agriculture, not least in terms of pest reduction and improved quality. However, because of the potential for pest populations to evolve resistance, and owing to lack of effective control of homopteran pests, alternative strategies are being developed. Some of these are based on Bacillus spp. or other insect pathogens, while others are based on the use of plant- and animal-derived genes. However, if such approaches are to play a useful role in crop protection, it is desirable that they do not have a negative impact on beneficial organisms at higher trophic levels thus affecting the functioning of the agro-ecosystem. This widely held concern over the ecological impacts of GM crops has led to the extensive examination of the potential effects of a range of transgene proteins on non-target and beneficial insects. The findings to date with respect to both commercial and experimental GM crops expressing anti-insect genes are discussed here, with particular emphasis on insect predators and parasitoids. PMID:21444317

  13. Insect-resistant biotech crops and their impacts on beneficial arthropods.

    Science.gov (United States)

    Gatehouse, A M R; Ferry, N; Edwards, M G; Bell, H A

    2011-05-12

    With a projected population of 10 billion by 2050, an immediate priority for agriculture is to achieve increased crop yields in a sustainable and cost-effective way. The concept of using a transgenic approach was realized in the mid-1990s with the commercial introduction of genetically modified (GM) crops. By 2010, the global value of the seed alone was US $11.2 billion, with commercial biotech maize, soya bean grain and cotton valued at approximately US $150 billion. In recent years, it has become evident that insect-resistant crops expressing δ-endotoxin genes from Bacillus thuringiensis have made a significant beneficial impact on global agriculture, not least in terms of pest reduction and improved quality. However, because of the potential for pest populations to evolve resistance, and owing to lack of effective control of homopteran pests, alternative strategies are being developed. Some of these are based on Bacillus spp. or other insect pathogens, while others are based on the use of plant- and animal-derived genes. However, if such approaches are to play a useful role in crop protection, it is desirable that they do not have a negative impact on beneficial organisms at higher trophic levels thus affecting the functioning of the agro-ecosystem. This widely held concern over the ecological impacts of GM crops has led to the extensive examination of the potential effects of a range of transgene proteins on non-target and beneficial insects. The findings to date with respect to both commercial and experimental GM crops expressing anti-insect genes are discussed here, with particular emphasis on insect predators and parasitoids.

  14. Edible Insects

    NARCIS (Netherlands)

    Huis, van A.; Dunkel, F.V.

    2016-01-01

    The interest in insects as human food in the Western world is increasingly considered as a viable alternative to other protein sources. In tropical countries it is common practice and about 2000 insect species are eaten. Insects emit low levels of greenhouse gases, need little water, and require

  15. Consuming insects

    NARCIS (Netherlands)

    Roos, N.; Huis, van A.

    2017-01-01

    How healthy are insects? This is a highly relevant question in view of the global interest in the potential of insects as a sustainable food source in food systems and diets. Edible insects, like other foods, can provide nutrients and dietary energy to meet the requirements of the human body as a

  16. Detection methods for irradiated mites and insects

    International Nuclear Information System (INIS)

    Ignatowicz, S.

    1999-01-01

    Results of the study on the following tests for separation of irradiated pests from untreated ones are reported: (a) test for identification of irradiated mites (Acaridae) based on lack of fecundity of treated females; (b) test for identification of irradiated beetles based on their locomotor activity; (c) test for identification of irradiated pests based on electron spin resonance (ESR) signal derived from treated insects; (d) test for identification of irradiated pests based on changes in the midgut induced by gamma radiation; and (e) test for identification of irradiated pests based on the alterations in total proteins of treated adults. Of these detection methods, only the test based on the pathological changes induced by irradiation in the insect midgut may identify consistently either irradiated larvae or adults. This test is simple and convenient when a rapid processing technique for dehydrating and embedding the midgut is used. (author)

  17. Farmers’ perceptions of crop pest severity in Nigeria are associated with landscape, agronomic and socio-economic factors

    NARCIS (Netherlands)

    Zhang, Wei; Kato, Edward; Bianchi, Felix; Bhandary, Prapti; Gort, Gerrit; Werf, van der Wopke

    2018-01-01

    Insect pests are a major cause of crop yield losses around the world and pest management plays a critical role in providing food security and farming income. This study links Nigerian farmers’ perceptions of pest severity to the landscape, agronomic, biophysical, and socio-economic context in which

  18. Early-season movement dynamics of phytophagous pest and natural enemies across a native vegetation-crop ecotone

    NARCIS (Netherlands)

    Macfadyen, S.; Hopkinson, J.; Parry, H.; Neave, M.J.; Bianchi, F.J.J.A.; Zalucki, M.P.; Schellhorn, N.A.

    2015-01-01

    There is limited understanding about how insect movement patterns are influenced by landscape features, and how landscapes can be managed to suppress pest phytophage populations in crops. Theory suggests that the relative timing of pest and natural enemy arrival in crops may influence pest

  19. Factors driving public tolerance levels and information-seeking behaviour concerning insects in the household environment

    NARCIS (Netherlands)

    Schoelitsz, Bruce; Poortvliet, P.M.; Takken, Willem

    2018-01-01

    BACKGROUND: The public's negative attitudes towards household insects drive tolerance for these insects and their control. Tolerance levels are important in integrated pest management (IPM), as are pest knowledge and information. The risk information seeking and processing (RISP) model describes the

  20. Farmers’ knowledge and perceptions of potato pests and their management in Uganda

    Directory of Open Access Journals (Sweden)

    Joshua Sikhu Okonya

    2016-03-01

    Full Text Available As we initiate entomological research on potato (Solanum tuberosum L. in Uganda, there is need to understand farmers’ knowledge of existing insect pest problems and their management practices. Such information is important for designing a suitable intervention and successful integrated pest management (IPM strategy. A farm household survey using a structured questionnaire was conducted among 204 potato farmers in six districts of Uganda (i.e., Kabale, Kisoro, Mbale, Kapchorwa, Mubende, and Kyegegwa during August and September 2013. Diseases, insect pests, price fluctuations, and low market prices were the four highest ranked constraints in potato production, in order of decreasing importance. Cutworms (Agrotis spp., aphids (Myzus persicae (Sulzer, and potato tuber moth (Phthorimaea operculella (Zeller were the three most severe insect pests. Ants (Dorylis orantalis Westwood, whiteflies (Bemisia tabaci (Gennadius, and leafminer flies (Liriomyza huidobrensis (Blanchard were pests of moderate importance. Major yield losses are predominantly due to late blight (Phytophthora infestans (Mont. de Bary and reached 100% without chemical control in the districts of Kabale, Kisoro, Mbale, and Kapchorwa. On average, farmers had little to moderate knowledge about pest characteristics. The predominant control methods were use of fungicides (72% of respondents and insecticides (62% of respondents. On average, only 5% of the 204 farmers knew about insect pests and their natural enemies. This lack of knowledge calls for training of both farmers and extension workers in insect pest identification, their biology, and control. Empowering farmers with knowledge about insect pests is essential for the reduction of pesticide misuse and uptake of more environmentally friendly approaches like IPM. Field surveys would need follow-up in order to assess the actual field infestation rates and intensities of each insect pest and compare the results with the responses