WorldWideScience

Sample records for animal insect pests

  1. Forest insect pests in Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The papers presented in this book cover the range of forest insect pest management activities in Canada. The first section contains papers on the current status of insect pests by region, including data on insect populations and extent of defoliation caused by the insect. The next section covers pest management technology, including the use of insecticides, insect viruses, fungal pathogens, growth regulators, antifeedants, pheromones, natural predators, and aerial spraying. The third section contains papers on the application of technology and equipment for forest pest control, and includes papers on the impacts of insecticides on the forest environment. The fourth section describes operational control programs by province. The final paper presents future strategies for the management of forest pests. An author index is included.

  2. Converting pest insects into food

    DEFF Research Database (Denmark)

    Offenberg, Hans Joachim; Wiwatwittaya, Decha

    2010-01-01

    Canopy dwelling weaver ants (Oecophylla spp.) are used to control a variety of pests in a number of tropical tree crops. What is less familiar is the existence of commercial markets where these ants and their brood are sold for (i) human consumption, (ii) pet food or (iii) traditional medicine...... by pest insects, problematic pests are converted into food and additional earnings. To assess the profitability of providing additional food for the ants, O. smaragdina food conversion efficiency (ECI) was estimated in the laboratory. This estimate suggests the feeding of weaver ants in ant farms...

  3. Insect pests of stored grain products

    International Nuclear Information System (INIS)

    Chuaqui-Offermanns, N.

    1987-01-01

    The presence of insects in stored products is a worldwide recognized problem. In this report chemical and physical methods to control insect infestations in stored products are discussed. Special attention is given to the use of ionizing radiation to control insect pests in stored grains. The radiosensitivity of the most common insect pests at their different developmental stages is presented and discussed. The conclusions of this review are compiled in an executive summary. 62 refs

  4. Radiations: tool for insect pest management

    International Nuclear Information System (INIS)

    Swami, Kailash Kumar; Kiradoo, M.M.; Srivastava, Meera

    2012-01-01

    The discovery that X-rays or gamma radiation could cause sufficient genetic damage to insect reproductive systems to induce sterility resulted from work conducted by H.J. Muller starting in the 1920s. The sterilizing effect of radiation was noted by scientists of the US Department of Agriculture who had been seeking a method to sterilize insects for many years. These scientists had theorized that if large numbers of the target insect species were reared, sterilized, and released into the field, the sterile insects would mate with the wild insects. These mating would result in no offspring and thus a decline in the population would be obtained. They calculated that if sufficient numbers of sterile insects were released, reproductive rate for the wild population would rapidly decline and reach zero. In simple language, birth control of insects. Radiation sterilization was the answer. In a SIT operation, radiation is used to sexually sterilize insects. Since the SIT is species specific, the selection the insect pest or group of pests on which to work is of primary importance. The Joint Division of the IAEA Food and Agriculture Organization (FAO) has been involved in the use of isotopes and radiation in insect control since 1964. Isotopes are used as tags or markers, for instance, of chemical molecules, insects, or plants. For example, with these tags one can follow the fate of insecticides within insects and the environment; the incorporation of nutrients into the insect; and the movements of insects under field conditions. They also can plants on which insects feed so that the quantity of consumed food can be measured and directly correlated with plant resistance. They can be used as well to follow parasites and predators of insects - for example, their movements, numbers, and ability to help control insect pests. Radiations therefore have come as a novel tool to combat insect pest problem and in future could be very helpful in various other ways, of be it be cost

  5. Radiation and Radioisotopes Applied to Insects of Agricultural Importance. Proceedings of the Symposium on the Use and Application of Radioisotopes and Radiation in the Control of Plant and Animal Insect Pests

    International Nuclear Information System (INIS)

    1963-01-01

    Since the pioneer work of the United States Department of Agriculture in the application of radiation and radioisotopes in the control of insect pests to cattle, many countries and organizations have pursued the advantages which might be gained in this field. Two years ago the IAEA organized the first international symposium in Bombay to study this problem, since when a considerable amount of basic research on the application of nuclear science in entomology and insect pest control has been undertaken. The potential gain of these studies, which would be in the form of an increased output of better food, is obvious to all Governments; hence the extensive international interest in the subject of this present Symposium, which was attended by 100 participants from 26 countries and 5 international organizations. The proceedings consist of 37 papers presented by experts from 10 countries, together with a record of the discussions, and cover the use of radioisotopes in the study of the ecology of insects, such as their dispersal, migration and life-cycle. The application of radioisotopes to insecticides covers such subjects as labelling, application, uptake, translocation, metabolism, mode of action, and the determination' of residues in plants and animals. The present position on the effects of radiation on insects is dealt with, including mutation, sterilization and the use of the sterile-male technique for the control and eradication of insect pests, and the need is emphasized for integration of chemical, biological, radiation and other methods of insect control. The emphasis of this Symposium has been mainly on aspects of crop protection and it is hoped that the next symposium will also deal with aspects of livestock protection.

  6. Insect and pest control newsletter. No. 52

    International Nuclear Information System (INIS)

    1998-12-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  7. Insect and pest control newsletter. No. 53

    International Nuclear Information System (INIS)

    1999-07-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  8. Insect and pest control newsletter. No. 50

    International Nuclear Information System (INIS)

    1997-10-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  9. Insect and pest control newsletter. No. 54

    International Nuclear Information System (INIS)

    2000-01-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  10. Insect and pest control newsletter. No. 55

    International Nuclear Information System (INIS)

    2000-07-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  11. Insect and pest control newsletter. No. 51

    International Nuclear Information System (INIS)

    1998-06-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  12. Insect and pest control newsletter. No. 56

    International Nuclear Information System (INIS)

    2001-01-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  13. Management of insect pests using semiochemical traps

    DEFF Research Database (Denmark)

    Baroffio, C. A.; Guibert, V.; Richoz, P.

    2016-01-01

    In the absence of effective control measures, the strawberry blossom weevil (Anthonomus rubi) (SBW) and the raspberry beetle (Byturus tomentosus) (RB) cause large (10 - >80%) losses in yield and quality in organically grown raspberry. Attractive lures for both pests were combined into a single....... The aim is to develop optimized lures and cost-effective trap designs for mass trapping and to determine the optimum density and spatial and temporal patterns of deployment of the traps for controlling these pests by mass trapping. The combination between an aggregation pheromone that attracts Anthonomus...... multitrap for the economical management of both of these pests at the same time. This is one of the first approaches to pest management of non-lepidopteran insect pests of horticultural crops using semiochemicals in the EU, and probably the first to target multiple species from different insect orders...

  14. Modern Stored-Product Insect Pest Management

    Directory of Open Access Journals (Sweden)

    Hagstrum David William

    2014-07-01

    Full Text Available Stored-product entomologists have a variety of new monitoring, decision-making, biological, chemical, and physical pest management tools available to them. Two types of stored-product insect populations are of interest: insects of immediate economic importance infesting commodities, and insects that live in food residues in equipment and facilities. The sampling and control methods change as grain and grain products move from field to consumer. There are also some changes in the major insect pest species to take into consideration. In this review, we list the primary insect pests at each point of the marketing system, and indicate which sampling methods and control strategies are most appropriate. Economic thresholds for insect infestation levels developed for raw commodity storage, processing plants, and retail business allow sampling-based pest management to be done before insect infestations cause economic injury. Taking enough samples to have a representative sample (20-30 samples will generally provide enough information to classify a population as above or below an economic threshold.

  15. Insect and Pest Control Newsletter. No. 46

    International Nuclear Information System (INIS)

    1991-08-01

    This newsletter lists the FAO/IAEA meetings in the field of pest control held between September 1990 and February 1991 and provides very brief summaries of their contents. It also features a special report on the New World Screwworm in North Africa. An eradication programme, organized by the IAEA and the FAO and based on the sterile insect technique, was implemented, and as a result it is expected that the area will be declared free of the pest during autumn 1991

  16. Insect pest control newsletter. No. 65

    International Nuclear Information System (INIS)

    2005-07-01

    The concept of Area-wide Integrated Pest Management (AW-IPM) is defined as IPM applied against an entire pest population within a delimited geographic area. Area-wide intervention strategies require more planning and ecological understanding, longer-term commitment, a minimum infrastructure and a coordinated implementation by farmers and all other stakeholders. The spatial distribution of the pest population has to be considered not only in surrounding cultivated areas, but also in non-cultivated areas. It also involves considering the temporal distribution of the pest to determine the periods when the pest is most susceptible to preventive, rather than remedial, interventions. In 1998 FAO and the Agency sponsored the First International Conference on 'Area-Wide Control of Insect Pests, Integrating the Sterile Insect and Related Nuclear and other Techniques' in Penang, Malaysia. This Conference greatly increased the interest and awareness concerning the AW-IPM approach to insect pest control. Since then, many new technical innovations have been introduced; a better regulatory framework is being developed to encourage the involvement of the private sector, and more FAO and Agency Member States are integrating insect pest control methods on an areawide basis. Over the past months we have been heavily involved in preparing for the Second FAO/IAEA International Conference on 'Area-Wide Control of Insect Pests: Integrating the Sterile Insect and Related Nuclear and Other Techniques', which was held from 9-13 May in Vienna. The response and interest of scientists and governments, as well as the private sector and sponsors were once more very encouraging. The conference took place with the participation of over 300 delegates from 86 countries, nine international organization, and eight exhibitors. It covered the area-wide approach again in a very broad sense, including the development and integration of many non-SIT technologies, as well as genetic research on cytoplasmic

  17. Insect Pests of Field Crops. MP-28.

    Science.gov (United States)

    Burkhardt, Chris C.

    This document addresses the principles of field crop insect control through biological, mechanical, and chemical processes. Identification, life history, damage, pesticides, pesticide use and environmental considerations are presented for the major pests of corn, alfalfa, beans, small grains, sugar beets, and potatoes. Each section is accompanied…

  18. Impact of climate change on insect pests of trees

    NARCIS (Netherlands)

    Moraal, L.G.; Jagers op Akkerhuis, L.; Jagers op Akkerhuis, G.A.J.M.

    2008-01-01

    There are many interactions and it is exetremely difficult to predict the impact of climate change on insect pests in the future, but we may expect an increase of certain primary pests as well as secondary pests and invasive species

  19. Innovative Strategies for Control of Coffee Insect Pests in Tanzania ...

    African Journals Online (AJOL)

    Coffee insect pests are one of the major factors which affect coffee production and quality. globally, coffee insect pests are estimated to cause losses of about 13%. However in Africa, yield losses can be much higher, particularly where Arabica and Robusta coffee are grown for a long time. In Tanzania the major insect pests ...

  20. Insect pests of tea and their management.

    Science.gov (United States)

    Hazarika, Lakshmi K; Bhuyan, Mantu; Hazarika, Budhindra N

    2009-01-01

    Globally, 1031 species of arthropods are associated with the intensively managed tea Camellia sinensis (L.) O. Kuntze monoculture. All parts of the plant, leaf, stem, root, flower, and seed, are fed upon by at least one pest species, resulting in an 11%-55% loss in yield if left unchecked. There has been heavy use of organosynthetic pesticides since the 1950s to defend the plant against these pests, leading to rapid conversion of innocuous species into pests, development of resistance, and undesirable pesticide residues in made tea. As a result of importer and consumer concerns, pesticide residues have become a major problem for the tea industry. Integrated pest management (IPM) may help to overcome the overuse of pesticides and subsequent residues. We review the advances made in our understanding of the biology and ecology of major insect and mite pests of tea, host plant resistance, cultural practices, biocontrol measures, and need-based application of botanicals and safer pesticides to understand the present status of IPM and to identify future challenges to improvement.

  1. Insect pest situation and farmers' cultural practices in citrus orchards ...

    African Journals Online (AJOL)

    A survey was conducted in the major citrus producing areas located in Southern Guinea savannah agroecological zone of Nigeria to identify major insect pest and assess the effects of farmers' citricultural practices on citrus production and pest control. Various species of insect pests were identified attacking citrus.

  2. Management of insect pests : have the goalposts changed with ...

    African Journals Online (AJOL)

    An integrated pest management approach for the control of insect pests is advocated but with restrictions on the use of insecticides and biological control. Although the FSC management plan for the control of insect pests would certainly contribute to the sustainability of commercial plantations in the future, it poses many ...

  3. Insect pest control newsletter. No. 62

    International Nuclear Information System (INIS)

    2004-01-01

    The year 2003 has again been a very intense period for all of us working at the Insect Pest Control Sub-programme of the Joint FAO/IAEA Agriculture Programme. This issue reports normative activities, and the application of area-wide control and SIT. One that stands out during 2003 is the recent publication of 'Trapping Guidelines for Area-wide Fruit Fly Programmes', which responds to the request by Member States to harmonize internationally trapping procedures for Tephritid fruit flies of economic importance. These pest insects have a major impact on the international trade of fresh fruits and vegetables, and the guidelines provide strategic guidance and direction to NPPOs, RPPOs and industry on where and how to implement fruit fl y surveys. Using these guidelines in the implementation of surveys will support FAO and IAEA Member States in obtaining international recognition of their fruit fly control and quarantine activities. A new project is a world-directory of fruit fly workers. A tremendous amount of information is made available each year on Tephritid fruit flies: new technologies developed, new information on their biology and ecology; new control methods made available, new species identified, new outbreaks recorded and new operational control programmes launched. This site will attempt to collate this information and allow Tephritid fruit fly workers worldwide to keep up-to-date on the most recent developments. Another activity has been the development of more scientific methods for determining when an area achieves a pest-free status. A consultants meeting focused on this topic and a generic procedure has been developed for declaring an area to be 'pest-free' following an eradication campaign against an insect pest. This involves a probability model to deal with null trapping results and also a growth model to help verify that pest specimen were not present when control was stopped. Other normative and promotional activities under development include

  4. Insect and pest control newsletter. No. 60

    International Nuclear Information System (INIS)

    2003-01-01

    SIT methodologies have not been developed for many of the major potential invasive pest species for which it could play an important role in eradicating incipient outbreaks. Among the USDA-APHIS Exotic Pest Arthropod List for the USA, which highlights 100 high-risk pests, ca. fifty percent of this worst of the worst list are from the order Lepidoptera. Many of these Lepidoptera are not only a threat to the US but also to many other regions of the world. Nevertheless, research to develop SIT for these high risk, exotic lepidopteran pests is lacking in most cases (Asian gypsy moth being an exception). Cooperative efforts are needed to develop appropriate response strategies that would include eradication technologies in advance of invasive lepidopteran pest introductions. In collaboration with USDA scientists James Carpenter, Ken Bloem and Stephanie Bloem, FAO/IAEA has been supporting research and facilitating co-operation among scientists of different countries to develop F1 Sterility as a proactive approach for dealing with two such potential invasive lepidopteran pests. Because F1 Sterility produces competitive insects and has been reported in all lepidopteran species investigated, these studies should serve as useful models for half of the species on the 'Worst of the Worst' list. One is the false codling moth, Cryptophlebia leucotreta, which features prominently on the 'Worst of the Worst' list. It is a polyphagous key pest in South Africa and many regional plant protection organizations have expressed concern of the spread of this damaging pest as a direct result of increased international trade. Under a multi-country and multi-agency effort mass rearing methods are being improved in South Africa, and radiation biology studies are being refined to determine the optimum dose of radiation to induce F1 Sterility for use in an SIT programme as an eradication tool should this pest be introduced into a foreign country. Another good example of our ill-preparedness to

  5. Insect Pathogenic Bacteria in Integrated Pest Management.

    Science.gov (United States)

    Ruiu, Luca

    2015-04-14

    The scientific community working in the field of insect pathology is experiencing an increasing academic and industrial interest in the discovery and development of new bioinsecticides as environmentally friendly pest control tools to be integrated, in combination or rotation, with chemicals in pest management programs. In this scientific context, market data report a significant growth of the biopesticide segment. Acquisition of new technologies by multinational Ag-tech companies is the center of the present industrial environment. This trend is in line with the requirements of new regulations on Integrated Pest Management. After a few decades of research on microbial pest management dominated by Bacillus thuringiensis (Bt), novel bacterial species with innovative modes of action are being discovered and developed into new products. Significant cases include the entomopathogenic nematode symbionts Photorhabdus spp. and Xenorhabdus spp., Serratia species, Yersinia entomophaga, Pseudomonas entomophila, and the recently discovered Betaproteobacteria species Burkholderia spp. and Chromobacterium spp. Lastly, Actinobacteria species like Streptomyces spp. and Saccharopolyspora spp. have gained high commercial interest for the production of a variety of metabolites acting as potent insecticides. With the aim to give a timely picture of the cutting-edge advancements in this renewed research field, different representative cases are reported and discussed.

  6. Insect Pathogenic Bacteria in Integrated Pest Management

    Directory of Open Access Journals (Sweden)

    Luca Ruiu

    2015-04-01

    Full Text Available The scientific community working in the field of insect pathology is experiencing an increasing academic and industrial interest in the discovery and development of new bioinsecticides as environmentally friendly pest control tools to be integrated, in combination or rotation, with chemicals in pest management programs. In this scientific context, market data report a significant growth of the biopesticide segment. Acquisition of new technologies by multinational Ag-tech companies is the center of the present industrial environment. This trend is in line with the requirements of new regulations on Integrated Pest Management. After a few decades of research on microbial pest management dominated by Bacillus thuringiensis (Bt, novel bacterial species with innovative modes of action are being discovered and developed into new products. Significant cases include the entomopathogenic nematode symbionts Photorhabdus spp. and Xenorhabdus spp., Serratia species, Yersinia entomophaga, Pseudomonas entomophila, and the recently discovered Betaproteobacteria species Burkholderia spp. and Chromobacterium spp. Lastly, Actinobacteria species like Streptomyces spp. and Saccharopolyspora spp. have gained high commercial interest for the production of a variety of metabolites acting as potent insecticides. With the aim to give a timely picture of the cutting-edge advancements in this renewed research field, different representative cases are reported and discussed.

  7. Farmer's knowledge and perception of horticultural insect pest ...

    African Journals Online (AJOL)

    Whilst 89% were aware of insect pest problems, only 35% used chemical treatment even though about 79% thought that pest damage ranged from mild to severe. Majority of the farmers adopt diverse number of traditional methods in pest control. Key words: Farmers, pests, horticultural crops, vegetable, control

  8. 1978 Insect Pest Management Guide: Home, Yard, and Garden. Circular 900.

    Science.gov (United States)

    Illinois Univ., Urbana. Cooperative Extension Service.

    This publication lists certain insecticides to control insect pests of food, fabrics, structures, man and animals, lawns, shrubs, trees, flowers and vegetables. Suggestions are given for selection, dosage and application of insecticides to combat infestation. (CS)

  9. Insect and pest control newsletter. No. 58

    International Nuclear Information System (INIS)

    2002-01-01

    This issue of the Newsletter announces the development of a draft international standard to facilitate the transboundary shipment of sterile insects stands out. This was developed in response to requests from Member States and the private sector for regulation of the shipping of sterile insects. The draft standard will be considered, reviewed and hopefully endorsed over the next years by the Interim Commission on Phytosanitary Measures (ICPM), the governing body of the International Plant protection Convention (IPPC). Also of significance are the Fruit Fly Trapping Guidelines that have been developed to support the harmonization of monitoring procedures for these pest insects in view of the increasing fruit fly related transboundary interactions resulting from the rapidly growing trade in agricultural commodities, as well as travel, transport and tourism. An upcoming event also in the normative area is an FAO/IAEA Expert Meeting on 'Risk Assessment of Transgenic Arthropods' to be held at FAO, Rome from 8-12 April, 2002. The objective of the meeting are to a) assess current status of transgenesis in pest arthropods; b) to assess biosafety concerns for transgenic arthropod release; c) to provide guidance for future risk assessment protocols for case by case analysis; and d) to assess the possibility of establishing a working group under IPPC for setting guidelines for development and use of transgenic insect technology. An important event at the end of 2001 was the Resolution on the Pan African Tsetse and Trypanosomosis Eradication Campaign (PATTEC) adopted by the FAO Conference held in Rome, 2-13 November 2001 (for the full text of the resolution see page 39).. The resolution acknowledges the severity of the trypanosomosis problem in sub-Saharan Africa, and the potential benefits of tsetse elimination, and calls upon affected member nations to include tsetse eradication in their Poverty Reduction Strategy Papers and for the FAO to support them in their efforts to

  10. Insect pest control newsletter. No. 61

    International Nuclear Information System (INIS)

    2003-07-01

    In the past years it has often been pointed out that the name of the Insect and Pest Control Subprogramme of the Joint FAO/IAEA Division, and the name of this newsletter (Insect and Pest Control Newsletter) create confusion and expectations for control of rats, birds, weeds and other non-insect pests but which are not within our mandate. All work within the Subprogramme has been on insect pests, and in 1999 an external review recommended a change to Insect Pest Control Subprogramme since this is simpler, reduces confusion and retains the good recognition and high reputation that already exists. The IAEA management implemented this recommendation and consequently, as of this issue this newsletter is entitled Insect Pest Control Newsletter. There was a very constructive consultant's meeting recently held in Vienna on the development of genetic sexing strains for the codling moth, for which the demand for SIT application is significantly increasing. Based on the discussions during this meeting a real opportunity seems now to exist to move the field of Lepidoptera genetic sexing forward. The possibility of using an allele of a dominant lethal mutation, such as the temperature sensitive Notch, in the development of a genetic sexing system for codling moth is very exciting. As emerged during the meeting, if an appropriate allele of this mutation can be inserted onto the female determining chromosome of codling moth, through transformation, then it may be possible to kill female embryos with a cold temperature treatment. Another approach could be to translocate an autosomal insertion of the gene onto the female determining chromosome. If the insert of the dominant lethal mutation also included a gene expressing a fluorescent protein then the strain would also have a visible marker for the sexing procedure. This latter is very important for any use of a sexing strain in mass rearing. There appear to be few technical constraints to demonstrating 'proof of principle' for

  11. Exotic Forest Insect Pests and Their Impact on Forest Management

    Science.gov (United States)

    Therese M. Poland; Robert A. Haack

    2003-01-01

    More than 4500 exotic organisms are now established in the United States, of which over 400 are insects that feed on trees and shrubs. While most exotic insects cause little or no damage, a few have become serious pests and have greatly altered native forest ecosystems. Three of the most recently introduced exotic forest pests are the pine shoot beetle, the Asian...

  12. Insect pest control newsletter. No. 69, July 2007

    International Nuclear Information System (INIS)

    2007-07-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  13. Insect pest control newsletter. No. 67, July 2006

    International Nuclear Information System (INIS)

    2006-07-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  14. Insect Pest occurrence on Cultivated Amaranthus Spp in Benin City ...

    African Journals Online (AJOL)

    Amaranthus is one of those rare plants whose leaves are eaten as vegetables and seeds as cereal. Unfortunately, one of the major factors limiting the productivity of Amaranthus is the incidence of insect pests attack. The aim of this study was to determine the insect pest occurrence on cultivated Amaranths in Benin City, ...

  15. Insect pest control newsletter, No. 70, January 2008

    International Nuclear Information System (INIS)

    2008-01-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  16. Insect pest control newsletter. No. 66, January 2006

    International Nuclear Information System (INIS)

    2006-01-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  17. Insect pest control newsletter, No. 71, July 2008

    International Nuclear Information System (INIS)

    2008-07-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  18. Coffee Berry Insect Pests and their Parasitoids in the Afromontane ...

    African Journals Online (AJOL)

    A study was conducted to investigate the presence, intensity and damages caused to coffee berries by major insect pests of coffee in wild coffee populations in Afromontane rainforests of Southwestern Ethiopia. The parasitoids associated with those insect pests were also studied. Based on ecological descriptions of forest ...

  19. Insect pest control newsletter. No. 68, January 2007

    International Nuclear Information System (INIS)

    2007-01-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  20. Insect pest control newsletter, No. 72, January 2009

    International Nuclear Information System (INIS)

    2009-01-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  1. Insect Pest Control Newsletter, No. 73, July 2009

    International Nuclear Information System (INIS)

    2009-07-01

    This issue of the Newsletter reports on status of technical cooperation field projects, coordinated research projects and research coordination meetings, developments at the Entomology Unit Seibersdorf, training courses offered on insect pest control as well as news items on other activities of the Insect Pest Control Section

  2. Insect Pest Control Newsletter, No. 82, January 2014

    International Nuclear Information System (INIS)

    2014-01-01

    Microbes have been the dominating forms of life, almost since the birth of our planet about 4.5 billion years ago. Being masters of chemical reactions, they regulate the recycling of all major chemicals relevant to life; manage energy sources and the production of fuels; determine the aerobic conditions of our atmosphere and influence our climate; are the catalytic factors of soil fertility, thus affecting agricultural production; and have also been of paramount importance for the health of ecosystems and of all living organisms including humans. Last, but not least, they have been the driving force of the on-going 'biotechnological revolution', which promises to produce more and healthier food, drugs and 'green' fuels. Because of all their unique metabolic properties, microbes have been driving the evolution of life on earth, either by being free-living or by establishing symbiotic associations with diverse organisms including insects. Insects are the most abundant and species-rich animal group on earth, occupying most available ecological niches. Conservative estimates suggest that about 85% of all described animal species are insects; estimates range between 2-30 million insect species and about 10 quintillion (1018) individual insects being alive at any given time (http://www.si.edu/Encyclopedia_SI/nmnh/ buginfo/bugnos.htm). During recent years it has become evident that the ecological and evolutionarily success of insects greatly depends on the sophisticated symbiotic associations they have established with diverse microorganisms, which influence all aspects of their biology, physiology, ecology and evolution. The few examples presented below aim to underline the importance of these symbiotic associations and indicate that the characterization, exploitation and management of insect-bacterial symbiotic associations can significantly contribute to the support and enhancement of sterile insect technique (SIT) programmes against agricultural pests and disease

  3. Insect pest control newsletter. No. 64

    International Nuclear Information System (INIS)

    2004-12-01

    In October 2004 the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture celebrated 40 years of existence. The creation in October 1964 of this Division, which includes the Insect Pest Control Subprogramme, marked the beginning of what is certainly a unique and arguably the best example of inter-agency cooperation within the whole UN family. The goal was to join the talents and resources of both organizations to obtain better cooperation and less duplication of efforts in assisting their Member States in applying nuclear techniques for providing people with more, better and safer food and other agricultural products, while sustaining the natural resources base. The complete press release is included under 'Special News and Reports'

  4. Field grain losses and insect pest management practices in ...

    African Journals Online (AJOL)

    A farm survey was conducted in subsistence farming communities to document the major grain crops, insect pests, indigenous pest control methods (PCM) and farmer perceptions of grain losses associated with identifiable pest species and perceived efficacies of the PCMs. Maize, beans and sorghum were identified as the ...

  5. Nano-particles - A recent approach to insect pest control

    African Journals Online (AJOL)

    USER

    2010-06-14

    Jun 14, 2010 ... pest management and nanosensors for pest detection. The atom by atom arrangement ... Key words: Nanoporous zeolites, nanocapsules, nanosensors, nanoparticles, insect pest management. INTRODUCTION. Targeted ... plants and nano-particles in eco-friendly pesticides. (Bhattacharyya, 2009; Sukul et ...

  6. Gene disruption technologies have the potential to transform stored product insect pest control

    Science.gov (United States)

    Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, ...

  7. Control of insect pests with electrons

    International Nuclear Information System (INIS)

    Hayashi, Toru; Imamura, Taro; Miyanoshita, Akihiro; Todoriki, Setsuko

    2003-01-01

    Effects of electron beams with an energy of 2.5 MeV on insect pests were slightly smaller than those of gamma-rays. Electron beams at 400 Gy inactivated all the pests for cut flowers tested; spider mite (Tetraychus urticae), mealybug (Pseudococcus comstocki), leaf miner (Liriomyza trifolii), thrips (Thrips palmi, and Thrips tabaci), cutworm (Spodoptera litura) and aphid (Myzus persicae). Carnation, alstromeria, gladiolus, tulip, statice, stock, dendrobium, prairie gentian, oncidium, campanula, gloriosa, fern, gypsophila, freesia, lobelia, triteleia and gerbera were tolerant to electron beams at 400-600 Gy, while chrysanthemum, rose, lily, calla, antherium, sweet pea and iris were intolerant. Radiation-induced deterioration of chrysanthemum could be prevented by post-irradiation treatment with commercial preservative solutions or sugar solutions. Soft-electrons at 60 keV effectively inactivated eggs, larvae and pupae of red flour beetle (Tribolium castaneum) and Indian meal moth (Plodia interpunctella) and eggs of adzuki bean weevil (Callosobruchus chinensis) at a dose of 1 kGy. The adults of T. castaneum and P. interpunctella were inactivated by electron treatment at 5.0 kGy and 7.5 kGy, respectively. Adults of C. chinensis survived at 7.5 kGy, but were inactivated having lost ability to walk at 2.5 kGy. Soft-electrons at 60 keV could not completely inactivate the larvae of C. chinensis and smaller larvae (2nd instar) of maize weevil (Stiophilus zeamais) inside beans and grains, because the electrons with low penetration did not reach the larvae due to the shield of beans or grains. However, soft-electrons at 60 keV inactivated eggs, larger larvae (4th instar) and pupae of S. zeamais in rice grains, which indicated that S. zeamais was exposed to electrons even inside the grains. (author)

  8. Insect and Pest Control Newsletter, No. 78, January 2012

    International Nuclear Information System (INIS)

    2012-01-01

    The IPC Newsletter is prepared twice per year by the Insect Pest Control Subprogramme, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture. Contents: To Our Readers; Staff; Forthcoming Events; Past Events; Technical Cooperation Projects; Coordinated Research Projects and Research Coordination Meetings; Developments at the Insect Pest Control Laboratory; Reports; Announcements; In Memoriam; Other News; Relevant Published Articles; Papers in Peer Reviewed Journals; Priced and Unpriced Publications

  9. Agricultural production - Phase 2. Indonesia. Insect ecology studies and insect pest control

    International Nuclear Information System (INIS)

    Butt, B.

    1992-01-01

    This document reviews the activities of the Pest Control Research Group in Indonesia. Pests under study are the diamondback moth (Plutella xylostella), the rice stem borer (Chilo suppressalis), the sugar cane borer (Chilo auricilius), bean flies (Agromyza spp.), tobacco insects (Heliothis armigera and Spodoptera litura) and cotton insects, especially the pink bollworm

  10. Insect pest management decisions in food processing facilities

    Science.gov (United States)

    Pest management decision making in food processing facilities such as flour mills, rice mills, human and pet food manufacturing facilities, distribution centers and warehouses, and retail stores is a challenging undertaking. Insect pest management programs require an understanding of the food facili...

  11. Companion and refuge plants to control insect pests

    Science.gov (United States)

    Introduction: The sweetpotato whitefly, Bemisia tabaci and aphids are major pests of crops in the southeast USA. An environmentally-friendly management strategy is “push-pull” technology which combines the use of repellent (“push”) and trap crops (“pull”) for insect pest control. The repellent crop,...

  12. Insect pest control newsletter. No. 63

    International Nuclear Information System (INIS)

    2004-07-01

    The Second International Conference on Areawide Insect Pest Control sponsored by FAO and IAEA will be held from 9 to 13 May, 2005 in Vienna, Austria. This conference will provide a forum for the presentation of scientific papers dealing with areawide insect management programmes, including those applying the Sterile Insect Technique (SIT) and will include significant time for plenary discussion. The framework of the conference is being developed and the announcement with details of the Conference can be found under http://www.pub.iaea.org/MTCD/Meetings/Meetings2005.asp. It is planned to hold several Research Coordination Meetings in conjunction with this meeting. The Interregional Training Course on The Use of the Sterile Insect and Related Techniques for the Integrated Areawide Management of Insect Pests, was held from 4 May to 1 June 2004 in Gainesville, Florida, USA. This is a unique course that provides participants with a complete overview of all aspects related to areawide and SIT operational programmes. Both USA and external lecturers participated with an adequate balance between theory and practical laboratory and field exercises. Third, the SIT programme in Madeira is in negotiations with a private company regarding some type of partnership to ensure sustainability of the programme when EC funding comes to an end. These developments have been followed very closely by the sub-programme and we have been involved in providing advice, developing collaborative links and interacting at the R and D and technology transfer levels. There will be ample scope for further collaboration when these initiatives become fully realized. The fifth meeting of the Working Group on Fruit Flies of the Western Hemisphere (WGFFWH) took place in Fort Lauderdale, Florida, from 16 to 21 May 2004 and more than 200 participants attended. The meeting has a very unique format where scientists, action programme managers and the industry interact, greatly encouraging discussions and

  13. Effects of insecticide spray application on insect pest infestation and ...

    African Journals Online (AJOL)

    USER

    2010-03-15

    Mar 15, 2010 ... This study provides information on the incidence of major insect pests of cowpea as well as the minimum insecticide control intervention necessary for effectively reducing cowpea yield losses on the field. Two insecticide spray regimes (once at flowering and podding) significantly reduced insect population ...

  14. Applying the sterile insect technique to the control of insect pests

    International Nuclear Information System (INIS)

    LaChance, L.E.; Klassen, W.

    1991-01-01

    The sterile insect technique (SIT) is basically a novel twentieth century approach to insect birth control. It is species specific and exploits the mate seeking behaviour of the insect. The basic principle is simple. Insects are mass reared in 'factories' and sexually sterilized by gamma rays from a 60 Co source. The sterile insects are then released in a controlled fashion into nature. Matings between the sterile insects released and native insects produced no progeny. If enough of these matings take place, reproduction of the pest population decreases. With continued release, the pest population can be controlled and in some cases eradicated. In the light of the many important applications of the SIT worldwide and the great potential that SIT concepts hold for insect and pest control in developing countries, two special benefits should be stressed. Of greatest significance is the fact that the SIT permits suppression and eradication of insect pests in an environmentally harmless manner. It combines nuclear techniques with genetic approaches and, in effect, replaces intensive use of chemicals in pest control. Although chemicals are used sparingly at the outset in some SIT programmes to reduce the size of the pest population before releases of sterilized insects are started, the total amount of chemicals used in an SIT programme is a mere fraction of what would be used without the SIT. It is also of great importance that the SIT is not designed strictly for the eradication of pest species but can readily be used in the suppression of insect populations. In fact, the SIT is ideally suited for use in conjunction with other agricultural pest control practices such as the use of parasites and predators, attractants and cultural controls (e.g. ploughing under or destruction of crop residues) in integrated pest management programmes to achieve control at the lowest possible price and with a minimum of chemical contamination of the environment

  15. The Sterile Insect Technique as a method of pest control

    International Nuclear Information System (INIS)

    Argiles Herrero, R.

    2011-01-01

    In the Valencia community is doing one of the most ambitious project in the field of plant protection at European level: the fight against fruit fly, one of the most damaging pests of citrus and fruit; by Insect Technique Sterile. This technique consists of laboratory breeding and release into the fields of huge quantities of insects of the pest species that have previously been sterilized. Sterile insect looking for wild individuals of the same species to mate with them and the result is a clutch of viable eggs, causing a decrease in pest populations. After three years of application of the technique on an area of 150,000 hectares, the pest populations have been reduced by 90%. Other benefits have been the reduced used of insecticides and improved the quality of exported fruit. (Author)

  16. Agricultural Animal Pest Control. Bulletin 767.

    Science.gov (United States)

    Nolan, Maxcy P., Jr.

    Included in this training manual are descriptions and pictures of the following agricultural animal pests: mosquitoes, stable flies, horse flies and deer or yellow flies, house flies, horn flies, wound-infesting larvae, lice, mites, ticks, and bots and grubs. Information is given on the life-cycle and breeding habits of the pests. Methods of…

  17. Agricultural Animal Pest Control. Manual 90.

    Science.gov (United States)

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the agricultural animal pest control category. The text discusses pesticide hazards, application techniques, and pests of livestock such as mosquitoes, flies, grubs and lice. (CS)

  18. Role of nanotechnology in agriculture with special reference to management of insect pests.

    Science.gov (United States)

    Rai, Mahendra; Ingle, Avinash

    2012-04-01

    Nanotechnology is a promising field of interdisciplinary research. It opens up a wide array of opportunities in various fields like medicine, pharmaceuticals, electronics and agriculture. The potential uses and benefits of nanotechnology are enormous. These include insect pests management through the formulations of nanomaterials-based pesticides and insecticides, enhancement of agricultural productivity using bio-conjugated nanoparticles (encapsulation) for slow release of nutrients and water, nanoparticle-mediated gene or DNA transfer in plants for the development of insect pest-resistant varieties and use of nanomaterials for preparation of different kind of biosensors, which would be useful in remote sensing devices required for precision farming. Traditional strategies like integrated pest management used in agriculture are insufficient, and application of chemical pesticides like DDT have adverse effects on animals and human beings apart from the decline in soil fertility. Therefore, nanotechnology would provide green and efficient alternatives for the management of insect pests in agriculture without harming the nature. This review is focused on traditional strategies used for the management of insect pests, limitations of use of chemical pesticides and potential of nanomaterials in insect pest management as modern approaches of nanotechnology.

  19. Pest insect olfaction in an insecticide-contaminated environment : info-disruption or hormesis effect

    Directory of Open Access Journals (Sweden)

    Hélène eTricoire-Leignel

    2012-03-01

    Full Text Available Most animals, including pest insects, live in an odour world and depend strongly on chemical stimuli to get information on their biotic and abiotic environment. Although integrated pest management strategies including the use of insect growth regulators (IGRs are increasingly developed, most insect pest treatments rely on neurotoxic chemicals. These molecules are known to disrupt synaptic transmission, affecting therefore sensory systems. The wide-spread use of neurotoxic insecticides and the growing use of IGRs result in residual accumulation of low concentrations in the environment. These insecticide residues could act as an info-disruptor by modifying the chemical communication system, and therefore decrease chances of reproduction in target insects. However, residues can also induce a non-expected hormesis effect by enhancing reproduction abilities. Low insecticide doses might thus induce adaptive processes in the olfactory pathway of target insects, favouring the development of resistance. The effect of sublethal doses of insecticides has mainly been studied in beneficial insects such as honeybees. We review here what is known on the effects of sublethal doses of insecticides on the olfactory system of insect pests.

  20. Pest insect olfaction in an insecticide-contaminated environment: info-disruption or hormesis effect.

    Science.gov (United States)

    Tricoire-Leignel, Hélène; Thany, Steeve Hervé; Gadenne, Christophe; Anton, Sylvia

    2012-01-01

    Most animals, including pest insects, live in an "odor world" and depend strongly on chemical stimuli to get information on their biotic and abiotic environment. Although integrated pest management strategies including the use of insect growth regulators (IGRs) are increasingly developed, most insect pest treatments rely on neurotoxic chemicals. These molecules are known to disrupt synaptic transmission, affecting therefore sensory systems. The wide-spread use of neurotoxic insecticides and the growing use of IGRs result in residual accumulation of low concentrations in the environment. These insecticide residues could act as an "info-disruptor" by modifying the chemical communication system, and therefore decrease chances of reproduction in target insects. However, residues can also induce a non-expected hormesis effect by enhancing reproduction abilities. Low insecticide doses might thus induce adaptive processes in the olfactory pathway of target insects, favoring the development of resistance. The effect of sublethal doses of insecticides has mainly been studied in beneficial insects such as honeybees. We review here what is known on the effects of sublethal doses of insecticides on the olfactory system of insect pests.

  1. Insect and Disease Pests of Southern Hardwoods

    Science.gov (United States)

    L. P. Abrahamson; F. I. McCracken

    1971-01-01

    Insects and diseases seldom kill southern hardwood trees in managed stands, but they cause major economic losses by lowering wood quality and reducing tree growth. In discussing the most important insects and diseases of southern hardwoods, let us consider first those that attack natural hardwood stands and then those associated with plantation culture.

  2. Arriving at the age of pest insect transgenesis

    International Nuclear Information System (INIS)

    Atkinson, Peter W.; O'Brochta, David A.

    2000-01-01

    Technologies that enable the stable genetic transformation of insects other than the vinegar fly, Drosophila melanogaster Meigen, have been sought since D. melanogaster was initially transformed using the P transposable element (Rubin and Spradling 1982). D. melanogaster transformation can now be achieved by using Type II eukaryotic transposable elements such as P, hobo, Hermes, mariner, Minos and piggyBac (Blackman et al. 1989, Lidholm et al. 1993, Loukeris et al. 1995a, O'Brochta et al. 1996, Rubin and Spadling 1982, A. M. Handler, personal communication). The success of this strategy led to many attempts to extend it into non-drosophilid insects and this approach has recently been successful with the use of four different transposable elements to transform two non-drosophilid insect species, the Medfly, Ceratitis capitata Wied. and the yellow fever mosquito, Aedes aegypti L. (Coates et al. 1998, Handler et al. 1998, Jasinskiene et al. 1998, Loukeris et al. 1995b). The generation of these transgenic insects has, in part, arisen through the adoption of two approaches. One has been the isolation of new transposable elements from non-drosophilid insects. The second has been the implementation of mobility assays that have quickly enabled the mobility properties of these new elements in the target pest species to be determined. The success of these approaches will most likely be extended to other pest insect species over the next five years and will increase our ability to use modern genetic techniques to develop new strategies to control pest insects

  3. Monitoring insect pests in retail stores by trapping and spatial analysis.

    Science.gov (United States)

    Arbogast, R T; Kendra, P E; Mankin, R W; McGovern, J E

    2000-10-01

    Stored-product insects are a perennial problem in retail stores, where they damage and contaminate susceptible merchandise such as food products and animal feed. Historically, pest management in these stores has relied heavily on chemical insecticides, but environmental and health issues have dictated use of safer methods, and these require better monitoring. A monitoring procedure that employs an array of moth and beetle traps combined with spatial (contour) analysis of trap catch was tested in three department stores and two pet stores. The rate of capture increased with the level of infestation but was essentially constant over 4- to 5-d trapping periods. Contour analysis effectively located foci of infestation and reflected population changes produced by applications of the insect growth regulator (S)-hydroprene. The most abundant insects were Plodia interpunctella (Hiibner), Lasioderma serricorne (F.), Oryzaephilus mercator (Fauvel), Tribolium castaneum (Herbst), and Cryptolestes pusillus (Schönherr). The results indicate that contour analysis of trap counts provides a useful monitoring tool for management of storage pests in retail stores. It identifies trouble spots and permits selection, timing, and precision targeting of control measures to achieve maximum pest suppression with minimum pesticide risk. It permits managers and pest control operators to visualize pest problems over an entire store, to monitor changes over time, and to evaluate the effectiveness of control intervention. The contour maps themselves, along with records of control applications and stock rotation, provide permanent documentation of pest problems and the effectiveness of pest management procedures.

  4. Insect pests in asparagus; IPM perspectives!

    NARCIS (Netherlands)

    Rozen, van K.; Huiting, H.F.

    2016-01-01

    Resulting from Directive 2009/128/EC, all EU Member States have to comply with stricter guidelines regarding Integrated Pest Management before 2023. As implementation of IPM measures and strategies has a high perceived risk, demonstration of and discussion on possibilities may be a key element in

  5. The use of insecticides to control insect pests

    OpenAIRE

    M Wojciechowska; P Stepnowski; M Gołębiowski

    2016-01-01

    Pesticides are used as plants protection products. Among those, insecticides serve as agents to control insects. When incorrectly applied, however these substances may negatively affect people's health and natural environment. Administration routes of insecticides depend on many factors and vary from spraying to fertilizers. These different methods influence how insects prey and how pests develop. Additionally, too frequent use of the same chemicals can lead to development of resi...

  6. Sterile insect technique. Principles and practice in area-wide integrated pest management

    International Nuclear Information System (INIS)

    Dyck, V.A.; Hendrichs, J.; Robinson, A.S.

    2005-01-01

    For several major insect pests, the environment-friendly sterile insect technique (SIT) is being applied as a component of area-wide integrated pest management (AW-IPM) programmes. This technology, using radiation to sterilize insects, was first developed in the USA, and is currently applied on six continents. For four decades it has been a major subject for research and development in the Joint FAO/IAEA Programme on Nuclear Techniques in Food and Agriculture, involving both research and the transfer of this technology to Member States so that they can benefit from improved plant, animal and human health, cleaner environments, increased production of plants and animals in agricultural systems, and accelerated economic development. The socio-economic impacts of AW-IPM programmes that integrate the SIT have confirmed the usefulness of this technology. Numerous publications related to the integration of the SIT in pest management programmes, arising from research, coordinated research projects, field projects, symposia, meetings, and training activities have already provided much information to researchers, pest-control practitioners, programme managers, plant protection and animal health officers, and policy makers. However, by bringing together and presenting in a generic fashion the principles, practice, and global application of the SIT, this book will be a major reference source for all current and future users of the technology. The book will also serve as a textbook for academic courses on integrated pest management. Fifty subject experts from 19 countries contributed to the chapters, which were all peer reviewed before final editing

  7. Transgenic avidin maize is resistant to storage insect pests.

    Science.gov (United States)

    Kramer, K J; Morgan, T D; Throne, J E; Dowell, F E; Bailey, M; Howard, J A

    2000-06-01

    Avidin is a glycoprotein found in chicken egg white, that sequesters the vitamin biotin. Here we show that when present in maize at levels of > or =100 p.p.m., avidin is toxic to and prevents development of insects that damage grains during storage. Insect toxicity is caused by a biotin deficiency, as shown by prevention of toxicity with biotin supplementation. The avidin maize is not, however, toxic to mice when administered as the sole component of their diet for 21 days. These dates suggest that avidin expression in food or feed grain crops can be used as a biopesticide against a spectrum of stored-produce insect pests.

  8. EFFECTS OF INSECT PEST INFESTATION ON THE CAFFEINE ...

    African Journals Online (AJOL)

    The caffeine content of nuts of Cola nitida and C. acuminata infested by insect pests in four major geographical zones of Nigeria have been determined and compared with the uninfested ones using high-performance liquid chromatography (HPLC). The findings showed that the infestation has no significant effect on the ...

  9. Distribution and damage characteristics of an emerging insect pest ...

    African Journals Online (AJOL)

    Among the numerous insect pests infesting cashew in Nigeria, the cashew trunk and root borer, Plocaederus ferrugineus L. (Coleoptera: Cerambycidae) is fast becoming the most dreaded because its infestation results in the sudden death of the tree within weeks. Observations at Ochaja in 1999/2000 and at Ibadan in 2005 ...

  10. Factors determining the use of botanical insect pest control methods ...

    African Journals Online (AJOL)

    A farm survey was conducted in three representative administrative districts of the Lake Victoria Basin (LVB), Kenya to document farmers' indigenous knowledge and the factors that influence the use of botanicals instead of synthetic insecticides in insect pest management. A total of 65 farm households were randomly ...

  11. Insect Pests Of Dried Cassava ('Kokonte\\') in Ashanti and Brong ...

    African Journals Online (AJOL)

    Insect Pests Of Dried Cassava ('Kokonte\\') in Ashanti and Brong Ahafo Regions of Ghana. ... the Brong Ahafo region were sun dried compared with 59% from Ashanti. Samples from Ashanti had been ... The coffee bean weevil, Araecerus fasciculatus (Degeer) (Coleoptera: Bostrichidae), was the most predominant species.

  12. Farmers' knowledge and perceptions of cotton insect pests and their ...

    African Journals Online (AJOL)

    A survey of 337 cotton farmers in the three northern regions of Ghana was conducted between November 2002 and March 2003 with the objectives of assessing farmers' knowledge and perceptions of cotton insect pests and examining their control practices. The survey revealed that between 69 and 86% of the farmers ...

  13. farmers' knowledge and perceptions of cotton insect pests and their

    African Journals Online (AJOL)

    Prince Acheampong

    ABSTRACT. A survey of 337 cotton farmers in the three northern regions of Ghana was conducted between. November 2002 and March 2003 with the objectives of assessing farmers' knowledge and perceptions of cotton insect pests and examining their control practices. The survey revealed that between 69 and 86%.

  14. Insect pests' incidence and variations due to forest landscape ...

    African Journals Online (AJOL)

    No differences were found between the intensification zones, except for weeds, which appeared to be a greater constraint in the slightly degraded area. Within the insect pest, the greatest damage to crops according to farmers originated from borers and scales, followed by variegated grasshopper. Only the termites showed ...

  15. Effects of insecticide spray application on insect pest infestation and ...

    African Journals Online (AJOL)

    Field studies were conducted during the 2008 - 2009 cropping season to determine the minimal insecticide application which can reduce cowpea yield losses on the field due to insect pest infestations in the Transkei region of South Africa. Treatments consisted of five cowpea varieties and four regimes of insecticide spray ...

  16. Assessment of pest insects of Capsicum annuum L.1753 (Solanaceae)

    African Journals Online (AJOL)

    Pepper, Capsicum annuum is appreciated in tropical regions for its taste and its ability to increase the appetite level of food. This study aimed at investigating pest insects' diversity of pepper right from pricking out to harvest. It also examined how aphids and whiteflies populations vary in the plant's life cycle and specific fruit ...

  17. Game theory as a conceptual framework for managing insect pests.

    Science.gov (United States)

    Brown, Joel S; Staňková, Kateřina

    2017-06-01

    For over 100 years it has been recognized that insect pests evolve resistance to chemical pesticides. More recently, managers have advocated restrained use of pesticides, crop rotation, the use of multiple pesticides, and pesticide-free sanctuaries as resistance management practices. Game theory provides a conceptual framework for combining the resistance strategies of the insects and the control strategies of the pest manager into a unified conceptual and modelling framework. Game theory can contrast an ecologically enlightened application of pesticides with an evolutionarily enlightened one. In the former case the manager only considers ecological consequences whereas the latter anticipates the evolutionary response of the pests. Broader applications of this game theory approach include anti-biotic resistance, fisheries management and therapy resistance in cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. 50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Control of wildfires, insects, pest plants... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease to...

  19. Insect and Pest Control Newsletter, No. 88, January 2017

    International Nuclear Information System (INIS)

    2017-01-01

    In our NL 84, we reported on the ground-breaking for the ReNuAL project (Renovation of the Nuclear Applications Laboratories), which includes the FAO/IAEA Agriculture & Biotechnology Laboratories. The laboratories are unique within the United Nations system in providing Member States with direct access to scientific training, technology and analytical services. ReNuAL is getting under way with the construction of a new Insect Pest Control Laboratory (IPCL), pictured on the previous page, due for completion by the end of 2017. In 2016, we also reported on the increasing demands from our FAO and IAEA Member States to expand our focus from developing and transferring the SIT for major crop and livestock insect pests to major disease-transmitting mosquitoes. Looking to the year ahead, we are organizing the Third FAO/IAEA International Conference on Area-wide Management of Insect Pests: Integrating the Sterile Insect and Related Nuclear and Other Techniques, at the IAEA Headquarters in Vienna, Austria, from 22–26 May 2017. The programme that is being prepared looks very promising and will cover relevant current scientific and applied topics. A number of prominent speakers have been invited to debate new developments and trends. We expect around 400 scientists from all continents and look forward to a successful conference and your active participation.

  20. Insect Pests and Integrated Pest Management in Museums, Libraries and Historic Buildings

    Directory of Open Access Journals (Sweden)

    Pascal Querner

    2015-06-01

    Full Text Available Insect pests are responsible for substantial damage to museum objects, historic books and in buildings like palaces or historic houses. Different wood boring beetles (Anobium punctatum, Hylotrupes bajulus, Lyctus sp. or introduced species, the biscuit beetle (Stegobium paniceum, the cigarette beetle (Lasioderma serricorne, different Dermestides (Attagenus sp., Anthrenus sp., Dermestes sp., Trogoderma sp., moths like the webbing clothes moth (Tineola bisselliella, Silverfish (Lepisma saccharina and booklice (Psocoptera can damage materials, objects or building parts. They are the most common pests found in collections in central Europe, but most of them are distributed all over the world. In tropical countries, termites, cockroaches and other insect pests are also found and result in even higher damage of wood and paper or are a commune annoyance in buildings. In this short review, an introduction to Integrated Pest Management (IPM in museums is given, the most valuable collections, preventive measures, monitoring in museums, staff responsible for the IPM and chemical free treatment methods are described. In the second part of the paper, the most important insect pests occurring in museums, archives, libraries and historic buildings in central Europe are discussed with a description of the materials and object types that are mostly infested and damaged. Some information on their phenology and biology are highlighted as they can be used in the IPM concept against them.

  1. Insect Pests and Integrated Pest Management in Museums, Libraries and Historic Buildings.

    Science.gov (United States)

    Querner, Pascal

    2015-06-16

    Insect pests are responsible for substantial damage to museum objects, historic books and in buildings like palaces or historic houses. Different wood boring beetles (Anobium punctatum, Hylotrupes bajulus, Lyctus sp. or introduced species), the biscuit beetle (Stegobium paniceum), the cigarette beetle (Lasioderma serricorne), different Dermestides (Attagenus sp., Anthrenus sp., Dermestes sp., Trogoderma sp.), moths like the webbing clothes moth (Tineola bisselliella), Silverfish (Lepisma saccharina) and booklice (Psocoptera) can damage materials, objects or building parts. They are the most common pests found in collections in central Europe, but most of them are distributed all over the world. In tropical countries, termites, cockroaches and other insect pests are also found and result in even higher damage of wood and paper or are a commune annoyance in buildings. In this short review, an introduction to Integrated Pest Management (IPM) in museums is given, the most valuable collections, preventive measures, monitoring in museums, staff responsible for the IPM and chemical free treatment methods are described. In the second part of the paper, the most important insect pests occurring in museums, archives, libraries and historic buildings in central Europe are discussed with a description of the materials and object types that are mostly infested and damaged. Some information on their phenology and biology are highlighted as they can be used in the IPM concept against them.

  2. Urban warming drives insect pest abundance on street trees.

    Directory of Open Access Journals (Sweden)

    Emily K Meineke

    Full Text Available Cities profoundly alter biological communities, favoring some species over others, though the mechanisms that govern these changes are largely unknown. Herbivorous arthropod pests are often more abundant in urban than in rural areas, and urban outbreaks have been attributed to reduced control by predators and parasitoids and to increased susceptibility of stressed urban plants. These hypotheses, however, leave many outbreaks unexplained and fail to predict variation in pest abundance within cities. Here we show that the abundance of a common insect pest is positively related to temperature even when controlling for other habitat characteristics. The scale insect Parthenolecanium quercifex was 13 times more abundant on willow oak trees in the hottest parts of Raleigh, NC, in the southeastern United States, than in cooler areas, though parasitism rates were similar. We further separated the effects of heat from those of natural enemies and plant quality in a greenhouse reciprocal transplant experiment. P. quercifex collected from hot urban trees became more abundant in hot greenhouses than in cool greenhouses, whereas the abundance of P. quercifex collected from cooler urban trees remained low in hot and cool greenhouses. Parthenolecanium quercifex living in urban hot spots succeed with warming, and they do so because some demes have either acclimatized or adapted to high temperatures. Our results provide the first evidence that heat can be a key driver of insect pest outbreaks on urban trees. Since urban warming is similar in magnitude to global warming predicted in the next 50 years, pest abundance on city trees may foreshadow widespread outbreaks as natural forests also grow warmer.

  3. Insect and Pest Control Newsletter, No. 86, January 2016

    International Nuclear Information System (INIS)

    2016-01-01

    In 2015 we concluded the six-year Coordinated Research Project (CRP) on “Resolution of Cryptic Species Complexes of Tephritid Pests to Overcome Constraints to SIT Application and International Trade”. The objective of the CRP was to undertake targeted research into the systematics and diagnostics of taxonomically challenging fruit fly groups of economic importance. Close to 50 researchers from over 20 countries participated in the CRP, conducting coordinated, multidisciplinary research to address, with an integrative taxonomic framework, cryptic species complexes of major tephritid pests. One of the scientific outputs of the CRP was the accurate alignment of some biological species with taxonomic names. The resolution of some of these controversial issues has important applied implications for FAO and IAEA Member States, both in overcoming technical constraints to the application of the Sterile Insect Technique (SIT) against pest fruit flies and in facilitating international agricultural trade

  4. Insect Pest Control Newsletter, No. 76, January 2011

    International Nuclear Information System (INIS)

    2011-01-01

    During the last twelve months the Insect Pest Control Subprogramme hosted an international symposium and co-sponsored another one; organized five research coordination meetings, four regional training courses, three consultants meetings and two workshops; participated in many interesting and successful research activities; provided technical support to over thirty technical cooperation projects in FAO and IAEA Member States, and actively contributed to a number of other international events, panels and advisory committees. In this newsletter you will find information and details about some of the activities enumerated above. These reflect not only our growing commitments and increasing research and normative responsibilities, but also our expanding involvement with additional pest species, although our budget and staff have not increased in proportion. The success of the subprogramme has historically been guaranteed by its focussed approach on a few major pest problems which allowed us to provide our Member States the best support in terms of research, normative assistance and implementation of operational programmes. Despite the continuous demand of FAO and IAEA Member States to expand our support and include more pest insects, we remain conscious that diluting our human and financial resources may jeopardise the high quality service that our Member States deserve

  5. Molecular approaches to the modification of insect pest populations

    International Nuclear Information System (INIS)

    Crampton, J.M.; Stowell, S.; Parkes, R.; Karras, M.; Sinden, R.E.

    2000-01-01

    After considerable research effort over the last decade or more, the ability to routinely introduce specific genes and other DNA constructs (such as linked promoter:gene cassettes) into a range of pest insect genomes at high efficiency using transgenic approaches is fast becoming a reality. The critical issue that now needs to be addressed is how best to incorporate these techniques into SIT in order to improve its effectiveness or efficiency. Manipulation of insect pest genomes using transgenic approaches may be used in two ways. It may be used as an analytical tool, or to introduce or modify either endogenous or heterologous genes and their expression in the pest insect of choice. In this way, new strains may be generated with a set of desired characteristics beneficial to SIT. In order to realise the full potential of the technology, a number of issues and research areas is being explored and progress to date is reviewed below. Specific examples are drawn from work on mosquito systems in order to illustrate the approaches available to identify genes and promoters of interest and the potential applications to SIT

  6. Insect and pest control newsletter. No. 57

    International Nuclear Information System (INIS)

    2001-07-01

    Tsetse and trypanosomosis are at the root of low agricultural productivity in Sub-Saharan Africa and the removal of this factor would be a major contributor for large- scale poverty reduction in this region. Whilst removal of the disease would allow other constraining issues to become priorities such as the presence of other disease, lack of feed, poor husbandry skills and lack of markets for dairy products, without the removal of the threat of trypanosomosis there can be no progress, and for many in this region, no way out of staying hungry. Significantly though, during the past five years there has been an increasing awareness that the final elimination of the tsetse fly from areas can be achieved through the integrated use of the sterile insect technique (SIT). Reduction of tsetse fly populations has always been achievable but not sustainable. The area-wide application of SIT offers a realistic, affordable and environmentally acceptable way to complete the task by eliminating the final remaining flies. Although the effective use of SIT for fly elimination requires a reduction of fly populations by around 95%, this has often been achieved but not sustained due to the recurrent cost and logistics of fly control. The fact that use of SIT can achieve final eradication of the fly and hence the disease has been dramatically demonstrated on the island of Zanzibar. Recognizing this fact and in response to the increasing problem of African trypanosomosis, the Heads of African States and Governments, at their 36 th Summit Meeting in Lome, Togo, 10-12 July 2000, adopted a Decision on Proposal for Eradication of Tsetse Flies on the African Continent. In this decision, AHG/Dec.156 (XXXVI), the Assembly of countries that have initiated the application of the SIT for their pioneering effort, and invited the OAU to lead the establishment of a Pan- African Tsetse and Trypanosomosis Eradication Campaign (PATTEC). The Programme Against African Trypanosomosis (PAAT), which is a

  7. Insect and pest control newsletter. No. 59

    International Nuclear Information System (INIS)

    2002-07-01

    Analysis and implications of the meeting on 'Status and Risk Assessment of the Use of Transgenic Arthropods in Plant Protection' that took place at FAO headquarters in Rome in April 2002 are discussed in this issue. This very timely meeting was jointly organized by FAO/IAEA and the International Plant Protection Convention (IPPC) secretariat and chaired by Alan Robinson. Experts in both the technology of transformation as well as regulatory procedures and risk assessment participated. Transgenic technology is now almost routinely used in many insect species and currently arthropod transgenesis is mainly concerned with the stability and fitness of these strains. These topics will probably be the main issues to be addressed in a new Coordinated Research Project (CRP), is being proposed for initiation in 2003. From the regulatory point of view, risk assessment is mainly focused on horizontal transmission and the impact on biodiversity, and these concerns will need to be addressed when moving on a case-by-case basis, from the laboratory through field cages to open field release. Regulatory approval in the USA for the first field cage release of genetically transformed arthropod (pink bollworm) provided a timely background for the meeting. The proceedings of the meeting should provide the basis for the rational development of the use of transgenic arthropods. Following resolutions by IAEA and also FAO governing bodies in support of the PATTEC initiative, that was launched by African Heads of State (reported in previous issues), several press releases and media reports have been issued on this topic. Of particular importance is a press release issued jointly by FAO, IAEA, OAU and WHO (text given inside this newsletter) at the beginning of the World Food Summit - Five Years Later, recently held in Rome in June 2002. This joint press release acknowledges the magnitude of the tsetse problem in tsetse-infested areas of sub-Saharan Africa, where about 85 percent of the poor

  8. Insect Pest Control Newsletter, No. 81, July 2013

    International Nuclear Information System (INIS)

    2013-07-01

    In response to requests from our readers, this introduction is mainly dedicated to the ongoing efforts to develop alternatives for insect reproductive sterilization and blood sterilization for their use in insect pest control programmes with a sterile insect technique (SIT) component. Radioisotope irradiators that are loaded with either cobalt-60 or caesium-137 producing gamma rays have been routinely used for many decades and have proven to be extremely reliable and safe for these purposes in successful area-wide insect eradication or suppression programmes. These include industrial panoramic-type irradiators in larger programmes, all the way to smaller self-contained irradiators. Nevertheless, the transboundary shipment of self-contained gamma irradiators or radioactive material has become logistically more complex due to security issues. This situation was exacerbated when the production of the Gamma Cell 220 (GC220), the source most commonly used for irradiating insects for sterilization purposes, was discontinued. These events may have created the impression that the use of gamma radiation has become a less viable option, unattainable for insect pest control programmes that want to integrate the SIT. Nevertheless, some of the biggest SIT operational programmes have in recent years been equipped with new self-contained cobalt-60 sources, including the SIT programme against the pink bollworm in Phoenix, Arizona; El Pino Mediterranean fruit fly facility in Guatemala; and the screwworm programme in Panama. Thus these larger and more expensive irradiators, together with panoramic units (that are also costlier than self-contained gamma irradiators) have remained over the years a valid option, especially for larger operational programmes. In addition, the reloading of smaller units with new cobalt or the purchase of refurbished used self-contained irradiators remain viable alternatives

  9. Insect pest infestation on Gmelina arborea Roxb. in different agroclimatic zones of Jharkhand, India

    Directory of Open Access Journals (Sweden)

    Arvind Kumar

    2017-03-01

    Full Text Available The fast growing and multipurpose timber species G. arborea has problem of multiple insect pest attack in India. To understand the diversity of insect pest infestation abundance on Gmelina arborea, the data was collected on insect pest infestation (% in three agro-climatic zones (Zone IV, V and VI of Jharkhand province of India over a period of 3 years. Results shows that the plants were infested with total twenty insect pests species, out of these ten insect pest were recorded as new for G. arborea. Various diversity and similarity indices were calculated to explore the relationship of insect pest infestation among zones. It was found that Zone V have the maximum species infestation diversity followed by the zones IV and VI, whereas, zones IV and V were most similar and zone VI was differ from others. Duncan's multiple range test determined that Phyllocnistis amydropa was the most abundant species for G. arborea. Additionally, ten insect pests viz. Maladera sp., Hyperops coromandelensis, Lobotrachelus sp., Apion sp., Ectropis bhurmitra, Belippa lalean, Pagyda sp., Phromnia marginella, and Homeocerus inornatus, Megalurothrips peculiaris were found to be as new insect pest records, infesting to G. arborea first time. The study may helpful to understand the expending range of insect pest fauna of G. arborea in the country and framing insect pest management policy more effectively.

  10. Insect and Pest Control Newsletter, No. 84, January 2015

    International Nuclear Information System (INIS)

    2015-01-01

    On 29 September 2014, a ceremony was held in Seibersdorf, Austria to commemorate the 50th Anniversary of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, as well as the ground-breaking for the renovation of the IAEA’s Nuclear Sciences and Applications laboratories at Seibersdorf – including the FAO/IAEA Agriculture & Biotechnology Laboratories. The enormous contributions of the Joint FAO/IAEA Division during the past 50 years were also honoured, serving stakeholders worldwide to meet the changing needs of Member States through the peaceful uses of nuclear technologies based on the shared goals of our two parent organizations and the five strategic objectives of FAO. Established on 1 October 1964, this FAO/IAEA partnership still remains unique, with its key strengths based on interagency cooperation within the United Nations family. It is a tangible joint organizational entity with a fusion of complementary mandates, common targets, a joint programme, co-funding and coordinated management geared to demand- driven and results-based services to its Members and to the international community at large. The mission of the Joint Division has proactively evolved to address new challenges in Member States and nuclear applications continue to provide added value to conventional approaches in addressing a range of agricultural problems and issues, including food safety, animal production and health, crop improvement, insect pest control and sustainable use of finite natural resources. Over the past 50 years, this partnership has brought countless successes with distinct socio-economic impact at country, regional and global levels in Member States. The 50 year anniversary was taken as an opportunity to highlight examples of tangible, sustainable results derived out of this unique partnership – beneficial to Member States of both parent organizations – and to share these with our many stakeholders around the world

  11. Microbial survey of insect-pests on refuse in five major towns of ...

    African Journals Online (AJOL)

    From these Insects, fourteen bacteria and thirteen fungi species were recovered and identified. The internal part (gut) of the insect-pests were found to contain more bacterial load than the external part while fungal load was more on the external parts than the internal. Among the identified insect-pests, Canthon Pilularis was ...

  12. Insect and Pest Control Newsletter, No. 87, July 2016

    International Nuclear Information System (INIS)

    2016-07-01

    A year ago, in NL 85, we reported on the increasing demands from our FAO and IAEA Member States to expand our focus from developing and transferring the sterile insect technique (SIT) for major crop and livestock insect pests to major disease-transmitting mosquitoes. Since the mid-2000s, there have been several IAEA General Conference resolutions requesting the Joint FAO/IAEA Insect Pest Control Subprogramme to develop a complete “SIT package” for major mosquito species to be used as a component of area-wide integrated vector management (IVM) approaches. The first resolutions focussed on the malaria vector Anopheles arabiensis, but since 2010, also the dengue and chikungunya vectors Aedes aegypti and Ae. albopictus were included. In view that the traditional chemical-based vector control strategies were facing serious challenges due to increased resistance of mosquitoes to insecticides and increased public concern of insecticide use in urban areas, there was a clear need for novel methods and complementary approaches to manage mosquito populations in an effective and more environmentally friendly and sustainable way. Furthermore, due to the absence of effective vaccines and drugs against some of these diseases, vector suppression approaches are widely seen as the most effective means to reduce these mosquito-transmitted diseases that pose an enormous economic and social burden, and whose incidence has increased drastically in recent years with the spread to new regions.

  13. Insect Pest Control Newsletter, No. 80, January 2013

    International Nuclear Information System (INIS)

    2013-01-01

    On November 28, 2012, with the participation of representatives from Member States and the press, the IAEA commemorated 50 years of IAEA's Laboratories in Seibersdorf, Austria. At a ceremony to mark the anniversary, IAEA Director General Yukiya Amano said the Laboratories in Seibersdorf have improved, in the 50 years since they opened, the lives of millions of people through work using nuclear echniques. At the eight nuclear applications laboratories, which include the five FAO/IAEA Agriculture and Biotechnology Laboratories, scientists carry out research and development, provide technical services to Member States and host fellows and scientific visitors. He stated that work at the laboratories has made a difference in controlling animal diseases and insect pests in many countries, contributed to more sustainable soil and water management technologies and the development of hardier and more nutritious crops. Scientists at the laboratories have helped communities dentify the best sources of underground water and ensure that this scarce resource is used effectively. They have worked on safe ways to preserve food, and provided vital echnical support for cancer treatment and other medical uses of nuclear technology. New challenges abound in the present and the future, Director General Yukiya Amano said. 'Member States want us to do more in almost all areas of nuclear applications'. He referred to the positive feedback received, reinforcing the critical nature of the services provided by the laboratories, and his announcement to carry out a complete modernization of the Laboratories. His proposal was supported in a resolution of the 56th General Conference, which called upon the IAEA to establish state-of-the-art facilities and equipment at Seibersdorf. The goal, according to the resolution, must be o 'ensure that maximum benefits in terms of capacity-building and technology enhancement are made available to Member States, particularly developing countries.' He pledged

  14. Hype or opportunity? Using microbial symbionts in novel strategies for insect pest control.

    Science.gov (United States)

    Arora, Arinder K; Douglas, Angela E

    2017-11-01

    All insects, including pest species, are colonized by microorganisms, variously located in the gut and within insect tissues. Manipulation of these microbial partners can reduce the pest status of insects, either by modifying insect traits (e.g. altering the host range or tolerance of abiotic conditions, reducing insect competence to vector disease agents) or by reducing fitness. Strategies utilizing heterologous microorganisms (i.e. derived from different insect species) and genetically-modified microbial symbionts are under development, particularly in relation to insect vectors of human disease agents. There is also the potential to target microorganisms absolutely required by the insect, resulting in insect mortality or suppression of insect growth or fecundity. This latter approach is particularly valuable for insect pests that depend on nutrients from symbiotic microorganisms to supplement their nutritionally-inadequate diet, e.g. insects feeding through the life cycle on vertebrate blood (cimicid bugs, anopluran lice, tsetse flies), plant sap (whiteflies, aphids, psyllids, planthoppers, leafhoppers/sharpshooters) and sound wood (various xylophagous beetles and some termites). Further research will facilitate implementation of these novel insect pest control strategies, particularly to ensure specificity of control agents to the pest insect without dissemination of bio-active compounds, novel microorganisms or their genes into the wider environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Bats Track and Exploit Changes in Insect Pest Populations

    Science.gov (United States)

    McCracken, Gary F.; Westbrook, John K.; Brown, Veronica A.; Eldridge, Melanie; Federico, Paula; Kunz, Thomas H.

    2012-01-01

    The role of bats or any generalist predator in suppressing prey populations depends on the predator's ability to track and exploit available prey. Using a qPCR fecal DNA assay, we document significant association between numbers of Brazilian free-tailed bats (Tadarida brasiliensis) consuming corn earworm (CEW) moths (Helicoverpa zea) and seasonal fluctuations in CEW populations. This result is consistent with earlier research linking the bats' diet to patterns of migration, abundance, and crop infestation by important insect pests. Here we confirm opportunistic feeding on one of the world's most destructive insects and support model estimates of the bats' ecosystem services. Regression analysis of CEW consumption versus the moth's abundance at four insect trapping sites further indicates that bats track local abundance of CEW within the regional landscape. Estimates of CEW gene copies in the feces of bats are not associated with seasonal or local patterns of CEW abundance, and results of captive feeding experiments indicate that our qPCR assay does not provide a direct measure of numbers or biomass of prey consumed. Our results support growing evidence for the role of generalist predators, and bats specifically, as agents for biological control and speak to the value of conserving indigenous generalist predators. PMID:22952782

  16. 7 CFR 305.40 - Garbage treatment schedules for insect pests and pathogens.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Garbage treatment schedules for insect pests and... Garbage § 305.40 Garbage treatment schedules for insect pests and pathogens. (a) T415-a, heat treatment. Incinerate to ash. Caterers under compliance agreement using an incinerator for garbage must comply with the...

  17. incidence and distribution of insect pests in rain-fed wheat in eastern ...

    African Journals Online (AJOL)

    ACSS

    varies depending upon the type of insect pest, control measure applied, type of variety grown and agronomic practices followed. Although there are no estimates for wheat for Eastern Africa, it is believed that yield losses attributable to insect pests are much greater than the world's average, since crop protection is limited in ...

  18. incidence and distribution of insect pests in rain-fed wheat in eastern ...

    African Journals Online (AJOL)

    ACSS

    Insect pests are some of the major constraints limiting yield of wheat (Triticum aestivum L.) in East Africa. The objective of this study was to determine the species composition and distribution of insect pests, and their natural enemies associated with wheat in Eastern Africa. A survey was conducted in farmers' fields in ...

  19. The role of nuclear techniques in the control of agricultural pests and stored grains insects

    International Nuclear Information System (INIS)

    Mansour, M.

    2012-01-01

    Peaceful applications of nuclear techniques in agriculture in general, and pest control specifically, are very numerous. Although this field of science is over a century old, its rapid developments occurred only in the last few decades. In fact, the contribution of nuclear techniques to insect pest control during the last half century is one of the most important developments in this science. This article is devoted to discuss the most important and widely used applications of nuclear techniques, particularly ionizing radiation, in insect pest control. In particular, it deals with the subject of sterilizing insects for the purpose of insect pest control and/or eradication in the field and storage, irradiation disinfestation of sorted products, particularly cereals and pulses, facilitating international trade by avoiding quarantine barriers and its role in biological control of insect pests. (author)

  20. Applying the sterile insect technique to the control of insect pests

    International Nuclear Information System (INIS)

    LaChance, L.E.; Klassen, W.

    1991-01-01

    The sterile insect technique involves the mass-rearing of insects, which are sterilized by gamma rays from a 60 Co source before being released in a controlled fashion into nature. Matings between the sterile insects released and native insects produce no progeny, and so if enough of these matings occur the pest population can be controlled or even eradicated. A modification of the technique, especially suitable for the suppression of the moths and butterflies, is called the F, or inherited sterility method. In this, lower radiation doses are used such that the released males are only partially sterile (30-60%) and the females are fully sterile. When released males mate with native females some progeny are produced, but they are completely sterile. Thus, full expression of the sterility is delayed by one generation. This article describes the use of the sterile insect technique in controlling the screwworm fly, the tsetse fly, the medfly, the pink bollworm and the melon fly, and of the F 1 sterility method in the eradication of local gypsy moth infestations. 18 refs, 5 figs, 1 tab

  1. Organically Grown Soybean Production in the USA: Constraints and Management of Pathogens and Insect Pests

    Directory of Open Access Journals (Sweden)

    Glen L. Hartman

    2016-02-01

    Full Text Available Soybean is the most produced and consumed oil seed crop worldwide. In 2013, 226 million metric tons were produced in over 70 countries. Organically produced soybean represents less than 0.1% of total world production. In the USA, the certified organic soybean crop was grown on 53 thousand ha or 0.17% of the total soybean acreage in the USA (32 million ha in 2011. A gradual increase in production of organically grown soybean has occurred since the inception of organic labeling due to increased human consumption of soy products and increased demand for organic soybean meal to produce organic animal products. Production constraints caused by pathogens and insect pests are often similar in organic and non-organic soybean production, but management between the two systems often differs. In general, the non-organic, grain-type soybean crop are genetically modified higher-yielding cultivars, often with disease and pest resistance, and are grown with the use of synthetic pesticides. The higher value of organically produced soybean makes production of the crop an attractive option to some farmers. This article reviews production and uses of organically grown soybean in the USA, potential constraints to production caused by pathogens and insect pests, and management practices used to reduce the impact of these constraints.

  2. A survey of some insect pests of cultivated vegetables in three ...

    African Journals Online (AJOL)

    The survey aimed at identifying insect pests that attack vegetables grown in three irrigation areas along Jakara River in Kano, Nigeria. The areas were Kwarin gogau, Nomansland and Kwakwaci. Two methods of trapping the insects were employed, namely hand capture for wingless insects as well as hand net for flying ...

  3. A survey of some insect pests of cultivated vegetables in three ...

    African Journals Online (AJOL)

    DR GATSING

    ABSTRACT. The survey aimed at identifying insect pests that attack vegetables grown in three irrigation areas along Jakara River in Kano, Nigeria. The areas were Kwarin gogau, Nomansland and. Kwakwaci. Two methods of trapping the insects were employed, namely hand capture for wingless insects as well as hand net ...

  4. [Effects of insecticides on insect pest-natural enemy community in early rice fields].

    Science.gov (United States)

    Jiang, Junqi; Miao, Yong; Zou, Yunding; Li, Guiting

    2006-05-01

    This paper studied the effects of triazophos, shachongshuang, abamectin, and Bt + imidacloprid on the insect pest-natural enemy community in early rice fields in the Yangtze-Huaihe region of Anhui Province. The results showed that all of the test insecticides had significant effects in controlling the growth of major insect pest populations. The average value of insect pest-natural enemy community diversity under effects of triazophos, shachongshuang, abamectin, and Bt + imidacloprid was 1.545, 1.562, 1.691 and 1.915, respectively, while that in control plot was 1.897. After two weeks of applying insecticides, the plots applied with shachongshuang and abamectin had a similar composition of insect pest-natural enemy community, but the community composition was significantly different between the plots applied with triazophos and Bt + imidacloprid. From the viewpoints of community stability and pest control, Bt + imidacloprid had the best effect, and shachongshuang and abamectin were better than triazophos.

  5. Insect pest intervention using the sterile insect technique. Current status on research and on operational programs in the world

    International Nuclear Information System (INIS)

    Enkerlin, Walther; Bakri, Abdel; Caceres, Carlos

    2003-01-01

    The area-wide integrated approach to insect pest management (AWIPM) is increasingly gaining acceptance for major insect pests in view that agriculture and medical/veterinary pests cannot be controlled effectively at the local level, without the systematic use of conventional insecticides which disrupt the environment, affect human health and preclude access to low pesticide or organic markets. The Sterile Insect Technique (SIT) is amongst the most non-disruptive pest control methods, however, it is only effective when implementation is coordinated over larger contiguous areas to address whole target pest populations. Over the last four decades the Joint FAOI/IAEA has been promoting the AWIPM concept and supporting the development and application of the SIT against various key insect pests including fruit files, moths, screwworms and tsetse flies. There has been considerable progress in the development and integrated use of the SIT against a number of such pests, as reflected by operational programs on all five continents for eradication, for prevention, and lately increasingly for suppression. There is however, considerable scope for improving the efficiency of SIT, an indispensable requirement for increased involvement of the livestock and horticultural industry and biocontrol producers in any future application. (author)

  6. Monitoring sterile and wild insects in area-wide integrated pest management programmes

    International Nuclear Information System (INIS)

    Vreysen, M.J.B.

    2005-01-01

    Insect pest control programmes, which integrate the release of sterile insects, can be efficient only if the released insects have an optimal biological quality. Frequent monitoring of the quality of reared insects after being released in the field is an important but often neglected component of area-wide integrated pest management (AW-IPM) programmes that integrate the sterile insect technique (SIT). Parameters of sterile insects, which should be monitored regularly, are sexual competitiveness of the released insects, and related components, e.g. survival, mobility, dispersal characteristics, and spatial occupation of the habitat. A well-balanced monitoring programme will, at any given time, provide essential feedback on the progress being made. This information is prerequisite to efficient implementation of the release and cost-efficient use of sterile insects. The type of monitoring to be done will be determined largely by the particular biology of the target insect species. The most important parameter in relation to the release of sterile insects is the rate of sterility induced in the wild insect pest population; it will provide the best evidence that any observed changes, e.g. in the density of the target insect, are caused by the release of sterile insects. (author)

  7. Farmer’s Knowledge and Perceptions on Rice Insect Pests and Their Management in Uganda

    Directory of Open Access Journals (Sweden)

    Simon Alibu

    2016-08-01

    Full Text Available Rice is a new crop in Uganda, but has quickly grown in importance. Between 2000 and 2010, total area under rice cultivation in the country grew by 94% from 140,000 ha. Changes in the agro ecosystem due to expansion in rice area may have altered the pest status of rice insect pests. However, far too little attention has been paid to assessing the prevalence and importance of rice insect-pests in Uganda. In this study, we interviewed 240 lowland-rice farming households from eight districts within the north, east and central regions of Uganda about their perceived insect-pest problems and control measures employed, if any. A semi-structured questionnaire was used. The farmers ranked rice insect pests as the most important biotic constraint in rice production, with stem borers and the African rice gall midge (AfRGM perceived to be the 1st and 2nd most detrimental insect pests, respectively. In spite of this, only 36% of the respondents could positively identify symptoms of AfRGM damage on rice plants, while 64% were familiar with stem borer damage. Over 60% of interviewed farmers expressed confidence in the effectiveness of insecticides for controlling rice insect pests. Cultural control measures were not popular among the farmers.

  8. Applicator Training Manual for: Agricultural Animal Pest Control.

    Science.gov (United States)

    Christensen, Christian M.

    This manual discusses pesticide safety and environmental considerations, pesticide toxicity, residue potential, pesticide formulations, and application techniques. In addition, descriptions of, and methods for controlling insects and related pests that attack cattle, sheep and goats, swine, horses and other equines, and poultry are given. These…

  9. Plant breeding for resistance to insect pests: Considerations about the use of induced mutations

    International Nuclear Information System (INIS)

    1978-01-01

    The Panel was intended to stimulate proposals on specific plant breeding objectives, for immediate and long term solution. Nine papers considered the host plant resistance to particular insect pests in a variety of cases. The desirability of achieving some measure of pest control via the development of disease-resistant mutants was discussed. In its conclusions, the Panel stressed the need to consider host plant resistance as one of the primary lines of defense in all pest management programmes. Consequently, resistance to insects was recommended to become an integral part of plant breeding programmes. Preference might need to be given to developing insect resistance in those crop plants for which practical control is lacking or where current methods of pest control present critical environmental hazards. The roles of the IAEA and FAO in such projects is outlined. Guidelines and recommendations on mutation breeding for resistance to insects are given in an appendix

  10. Three new and important insect pests recorded for the first time in ...

    African Journals Online (AJOL)

    Heteronemiidae) and the Hymenoptera (Formicidae). We report on the relatively recent appearance of three important and damaging new insect pests of plantation-grown Pinus and Eucalyptus spp. in Colombia, two of which are not native to this country.

  11. Resistance of the packing to attack of insects pest in irradiated ration

    International Nuclear Information System (INIS)

    Arthur, Paula B.; Arthur, Valter; Silva, Lucia C.A.S.; Franco, Suely S.H.

    2013-01-01

    The pests as beetles, acarids, moths and mushrooms among other, usually infest products stored as: grains, crumbs, flours, coffee, tobacco, dried fruits, animal rations, spices, dehydrated plants, causing the visual depreciation and promoting the deterioration of the products. The objective of the research was use the gamma radiation of Cobalt-60 in the disinfestation of some types of rations used for feeding of animals of small size. In the experiment packing measuring 10 cm x 20 cm with capacity of 70 grams of substrate (ration) with 4 types of existent marks in the trade: (1), (2), (3) and (4) of free samples were used. Each treatment had 10 repetitions, that were irradiated with doses of: 0 (control) 0,5; 1,0 and 2,0 kGy, to do the disinfestation of the ration samples. After the irradiation all the packing and the control were conditioned in plastic boxes of 80 cm x 50 cm with cover, where the insects: Lasioderma serricorne, Plodia interpuctella, Sitophilus zeamais and S. oryzae were liberated, in a total of 400 for each box. The boxes were maintained at room acclimatized with 27 ± 2 deg C and relative humidity of 70 ± 5%. The counting of the number of insects and holes in the packing were made after 60 days. The results showed that only the package of the ration type number 4, was susceptive to the attack of the species of insects. (author)

  12. Resistance of the packing to attack of insects pest in irradiated ration

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Paula B.; Arthur, Valter; Silva, Lucia C.A.S.; Franco, Suely S.H., E-mail: paula.arthur@hotmail.com [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Radiobiologia e Ambiente; Franco, Jose G.; Villavicencio, Anna L.H.C., E-mail: gilmita@uol.com.br, E-mail: villavic@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The pests as beetles, acarids, moths and mushrooms among other, usually infest products stored as: grains, crumbs, flours, coffee, tobacco, dried fruits, animal rations, spices, dehydrated plants, causing the visual depreciation and promoting the deterioration of the products. The objective of the research was use the gamma radiation of Cobalt-60 in the disinfestation of some types of rations used for feeding of animals of small size. In the experiment packing measuring 10 cm x 20 cm with capacity of 70 grams of substrate (ration) with 4 types of existent marks in the trade: (1), (2), (3) and (4) of free samples were used. Each treatment had 10 repetitions, that were irradiated with doses of: 0 (control) 0,5; 1,0 and 2,0 kGy, to do the disinfestation of the ration samples. After the irradiation all the packing and the control were conditioned in plastic boxes of 80 cm x 50 cm with cover, where the insects: Lasioderma serricorne, Plodia interpuctella, Sitophilus zeamais and S. oryzae were liberated, in a total of 400 for each box. The boxes were maintained at room acclimatized with 27 ± 2 deg C and relative humidity of 70 ± 5%. The counting of the number of insects and holes in the packing were made after 60 days. The results showed that only the package of the ration type number 4, was susceptive to the attack of the species of insects. (author)

  13. Robust Manipulations of Pest Insect Behavior Using Repellents and Practical Application for Integrated Pest Management.

    Science.gov (United States)

    Wallingford, Anna K; Cha, Dong H; Linn, Charles E; Wolfin, Michael S; Loeb, Gregory M

    2017-10-01

    In agricultural settings, examples of effective control strategies using repellent chemicals in integrated pest management (IPM) are relatively scarce compared to those using attractants. This may be partly due to a poor understanding of how repellents affect insect behavior once they are deployed. Here we attempt to identify potential hallmarks of repellent stimuli that are robust enough for practical use in the field. We explore the literature for success stories using repellents in IPM and we investigate the mechanisms of repellency for two chemical oviposition deterrents for controlling Drosophila suzukii Matsumura, a serious pest of small fruit crops. Drosophila suzukii causes injury by laying her eggs in ripening fruit and resulting larvae make fruit unmarketable. In caged choice tests, reduced oviposition was observed in red raspberry fruit treated with volatile 1-octen-3-ol and geosmin at two initial concentrations (10% and 1%) compared to untreated controls. We used video monitoring to observe fly behavior in these caged choice tests and investigate the mode of action for deterrence through the entire behavioral repertoire leading to oviposition. We observed fewer visitors and more time elapsed before flies first landed on 1-octen-3-ol-treated fruits than control fruits and concluded that this odor primarily inhibits behaviors that occur before D. suzukii comes in contact with a potential oviposition substrate (precontact). We observed some qualitative differences in precontact behavior of flies around geosmin-treated fruits; however, we concluded that this odor primarily inhibits behaviors that occur after D. suzukii comes in contact with treated fruits (postcontact). Field trials found reduced oviposition in red raspberry treated with 1-octen-3-ol and a combination of 1-octen-3-ol and geosmin, but no effect of geosmin alone. Recommendations for further study of repellents for practical use in the field are discussed. © The Authors 2017. Published by

  14. Using GPS instruments and GIS techniques in data management for insect pest control programs

    International Nuclear Information System (INIS)

    2006-01-01

    This interactive tutorial CD entitled 'Using GPS Instruments and GIS Techniques in Data Management for Insect Pest Control Programs' was developed by Micha silver of the Arava Development Co., Sapir, Israel, and includes step-by-step hands on lessons on the use of GPS/GIS in support of area-wide pest control operations

  15. Sycamore Pests: A Guide to Major Insects, Diseases, and Air Pollution

    Science.gov (United States)

    T. H. Filer; J. D. Solomon; F. I. McCracken; F. L. Oliveria; R. Lewis; M. J. Weiss; T. J. Rogers

    1977-01-01

    This booklet will help nurserymen, forest woodland managers and homeowners to identify and control pest problems. Major insects and diseases are illustrated. Brief mention is made of other pests of local or sporadic concern. A list of registered chemical controls is included. This list is subject to change as new chemicals are approved. Revisions will be made available...

  16. Companion and refuge plants to enhance control of insect pests in vegetables

    Science.gov (United States)

    Whiteflies and aphids are important insect pests in vegetable crops. To mitigate the use of chemical insecticides, “push-pull” strategies can be used as components of sustainable or cultural pest management. We conducted laboratory olfactometer or odor detecting tests to measure the effects of arug...

  17. Insect Pest Control Newsletter, No. 74, January 2010

    International Nuclear Information System (INIS)

    2010-01-01

    I would like to thank all our collaborators in many parts of the world, as well as our staff and colleagues in Vienna and Seibersdorf for a fruitful year 2009. Besides our participation and support to many events and interesting research, field, and knowledge management activities, the Insect Pest Control Subprogramme has been involved in a number of external reviews and is undergoing change as part of a major reform process at FAO and also important restructurings and new leadership at IAEA. It is now 45 years ago that FAO and IAEA joined forces in a partnership through a Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, the oldest example of institutionalized interagency cooperation in the United Nations system. The Joint Division has been developing and is building on the synergies that exist between the mandates of FAO, as the lead agency in food security, agriculture and rural development, and the IAEA, as the global forum for scientific and technical cooperation in the peaceful uses of atomic energy. Nevertheless, during the past two years, as a result of the above reform process, the Joint FAO/IAEA Division has been subject to a period of much uncertainty about the future of this partnership. I am now very pleased to be able to inform that following an exchange of formal notes between the senior management of FAO and IAEA in mid 2009, the Arrangements between the Directors General of FAO and IAEA for the Joint FAO/IAEA Division on Nuclear Techniques in Food and Agriculture remain in force. This is a confirmation of the strong support that has been received from Member States of both FAO and IAEA during the last two years requesting the continuation of the successful partnership between both organizations

  18. Insect and Pest Control Newsletter, No. 85, July 2015

    International Nuclear Information System (INIS)

    2015-07-01

    Despite the amazing progress made in science and technology during the last hundred years, humankind still faces significant challenges in combating pest insects, such as mosquitoes that are the vectors of major pathogens (arboviruses and bacterial as well as eukaryotic microorganisms). These pathogenic microorganisms cause infectious diseases resulting in severe morbidity or lethality. According to the World Health Organization (WHO), there are over 200 million cases of malaria resulting in more than 600 000 deaths annually, mainly very young children. The great majority of malaria deaths occur in sub-Saharan Africa. Currently, malaria transmission occurs in about 100 countries putting about 3.4 billion people at risk (World Malaria Report, 2013). Similarly, around 400 million people contract every year a dengue infection of which about 500 000, mainly children require hospitalization; it is estimated that 2.5% of them die. Dengue has spread globally during the last years and currently over 3 billion people are at risk in more than 100 countries in Africa, the Americas, the Eastern Mediterranean, South-east Asia and the Western Pacific. The majority of dengue cases are reported in American, Southeast Asian and the Western Pacific regions. Recently another viral mosquito-borne disease, chikungunya, has been spreading rapidly. It is a disease that causes severe chronic joint pain in patients across the globe. In the absence of effective vaccines and drugs, these mosquito- transmitted diseases pose an enormous economic and social burden worldwide and their incidence has increased drastically in recent years. In addition, the traditional chemical- based vector control strategies are facing serious challenges due to increased resistance of mosquitoes to the used insecticides and increased public concern of insecticide use in urban areas. Based on these facts, novel methods and complementary approaches are required to manage mosquito populations in an effective and more

  19. Can Prunus serotina be genetically engineered for reproductive sterility and insect pest resistance?

    Science.gov (United States)

    Ying Wang; Paula M. Pijut

    2014-01-01

    Black cherry (Prunus serotina) is a valuable hardwood timber species, and its value highly depends on the wood quality which is often threatened by insect pests. Transgenic black cherry plants that are more resistant to cambial-mining insects may reduce the occurrence of gummosis and have great economic benefits to landowners and the forest products...

  20. Development of reference transcriptomes for the major insect pests of cowpea: a toolbox for insect pest management approaches in West Africa

    Science.gov (United States)

    Cowpea crops are widely cultivated and a major nutritional source of protein for indigenous human populations in West Africa. Annual yields and longevity of grain storage is greatly reduced by feeding damage caused by a complex of insect pests that include Anoplocnemis curvipes, Aphis craccivora, Cl...

  1. Gamma radiation in the control of insects in animal feed

    International Nuclear Information System (INIS)

    Arthur, Paula B.; Arthur, Valter; Silva, Lucia C.A.S.; Franco, Suely S.H.; Franco, Jose G.; Villavicencio, Anna Lucia; Harder, Marcia N.C.

    2015-01-01

    The pests as beetles, acarids, moths and mushrooms among other, usually infest products stored as: grains, crumbs, flours, coffee, tobacco, dried fruits, animal feeds, spices and dehydrated plants, causing the visual depreciation and promoting the deterioration of the products. The objective of this study was to use gamma radiation of Cobalt-60 in the disinfestation of some types of commercial feeds used for animals of small size. In the experiment, packages measuring 10 cm x 15 cm, with capacity of 30 grams of substrate with 4 types of trademarks were irradiated with doses of: 0 (control) 0.5; 1.0 and 2.0 kGy. Each treatment had 10 repetitions, infested with 10 insects for each package with the following species: Lasioderma serricorne, Plodia interpuctella, Sitophilus zeamais and S. oryzae. After the irradiation, all the packages were maintained at acclimatized room with 27 ± 2ºC and relative humidity of 70 ± 5%. The number of insects and holes in all packages were assessed after 60 days. The results showed that the dose of 0.5 kGy was sufficient to control all the species of insects in the tested feeds. (author)

  2. Gamma radiation in the control of insects in animal feed

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Paula B.; Arthur, Valter; Silva, Lucia C.A.S.; Franco, Suely S.H., E-mail: paula.arthur@hotmail.com, E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Franco, Jose G.; Villavicencio, Anna Lucia, E-mail: gilmita@uol.com.br, E-mail: villavic@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Harder, Marcia N.C., E-mail: marcia.harder@fatec.sp.gov.br [Centro Paula Souza, Curso Superior de Tecnologia em Biocombustiveis (FATEC), Piracicaba, SP (Brazil)

    2015-07-01

    The pests as beetles, acarids, moths and mushrooms among other, usually infest products stored as: grains, crumbs, flours, coffee, tobacco, dried fruits, animal feeds, spices and dehydrated plants, causing the visual depreciation and promoting the deterioration of the products. The objective of this study was to use gamma radiation of Cobalt-60 in the disinfestation of some types of commercial feeds used for animals of small size. In the experiment, packages measuring 10 cm x 15 cm, with capacity of 30 grams of substrate with 4 types of trademarks were irradiated with doses of: 0 (control) 0.5; 1.0 and 2.0 kGy. Each treatment had 10 repetitions, infested with 10 insects for each package with the following species: Lasioderma serricorne, Plodia interpuctella, Sitophilus zeamais and S. oryzae. After the irradiation, all the packages were maintained at acclimatized room with 27 ± 2ºC and relative humidity of 70 ± 5%. The number of insects and holes in all packages were assessed after 60 days. The results showed that the dose of 0.5 kGy was sufficient to control all the species of insects in the tested feeds. (author)

  3. Effects of effluent water on the abundance of cowpea insect pests.

    Science.gov (United States)

    Tiroesele, Bamphitlhi; Sitwane, Monametsi; Obopile, M; Ullah, Muhammad Irfan; Ali, Sajjad

    2017-10-03

    Botswana experiences low and unreliable rainfall. Thus, the use of effluent water in agriculture is increasingly important. Insect damage is the major constraint for cowpea grain production in the most cowpea-producing lands. We investigated the effects of effluent water on insect pest abundance on cowpea (Vigna unguiculata) under field conditions. The experiment was laid out in a randomized complete block design with 100, 75, 50, and 25% of effluent water and 0% (control-clean tap water) treatments. Treatments with 100% effluent water resulted in a significant increase in insect pest populations as compared with the control. These results show that the use of effluent water to irrigate crops may increase incidence, abundance, and damage caused by insect pests possibly by decreasing plant vigor. The use of effluent water in agriculture should be addressed in a wise way.

  4. Nano-particles - A recent approach to insect pest control ...

    African Journals Online (AJOL)

    ... nanoporous zeolites for slow release and efficient dosage of water and fertilizer, nanocapsules for herbicide delivery and vector and pest management and nanosensors for pest detection. The atom by atom arrangement allows the manipulation of nanoparticles thus influencing their size, shape and orientation for reaction ...

  5. Farmers\\' knowledge and perceptions of insect pests of yam ...

    African Journals Online (AJOL)

    these farmers were small, averaging 2.8 acres (range 0.5- 12 acres). Most farmers were illiterate, because 88 per cent had not received formal education. Farmers identified yam pests as one of the major production constraints. Pests mentioned by farmers as causing the most serious damage in the field and storage, and ...

  6. New technology for using meteorological information in forest insect pest forecast and warning systems.

    Science.gov (United States)

    Qin, Jiang-Lin; Yang, Xiu-Hao; Yang, Zhong-Wu; Luo, Ji-Tong; Lei, Xiu-Feng

    2017-12-01

    Near surface air temperature and rainfall are major weather factors affecting forest insect dynamics. The recent developments in remote sensing retrieval and geographic information system spatial analysis techniques enable the utilization of weather factors to significantly enhance forest pest forecasting and warning systems. The current study focused on building forest pest digital data structures as a platform of correlation analysis between weather conditions and forest pest dynamics for better pest forecasting and warning systems using the new technologies. The study dataset contained 3 353 425 small polygons with 174 defined attributes covering 95 counties of Guangxi province of China currently registering 292 forest pest species. Field data acquisition and information transfer systems were established with four software licences that provided 15-fold improvement compared to the systems currently used in China. Nine technical specifications were established including codes of forest districts, pest species and host tree species, and standard practices of forest pest monitoring and information management. Attributes can easily be searched using ArcGIS9.3 and/or the free QGIS2.16 software. Small polygons with pest relevant attributes are a new tool of precision farming and detailed forest insect pest management that are technologically advanced. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. PREMISE Insect Model: Integrated Population Dynamics Model for the Ex-ante Evaluation of IPM against Insect Pest

    NARCIS (Netherlands)

    Hennen, Wil; Alaphilippe, Aude

    2015-01-01

    Codling moth Cydia pomonella L. is the most serious pest of apple and pear worldwide and causes damage and decreased
    yields. To minimize this risk, IPM tools can be applied to reduce the use of chemicals. A cost-effective application of IPM depends
    on the number of insects at the time of

  8. Investigating Engineered Ribonucleoprotein Particles to Improve Oral RNAi Delivery in Crop Insect Pests

    Directory of Open Access Journals (Sweden)

    François-Xavier Gillet

    2017-04-01

    Full Text Available Genetically modified (GM crops producing double-stranded RNAs (dsRNAs are being investigated largely as an RNA interference (RNAi-based resistance strategy against crop insect pests. However, limitations of this strategy include the sensitivity of dsRNA to insect gut nucleases and its poor insect cell membrane penetration. Working with the insect pest cotton boll weevil (Anthonomus grandis, we showed that the chimeric protein PTD-DRBD (peptide transduction domain—dsRNA binding domain combined with dsRNA forms a ribonucleoprotein particle (RNP that improves the effectiveness of the RNAi mechanism in the insect. The RNP slows down nuclease activity, probably by masking the dsRNA. Furthermore, PTD-mediated internalization in insect gut cells is achieved within minutes after plasma membrane contact, limiting the exposure time of the RNPs to gut nucleases. Therefore, the RNP provides an approximately 2-fold increase in the efficiency of insect gene silencing upon oral delivery when compared to naked dsRNA. Taken together, these data demonstrate the role of engineered RNPs in improving dsRNA stability and cellular entry, representing a path toward the design of enhanced RNAi strategies in GM plants against crop insect pests.

  9. Climate Change Effects on Agricultural Insect Pests in Europe

    OpenAIRE

    Lindström, Leena; Lehmann, Philipp

    2015-01-01

    In this chapter we will discuss observations of climate change effects on agricultural pests in Europe, the possible mechanisms behind these observed effects and finally delve into more detail through some, relatively well studied model species (the Colorado potato beetle and the rape beetle). Direct effects of climate change on agricultural pests in Europe are difficult to dissect from all the human induced changes that have taken place in parallel with an increased mean annual temperature. ...

  10. Landscape changes have greater effects than climate changes on six insect pests in China.

    Science.gov (United States)

    Zhao, Zihua; Sandhu, Hardev S; Ouyang, Fang; Ge, Feng

    2016-06-01

    In recent years, global changes are the major causes of frequent, widespread outbreaks of pests in mosaic landscapes, which have received substantial attention worldwide. We collected data on global changes (landscape and climate) and economic damage caused by six main insect pests during 1951-2010 in China. Landscape changes had significant effects on all six insect pests. Pest damage increased significantly with increasing arable land area in agricultural landscapes. However, climate changes had no effect on damage caused by pests, except for the rice leaf roller (Cnaphalocrocis medinalis Guenee) and armyworm (Mythimna separate (Walker)), which caused less damage to crops with increasing mean temperature. Our results indicate that there is slight evidence of possible offset effects of climate changes on the increasing damage from these two agricultural pests. Landscape changes have caused serious outbreaks of several species, which suggests the possibility of the use of landscape design for the control of pest populations through habitat rearrangement. Landscape manipulation may be used as a green method to achieve sustainable pest management with minimal use of insecticides and herbicides.

  11. Cascade effects of crop species richness on the diversity of pest insects and their natural enemies.

    Science.gov (United States)

    Shi, PeiJian; Hui, Cang; Men, XingYuan; Zhao, ZiHua; Ouyang, Fang; Ge, Feng; Jin, XianShi; Cao, HaiFeng; Li, B Larry

    2014-07-01

    Understanding how plant species richness influences the diversity of herbivorous and predatory/parasitic arthropods is central to community ecology. We explore the effects of crop species richness on the diversity of pest insects and their natural enemies. Using data from a four-year experiment with five levels of crop species richness, we found that crop species richness significantly affected the pest species richness, but there were no significant effects on richness of the pests' natural enemies. In contrast, the species richness of pest insects significantly affected their natural enemies. These findings suggest a cascade effect where trophic interactions are strong between adjacent trophic levels, while the interactions between connected but nonadjacent trophic levels are weakened by the intermediate trophic level. High crop species richness resulted in a more stable arthropod community compared with communities in monoculture crops. Our results highlight the complicated cross-trophic interactions and the crucial role of crop diversity in the food webs of agro-ecosystems.

  12. Australian endemic pest tephritids: genetic, molecular and microbial tools for improved Sterile Insect Technique

    OpenAIRE

    Raphael, Kathryn A; Shearman, Deborah CA; Gilchrist, A Stuart; Sved, John A; Morrow, Jennifer L; Sherwin, William B; Riegler, Markus; Frommer, Marianne

    2014-01-01

    Among Australian endemic tephritid fruit flies, the sibling species Bactrocera tryoni and Bactrocera neohumeralis have been serious horticultural pests since the introduction of horticulture in the nineteenth century. More recently, Bactrocera jarvisi has also been declared a pest in northern Australia. After several decades of genetic research there is now a range of classical and molecular genetic tools that can be used to develop improved Sterile Insect Technique (SIT) strains for control ...

  13. The Plant Ribosome-Inactivating Proteins Play Important Roles in Defense against Pathogens and Insect Pest Attacks

    Directory of Open Access Journals (Sweden)

    Feng Zhu

    2018-02-01

    Full Text Available Ribosome-inactivating proteins (RIPs are toxic N-glycosidases that depurinate eukaryotic and prokaryotic rRNAs, thereby arresting protein synthesis during translation. RIPs are widely found in various plant species and within different tissues. It is demonstrated in vitro and in transgenic plants that RIPs have been connected to defense by antifungal, antibacterial, antiviral, and insecticidal activities. However, the mechanism of these effects is still not completely clear. There are a number of reviews of RIPs. However, there are no reviews on the biological functions of RIPs in defense against pathogens and insect pests. Therefore, in this report, we focused on the effect of RIPs from plants in defense against pathogens and insect pest attacks. First, we summarize the three different types of RIPs based on their physical properties. RIPs are generally distributed in plants. Then, we discuss the distribution of RIPs that are found in various plant species and in fungi, bacteria, algae, and animals. Various RIPs have shown unique bioactive properties including antibacterial, antifungal, antiviral, and insecticidal activity. Finally, we divided the discussion into the biological roles of RIPs in defense against bacteria, fungi, viruses, and insects. This review is focused on the role of plant RIPs in defense against bacteria, fungi, viruses, and insect attacks. The role of plant RIPs in defense against pathogens and insects is being comprehended currently. Future study utilizing transgenic technology approaches to study the mechanisms of RIPs will undoubtedly generate a better comprehending of the role of plant RIPs in defense against pathogens and insects. Discovering additional crosstalk mechanisms between RIPs and phytohormones or reactive oxygen species (ROS against pathogen and insect infections will be a significant subject in the field of biotic stress study. These studies are helpful in revealing significance of genetic control that can

  14. The Plant Ribosome-Inactivating Proteins Play Important Roles in Defense against Pathogens and Insect Pest Attacks.

    Science.gov (United States)

    Zhu, Feng; Zhou, Yang-Kai; Ji, Zhao-Lin; Chen, Xiao-Ren

    2018-01-01

    Ribosome-inactivating proteins (RIPs) are toxic N -glycosidases that depurinate eukaryotic and prokaryotic rRNAs, thereby arresting protein synthesis during translation. RIPs are widely found in various plant species and within different tissues. It is demonstrated in vitro and in transgenic plants that RIPs have been connected to defense by antifungal, antibacterial, antiviral, and insecticidal activities. However, the mechanism of these effects is still not completely clear. There are a number of reviews of RIPs. However, there are no reviews on the biological functions of RIPs in defense against pathogens and insect pests. Therefore, in this report, we focused on the effect of RIPs from plants in defense against pathogens and insect pest attacks. First, we summarize the three different types of RIPs based on their physical properties. RIPs are generally distributed in plants. Then, we discuss the distribution of RIPs that are found in various plant species and in fungi, bacteria, algae, and animals. Various RIPs have shown unique bioactive properties including antibacterial, antifungal, antiviral, and insecticidal activity. Finally, we divided the discussion into the biological roles of RIPs in defense against bacteria, fungi, viruses, and insects. This review is focused on the role of plant RIPs in defense against bacteria, fungi, viruses, and insect attacks. The role of plant RIPs in defense against pathogens and insects is being comprehended currently. Future study utilizing transgenic technology approaches to study the mechanisms of RIPs will undoubtedly generate a better comprehending of the role of plant RIPs in defense against pathogens and insects. Discovering additional crosstalk mechanisms between RIPs and phytohormones or reactive oxygen species (ROS) against pathogen and insect infections will be a significant subject in the field of biotic stress study. These studies are helpful in revealing significance of genetic control that can be beneficial to

  15. Integrated management of cowpea insect pests using elite cultivars ...

    African Journals Online (AJOL)

    Cowpea planted in June flowered and podded between early to mid-August when post-flowering pests (M. vitrata, M. sjostedti and Clarigralla tomentosicollis) densities were relatively low and produced significantly higher grain yields without insecticide protection compared to other planting dates. The flowering and pod ...

  16. Economic Evaluation of Insect Pests Management in Cashew ...

    African Journals Online (AJOL)

    The statistically significant treatments were subjected to economic analysis using the partial budget and MRR. Discounted financial indicators (NPV, BCR and IRR) were used. The study revealed that damage caused by each pest was significantly lower on trees with weaver ants and in the plots treated with Karate® than ...

  17. Climate Change and Insect Pests: Resistance Is Not Futile?

    Science.gov (United States)

    Johnson, Scott N; Züst, Tobias

    2018-05-01

    Chemical signals produced by plants when attacked by herbivores play a crucial role in efficient plant defence. A recent study suggests that herbivore-specific R-gene resistance may be enhanced by elevated atmospheric CO 2 concentrations. Understanding how climate change affects plant resistance to herbivorous pests could be essential for future food security. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Introduced sap-feeding insect pests of crop plants in the Maltese Islands

    OpenAIRE

    Mifsud, David; Watson, Gillian W.

    1999-01-01

    Sap-feeding insects within Hemiptera and Thysanoptera are some of the most important crop pests world-wide. Apart from the loss of yield they cause by sap depletion, saliva toxicity and soiling of the leaves, some species transmit serious plant virus diseases. Important sap-feeding species that have been introduced to the Maltese Islands include the whitefly Bemisia tabaci; the scale insects Pseudo coccus !ongispinus, Planococcus citri and lcerya purchasi; the aphids Aphis gossypii, Aphis spi...

  19. Biological control of pests and insects. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The bibliography contains citations concerning the use of biological agents to control insects and pests. Radiation, genetic breeding, bacteria, fungi, viruses, and pheromones are discussed as alternatives to pesticidal management. Methods for monitoring the effectiveness and environmental impact of these agents are reviewed. Population control of fruit flies, spruce sawflies, flies, mosquitoes, cockroaches, gypsy moths, and other agriculturally-important insects is also discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  20. Biological control of pests and insects. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The bibliography contains citations concerning the use of biological agents to control insects and pests. Radiation, genetic breeding, bacteria, fungi, viruses, and pheromones are discussed as alternatives to pesticidal management. Methods for monitoring the effectiveness and environmental impact of these agents are reviewed. Population control of fruit flies, spruce sawflies, flies, mosquitoes, cockroaches, gypsy moths, and other agriculturally-important insects is also discussed. (Contains a minimum of 190 citations and includes a subject term index and title list.)

  1. The basic principles of the application of sterile insect technique for area-wide insect pest control

    International Nuclear Information System (INIS)

    Singgih Sutrisno

    2006-01-01

    Sterile Insect Technique (SIT) is a new insect pest control technique, potential, and compatible to other techniques. This technique includes irradiation of insect colony in the laboratory using gamma, n, or x-rays and then release them in the field periodically to obtain the increase of sterility probability level from the first generation to the dependence as the result the decrease of the fertility level in the field. The effect the release of sterile insects ( 9:1 ratio to the male indigenous and reproductive potential every single female of each generation reproduce 5 females ) to the insect reduction population model is conceptually discussed. From one million of the female parental decrease to be 26, 316; 1,907; 10; and 0 insects at the first, second, third, and the forth progeny respectively. Then if sterile insect technique integrated with chemical technique (insecticide) 90% kill, it will be much more effective compared to the application sterile insect technique only. From the number of one million population of insects will decrease to be 2,632; 189; and 0 insects at the first, second, and the third progeny respectively. In the Lepidoptera insects was found a phenomenon of inherited sterility. According to Knipling (1970) the inherited sterility in the first offspring caused by chromosome translocation in the gamete . In the individual of heterozygote will be die and in the homozygotes is still alive. Interspecific hybrid sterility first time was found by Laster (1972) from a cross between males Heliothis virescens (F) and females Heliothis subflexa Guenee. Male moths of the first offspring from the cross between H. virescens and H. subflexa is sterile and the females still remain fertile. If the female moths of the first offspring back crossed with male H. virescens the phenomenon of sterility always found will same situation as mention earlier the male offspring is sterile and the females is fertile ( the male F2 will be sterile and the females will

  2. Insect and Pest Control Section newsletter and information circular on radiation techniques and their application to insect pests. No. 39

    International Nuclear Information System (INIS)

    1987-07-01

    The Information Circular presents preliminary reports of research and development activities in the application of nuclear energy for entomological problems and related aspects. Radiation sterilization and isotope-aided studies are stressed, however, articles relating to practical pest control or eradication are also within the scope of the Information Circular

  3. Some analytical and numerical approaches to understanding trap counts resulting from pest insect immigration.

    Science.gov (United States)

    Bearup, Daniel; Petrovskaya, Natalia; Petrovskii, Sergei

    2015-05-01

    Monitoring of pest insects is an important part of the integrated pest management. It aims to provide information about pest insect abundance at a given location. This includes data collection, usually using traps, and their subsequent analysis and/or interpretation. However, interpretation of trap count (number of insects caught over a fixed time) remains a challenging problem. First, an increase in either the population density or insects activity can result in a similar increase in the number of insects trapped (the so called "activity-density" problem). Second, a genuine increase of the local population density can be attributed to qualitatively different ecological mechanisms such as multiplication or immigration. Identification of the true factor causing an increase in trap count is important as different mechanisms require different control strategies. In this paper, we consider a mean-field mathematical model of insect trapping based on the diffusion equation. Although the diffusion equation is a well-studied model, its analytical solution in closed form is actually available only for a few special cases, whilst in a more general case the problem has to be solved numerically. We choose finite differences as the baseline numerical method and show that numerical solution of the problem, especially in the realistic 2D case, is not at all straightforward as it requires a sufficiently accurate approximation of the diffusion fluxes. Once the numerical method is justified and tested, we apply it to the corresponding boundary problem where different types of boundary forcing describe different scenarios of pest insect immigration and reveal the corresponding patterns in the trap count growth. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Phytochemical feeding deterrents for stored product insect pests

    Czech Academy of Sciences Publication Activity Database

    Nawrot, J.; Harmatha, Juraj

    2012-01-01

    Roč. 11, č. 4 (2012), s. 543-566 ISSN 1568-7767 Institutional support: RVO:61388963 Keywords : insect feeding deterrence * antifeedant phytochemicals * isoprenoids * sesquiterpene lactones * polyphenols Subject RIV: CC - Organic Chemistry Impact factor: 4.147, year: 2012

  5. The Integrated Management Of An Emerging Insect Pest Of Cashew ...

    African Journals Online (AJOL)

    Sudden death of mature cashew trees at the Cocoa Research Institute of Nigeria (CRIN), Ibadan, southwestern Nigeria, a tropical humid ecology, necessitated an urgent study to unravel the cause and evolve an integrated management strategy for the control of the problem. Morphometric examination of the adult insect ...

  6. A compendium of insect pests and natural enemies associated with ...

    African Journals Online (AJOL)

    Field studies were carried out in 1992 and 1993 late cropping seasons to identify the species of insects and their effect on soyabeans in Calabar, a humid tropical environment. Two treatments were used, (that is sprayed and un- sprayed). Nuvacron (Monocrotophos), a systemic insecticide was applied at the rate of 400g ...

  7. Sunflower disease and insect pests in Pakistan: A review | Mukhtar ...

    African Journals Online (AJOL)

    Sun flower (Helianthus annuus L.) is one of the important oil seed crops and potentially fit in agricultural system and oil production sector of Pakistan. Various diseases, insects and nematodes attack damage the sunflower crop, results a wide range of loss in production and yield. Sunflower is susceptible to diseases of ...

  8. Nonmarket economic values of forest insect pests: An updated literature review

    Science.gov (United States)

    Randall S. Rosenberger; Lauren A. Bell; Patricia A. Champ; Eric. L. Smith

    2012-01-01

    This report updates the literature review and synthesis of economic valuation studies on the impacts of forest insect pests by Rosenberger and Smith (1997). A conceptual framework is presented to establish context for the studies. This report also discusses the concept of ecosystem services; identifies key elements of each study; examines areas of future research; and...

  9. Effect of irradiation and insect pest control on rots and sensory ...

    African Journals Online (AJOL)

    The coffee bean weevil, Araecerus fasciculatus Degeer (Coleoptera: Curculionidae) is associated with rots in stored yam tubers. The current study was designed to assess the effect of irradiation and other insect pest control strategies on rots and sensory quality of stored yams. 450 tubers each of two varieties of white yam ...

  10. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee

    Science.gov (United States)

    The coffee berry borer (Hypothenemus hampei) is the most devastating insect pest of coffee worldwide. It infests crops in most coffee producing countries, and is of particular concern in developing countries where coffee comprises a significant component of gross domestic product. Of more than 850 i...

  11. Broad sprectrum potential of Isaria fumosorosea on insect pests of citrus

    Science.gov (United States)

    Use of entomopathogenic fungi, Isaria fumosorosea, Ifr, =Paecilomyces fumosoroseus, successfully increased insect pest mortality. Spraying the Ifr containing product, PFR97 TM, on citrus seedlings was used to screen efficacy for the management of Asian citrus psyllid, Diaphorina citri; glassy-winge...

  12. The insect pest complex and related problems of lowland rice cultivation in South Sulawesi, Indonesia

    NARCIS (Netherlands)

    Halteren, van P.

    1979-01-01

    CHAPTER 1.

    The Department of Entomology of the Research Institute for Agriculture at Maros is concerned with insect pests of food crops, and serves the needs of farmers, most of them living near subsistance level, and of extension workers.

    South Sulawesi, formerly known as South

  13. Strategic options in using sterile insects for area-wide integrated pest management

    International Nuclear Information System (INIS)

    Hendrichs, J.; Vreysen, M.J.B.; Enkerlin, W.R.; Cayol, J.P.

    2005-01-01

    The four strategic options, 'suppression', 'eradication', 'containment' and 'prevention', in which the sterile insect technique (SIT) can be deployed as part of area-wide integrated pest management (AW-IPM) interventions, are defined and described in relation to the contexts in which they are applied against exotic or naturally occurring major insect pests. Advantages and disadvantages of these strategic options are analysed, and examples of successful programmes provided. Considerations of pest status, biology and distribution affecting decision-making in relation to strategy selection are reviewed and discussed in terms of feasibility assessment, and programme planning and implementation. Unrealistic expectations are often associated with applying the SIT, resulting in high political costs to change a strategy during implementation. The choice of strategy needs to be assessed carefully, and considerable baseline data obtained to prepare for the selected strategy, before embarking on an AW-IPM programme with an SIT component. (author)

  14. Future pest status of an insect pest in museums, Attagenus smirnovi

    DEFF Research Database (Denmark)

    Hansen, Lise Stengård; Åkerlund, Monika; Grøntoft, Terje

    2012-01-01

    The brown carpet beetle Attagenus smirnovi, Zhantiev 1973 (Coleoptera: Dermestidae) is an important pest of objects of organic origin in museums of cultural and natural history in Europe. Future climate changes are expected to lead to increasing temperatures, which will affect the pest status...... in museums and collections in Scandinavia due to this pest will increase as climate changes come into effect....... was consumed in the greatest amounts: 169 mg of wool was consumed in three months by 30 A. smirnovi larvae. The expected future climate changes in Scandinavia are assumed to lead to higher temperatures in museums and stores where climate is not regulated. Updated data on the present distribution of A. smirnovi...

  15. Main predators of insect pests: screening and evaluation through comprehensive indices.

    Science.gov (United States)

    Yang, Tingbang; Liu, Jie; Yuan, Longyu; Zhang, Yang; Peng, Yu; Li, Daiqin; Chen, Jian

    2017-11-01

    Predatory natural enemies play key functional roles in integrated pest management. However, the screening and evaluation of the main predators of insect pests has seldom been reported in the field. Here, we employed comprehensive indices for evaluating the predation of a common pest (Ectropis obliqua) by nine common spider species in Chinese tea plantations. We established the relative dominance of the spider species and their phenological overlap with the pest species, and analyzed DNA from the nine spider species using targeted real-time quantitative polymerase chain reaction to identify the residual DNA of E. obliqua. The predation rates and predation numbers per predator were estimated by the positive rates of target fragments and the residual minimum number of E. obliqua in predators' guts, respectively. The results showed that only four spider species preyed on E. obliqua, and the order of potential of the spiders to control E. obliqua from greatest to smallest was Neoscona mellotteei, Xysticus ephippiatus, Evarcha albaria and Coleosoma octomaculatum by the Z-score method. The orb-weaving spider N. mellotteei has the maximum potential as a biological control agent of E. obliqua in an integrated pest management strategy. An approach of screening and evaluating main predators of insect pests through comprehensive indices was preliminarily established. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Optical characterization of agricultural pest insects: a methodological study in the spectral and time domains

    Science.gov (United States)

    Li, Y. Y.; Zhang, H.; Duan, Z.; Lian, M.; Zhao, G. Y.; Sun, X. H.; Hu, J. D.; Gao, L. N.; Feng, H. Q.; Svanberg, S.

    2016-08-01

    Identification of agricultural pest insects is an important aspect in insect research and agricultural monitoring. We have performed a methodological study of how spectroscopic techniques and wing-beat frequency analysis might provide relevant information. An optical system based on the combination of close-range remote sensing and reflectance spectroscopy was developed to study the optical characteristics of different flying insects, collected in Southern China. The results demonstrate that the combination of wing-beat frequency assessment and reflectance spectral analysis has the potential to successfully differentiate between insect species. Further, studies of spectroscopic characteristics of fixed specimen of insects, also from Central China, showed the possibility of refined agricultural pest identification. Here, in addition to reflectance recordings also laser-induced fluorescence spectra were investigated for all the species of insects under study and found to provide complementary information to optically distinguish insects. In order to prove the practicality of the techniques explored, clearly fieldwork aiming at elucidating the variability of parameters, even within species, must be performed.

  17. The insect ecdysone receptor is a good potential target for RNAi-based pest control.

    Science.gov (United States)

    Yu, Rong; Xu, Xinping; Liang, Yongkang; Tian, Honggang; Pan, Zhanqing; Jin, Shouheng; Wang, Na; Zhang, Wenqing

    2014-01-01

    RNA interference (RNAi) has great potential for use in insect pest control. However, some significant challenges must be overcome before RNAi-based pest control can become a reality. One challenge is the proper selection of a good target gene for RNAi. Here, we report that the insect ecdysone receptor (EcR) is a good potential target for RNAi-based pest control in the brown planthopper Nilaparvata lugens, a serious insect pest of rice plants. We demonstrated that the use of a 360 bp fragment (NlEcR-c) that is common between NlEcR-A and NlEcR-B for feeding RNAi experiments significantly decreased the relative mRNA expression levels of NlEcR compared with those in the dsGFP control. Feeding RNAi also resulted in a significant reduction in the number of offspring per pair of N. lugens. Consequently, a transgenic rice line expressing NlEcR dsRNA was constructed by Agrobacterium- mediated transformation. The results of qRT-PCR showed that the total copy number of the target gene in all transgenic rice lines was 2. Northern blot analysis showed that the small RNA of the hairpin dsNlEcR-c was successfully expressed in the transgenic rice lines. After newly hatched nymphs of N. lugens fed on the transgenic rice lines, effective RNAi was observed. The NlEcR expression levels in all lines examined were decreased significantly compared with the control. In all lines, the survival rate of the nymphs was nearly 90%, and the average number of offspring per pair in the treated groups was significantly less than that observed in the control, with a decrease of 44.18-66.27%. These findings support an RNAi-based pest control strategy and are also important for the management of rice insect pests.

  18. Relative densities of natural enemy and pest insects within California hedgerows.

    Science.gov (United States)

    Gareau, Tara L Pisani; Letourneau, Deborah K; Shennan, Carol

    2013-08-01

    Research on hedgerow design for supporting communities of natural enemies for biological control lags behind farmer innovation in California, where assemblages of perennial plant species have been used on crop field margins in the last decade. We compared natural enemy to pest ratios between fields with hedgerows and fields with weedy margins by sampling beneficial insects and key pests of vegetables on sticky cards. We used biweekly vacuum samples to measure the distribution of key insect taxa among native perennial plant species with respect to the timing and intensity of bloom. Sticky cards indicated a trend that field margins with hedgerows support a higher ratio of natural enemies to pests compared with weedy borders. Hedgerow plant species hosted different relative densities of a generally overlapping insect community, and the timing and intensity of bloom only explained a small proportion of the variation in insect abundance at plant species and among hedgerows, with the exception of Orius spp. on Achillea millefolium L. and Baccharis pilularis De Candolle. Indicator Species Analysis showed an affinity of parasitic wasps, especially in the super-family Chalcidoidea, for B. pilularis whether or not it was in flower. A. millefolium was attractive to predatory and herbivorous homopterans; Heteromeles arbutifolia (Lindley) Roemer and B. pilularis to Diabrotica undecimpunctata undecimpunctata Mannerheim; and Rhamnus californica Eschsch to Hemerobiidae. Perennial hedgerows can be designed through species selection to support particular beneficial insect taxa, but plant resources beyond floral availability may be critical in providing structural refuges, alternative prey, and other attractive qualities that are often overlooked.

  19. Entomopathogenic Fungi Associated with Exotic Invasive Insect Pests in Northeastern Forests of the USA

    Science.gov (United States)

    Gouli, Vladimir; Gouli, Svetlana; Marcelino, José A. P.; Skinner, Margaret; Parker, Bruce L.

    2013-01-01

    Mycopathogens of economically important exotic invasive insects in forests of northeastern USA have been the subject of research at the Entomology Research Laboratory, University of Vermont, for the last 20 years. Elongate hemlock scale, European fruit lecanium, hemlock woolly adelgid and pear thrips were analyzed for the presence of mycopathogens, in order to consider the potential for managing these pests with biological control. Fungal cultures isolated from insects with signs of fungal infection were identified based on morphological characters and DNA profiling. Mycopathogens recovered from infected insects were subdivided into three groups, i.e., specialized entomopathogenic; facultative entomopathogens; ubiquitous opportunistic contaminants. Epizootics were caused by fungi in the specialized group with the exception of M. microspora, P. marquandii and I. farinosa. Inoculation of insects in laboratory and field conditions with B. bassiana, L. muscarium and Myriangium sp. caused insect mortality of 45 to 95%. Although pest populations in the field seemed severely compromised after treatment, the remnant populations re-established themselves after the winter. Although capable of inducing high mortality, a single localized aerial application of a soil-dwelling fungus does not maintain long-time suppression of pests. However, it can halt their range expansion and maintain populations below the economic threshold level without the use of expensive insecticides which have a negative impact on the environment. PMID:26462527

  20. Semiochemical-based pest insect management in strawberry and raspberry

    OpenAIRE

    Wibe, Atle; Baroffio, Catherine; Borg-Karlson, Anna-Karin; Cross, Jerry; Fountain, Michelle; Hall, David; Mozuraitis, Raimondas; Ralle, Baiba; Sigsgaard, Lene; Trandem, Nina

    2016-01-01

    Introduction: For many insect species, pheromones and host plant volatiles are of major importance in mate finding and host plant location. Therefore, there is potential for using these interactions to develop new strategies and effective control measures. The strawberry blossom weevil (Anthonomus rubi), the European tarnished plant bug (Lygus rugulipennis) and the raspberry beetle (Byturus tomentosus) cause large losses (10->80%) in both conventional and organic strawberry and raspberry prod...

  1. FAO/IAEA international conference on area-wide control of insect pests integrating the sterile insect and related nuclear and other techniques. Programme book of abstracts

    International Nuclear Information System (INIS)

    1998-06-01

    The organization of this International Conference on the Areawide Approach to the Control of Insect Pests is appropriate and timely. There is increasing interest in the holistic approach to dealing with major insect pest problems. This interest has been prompted by the steady progress scientists have made in the development of the sterile insect technique for eliminating the screwworm from North America, the melon fly from Okinawa, the elimination and containment of the medfly in various countries and the progress that scientists have made in eradicating tsetse fly populations from isolated areas. Increased interest has also been shown by agriculturalists because of the realization that the farm-to-farm reactive method of insect control is only a temporary solution to problems and that pests continue to be about as numerous as ever from year-to-year. In the meantime, there is increasing public concern over the environmental hazards created by the use of broad-spectrum insecticides to deal with insect pest problems. The sterile insect technique provides a feasible way to manage total insect pest populations. However, other techniques and strategies appropriately integrated into management programs can increase the effectiveness and efficiency of area-wide management programs. These include the augmentation of massproduced biological organisms and the use of semiochemicals such as the insect sex pheromones. This conference will give pest management scientists from many countries the opportunity to exchange information on the area-wide approach to insect pest management - an approach that if fully developed can be highly effective, low in cost and at the same time make a major contribution to alleviating the environmental concerns associated with primary reliance on broad-spectrum insecticides for controlling insect pests. This document contains 200 abstracts of papers presented at the conference

  2. Abiotic Factors Affecting Canola Establishment and Insect Pest Dynamics

    Directory of Open Access Journals (Sweden)

    Christian Nansen

    2012-01-01

    Full Text Available Canola is grown mainly as an oil-seed crop, but recently the interest in canola has increased due to its potential as a biodiesel crop. The main objectives of this paper were to evaluate effects of abiotic factors and seed treatment on canola plant establishment and pest pressure in the Southern High Plains of Texas. Data was collected at two field locations during the first seven months of two field seasons. Based on multi-regression analysis, we demonstrated that precipitation was positively associated with ranked plant weight, daily minimum relative humidity and maximum temperature were negatively associated with plant weight, and that there may be specific optimal growth conditions regarding cumulative solar radiation and wind speed. The outlined multi-regression approach may be considered appropriate for ecological studies of canola establishment and pest communities elsewhere and therefore enable identification of suitable regions for successful canola production. We also demonstrated that aphids were about 35% more abundant on non-treated seeds than on treated seeds, but the sensitivity to seed treatment was only within four months after plant emergence. On the other hand, seed treatment had negligible effect on presence of thrips.

  3. The use of floral homeotic mutants as a novel way to obtain durable resistance to insect pests

    NARCIS (Netherlands)

    Kater, M.M.; Franken, J.; Inggamer, H.; Gretenkort, M.; Tunen, van A.J.; Mollema, C.; Angenent, G.C.

    2003-01-01

    We have developed a novel strategy for the introduction of durable insect resistance in crops. This strategy was based on intervention in the natural relationship between plants and insects. For many insects, including pests such as thrips (Frankliniella occidentalis), the flower is an important

  4. Recombinant entomopathogenic agents: a review of biotechnological approaches to pest insect control.

    Science.gov (United States)

    Karabörklü, Salih; Azizoglu, Ugur; Azizoglu, Zehra Busra

    2017-12-18

    Although the use of chemical pesticides has decreased in recent years, it is still a common method of pest control. However, chemical use leads to challenging problems. The harm caused by these chemicals and the length of time that they will remain in the environment is of great concern to the future and safety of humans. Therefore, developing new pest control agents that are safer and environmentally compatible, as well as assuring their widespread use is important. Entomopathogenic agents are microorganisms that play an important role in the biological control of pest insects and are eco-friendly alternatives to chemical control. They consist of viruses (non-cellular organisms), bacteria (prokaryotic organisms), fungi and protists (eukaryotic organisms), and nematodes (multicellular organisms). Genetic modification (recombinant technology) provides potential new methods for developing entomopathogens to manage pests. In this review, we focus on the important roles of recombinant entomopathogens in terms of pest insect control, placing them into perspective with other views to discuss, examine and evaluate the use of entomopathogenic agents in biological control.

  5. Insecticidal, repellent, antimicrobial activity and phytotoxicity of essential oils: With special reference to limonene and its suitability for control of insect pests

    Directory of Open Access Journals (Sweden)

    M.A. IBRAHIM

    2008-12-01

    Full Text Available The interest in the use of monoterpenes for insect pest and pathogen control originates from the need for pesticide products with less negative environmental and health impacts than highly effective synthetic pesticides. The expanding literature on the possibility of the use of these monoterpenes is reviewed and focused on the effects of limonene on various bioorganisms. Limonene is used as insecticide to control ectoparasites of pet animals, but it has activity against many insects, mites, and microorganisms. Possible attractive effects of limonene to natural enemies of pests may offer novel applications to use natural compounds for manipulation of beneficial animals in organic agriculture. However, in few cases limonene-treated plants have become attractive to plant damaging insects and phytotoxic effects on cultivated plants have been observed. As a plant-based natural product limonene and other monoterpenes might have use in pest and weed control in organic agriculture after phytotoxicity on crop plants and, effects on non-target soil animals and natural enemies of pest have been investigated

  6. The sterile insect technique in the integrated pest management of whitefly species in greenhouses

    International Nuclear Information System (INIS)

    Calvitti, M.; Remotti, P.C.; Cirio, U.

    2000-01-01

    Insect pests commonly known as whiteflies are Hemiptera belonging to the family of Aleyrodidae Trialeurodes vaporariorum Westwood (greenhouse whitefly) and the B-biotype of Bemisia tabaci Gennadius (=Bemisia argentifolii Bellows and Perring) are pests whose economic importance is constantly increasing within the European agriculture. The B-biotype of B. tabaci, in particular, has become more problematic by causing damage over a wide range, from the temperate climates of Californian squash fields to European greenhouses and field crops. In the absence of valid alternatives, many growers have resorted to intensive application of insecticides to control these pests, creating a severe environmental and health hazard. Several new environmentally safe technologies are currently available and have opened up new opportunities in the integrated pest management (IPM) of whiteflies under greenhouse conditions. In particular, biological or biologically-based control means, including a number of fungi, insects, and compounds have been recently developed. However, the limitation of whitefly population outbreaks in greenhouses is a problem that needs to be solved. The idea to extend the use of sterile insect technique (SIT) to a confined environment against whitefly species is novel, and especially when we consider that the target species undergo arrhenotoky (unfertilised females generate only male progenies). The possibility to join this approach to the Integrated Pest Management (IPM) of the whitefly species in the greenhouse may open new perspectives in the safe application of nuclear technology for pest control. The present work reviews recent advances in research and practice related to the development of SIT for the control of whiteflies in greenhouses. Explanations on whitefly radiation biology, with data on Bemisia spp. radio-sterilisation, methods for whitefly mass rearing and collection, and the definition of a complete SIT procedure tested against the greenhouse

  7. Insect and Pest Control Newsletter, No. 77, July 2011

    International Nuclear Information System (INIS)

    2011-07-01

    As reported in some previous newsletters, both FAO and IAEA have been undergoing considerable transformation as a result of a major on-going reform process of FAO that started in 2009 and which is scheduled to be fully implemented by 2013. In addition, the IAEA has seen a complete change of senior management and in January 2011 Mr Daud Mohamad was appointed Deputy Director General Nuclear Sciences and Applications and Head of the Department which includes the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. The IAEA has been implementing AIPS, a new IAEA wide Information System for Programme Support, representing a drastic transformation of processes. Until recently there were over 60 different and independent internal information systems and AIPS is replacing most of them with one Oracle product. AIPS also entails the adoption of IPSAS, the International Public Sector Accounting Standards, which is used in a majority of international organizations, involving independentlymaintained standards for financial reporting, considered best practice for organizations like ours. AIPS is being introduced in stages or 'plateaus'. The first plateau is devoted to Finance, Procurement, Transportation and the operational parts of Programme and Project Management. This went live in January 2011, in tandem with our adoption of IPSAS. Plateau 2 is scheduled for 2012. In terms of new publications, a special issue of Genetica on 'Molecular Technologies to Improve the Effectiveness of the Sterile Insect Technique' was recently published. A second publication, 'Rearing Codling Moth for the Sterile Insect Technique' is a text book that was published under the FAO Plant Production and Protection Paper series.

  8. The Optimum Condition For Determination Of Radioactivity Of Pest Insects Labelled with P-32 By Using Liquid scintillation Counter

    International Nuclear Information System (INIS)

    Yarianto, S.; Susilo, Budi; Sutrisno, Singgih

    2002-01-01

    Tracer technique is needed in the control programe of pest insects especially for determining of its direction and dispersal. Radioisotopes of P-32 is frecuently used for labeling of pest insects. Liquid Scintillation Counter can be used effectively for measuring radioactivity of pest insects labelled by P-32. Optilnization of liquid compositions that consist of solvents. primary scintillation PPO and secondary scintillation POPOP were determined by examination of their compositions. Based on the research result obtained, composition of scintillator which had the highest efficiency. consists of P-Xylene solvent. primary scintillation PPO (5 g/l ) and secondary scintillation POPOP (0.5 g/l)

  9. Probability to produce animal vaccines in insect baculovirus ...

    African Journals Online (AJOL)

    The insect baculovirus expression system is a valuable tool for the production of vaccine. Many subunit vaccines have been expressed in this system. The first vaccine produced in insect cells for animal use is now in the market. In this study, we reviewed recent progress of animal's vaccine production for different expression ...

  10. Combining pest control and resistance management: synergy of engineered insects with Bt crops.

    Science.gov (United States)

    Alphey, Nina; Bonsall, Michael B; Alphey, Luke

    2009-04-01

    Transgenic crops producing insecticidal toxins are widely used to control insect pests. Their benefits would be lost if resistance to the toxins became widespread in pest populations. The most widely used resistance management method is the high-dose/refuge strategy. This requires toxin-free host plants as refuges near insecticidal crops, and toxin doses intended to be sufficiently high to kill insects heterozygous for a resistant allele, thereby rendering resistance functionally recessive. We have previously shown by mathematical modeling that mass-release of harmless susceptible (toxin-sensitive) insects engineered with repressible female-specific lethality using release of insects carrying a dominant lethal ([RIDL] Oxitec Limited, United Kingdom) technology could substantially delay or reverse the spread of resistance and reduce refuge sizes. Here, we explore this proposal in depth, studying a wide range of scenarios, considering impacts on population dynamics as well as evolution of allele frequencies, comparing with releases of natural fertile susceptible insects, and examining the effect of seasonality. We investigate the outcome for pest control for which the plant-incorporated toxins are not necessarily at a high dose (i.e., they might not kill all homozygous susceptible and all heterozygous insects). We demonstrate that a RIDL-based approach could form an effective component of a resistance management strategy in a wide range of genetic and ecological circumstances. Because there are significant threshold effects for several variables, we expect that a margin of error would be advisable in setting release ratios and refuge sizes, especially as the frequency and properties of resistant alleles may be difficult to measure accurately in the field.

  11. Insect pests associated with cowpea – sorghum intercropping system by considering the phenological stages

    Directory of Open Access Journals (Sweden)

    Diana González Aguiar

    2016-10-01

    Full Text Available The research aims to determine the main insect pest populations and their behavior in the combination cowpea - sorghum. This work took into account the phenology of each crop. The study was conducted on a Cambisol soil from the Basic Unit of Cooperative Production “Día y Noche”, which belongs to the Basic Unit of Cooperative Production “28 de Octubre”, Santa Clara municipality, Villa Clara province, Cuba. The experimental design was a random blocks included four treatments and four repetitions. The first arrangement consisted of two rows of cowpea for each row of sorghum; the second one included three rows of cowpea and one row of sorghum. The other treatments were the monocultures of cowpea and sorghum. The methodology included visual observations of plants with a weekly frequency until crop harvest to detect the presence of the insects. Also, the phenology of each crop was considered. The phytophagous insects quantified in the cowpea crop belong to the families Chrysomelidae, Pyralidae, Cicadellidae, while in the sorghum crop, these insects belong to the families Noctuidae and Aphididae. Finally, the results showed the positive effects of both spatial arrangements with a smaller incidence of insect pest populations.

  12. Analysis of virus susceptibility in the invasive insect pest Drosophila suzukii.

    Science.gov (United States)

    Lee, Kwang-Zin; Vilcinskas, Andreas

    2017-09-01

    The invasive insect pest Drosophila suzukii infests ripening fruits and causes massive agricultural damage in North America and Europe (Cini et al., 2012). Environmentally sustainable strategies are urgently needed to control the spread of this species, and entomopathogenic viruses offer one potential solution for global crop protection. Here we report the status of intrinsic and extrinsic factors that influence the susceptibility of D. suzukii to three model insect viruses: Drosophila C virus, Cricket paralysis virus and Flock house virus. Our work provides the basis for further studies using D. suzukii as a host system to develop viruses as biological control agents. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The Current Status of Baculovirus and Their Implication for Insect Pest Control

    Directory of Open Access Journals (Sweden)

    Arman Wijonarko

    2001-07-01

    Full Text Available Baculovirus have been promoted as the promising bioinsecticides for their pest control potential for more than half a century. But only a few have been successful as biological control agent, and almost none has been proven as commercial success, or widely used for large-scale insect pest control. The bioinsecticides currently represent only a small fraction of the world pesticide market. The successful of the Bt crop marked a special achievement in the bioinsecticide market growth. How about the baculoviruses? The main hurdle for baculovirus to be developed as bioinsecticide is its poor performance compare to synthetic chemical ones, include the speed of kill, and host range. It is important to understand the nature of baculovirus, and explore the possibilities to develop new way in applying the baculovirus as bioinsecticides. Key words: current status, baculovirus, insect control

  14. The insect excretory system as a target for novel pest control strategies.

    Science.gov (United States)

    Ruiz-Sanchez, Esau; O'Donnell, Michael J

    2015-10-01

    The insect excretory system plays essential roles in osmoregulation, ionoregulation and toxin elimination. Understanding the mechanisms of fluid and ion transport by the epithelial cells of the excretory system provides a foundation for development of novel pest management strategies. In the present review, we focus on two such strategies: first, impairment of osmoregulation by manipulation of diuretic or antidiuretic signaling pathways and second, interference with toxin elimination by inhibition of toxin transport systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. The sterile insect technique [videorecording]: An environment-friendly method of insect pest suppression and eradication

    International Nuclear Information System (INIS)

    2003-01-01

    Using graphic displays and clips of actual laboratory and field activities related to the sterile insect technique (SIT), the video covers various topics on the principles and applications of this technique

  16. Developing a neem-based pest management product: laboratory evaluations of neem extracts on insect pests resistance to synthetic pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Permana, A.D.; Rahadian, R.; Wibowo, S.A

    1998-12-16

    Laboratory studies has been conducted as a part of a project aimed at the development of a neem-based insecticide for pest management purposes. Permethrin, a pyrethroid insecticide, and neem (Azadirachta indica) products were tested against larvae of Diamondback Moth Plutella xylostella, and Helicoverpa armigera collected from several locations in West Java, Indonesia. The results of bioassay showed that the average LC{sub 50} values of permethrin for Plutella xylostella had been 60-100 fold higher as compared with the normal dosage recommended. Similarly, the LC{sub 50} values obtained for Helicoverpa armigera had been 46-73 fold as compared with the recommended dosage. These facts suggest that both insects have developed resistance to permethrin. The results of bioassay with neem-products tested against Plutella xylostella and Helicoverpa armigera larvae showed that statistically LC{sub 50} values of neem-products for each strain of either Plutella xylostella or Helicoverpa armigera were not significantly different one to another. We also found that neem-treated insects, even though they were not killed directly by the insecticide, were not able to molt to the next instar or pupae, so that very low percentage of adults emerged. The susceptibility of neem-products could not be easily determined by only measuring the LC{sub 50} values from the larval stage, but the disruption of the growth and development of the insect should be considered as well. Our findings suggest that neem-products could be used effectively to control insects which have developed resistance to conventional insecticide. (author)

  17. Insecticide toxicity and synergism by enzyme inhibitors in 18 species of pest insect and natural enemies in crucifer vegetable crops.

    Science.gov (United States)

    Wu, Gang; Miyata, Tadashi; Kang, Chun Yu; Xie, Lian Hui

    2007-05-01

    The toxicities of three enzyme inhibitors and their synergistic effects on four insecticides were studied by using the dry film method on field populations of 18 species of insects collected in Jianxin and Shanjie, China, from 2003 to 2005. Meanwhile, the inhibitory effects of these enzyme inhibitors on the activities of acetylcholinesterases (AChE), carboxyesterases (CarE) and glutathione-S-transferases (GST), in vivo, were also studied. In general, triphenyl phosphate (TPP) and diethyl maleate (DEM) showed low toxicities to six herbivorous pest insects, four ladybirds and eight parasitoids. Piperonyl butoxide (PB) exhibited low toxicities to the herbivorous pest insects and ladybirds, but high toxicities to the eight parasitoids. The tolerance to the insecticides in 11 pest insects and natural enemies was mainly associated with the tolerance to PB. PB showed the highest synergism on methamidophos, fenvalerate, fipronil and avermectin in nine species of pest insects and natural enemies. In general, TPP and DEM showed significant synergisms to these four insecticides in four parasitoid species. However, in contrast to their effects on the parasitoids, the synergistic effects of TPP and DEM on the four insecticides by TPP and DEM against four pest insects and one ladybird varied depending on the insect species and enzyme inhibitor. Activity of AChE, CarE or GST could be strongly inhibited, in vivo, by PB, TPP or DEM, depending on the insect species and enzyme inhibitors. From the results obtained in this study, mixed-function oxidase (MFO) was thought to play the most critical role in insect tolerances to the tested insecticides in the field. Low competition existed in the evolution of insecticide resistance in the field populations of parasitoids, as compared with herbivorous pest insects and ladybirds. Possible causes of the high synergistic effects of PB on the four classes of insecticides, based on multiattack on the activity of CarE, GST or AChE in the insect

  18. Can Hedgerows Attract Beneficial Insects and Improve Pest Control? A Study of Hedgerows on Central Coast Farms

    OpenAIRE

    Pisani Gareau, Tara; Shennan, Carol

    2010-01-01

    The objectives of this study, conducted from 2005 to 2007, were (1) to assess the habitat quality of different hedgerow plants for insect natural enemies and pests, (2) to track the movement of insects from hedgerows into adjacent crop fields and (3) to test the effect of hedgerows on parasitism rates of an economically important pest, the cabbage looper (Trichoplusia ni). This study took place at four farms with hedgerows on the Central Coast of California.

  19. Defence mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management. A review

    OpenAIRE

    Ahuja, Ishita; Rohloff, Jens; Bones, Atle Magnar

    2010-01-01

    International audience; Brassica crops are grown worldwide for oil, food and feed purposes, and constitute a significant economic value due to their nutritional, medicinal, bioindustrial, biocontrol and crop rotation properties. Insect pests cause enormous yield and economic losses in Brassica crop production every year, and are a threat to global agriculture. In order to overcome these insect pests, Brassica species themselves use multiple defence mechanisms, which can be constitutive, induc...

  20. The effect of gamma irradiation on insect pest of rice in storage

    International Nuclear Information System (INIS)

    Rita Muhamad Awang; Noorma Osman.

    1987-01-01

    This study was conducted to determine the effect of gamma irradiation on insect pest of rice, stored for a period of 24 months, and packed in four different packaging materials. They were then exposed to gamma radiation using Gamma Cell 220, in a 60 Co source. Samples were randomly sampled at the initial storage period and there after at 3 months interval. At each sampling time the grain weight loss and insect count, both dead and alive, were determined. The increasing dosages of irradiation did not show any consistent effect on the insect population in all the four packaging materials which indicated that the rice was already infested even before it was irradiated. The range of percentage weight loss for all the dosages of irradiation in all of the four packaging materials is 0.99 to 2.02. (A.J.)

  1. Detection of irradiated insects - pest of stored products: locomotion activity of irradiated adult beetles

    International Nuclear Information System (INIS)

    Banasik, K.

    1994-01-01

    An indirect behavioural test (test of locomotion as a measure of vigor) to determine whether the insects have been subject to irradiation is proposed. The higher the dose applied, the lesser the locomotor activity of the treated beetles, pests of stored products. For radiation disinfestation, the doses ranging from 0.3 to 1.0 kGy are suggested. At these doses the walking speed of insects, i.e. ability to disperse, is greatly affected. The various species responded to gamma irradiation in a different way. At the first day after treatment all T. confusum Duv. beetles treated with 0.25 to 0.5 kGy doses showed the reduction of locomotor activity by more than 25%. The walking speed of the granary weevil Sitophilus granarius L. and the bean weevil Acanthoscelides obtectus Say, treated with low doses of gamma radiation, was not affected or it was even higher than the control. At the next day after treatment the walking speed of irradiated insects was negatively correlated with the dose applied. Using data on the percentage of the confused flour beetles that moved outside the 20 cm diam. circle during the first minute as well as during the next minutes, it was possible to discriminate the insects irradiated with high doses of gamma radiation from those treated with 0.25 and 0.5 kGy and untreated. The results obtained suggests that the locomotor test may be used as an identification method of irradiated insects, pests or stored products. The specific causes of decreased locomotor activity of irradiated insects and/or ability to disperse have not been yet established. However, muscles controlling locomotion (walking) seem to be damaged by radiation. (author)

  2. Allergenicity and cross-reactivity of booklice (Liposcelis bostrichophila): a common household insect pest in Japan.

    Science.gov (United States)

    Fukutomi, Yuma; Kawakami, Yuji; Taniguchi, Masami; Saito, Akemi; Fukuda, Azumi; Yasueda, Hiroshi; Nakazawa, Takuya; Hasegawa, Maki; Nakamura, Hiroyuki; Akiyama, Kazuo

    2012-01-01

    Booklice (Liposcelis bostrichophila) are a common household insect pest distributed worldwide. Particularly in Japan, they infest 'tatami' mats and are the most frequently detected insect among all detectable insects, present at a frequency of about 90% in dust samples. Although it has been hypothesized that they are an important indoor allergen, studies on their allergenicity have been limited. To clarify the allergenicity of booklice and the cross-reactivity of this insect allergen with allergens of other insects, patients sensitized to booklice were identified from 185 Japanese adults with allergic asthma using skin tests and IgE-ELISA. IgE-inhibition analysis, immunoblotting and immunoblotting-inhibition analysis were performed using sera from these patients. Allergenic proteins contributing to specific sensitization to booklice were identified by two-dimensional electrophoresis and two-dimensional immunoblotting. The booklouse-specific IgE antibody was detected in sera from 41 patients (22% of studied patients). IgE inhibition analysis revealed that IgE reactivity to the booklouse allergen in the sera from one third of booklouse-sensitized patients was not inhibited by preincubation with extracts from any other environmental insects in this study. Immunoblotting identified a 26-kD protein from booklouse extract as the allergenic protein contributing to specific sensitization to booklice. The amino acid sequence of peptide fragments of this protein showed no homology to those of previously described allergenic proteins, indicating that this protein is a new allergen. Sensitization to booklice was relatively common and specific sensitization to this insect not related to insect panallergy was indicated in this population. Copyright © 2011 S. Karger AG, Basel.

  3. Soil application of neonicotinoid insecticides for control of insect pests in wine grape vineyards.

    Science.gov (United States)

    Van Timmeren, Steven; Wise, John C; Isaacs, Rufus

    2012-04-01

    Soil application of systemic neonicotinoid insecticides can provide opportunities for long-term control of insect pests in vineyards, with minimal risk of pesticide drift or worker exposure. This study compared the effectiveness of neonicotinoid insecticides applied via irrigation injection on key early-season and mid-season insect pests of vineyards in the eastern United States. On vines trained to grow on drip irrigation, early-season application of imidacloprid, clothianidin, thiamethoxam and dinotefuran provided high levels of control against the potato leafhopper, Empoasca fabae. Protection of vines against Japanese beetle, Popillia japonica, and grape berry moth, Paralobesia viteana, was also observed after mid-season applications. Efficacy was poor in commercial vineyards when treatments were applied to the soil before irrigation or rain, indicating that vines must be grown with an irrigation system for efficient uptake of the insecticide. In drip-irrigated vineyards, soil-applied neonicotinoids can be used to provide long residual control of either early-season or mid- to late-season foliage pests of vineyards. This approach can reduce the dependence on foliar-applied insecticides, with associated benefits for non-target exposure to workers and natural enemies. Copyright © 2012 Society of Chemical Industry.

  4. Synergistic interactions of ecosystem services: florivorous pest control boosts crop yield increase through insect pollination

    Science.gov (United States)

    Albrecht, Matthias

    2016-01-01

    Insect pollination and pest control are pivotal functions sustaining global food production. However, they have mostly been studied in isolation and how they interactively shape crop yield remains largely unexplored. Using controlled field experiments, we found strong synergistic effects of insect pollination and simulated pest control on yield quantity and quality. Their joint effect increased yield by 23%, with synergistic effects contributing 10%, while their single contributions were 7% and 6%, respectively. The potential economic benefit for a farmer from the synergistic effects (12%) was 1.8 times greater than their individual contributions (7% each). We show that the principal underlying mechanism was a pronounced pest-induced reduction in flower lifetime, resulting in a strong reduction in the number of pollinator visits a flower receives during its lifetime. Our findings highlight the importance of non-additive interactions among ecosystem services (ES) when valuating, mapping or predicting them and reveal fundamental implications for ecosystem management and policy aimed at maximizing ES for sustainable agriculture. PMID:26865304

  5. Identifying the impacts of climate change on key pests and diseases of plant and animal industries

    International Nuclear Information System (INIS)

    Luck, Jo; Aurambout, Jean-Philippe; Finlay, Kyla; Azuloas, Joe; Constable, Fiona; Rijswijk, Bonny Rowles-Van

    2007-01-01

    temperature data, coupled to plant physiology data and pest growth and population data for the Asian citrus psyllid (Diaphorina citri), vector of citrus greening disease, to determine the potential distribution and abundance of the insect in relation to climate change. This model will be built on to provide a more accurate prediction of the effects of climate change on plant and animal biosecurity and to develop contingency plans for government and industry to respond to and minimise the risks

  6. Strain improvement of fungal insecticides for controlling insect pests and vector-borne diseases.

    Science.gov (United States)

    Fang, Weiguo; Azimzadeh, Philippe; St Leger, Raymond J

    2012-06-01

    Insect pathogenic fungi play an important natural role in controlling insect pests. However, few have been successfully commercialized due to low virulence and sensitivity to abiotic stresses that produce inconsistent results in field applications. These limitations are inherent in most naturally occurring biological control agents but development of recombinant DNA techniques has made it possible to significantly improve the insecticidal efficacy of fungi and their tolerance to adverse conditions, including UV. These advances have been achieved by combining new knowledge derived from basic studies of the molecular biology of these pathogens, technical developments that enable very precise regulation of gene expression, and genes encoding insecticidal proteins from other organisms, particularly spiders and scorpions. Recent coverage of genomes is helping determine the identity, origin, and evolution of traits needed for diverse lifestyles and host switching. In future, such knowledge combined with the precision and malleability of molecular techniques will allow design of multiple pathogens with different strategies and host ranges to be used for different ecosystems, and that will avoid the possibility of the host developing resistance. With increasing public concern over the continued use of synthetic chemical insecticides, these new types of biological insecticides offer a range of environmental-friendly options for cost-effective control of insect pests. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Make your trappings count: The mathematics of pest insect monitoring. Comment on “Multiscale approach to pest insect monitoring: Random walks, pattern formation, synchronization, and networks” by Petrovskii et al.

    Science.gov (United States)

    Blasius, Bernd

    2014-09-01

    Since the beginnings of agriculture the production of crops is characterized by an ongoing battle between farmers and pests [1]. Already during biblical times swarms of the desert locust, Schistocerca gregaria, were known as major pest that can devour a field of corn within an hour. Even today, harmful organisms have the potential to threaten food production worldwide. It is estimated that about 37% of all potential crops are destroyed by pests. Harmful insects alone destroy 13%, causing financial losses in the agricultural industry of millions of dollars each year [2-4]. These numbers emphasize the importance of pest insect monitoring as a crucial step of integrated pest management [1]. The main approach to gain information about infestation levels is based on trapping, which leads to the question of how to extrapolate the sparse population counts at singularly disposed traps to a spatial representation of the pest species distribution. In their review Petrovskii et al. provide a mathematical framework to tackle this problem [5]. Their analysis reveals that this seemingly inconspicuous problem gives rise to surprisingly deep mathematical challenges that touch several modern contemporary concepts of statistical physics and complex systems theory. The review does not aim for a collection of numerical recipes to support crop growers in the analysis of their trapping data. Instead the review identifies the relevant biological and physical processes that are involved in pest insect monitoring and it presents the mathematical techniques that are required to capture these processes.

  8. Gamma-radiation control of the Sitophilus-orizae insect pest in the wheat grain storage

    International Nuclear Information System (INIS)

    Ritacco, M.

    1988-01-01

    Insects produce very important grain lost in the cereal storage. This lost is highly variable according to the type of cereal and the stored time. The principal pest among coleopters is Sitophilus orizae which attacks wheat grains. Ionizing radiation allowed us to develope an alternative control method to the chemical insecticides which have serious disadvantages. Our results expressed as the DL 50 , showed a considerable reduction of adult life spanning from 250 Gy. Post-irradiation adquired sterility was observed in the stored grain due to the absence of descendents. (Autor) [es

  9. Self-control of insect pests: a nuclear application that is friendly to the environment in the field of combat and eradicate of agricultural pests

    International Nuclear Information System (INIS)

    Mansour, M.

    2014-01-01

    For decades, insect control methods depend primarily on insecticides, and the world consumption of insecticides is increasing by about 5% every year. Unfortunately, however, these chemicals pollute the environment, leave residues on agricultural products, and kill beneficial organisms leading to secondary pest problems and insecticide resistance. Ecological and environmental concerns have lead to new tactics in insect pest control. These tactics put more emphasis on cultural, physical and biological control methods including autocidal control where insects are used to destroy their own natural population. This article discusses the subject of autocidal control, its history, philosophy, basics, advantages, how to use it and where. It also gives an idea about its current use and future outlook. (author)

  10. Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy.

    Science.gov (United States)

    Kumar, Suresh; Chandra, Amaresh; Pandey, K C

    2008-09-01

    Introduction of DDT (dichloro-diphenyl-trichloroethane) and following move towards indiscriminate use of synthetic chemical insecticides led to the contamination of water and food sources, poisoning of non-target beneficial insects and development of insect-pests resistant to the chemical insecticides. Increased public concems about the adverse environmental effects of indiscriminate use of chemical insecticides prompted search of altemative methods for insect-pest control. One of the promising alternatives has been the use of biological control agents. There is well-documented history of safe application of Bt (B. thuringiensis, a gram positive soil bacterium) as effective biopesticides and a number of reports of expression of delta-endotoxin gene(s) in crop plants are available. Only a few insecticidal sprays are required on Bt transgenic crops, which not only save cost and time, but also reduce health risks. Insects exhibit remarkable ability to develop resistance to different insecticidal compounds, which raises concern about the unsystematic use of Bt transgenic technology also. Though resistance to Bt products among insect species under field conditions has been rare, laboratory studies show that insects are capable of developing high levels of resistance to one ormore Cry proteins. Now it is generally agreed that 'high-dose/refuge strategy' is the most promising and practical approach to prolong the effectiveness of Bt toxins. Although manybiosafety concerns, ethical and moral issues exist, area under Bt transgenic crops is rapidly increasing and they are cultivated on more than 32 million hectares world over Even after reservation of European Union (EU) for acceptance of geneticaly modified (GM) crops, 6 out of 25 countries have already adopted Bt crops and many otherindustrial countries will adopt Bt transgenic crops in near future. While the modem biotechnology has been recognized to have a great potential for the promotion of human well-being, adoption

  11. Multiple origins of outbreak populations of a native insect pest in an agro-ecosystem.

    Science.gov (United States)

    Kobayashi, T; Sakurai, T; Sakakibara, M; Watanabe, T

    2011-06-01

    Native insects can become epidemic pests in agro-ecosystems. A population genetics approach was applied to analyze the emergence and spread of outbreak populations of native insect species. Outbreaks of the mirid bug, Stenotus rubrovittatus, have rapidly expanded over Japan within the last two decades. To characterize the outbreak dynamics of this species, the genetic structure of local populations was assessed using polymorphisms of the mtDNA COI gene and six microsatellite loci. Results of the population genetic analysis suggested that S. rubrovittatus populations throughout Japan were genetically isolated by geographic distance and separated into three genetic clusters occupying spatially segregated regions. Phylogeographic analysis indicated that the genetic structure of S. rubrovittatus reflected post-glacial colonization. Early outbreaks of S. rubrovittatus in the 1980s occurred independently of genetically isolated populations. The genetic structure of the populations did not fit the pattern of an outbreak expansion, and therefore the data did not support the hypothesis that extensive outbreaks were caused by the dispersal of specific pestiferous populations. Rather, the historical genetic structure prior to the outbreaks was maintained throughout the increase in abundance of the mirid bug. Our study indicated that changes in the agro-environment induced multiple outbreaks of native pest populations. This implies that, given suitable environmental conditions, local populations may have the potential to outbreak even without invasion of populations from other environmentally degraded areas.

  12. Transgenic organisms expressing genes from Bacillus thuringiensis to combat insect pests.

    Science.gov (United States)

    Zaritsky, Arieh; Ben-Dov, Eitan; Borovsky, Dov; Boussiba, Sammy; Einav, Monica; Gindin, Galina; Horowitz, A Rami; Kolot, Mikhail; Melnikov, Olga; Mendel, Zvi; Yagil, Ezra

    2010-01-01

    Various subspecies (ssp.) of Bacillus thuringiensis (Bt) are considered the best agents known so far to control insects, being highly specific and safe, easily mass produced and with long shelf life.1 The para-crystalline body that is produced during sporulation in the exosporium includes polypeptides named δ-endotoxins, each killing a specific set of insects. The different entomopathogenic toxins of various Bt ssp. can be manipulated genetically in an educated way to construct more efficient transgenic bacteria or plants that express combinations of toxin genes to control pests.2 Joint research projects in our respective laboratories during the last decade demonstrate what can be done by implementing certain ideas using molecular biology with Bt ssp. israelensis (Bti) as a model system. Here, we describe our progress achieved with Gram-negative bacterial species, including cyanobacteria, and some preliminary experiments to form transgenic plants, mainly to control mosquitoes (Diptera), but also a particular Lepidopteran and Coleopteran pest species. In addition, a system is described by which environment-damaging genes can be removed from the recombinants thus alleviating procedures for obtaining permits to release them in nature. © 2010 Landes Bioscience

  13. Damage by insect pests to the Djingarey Ber Mosque in Timbuktu: detection and control

    Directory of Open Access Journals (Sweden)

    Lara Maistrello

    2011-08-01

    Full Text Available The Djingarey Ber Mosque in Timbuktu (Mali is one of the most significant earthen construction in West Africa. Originally constructed in 1327, it was included in 1988 on the World Heritage UNESCO List for its unique architecture and historical importance. During its restoration, recently undertaken by the Aga Khan Trust for Culture, the wooden parts of the roof and architraves showed clear signs of threatening insect presence. In order to identify the pests responsible of the damage, evaluate its extent and suggest a proper control strategy, a detailed survey was performed inside the Mosque complex and in its immediate surroundings. The entomological inspection, performed in the dry-cold season, allowed to detect signs of insect damage in most of the wooden elements, even in the recently replaced beams, but also in walls, pillars and the precious decorated panels. Damages in the wood elements could be attributed to Amitermes evuncifer Silvestri (Termitidae, Bostrychoplites zycheli Marseuli (Bostrichidae and Lyctus africanus Lesne (Lyctidae, which were collected alive on site. Injures in the walls and decorated panels appeared to be performed by hymenopterans such as “plasterer bees” (Colletidae and Sphecidae. From the evaluation of the type and extent of damage in relation to the architecture and materials used in its construction and decoration, the most serious pest and the worse threat for the mosque is represented by termites. Control and preventive measures, in the view of a sustainable, long-lasting integrated management are suggested.

  14. The effect of landscape complexity and microclimate on the thermal tolerance of a pest insect.

    Science.gov (United States)

    Alford, Lucy; Tougeron, Kévin; Pierre, Jean-Sébastien; Burel, Françoise; van Baaren, Joan

    2017-03-21

    Landscape changes are known to exacerbate the impacts of climate change. As such, understanding the combined effect of climate and landscape on agroecosystems is vital if we are to maintain the function of agroecosystems. This study aimed to elucidate the effects of agricultural landscape complexity on the microclimate and thermal tolerance of an aphid pest to better understand how landscape and climate may interact to affect the thermal tolerance of pest species within the context of global climate change. Meteorological data were measured at the landscape level, and cereal aphids (Sitobion avenae, Metopolophium dirhodum and Rhopalosiphum padi) sampled, from contrasting landscapes (simple and complex) in winter 2013/2014 and spring 2014 in cereal fields of Brittany, France. Aphids were returned to the laboratory and the effect of landscape of origin on aphid cold tolerance (as determined by CT min ) was investigated. Results revealed that local landscape complexity significantly affected microclimate, with simple homogenous landscapes being on average warmer, but with greater temperature variation. Landscape complexity was shown to impact aphid cold tolerance, with aphids from complex landscapes being more cold tolerant than those from simple landscapes in both winter and spring, but with differences among species. This study highlights that future changes to land use could have implications for the thermal tolerance and adaptability of insects. Furthermore, not all insect species respond in a similar way to microhabitat and microclimate, which could disrupt important predator-prey relationships and the ecosystem service they provide. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  15. Semiochemical mediated enhancement of males to complement sterile insect technique in management of the tephritid pest Bactrocera tryoni (Froggatt)

    OpenAIRE

    Khan, Mohammed Abul Monjur; Manoukis, Nicholas C.; Osborne, Terry; Barchia, Idris M.; Gurr, Geoff M.; Reynolds, Olivia L.

    2017-01-01

    Queensland fruit fly, Bactrocera tryoni (Froggatt), is the most significant pest of Australia’s $9 billion horticulture industry. The sterile insect technique (SIT) and cue-lure (a synthetic analogue of raspberry ketone (RK))-based male annihilation technique (MAT) are two of the most effective management tools against this pest. However, combining these two approaches is considered incompatible as MAT kills sterile and ‘wild’ males indiscriminately. In the present study we tested the effect ...

  16. Numerical and functional responses of forest bats to a major insect pest in pine plantations.

    Directory of Open Access Journals (Sweden)

    Yohan Charbonnier

    Full Text Available Global change is expected to modify the frequency and magnitude of defoliating insect outbreaks in forest ecosystems. Bats are increasingly acknowledged as effective biocontrol agents for pest insect populations. However, a better understanding is required of whether and how bat communities contribute to the resilience of forests to man- and climate-driven biotic disturbances.We studied the responses of forest insectivorous bats to a major pine defoliator, the pine processionary moth Thaumetopoea pityocampa, which is currently expanding its range in response to global warming [corrected]. We used pheromone traps and ultrasound bat recorders to estimate the abundance and activity of moths and predatory bats along the edge of infested pine stands. We used synthetic pheromone to evaluate the effects of experimentally increased moth availability on bat foraging activity. We also evaluated the top-down regulation of moth population by estimating T. pityocampa larval colonies abundance on the same edges the following winter. We observed a close spatio-temporal matching between emergent moths and foraging bats, with bat activity significantly increasing with moth abundance. The foraging activity of some bat species was significantly higher near pheromone lures, i.e. in areas of expected increased prey availability. Furthermore moth reproductive success significantly decreased with increasing bat activity during the flight period of adult moths. These findings suggest that bats, at least in condition of low prey density, exhibit numerical and functional responses to a specific and abundant prey, which may ultimately result in an effective top-down regulation of the population of the prey. These observations are consistent with bats being useful agents for the biocontrol of insect pest populations in plantation forests.

  17. [Bacillus thuringiensis: general aspects. An approach to its use in the biological control of lepidopteran insects behaving as agricultural pests].

    Science.gov (United States)

    Sauka, Diego H; Benintende, Graciela B

    2008-01-01

    Bacillus thuringiensis is the most widely applied biological pesticide used to control insects that affect agriculture and forestry and which transmit human and animal pathogens. During the past decades B. thuringiensis has been the subject of intensive research. These efforts have yielded considerable data about the relationships between the structure, mechanism of action, and genetics of their pesticidal crystal proteins. As a result, a coherent picture of these relationships has emerged. Other studies have focused on the ecological role of the B. thuringiensis crystal proteins and their performance in agricultural and other natural settings. With this knowledge as background and the help of biotechnological tools, researchers are now reporting promising results in the development of more useful toxins, recombinant bacteria, new formulations and transgenic plants that express pesticidal activity, in order to assure that these products are utilized with the best efficiency and benefit. This article is an attempt to integrate all these recent developments in the study of B. thuringiensis into a context of biological control of lepidopteran insect pest of agricultural importance.

  18. Area-wide control of fruit flies and other insect pests. Joint proceedings of the international conference on area-wide control of insect pests and the fifth international symposium on fruit flies of economic importance

    International Nuclear Information System (INIS)

    Tan, Keng-Hong

    2000-01-01

    With the world population attaining the six billion mark, the urgency of increasing quality food production and reducing the spread of diseases transmitted by insects, without affecting our fragile environment, will be of paramount importance. Losses currently experienced in agricultural production, due to insect pests and through diseases transmitted by insect vectors, are very high especially in developing and poor countries. Many insect pests and vectors are of economic importance, and several such as fruit flies, mosquitoes and tsetse flies have attracted international concerns. Most pests are traditionally controlled through heavy reliance on pesticides which can cause environmental pollution, pesticide resistance, and pest resurgence. The control, management or eradication of insect pests and vectors with minimal adverse impact on our food quality, environment, health and well-being should be of great concern to many agriculturists, biological and physical scientists as well as to national and international agencies responsible for pest control. Steps taken by the various concerned agencies to improve and implement the area-wide control will hopefully lead us into the next millennium free from major insect pests and vectors while at the same time protect our precarious global environment. This volume is the culmination of proceedings conducted in two recent international meetings, FAO/IAEA International Conference on Area-Wide Control of Insect Pests, 28 May - 2 June 1998, and the Fifth International Symposium on Fruit Flies of Economic Importance, 1-5 June 1998, held in Penang, Malaysia. Over three hundred papers (both oral contributions and posters) were presented at the two meetings. The manuscripts submitted by authors are divided according to broad topics into eighteen sections originally defined by the organisers as corresponding to the sessions of the meetings. The organisers identified one to several individuals in each of the sessions to deliver an

  19. COMPARATIVE EFFICACY OF SYNTHETIC AND BOTANICAL INSECTICIDES AGAINST SUCKING INSECT PEST AND THEIR NATURAL ENEMIES ON COTTON CROP

    OpenAIRE

    M. A. Baker; A. H. Makhdum; M. Nasir; A. Imran; A. Ahmad; F. Tufail

    2016-01-01

    The Synthetic and botanical insecticides are relatively safer for environment and beneficial insects. The study was conducted in Rahim Yar Khan during the cotton cropping season 2014 to evaluate the comparative efficacy of two Synthetic insecticides i.e. Nitenpyram (Jasper 10% SL) and Pyriproxyfen (Bruce 10.8% EC) and two botanical extracts of Calotropic procera and Azadirachta indica, against sucking insect pest complex of cotton and their natural enemies. Upon reaching economic thresholds, ...

  20. Peste des Petits Ruminants, the next eradicated animal disease?

    Science.gov (United States)

    Albina, Emmanuel; Kwiatek, Olivier; Minet, Cécile; Lancelot, Renaud; Servan de Almeida, Renata; Libeau, Geneviève

    2013-07-26

    Peste des Petits Ruminants (PPR) is a widespread viral disease caused by a Morbillivirus (Paramyxoviridae). There is a single serotype of PPR virus, but four distinct genetic lineages. Morbidity and mortality are high when occurring in naive sheep and goats populations. Cattle and African buffaloes (Syncerus caffer) are asymptomatically infected. Other wild ruminants and camels may express clinical signs and mortality. PPR has recently spread in southern and northern Africa, and in central and far-east Asia. More than one billion sheep and goats worldwide are at risk. PPR is also present in Europe through western Turkey. Because of its clinical incidence and the restrictions on animal movements, PPR is a disease of major economic importance. A live attenuated vaccine was developed in the 1980s, and has been widely used in sheep and goats. Current researches aim (i) to make it more thermotolerant for use in countries with limited cold chain, and (ii) to add a DIVA mark to shorten and reduce the cost of final eradication. Rinderpest virus-another Morbillivirus-was the first animal virus to be eradicated from Earth. PPRV has been proposed as the next candidate. Considering its wide distribution and its multiple target host species which have an intense mobility, it will be a long process that cannot exclusively rely on mass vaccination. PPR specific epidemiological features and socio-economic considerations will also have to be taken into account, and sustained international, coordinated, and funded strategy based on a regional approach of PPR control will be the guarantee toward success. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Changing patterns in insect pests on trees in The Netherlands since 1946 in relation to human induced habitat changes and climate factors - an analysis of historical data

    NARCIS (Netherlands)

    Moraal, L.G.; Jagers Op Akkerhuis, G.A.J.M.

    2011-01-01

    In The Netherlands, insect pests on trees and shrubs are being monitored continuously since 1946. During these years, almost all insect pest populations showed marked changes, which may be the result of changes in forest management, shifts in forest composition, climate change and the arrival of new

  2. Ecological disequilibrium drives insect pest and pathogen accumulation in non-native trees.

    Science.gov (United States)

    Crous, Casparus J; Burgess, Treena I; Le Roux, Johannes J; Richardson, David M; Slippers, Bernard; Wingfield, Michael J

    2016-12-23

    Non-native trees have become dominant components of many landscapes, including urban ecosystems, commercial forestry plantations, fruit orchards, and as invasives in natural ecosystems. Often, these trees have been separated from their natural enemies (i.e. insects and pathogens) leading to ecological disequilibrium, that is, the immediate breakdown of historically co-evolved interactions once introduced into novel environments. Long-established, non-native tree plantations provide useful experiments to explore the dimensions of such ecological disequilibria. We quantify the status quo of non-native insect pests and pathogens catching up with their tree hosts (planted Acacia, Eucalyptus and Pinus species) in South Africa, and examine which native South African enemy species utilise these trees as hosts. Interestingly, pines, with no confamilial relatives in South Africa and the longest residence time (almost two centuries), have acquired only one highly polyphagous native pathogen. This is in contrast to acacias and eucalypts, both with many native and confamilial relatives in South Africa that have acquired more native pathogens. These patterns support the known role of phylogenetic relatedness of non-native and native floras in influencing the likelihood of pathogen shifts between them. This relationship, however, does not seem to hold for native insects. Native insects appear far more likely to expand their feeding habits onto non-native tree hosts than are native pathogens, although they are generally less damaging. The ecological disequilibrium conditions of non-native trees are deeply rooted in the eco-evolutionary experience of the host plant, co-evolved natural enemies, and native organisms from the introduced range. We should expect considerable spatial and temporal variation in ecological disequilibrium conditions among non-native taxa, which can be significantly influenced by biosecurity and management practices. Published by Oxford University Press on

  3. Management of area-wide integrated pest management programmes that integrate the sterile insect technique

    International Nuclear Information System (INIS)

    Dyck, V.A.; Vreysen, M.J.B.; Reyes Flores, J.; Regidor Fernandez, E.E.; Teruya, T.; Barnes, B.; Gomez Riera, P.; Lindquist, D.; Loosjes, M.

    2005-01-01

    Effective management of area-wide integrated pest management (AW-IPM) programmes that integrate the sterile insect technique (SIT) is key to success. Programme planning includes collection of baseline data and a feasibility assessment. The optimal management structure is where the programme can be implemented effectively and flexibly, independent of government politics, bureaucracy, and even corruption that impede timely goal achievement. Ideally, programmes include both public and private management, and require strong and steady financial support. Governments and donors are the most common sources of funds, but a mixture of public, community, and private funds is now the trend. Interrupted cash flow severely restrains programme performance. Physical support of programme operations must be reliable, and led by a maintenance professional. It is essential to have full-time, well-paid, and motivated staff led by a programme manger with technical and management experience. Programme failure is usually due to poor management and inadequate public support, and not to poor technology. (author)

  4. Effect of Nitrogen Fertilizer on Herbivores and Its Stimulation to Major Insect Pests in Rice

    Directory of Open Access Journals (Sweden)

    Zhong-xian LU

    2007-03-01

    Full Text Available Nitrogen is one of the most important factors in development of herbivore populations. The application of nitrogen fertilizer in plants can normally increase herbivore feeding preference, food consumption, survival, growth, reproduction, and population density, except few examples that nitrogen fertilizer reduces the herbivore performances. In most of the rice growing areas in Asia, the great increases in populations of major insect pests of rice, including planthoppers (Nilaparvata lugens and Sogatella furcifera, leaffolder (Cnaphalocrocis medinalis, and stem borers (Scirpophaga incertulas, Chilo suppressalis, S. innotata, C. polychrysus and Sesamia inferens were closely related to the long-term excessive application of nitrogen fertilizers. The optimal regime of nitrogen fertilizer in irrigated paddy fields is proposed to improve the fertilizer-nitrogen use efficiency and reduce the environmental pollution.

  5. Unexpected effects of low doses of a neonicotinoid insecticide on behavioral responses to sex pheromone in a pest insect.

    Directory of Open Access Journals (Sweden)

    Kaouther K Rabhi

    Full Text Available In moths, which include many agricultural pest species, males are attracted by female-emitted sex pheromones. Although integrated pest management strategies are increasingly developed, most insect pest treatments rely on widespread use of neurotoxic chemicals, including neonicotinoid insecticides. Residual accumulation of low concentrations of these insecticides in the environment is known to be harmful to beneficial insects such as honey bees. This environmental stress probably acts as an "info-disruptor" by modifying the chemical communication system, and therefore decreases chances of reproduction in target insects that largely rely on olfactory communication. However, low doses of pollutants could on the contrary induce adaptive processes in the olfactory pathway, thus enhancing reproduction. Here we tested the effects of acute oral treatments with different low doses of the neonicotinoid clothianidin on the behavioral responses to sex pheromone in the moth Agrotis ipsilon using wind tunnel experiments. We show that low doses of clothianidin induce a biphasic effect on pheromone-guided behavior. Surprisingly, we found a hormetic-like effect, improving orientation behavior at the LD20 dose corresponding to 10 ng clothianidin. On the contrary, a negative effect, disturbing orientation behavior, was elicited by a treatment with a dose below the LD0 dose corresponding to 0.25 ng clothianidin. No clothianidin effect was observed on behavioral responses to plant odor. Our results indicate that risk assessment has to include unexpected effects of residues on the life history traits of pest insects, which could then lead to their adaptation to environmental stress.

  6. Unexpected Effects of Low Doses of a Neonicotinoid Insecticide on Behavioral Responses to Sex Pheromone in a Pest Insect

    Science.gov (United States)

    Rabhi, Kaouther K.; Esancy, Kali; Voisin, Anouk; Crespin, Lucille; Le Corre, Julie; Tricoire-Leignel, Hélène; Anton, Sylvia; Gadenne, Christophe

    2014-01-01

    In moths, which include many agricultural pest species, males are attracted by female-emitted sex pheromones. Although integrated pest management strategies are increasingly developed, most insect pest treatments rely on widespread use of neurotoxic chemicals, including neonicotinoid insecticides. Residual accumulation of low concentrations of these insecticides in the environment is known to be harmful to beneficial insects such as honey bees. This environmental stress probably acts as an “info-disruptor” by modifying the chemical communication system, and therefore decreases chances of reproduction in target insects that largely rely on olfactory communication. However, low doses of pollutants could on the contrary induce adaptive processes in the olfactory pathway, thus enhancing reproduction. Here we tested the effects of acute oral treatments with different low doses of the neonicotinoid clothianidin on the behavioral responses to sex pheromone in the moth Agrotis ipsilon using wind tunnel experiments. We show that low doses of clothianidin induce a biphasic effect on pheromone-guided behavior. Surprisingly, we found a hormetic-like effect, improving orientation behavior at the LD20 dose corresponding to 10 ng clothianidin. On the contrary, a negative effect, disturbing orientation behavior, was elicited by a treatment with a dose below the LD0 dose corresponding to 0.25 ng clothianidin. No clothianidin effect was observed on behavioral responses to plant odor. Our results indicate that risk assessment has to include unexpected effects of residues on the life history traits of pest insects, which could then lead to their adaptation to environmental stress. PMID:25517118

  7. Cost-benefit analysis for biological control programs that target insects pests of eucalypts in urban landscapes of California

    Science.gov (United States)

    T.D. Paine; J.G. Millar; L.M. Hanks; J. Gould; Q. Wang; K. Daane; D.L. Dahlsten; E.G. McPherson

    2015-01-01

    As well as being planted for wind breaks, landscape trees, and fuel wood, eucalypts are also widely used as urban street trees in California. They now are besieged by exotic insect herbivores of four different feeding guilds. The objective of the current analysis was to determine the return on investment from biological control programs that have targeted these pests....

  8. Improving cluster-based methods for investigating potential for insect pest species establishment: region-specific risk factors

    Directory of Open Access Journals (Sweden)

    Michael J. Watts

    2011-09-01

    Full Text Available Existing cluster-based methods for investigating insect species assemblages or profiles of a region to indicate the risk of new insect pest invasion have a major limitation in that they assign the same species risk factors to each region in a cluster. Clearly regions assigned to the same cluster have different degrees of similarity with respect to their species profile or assemblage. This study addresses this concern by applying weighting factors to the cluster elements used to calculate regional risk factors, thereby producing region-specific risk factors. Using a database of the global distribution of crop insect pest species, we found that we were able to produce highly differentiated region-specific risk factors for insect pests. We did this by weighting cluster elements by their Euclidean distance from the target region. Using this approach meant that risk weightings were derived that were more realistic, as they were specific to the pest profile or species assemblage of each region. This weighting method provides an improved tool for estimating the potential invasion risk posed by exotic species given that they have an opportunity to establish in a target region.

  9. Semiochemical mediated enhancement of males to complement sterile insect technique in management of the tephritid pest Bactrocera tryoni (Froggatt)

    Science.gov (United States)

    Queensland fruit fly, Bactrocera tryoni (Froggatt), is the most significant pest of Australia’s $9 billion horticulture industry. The sterile insect technique (SIT) and male annihilation technique (MAT) based on traps baited with a synthetic analogue of raspberry ketone (RK) are two of the most effe...

  10. Australian endemic pest tephritids: genetic, molecular and microbial tools for improved Sterile Insect Technique.

    Science.gov (United States)

    Raphael, Kathryn A; Shearman, Deborah C A; Gilchrist, A Stuart; Sved, John A; Morrow, Jennifer L; Sherwin, William B; Riegler, Markus; Frommer, Marianne

    2014-01-01

    Among Australian endemic tephritid fruit flies, the sibling species Bactrocera tryoni and Bactrocera neohumeralis have been serious horticultural pests since the introduction of horticulture in the nineteenth century. More recently, Bactrocera jarvisi has also been declared a pest in northern Australia. After several decades of genetic research there is now a range of classical and molecular genetic tools that can be used to develop improved Sterile Insect Technique (SIT) strains for control of these pests. Four-way crossing strategies have the potential to overcome the problem of inbreeding in mass-reared strains of B. tryoni. The ability to produce hybrids between B. tryoni and the other two species in the laboratory has proved useful for the development of genetically marked strains. The identification of Y-chromosome markers in B. jarvisi means that male and female embryos can be distinguished in any strain that carries a B. jarvisi Y chromosome. This has enabled the study of homologues of the sex-determination genes during development of B jarvisi and B. tryoni, which is necessary for the generation of genetic-sexing strains. Germ-line transformation has been established and a draft genome sequence for B. tryoni released. Transcriptomes from various species, tissues and developmental stages, to aid in identification of manipulation targets for improving SIT, have been assembled and are in the pipeline. Broad analyses of the microbiome have revealed a metagenome that is highly variable within and across species and defined by the environment. More specific analyses detected Wolbachia at low prevalence in the tropics but absent in temperate regions, suggesting a possible role for this endosymbiont in future control strategies.

  11. An economic comparison of biological and conventional control strategies for insect pests in cashew and mango plantations in Tanzania

    DEFF Research Database (Denmark)

    George, William Juma; Hella, Joseph; Esbjerg, Lars

    2013-01-01

    This study was undertaken to compare alternative methods of pest control for insect pests in order to determine which methods has the highest efficacy against insect pests and the least detrimental side effects, while maintaining production and profits. The analysis was based on the experimental...... trials for three treatments: weaver ants, chemical insecticides and control. Data on yields, quantities and prices of inputs and output were collected and analyzed using inferential statistics (t-test), partial budgetary technique and marginal analysis involving dominance analysis. The results of partial...... budget analysis shows that a change from chemical insecticides treatment to weaver ants returned net benefits greater than zero by Tsh. 692 923 and Tsh.1019665 in cashew and mango plantations respectively. Similarly, positive net benefits was obtained when growers change from control to weaver ants...

  12. Apply Pesticides Correctly, A Guide for Commercial Applicators: Agricultural Pest Control -- Animal.

    Science.gov (United States)

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    This guide contains basic information to meet specific standards for pesticide applicators. The text is concerned with the common pests of agricultural animals such as flies, ticks, bots, lice and mites. Methods for controlling these pests and appropriate pesticides are discussed. (CS)

  13. Induced plant resistance as a pest management tactic on piercing sucking insects of sesame crop

    Directory of Open Access Journals (Sweden)

    M. F. Mahmoud

    2013-09-01

    Full Text Available Sesame, Sesamum indicum L. is the most oil seed crop of the world and also a major oil seed crop of Egypt. One of the major constraints in its production the damage caused by insect pests, particularly sucking insects which suck the cell sap from leaves, flowers and capsules. Impact of three levels of potassin-F, salicylic acid and combination between them on reduction infestation of Stink bug Nezara viridula L., Mirid bug Creontiades sp., Green peach aphid Myzus persicae (Sulzer, Leafhopper Empoasca lybica de Berg and Whitefly Bemisia tabaci (Gennadius of sesame crop cultivar Shandawil 3 was carried out during 2010-2011 crop season at Experimental farm, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt. Also, the impacts of potassin-F and salicylic acid on yield production of sesame were studied. Results indicated that percent of reduction of infestation by N. viridula, M. persicae, Creontiades sp., E. lybicae, B. tabaci and phyllody disease were significantly higher at Level 2 (Potassin-F= 2.5 cm/l, Salicylic acid= 0.001 M and Potassin + Salicylic= 2.5 cm/l + 0.001 M and consequently higher seed yield per plant were obtained.

  14. Effects of a killed-cover crop mulching system on sweetpotato production, soil pests, and insect predators in South Carolina.

    Science.gov (United States)

    Jackson, D Michael; Harrison, Howard F

    2008-12-01

    Sweetpotatoes, Ipomoea batatas (L.) Lam. (Convolvulaceae), are typically grown on bare soil where weeds and erosion can be serious problems. Conservation tillage systems using cover crop residues as mulch can help reduce these problems, but little is known about how conservation tillage affects yield and quality of sweetpotato or how these systems impact populations of beneficial and pest insects. Therefore, field experiments were conducted at the U.S. Vegetable Laboratory, Charleston, SC, in 2002-2004 to evaluate production of sweetpotatoes in conventional tillage versus a conservation tillage system by using an oat (Avena sativa L. (Poaceae)-crimson clover (Trifolium incarnatum L.) (Fabaceae) killed-cover crop (KCC) mulch. The four main treatments were 1) conventional tillage, hand-weeded; 2) KCC, hand-weeded; 3) conventional tillage, weedy; and 4) KCC, weedy. Each main plot was divided into three subplots, whose treatments were sweetpotato genotypes: 'Ruddy', which is resistant to soil insect pests; and 'SC1149-19' and 'Beauregard', which are susceptible to soil insect pests. For both the KCC and conventional tillage systems, sweetpotato yields were higher in plots that received hand weeding than in weedy plots. Orthogonal contrasts revealed a significant effect of tillage treatment (conventional tillage versus KCC) on yield in two of the 3 yr. Ruddy remained resistant to injury by soil insect pests in both cropping systems; and it consistently had significantly higher percentages of clean roots and less damage by wireworm-Diabrotica-Systena complex, sweetpotato flea beetles, grubs, and sweetpotato weevils than the two susceptible genotypes. In general, injury to sweetpotato roots by soil insect pests was not significantly higher in the KCC plots than in the conventionally tilled plots. Also, more fire ants, rove beetles, and carabid beetle were captured by pitfall traps in the KCC plots than in the conventional tillage plots during at least 1 yr of the study

  15. New dispenser types for integrated pest management of agriculturally significant insect pests: an algorithm with specialized searching capacity in electronic data bases.

    Science.gov (United States)

    Hummel, H E; Eisinger, M T; Hein, D F; Breuer, M; Schmid, S; Leithold, G

    2012-01-01

    Pheromone effects discovered some 130 years, but scientifically defined just half a century ago, are a great bonus for basic and applied biology. Specifically, pest management efforts have been advanced in many insect orders, either for purposes or monitoring, mass trapping, or for mating disruption. Finding and applying a new search algorithm, nearly 20,000 entries in the pheromone literature have been counted, a number much higher than originally anticipated. This compilation contains identified and thus synthesizable structures for all major orders of insects. Among them are hundreds of agriculturally significant insect pests whose aggregated damages and costly control measures range in the multibillions of dollars annually. Unfortunately, and despite a lot of effort within the international entomological scene, the number of efficient and cheap engineering solutions for dispensing pheromones under variable field conditions is uncomfortably lagging behind. Some innovative approaches are cited from the relevant literature in an attempt to rectify this situation. Recently, specifically designed electrospun organic nanofibers offer a lot of promise. With their use, the mating communication of vineyard insects like Lobesia botrana (Lep.: Tortricidae) can be disrupted for periods of seven weeks.

  16. Tissue-Specific Transcriptomics of the Exotic Invasive Insect Pest Emerald Ash Borer (Agrilus planipennis)

    Science.gov (United States)

    Mittapalli, Omprakash; Bai, Xiaodong; Bonello, Pierluigi; Herms, Daniel A.

    2010-01-01

    Background The insect midgut and fat body represent major tissue interfaces that deal with several important physiological functions including digestion, detoxification and immune response. The emerald ash borer (Agrilus planipennis), is an exotic invasive insect pest that has killed millions of ash trees (Fraxinus spp.) primarily in the Midwestern United States and Ontario, Canada. However, despite its high impact status little knowledge exists for A. planipennis at the molecular level. Methodology and Principal Findings Newer-generation Roche-454 pyrosequencing was used to obtain 126,185 reads for the midgut and 240,848 reads for the fat body, which were assembled into 25,173 and 37,661 high quality expressed sequence tags (ESTs) for the midgut and the fat body of A. planipennis larvae, respectively. Among these ESTs, 36% of the midgut and 38% of the fat body sequences showed similarity to proteins in the GenBank nr database. A high number of the midgut sequences contained chitin-binding peritrophin (248)and trypsin (98) domains; while the fat body sequences showed high occurrence of cytochrome P450s (85) and protein kinase (123) domains. Further, the midgut transcriptome of A. planipennis revealed putative microbial transcripts encoding for cell-wall degrading enzymes such as polygalacturonases and endoglucanases. A significant number of SNPs (137 in midgut and 347 in fat body) and microsatellite loci (317 in midgut and 571 in fat body) were predicted in the A. planipennis transcripts. An initial assessment of cytochrome P450s belonging to various CYP clades revealed distinct expression patterns at the tissue level. Conclusions and Significance To our knowledge this study is one of the first to illuminate tissue-specific gene expression in an invasive insect of high ecological and economic consequence. These findings will lay the foundation for future gene expression and functional studies in A. planipennis. PMID:21060843

  17. Insects used for animal feed in West Africa

    Directory of Open Access Journals (Sweden)

    M. Kenis

    2014-10-01

    Full Text Available In West Africa, as in many parts of the world, livestock and fish farming suffer from the increasing cost of feed, especially protein ingredients, which are hardly available for village poultry farming and small-scale fish farming. Insects, which are a natural food source of poultry and fish and are rich in protein and other valuable nutrients, can be used to improve animal diets, a practice which is now strongly promoted by the FAO as a tool for poverty alleviation. This paper reviews practices and research on the use of insects as animal feed in West Africa and the perspectives to further develop the techniques, in particular for smallholder farmers and fish farmers. The most promising insects are flies, especially the house fly (Musca domestica (Diptera Muscidae and the black soldier fly (Hermetia illucens (Diptera Stratiomyiidae, which can be mass reared on-farm for domestic use, in small production units at the community or industrial level. Flies have the advantage over most other insects of developing on freely available waste material and could even contribute to rural sanitation. Termites are traditionally used by smallholder farmers to feed village poultry. While their mass production is problematic, methods to enhance populations on-farm and facilitate collection can be developed. In any case, new methods will need to demonstrate their economic profitability, social acceptability and environmental sustainability

  18. Plants attract parasitic wasps to defend themselves against insect pests by releasing hexenol.

    Directory of Open Access Journals (Sweden)

    Jianing Wei

    2007-09-01

    Full Text Available Plant volatiles play an important role in defending plants against insect attacks by attracting their natural enemies. For example, green leaf volatiles (GLVs and terpenoids emitted from herbivore-damaged plants were found to be important in the host location of parasitic wasps. However, evidence of the functional roles and mechanisms of these semio-chemicals from a system of multiple plants in prey location by the parasitoid is limited. Little is known about the potential evolutionary trends between herbivore-induced host plant volatiles and the host location of their parasitoids.The present study includes hierarchical cluster analyses of plant volatile profiles from seven families of host and non-host plants of pea leafminer, Liriomyza huidobrensis, and behavioral responses of a naive parasitic wasp, Opius dissitus, to some principal volatile compounds. Here we show that plants can effectively pull wasps, O. dissitus, towards them by releasing a universally induced compound, (Z-3-hexenol, and potentially keep these plants safe from parasitic assaults by leafminer pests, L. huidobrensis. Specifically, we found that volatile profiles from healthy plants revealed a partly phylogenetic signal, while the inducible compounds of the infested-plants did not result from the fact that the induced plant volatiles dominate most of the volatile blends of the host and non-host plants of the leafminer pests. We further show that the parasitoids are capable of distinguishing the damaged host plant from the non-host plant of the leafminers.Our results suggest that, as the most passive scenario of plant involvement, leafminers and mechanical damages evoke similar semio-chemicals. Using ubiquitous compounds, such as hexenol, for host location by general parasitoids could be an adaptation of the most conservative evolution of tritrophic interaction. Although for this, other compounds may be used to improve the precision of the host location by the parasitoids.

  19. Reproductive Plasticity of an Invasive Insect Pest, Rice Water Weevil (Coleoptera: Curculionidae).

    Science.gov (United States)

    Huang, Yunshang; Ao, Yan; Jiang, Mingxing

    2017-12-05

    Reproductive plasticity is a key determinant of species invasiveness. However, there are a limited number of studies addressing this issue in exotic insects. The rice water weevil Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae), which is native to North America, is one of the most invasive insect pests in east Asia. In this study, we investigated the reproductive status of first-generation females (progeny of overwintered weevils) from five geographic regions in southern and northern China in the field, and reproductive status and ovipositional features of females provided with suitable host plants in the laboratory after collection. Under field conditions, a proportion of females oviposited, while the rest remained in diapause from all three southern regions investigated, but reproductive development did not take place in females from the two northern regions, where the weevil produces only one generation per year. However, when fed host plants in the laboratory, females from all regions laid eggs. They typically had a very short ovipositional period (3-6 d on average on rice at a temperature of 27°C), laid a low number of eggs, and did not die soon after oviposition; this was different from common reproductive females. We concluded that first-generation L. oryzophilus females, which largely enter diapause after emergence, are highly plastic in their reproductive performance and are ready to reproduce under favorable conditions. Our results indicate the significance of their reproductive plasticity for geographic spread and population development. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Monitoring Pest Insect Traps by Means of Low-Power Image Sensor Technologies

    Science.gov (United States)

    López, Otoniel; Rach, Miguel Martinez; Migallon, Hector; Malumbres, Manuel P.; Bonastre, Alberto; Serrano, Juan J.

    2012-01-01

    Monitoring pest insect populations is currently a key issue in agriculture and forestry protection. At the farm level, human operators typically must perform periodical surveys of the traps disseminated through the field. This is a labor-, time- and cost-consuming activity, in particular for large plantations or large forestry areas, so it would be of great advantage to have an affordable system capable of doing this task automatically in an accurate and a more efficient way. This paper proposes an autonomous monitoring system based on a low-cost image sensor that it is able to capture and send images of the trap contents to a remote control station with the periodicity demanded by the trapping application. Our autonomous monitoring system will be able to cover large areas with very low energy consumption. This issue would be the main key point in our study; since the operational live of the overall monitoring system should be extended to months of continuous operation without any kind of maintenance (i.e., battery replacement). The images delivered by image sensors would be time-stamped and processed in the control station to get the number of individuals found at each trap. All the information would be conveniently stored at the control station, and accessible via Internet by means of available network services at control station (WiFi, WiMax, 3G/4G, etc.). PMID:23202232

  1. Monitoring Pest Insect Traps by Means of Low-Power Image Sensor Technologies

    Directory of Open Access Journals (Sweden)

    Juan J. Serrano

    2012-11-01

    Full Text Available Monitoring pest insect populations is currently a key issue in agriculture and forestry protection. At the farm level, human operators typically must perform periodical surveys of the traps disseminated through the field. This is a labor-, time- and cost-consuming activity, in particular for large plantations or large forestry areas, so it would be of great advantage to have an affordable system capable of doing this task automatically in an accurate and a more efficient way. This paper proposes an autonomous monitoring system based on a low-cost image sensor that it is able to capture and send images of the trap contents to a remote control station with the periodicity demanded by the trapping application. Our autonomous monitoring system will be able to cover large areas with very low energy consumption. This issue would be the main key point in our study; since the operational live of the overall monitoring system should be extended to months of continuous operation without any kind of maintenance (i.e., battery replacement. The images delivered by image sensors would be time-stamped and processed in the control station to get the number of individuals found at each trap. All the information would be conveniently stored at the control station, and accessible via Internet by means of available network services at control station (WiFi, WiMax, 3G/4G, etc..

  2. Monitoring pest insect traps by means of low-power image sensor technologies.

    Science.gov (United States)

    López, Otoniel; Rach, Miguel Martinez; Migallon, Hector; Malumbres, Manuel P; Bonastre, Alberto; Serrano, Juan J

    2012-11-13

    Monitoring pest insect populations is currently a key issue in agriculture and forestry protection. At the farm level, human operators typically must perform periodical surveys of the traps disseminated through the field. This is a labor-, time- and cost-consuming activity, in particular for large plantations or large forestry areas, so it would be of great advantage to have an affordable system capable of doing this task automatically in an accurate and a more efficient way. This paper proposes an autonomous monitoring system based on a low-cost image sensor that it is able to capture and send images of the trap contents to a remote control station with the periodicity demanded by the trapping application. Our autonomous monitoring system will be able to cover large areas with very low energy consumption. This issue would be the main key point in our study; since the operational live of the overall monitoring system should be extended to months of continuous operation without any kind of maintenance (i.e., battery replacement). The images delivered by image sensors would be time-stamped and processed in the control station to get the number of individuals found at each trap. All the information would be conveniently stored at the control station, and accessible via Internet by means of available network services at control station (WiFi, WiMax, 3G/4G, etc.).

  3. Effect of cultural practices on the incidence and carry over of insect pests in rice-wheat system

    International Nuclear Information System (INIS)

    Ramzan, M.; Akhtar, M.; Hussain, S.

    2008-01-01

    Changes in cultural practices in rice-wheat system like mechanical transplanted rice, broadcasting (parachute method) of rice seedlings, direct seeding of rice, bed planting of rice and wheat and zero-till wheat sowing may affect population of insect pests and their natural enemies. The population of insect pests and their damage intensity on rice and wheat crops were determined for resource conservation technologies in rice-wheat system. Unploughed fallow fields and those planted with berseem are the major over-wintering sites of rice stem borers (RSB). Growing of wheat after rice, either by conventional or zero-tillage minimizes RSB problem. The effect of technological shifts in rice-wheat systems was discussed on leaffolder (LF) and white backed planthopper (WBPH) populations. Conservation tillage might take on preventive management as the diversity and population size of many beneficial organisms, especially soil-inhabiting predators, can be increased. (author)

  4. Plant training for induced defense against insect pests: a promising tool for integrated pest management in cotton.

    Science.gov (United States)

    Llandres, Ana L; Almohamad, Raki; Brévault, Thierry; Renou, Alain; Téréta, Idrissa; Jean, Janine; Goebel, François-Regis

    2018-04-17

    Enhancing cotton pest management using plant natural defenses has been described as a promising way to improve the management of crop pests. We here reviewed different studies on cotton growing systems to illustrate how an ancient technique called plant training, which includes plant topping and pruning, may contribute to this goal. Based on examples from cotton crops, we show how trained plants could be promoted to a state of enhanced defense that causes faster and more robust activation of their defense responses. We revisit agricultural benefits associated to this technique in cotton crops, with a focus on its potential as a supplementary tool for Integrated Pest Management (IPM). Particularly, we examine its role in mediating plant interactions with conspecific neighboring plants, pests and associated natural enemies. We propose a new IPM tool, plant training for induced defense, which involves inducing plant defense by artificial injuries. Experimental evidence from various studies shows that cotton training is a promising technique, particularly for smallholders, which can be used as part of an IPM program to significantly reduce insecticide use and to improve productivity in cotton farming. This article is protected by copyright. All rights reserved.

  5. The Phorbol Ester Fraction from Jatropha curcas Seed Oil: Potential and Limits for Crop Protection against Insect Pests

    Science.gov (United States)

    Ratnadass, Alain; Wink, Michael

    2012-01-01

    The physic nut shrub, Jatropha curcas (Euphorbiaceae), has been considered as a “miracle tree”, particularly as a source of alternate fuel. Various extracts of the plant have been reported to have insecticidal/acaricidal or molluscicidal/anthelminthic activities on vectors of medical or veterinary interest or on agricultural or non-agricultural pests. Among those extracts, the phorbol ester fraction from seed oil has been reported as a promising candidate for use as a plant-derived protectant of a variety of crops, from a range of pre-harvest and post-harvest insect pests. However, such extracts have not been widely used, despite the “boom” in the development of the crop in the tropics during recent years, and societal concerns about overuse of systemic chemical pesticides. There are many potential explanations to such a lack of use of Jatropha insecticidal extracts. On the one hand, the application of extracts potentially harmful to human health on stored food grain, might not be relevant. The problem of decomposition of phorbol esters and other compounds toxic to crop pests in the field needing further evaluation before such extracts can be widely used, may also be a partial explanation. High variability of phorbol ester content and hence of insecticidal activity among physic nut cultivars/ecotypes may be another. Phytotoxicity to crops may be further limitation. Apparent obstacles to a wider application of such extracts are the costs and problems involved with registration and legal approval. On the other hand, more studies should be conducted on molluscicidal activity on slugs and land snails which are major pests of crops, particularly in conservation agriculture systems. Further evaluation of toxicity to natural enemies of insect pests and studies on other beneficial insects such as pollinators are also needed. PMID:23203190

  6. Using Trichogramma Westwood (Hymenoptera: Trichogrammatidae) for insect pest biological control in cotton crops: an Australian perspective

    Science.gov (United States)

    Trichogramma Westwood egg parasitoids alone generally fail to suppress heliothine pests when released in established cotton growing regions. Factors hindering their success include indiscriminate use of detrimental insecticides, compensation for minimal pest larval hatch due to their activity via re...

  7. 1978 Insect Pest Management Guide: Field and Forage Crops. Circular 899.

    Science.gov (United States)

    Illinois Univ., Urbana. Cooperative Extension Service.

    This circular lists suggested uses of insecticides for the control of field crop pests. Suggestions are given for selection, dosage and application of insecticides to control pests in field corn, alfalfa and clover, small grains, soybeans and grain sorghum. (CS)

  8. Tracking the global dispersal of a cosmopolitan insect pest, the peach potato aphid

    Directory of Open Access Journals (Sweden)

    Kasprowicz Louise

    2009-05-01

    Full Text Available Abstract Background Global commerce and human transportation are responsible for the range expansion of various insect pests such as the plant sucking aphids. High resolution DNA markers provide the opportunity to examine the genetic structure of aphid populations, identify aphid genotypes and infer their evolutionary history and routes of expansion which is of value in developing management strategies. One of the most widespread aphid species is the peach-potato aphid Myzus persicae, which is considered as a serious pest on various crops in many parts of the world. The present study examined the genetic variation of this aphid at a world scale and then related this to distribution patterns. In particular, 197 aphid parthenogenetic lineages from around the world were analysed with six microsatellite loci. Results Bayesian clustering and admixture analysis split the aphid genotypes into three genetic clusters: European M. persicae persicae, New Zealand M. persicae persicae and Global M. persicae nicotianae. This partition was supported by FST and genetic distance analyses. The results showed two further points, a possible connection between genotypes found in the UK and New Zealand and globalization of nicotianae associated with colonisation of regions where tobacco is not cultivated. In addition, we report the presence of geographically widespread clones and for the first time the presence of a nicotianae genotype in the Old and New World. Lastly, heterozygote deficiency was detected in some sexual and asexual populations. Conclusion The study revealed important genetic variation among the aphid populations we examined and this was partitioned according to region and host-plant. Clonal selection and gene flow between sexual and asexual lineages are important factors shaping the genetic structure of the aphid populations. In addition, the results reflected the globalization of two subspecies of M. persicae with successful clones being spread at

  9. Guidelines for the use of mathematics in operational area-wide integrated pest management programs using the sterile insect technique with a special focus on Tephritid Fruit Flies

    Science.gov (United States)

    Pest control managers can benefit from using mathematical approaches, particularly models, when implementing area-wide pest control programs that include sterile insect technique (SIT), especially when these are used to calculate required rates of sterile releases to result in suppression or eradica...

  10. Rapid genetic turnover in populations of the insect pest Bemisia tabaci Middle East: Asia Minor 1 in an agricultural landscape.

    Science.gov (United States)

    Dinsdale, A; Schellhorn, N A; De Barro, P; Buckley, Y M; Riginos, C

    2012-10-01

    Organisms differ greatly in dispersal ability, and landscapes differ in amenability to an organism's movement. Thus, landscape structure and heterogeneity can affect genetic composition of populations. While many agricultural pests are known for their ability to disperse rapidly, it is unclear how fast and over what spatial scale insect pests might respond to the temporally dynamic agricultural landscapes they inhabit. We used population genetic analyses of a severe crop pest, a member of the Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidea) cryptic species complex known as Middle East-Asia Minor 1 (commonly known as biotype B), to estimate spatial and temporal genetic diversity over four months of the 2006-2007 summer growing season. We examined 559 individuals from eight sites, which were scored for eight microsatellite loci. Temporal genetic structure greatly exceeded spatial structure. There was significant temporal change in local genetic composition from the beginning to the end of the season accompanied by heterozygote deficits and inbreeding. This temporal structure suggests entire cohorts of pests can occupy a large and variable agricultural landscape but are rapidly replaced. These rapid genetic fluctuations reinforce the concept that agricultural landscapes are dynamic mosaics in time and space and may contribute to better decisions for pest and insecticide resistance management.

  11. Insects used for animal feed in West Africa

    OpenAIRE

    M. Kenis; N. Koné; C.A.A.M. Chrysostome; E. Devic; G.K.D. Koko; V.A. Clottey; S. Nacambo; G.A. Mensah

    2014-01-01

    In West Africa, as in many parts of the world, livestock and fish farming suffer from the increasing cost of feed, especially protein ingredients, which are hardly available for village poultry farming and small-scale fish farming. Insects, which are a natural food source of poultry and fish and are rich in protein and other valuable nutrients, can be used to improve animal diets, a practice which is now strongly promoted by the FAO as a tool for poverty alleviation. This paper reviews practi...

  12. Mass Releases of Genetically Modified Insects in Area-Wide Pest Control Programs and Their Impact on Organic Farmers

    Directory of Open Access Journals (Sweden)

    R. Guy Reeves

    2017-01-01

    Full Text Available The mass release of irradiated insects to reduce the size of agricultural pest populations of the same species has a more than 50-year record of success. Using these techniques, insect pests can be suppressed without necessarily dispersing chemical insecticides into the environment. Ongoing release programs include the suppression of medfly at numerous locations around the globe (e.g., California, Chile and Israel and the pink bollworm eradication program across the southern USA and northern Mexico. These, and other successful area-wide programs, encompass a large number of diverse organic farms without incident. More recently, mass release techniques have been proposed that involve the release of genetically modified insects. Given that the intentional use of genetically modified organisms by farmers will in many jurisdictions preclude organic certification, this prohibits the deliberate use of this technology by organic farmers. However, mass releases of flying insects are not generally conducted by individual farmers but are done on a regional basis, often without the explicit consent of all situated farms (frequently under the auspices of government agencies or growers’ collectives. Consequently, there exists the realistic prospect of organic farms becoming involved in genetically modified insect releases as part of area-wide programs or experiments. Herein, we describe genetically modified insects engineered for mass release and examine their potential impacts on organic farmers, both intended and unintended. This is done both generally and also focusing on a hypothetical organic farm located near an approved experimental release of genetically modified (GM diamondback moths in New York State (USA.

  13. Delivery of Nucleic Acids through Embryo Microinjection in the Worldwide Agricultural Pest Insect, Ceratitis capitata.

    Science.gov (United States)

    Gabrieli, Paolo; Scolari, Francesca

    2016-10-01

    The Mediterranean fruit fly (medfly) Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) is a pest species with extremely high agricultural relevance. This is due to its reproductive behavior: females damage the external surface of fruits and vegetables when they lay eggs and the hatched larvae feed on their pulp. Wild C. capitata populations are traditionally controlled through insecticide spraying and/or eco-friendly approaches, the most successful being the Sterile Insect Technique (SIT). The SIT relies on mass-rearing, radiation-based sterilization and field release of males that retain their capacity to mate but are not able to generate fertile progeny. The advent and the subsequent rapid development of biotechnological tools, together with the availability of the medfly genome sequence, has greatly boosted our understanding of the biology of this species. This favored the proliferation of new strategies for genome manipulation, which can be applied to population control. In this context, embryo microinjection plays a dual role in expanding the toolbox for medfly control. The ability to interfere with the function of genes that regulate key biological processes, indeed, expands our understanding of the molecular machinery underlying medfly invasiveness. Furthermore, the ability to achieve germ-line transformation facilitates the production of multiple transgenic strains that can be tested for future field applications in novel SIT settings. Indeed, genetic manipulation can be used to confer desirable traits that can, for example, be used to monitor sterile male performance in the field, or that can result in early life-stage lethality. Here we describe a method to microinject nucleic acids into medfly embryos to achieve these two main goals.

  14. Effects of plant morphology on the incidence of sucking insect pests complex in few genotypes

    Directory of Open Access Journals (Sweden)

    Huma Khalil

    2017-10-01

    Full Text Available The study was conducted to find the role of physico-morphic plant factors viz., number of gossypol glands, hair density, length of hair, plant height and thickness of leaf lamina per plant in fluctuating the population of thrips (Thrips tabaci Lind., jassid (Amrasca bigutella Dist. and whitefly (Bemisia tabaci Genn. on six genotypes of cotton viz., BT-703, CIM-557, CIM-608, CIM-573, BT-3701 and FH-113. All the genotypes showed significant differences against sucking insect pest population. Whitefly adult population exhibited negative response with gossypol glands on leaf lamina, midrib and vein and also with plant height. Whitefly adult and nymphal population correlated positively with hair density on leaf lamina and vein and length of hair on leaf midrib. The nymphal and adult population of jassid showed positive correlation with gossypol glands on leaf lamina, vein and length of hair on leaf lamina, midrib and vein. Adult and nymph population of jassid revealed negative response with hair density on leaf lamina and midrib and also with plant height and leaf lamina thickness. Thrips population showed negative correlation with gossypol glands on leaf midrib, vein, length of hair on leaf lamina and vein. Thrips population correlated positively with hair density on leaf midrib, thickness of leaf lamina and plant height. The genotypes CIM-608 (3.70/leaf, CIM-608 (5.67 /leaf, BT-703(0.86/leaf, BT-703 (1.14/leaf and FH-113 (0.34/leaf were found to be susceptible, whereas FH-113 (2.85/leaf, CIM-557 (3.46/leaf, CIM-573 (0.40/leaf, CIM-557 (0.48/leaf and BT-703 (0.08/leaf were resistant to whitefly adult, whitefly nymph, jassid adult, jassid nymph and thrips population respectively.

  15. BIOLOGICAL CONTROL - AS A MEANS TO CONTROL INSECT PESTS IN AZERBAIJAN

    Directory of Open Access Journals (Sweden)

    Z. M. Mamedov

    2013-01-01

    Full Text Available Two hundreds and twenty species parasites and predators of pests of various agricultures are revealed in Azerbaijan. The complex of entomophages of certain pests of agricultures is studied: 48 species of parasites and predators of Chloridea obsoleta 21 species of entomophages of Pectinophora malvella Hb., over 160 species of entomophages of pests of ozehards and vegetables, 34 species of entomophages of pests of forests. The hundreds species of entomophages and some entomophogenous microbes and antagonists are revealed. Biology and ecology of over 60 species of entomophages and useful microorganisims which are prospective as biological control agents are studied.

  16. Draft genome of the most devastating insect pest of coffee worldwide: the coffee berry borer, Hypothenemus hampei

    KAUST Repository

    Vega, Fernando E.

    2015-07-31

    The coffee berry borer, Hypothenemus hampei, is the most economically important insect pest of coffee worldwide. We present an analysis of the draft genome of the coffee berry borer, the third genome for a Coleopteran species. The genome size is ca. 163 Mb with 19,222 predicted protein-coding genes. Analysis was focused on genes involved in primary digestion as well as gene families involved in detoxification of plant defense molecules and insecticides, such as carboxylesterases, cytochrome P450, gluthathione S-transferases, ATP-binding cassette transporters, and a gene that confers resistance to the insecticide dieldrin. A broad range of enzymes capable of degrading complex polysaccharides were identified. We also evaluated the pathogen defense system and found homologs to antimicrobial genes reported in the Drosophila genome. Ten cases of horizontal gene transfer were identified with evidence for expression, integration into the H. hampei genome, and phylogenetic evidence that the sequences are more closely related to bacterial rather than eukaryotic genes. The draft genome analysis broadly expands our knowledge on the biology of a devastating tropical insect pest and suggests new pest management strategies.

  17. The Sterile Insect Technique as a method of pest control; La Tecnica del Insecto Esteril como metodo de lucha contra plagas

    Energy Technology Data Exchange (ETDEWEB)

    Argiles Herrero, R.

    2011-07-01

    In the Valencia community is doing one of the most ambitious project in the field of plant protection at European level: the fight against fruit fly, one of the most damaging pests of citrus and fruit; by Insect Technique Sterile. This technique consists of laboratory breeding and release into the fields of huge quantities of insects of the pest species that have previously been sterilized. Sterile insect looking for wild individuals of the same species to mate with them and the result is a clutch of viable eggs, causing a decrease in pest populations. After three years of application of the technique on an area of 150,000 hectares, the pest populations have been reduced by 90%. Other benefits have been the reduced used of insecticides and improved the quality of exported fruit. (Author)

  18. Antennal uridine diphosphate (UDP)-glycosyltransferases in a pest insect: diversity and putative function in odorant and xenobiotics clearance.

    Science.gov (United States)

    Bozzolan, F; Siaussat, D; Maria, A; Durand, N; Pottier, M-A; Chertemps, T; Maïbèche-Coisne, M

    2014-10-01

    Uridine diphosphate UDP-glycosyltransferases (UGTs) are detoxification enzymes widely distributed within living organisms. They are involved in the biotransformation of various lipophilic endogenous compounds and xenobiotics, including odorants. Several UGTs have been reported in the olfactory organs of mammals and involved in olfactory processing and detoxification within the olfactory mucosa but, in insects, this enzyme family is still poorly studied. Despite recent transcriptomic analyses, the diversity of antennal UGTs in insects has not been investigated. To date, only three UGT cDNAs have been shown to be expressed in insect olfactory organs. In the present study, we report the identification of eleven putative UGTs expressed in the antennae of the model pest insect Spodoptera littoralis. Phylogenetic analysis revealed that these UGTs belong to five different families, highlighting their structural diversity. In addition, two genes, UGT40R3 and UGT46A6, were either specifically expressed or overexpressed in the antennae, suggesting specific roles in this sensory organ. Exposure of male moths to the sex pheromone and to a plant odorant differentially downregulated the transcription levels of these two genes, revealing for the first time the regulation of insect UGTs by odorant exposure. Moreover, the specific antennal gene UGT46A6 was upregulated by insecticide topical application on antennae, suggesting its role in the protection of the olfactory organ towards xenobiotics. This work highlights the structural and functional diversity of UGTs within this highly specialized tissue. © 2014 The Royal Entomological Society.

  19. Multifunctional amaranth cystatin inhibits endogenous and digestive insect cysteine endopeptidases: A potential tool to prevent proteolysis and for the control of insect pests.

    Science.gov (United States)

    Valdés-Rodríguez, Silvia; Galván-Ramírez, Juan Pablo; Guerrero-Rangel, Armando; Cedro-Tanda, Alberto

    2015-01-01

    In a previous study, the amaranth cystatin was characterized. This cystatin is believed to provide protection from abiotic stress because its transcription is induced in response to heat, drought, and salinity. It has also been shown that recombinant amaranth cystatin inhibits bromelain, ficin, and cysteine endopeptidases from fungal sources and also inhibits the growth of phytopathogenic fungi. In the present study, evidence is presented regarding the potential function of amaranth cystatin as a regulator of endogenous proteinases and insect digestive proteinases. During amaranth germination and seedling growth, different proteolytic profiles were observed at different pH levels in gelatin-containing SDS-PAGE. Most of the proteolytic enzymes detected at pH 4.5 were mainly inhibited by trans-epoxysuccinyl-leucyl amido(4-guanidino)butane (E-64) and the purified recombinant amaranth cystatin. Furthermore, the recombinant amaranth cystatin was active against insect proteinases. In particular, the E-64-sensitive proteolytic digestive enzymes from Callosobruchus maculatus, Zabrotes subfasciatus, and Acanthoscelides obtectus were inhibited by the amaranth cystatin. Taken together, these results suggest multiple roles for cystatin in amaranth, specifically during germination and seedling growth and in the protection of A. hypochondriacus against insect predation. Amaranth cystatin represents a promising tool for diverse applications in the control of insect pest and for preventing undesirable proteolytic activity. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  20. Planting sentinel European trees in eastern Asia as a novel method to identify potential insect pest invaders.

    Directory of Open Access Journals (Sweden)

    Alain Roques

    Full Text Available Quarantine measures to prevent insect invasions tend to focus on well-known pests but a large proportion of the recent invaders were not known to cause significant damage in their native range, or were not even known to science before their introduction. A novel method is proposed to detect new potential pests of woody plants in their region of origin before they are introduced to a new continent. Since Asia is currently considered to be the main supplier of insect invaders to Europe, sentinel trees were planted in China during 2007-2011 as an early warning tool to identify the potential for additional Asian insect species to colonize European trees. Seedlings (1-1.5 m tall of five broadleaved (Quercus petraea, Q. suber, Q. ilex, Fagus sylvatica, and Carpinus betulus and two conifer species (Abies alba and Cupressus sempervirens were planted in blocks of 100 seedlings at two widely separated sites (one in a nursery near Beijing and the other in a forest environment near Fuyang in eastern China, and then regularly surveyed for colonization by insects. A total of 104 insect species, mostly defoliators, were observed on these new hosts, and at least six species were capable of larval development. Although a number of the insects observed were probably incidental feeders, 38 species had more than five colonization events, mostly infesting Q. petraea, and could be considered as being capable of switching to European trees if introduced to Europe. Three years was shown to be an appropriate duration for the experiment, since the rate of colonization then tended to plateau. A majority of the identified species appeared to have switched from agricultural crops and fruit trees rather than from forest trees. Although these results are promising, the method is not appropriate for xylophagous pests and other groups developing on larger trees. Apart from the logistical problems, the identification to species level of the specimens collected was a major

  1. United States Department of Agriculture-Agricultural Research Service: advances in the molecular genetic analysis of insects and their application to pest management.

    Science.gov (United States)

    Handler, Alfred M; Beeman, Richard W

    2003-01-01

    USDA-ARS scientists have made important contributions to the molecular genetic analysis of agriculturally important insects, and have been in the forefront of using this information for the development of new pest management strategies. Advances have been made in the identification and analysis of genetic systems involved in insect development, reproduction and behavior which enable the identification of new targets for control, as well as the development of highly specific insecticidal products. Other studies have been on the leading edge of developing gene transfer technology to better elucidate these biological processes though functional genomics and to develop new transgenic strains for biological control. Important contributions have also been made to the development and use of molecular markers and methodologies to identify and track insect populations. The use of molecular genetic technology and strategies will become increasingly important to pest management as genomic sequencing information becomes available from important pest insects, their targets and other associated organisms.

  2. Analysis of area-wide management of insect pests based on sampling

    Science.gov (United States)

    David W. Onstad; Mark S. Sisterson

    2011-01-01

    The control of invasive species greatly depends on area-wide pest management (AWPM) in heterogeneous landscapes. Decisions about when and where to treat a population with pesticide are based on sampling pest abundance. One of the challenges of AWPM is sampling large areas with limited funds to cover the cost of sampling. Additionally, AWPM programs are often confronted...

  3. The Management of Insect Pests in Australian Cotton: An Evolving Story.

    Science.gov (United States)

    Wilson, Lewis J; Whitehouse, Mary E A; Herron, Grant A

    2018-01-07

    The Australian cotton industry progressively embraced integrated pest management (IPM) to alleviate escalating insecticide resistance issues. A systems IPM approach was used with core principles that were built around pest ecology/biology and insecticide resistance management; together, these were integrated into a flexible, year-round approach that facilitated easy incorporation of new science, strategies, and pests. The approach emphasized both strategic and tactical elements to reduce pest abundance and rationalize decisions about pest control, with insecticides as a last resort. Industry involvement in developing the approach was vital to embedding IPM within the farming system. Adoption of IPM was facilitated by the introduction of Bt cotton, availability of selective insecticides, economic validation, and an industry-wide extension campaign. Surveys indicate IPM is now embedded in industry, confirming the effectiveness of an industry-led, backed-by-science approach. The amount of insecticide active ingredient applied per hectare against pests has also declined dramatically. Though challenges remain, pest management has transitioned from reactively attempting to eradicate pests from fields to proactively managing them year-round, considering the farm within the wider landscape.

  4. Study of Various Extracts of Ayapana triplinervis for their Potential in Controlling Three Insect Pests of Horticultural Crops

    Directory of Open Access Journals (Sweden)

    Lalljee, B.

    2008-01-01

    Full Text Available Chemical groups of Ayapana triplinervis, extracted successively with hexane, petroleum ether, methanol, chloroform: methanol (1:1, and chloroform: methanol (4:1 were studied for their effects on Plutella xylostella, Crocidolomia binotalis and Myzus persicae, three serious pests of horticultural crops in Mauritius. The most bioactive extracts were further fractionated into groups using Thin Layer Chromatography, and seven of those exhibiting strongest activity were tested on each of the three test insects. Results showed that the alkaloids and tannins exhibited greatest feeding deterrence in P. xylostella and C. binotalis, followed by phenols and flavonoids. In the case of M. persicae, A. triplinervis extracts disrupted growth and development of the nymphs, had significant pest control properties, and were good candidates for further study on their potential as botanical pesticides, in the context of an organic farming/ sustainable agriculture system, as an environmentallyfriendly alternative to synthetic insecticides.

  5. Insects & Other Arthropods. Animal Life in Action[TM]. Schlessinger Science Library. [Videotape].

    Science.gov (United States)

    2000

    This 23-minute videotape for grades 5-8, presents the myriad of animal life that exists on the planet. Students can view and perform experiments and investigations that help explain animal traits and habits. They also learn that there are more species of insects than any other animal class in the world. Insects are incredible creatures with many…

  6. Species delimitation in asexual insects of economic importance: The case of black scale (Parasaissetia nigra, a cosmopolitan parthenogenetic pest scale insect.

    Directory of Open Access Journals (Sweden)

    Yen-Po Lin

    Full Text Available Asexual lineages provide a challenge to species delimitation because species concepts either have little biological meaning for them or are arbitrary, since every individual is monophyletic and reproductively isolated from all other individuals. However, recognition and naming of asexual species is important to conservation and economic applications. Some scale insects are widespread and polyphagous pests of plants, and several species have been found to comprise cryptic species complexes. Parasaissetia nigra (Nietner, 1861 (Hemiptera: Coccidae is a parthenogenetic, cosmopolitan and polyphagous pest that feeds on plant species from more than 80 families. Here, we implement multiple approaches to assess the species status of P. nigra, including coalescence-based analyses of mitochondrial and nuclear genes, and ecological niche modelling. Our results indicate that the sampled specimens of P. nigra should be considered to comprise at least two ecotypes (or "species" that are ecologically differentiated, particularly in relation to temperature and moisture. The presence of more than one ecotype under the current concept of P. nigra has implications for biosecurity because the geographic extent of each type is not fully known: some countries may currently have only one of the biotypes. Introduction of additional lineages could expand the geographic extent of damage by the pest in some countries.

  7. Nanoinsecticidas: Nuevas perspectivas para el control de plagas Nanoinsecticides: New perspectives on insect pest control

    Directory of Open Access Journals (Sweden)

    Teodoro Stadler

    2010-12-01

    nanoinsecticides in pest management. For example, nanostructured alumina has been shown to have insecticidal properties, and it possesses some of the characteristics of an ideal insecticide, given that it is a natural product, not reactive, economical, with reduced probabilities of generating resistance in insects, and it is more effective than other commercially available insecticidal dusts. The current use of nanotechnology in a wide array of fields and products as well as the recent discovery of their potential in crop protection suggests that nanomaterials have a great potential for development of new products that will impact agriculture. Given the recent and widespread use of nanomaterials, there is an urgent need to study the impact of these products on human health and non target organisms, as well as to research more efficient and safer delivery technologies. The current levels of application of nanoparticles and the expected developments to come, suggest that nanotechnology will have a direct impact on the evolution of pest management practices in agriculture.

  8. Recent trends on sterile insect technique and area-wide integrated pest management. Economic feasibility, control projects, farmer organization and Bactrocera dorsalis complex control study

    International Nuclear Information System (INIS)

    2003-03-01

    We have invited professional papers from over the world, including Okinawa, for compilation of recent trends on Sterile Insect Techniques and Area-Wide Integrated Pest Management to further pursue environment friendly pest insects control measures in agricultural production in the Asia-Pacific region. Pest insects such as the tephritid fruit flies have long been and are still today causing serious damage to agricultural products in the Asia-Pacific region and farmers in the region apply such insecticides that are no longer allowed or being subjected to strict usage control in Japan. This, in return, may endanger the health of the very farmers, food safety and the ecosystem itself. The purpose of this report is, therefore, to clarify keys for technology transfer of so called SIT/AWIPM to potential recipients engaged in agricultural production in the region. This report focused on several topics, which make up important parts for the effective Sterile Insect Technique and Area-Wide Integrated Pest Management: economic feasibility; pest insects control projects; farmers' education; research progress in Bactrocera dorsalis complex issues specific to the Asia-Pacific region. The 12 of the papers are indexed individually. (J.P.N.)

  9. Incorporating carbon storage into the optimal management of forest insect pests: a case study of the southern pine beetle (Dendroctonus frontalis Zimmerman) in the New Jersey Pinelands.

    Science.gov (United States)

    Niemiec, Rebecca M; Lutz, David A; Howarth, Richard B

    2014-10-01

    Forest insect pest disturbance is increasing in certain areas of North America as many insect species, such as the southern pine beetle, expand their range due to a warming climate. Because insect pests are beginning to occupy forests that are managed for multiple uses and have not been managed for pests before, it is becoming increasingly important to determine how forests should be managed for pests when non-timber ecosystem services are considered in addition to traditional costs and revenues. One example of a service that is increasingly considered in forest management and that may affect forest pest management is carbon sequestration. This manuscript seeks to understand whether the incorporation of forest carbon sequestration into cost-benefit analysis of different forest pest management strategies affects the financially optimal strategy. We examine this question through a case study of the southern pine beetle (SPB) in a new area of SPB expansion, the New Jersey Pinelands National Reserve (NJPR). We utilize a forest ecology and economics model and include field data from the NJPR as well as outbreak probability statistics from previous years. We find under the majority of scenarios, incorporating forest carbon sequestration shifts the financially optimal SPB management strategy from preventative thinning toward no management or reactionary management in forest stands in New Jersey. These results contradict the current recommended treatment strategy for SPB and signify that the inclusion of multiple ecosystem services into a cost-benefit analysis may drastically alter which pest management strategy is economically optimal.

  10. Reducing losses inflicted by insect pests on cashew, using weaver ants as a biological control agent

    DEFF Research Database (Denmark)

    Anato, Florence; Wargui, Rosine; Sinzogan, Antonio

    2015-01-01

    BACKGROUND: Cashew (Anacardium occidentale Linnaeus) is the largest agricultural export product in Benin. However, yields and quality are lost due to inefficient pest control. Weaver ants (Oecophylla spp.) may control pests in this crop as they eat and deter pests. In Benin, cashew pest damages......, nut quality and yield were compared among: (i) trees with weaver ant (Oecophylla longinoda Latreille), (ii) trees where weaver ants were fed sugar, (iii) IPM trees with weaver ants combined with GF-120 (a natural insecticide), and (iv) control trees receiving no control measures. RESULTS: Thrips...... damages on nuts were higher than other damage symptoms and significantly lower on control trees compared to other treatments. Percentage of first quality nuts was higher in the control compared to ants treatments, but not different from the IPM-treatment. However, compared to the control treatment, ants...

  11. The effect of landscape complexity and microclimate on the thermal tolerance of a pest insect

    OpenAIRE

    Alford, Lucy; Tougeron, Kévin; Pierre, Jean-Sébastien; Burel, Françoise; van Baaren, Joan

    2017-01-01

    Landscape changes are known to exacerbate the impacts of climate change. As such, understanding the combined effect of climate and landscape on agroecosystems is vital if we are to maintain the function of agroecosystems. This study aimed to elucidate the effects of agricultural landscape complexity on the microclimate and thermal tolerance of an aphid pest to better understand how landscape and climate may interact to affect the thermal tolerance of pest species within the context of global ...

  12. Pesticidal plants: a viable alternative insect pest management approach for resource-poor farming in Africa.

    OpenAIRE

    Stevenson, Philip C.; Nyirenda, Stephen P.; Mvumi, Brighton; Sola, Phosiso; Kamanula, John M.; Sileshi, Gudeta; Belmain, Steven R.

    2012-01-01

    Drivers behind food security and crop protection issues vis-à-vis the food losses caused by pests include rapid human population increase, climate change, loss of beneficial on-farm biodiversity, reduction in per capita cropped land, water shortages, and pesticide withdrawals. Integrated pest management, therefore, becomes a compulsory strategy in agriculture, which offers a 'toolbox' of complementary crop- and region-specific crop protection solutions to address these rising pressures. IPM a...

  13. The trends and future of biotechnology crops for insect pest control ...

    African Journals Online (AJOL)

    Biotech crops, including those that are genetically modified (GM) with Bacillus thuringiensis (Bt) endotoxins for insect resistance, have been cultivated commercially and adopted in steadily increasing numbers of countries over the past 14 years. This review discusses the current status of insect resistant transgenic crops and ...

  14. Dietary silver nanoparticles reduce fitness in a beneficial, but not, pest insect species

    Science.gov (United States)

    Silver nanoparticles (AgNPs) have antimicrobial and insecticidal properties and they have been considered for their potential use as insecticides. While they do, indeed, kill some insects, two broader issues have not been considered in a critical way. First, reports of insect-lethal AgNPs are often ...

  15. Structure elucidation of some insect pheromones : a contribution to the development of selective pest control agents

    NARCIS (Netherlands)

    Persoons, C.J.

    1977-01-01

    The use of pheromones is one of the methods currently being investigated intensively as an alternative method of insect control. The various ways in which pheromones might be used in insect control programmes are briefly discussed in Chapter 1.

    Chapter 2 gives a detailed description of the

  16. Parameters for Successful Parental RNAi as An Insect Pest Management Tool in Western Corn Rootworm, Diabrotica virgifera virgifera

    Directory of Open Access Journals (Sweden)

    Ana M. Vélez

    2016-12-01

    Full Text Available Parental RNAi (pRNAi is an RNA interference response where the gene knockdown phenotype is observed in the progeny of the treated organism. pRNAi has been demonstrated in female western corn rootworms (WCR via diet applications and has been described as a potential approach for rootworm pest management. However, it is not clear if plant-expressed pRNAi can provide effective control of next generation WCR larvae in the field. In this study, we evaluated parameters required to generate a successful pRNAi response in WCR for the genes brahma and hunchback. The parameters tested included a concentration response, duration of the dsRNA exposure, timing of the dsRNA exposure with respect to the mating status in WCR females, and the effects of pRNAi on males. Results indicate that all of the above parameters affect the strength of pRNAi phenotype in females. Results are interpreted in terms of how this technology will perform in the field and the potential role for pRNAi in pest and resistance management strategies. More broadly, the described approaches enable examination of the dynamics of RNAi response in insects beyond pRNAi and crop pests.

  17. An Insecticide Further Enhances Experience-Dependent Increased Behavioural Responses to Sex Pheromone in a Pest Insect.

    Science.gov (United States)

    Abrieux, Antoine; Mhamdi, Amel; Rabhi, Kaouther K; Egon, Julie; Debernard, Stéphane; Duportets, Line; Tricoire-Leignel, Hélène; Anton, Sylvia; Gadenne, Christophe

    2016-01-01

    Neonicotinoid insecticides are widely used to protect plants against pest insects, and insecticide residues remaining in the environment affect both target and non-target organisms. Whereas low doses of neonicotinoids have been shown to disturb the behaviour of pollinating insects, recent studies have revealed that a low dose of the neonicotinoid clothianidin can improve behavioural and neuronal sex pheromone responses in a pest insect, the male moth Agrotis ipsilon, and thus potentially improve reproduction. As male moth behaviour depends also on its physiological state and previous experience with sensory signals, we wondered if insecticide effects would be dependent on plasticity of olfactory-guided behaviour. We investigated, using wind tunnel experiments, whether a brief pre-exposure to the sex pheromone could enhance the behavioural response to this important signal in the moth A. ipsilon at different ages (sexually immature and mature males) and after different delays (2 h and 24 h), and if the insecticide clothianidin would interfere with age effects or the potential pre-exposure-effects. Brief pre-exposure to the pheromone induced an age-independent significant increase of sex pheromone responses 24 h later, whereas sex pheromone responses did not increase significantly 2 h after exposure. However, response delays were significantly shorter compared to naïve males already two hours after exposure. Oral treatment with clothianidin increased sex pheromone responses in sexually mature males, confirming previous results, but did not influence responses in young immature males. Males treated with clothianidin after pre-exposure at day 4 responded significantly more to the sex pheromone at day 5 than males treated with clothianidin only and than males pre-exposed only, revealing an additive effect of experience and the insecticide. Plasticity of sensory systems has thus to be taken into account when investigating the effects of sublethal doses of insecticides

  18. An Insecticide Further Enhances Experience-Dependent Increased Behavioural Responses to Sex Pheromone in a Pest Insect.

    Directory of Open Access Journals (Sweden)

    Antoine Abrieux

    Full Text Available Neonicotinoid insecticides are widely used to protect plants against pest insects, and insecticide residues remaining in the environment affect both target and non-target organisms. Whereas low doses of neonicotinoids have been shown to disturb the behaviour of pollinating insects, recent studies have revealed that a low dose of the neonicotinoid clothianidin can improve behavioural and neuronal sex pheromone responses in a pest insect, the male moth Agrotis ipsilon, and thus potentially improve reproduction. As male moth behaviour depends also on its physiological state and previous experience with sensory signals, we wondered if insecticide effects would be dependent on plasticity of olfactory-guided behaviour. We investigated, using wind tunnel experiments, whether a brief pre-exposure to the sex pheromone could enhance the behavioural response to this important signal in the moth A. ipsilon at different ages (sexually immature and mature males and after different delays (2 h and 24 h, and if the insecticide clothianidin would interfere with age effects or the potential pre-exposure-effects. Brief pre-exposure to the pheromone induced an age-independent significant increase of sex pheromone responses 24 h later, whereas sex pheromone responses did not increase significantly 2 h after exposure. However, response delays were significantly shorter compared to naïve males already two hours after exposure. Oral treatment with clothianidin increased sex pheromone responses in sexually mature males, confirming previous results, but did not influence responses in young immature males. Males treated with clothianidin after pre-exposure at day 4 responded significantly more to the sex pheromone at day 5 than males treated with clothianidin only and than males pre-exposed only, revealing an additive effect of experience and the insecticide. Plasticity of sensory systems has thus to be taken into account when investigating the effects of sublethal doses

  19. A simulation approach to assessing sampling strategies for insect pests: an example with the balsam gall midge.

    Directory of Open Access Journals (Sweden)

    R Drew Carleton

    Full Text Available Estimation of pest density is a basic requirement for integrated pest management in agriculture and forestry, and efficiency in density estimation is a common goal. Sequential sampling techniques promise efficient sampling, but their application can involve cumbersome mathematics and/or intensive warm-up sampling when pests have complex within- or between-site distributions. We provide tools for assessing the efficiency of sequential sampling and of alternative, simpler sampling plans, using computer simulation with "pre-sampling" data. We illustrate our approach using data for balsam gall midge (Paradiplosis tumifex attack in Christmas tree farms. Paradiplosis tumifex proved recalcitrant to sequential sampling techniques. Midge distributions could not be fit by a common negative binomial distribution across sites. Local parameterization, using warm-up samples to estimate the clumping parameter k for each site, performed poorly: k estimates were unreliable even for samples of n ∼ 100 trees. These methods were further confounded by significant within-site spatial autocorrelation. Much simpler sampling schemes, involving random or belt-transect sampling to preset sample sizes, were effective and efficient for P. tumifex. Sampling via belt transects (through the longest dimension of a stand was the most efficient, with sample means converging on true mean density for sample sizes of n ∼ 25-40 trees. Pre-sampling and simulation techniques provide a simple method for assessing sampling strategies for estimating insect infestation. We suspect that many pests will resemble P. tumifex in challenging the assumptions of sequential sampling methods. Our software will allow practitioners to optimize sampling strategies before they are brought to real-world applications, while potentially avoiding the need for the cumbersome calculations required for sequential sampling methods.

  20. A Transformed Bacterium Expressing Double-Stranded RNA Specific to Integrin ?1 Enhances Bt Toxin Efficacy against a Polyphagous Insect Pest, Spodoptera exigua

    OpenAIRE

    Kim, Eunseong; Park, Youngjin; Kim, Yonggyun

    2015-01-01

    Background Oral toxicity of double-stranded RNA (dsRNA) specific to integrin ?1 subunit (SeINT) was known in a polyphagous insect pest, Spodoptera exigua. For an application of the dsRNA to control the insect pest, this study prepared a transformed Escherichia coli expressing dsRNA specific to SeINT. Principal Findings The dsRNA expression was driven by T7 RNA polymerase overexpressed by an inducer in the transformed E. coli. The produced dsRNA amount was proportional to the number of the cul...

  1. Establishment of the cytoplasmic incompatibility-inducing Wolbachia strain wMel in an important agricultural pest insect.

    Science.gov (United States)

    Zhou, Xiao-Fei; Li, Zheng-Xi

    2016-12-16

    The wMel Wolbachia strain was known for cytoplasmic incompatibility (CI)-induction and blocking the transmission of dengue. However, it is unknown whether it can establish and induce CI in a non-dipteran host insect. Here we artificially transferred wMel from Drosophila melanogaster into the whitefly Bemisia tabaci. Fluorescence in situ hybridisation demonstrated that wMel had successfully transfected the new host. Reciprocal crossing was conducted with wMel-transfected and wild-type isofemale lines, indicating that wMel could induce a strong CI without imposing significant cost on host fecundity. We then determined the maternal transmission efficiency of wMel in the offspring generations, showing a fluctuating trend over a period of 12 generations. We thus detected the titre of wMel during different developmental stages and in different generations by using real-time quantitative PCR, revealing a similar fluctuating mode, but it was not significantly correlated with the dynamics of transmission efficiency. These results suggest that wMel can be established in B.tabaci, a distantly related pest insect of agricultural importance; moreover, it can induce a strong CI phenotype in the recipient host insect, suggesting a potential for its use in biological control of B. tabaci.

  2. Influence of entomopathogenic fungus, Metarhizium anisopliae, alone and in combination with diatomaceous earth and thiamethoxam on mortality, progeny production, mycosis, and sporulation of the stored grain insect pests.

    Science.gov (United States)

    Ashraf, Misbah; Farooq, Muhammad; Shakeel, Muhammad; Din, Naima; Hussain, Shahbaz; Saeed, Nadia; Shakeel, Qaiser; Rajput, Nasir Ahmed

    2017-12-01

    The stored grain insects cause great damage to grains under storage conditions. Synthetic insecticides and fumigants are considered as key measures to control these stored grain insect pests. However, the major issue with these chemicals is grain contamination with chemical residues and development of resistance by insect pests to these chemicals. Biological control is considered as a potential alternative to chemical control especially with the use of pathogens, alone or in combination with selective insecticides. The present study was conducted to evaluate the synergism of Metarhizium anisopliae with diatomaceous earth (DE) and thiamethoxam against four insect pests on the stored wheat grains. In the first bioassay, the M. anisopliae was applied at 1.4 × 10 4 and 1.4 × 10 6 conidia/ml alone and in integration with two concentrations (250 and 500 ppm) of tested DE. The tested fungus when combined with DE and thiamethoxam possessed synergistic impact as compared to their individual efficacy. Adult mortality increased with respect to increased exposure interval and doses. In the second bioassay, M. anisopliae was applied at 1.4 × 10 4 conidia/ml individually and in combination with three concentrations (0.50, 0.75, and 1.00 ppm) of thiamethoxam. Results concluded that M. anisopliae integrated with DE and thiamethoxam provides more effective control of stored grain insect pests.

  3. Biology and management of insect pests in North American intensively managed hardwood forest systems.

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, David R.; Nebeker, T., E.; Hart, E., R.; Mattson, W., J.

    2005-01-01

    Annu. Rev. Entomol. 50:1-29. Abstract Increasing demand for wood and wood products is putting stress on traditional forest production areas, leading to long-term economic and environmental concerns. Intensively managed hardwood forest systems (IMHFS), grown using conventional agricultural as well as forestry methods, can help alleviate potential problems in natural forest production areas. Although IMHFS can produce more biomass per hectare per year than natural forests, the ecologically simplified, monocultural systems may greatly increase the crops susceptibility to pests. Species in the genera Populus and Salix comprise the greatest acreage in IMHFS in North America, but other species, including Liquidambar styracifua and Platanus occidentalis, are also important. We discuss life histories, realized and potential damage, and management options for the most economically infuential pests that affect these hardwood species. The substantial inherent challenges associated with pest management in the monocultural environments created by IMHFS are reviewed. Finally, we discuss ways to design IMHFS that may reduce their susceptibility to pests, increase their growth and productivity potential, and create a more sustainable environment.

  4. Weaver ants convert pest insects into food — prospects for the rural poor

    DEFF Research Database (Denmark)

    Offenberg, Hans Joachim; Wiwatwitaya, Decha

    2009-01-01

    harvested and eaten. In this way harmful pests are turned into valuable protein food and crops are protected without chemicals. As the weaver ant distribution envelops most of the worlds hunger hot spots this double utilization of ants for increased food production may benefit the people most...

  5. Moving On: Farmer Education in Integrated Insect Pest and Disease Management

    NARCIS (Netherlands)

    Jiggins, J.L.S.; Mancini, F.

    2009-01-01

    This chapter explores intensive hands-on occupational education for farmers in selected European, African, Latin American countries and in south India. An Indian case study of Farmer Field Schools for Integrated Pest and Production Management (IPPM) to ensure food security and livelihood improvement

  6. Improved quality management to enhance the efficacy of the sterile insect technique for lepidopteran pests

    Science.gov (United States)

    Lepidoptera are among the most severe pests of food and fibre crops in the world and are mainly controlled using broad spectrum insecticides. This does not lead to sustainable control and farmers are demanding alternative control tools which are both effective and friendly to the environment. The st...

  7. Highlights of Task Force meeting on irradiation as a quarantine treatment, with particular emphasis on insect pests of fresh fruits and vegetables

    International Nuclear Information System (INIS)

    Feliu, E.; Borheg, I. de

    1991-01-01

    This report highlights the discussions and recommendations of the Meeting on Irradiation as a Quarantine Treatment of Fresh Fruits and Vegetables convened 7-11 January 1991 by the International Consultative Group on Food Irradiation. The topics covered had particular emphasis on the irradiation of insect pests of fresh fruits and vegetables. The meeting concluded that low-dose irradiation can be effective as a plant quarantine treatment against fruit flies, as well as against other insect species and mites

  8. POTENTIAL ENTOMOPATHOGENIC FUNGI TO CONTROL SCALE INSECT PEST ON CITRUS TANGERINE (CITRUS SUHUIENSIS TAN.

    Directory of Open Access Journals (Sweden)

    Triwiratno A.

    2017-12-01

    Full Text Available Achiving of food self-sufficiency can be done by using of local potential that is by agribusiness in Indonesia. One potential locally owned citrus agribusiness was the use of entomopathogenic fungi to improve the productivity of citrus. Reports showed decrease in productivity due to infestation of scale insect. The experiment was conducted at the Integrated Laboratory of Indonesian Citrus and Subtropical Fruit Research Institute in October 2013 to October 2014. The study began with a survey for scale insect infestation on citrus crops in high land, medium land and low in dry and rainy seasons. Taken from a collection of entomopathogenic fungi associated with scale insect in the field. Collection of fungi isolated from single conidia and its ability to infect selected scale insect. Entomopathogenic fungi were further tested for the viability and pathogenicity against scale insect. The results showed that the sclae insects attacked citrus were types of L.beckii and A.Aurantii. The highest attack occurred at low land during the dry season by L.beckii with population of 4.2 heads increased to 5.5 individuals per 10 cm in the rainy season. Viability test results showed that the isolates had viability above 50% were SKB4K, SKD1K and SBB3K for 73.6, 61.6 and 53% respectively, which were collected during the dry season. While isolates obtained in the rainy season were SBWD2H and SBWD3BH, each with aviability of 77.3 and 78.3% respectively. Pathogenicity test results showed that there were 6 isolates known to have potential as entomopathogenic fungi for controlling scale insect, namely, SBWB2H, SBWD2H, SBWD3BH, SKD1K, SBWD1K and SBB3K which had pathogenicity over 50% up to 14 days.

  9. Effect of sunflower climbing bean intercroping system on insect pest incidence and crop productivity

    International Nuclear Information System (INIS)

    Tuey, R.K.; Koros, I.; Wanyonyi, W.

    2001-01-01

    Intercropping of sunflower and climping beans were evaluated for pest incidence and yield advantages during the main season of 2000/2001 at KARI-NPBRC, Njoro. Three sunflower varieties, Fedha, Record, PAN-7553 and three climbing beans varieties, Puebla, Omukingi and Flora were laid out in a complete randomised block design with four replications. Sunflower was spaced at 75 x 30 cm while the climbing beans were spaced at 50 x 37.5 cm. Assessment of pest damage on various treatments commenced 17 days after planting. Results showed that low plant germination was mainly a result of dry weather and taht cutworm damage was insignificant. There was a sunflower x climbing bean variety interaction, which regulated the aphid infestation of the climbing beans. Sunflower variety PAN-7553 recorded significantly (P<0.01) more pecked heads than the other two varieties. (author)

  10. The Creation of BugBag. Redesign of Insect Trap for Biological Pest Control

    OpenAIRE

    Svendsen, Mads Rømer; Andersen, Jakob Wulff

    2014-01-01

    Introduction The project is based on research on pheromones and the project SoftPest Multitrap. Copenhagen Universitys Science and Life Sciences, more specifically Department of Plant and Environmental Sciences, has researched and developed the pheromonis for mass trapping of the Strawberry Blossom Weevil (Anthonomus Rubi) and the European Tarnished Plant Bug (Lygus Rugulipennis). Our foucus is on the user-experience Associated with the pheromonibased traps. Especially the distrubution, as...

  11. Public relations and political support in area-wide integrated pest management programmes that integrate the sterile insect technique

    International Nuclear Information System (INIS)

    Dyck, V.A.; Regidor Fernandez, E.E.; Reyes Flores, J.; Teruya, T.; Barnes, B.; Gomez Riera, P.; Lindquist, D.; Reuben, R.

    2005-01-01

    The public relations component of area-wide integrated pest management (AW-IPM) programmes that integrate the sterile insect technique (SIT) has a large impact on programme success. Full-time professionals should direct public relations activities and secure vital political support from governments and community organizations. Good communication among programme staff, and between programme staff and the public, is required to maintain participation and support, and to keep the work goal-oriented even when some programme activities are controversial. The media can be valuable and effective partners by informing the public about the real facts and activities of a programme, especially if this is done in a non-technical and straightforward way. Ongoing research support improves the programme technology, provides technical credibility on contentious issues, and solves operational problems. Programme failure can result from poor public relations and inadequate public support. (author)

  12. In situ detection of small-size insect pests sampled on traps using multifractal analysis

    Science.gov (United States)

    Xia, Chunlei; Lee, Jang-Myung; Li, Yan; Chung, Bu-Keun; Chon, Tae-Soo

    2012-02-01

    We introduce a multifractal analysis for detecting the small-size pest (e.g., whitefly) images from a sticky trap in situ. An automatic attraction system is utilized for collecting pests from greenhouse plants. We applied multifractal analysis to segment action of whitefly images based on the local singularity and global image characteristics. According to the theory of multifractal dimension, the candidate blobs of whiteflies are initially defined from the sticky-trap image. Two schemes, fixed thresholding and regional minima obtainment, were utilized for feature extraction of candidate whitefly image areas. The experiment was conducted with the field images in a greenhouse. Detection results were compared with other adaptive segmentation algorithms. Values of F measuring precision and recall score were higher for the proposed multifractal analysis (96.5%) compared with conventional methods such as Watershed (92.2%) and Otsu (73.1%). The true positive rate of multifractal analysis was 94.3% and the false positive rate minimal level at 1.3%. Detection performance was further tested via human observation. The degree of scattering between manual and automatic counting was remarkably higher with multifractal analysis (R2=0.992) compared with Watershed (R2=0.895) and Otsu (R2=0.353), ensuring overall detection of the small-size pests is most feasible with multifractal analysis in field conditions.

  13. Development of a Microbial-Based Integrated Pest Management Program for Helicoverpa spp. (Lepidoptera: Noctuidae and Beneficial Insects on Conventional Cotton Crops in Australia

    Directory of Open Access Journals (Sweden)

    Robert K. Mensah

    2015-04-01

    Full Text Available Entomopathogenic fungi, when used as a microbial control agent against cotton pests, such as Helicoverpa spp., may have the potential to establish and spread in the environment and to have an impact on both pests and beneficial insects. Information on the effect of entomopathogenic fungi on pests and beneficial insects is crucial for a product to be registered as a biopesticide. The effect of the entomopathogenic fungus BC 639 (Aspergillus sp. against Helicoverpa spp. and beneficial insects (mostly predatory insects was studied in the laboratory and in cotton field trials. The results show that when Helicoverpa spp. second instar larvae were exposed to increasing concentrations (from 102 to 109 of the entomopathogenic fungus BC 639, the optimum dose required to kill over 50% of the insects was 1.0 ´ 107 spores/mL. In the field trials, the number of Helicoverpa spp. per metre on plots treated with 1.0 or 0.50 L/ha of BC 639 was the same as on plots treated with the recommended rate of the commercial insecticide, Indoxacarb. However, when plots were treated with 0.25 L/ha of BC 639, this was not as effective at controlling Helicoverpa spp. as 1.0 or 0.5 L/ha BC 639 or Indoxacarb. BC 639 had less effect on predatory insects when applied at lower rates (0.50 and 0.25 L/ha than at higher rates (1.0 L/ha. Thus, BC 639 was more selective against predators when applied at lower rates than at the higher rate, but was also more selective than Indoxacarb. Thus, the ability of BC 639 to control Helicoverpa spp. effectively with a minimal effect on predatory insects indicates its potential for enhancing integrated pest management programs and to sustain cotton production.

  14. Low cost production of nematodes for biological control of insect pests

    Science.gov (United States)

    Entomopathogenic nematodes are produced in two ways: in artificial media using liquid or solid fermentation methods (in vitro) or by mass producing insect hosts to be artificially exposed to mass infection by nematodes (in vivo). The yellow mealworm (Tenebrio molitor) is a good host for in vivo nema...

  15. Moisture content, insect pests and mycotoxin levels of maize at harvest and post-harvest in the Middle Belt of Ghana

    Science.gov (United States)

    Moisture content, insect pest infestation and mycotoxin contamination of maize are challenges to food safety and security, especially in the tropics where maize is a staple grain. However, very little documentation is available on the impact of these factors on maize in Ghana. This study focused on ...

  16. Field evaluation of the long-lasting treated storage bag, deltamethrin-incorporated (ZeroFly® Storage Bag) as a barrier to insect pest infestation

    Science.gov (United States)

    The deltamethrin-incorporated polypropylene (PP) bag, ZeroFly® Storage Bag, is a new technology to reduce postharvest losses caused by stored-product insect pests. ZeroFly bags filled with untreated maize were compared to PP bags filled with maize treated with Betallic Super (80 g pirimiphos-methyl ...

  17. Driving Pest Insect Populations: Agricultural Chemicals Lead to an Adaptive Syndrome in Nilaparvata Lugens Stål (Hemiptera: Delphacidae).

    Science.gov (United States)

    You, Lin-Lin; Wu, You; Xu, Bing; Ding, Jun; Ge, Lin-Quan; Yang, Guo-Qin; Song, Qi-Sheng; Stanley, David; Wu, Jin-Cai

    2016-11-23

    The brown planthopper (BPH) is a devastating pest of rice throughout Asia. In this paper we document the BPH biogeographic range expansion in China over the 20-year period, 1992 to 2012. We posed the hypothesis that the range expansion is due to a syndrome of adaptations to the continuous presence of agricultural chemicals (insecticides and a fungicide) over the last 40 years. With respect to biogeography, BPH ranges have expanded by 13% from 1992 to 1997 and by another 3% from 1997 to 2012. In our view, such expansions may follow primarily from the enhancing effects of JGM, among other agricultural chemicals, and from global warming. JGM treatments led to increased thermotolerance, recorded as decreased mortality under heat stress at 40 ± 1 °C (down from 80% to 55%) and increased fecundity (by 49%) at 34 °C. At the molecular level, JGM treatments led to increased abundances of mRNA encoding Acetyl Co-A carboxylase (Acc) (up 25%) and Hsp70 (up 32%) in experimental BPH. RNAi silencing of Hsp70 and Acc eliminated the JGM effects on fecundity and silencing Hsp70 reduced JGM-induced thermotolerance. Integrated with global climate change scenarios, such syndromes in pest insect species have potential for regional- and global-scale agricultural disasters.

  18. Semiochemical mediated enhancement of males to complement sterile insect technique in management of the tephritid pest Bactrocera tryoni (Froggatt).

    Science.gov (United States)

    Khan, Mohammed Abul Monjur; Manoukis, Nicholas C; Osborne, Terry; Barchia, Idris M; Gurr, Geoff M; Reynolds, Olivia L

    2017-10-17

    Queensland fruit fly, Bactrocera tryoni (Froggatt), is the most significant pest of Australia's $9 billion horticulture industry. The sterile insect technique (SIT) and cue-lure (a synthetic analogue of raspberry ketone (RK))-based male annihilation technique (MAT) are two of the most effective management tools against this pest. However, combining these two approaches is considered incompatible as MAT kills sterile and 'wild' males indiscriminately. In the present study we tested the effect of pre-release feeding of B. tryoni on RK on their post-release survival and response to MAT in field cages and in a commercial orchard. In both settings, survival was higher for RK supplemented adults compared to control (i.e. RK denied) adults. A lower number of RK supplemented sterile males were recaptured in MAT baited traps in both the field cages and orchard trials compared to RK denied sterile males. The advantage of this novel "male replacement" approach (relatively selective mortality of wild males at lure-baited traps while simultaneously releasing sterile males) is increasing the ratio of sterile to wild males in the field population, with potential for reducing the number of sterile males to be released.

  19. Construction of a recombinant Bacillus velezensis strain as an integrated control agent against plant diseases and insect pests.

    Science.gov (United States)

    Roh, Jong Yul; Liu, Qin; Choi, Jae Young; Wang, Yong; Shim, Hee Jin; Xu, Hong Guang; Choi, Gyung Ja; Kim, Jin-Cheol; Je, Yeon Ho

    2009-10-01

    To construct a new recombinant strain of Bacillus velezensis that has antifungal and insecticidal activity via the expression of the insecticidal Bacillus thuringiensis crystal protein, a B. thuringiensis expression vector (pHT1K-1Ac) was generated that contained the B. thuringiensis cry1Ac gene under the control of its endogenous promoter in a minimal E. coli-B. thuringiensis shuttle vector (pHT1K). This vector was introduced into a B. velezensis isolate that showed high antifungal activities against several plant diseases, including rice blast (Magnaporthe grisea), rice sheath blight (Rhizotonia solani), tomato gray mold (Botrytis cinerea), tomato late blight (Phytophthora infestans), and wheat leaf rust (Puccinia recondita), by electroporation. The recombinant B. velezensis strain was confirmed by PCR using cry1Ac-specific primers. Additionally, the recombinant strain produced a protein approximately 130 kDa in size and parasporal inclusion bodies similar to B. thuringiensis. The in vivo antifungal activity assay demonstrated that the activity of the recombinant B. velezensis strain was maintained at the same level as that of wild-type B. velezensis. Furthermore, it exhibited high insecticidal activity against a lepidopteran pest, Plutella xylostella, although its activity was lower than that of a recombinant B. thuringiensis strain, whereas wild-type B. velezensis strain did not show any insecticidal activity. These results suggest that this recombinant B. velezensis strain can be used to control harmful insect pests and fungal diseases simultaneously in one crop.

  20. Impact of Climate Change on Voltinism and Prospective Diapause Induction of a Global Pest Insect – Cydia pomonella (L.)

    Science.gov (United States)

    Stoeckli, Sibylle; Hirschi, Martin; Spirig, Christoph; Calanca, Pierluigi; Rotach, Mathias W.; Samietz, Jörg

    2012-01-01

    Global warming will lead to earlier beginnings and prolongation of growing seasons in temperate regions and will have pronounced effects on phenology and life-history adaptation in many species. These changes were not easy to simulate for actual phenologies because of the rudimentary temporal (season) and spatial (regional) resolution of climate model projections. We investigate the effect of climate change on the regional incidence of a pest insect with nearly worldwide distribution and very high potential for adaptation to season length and temperature – the Codling Moth, Cydia pomonella. Seasonal and regional climate change signals were downscaled to the hourly temporal scale of a pest phenology model and the spatial scale of pest habitats using a stochastic weather generator operating at daily scale in combination with a re-sampling approach for simulation of hourly weather data. Under future conditions of increased temperatures (2045–2074), the present risk of below 20% for a pronounced second generation (peak larval emergence) in Switzerland will increase to 70–100%. The risk of an additional third generation will increase from presently 0–2% to 100%. We identified a significant two-week shift to earlier dates in phenological stages, such as overwintering adult flight. The relative extent (magnitude) of first generation pupae and all later stages will significantly increase. The presence of first generation pupae and later stages will be prolonged. A significant decrease in the length of overlap of first and second generation larval emergence was identified. Such shifts in phenology may induce changes in life-history traits regulating the life cycle. An accordingly life-history adaptation in photoperiodic diapause induction to shorter day-length is expected and would thereby even more increase the risk of an additional generation. With respect to Codling Moth management, the shifts in phenology and voltinism projected here will require adaptations of

  1. Impact of climate change on voltinism and prospective diapause induction of a global pest insect--Cydia pomonella (L.).

    Science.gov (United States)

    Stoeckli, Sibylle; Hirschi, Martin; Spirig, Christoph; Calanca, Pierluigi; Rotach, Mathias W; Samietz, Jörg

    2012-01-01

    Global warming will lead to earlier beginnings and prolongation of growing seasons in temperate regions and will have pronounced effects on phenology and life-history adaptation in many species. These changes were not easy to simulate for actual phenologies because of the rudimentary temporal (season) and spatial (regional) resolution of climate model projections. We investigate the effect of climate change on the regional incidence of a pest insect with nearly worldwide distribution and very high potential for adaptation to season length and temperature--the Codling Moth, Cydia pomonella. Seasonal and regional climate change signals were downscaled to the hourly temporal scale of a pest phenology model and the spatial scale of pest habitats using a stochastic weather generator operating at daily scale in combination with a re-sampling approach for simulation of hourly weather data. Under future conditions of increased temperatures (2045-2074), the present risk of below 20% for a pronounced second generation (peak larval emergence) in Switzerland will increase to 70-100%. The risk of an additional third generation will increase from presently 0-2% to 100%. We identified a significant two-week shift to earlier dates in phenological stages, such as overwintering adult flight. The relative extent (magnitude) of first generation pupae and all later stages will significantly increase. The presence of first generation pupae and later stages will be prolonged. A significant decrease in the length of overlap of first and second generation larval emergence was identified. Such shifts in phenology may induce changes in life-history traits regulating the life cycle. An accordingly life-history adaptation in photoperiodic diapause induction to shorter day-length is expected and would thereby even more increase the risk of an additional generation. With respect to Codling Moth management, the shifts in phenology and voltinism projected here will require adaptations of plant

  2. Impact of climate change on voltinism and prospective diapause induction of a global pest insect--Cydia pomonella (L..

    Directory of Open Access Journals (Sweden)

    Sibylle Stoeckli

    Full Text Available Global warming will lead to earlier beginnings and prolongation of growing seasons in temperate regions and will have pronounced effects on phenology and life-history adaptation in many species. These changes were not easy to simulate for actual phenologies because of the rudimentary temporal (season and spatial (regional resolution of climate model projections. We investigate the effect of climate change on the regional incidence of a pest insect with nearly worldwide distribution and very high potential for adaptation to season length and temperature--the Codling Moth, Cydia pomonella. Seasonal and regional climate change signals were downscaled to the hourly temporal scale of a pest phenology model and the spatial scale of pest habitats using a stochastic weather generator operating at daily scale in combination with a re-sampling approach for simulation of hourly weather data. Under future conditions of increased temperatures (2045-2074, the present risk of below 20% for a pronounced second generation (peak larval emergence in Switzerland will increase to 70-100%. The risk of an additional third generation will increase from presently 0-2% to 100%. We identified a significant two-week shift to earlier dates in phenological stages, such as overwintering adult flight. The relative extent (magnitude of first generation pupae and all later stages will significantly increase. The presence of first generation pupae and later stages will be prolonged. A significant decrease in the length of overlap of first and second generation larval emergence was identified. Such shifts in phenology may induce changes in life-history traits regulating the life cycle. An accordingly life-history adaptation in photoperiodic diapause induction to shorter day-length is expected and would thereby even more increase the risk of an additional generation. With respect to Codling Moth management, the shifts in phenology and voltinism projected here will require

  3. A naturally occurring plant cysteine protease possesses remarkable toxicity against insect pests and synergizes Bacillus thuringiensis toxin.

    Directory of Open Access Journals (Sweden)

    Srinidi Mohan

    Full Text Available When caterpillars feed on maize (Zea maize L. lines with native resistance to several Lepidopteran pests, a defensive cysteine protease, Mir1-CP, rapidly accumulates at the wound site. Mir1-CP has been shown to inhibit caterpillar growth in vivo by attacking and permeabilizing the insect's peritrophic matrix (PM, a structure that surrounds the food bolus, assists in digestion and protects the midgut from microbes and toxins. PM permeabilization weakens the caterpillar defenses by facilitating the movement of other insecticidal proteins in the diet to the midgut microvilli and thereby enhancing their toxicity. To directly determine the toxicity of Mir1-CP, the purified recombinant enzyme was directly tested against four economically significant Lepidopteran pests in bioassays. Mir1-CP LC(50 values were 1.8, 3.6, 0.6, and 8.0 ppm for corn earworm, tobacco budworm, fall armyworm and southwestern corn borer, respectively. These values were the same order of magnitude as those determined for the Bacillus thuringiensis toxin Bt-CryIIA. In addition to being directly toxic to the larvae, 60 ppb Mir1-CP synergized sublethal concentrations of Bt-CryIIA in all four species. Permeabilization of the PM by Mir1-CP probably provides ready access to Bt-binding sites on the midgut microvilli and increases its activity. Consequently, Mir1-CP could be used for controlling caterpillar pests in maize using non-transgenic approaches and potentially could be used in other crops either singly or in combination with Bt-toxins.

  4. Contact Toxicity and Repellency of the Essential Oil of Liriope muscari (DECN. Bailey against Three Insect Tobacco Storage Pests

    Directory of Open Access Journals (Sweden)

    Yan Wu

    2015-01-01

    Full Text Available In order to find and develop new botanical pesticides against tobacco storage pests, bioactivity screening was performed. The essential oil obtained from the aerial parts of Liriope muscari was investigated by GC/MS and GC/FID. A total of 14 components representing 96.12% of the oil were identified and the main compounds in the oil were found to be methyl eugenol (42.15% and safrole (17.15%, followed by myristicin (14.18% and 3,5-dimethoxytoluene (10.60%. After screening, the essential oil exhibit potential insecticidal activity. In the progress of assay, it showed that the essential oil exhibited potent contact toxicity against Tribolium castaneum, Lasioderma serricorne and Liposcelis bostrychophila adults, with LD50 values of 13.36, 11.28 µg/adult and 21.37 µg/cm2, respectively. The essential oil also exhibited strong repellency against the three stored product insects. At the same concentrations, the essential oil was more repellent to T. castaneum than to L. serricorne adults. The results indicate that the essential oil of Liriope muscari has potential to be developed into a natural insecticide or repellent for controlling insects in stored tobacco and traditional Chinese medicinal materials.

  5. Steroidal compounds as carriers of juvenile hormone bioanalogues applicable in environmentally safe insect pest control

    Czech Academy of Sciences Publication Activity Database

    Jurček, Ondřej; Wimmer, Zdeněk; Bennettová, Blanka; Kuldová, Jelena; Hrdý, Ivan; Drašar, P.

    2007-01-01

    Roč. 37, Suppl. 1 (2007), A131-A132 ISSN 1738-2297. [International Congress of Insect Biotechnology and Industry. 19.08.2007-24.08.2007, Daegu] R&D Projects: GA MŠk 2B06024 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50380511 Keywords : juvenile hormone bioanalogues * juvenoid * juvenogen Subject RIV: CC - Organic Chemistry

  6. Use of a regulatory mechanism of sex determination in pest insect ...

    Indian Academy of Sciences (India)

    2010-09-06

    Sep 6, 2010 ... 2005) and in Aedes ae- gypti (Phuc et al. 2007). In this system tTA acts not only as a transactivator but also as a lethal effector. Under restric- tive conditions; namely in the absence of tetracycline, tTA accumulates in both sexes of the transgenic insect to lev- els that are lethal to immature stages. One feature ...

  7. The efficacy of biogas to protect stored grains from insect pests

    Directory of Open Access Journals (Sweden)

    Chanakya H. N

    2015-04-01

    Full Text Available Stored grains such as rice and wheat (and other grains/pulses are prone to pest infestation mainly by Sitophilus oryzae, Tribolium castaneum and Rhyzopertha dominica in India and more than 30% of harvested grain is lost to stored grain pests. Protection of the grains by creating an oxygen deficit atmosphere by using carbon-dioxide or biogas is an alternative. In this study, biogas was used as a ‘fumigant’ against S .oryzae, T. castaneum and R. dominica reared on rice (Oryza sativa and wheat (Triticum aestivum; Semolina and whole wheat flour grain types, respectively. The optimum biogas flow rate required to remove the oxygen from an empty container and partially grain filled container was found to be 40 ml per minute sustained up to a time leading to an equivalent of three times the volume of the grain container. Using these fumigation conditions 100 % adult mortality was observed in T. castaneum and R. dominica within 24 hours and S. oryzae within 48 hours. Farmers in rural India have been using biogas plants to meet their kitchen energy needs. Some surplus gas could be used for fumigation of stored agro-products making this process inexpensive, environment friendly as well as acceptable to a growing ‘organic food market’.

  8. Area-wide approaches to insect pest management: history and lessons

    International Nuclear Information System (INIS)

    Klassen, Waldemar

    2000-01-01

    World agriculture is now entering a very trying era because currently our numbers are expanding by more than 90 million additional people per year. Demographers project that our growth will not drop below 90 million people per year until about 2020 (United Nations 1993, Nygaard 1998). The challenge is to increase food production every three or four years sufficiently to feed an additional population equivalent to that of Western Europe or North America. The land available for agriculture on a per capita basis is becoming progressively more limited so than in 2010, on average, 1 hectare in developing countries will have to feed 5 people, and in South Asia, 1 hectare will have to feed 8 people (Alexandratos 1995, Klassen 1995). On an average, 66 percent of the additional food must come from increased yields, and in South Asia, fully 80 percent must come from increased yields. The balance will come from expanding the area cultivated and use of intensified cropping systems. However, this is not a simple matter since pest populations tend to be favoured by yield-boosting measures. Since population growth rates recede as people overcome poverty, and since increasing food production is the principal means of overcoming poverty in many countries, it is imperative that in the decades immediately ahead major improvements be made in reducing losses to pests and in other yield enhancing measures

  9. Field efficacy of entomopathogenic fungi Beauveria bassiana (Balsamo.) for the management of mungbean insect pests

    Science.gov (United States)

    Bayu, M. S. Y. I.; Prayogo, Y.

    2018-01-01

    In order to reduce the use of insecticide, the application of Beauveria bassiana may be an alternative control. The objective of this study was to evaluate the efficacy of B. bassiana for controlling mungbean pest. The experiment was conducted in Ngale Research Station from February to May 2017, using randomized block design, seven treatments, four replicates. The treatments were frequency of application; P1= six times, P2= five times, P3= four times, P4= three times, P5= once, P6= full protection using chemical insecticide, and P7= no protection. Application of B. bassiana four to six times can suppress the population of Empoasca sp., Riptortus linearis, and Maruca testulalis, but did not significantly different with the application of chemical insecticide. Based on the seed weight, application of B. bassiana six times (659.7 g/plot) led to significantly high as compare with the application of chemical insecticide (374 g/plot). Application of B. bassiana tended to be secure to natural enemies, especially Coccinella sp., Oxyopes javanus, and Paederus fuscipes. Both of those predators were not found on the application of chemical insecticide. Hence, B. bassiana can be recommended as a biological agent in integrated pest management component on mungbean because of effective and environmentally friendly.

  10. Insect pests and their natural enemies on spring oilseed rape in Estonia : impact of cropping systems

    Directory of Open Access Journals (Sweden)

    E. VEROMANN

    2008-12-01

    Full Text Available To investigate the impact of different cropping systems, the pests, their hymenopteran parasitoids and predatory ground beetles present in two spring rape crops in Estonia, in 2003, were compared. One crop was grown under a standard (STN cropping system and the other under a minimised (MIN system. The STN system plants had more flowers than those in the MIN system, and these attracted significantly more Meligethes aeneus, the only abundant and real pest in Estonia. Meligethes aeneus had two population peaks: the first during opening of the first flowers and the second, the new generation, during ripening of the pods. The number of new generation M. aeneus was almost four times greater in the STN than in the MIN crop. More carabids were caught in the MIN than in STN crop. The maximum abundance of carabids occurred two weeks before that of the new generation of M. aeneus, at the time when M. aeneus larvae were dropping to the soil for pupation and hence were vulnerable to predation by carabids.

  11. Pest Movement

    Directory of Open Access Journals (Sweden)

    Rod Bhar

    1998-12-01

    Full Text Available Maintenance of woody borders surrounding crop fields is desirable for biodiversity conservation. However, for crop pest management, the desirability of woody borders depends on the trade-off between their effects at the local field scale and the landscape scale. At the local scale, woody borders can reduce pest populations by increasing predation rates, but they can also increase pest populations by providing complementary habitats and reducing movement rate of pests out of crop fields. At the regional scale, woody borders can reduce pest populations by reducing colonization of newly planted crop fields. Our objective was to develop guidelines for maximizing pest control while maintaining woody borders in the landscape. We wished to determine the conditions under which the regional effect of borders on colonization can outweigh local enhancement effects of borders on pest populations. We built a stochastic, individual-based, spatially implicit simulation model of a specialist insect population in a landscape divided into a number of crop fields. We conducted simulations to determine the conditions under which woody borders enhance vs. reduce the regional pest population size. The following factors were considered: landscape fragmentation, crop rotation period, barrier effect of woody borders, disperser success rate, and effect of woody borders on local survival. The simulation results suggest that woody borders are most likely to enhance regional control of crop pests if (1 the woody borders are very effective in reducing insect movement from one crop field to another, and (2 crop rotation is on a very short cycle. Based on these results, our preliminary recommendations are that woody borders should contain dense, tall vegetation to reduce insect movement, and crops should be rotated on as short a cycle as possible. These conditions should ensure that woody borders can be maintained for their conservation value without enhancing crop pest

  12. Insects and other invertebrates

    Science.gov (United States)

    John R. Jones; Norbert V. DeByle; Diane M. Bowers

    1985-01-01

    Quaking aspen throughout its range appears to be host to several insect and other invertebrate pests (fig. 1). It is a short-lived species that is palatable to a large variety of animals. Furniss and Carolin (1977) listed 33 insect species that use aspen as a food source. Some are quite damaging and may kill otherwise healthy stands of aspen; others feed on weakened or...

  13. Systems of organic farming in spring vetch I: Biological response of sucking insect pests

    Directory of Open Access Journals (Sweden)

    Ivelina Nikolova

    2015-04-01

    Full Text Available Four systems of organic farming and a conventional farming system were studied over the period 2012-2014. The organic system trial variants included: I – an organic farming system without any biological products used (growth under natural soil fertility – Control; II – an organic farming system involving the use of a biological foliar fertilizer and a biological plant growth regulator (Polyversum+Biofa; III – an organic farming system in which a biological insecticide (NeemAzal T/S was used; IV – an organic farming system including a combination of three organic products: the foliar fertilizer, the plant growth regulator and the bioinsecticide (Polyversum+Biofa+NeemAzal T/S. Variant V represented a conventional farming system in which synthetic products were used in combination (foliar fertilizer, plant growth regulator and insecticide: Masterblend+Flordimex 420+Nurelle D. Treatment of vetch plants with the biological insecticide NeemAzal in combination with Biofa and Polyversum resulted in the lowest density of sucking pests, compared to all other organic farming methods tested (i.e. without NeemAzal, with NeemAzal alone, and its combination with Biofa and Polyversum. The greatest reduction in pest numbers during the vegetation period in that variant was observed in species of the order Thysanoptera (36.0-41.4%, followed by Hemiptera, and the families Aphididae (31.6-40.3% and Cicadellidae (27.3-28.6%. This combination showed an efficient synergistic interaction and an increase in biological efficacy as compared to individual application of NeemAzal. The highest toxic impact was found against Thrips tabaci, followed by Acyrthosiphon pisum. An analysis of variance regarding the efficacy against the species A. pisum, E. pteridis and T. tabaci showed that type of treatment had the most dominant influence and statistically significant impact.

  14. Probability to produce animal vaccines in insect baculovirus ...

    African Journals Online (AJOL)

    Administrator

    2011-09-07

    Sep 7, 2011 ... The insect baculovirus expression system is a valuable tool for the production of vaccine. Many subunit vaccines have been expressed in this ... important step in this regard. The best example in this regard is the ... purified antigenic components of pathogenic micro- organisms, thus, carrying less risk of ...

  15. Insects in the Classroom: A Study of Animal Behavior

    Science.gov (United States)

    Miller, Jon S.

    2004-01-01

    These activities allow students to investigate behavioral responses of the large Milkweed bug, "Oncopeltus fasciatus," and the mealworm, "Tenebrio molitor" or "Tenebrio obscurus," to external stimuli of light, color, and temperature. During the activities, students formulate hypotheses to research questions presented. They also observe insects for…

  16. Countermeasure against insect pests for comfortable life; Gaichu tono tatakai (kaitekina seikatsu kukan wo mezashite)

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, M. [Sumitomo Chemical Co. Ltd., Osaka (Japan)

    1998-06-01

    Described herein are the current status and development of insecticides for domestic purposes. For aerosol type cockroach-killing insecticides, oily type is predominant in Japan whereas aqueous type in USA and other countries. They are mixtures of knockdown agents and killing agents, the former being used for their immediate and lethal effects whereas the latter for their lethal effect. In 1996, agents showing high knockdown effects, such as pyrethroids, are registered. Fumigants are used in closed spaces, which are ventilated after they are used. Bait agents contain inducing agents. Recently, ticks become social problems as an allergy source. The insecticides are generally used to remove them, although physical methods, such as cleaning and heat treatment, are effective. They are centered by aerosols and fumigants, but insecticidal sheets are used to some extent. Fleas coming from pets also cause problems. Increased resistance of insects to insecticides has led to development of new types of insecticides, such as those based on organophosphates and those aimed at prevention of their metamorphosis. Commercial insecticides are safe, as long as they are produced in compliance with the Pharmaceutical Affairs Law and used correctly. Nevertheless, however, researches for safer countermeasures against insects are needed. 3 refs., 2 figs., 1 tab.

  17. Use of geographic information systems and spatial analysis in area-wide integrated pest management programmes that integrate the sterile insect technique

    International Nuclear Information System (INIS)

    Cox, J.St.H.; Vreysen, M.J.B.

    2005-01-01

    The advantages that geographic information systems (GIS) and associated technologies can offer, in terms of the design and implementation of area-wide programmes of insect and/or disease suppression, are becoming increasingly recognised, even if the realization of this potential has not been fully exploited and for some area-wide programmes adoption appears to be progressing slowly. This chapter provides a basic introduction to the science of GIS, Global Positioning System (GPS), and satellite remote sensing (RS), and reviews the principal ways in which these technologies can be used to assist various stages of development of the sterile insect technique (SIT) as part of area-wide integrated pest management (AW-IPM) programmes - from the selection of project sites, and feasibility assessments and planning of pre-intervention surveys, to the monitoring and analysis of insect suppression programmes, and the release of sterile insects. Potential barriers to the successful deployment of GIS tools are also discussed. (author)

  18. Effects of a sex-ratio distorting endosymbiont on mtDNA variation in a global insect pest

    Directory of Open Access Journals (Sweden)

    Cook James M

    2009-03-01

    Full Text Available Abstract Background Patterns of mtDNA variation within a species reflect long-term population structure, but may also be influenced by maternally inherited endosymbionts, such as Wolbachia. These bacteria often alter host reproductive biology and can drive particular mtDNA haplotypes through populations. We investigated the impacts of Wolbachia infection and geography on mtDNA variation in the diamondback moth, a major global pest whose geographic distribution reflects both natural processes and transport via human agricultural activities. Results The mtDNA phylogeny of 95 individuals sampled from 10 countries on four continents revealed two major clades. One contained only Wolbachia-infected individuals from Malaysia and Kenya, while the other contained only uninfected individuals, from all countries including Malaysia and Kenya. Within the uninfected group was a further clade containing all individuals from Australasia and displaying very limited sequence variation. In contrast, a biparental nuclear gene phylogeny did not have infected and uninfected clades, supporting the notion that maternally-inherited Wolbachia are responsible for the mtDNA pattern. Only about 5% (15/306 of our global sample of individuals was infected with the plutWB1 isolate and even within infected local populations, many insects were uninfected. Comparisons of infected and uninfected isofemale lines revealed that plutWB1 is associated with sex ratio distortion. Uninfected lines have a 1:1 sex ratio, while infected ones show a 2:1 female bias. Conclusion The main correlate of mtDNA variation in P. xylostella is presence or absence of the plutWB1 infection. This is associated with substantial sex ratio distortion and the underlying mechanisms deserve further study. In contrast, geographic origin is a poor predictor of moth mtDNA sequences, reflecting human activity in moving the insects around the globe. The exception is a clade of Australasian individuals, which may

  19. Effects of weed cover composition on insect pest and natural enemy abundance in a field of Dracaena marginata (Asparagales: Asparagaceae) in Costa Rica.

    Science.gov (United States)

    Sadof, Clifford S; Linkimer, Mildred; Hidalgo, Eduardo; Casanoves, Fernando; Gibson, Kevin; Benjamin, Tamara J

    2014-04-01

    Weeds and their influence on pest and natural enemy populations were studied on a commercial ornamental farm during 2009 in the Atlantic Zone of Costa Rica. A baseline survey of the entire production plot was conducted in February, along a 5 by 5 m grid to characterize and map initial weed communities of plants, cicadellids, katydids, and armored scales. In total, 50 plant species from 21 families were found. Seven weed treatments were established to determine how weed manipulations would affect communities of our targeted pests and natural enemies. These treatments were selected based on reported effects of specific weed cover on herbivorous insects and natural enemies, or by their use by growers as a cover crop. Treatments ranged from weed-free to being completely covered with endemic species of weeds. Although some weed treatments changed pest abundances, responses differed among arthropod pests, with the strongest effects observed for Caldwelliola and Empoasca leafhoppers. Removal of all weeds increased the abundance of Empoasca, whereas leaving mostly cyperacaeous weeds increased the abundance of Caldwelliola. Weed manipulations had no effect on the abundance of katydid and scale populations. No weed treatment reduced the abundance of all three of the target pests. Differential responses of the two leafhopper species to the same weed treatments support hypotheses, suggesting that noncrop plants can alter the abundance of pests through their effects on arthropod host finding and acceptance, as well as their impacts on natural enemies.

  20. Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America

    Energy Technology Data Exchange (ETDEWEB)

    Dukes, J.S.; Theoharides, K.A. [Massachusetts Univ., Boston, MA (United States). Dept. of Biology; Pontius, J. [United States Dept. of Agriculture, Durham, NH (United States). Northern Research Station; Orwig, D.; Stinson, K. [Harvard Univ., Petersham, MA (United States); Garnas, J.R.; Stange, E.E.; Ayres, M. [Dartmouth College, Hanover, NH (United States). Dept. of Biological Sciences; Rodgers, V.L. [Boston Univ., Boston, MA (United States). Dept. of Biology; Brazee, N. [Massachusetts Univ., Amherst, MA (United States). Dept. of Plant, Soil, and Insect Sciences; Cooke, B. [Canadian Forest Service, Northern Forestry Centre, Edmonton, AB (Canada); Harrington, R. [Massachusetts Univ., Amherst, MA (United States). Natural Resource Conservation; Ehrenfield, J. [Rutgers Univ., New Brunswick, NJ (United States). Dept. of Ecology, Evolution, and Natural Resources; Gurevitch, J. [New York State Univ., Stony Brook, NY (United States). Dept. of Ecology and Evolution; Lerdau, M. [Virginia Univ., Charlottesville, VA (United States). Dept. of Environmental Sciences and Biology; Wick, R. [Massachusetts Univ., Amherst, MA (United States). Dept. of Microbiology

    2009-02-15

    In addition to increased winter precipitation, it is expected that the climate in the northeastern United States and Canada will increase by approximately 3 to 5 degrees C. While the changes in climate will impact the trees directly, the trees will be further impacted by changes in insect pests, pathogens, and invasive plants. This study reviewed the basic ecological principles used to predict the responses of nuisance species to climate change as well as their likely impacts on northeastern forests. The study investigated the potential responses of hemlock woolly adelgid; forest tent caterpillars; armillaria root rot; beech bark disease; glossy buckthorn; and oriental bittersweet. Results of the study indicated that several of the studied species are likely to have a more widespread impact on forest composition and structure in the future. However adequate data on species are not available in order to fully understand the influence of complex variables for the studied species. It was concluded that future policies should allow for uncertainty in prediction models considering a range of possible future scenarios. 181 refs., 4 tabs., 3 figs.

  1. Dynamic and Impact of Major Insect Pests on Jatropha curcas L. in two Cropping Systems with Contrasting Characteristics in the Province of Kinshasa (DRC

    Directory of Open Access Journals (Sweden)

    Minengu, JD.

    2015-01-01

    Full Text Available The dynamic and impact of the major insect pests on Jatropha curcas L. were studied on two plantations located in the province of Kinshasa, the first in pure stand without irrigation (Mbankana site, the second under irrigation in combination with other crops (N'sele site. In Mbankana, after being planted during the long rainy season (October-December, the plants suffer significant attacks by crickets Brachytrupes membranaceus Drury (Orthoptera, Gryllidae, which cause a mortality rate of 10-40%. The first half of October and second half of December are the best planting periods when it comes to limiting these losses. At N'sele, cricket attacks during planting are controlled by the farmers who eat these insects. After being planted at both sites, the plants are attacked by leaf miner caterpillars Stomphastis thraustica Meyrick (Lepidoptera, Gracillariidae and flea beetles Aphthona sp. (Coleoptera, Chrysomelidae, which consume the leaf blades and buds. The size of these two pest populations and resulting damage reach a peak during the wettest time of year. On adult plants at N'sele, insect pests observed include flea beetles, leaf miners, and shield-backed bugs Calidea sp. (Heteroptera, Scutelleridae. These bugs cause damage to flowers and capsules. In the absence of insecticide treatments, yield losses reached 90% in Mbankana and 60% in N'sele. The discussion focuses on what causes the different pest impact levels recorded between the cropping systems and methods used to limit the main types of damage caused by insects on J. curcas in the Kinshasa region.

  2. Low doses of a neonicotinoid insecticide modify pheromone response thresholds of central but not peripheral olfactory neurons in a pest insect.

    Science.gov (United States)

    Rabhi, Kaouther K; Deisig, Nina; Demondion, Elodie; Le Corre, Julie; Robert, Guillaume; Tricoire-Leignel, Hélène; Lucas, Philippe; Gadenne, Christophe; Anton, Sylvia

    2016-02-10

    Insect pest management relies mainly on neurotoxic insecticides, including neonicotinoids, leaving residues in the environment. There is now evidence that low doses of insecticides can have positive effects on pest insects by enhancing various life traits. Because pest insects often rely on sex pheromones for reproduction, and olfactory synaptic transmission is cholinergic, neonicotinoid residues could modify chemical communication. We recently showed that treatments with different sublethal doses of clothianidin could either enhance or decrease behavioural sex pheromone responses in the male moth, Agrotis ipsilon. We investigated now effects of the behaviourally active clothianidin doses on the sensitivity of the peripheral and central olfactory system. We show with extracellular recordings that both tested clothianidin doses do not influence pheromone responses in olfactory receptor neurons. Similarly, in vivo optical imaging does not reveal any changes in glomerular response intensities to the sex pheromone after clothianidin treatments. The sensitivity of intracellularly recorded antennal lobe output neurons, however, is upregulated by a lethal dose 20 times and downregulated by a dose 10 times lower than the lethal dose 0. This correlates with the changes of behavioural responses after clothianidin treatment and suggests the antennal lobe as neural substrate involved in clothianidin-induced behavioural changes. © 2016 The Author(s).

  3. Insects, isotopes and radiations

    International Nuclear Information System (INIS)

    Lingkvist, D.A.

    1987-01-01

    The IAEA activity on coordinating the IAEA member-state efforts in the field of pest control is considered. A complex program of agricultural pest control (IPM), applied in many parts of the world is developed. The program provides for the use of natural means of control and cases of critical pest numbers-the use of insecticides. When controlling certain types of insects it is advisable to apply the 'large area control' methods which provide for the insect destruction in places of their concentration prior to migration. Methods of pest control over large areas also include radiation sexual sterilization method (SSM), application of insect phoromons (sexual attractants) to prevent mating, other types of chemical attractants, traps, mass cultivation and reproduction of parasite plants and animals, destroying insects, as well as improvement of host-plant resistance. A great attention is paid to isotope and radiation application in pest control (labelling, sexual sterilization using ionising radiation, radiation application in genetic engineering, mutant plant cultivation)

  4. The status of honeybee pests in Uganda | Kajobe | Bulletin of Animal ...

    African Journals Online (AJOL)

    Eleven honeybee pests and predators that affect beekeeping production were documented. The important pests causing economic losses were black ants, small hive beetles, wax moths and bee hornets. Effective methods for pest control and management applied by beekeepers included mechanical methods and ...

  5. Leaves of Lantana camara Linn. (Verbenaceae) as a potential insecticide for the management of three species of stored grain insect pests.

    Science.gov (United States)

    Rajashekar, Y; Ravindra, K V; Bakthavatsalam, N

    2014-11-01

    Insects cause extensive damage to stored grains and their value added products. Among the stored grain pests Sitophilus oryzae (L.) Callosobruchus chinensis (Fab.) and Tribolium castaneum (Herbst.) are considered as destructive pests in India. Plants may provide alternatives to currently used insect control agents as they constitute rich source in bioactive molecules. Lantana camara, an erect shrub, which grows widely in the tropics, exhibits insecticidal activity against several insects. The methanol extract from leaves of L. camara has fumigant and contact toxicity against S. oryzae, C. chinesis and T. castaneum. In fumigant assays, The LC50 for S. oryzae was 128 μl/L(1), C. chinensis 130.3 μl/L(1), and T. castaneum 178.7 μl/L(1). The LD50 values for S. oryzae C. chinensis and T. castaneum in contact toxicity were 0.158, 0.140 and 0.208 mg/cm(2), respectively. For grain treatment, a concentration of 500 mg/L(1) and 7 days exposure were needed to obtain 90 - 100 % population extinction in all three insects. Probit analysis showed that C. chinensis were more susceptible than S. oryzae and T. castaneum. Gaschromatography-Mass Spectrometer (GCMS) studies for extracts indicated the presence of potent fumigant molecules in L. camara. The prospect of utilizing L. camara as potent fumigant insecticide is discussed.

  6. Planning pesticides usage for herbal and animal pests based on intelligent classification system with image processing and neural networks

    Directory of Open Access Journals (Sweden)

    Dimililer Kamil

    2018-01-01

    Full Text Available Pests are divided into two as herbal and animal pests in agriculture, and detection and use of minimum pesticides are quite challenging task. Last three decades, researchers have been improving their studies on these manners. Therefore, effective, efficient, and as well as intelligent systems are designed and modelled. In this paper, an intelligent classification system is designed for detecting pests as herbal or animal to use of proper pesticides accordingly. The designed system suggests two main stages. Firstly, images are processed using different image processing techniques that images have specific distinguishing geometric patterns. The second stage is neural network phase for classification. A backpropagation neural network is used for training and testing with processed images. System is tested, and experiment results show efficiency and effective classification rate. Autonomy and time efficiency within the pesticide usage are also discussed.

  7. Creatures in the Classroom: Including Insects and Small Animals in Your Preschool Gardening Curriculum

    Science.gov (United States)

    Hachey, Alyse C.; Butler, Deanna

    2012-01-01

    When doing spring planting activities, what does a teacher do while waiting for the plants to grow? This waiting time is a golden opportunity to explore another side of gardening--the creatures that make it all possible. Insects are an integral part of everyday world, having existed for over 300 million years; they are the most common animal on…

  8. Field damage of sorghum (Sorghum bicolor) with reduced lignin levels by naturally occurring insect pests and pathogens

    Science.gov (United States)

    Mutant lines of sorghum with low levels of lignin are potentially useful for bioenergy production, but may have problems with insects or disease. Field grown normal and low lignin bmr6 and bmr12 sorghum (Sorghum bicolor) were examined for insect and disease damage in the field, and insect damage in ...

  9. Insect-specific irreversible inhibitors of acetylcholinesterase in pests including the bed bug, the eastern yellowjacket, German and American cockroaches, and the confused flour beetle.

    Science.gov (United States)

    Polsinelli, Gregory A; Singh, Sanjay K; Mishra, Rajesh K; Suranyi, Robert; Ragsdale, David W; Pang, Yuan-Ping; Brimijoin, Stephen

    2010-09-06

    Insecticides directed against acetylcholinesterase (AChE) are facing increased resistance among target species as well as increasing concerns for human toxicity. The result has been a resurgence of disease vectors, insects destructive to agriculture, and residential pests. We previously reported a free cysteine (Cys) residue at the entrance to the AChE active site in some insects but not higher vertebrates. We also reported Cys-targeting methanethiosulfonate molecules (AMTSn), which, under conditions that spared human AChE, caused total irreversible inhibition of aphid AChE, 95% inhibition of AChE from the malaria vector mosquito (Anopheles gambia), and >80% inhibition of activity from the yellow fever mosquito (Aedes aegypti) and northern house mosquito (Culex pipiens). We now find the same compounds inhibit AChE from cockroaches (Blattella germanica and Periplaneta americana), the flour beetle (Tribolium confusum), the multi-colored Asian ladybird beetle (Harmonia axyridis), the bed bug (Cimex lectularius), and a wasp (Vespula maculifrons), with IC(50) values of approximately 1-11muM. Our results support further study of Cys-targeting inhibitors as conceptually novel insecticides that may be free of resistance in a range of insect pests and disease vectors and, compared with current compounds, should demonstrate much lower toxicity to mammals, birds, and fish. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  10. POSSIBILITIES TO USE NATURAL EXTRACTS FROM MEDICINAL AND AROMATIC PLANTS (MAP LIKE BOTANICAL REPELLENT OR INSECTICIDE COMPOUNDS AGAINST PEST INSECTS IN ECOLOGICAL CROPS (II

    Directory of Open Access Journals (Sweden)

    Irina IONESCU-MĂLĂNCUŞ

    2013-12-01

    Full Text Available Botanical insecticides have long been touted as attractive alternatives to synthetic chemical insecticides for pest management because botanicals reputedly pose little threat to the environment or to human health. The body of scientific literature documenting bioactivity of plant derivatives to arthropods pests continues to expand i.e. repellents based on essential oils extracted from Chenopodium ambrosioides, Eucalyptus saligna, Rosmarinus officinalis to mosquitoes, or cinnamon oil, sandalwood oil and turmeric oil are previously reported as insect repellents evaluatede in the laboratory conditions. With the constantly increasing problems of insecticide resistance and increasing public concerns regarding pesticide safety, new, safer active ingredients are becoming necessary to replace existing compounds on the market. The present study carried out in the period 2010-2012 comprises a review of two insect repellents, followed by some new research conducted in our laboratory on plant-derived insect repellents. The two alkaloids tested against the Colorado potato beetle, Leptinotarsa decemlineata Say in laboratory conditions was obtained by water and alchohol extraction from two vegetal species, Cichorium intybus L. (Asterales:Asteraceae and Delphinium consolida L. (Ranales:Ranunculaceae. The tests carried out in laboratory and field experimentally plots under cages permit to evaluate several other compounds for repellent activity of lacctucin alkaloids.

  11. A Transformed Bacterium Expressing Double-Stranded RNA Specific to Integrin β1 Enhances Bt Toxin Efficacy against a Polyphagous Insect Pest, Spodoptera exigua.

    Directory of Open Access Journals (Sweden)

    Eunseong Kim

    Full Text Available Oral toxicity of double-stranded RNA (dsRNA specific to integrin β1 subunit (SeINT was known in a polyphagous insect pest, Spodoptera exigua. For an application of the dsRNA to control the insect pest, this study prepared a transformed Escherichia coli expressing dsRNA specific to SeINT.The dsRNA expression was driven by T7 RNA polymerase overexpressed by an inducer in the transformed E. coli. The produced dsRNA amount was proportional to the number of the cultured bacteria. The transformed bacteria gave a significant oral toxicity to S. exigua larvae with a significant reduction of the SeINT expression. The resulting insect mortality increased with the fed number of the bacteria. Pretreatment with an ultra-sonication to disrupt bacterial cell wall/membrane significantly increased the insecticidal activity of the transformed bacteria. The larvae treated with the transformed bacteria suffered tissue damage in the midgut epithelium, which exhibited a marked loss of cell-cell contacts and underwent a remarkable cell death. Moreover, these treated larvae became significantly susceptible to a Cry toxin derived from Bacillus thuringiensis (Bt.This study provides a novel and highly efficient application technique to use dsRNA specific to an integrin gene by mixing with a biopesticide, Bt.

  12. A Transformed Bacterium Expressing Double-Stranded RNA Specific to Integrin β1 Enhances Bt Toxin Efficacy against a Polyphagous Insect Pest, Spodoptera exigua.

    Science.gov (United States)

    Kim, Eunseong; Park, Youngjin; Kim, Yonggyun

    2015-01-01

    Oral toxicity of double-stranded RNA (dsRNA) specific to integrin β1 subunit (SeINT) was known in a polyphagous insect pest, Spodoptera exigua. For an application of the dsRNA to control the insect pest, this study prepared a transformed Escherichia coli expressing dsRNA specific to SeINT. The dsRNA expression was driven by T7 RNA polymerase overexpressed by an inducer in the transformed E. coli. The produced dsRNA amount was proportional to the number of the cultured bacteria. The transformed bacteria gave a significant oral toxicity to S. exigua larvae with a significant reduction of the SeINT expression. The resulting insect mortality increased with the fed number of the bacteria. Pretreatment with an ultra-sonication to disrupt bacterial cell wall/membrane significantly increased the insecticidal activity of the transformed bacteria. The larvae treated with the transformed bacteria suffered tissue damage in the midgut epithelium, which exhibited a marked loss of cell-cell contacts and underwent a remarkable cell death. Moreover, these treated larvae became significantly susceptible to a Cry toxin derived from Bacillus thuringiensis (Bt). This study provides a novel and highly efficient application technique to use dsRNA specific to an integrin gene by mixing with a biopesticide, Bt.

  13. Qualitative Sybr Green real-time detection of single nucleotide polymorphisms responsible for target-site resistance in insect pests: the example of Myzus persicae and Musca domestica.

    Science.gov (United States)

    Puggioni, V; Chiesa, O; Panini, M; Mazzoni, E

    2017-02-01

    Chemical insecticides have been widely used to control insect pests, leading to the selection of resistant populations. To date, several single nucleotide polymorphisms (SNPs) have already been associated with insecticide resistance, causing reduced sensitivity to many classes of products. Monitoring and detection of target-site resistance is currently one of the most important factors for insect pest management strategies. Several methods are available for this purpose: automated and high-throughput techniques (i.e. TaqMan or pyrosequencing) are very costly; cheaper alternatives (i.e. RFLP or PASA-PCRs) are time-consuming and limited by the necessity of a final visualization step. This work presents a new approach (QSGG, Qualitative Sybr Green Genotyping) which combines the specificity of PASA-PCR with the rapidity of real-time PCR analysis. The specific real-time detection of Cq values of wild-type or mutant alleles (amplified used allele-specific primers) allows the calculation of ΔCqW-M values and the consequent identification of the genotypes of unknown samples, on the basis of ranges previously defined with reference clones. The methodology is applied here to characterize mutations described in Myzus persicae and Musca domestica and we demonstrate it represents a valid, rapid and cost-effective technique that can be adopted for monitoring target-site resistance in field populations of these and other insect species.

  14. Costs and benefits of thermal acclimation for codling moth, Cydia pomonella (Lepidoptera: Tortricidae): implications for pest control and the sterile insect release programme.

    Science.gov (United States)

    Chidawanyika, Frank; Terblanche, John S

    2011-07-01

    Sterile insect release (SIR) is used to suppress insect pest populations in agro-ecosystems, but its success hinges on the performance of the released insects and prevailing environmental conditions. For example, low temperatures dramatically reduce SIR efficacy in cooler conditions. Here, we report on the costs and benefits of thermal acclimation for laboratory and field responses of codling moth, Cydia pomonella. Using a component of field fitness, we demonstrate that low temperature acclimated laboratory-reared moths are recaptured significantly more (∼2-4×) under cooler conditions in the wild relative to warm-acclimated or control moths. However, improvements in low temperature performance in cold-acclimated moths came at a cost to performance under warmer conditions. At high ambient temperatures, warm-acclimation improved field performance relative to control or cold-acclimated moths. Laboratory assessments of thermal activity and their limits matched the field results, indicating that these laboratory assays may be transferable to field performance. This study demonstrates clear costs and benefits of thermal acclimation on laboratory and field performance and the potential utility of thermal pretreatments for offsetting negative efficacy in SIR programmes under adverse thermal conditions. Consequently, the present work shows that evolutionary principles of phenotypic plasticity can be used to improve field performance and thus possibly enhance pest control programmes seeking increased efficacy.

  15. Novel polymeric micelles for insect pest control: encapsulation of essential oil monoterpenes inside a triblock copolymer shell for head lice control

    Directory of Open Access Journals (Sweden)

    Alejandro Lucia

    2017-04-01

    Full Text Available Background Essential oil components (EOCs are molecules with interesting application in pest control, these have been evaluated against different insect pest from more than 100 years, but their practical use is rather limited. Thus, the enhancement of their bioavailability and manageability due to their dispersion in water can open new perspective for the preparation of formulations for the control of insect pest. In this work, we studied the encapsulation of different monoterpenes in a poloxamer shell in order to prepare aqueous formulations that can be used for the development of platforms used in pest control. Methods Micellar systems containing a 5 wt% of poloxamer 407 and 1.25 wt% of the different monoterpenes were prepared. Dynamic Light Scattering (DLS experiments were carried out to characterize the dispersion of the EOCs in water. The pediculicidal activity of these micellar systems was tested on head lice using an ex vivo immersion test. Results The poloxamers allowed the dispersion of EOCs in water due to their encapsulation inside the hydrophobic core of the copolymer micelles. From this study, we concluded that it is possible to make stable micellar systems containing water (>90 wt%, 1.25 wt% of different monoterpenes and a highly safe polymer (5wt% Poloxamer 407. These formulations were effective against head lice with mortality ranging from 30 to 60%, being the most effective emulsions those containing linalool, 1,8-cineole, α-terpineol, thymol, eugenol, geraniol and nonyl alcohol which lead to mortalities above 50%. Discussion Since these systems showed good pediculicidal activity and high physicochemical stability, they could be a new route for the green fabrication of biocompatible and biosustainable insecticide formulations.

  16. Efficacy of Intercropping as a Management Tool for the Control on Insect Pests of Cabbage in Ghana 1H m 2m

    Directory of Open Access Journals (Sweden)

    Timbilla, JA.

    2001-01-01

    Full Text Available The efficacy of intercropping cabbage with other vegetables and herbs as a management tool in migitating insect pests problems of cabbage was investigated in the field at Kwadaso, Kumasi during a three season period in the forest region of Ghana. The results showed that Plutella xylostella could be effectively controlled when cabbage is intercropped with onion, spearmint and tomato. However, there is the need to control Hellula undalis in endemie areas with pesticides up to six weeks after transplanting. Both Karate (cyhalothrin and Dipel 2X (the biopesticide Bacillus thuringiensis subsp. Kurstaki were effective in mitigating the problem of H. undalis in the intercropping experiments and both are recommended.

  17. Seed Treatment Combined with a Spot Application of Clothianidin Granules Prolongs the Efficacy of Controlling Piercing-Sucking Insect Pests in Cotton Fields.

    Science.gov (United States)

    Zhang, Zhengqun; Zhao, Yunhe; Wang, Yao; Li, Beixing; Lin, Jin; Zhang, Xuefeng; Mu, Wei

    2017-09-13

    Seed treatments can directly protect cotton from early season piercing-sucking insect Aphis gossypii Glover but hardly provide long-term protection against Apolygus lucorum (Meyer-Dür). Therefore, the efficacy of clothianidin seed treatments combined with spot applications of clothianidin granules at the bud stage of cotton was evaluated to control piercing-sucking pests during the entire cotton growing season. Clothianidin seed treatments (at the rate of 4 g ai/kg seed) combined with a clothianidin granular treatment (even at low rate of 0.9 kg ai/ha) at the bud stage can effectively suppress A. gossypii and A. lucorum infestations throughout the seedling and blooming stages after planting and can improve cotton yield. The spot application of clothianidin granules also reduced the population densities of Bemisia tabaci (Gennadius). The dynamic changes of clothianidin residues demonstrated that the control efficacy of clothianidin against A. gossypii and A. lucorum might be related to the residues of this neonicotinoid in cotton leaves. This pest management practice provided long-term protection against cotton piercing-sucking pests for the entire growing season of cotton plants and could supplement the short-term control efficiency of clothianidin used as a seed treatment.

  18. Effect of doses and of refuge on the insecticide selectivity to predators and parasitoids of soybean insect pests; Efeito de doses e de refugio sobre a seletividade de inseticidas a predadores e parasitoides de pragas de soja

    Energy Technology Data Exchange (ETDEWEB)

    Corso, Ivan Carlos; Gazzoni, Decio Luiz; Nery, Manoel Eugenio [EMBRAPA, Londrina, PR (Brazil). Centro Nacional de Pesquisa de Soja]. E-mail: gazzoni@cnpso.embrapa.br

    1999-09-15

    A field experiment was conducted to evaluate seasonal effect of insecticides on predators and parasitoids of soybean insect pests. A randomized block design was used, with three replications, and the experiment was set up in the experimental station of the EMBRAPA-Centro Nacional de Pesquisa de Soja, located at Londrina, PR, Brazil. Treatments consisted of insecticide application to control the velvet bean caterpillar (1/21/1993) or the stink bug complex (3/4/1993). Insect population was sampled through the shock technique, consisting of an application of a broad spectrum insecticide over the plants to be sampled, being the insects collected on cloths placed on the ground, and transferred to the laboratory to be identified and counted. Statistical analysis revealed no differences on the populations of species of predators, diptera or himenoptera as a group. No effects of pest resurgence or secondary pest outbreaks were also observed. (author)

  19. Guidelines for the Use of Mathematics in Operational Area-Wide Integrated Pest Management Programmes Using the Sterile Insect Technique with a Special Focus on Tephritid Fruit Flies

    International Nuclear Information System (INIS)

    Barclay, H.L.; Enkerlin, W.R.; Manoukis, N.C.; Reyes-Flores, J.

    2016-01-01

    This guideline attempts to assist managers in the use of mathematics in area-wide Integrated Pest Management (AW-IPM) programmes using the Sterile Insect Technique (SIT). It describes mathematical tools that can be used at different stages of suppression/eradication programmes. For instance, it provides simple methods for calculating the various quantities of sterile insects required in the intervention area so that more realistic sterile: fertile rates to suppress pest populations can be achieved. The calculations, for the most part, only involve high school mathematics and can be done easily with small portable computers or calculators. The guideline is intended to be a reference book, to be consulted when necessary. As such, any particular AW-IPM programme using the SIT will probably only need certain sections, and much of the book can be ignored if that is the case. For example, if the intervention area is relatively small and well isolated, then the section on dispersal can safely be ignored, as the boundedness of the area means that dispersal should not be a problem, and so the section on diffusion equations can be ignored. An overview is given in each chapter to try to let the programme manager make a decision about where to put the programme efforts. On the other hand, most SIT programmes have an information system (many of them based on GIS) that produces reliable profiles of historic information. Based on the results of past activities they describe what has happened in the last days or weeks but usually do not explain, or barely explain, what is expected in the following days or weeks. Current AW-IPM progammes using the SIT have produced over many years a vast amount of every-day data from the field operations and from the mass rearing facility and packing and sterile insect releasing centres. With the help of this guideline, that information can be used to develop predictive models for their particular conditions to better plan control measures.

  20. Shared flowering phenology, insect pests, and pathogens among wild, weedy, and cultivated rice in the Mekong Delta, Vietnam: implications for transgenic rice.

    Science.gov (United States)

    Cohen, Michael B; Arpaia, Salvatore; Lan, La Pham; Chau, Luong Minh; Snow, Allison A

    2008-01-01

    Many varieties of transgenic rice are under development in countries where wild and weedy relatives co-occur with the crop. To evaluate possible risks associated with pollen-mediated transgene dispersal, we conducted a two-year survey in Vietnam to examine overlapping flowering periods of rice (Oryza sativa L.), weedy rice (O. sativa), and wild rice (O. rufipogon Griff.), all of which are inter-fertile. We surveyed populations in two regions of the Mekong Delta, northern and southern, and at three sites in each of three habitats per region: fresh water, saline water, and acid sulfate soil. Weedy rice frequently flowered simultaneously with neighboring cultivated rice plants. Flowering was more seasonal in wild rice and often peaked in November and December. Peak flowering times of wild rice overlapped with adjacent rice fields at all of the saline sites and half of the acid sulfate sites. The longer flowering season of wild rice ensured that crop-to-wild gene flow was possible in fresh water habitats as well. Our second objective was to determine whether wild and weedy rice populations are exposed to pests that could be targeted by future transgenes, which may then provide fitness benefits. These populations shared many pathogen and insect herbivore species with cultivated rice (leaffolder, locust, cricket, planthoppers, rice bug, stem borer, sheath blight, blast, bacterial leaf blight, and brown spot). Damage by leaffolders and locusts was the most frequently observed insect feeding damage on all three rice types. Indicator species analysis revealed that most of the insect herbivores were associated with particular habitats, demonstrating the importance of broad geographic sampling for transgenic rice risk assessment. These survey data and the strong likelihood of gene flow from cultivated rice suggest that further studies are needed to examine the effects of transgenic traits such as resistance to pests on the abundance of wild and weedy rice.

  1. Genetics and biology of Anastrepha fraterculus: research supporting the use of the sterile insect technique (SIT) to control this pest in Argentina.

    Science.gov (United States)

    Cladera, Jorge L; Vilardi, Juan C; Juri, Marianela; Paulin, Laura E; Giardini, M Cecilia; Gómez Cendra, Paula V; Segura, Diego F; Lanzavecchia, Silvia B

    2014-01-01

    Two species of true fruit flies (taxonomic family Tephritidae) are considered pests of fruit and vegetable production in Argentina: the cosmopolitan Mediterranean fruit fly (Ceratitis capitata Wiedemann) and the new world South American fruit fly (Anastrepha fraterculus Wiedemann). The distribution of these two species in Argentina overlaps north of the capital, Buenos Aires. Regarding the control of these two pests, the varied geographical fruit producing regions in Argentina are in different fly control situations. One part is under a programme using the sterile insect technique (SIT) for the eradication of C. capitata, because A. fraterculus is not present in this area. The application of the SIT to control C. capitata north of the present line with the possibility of A. fraterculus occupying the niche left vacant by C. capitata becomes a cause of much concern. Only initial steps have been taken to investigate the genetics and biology of A. fraterculus. Consequently, only fragmentary information has been recorded in the literature regarding the use of SIT to control this species. For these reasons, the research to develop a SIT protocol to control A. fraterculus is greatly needed. In recent years, research groups have been building a network in Argentina in order to address particular aspects of the development of the SIT for Anastrepha fraterculus. The problems being addressed by these groups include improvement of artificial diets, facilitation of insect mass rearing, radiation doses and conditions for insect sterilisation, basic knowledge supporting the development of males-only strains, reduction of male maturation time to facilitate releases, identification and isolation of chemical communication signals, and a good deal of population genetic studies. This paper is the product of a concerted effort to gather all this knowledge scattered in numerous and often hard-to-access reports and papers and summarize their basic conclusions in a single publication.

  2. Acanthotomicus sp. (Coleoptera: Curculionidae: Scolytinae), a New Destructive Insect Pest of North American Sweetgum Liquidambar styraciflua in China.

    Science.gov (United States)

    Gao, Lei; Li, You; Xu, Ying; Hulcr, Jiri; Cognato, Anthony I; Wang, Jian-Guo; Ju, Rui-Ting

    2017-08-01

    A previously unknown bark beetle species, Acanthotomicus sp., has emerged as a lethal pest of American sweetgum (Liquidambar styraciflua) in China. Our survey of nursery records from around Shanghai suggests that American sweetgum have been under heavy attack since at least 2013, resulting in the death of > 10,000 trees. Mass attacks of the apparently sweetgum-specific Acanthotomicus sp. can be diagnosed by accumulation of resinous exudates on the trunk, wilted foliage, and eventual numerous exit holes of the new generation. A Chinese native sweetgum Liquidambar formosana can also be colonized by Acanthotomicus sp. This pest is of concern not only as a killer of sweetgum in the Chinese nursery trade but also as a potentially destructive invasive pest of sweetgum in North America. This discovery suggests that global preinvasion assessment of pests is warranted. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Nuclear technology in pest management

    International Nuclear Information System (INIS)

    Seth, R.K.

    2012-01-01

    Nuclear energy has been greatly explored for its use in various disciplines of entomology related to agriculture, medicine and industry. Since the ravages of the insects especially in the tropical and subtropical zones of the world are particularly serious, insect control is essential in the production of crop, animal produce and protection from dreadful communicable diseases. Presently, biological and para-biological control programmes are receiving major prominence due to insecticidal ill effects on health and environment, and due to development of insecticidal resistance in pests. The exposure to ionizing radiation is now the principal method for inducing reproductive sterility in mass-reared insects. Irradiation of insects is a relatively straightforward process with reliable quality control procedures. Using radiation may offer other advantages, such as insignificant increase in temperature during the process, use of treated insects immediately after processing, no addition of any residues harmful to human health or environment, etc. Various pragmatic perspectives of utilization of radiation as a tool in entomological research studies, in relation to noxious insects as well as ecologically beneficial insects, are highlighted. (author)

  4. Community Engagement and Field Trials of Genetically Modified Insects and Animals.

    Science.gov (United States)

    Neuhaus, Carolyn P

    2018-01-01

    New techniques for the genetic modification of organisms are creating new strategies for addressing persistent public health challenges. For example, the company Oxitec has conducted field trials internationally-and has attempted to conduct field trials in the United States-of a genetically modified mosquito that can be used to control dengue, Zika, and some other mosquito-borne diseases. In 2016, a report commissioned by the National Academies of Sciences, Engineering, and Medicine discussed the potential benefits and risks of another strategy, using gene drives. Driving a desired genotype through a population of wild animals or insects could lead to irreversible genetic modification of an entire species. The NASEM report recommends community, stakeholder, and public engagement about potential uses of the technology, and it argues that the engagement should occur as research advances, well before gene drives are deployed. Yet what "engagement" means in practice is unclear. This article seeks clarity on this problem by offering a justification for community engagement and drawing out implications of this argument for the implementation and desired outcomes of community engagement. Community engagement is essential when it comes to research that would release genetically modified insects or animals into the environment. By contrast, obtaining informed consent from people who live near such a proposed field trial is neither necessary nor sufficient. Drawing on the epistemic and moral arguments for deliberative democracy, I propose two discrete mechanisms of community engagement: community advisory boards and deliberative forums, neither of which has been systematically incorporated into research governance. The proposed mechanisms would engender respect for persons who live near field trials, even when the results of deliberation override some individuals' preferences. Community engagement foregrounds the community in our thinking about humans' relationship to nature

  5. Use of repellents formulated in Specialized Pheromone and Lure Application Technology (SPLAT®) for effective insect pest management

    Science.gov (United States)

    Agenor Mafra-Neto; Christopher J. Fettig; A. Steven Munson; Lukasz L. Stelinski

    2014-01-01

    Despite the many impediments to commercialization of insect repellents in agriculture and forestry, there are some situations where the use of repellents is desirable and warranted. ISCA Technologies (Riverside, California), together with collaborators from academic, government, and private sectors, is actively developing repellent formulations against several...

  6. Efficacy of pyramided Bt proteins Cry1F, Cry1A.105, and cry2Ab2 expressed in Smartstax corn hybrids against lepidopteran insect pests in the northern United States.

    NARCIS (Netherlands)

    Rule, D.M.; Nolting, S.P.; Prasfika, P.L.; Storer, N.P.; Hopkins, B.W.; Scherder, E.J.A.; Siebert, M.W.; Hendrix, W.H.

    2014-01-01

    Commercial field corn (Zea mays L.) hybrids transformed to express some or all of the lepidopteran insect-resistant traits present in SmartStax corn hybrids were evaluated for insecticidal efficacy against a wide range of lepidopteran corn pests common to the northern United States, during 2008 to

  7. Post-mating interactions and their effects on fitness of female and male Echinothrips americanus (Thysanoptera: Thripidae, a new insect pest in China.

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Li

    Full Text Available Post-mating, sexual interactions of opposite sexes differ considerably in different organisms. Post-mating interactions such as re-mating behavior and male harassment can affect the fitness of both sexes. Echinothrips americanus is a new insect pest in Mainland China, and little is known about its post-mating interactions. In this study, we observed re-mating frequency and male harassment frequency and their effects on fitness parameters and offspring sex ratios of E. americanus females. Furthermore, we tested the impact of mating and post-mating interactions on fitness parameters of males. Our results revealed that the re-mating frequency in female adults was extremely low during a 30-day period. However, post-mating interactions between females and males, consisting mainly of male harassment and female resistance, did occur and significantly reduced female longevity and fecundity. Interestingly, increased access to males did not affect the ratio of female offspring. For males, mating dramatically reduced their longevity. However, post-mating interactions with females had no effects on the longevity of mated males. These results enrich our basic knowledge about female and male mating and post-mating behaviors in this species and provide important information about factors that may influence population regulation of this important pest species.

  8. The broad-leaf herbicide 2,4-dichlorophenoxyacetic acid turns rice into a living trap for a major insect pest and a parasitic wasp.

    Science.gov (United States)

    Xin, Zhaojun; Yu, Zhaonan; Erb, Matthias; Turlings, Ted C J; Wang, Baohui; Qi, Jinfeng; Liu, Shengning; Lou, Yonggen

    2012-04-01

    Synthetic chemical elicitors of plant defense have been touted as a powerful means for sustainable crop protection. Yet, they have never been successfully applied to control insect pests in the field. We developed a high-throughput chemical genetics screening system based on a herbivore-induced linalool synthase promoter fused to a β-glucuronidase (GUS) reporter construct to test synthetic compounds for their potential to induce rice defenses. We identified 2,4-dichlorophenoxyacetic acid (2,4-D), an auxin homolog and widely used herbicide in monocotyledonous crops, as a potent elicitor of rice defenses. Low doses of 2,4-D induced a strong defensive reaction upstream of the jasmonic acid and ethylene pathways, resulting in a marked increase in trypsin proteinase inhibitor activity and volatile production. Induced plants were more resistant to the striped stem borer Chilo suppressalis, but became highly attractive to the brown planthopper Nilaparvata lugens and its main egg parasitoid Anagrus nilaparvatae. In a field experiment, 2,4-D application turned rice plants into living traps for N. lugens by attracting parasitoids. Our findings demonstrate the potential of auxin homologs as defensive signals and show the potential of the herbicide to turn rice into a selective catch crop for an economically important pest. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  9. Climate change and voltinism in Californian insect pest species: sensitivity to location, scenario and climate model choice.

    Science.gov (United States)

    Ziter, Carly; Robinson, Emily A; Newman, Jonathan A

    2012-09-01

    Experimental studies of the impact of climatic change are hampered by their inability to consider multiple climate change scenarios and indeed often consider no more than simple climate sensitivity such as a uniform increase in temperature. Modelling efforts offer the ability to consider a much wider range of realistic climate projections and are therefore useful, in particular, for estimating the sensitivity of impact predictions to differences in geographical location, and choice of climate change scenario and climate model projections. In this study, we used well-established degree-day models to predict the voltinism of 13 agronomically important pests in California, USA. We ran these models using the projections from three Atmosphere-Ocean Coupled Global Circulation Models (AOCGCMs or GCMs), in conjunction with the SRES scenarios. We ran these for two locations representing northern and southern California. We did this for both the 2050s and 2090s. We used anova to partition the variation in the resulting voltinism among time period, climate change scenario, GCM and geographical location. For these 13 pest species, the choice of climate model explained an average of 42% of the total variation in voltinism, far more than did geographical location (33%), time period (17%) or scenario (1%). The remaining 7% of the variation was explained by various interactions, of which the location by GCM interaction was the strongest (5%). Regardless of these sources of uncertainty, a robust conclusion from our work is that all 13 pest species are likely to experience increases in the number of generations that they complete each year. Such increased voltinism is likely to have significant consequences for crop protection and production. © 2012 Blackwell Publishing Ltd.

  10. Newly discovered insect RNA viruses in China.

    Science.gov (United States)

    Qiu, Yang; Wang, ZhaoWei; Liu, YongXiang; Qi, Nan; Si, Jie; Xiang, Xue; Xia, XiaoLing; Hu, YuanYang; Zhou, Xi

    2013-08-01

    Insects are a group of arthropods and the largest group of animals on Earth, with over one million species described to date. Like other life forms, insects suffer from viruses that cause disease and death. Viruses that are pathogenic to beneficial insects cause dramatic economic losses on agriculture. In contrast, viruses that are pathogenic to insect pests can be exploited as attractive biological control agents. All of these factors have led to an explosion in the amount of research into insect viruses in recent years, generating impressive quantities of information on the molecular and cellular biology of these viruses. Due to the wide variety of insect viruses, a better understanding of these viruses will expand our overall knowledge of their virology. Here, we review studies of several newly discovered RNA insect viruses in China.

  11. Temperature-dependent models of development and survival of an insect pest of African tropical highlands, the coffee antestia bug Antestiopsis thunbergii (Hemiptera: Pentatomidae).

    Science.gov (United States)

    Azrag, Abdelmutalab G A; Murungi, Lucy K; Tonnang, Henri E Z; Mwenda, Dickson; Babin, Régis

    2017-12-01

    The antestia bug Antestiopsis thunbergii (Hemiptera: Pentatomidae) is a major pest of Arabica coffee in African tropical highlands. It feeds on coffee plant vegetative parts and berries leading to a direct reduction in coffee yield and quality. This study aimed to determine A. thunbergii thermal requirements, and to obtain new information on the pest demography as influenced by temperature. Temperature-dependent models were developed using the Insect Life Cycle Modelling software (ILCYM) through a complete life table study at seven constant temperatures in the range 18-32°C. Non-linear functions were fitted to A. thunbergii development, mortality, fecundity and senescence. Model parameters and demographic variables obtained from the models were given for each temperature and development stage. Life table parameters were estimated for nine constant temperatures, from 18°C to 26°C, using stochastic simulations. The minimum temperature threshold (T min ) and the thermal constant (k) for the development from egg to adult were estimated from a linear function at 12.1°C and 666.67° days, respectively. The maximum temperature threshold (T max ) was estimated at 33.9°C from a Logan model. The optimum temperature for immature stages' survival was estimated to be between 22.4 and 24.7°C. The maximum fecundity was 147.7 eggs female -1 at 21.2°C. Simulated A. thunbergii life table parameters were affected by temperature, and the maximum value of intrinsic rate of increase (r m ) was 0.029 at 22°C and 23°C. In general, the life cycle data, models and demographic parameters we obtained were in line with previous reports for antestia bugs or other stink bug species. The relationships between the pest thermal requirements and ecological preferences in highland coffee were discussed. Our results will contribute to risk prediction under climate change for this important coffee pest. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Thermal Tolerance of the Coffee Berry Borer Hypothenemus hampei: Predictions of Climate Change Impact on a Tropical Insect Pest

    Science.gov (United States)

    Jaramillo, Juliana; Chabi-Olaye, Adenirin; Kamonjo, Charles; Jaramillo, Alvaro; Vega, Fernando E.; Poehling, Hans-Michael; Borgemeister, Christian

    2009-01-01

    Coffee is predicted to be severely affected by climate change. We determined the thermal tolerance of the coffee berry borer , Hypothenemus hampei, the most devastating pest of coffee worldwide, and make inferences on the possible effects of climate change using climatic data from Colombia, Kenya, Tanzania, and Ethiopia. For this, the effect of eight temperature regimes (15, 20, 23, 25, 27, 30, 33 and 35°C) on the bionomics of H. hampei was studied. Successful egg to adult development occurred between 20–30°C. Using linear regression and a modified Logan model, the lower and upper thresholds for development were estimated at 14.9 and 32°C, respectively. In Kenya and Colombia, the number of pest generations per year was considerably and positively correlated with the warming tolerance. Analysing 32 years of climatic data from Jimma (Ethiopia) revealed that before 1984 it was too cold for H. hampei to complete even one generation per year, but thereafter, because of rising temperatures in the area, 1–2 generations per year/coffee season could be completed. Calculated data on warming tolerance and thermal safety margins of H. hampei for the three East African locations showed considerably high variability compared to the Colombian site. The model indicates that for every 1°C rise in thermal optimum (Topt.), the maximum intrinsic rate of increase (rmax) will increase by an average of 8.5%. The effects of climate change on the further range of H. hampei distribution and possible adaption strategies are discussed. Abstracts in Spanish and French are provided as supplementary material Abstract S1 and Abstract S2. PMID:19649255

  13. Thermal tolerance of the coffee berry borer Hypothenemus hampei: predictions of climate change impact on a tropical insect pest.

    Science.gov (United States)

    Jaramillo, Juliana; Chabi-Olaye, Adenirin; Kamonjo, Charles; Jaramillo, Alvaro; Vega, Fernando E; Poehling, Hans-Michael; Borgemeister, Christian

    2009-08-03

    Coffee is predicted to be severely affected by climate change. We determined the thermal tolerance of the coffee berry borer, Hypothenemus hampei, the most devastating pest of coffee worldwide, and make inferences on the possible effects of climate change using climatic data from Colombia, Kenya, Tanzania, and Ethiopia. For this, the effect of eight temperature regimes (15, 20, 23, 25, 27, 30, 33 and 35 degrees C) on the bionomics of H. hampei was studied. Successful egg to adult development occurred between 20-30 degrees C. Using linear regression and a modified Logan model, the lower and upper thresholds for development were estimated at 14.9 and 32 degrees C, respectively. In Kenya and Colombia, the number of pest generations per year was considerably and positively correlated with the warming tolerance. Analysing 32 years of climatic data from Jimma (Ethiopia) revealed that before 1984 it was too cold for H. hampei to complete even one generation per year, but thereafter, because of rising temperatures in the area, 1-2 generations per year/coffee season could be completed. Calculated data on warming tolerance and thermal safety margins of H. hampei for the three East African locations showed considerably high variability compared to the Colombian site. The model indicates that for every 1 degrees C rise in thermal optimum (T(opt.)), the maximum intrinsic rate of increase (r(max)) will increase by an average of 8.5%. The effects of climate change on the further range of H. hampei distribution and possible adaption strategies are discussed. Abstracts in Spanish and French are provided as supplementary material Abstract S1 and Abstract S2.

  14. Vegetable Crop Pests. MEP 311.

    Science.gov (United States)

    Kantzes, James G.; And Others

    As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common agricultural pests of vegetable crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects,…

  15. Fruit Crop Pests. MEP 312.

    Science.gov (United States)

    Weaver, Leslie O.; And Others

    As part of a cooperative extension service series by the University of Maryland this publication introduces the identification and control of common agricultural pests of fruit crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects, weeds,…

  16. Sequencing and structural homology modeling of the ecdysone receptor in two chrysopids used in biological control of pest insects.

    Science.gov (United States)

    Zotti, Moises João; Christiaens, Olivier; Rougé, Pierre; Grutzmacher, Anderson Dionei; Zimmer, Paulo Dejalma; Smagghe, Guy

    2012-04-01

    In insects, the process of molting and metamorphosis are mainly regulated by a steroidal hormone 20-hydroxyecdysone (20E) and its analogs (ecdysteroids) that specifically bind to the ecdysone receptor ligand-binding domain (EcR-LBD). Currently, several synthetic non-steroidal ecdysone agonists, including tebufenozide, are commercially available as insecticides. Tebufenozide exerts its activity by binding to the 20E-binding site and thus activating EcR permanently. It appears that subtle differences in the architecture among LBDs may underpin the differential binding affinity of tebufenozide across taxonomic orders. In brief, first we demonstrated the harmlessness of tebufenozide towards Chrysoperla externa (Ce). Then, a molecular analysis of EcR-LBD of two neuropteran insects Chrysoperla carnea and Ce was presented. Finally, we constructed a chrysopid in silico homology model docked ponasterone A (PonA) and tebufenozide into the binding pocket and analyzed the amino acids indentified as critical for binding to PonA and tebufenozide. Due to a restrict extent in the cavity at the bottom of the ecdysone-binding pocket a steric clash occurred upon docking of tebufenozide. The absence of harm biological effect and the docking results suggest that tebufenozide is prevented of any deleterious effects on chrysopids.

  17. Book Review: Insect Virology

    Science.gov (United States)

    Viruses that infect insects have long been of interest both as a means for controlling insect pest populations in an environmentally safe manner, and also as significant threats to beneficial insects of great value, such as honey bees and silkworms. Insect viruses also have been of intrinsic intere...

  18. Agriculture and the promotion of insect pests: rice cultivation in river floodplains and malaria vectors in The Gambia

    Directory of Open Access Journals (Sweden)

    Louca Vasilis

    2009-07-01

    Full Text Available Abstract Background Anthropogenic modification of natural habitats can create conditions in which pest species associated with humans can thrive. In order to mitigate for these changes, it is necessary to determine which aspects of human management are associated with the promotion of those pests. Anopheles gambiae, the main Africa malaria vector, often breeds in rice fields. Here the impact of the ancient practice of 'swamp rice' cultivation, on the floodplains of the Gambia River, on the production of anopheline mosquitoes was investigated. Methods Routine surveys were carried out along 500 m transects crossing rice fields from the landward edge of the floodplains to the river during the 2006 rainy season. Aquatic invertebrates were sampled using area samplers and emergence traps and fish sampled using nets. Semi-field experiments were used to investigate whether nutrients used for swamp rice cultivation affected mosquito larval abundance. Results At the beginning of the rainy season rice is grown on the landward edge of the floodplain; the first area to flood with fresh water and one rich in cattle dung. Later, rice plants are transplanted close to the river, the last area to dry out on the floodplain. Nearly all larval and adult stages of malaria vectors were collected 0–100 m from the landward edge of the floodplains, where immature rice plants were grown. These paddies contained stagnant freshwater with high quantities of cattle faeces. Semi-field studies demonstrated that cattle faeces nearly doubled the number of anopheline larvae compared with untreated water. Conclusion Swamp rice cultivation creates ideal breeding sites for malaria vectors. However, only those close to the landward edge harboured vectors. These sites were productive since they were large areas of standing freshwater, rich in nutrients, protected from fish, and situated close to human habitation, where egg-laying mosquitoes from the villages had short distances to

  19. Effect of supplementary feeding of Oecophylla longinoda on their abundance and predatory activities against cashew insect pests

    DEFF Research Database (Denmark)

    Rashid Abdulla, Nassor; Rwegasira, Gration; Jensen, Karl-Martin Vagn

    2015-01-01

    Many studies have shown the efficiency of using weaver ants (Oecophylla species) as natural bio-control agents against agricultural pests. Supplementary feeding could promote fast growth of this ant's population and discourage them from moving away. However, such artificial feeding might slow down...... ant´s search rates and in this way make them less efficient bio-agents. The experiments were conducted for two consecutive seasons at Naliendele Reseach Station. Cashew trees planted at a spacing of 12 m x 12 m in 2002 were used to investigate whether supplementary feeding could enhance foraging...... by non-fed colonies (4.20±0.30kg/tree and 4.88±0.24kg/tree) and the least (2.66±0.19kg/tree and 2.99±0.19kg/tree) was recorded from the untreated controls in 2012/13 and 2013/14, respectively. The studies indicated that supplementary feeding could boost weaver ants to higher population levels without...

  20. Viral Delivery of dsRNA for Control of Insect Agricultural Pests and Vectors of Human Disease: Prospects and Challenges

    Directory of Open Access Journals (Sweden)

    Anna Kolliopoulou

    2017-06-01

    Full Text Available RNAi is applied as a new and safe method for pest control in agriculture but efficiency and specificity of delivery of dsRNA trigger remains a critical issue. Various agents have been proposed to augment dsRNA delivery, such as engineered micro-organisms and synthetic nanoparticles, but the use of viruses has received relatively little attention. Here we present a critical view of the potential of the use of recombinant viruses for efficient and specific delivery of dsRNA. First of all, it requires the availability of plasmid-based reverse genetics systems for virus production, of which an overview is presented. For RNA viruses, their application seems to be straightforward since dsRNA is produced as an intermediate molecule during viral replication, but DNA viruses also have potential through the production of RNA hairpins after transcription. However, application of recombinant virus for dsRNA delivery may not be straightforward in many cases, since viruses can encode RNAi suppressors, and virus-induced silencing effects can be determined by the properties of the encoded RNAi suppressor. An alternative is virus-like particles that retain the efficiency and specificity determinants of natural virions but have encapsidated non-replicating RNA. Finally, the use of viruses raises important safety issues which need to be addressed before application can proceed.

  1. Investigation of larvae digestive β-glucosidase and proteases of the tomato pest Tuta absoluta for inhibiting the insect development.

    Science.gov (United States)

    Sellami, S; Jamoussi, K

    2016-06-01

    The tomato leaf miner Tuta absoluta is one of the most devastating pests for tomato crops. Digestive proteases and β-glucosidase enzymes were investigated using general and specific substrates and inhibitors. Maximal β-glucosidase and proteolytic activities occurred at temperature and pH optima of 30 and 40°C, 5 and 10-11 unit of pH, respectively. Zymogram analysis showed the presence of distinguished β-glucosidase exhibiting a specific activity of about 183 ± 15 µmol min-1 mg-1. In vitro inhibition experiments suggested that serine proteases were the primary gut proteases. Gel based protease inhibition assays demonstrated that the 28 and 73 kDa proteases might be trypsin-like and chymotrypsin-like enzymes, respectively. Overall gut trypsin-like and chymotrypsin-like activities were evaluated to be about 27.2 ± 0.84 and 1.68 ± 0.03 µmol min-1 mg-1, respectively. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis showed that T. absoluta gut serine proteases are responsible for Bacillus thuringiensis Cry insecticidal proteins proteolysis. Additionally, bioassays showed that T. absoluta larvae development was more affected by the β-glucosidases inhibitor (D-glucono-δ-lactone) than the serine proteases inhibitor (soybean trypsin inhibitor). These results are of basic interest since they present interesting data of β-glucosidases and gut serine proteases of T. absoluta larvae.

  2. Functional interpretation of a non-gut hemocoelic tissue aminopeptidase N (APN in a lepidopteran insect pest Achaea janata.

    Directory of Open Access Journals (Sweden)

    Thuirei Jacob Ningshen

    Full Text Available Insect midgut membrane-anchored aminopeptidases N (APNs are Zn(++ dependent metalloproteases. Their primary role in dietary protein digestion and also as receptors in Cry toxin-induced pathogenesis is well documented. APN expression in few non-gut hemocoelic tissues of lepidopteran insects has also been reported but their functions are widely unknown. In the present study, we observed specific in vitro interaction of Cry1Aa toxin with a 113 kDa AjAPN1 membrane protein of larval fat body, Malpighian tubule and salivary gland of Achaea janata. Analyses of 3D molecular structure of AjAPN1, the predominantly expressed APN isoform in these non-gut hemocoelic tissues of A. janata showed high structural similarity to the Cry1Aa toxin binding midgut APN of Bombyx mori, especially in the toxin binding region. Structural similarity was further substantiated by in vitro binding of Cry1Aa toxin. RNA interference (RNAi resulted in significant down-regulation of AjAPN1 transcript and protein expression in fat body and Malpighian tubule but not in salivary gland. Consequently, reduced AjAPN1 expression resulted in larval mortality, larval growth arrest, development of lethal larval-pupal intermediates, development of smaller pupae and emergence of viable defective adults. In vitro Cry1Aa toxin binding analysis of non-gut hemocoelic tissues of AjAPN1 knockdown larvae showed reduced interaction of Cry1Aa toxin with the 113 kDa AjAPN1 protein, correlating well with the significant silencing of AjAPN1 expression. Thus, our observations suggest AjAPN1 expression in non-gut hemocoelic tissues to play important physiological role(s during post-embryonic development of A. janata. Though specific interaction of Cry1Aa toxin with AjAPN1 of non-gut hemocoelic tissues of A. janata was demonstrated, evidences to prove its functional role as a Cry1Aa toxin receptor will require more in-depth investigation.

  3. Insecticidal effect of chlorantraniliprole against major stored-product insect pests in different grain commodities under laboratory tests.

    Science.gov (United States)

    Kavallieratos, Nickolas G; Athanassiou, Christos G; Boukouvala, Maria C

    2013-10-01

    of ≤1 mg chlorantraniliprole kg(-1) grain. After 14 days of exposure, 100% mortality was noted in whole rice. For T. confusum adults, after 7 days of exposure, mortality was low. After 14 days of exposure, mortality increased proportionately for all commodities. Most progeny production was noted in oats. For T. confusum larvae, after 7 days of exposure, mortality was generally higher in comparison with adults. After 14 days of exposure, mortality in maize was high. Generally, the two formulations performed alike for all the insects tested. Based on the results of the present work, chlorantraniliprole is effective against major stored-product insect species. However, efficacy depends upon the type of commodity, the dose rate and the exposure interval. © 2013 Society of Chemical Industry.

  4. Joint-Legged Animals: The Arthropods. Part V--The Insects.

    Science.gov (United States)

    Sherberger, Fred

    1986-01-01

    Discusses reasons for the success of insects, considering their size, reproductive ability, development, and adaptability. Also discusses various types of insect "homes" (such as galls and paper nests). (JN)

  5. Assessment of toxicity and biochemical mechanisms underlying the insecticidal activity of chemically characterized Boswellia carterii essential oil against insect pest of legume seeds.

    Science.gov (United States)

    S, Kiran; Kujur, Anupam; Patel, Laluram; K, Ramalakshmi; Prakash, Bhanu

    2017-06-01

    The present study was undertaken to investigate the insecticidal activity of chemically characterized Boswellia carterii essential oil (EO) and its mode of action against the pulse beetle Callosobruchus chinensis and C. maculatus. GC-MS analysis depicted α-thujene (69.16%), α-Pinene (7.20) and α-Phellandrene (6.78%) as the major components of test EO. EO exhibited absolute toxicity at 0.10μl/ml air against both C. chinensis and C. maculatus following 24h exposure. EO caused a significant reduction in oviposition and further reproductive development at LC 50 doses (0.050μl/ml to 0.066μl/ml in air). Compared to control, a significant elevation in ROS level accompanied with impairment in enzymatic (SOD and CAT) and non-enzymatic (GSH/GSSH) antioxidant defense system has been observed in EO exposed insect pest. However, EO has no significant effect on in vivo AChE activity. An absolute protection of Vigna radiata seeds samples exposed to EO at LC 90 doses was observed without affecting seed germination. The findings revealed that the B. carterii EO has strong insecticidal potential, hence, it could be recommended as a biorational alternative to synthetic insecticides. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Assessing the potential distribution of insect pests: case studies on large pine weevil (Hylobius abietis L) and horse-chestnut leaf miner (Cameraria ohridella) under present and future climate conditions in European forests

    OpenAIRE

    BARREDO CANO JOSE IGNACIO; STRONA GIOVANNI; DE RIGO DANIELE; CAUDULLO GIOVANNI; STANCANELLI Giuseppe; SAN-MIGUEL-AYANZ Jesus

    2015-01-01

    Forest insect pests represent a serious threat to European forests and their negative effects could be exacerbated by climate change. This paper illustrates how species distribution modelling integrated with host tree species distribution data can be used to assess forest vulnerability to this threat. Two case studies are used: large pine weevil (Hylobius abietis L) and horse-chestnut leaf miner (Cameraria ohridella Deschka & Dimič) both at pan-European level. The proposed approach integrates...

  7. Notes on the insect fauna on two species of astrocaryum (palmae, cocoeae, bactridinae in peruvian amazonia, with emphasis on potential pests of cultivated palms

    Directory of Open Access Journals (Sweden)

    1992-01-01

    plantaciones industriales de palmas en la Amazonia peruana. Insects were inventoried on two palm species, Astrocaryum chonta and Astrocaryum carnosum, respectively located in the lower Ucayali River valley near Jenaro Herrera, and in the upper Huallaga River valley near Uchiza. This fauna, which is highly diversified, includes many pests of cultivated palms, many other phytophagous species, the host plants of which were unknown, and many predators. Astrocaryum chonta and Astrocaryum carnosum are considered sources of pests for industrial palm plantations in Peruvian Amazonia.

  8. A Usages of Herb Extracts by Stream Integrated with Micro-organism to Control Insect Pests and Phytophagus Mites by Biological Control

    International Nuclear Information System (INIS)

    Uraisakul, Kanok; Piadang, Nattaya

    2006-09-01

    A usages of herb extracts by stream integrated rith micro-organism to control insect pests and phytophagus mites by biological control was compared with insecticide to investigate the responses of chili tree and kieffer lime tree. Moreover, herb extracts were tested in controlling insect pests. Herb extracts were selected from many effective kinds such as: Azadirachta indica, Hyptis suaveolens, Citronella grass, Eucalyptus, Stemona, Galangal, Zingiber, cassumunar Roxb. Chronmolaena oderatum, Derris elyptica, Ginger, Annona seed, Malueraca sp., Andrographis paniculata, Veronia aquarrosa, Garlic, Thevetia peruviana, and Tobacco. The experiment was set at Herb Laboratory Ayutthaya Campus, Rajamangala University of Technology, Suvarnabhumi during August 2004 to June 2006. From testing herb extracts at 100 ppm. On Chili germination, the result was that the Chromolaena extracts made highest germination of 69.50%, Citronella grass at 500 ppm., made highest germination of chili seed at 86.00% within 12 days. Garlic extracts could kill 75.90% of aphids in 24 hrs., maximized in this experiments. Malueraca extracts at 500 ppm. Could kill 92.65% of chili aphids similar to the activity of insecticides action in 24 hrs. However at 5,000 ppm. It found that chemical treatment gave difference results from herbal treatments. Annona extracts could kill 64.58% of chili aphids better that others treatments. There are 18 treatment of time at 6 hrs. , 15 hrs., and 24 hrs., respectively. The results found that at 6 hrs., Kelthane could kill 93.75% of red spider mite. At 15 hrs. Stemona could kill 95.50% of red spider mite. At 24 hrs. Stemona or Chromolaena could kill 100% of red spider mite equally, Chrolaena could kill more than 83% of chili thrips at 24 hrs. Annona extracts could harvest the maximum of fruit fresh weight and numbers of fruits. After cutting leaves for producing new leaves, spraying herbal extracts was not different in statistic; however, Eucalyptus extracts, Neem plus

  9. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption.

    Directory of Open Access Journals (Sweden)

    Dennis G A B Oonincx

    Full Text Available BACKGROUND: Greenhouse gas (GHG production, as a cause of climate change, is considered as one of the biggest problems society is currently facing. The livestock sector is one of the large contributors of anthropogenic GHG emissions. Also, large amounts of ammonia (NH(3, leading to soil nitrification and acidification, are produced by livestock. Therefore other sources of animal protein, like edible insects, are currently being considered. METHODOLOGY/PRINCIPAL FINDINGS: An experiment was conducted to quantify production of carbon dioxide (CO₂ and average daily gain (ADG as a measure of feed conversion efficiency, and to quantify the production of the greenhouse gases methane (CH₄ and nitrous oxide (N₂O as well as NH₃ by five insect species of which the first three are considered edible: Tenebrio molitor, Acheta domesticus, Locusta migratoria, Pachnoda marginata, and Blaptica dubia. Large differences were found among the species regarding their production of CO₂ and GHGs. The insects in this study had a higher relative growth rate and emitted comparable or lower amounts of GHG than described in literature for pigs and much lower amounts of GHG than cattle. The same was true for CO₂ production per kg of metabolic weight and per kg of mass gain. Furthermore, also the production of NH₃ by insects was lower than for conventional livestock. CONCLUSIONS/SIGNIFICANCE: This study therefore indicates that insects could serve as a more environmentally friendly alternative for the production of animal protein with respect to GHG and NH₃ emissions. The results of this study can be used as basic information to compare the production of insects with conventional livestock by means of a life cycle analysis.

  10. An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption

    Science.gov (United States)

    Oonincx, Dennis G. A. B.; van Itterbeeck, Joost; Heetkamp, Marcel J. W.; van den Brand, Henry; van Loon, Joop J. A.; van Huis, Arnold

    2010-01-01

    Background Greenhouse gas (GHG) production, as a cause of climate change, is considered as one of the biggest problems society is currently facing. The livestock sector is one of the large contributors of anthropogenic GHG emissions. Also, large amounts of ammonia (NH3), leading to soil nitrification and acidification, are produced by livestock. Therefore other sources of animal protein, like edible insects, are currently being considered. Methodology/Principal Findings An experiment was conducted to quantify production of carbon dioxide (CO2) and average daily gain (ADG) as a measure of feed conversion efficiency, and to quantify the production of the greenhouse gases methane (CH4) and nitrous oxide (N2O) as well as NH3 by five insect species of which the first three are considered edible: Tenebrio molitor, Acheta domesticus, Locusta migratoria, Pachnoda marginata, and Blaptica dubia. Large differences were found among the species regarding their production of CO2 and GHGs. The insects in this study had a higher relative growth rate and emitted comparable or lower amounts of GHG than described in literature for pigs and much lower amounts of GHG than cattle. The same was true for CO2 production per kg of metabolic weight and per kg of mass gain. Furthermore, also the production of NH3 by insects was lower than for conventional livestock. Conclusions/Significance This study therefore indicates that insects could serve as a more environmentally friendly alternative for the production of animal protein with respect to GHG and NH3 emissions. The results of this study can be used as basic information to compare the production of insects with conventional livestock by means of a life cycle analysis. PMID:21206900

  11. Before the Post-human: social insects, superior mammals and the (reconstruction of boundaries between humans and animals in modernity

    Directory of Open Access Journals (Sweden)

    Hugo Ferreira

    2017-06-01

    The present article discusses the (reconstruction of the boundaries between humans and animals along the nineteenth and the twentieth centuries. In the nineteenth and the twentieth centuries, the human being was viewed as fundamentally distinct from nature due to politics, society and work, and then usually compared to social insects. Along the Darwinian revolution in the nineteenth century and the phylogenetic classification of live beings, the human being was “primatized”, and humanity would be a consequence of the intelligence due to the high development of the nervous system. Nowadays, when one wants to question the boundaries between humans and animals, the lights are turned to other beings, such as chimpanzees and dolphins. In this sense, as a bibliographic review, this article aims to explore this historical contrast of comparison standards – from insect societies to “superior mammals” – as well, its political and bioethical consequences.

  12. Sterile insect technique and radiation in insect control

    International Nuclear Information System (INIS)

    1982-01-01

    Out of 39 papers and 6 summaries of the poster presentations published in this proceeding series, 23 respectively fall within the INIS subject scope. Four main topics were covered: a review of the sterile insect technique against various insect pests; its application to tsetse flies in eradication programmes; quality control of mass-reared insects for release; and the development of genetic approaches to insect mass rearing and control. Other topics emphasized integrated pest management, computer models and radioisotope labelling

  13. Safety assessment and feeding value for pigs, poultry and ruminant animals of pest protected (Bt plants and herbicide tolerant (glyphosate, glufosinate plants: interpretation of experimental results observed worldwide on GM plants

    Directory of Open Access Journals (Sweden)

    Aimé Aumaitre

    2010-01-01

    Full Text Available New varieties of plants resistant to pests and/or tolerant to specific herbicides such as maize, soybean, cotton, sugarbeets, canola, have been recently developed by using genetic transformation (GT. These plants contain detectable specificactive recombinant DNA (rDNA and their derived protein. Since they have not been selected for a modification oftheir chemical composition, they can be considered as substantially equivalent to their parents or to commercial varietiesfor their content in nutrients and anti-nutritional factors. However, insect protected maize is less contaminated by mycotoxinsthan its parental counterpart conferring a higher degree of safety to animal feeds. The new feeds, grain and derivatives,and whole plants have been intensively tested in vivo up to 216 days for their safety and their nutritional equivalencefor monogastric farm animals (pig, poultry and ruminants (dairy cows, steers, lambs. The present article is basedon the interpretation and the summary of the scientific results published in original reviewed journals either as full papers(33 or as abstracts (33 available through September 2003. For the duration of the experiments adapted to the species,feed intake, weight gain, milk yield and nutritional equivalence expressed as feed conversion and/or digestibility of nutrientshave never been affected by feeding animals diets containing GT plants. In addition, in all the experimental animals,the body and carcass composition, the composition of milk and animal tissues, as well as the sensory properties of meatare not modified by the use of feeds derived from GT plants. Furthermore, the health of animals, their physiological characteristicsand the survival rate are also not affected.The presence of rDNA and derived proteins can be recognized and quantified in feeds in the case of glyphosate resistant soybeanand canola and in the case of insect protected maize. However, rDNA has never been recovered either in milk, or in

  14. Beneficial Insects and Insect Pollinators on Milkweed in South Georgia

    Science.gov (United States)

    Insect pollinators are essential for the reproduction of more than two-thirds of the world’s crops, and beneficial insects play an important role in managing pest insects in agricultural farmscapes. These insects depend on nectar for their survival in these farmscapes. The flowers of tropical milkwe...

  15. Agricultural Plant Pest Control. Bulletin 763.

    Science.gov (United States)

    French, John C.; And Others

    This manual gives general information on plant pests and pesticides. First, the life-cycle and habits of some common insect pests are given. These include caterpillars, beetles and beetle larvae, and sucking insects. Next, plant diseases such as leaf diseases, wilts, root and crown rots, stem cankers, fruit rots, seed and seedling diseases, and…

  16. Agricultural Plant Pest Control. Manual 93.

    Science.gov (United States)

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides for the agricultural plant pest control category. The text discusses the insect pests including caterpillars, beetles, and soil inhabiting insects; diseases and nematodes; and weeds. Consideration is given…

  17. Ornamental and Turf Pest Control. Bulletin 764.

    Science.gov (United States)

    Bowyer, Timothy H.; And Others

    This manual gives descriptions of and methods for control of diseases and insect pests of ornamental plants, weeds, and diseases and insect pests of turf plants. Included are diseases caused by fungi such as cankers, leaf galls, and rust; diseases caused by bacteria such as bacterial blight and crown gall; and diseases caused by nematodes and…

  18. The Sterile Insect Technique

    International Nuclear Information System (INIS)

    Kiragu, J.

    2006-01-01

    Insect pests have caused an increasing problem in agriculture and human health through crop losses and disease transmission to man and livestock. Intervention to ensure food security and human health has relied on Integrated Pest Management (IPM) strategies to keep the pests population below economic injury levels. IPM integrate a variety of methods, but there has been over-reliance on chemical control following the discovery of insecticidal properties of DDT. It is now realized that, maintaining pest populations at controlled levels is unsustainable and eradication options is now being considered. Although the Sterile Insect Technique(SIT) could be used for insect suppression, it is gaining favour in the elimination (eradication) of the target pest population through Areawide-based IPM (Author)

  19. Forest Pest Control. Sale Publication 4072.

    Science.gov (United States)

    Stimmann, M. W., Ed.

    The forest pests discussed in this guide are weeds, insects, diseases, and vertebrates. The guide gives information about types of forests, characteristics of common forest pests, pest control methods, pesticides and application equipment used in forestry, and environmental and human hazards. (Author/BB)

  20. Pest management strategies: Area-wide and conventional

    International Nuclear Information System (INIS)

    Lindquist, D.A.

    2000-01-01

    part of the cost of an area-wide programme will be fighting the target pest away from the commercial production - before the commercial crops are susceptible - on wild or alternate hosts or abandoned orchards, untreated host plants in homeowners' gardens, etc. In most cases, area-wide insect control will be the responsibility of a separate organisation hired by the producers. A separate organisation can plan an aggressive offense against the target pest population over the entire area. High technology systems can be effectively utilised to plan the population management programme. Included will be satellite imagery to detect alternate hosts, sensitive methods to detect movement of the pest populations, computer programmes to predict changes in the pest insect population based on biological parameters, a systems approach to utilise natural enemies on an area-wide basis, genetic analysis to detect the development of resistance and utilisation of systems to delay the development of resistance over the total area. Further, area-wide programmes encourage the use of specialised methods of insect control that are not effective or are not used on a farm by farm basis. These include the sterile insect technique (SIT), male annihilation, inundative releases of parasites, mating inhibitors, large-scale trap cropping with very attractive plants, treatment of alternate hosts on public lands and hosts in private gardens, etc. The objective of area-wide control is to reduce the pest population within the target area to a non-economic level. This is accomplished by attacking the entire insect pest population in the target area. Conventional insect control attempts to protect the plant or animal, is carried out by individual producers over a small area with little planning, is short-term, low technology and is a reactive (defense) approach to insect control. Area-wide insect control attempts to reduce the pest population to a non-economic level over a large area involving many

  1. Networking of integrated pest management

    NARCIS (Netherlands)

    Lamichhane, Jay Ram; Aubertot, Jean Noël; Begg, Graham; Birch, Andrew Nicholas E.; Boonekamp, Piet; Dachbrodt-Saaydeh, Silke; Hansen, Jens Grønbech; Hovmøller, Mogens Støvring; Jensen, Jens Erik; Jørgensen, Lise Nistrup; Kiss, Jozsef; Kudsk, Per; Moonen, Anna Camilla; Rasplus, Jean Yves; Sattin, Maurizio; Streito, Jean Claude; Messéan, Antoine

    2016-01-01

    Integrated pest management (IPM) is facing both external and internal challenges. External challenges include increasing needs to manage pests (pathogens, animal pests and weeds) due to climate change, evolution of pesticide resistance as well as virulence matching host resistance. The complexity

  2. The Immune Responses of the Animal Hosts of West Nile Virus: A Comparison of Insects, Birds, and Mammals

    Directory of Open Access Journals (Sweden)

    Laura R. H. Ahlers

    2018-04-01

    Full Text Available Vector-borne diseases, including arboviruses, pose a serious threat to public health worldwide. Arboviruses of the flavivirus genus, such as Zika virus (ZIKV, dengue virus, yellow fever virus (YFV, and West Nile virus (WNV, are transmitted to humans from insect vectors and can cause serious disease. In 2017, over 2,000 reported cases of WNV virus infection occurred in the United States, with two-thirds of cases classified as neuroinvasive. WNV transmission cycles through two different animal populations: birds and mosquitoes. Mammals, particularly humans and horses, can become infected through mosquito bites and represent dead-end hosts of WNV infection. Because WNV can infect diverse species, research on this arbovirus has investigated the host response in mosquitoes, birds, humans, and horses. With the growing geographical range of the WNV mosquito vector and increased human exposure, improved surveillance and treatment of the infection will enhance public health in areas where WNV is endemic. In this review, we survey the bionomics of mosquito species involved in Nearctic WNV transmission. Subsequently, we describe the known immune response pathways that counter WNV infection in insects, birds, and mammals, as well as the mechanisms known to curb viral infection. Moreover, we discuss the bacterium Wolbachia and its involvement in reducing flavivirus titer in insects. Finally, we highlight the similarities of the known immune pathways and identify potential targets for future studies aimed at improving antiviral therapeutic and vaccination design.

  3. Introduced agricultural pests, plant and animals diseases and vectors in the Dutch Caribbean, with an alert species list

    NARCIS (Netherlands)

    Buurt, van G.; Debrot, A.O.

    2012-01-01

    Most information on invasive alien pests is available for the leeward Dutch islands while the least is known for the windward Dutch islands. The principal means of entry is the importation of unsterilized soil and plant material through container shipment, import of ornamental plants and air

  4. Insects and Bugs

    Science.gov (United States)

    Sutherland, Karen

    2009-01-01

    They have been around for centuries. They sting, they bite. They cause intense itching or painful sores. They even cause allergic reactions and sometimes death. There are two types of insects that are pests to humans--those that sting and those that bite. The insects that bite do so with their mouths and include mosquitoes, chiggers, and ticks.…

  5. Brevibacillus laterosporus inside the insect body: Beneficial resident or pathogenic outsider?

    Science.gov (United States)

    Marche, Maria Giovanna; Mura, Maria Elena; Ruiu, Luca

    2016-06-01

    Brevibacillus laterosporus is an entomopathogenic bacterium showing varying degrees of virulence against diverse insect pests. Conversely, it is regarded as a beneficial component of the intestinal flora in different animals and in some insect species including the honeybee. B. laterosporus was detected through a species-specific PCR assay in the body of different insects, including Apis mellifera and Bombus terrestris. A strain isolated from a honeybee worker was pathogenic to the house fly Musca domestica, thus supporting the development of either mutualistic or pathogenic interactions of this bacterium with diverse insect species, as the result of a coevolutionary process. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Pest repellent properties of ant pheromones

    DEFF Research Database (Denmark)

    Offenberg, Joachim

    2012-01-01

    Many ant species are efficient control agents against a wide range of pest insects in many crops. They control pest insects via predation; however, ant communication is based on chemical cues which may be eavesdropped by potential prey and serve as chemical warning signals. Thus, the presence...... of ant pheromones may be sufficient to repel pest insects from ant territories. The study of ant semiochemicals is in its infancy, yet, evidence for their potential use in pest management is starting to build up. Pheromones from four of five tested ant species have been shown to deter herbivorous insect...... prey and competing ant species are also deterred by ant deposits, whereas ant symbionts may be attracted to them. Based on these promising initial findings, it seems advisable to further elucidate the signaling properties of ant pheromones and to test and develop their use in future pest management....

  7. Gut immunity in Lepidopteran insects.

    Science.gov (United States)

    Wu, Kai; Yang, Bing; Huang, Wuren; Dobens, Leonard; Song, Hongsheng; Ling, Erjun

    2016-11-01

    Lepidopteran insects constitute one of the largest fractions of animals on earth, but are considered pests in their relationship with man. Key to the success of this order of insects is its ability to digest food and absorb nutrition, which takes place in the midgut. Because environmental microorganisms can easily enter Lepidopteran guts during feeding, the innate immune response guards against pathogenic bacteria, virus and microsporidia that can be devoured with food. Gut immune responses are complicated by both resident gut microbiota and the surrounding peritrophic membrane and are distinct from immune responses in the body cavity, which depend on the function of the fat body and hemocytes. Due to their relevance to agricultural production, studies of Lepidopteran insect midgut and immunity are receiving more attention, and here we summarize gut structures and functions, and discuss how these confer immunity against different microorganisms. It is expected that increased knowledge of Lepidopteran gut immunity may be utilized for pest biological control in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. OMIGA: Optimized Maker-Based Insect Genome Annotation.

    Science.gov (United States)

    Liu, Jinding; Xiao, Huamei; Huang, Shuiqing; Li, Fei

    2014-08-01

    Insects are one of the largest classes of animals on Earth and constitute more than half of all living species. The i5k initiative has begun sequencing of more than 5,000 insect genomes, which should greatly help in exploring insect resource and pest control. Insect genome annotation remains challenging because many insects have high levels of heterozygosity. To improve the quality of insect genome annotation, we developed a pipeline, named Optimized Maker-Based Insect Genome Annotation (OMIGA), to predict protein-coding genes from insect genomes. We first mapped RNA-Seq reads to genomic scaffolds to determine transcribed regions using Bowtie, and the putative transcripts were assembled using Cufflink. We then selected highly reliable transcripts with intact coding sequences to train de novo gene prediction software, including Augustus. The re-trained software was used to predict genes from insect genomes. Exonerate was used to refine gene structure and to determine near exact exon/intron boundary in the genome. Finally, we used the software Maker to integrate data from RNA-Seq, de novo gene prediction, and protein alignment to produce an official gene set. The OMIGA pipeline was used to annotate the draft genome of an important insect pest, Chilo suppressalis, yielding 12,548 genes. Different strategies were compared, which demonstrated that OMIGA had the best performance. In summary, we present a comprehensive pipeline for identifying genes in insect genomes that can be widely used to improve the annotation quality in insects. OMIGA is provided at http://ento.njau.edu.cn/omiga.html .

  9. Pest Control Section Biochemical Group, Progress Report 1982-86

    International Nuclear Information System (INIS)

    1988-01-01

    Reserch efforts in the Pest Control Section, BARC, a continuator of insect sterilization and pest control section of the erstwhile Biology and Agriculture Division, were continued to develop integrated management practices for the control of important insect pests of agricultural and medical importance. Insect pests chosen are, ubiquitous potato tuberworm, a serious pest of potatoes, cotton bollworms with particular reference to spotted bollworms and a mosquito (Culex fatigans), a vector of filariasis. Keeping these insects as targets, research activities have been concentrated in the fields of biological control with parasities, pathogens and sterile insects, sex pheromones and insect plant interaction with a view to integrate pest management programme. Besides, the research activity also encompasses investigations of basic nature in the fields of insect sex pheromones, insect pathology and insect plant interaction. Studies on insect pheromones relate to the modifying influence of abiotic and biotic factors of the environment on pheromone production and perception and the possibility of insect developing resistance to pheromones. Studies in the field of insect plant interaction are directed towards identifying weak links in the insect plant relationship with a view to exploit them for developing control. Basic studies in the field of insect pathology relate to isolation and identification of entomopathogens, source of their pathogenecity, improvement in their virulence and formulation of cheaper and potent microbial insecticides. This report pertains to the period 1982-86. (Orig.). 11 tables, 5 figures

  10. Photodynamic and antibiotic therapy impair the pathogenesis of Enterococcus faecium in a whole animal insect model.

    Directory of Open Access Journals (Sweden)

    José Chibebe Junior

    Full Text Available Enterococcus faecium has emerged as one of the most important pathogens in healthcare-associated infections worldwide due to its intrinsic and acquired resistance to many antibiotics, including vancomycin. Antimicrobial photodynamic therapy (aPDT is an alternative therapeutic platform that is currently under investigation for the control and treatment of infections. PDT is based on the use of photoactive dye molecules, widely known as photosensitizer (PS. PS, upon irradiation with visible light, produces reactive oxygen species that can destroy lipids and proteins causing cell death. We employed Galleria mellonella (the greater wax moth caterpillar fatally infected with E. faecium to develop an invertebrate host model system that can be used to study the antimicrobial PDT (alone or combined with antibiotics. In the establishment of infection by E. faecium in G. mellonella, we found that the G. mellonella death rate was dependent on the number of bacterial cells injected into the insect hemocoel and all E. faecium strains tested were capable of infecting and killing G. mellonella. Antibiotic treatment with ampicillin, gentamicin or the combination of ampicillin and gentamicin prolonged caterpillar survival infected by E. faecium (P = 0.0003, P = 0.0001 and P = 0.0001, respectively. In the study of antimicrobial PDT, we verified that methylene blue (MB injected into the insect followed by whole body illumination prolonged the caterpillar survival (P = 0.0192. Interestingly, combination therapy of larvae infected with vancomycin-resistant E. faecium, with antimicrobial PDT followed by vancomycin, significantly prolonged the survival of the caterpillars when compared to either antimicrobial PDT (P = 0.0095 or vancomycin treatment alone (P = 0.0025, suggesting that the aPDT made the vancomycin resistant E. faecium strain more susceptible to vancomycin action. In summary, G. mellonella provides an invertebrate model host to

  11. Photodynamic and antibiotic therapy impair the pathogenesis of Enterococcus faecium in a whole animal insect model.

    Science.gov (United States)

    Chibebe Junior, José; Fuchs, Beth B; Sabino, Caetano P; Junqueira, Juliana C; Jorge, Antonio O C; Ribeiro, Martha S; Gilmore, Michael S; Rice, Louis B; Tegos, George P; Hamblin, Michael R; Mylonakis, Eleftherios

    2013-01-01

    Enterococcus faecium has emerged as one of the most important pathogens in healthcare-associated infections worldwide due to its intrinsic and acquired resistance to many antibiotics, including vancomycin. Antimicrobial photodynamic therapy (aPDT) is an alternative therapeutic platform that is currently under investigation for the control and treatment of infections. PDT is based on the use of photoactive dye molecules, widely known as photosensitizer (PS). PS, upon irradiation with visible light, produces reactive oxygen species that can destroy lipids and proteins causing cell death. We employed Galleria mellonella (the greater wax moth) caterpillar fatally infected with E. faecium to develop an invertebrate host model system that can be used to study the antimicrobial PDT (alone or combined with antibiotics). In the establishment of infection by E. faecium in G. mellonella, we found that the G. mellonella death rate was dependent on the number of bacterial cells injected into the insect hemocoel and all E. faecium strains tested were capable of infecting and killing G. mellonella. Antibiotic treatment with ampicillin, gentamicin or the combination of ampicillin and gentamicin prolonged caterpillar survival infected by E. faecium (P = 0.0003, P = 0.0001 and P = 0.0001, respectively). In the study of antimicrobial PDT, we verified that methylene blue (MB) injected into the insect followed by whole body illumination prolonged the caterpillar survival (P = 0.0192). Interestingly, combination therapy of larvae infected with vancomycin-resistant E. faecium, with antimicrobial PDT followed by vancomycin, significantly prolonged the survival of the caterpillars when compared to either antimicrobial PDT (P = 0.0095) or vancomycin treatment alone (P = 0.0025), suggesting that the aPDT made the vancomycin resistant E. faecium strain more susceptible to vancomycin action. In summary, G. mellonella provides an invertebrate model host to study the

  12. Pest and disease monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Straw, Nigel; Lonsdale, David [Forest Research, Farnham (United Kingdom)

    2000-07-01

    This paper summaries the findings of surveys of pests and diseases carried out at pure and mixed plots of willow and poplar varieties twice a year during each growing season. The main causes of damage recorded were leaf rust, defoliation by insects, and leaf disease, distortion and chlorosis as well as frost damage, aphid infestation, and shoot dieback. Leaf rust for willow and poplar clones are plotted, and details of leaf rust and defoliation in pure and mixed plots are tabulated.

  13. Model-based prediction of potential distribution of the invasive insect pest, spotted lanternfly Lycorma delicatula (Hemiptera: Fulgoridae, by using CLIMEX

    Directory of Open Access Journals (Sweden)

    Jae-Min Jung

    2017-12-01

    Full Text Available Lycorma delicatula is one of the major invasive pests of Korea. Careful monitoring is required to protect domestic agriculture as this pest causes severe damage to agricultural crops, such as wilting and sooty mold. This study was designed to confirm the potential distribution of L. delicatula using the modeling software CLIMEX and to suggest fundamental data for preventing agricultural damage by L. delicatula. Our results show that Korean weather seems to be adequate for L. delicatula habitation, indicating that approximately 60% of areas examined have a very high possibility of potential distribution. Particularly, we showed that Gyeongsang-do and Jeonla-do, which have not yet been invaded by L. delicatula, were very suitable locations for its growth. Therefore, although it is necessary to set up feasible strategies for preventing further L. delicatula invasions, subsequent studies are needed for assessing other invasive species considering the impact of future climate change. Keywords: CLIMEX software, invasive pest, Lycorma delicatula, potential distribution

  14. Evaluation of corn hybrids expressing Cry1F, cry1A.105, Cry2Ab2, Cry34Ab1/Cry35Ab1, and Cry3Bb1 against southern United States insect pests.

    Science.gov (United States)

    Siebert, M W; Nolting, S P; Hendrix, W; Dhavala, S; Craig, C; Leonard, B R; Stewart, S D; All, J; Musser, F R; Buntin, G D; Samuel, L

    2012-10-01

    Studies were conducted across the southern United States to characterize the efficacy of multiple Bacillus thuringiensis (Bt) events in a field corn, Zea mays L., hybrid for control of common lepidopteran and coleopteran pests. Cry1F protein in event TC1507 and Cry1A.105 + Cry2Ab2 proteins in event MON 89034 were evaluated against pests infesting corn on above-ground plant tissue including foliage, stalks, and ears. Cry34Ab1/Cry35Ab1 proteins in event DAS-59122-7 and Cry3Bb1 in event MON 88017 were evaluated against the larvae of Mexican corn rootworm, Diabrotica virgifera zeae Krysan and Smith, which occur below-ground. Field corn hybrids containing Cry1F, Cry1A.105 + Cry2Ab2, Cry34Ab1/Cry35Ab1, and Cry3Bb1 insecticidal proteins (SmartStax) consistently demonstrated reductions in plant injury and/or reduced larval survivorship as compared with a non-Bt field corn hybrid. Efficacy provided by a field corn hybrid with multiple Bt proteins was statistically equal to or significantly better than corn hybrids containing a single event active against target pests. Single event field corn hybrids provided very high levels of control of southwestern corn borer, Diatraea grandiosella (Dyar), lesser cornstalk borer, Elasmopalpus lignosellus (Zeller), and fall armyworm, Spodoptera frugiperda (J.E. Smith), and were not significantly different than field corn hybrids with multiple events. Significant increases in efficacy were observed for a field corn hybrid with multiple Bt events for sugarcane borer, Diatraea saccharalis (F.), beet armyworm, Spodoptera exigua (Hübner), corn earworm, Helicoverpa zea (Boddie), and Mexican corn rootworm. Utilization of field corn hybrids containing multiple Bt events provides a means for managing insect resistance to Bt proteins and reduces non-Bt corn refuge requirements.

  15. Study of pest-predator interaction in agricultural ecosystems by using neutron activation. Part of a coordinated programme on the use of isotopes in pest management with emphasis on rice insects

    International Nuclear Information System (INIS)

    Szalay-Marzso, L.

    1984-04-01

    Several methods were investigated for using the stable element somarium, as a tracer to study insect predator/parasite-prey interactions. The element was introduced into parasite-prey by injection, by incorporation into artificial diet and by allowing prey to feed on labelled host plants. It is readily taken up by plants when in solution. Levels of somarium were found that were non-toxic to prey and that could be detected, by neutron activation, in parasites and predators that attacked the prey. Using somarium labelled prey, the author demonstrated in field tests that carabid beetles forage more efficiently for prey that are distributed horizontally than ones distributed vertically

  16. Predator-prey interaction reveals local effects of high-altitude insect migration.

    Science.gov (United States)

    Krauel, Jennifer J; Brown, Veronica A; Westbrook, John K; McCracken, Gary F

    2018-01-01

    High-altitude nocturnal insect migrations are ubiquitous and represent significant pulses of biomass, which impact large areas and multiple trophic levels, yet are difficult to study and poorly understood. Predation on migratory insects by high-flying bats provides potential for investigating flows of migratory insects across a landscape. Brazilian free-tailed bats, Tadarida brasiliensis, provide valuable ecosystem services by consuming migratory pests, and research suggests migratory insects are an important resource to bats in autumn. We sequenced insect DNA from bat feces collected during the 2010-2012 autumn migrations of insects over southern Texas, and tested the utility of predator-prey interactions for monitoring migratory insect populations by asking: 1) how extensively do bats consume migratory insects during autumn? (2) does the prey community reflect known drivers of insect migrations, e.g. cold fronts? and (3) are migratory insects increasingly important to bats when local food resources decline in autumn? Bats consumed at least 21 species of migratory insects and 44 species of agricultural pests. Prey community richness increased with cold front passage. Bats consumed migratory moths over the entire autumn season, and the proportion of migratory moths in the bat diet increased over the course of the autumn season in all 3 years. This study confirms extensive consumption of migratory insects by bats, links patterns in prey communities to mechanisms driving insect migration, and documents a novel approach to tracking patterns of migratory insect movement. As an important resource for T. brasiliensis in autumn, migratory insects provide stabilizing effects to the local animal community.

  17. Toxins for Transgenic Resistance to Hemipteran Pests

    Directory of Open Access Journals (Sweden)

    Bryony C. Bonning

    2012-06-01

    Full Text Available The sap sucking insects (Hemiptera, which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic crops expressing toxins derived from the bacterium Bacillus thuringiensis (Bt has provided effective plant protection against some insect pests, Bt toxins exhibit little toxicity against sap sucking insects. Indeed, the pest status of some Hemiptera on Bt-transgenic plants has increased in the absence of pesticide application. The increased pest status of numerous hemipteran species, combined with increased prevalence of resistance to chemical insecticides, provides impetus for the development of biologically based, alternative management strategies. Here, we provide an overview of approaches toward transgenic resistance to hemipteran pests.

  18. Harnessing Diversity in Wheat to Enhance Grain Yield, Climate Resilience, Disease and Insect Pest Resistance and Nutrition Through Conventional and Modern Breeding Approaches

    Science.gov (United States)

    Mondal, Suchismita; Rutkoski, Jessica E.; Velu, Govindan; Singh, Pawan K.; Crespo-Herrera, Leonardo A.; Guzmán, Carlos; Bhavani, Sridhar; Lan, Caixia; He, Xinyao; Singh, Ravi P.

    2016-01-01

    Current trends in population growth and consumption patterns continue to increase the demand for wheat, a key cereal for global food security. Further, multiple abiotic challenges due to climate change and evolving pathogen and pests pose a major concern for increasing wheat production globally. Triticeae species comprising of primary, secondary, and tertiary gene pools represent a rich source of genetic diversity in wheat. The conventional breeding strategies of direct hybridization, backcrossing and selection have successfully introgressed a number of desirable traits associated with grain yield, adaptation to abiotic stresses, disease resistance, and bio-fortification of wheat varieties. However, it is time consuming to incorporate genes conferring tolerance/resistance to multiple stresses in a single wheat variety by conventional approaches due to limitations in screening methods and the lower probabilities of combining desirable alleles. Efforts on developing innovative breeding strategies, novel tools and utilizing genetic diversity for new genes/alleles are essential to improve productivity, reduce vulnerability to diseases and pests and enhance nutritional quality. New technologies of high-throughput phenotyping, genome sequencing and genomic selection are promising approaches to maximize progeny screening and selection to accelerate the genetic gains in breeding more productive varieties. Use of cisgenic techniques to transfer beneficial alleles and their combinations within related species also offer great promise especially to achieve durable rust resistance. PMID:27458472

  19. Harnessing Diversity in Wheat to Enhance Grain Yield, Climate Resilience, Disease and Insect Pest Resistance and Nutrition Through Conventional and Modern Breeding Approaches.

    Science.gov (United States)

    Mondal, Suchismita; Rutkoski, Jessica E; Velu, Govindan; Singh, Pawan K; Crespo-Herrera, Leonardo A; Guzmán, Carlos; Bhavani, Sridhar; Lan, Caixia; He, Xinyao; Singh, Ravi P

    2016-01-01

    Current trends in population growth and consumption patterns continue to increase the demand for wheat, a key cereal for global food security. Further, multiple abiotic challenges due to climate change and evolving pathogen and pests pose a major concern for increasing wheat production globally. Triticeae species comprising of primary, secondary, and tertiary gene pools represent a rich source of genetic diversity in wheat. The conventional breeding strategies of direct hybridization, backcrossing and selection have successfully introgressed a number of desirable traits associated with grain yield, adaptation to abiotic stresses, disease resistance, and bio-fortification of wheat varieties. However, it is time consuming to incorporate genes conferring tolerance/resistance to multiple stresses in a single wheat variety by conventional approaches due to limitations in screening methods and the lower probabilities of combining desirable alleles. Efforts on developing innovative breeding strategies, novel tools and utilizing genetic diversity for new genes/alleles are essential to improve productivity, reduce vulnerability to diseases and pests and enhance nutritional quality. New technologies of high-throughput phenotyping, genome sequencing and genomic selection are promising approaches to maximize progeny screening and selection to accelerate the genetic gains in breeding more productive varieties. Use of cisgenic techniques to transfer beneficial alleles and their combinations within related species also offer great promise especially to achieve durable rust resistance.

  20. Comparative studies on physical-chemical properties and major nutritional components of rice grain in dwarf mutant resistant to insect pests and its parent

    International Nuclear Information System (INIS)

    Cui Hairui; Wu Dianxing; Shen Shengquan; Shu Qingyao

    2004-01-01

    Starch characteristics and key nutritional compositions in the dwarf mutant from transgenic rice with crylAb gene were compared with its original parent, Xiushuill. It was found that peak viscosity, hot paste viscosity and cool paste viscosity of RVA profile between the dwarf mutant and its parent were significantly different at 1% level, but apparent amylose content, gel consistence existed and breakdown viscosity of RVA profile were similar, and no significant differences existed in contents of crude protein, crude fat, total ash, amino acids and mineral compositions. It was suggested that no notable changes occurred in grain quality traits in the dwarf mutant with insect resistance. (authors)

  1. Biological aspects of Eriopis connexa (Germar (Coleoptera: Coccinellidae fed on different insect pests of maize (Zea mays L. and sorghum [Sorghum bicolor L. (Moench.

    Directory of Open Access Journals (Sweden)

    RB Silva

    Full Text Available Eriopis connexa (Germar (Coleoptera: Coccinellidae occurs in several countries of South America and its mass rearing is important for biological control programmes. This work evaluated biological aspects of E. connexa larva fed on eggs of Anagasta kuehniella (Zeller (Lepidoptera: Pyralidae and Spodoptera frugiperda (J. E. Smith (Lepidoptera: Noctuidae frozen for one day, fresh eggs of Diatraea saccharalis (Fabricius (Lepidoptera: Pyralidae, S. frugiperda newly-hatched caterpillars, nymphs of Rhopalosiphum maidis (Fitch and Schizaphis graminum (Rondani (Hemiptera: Aphididae. Duration of larva, pupa and larva to adult stages differed among prey offered, whereas the prepupa stage was similar. Larva, pupa, prepupa and larva to adult viabilities were equal or major of 87.5% in all prey, except for larva fed on newly-hatched larvae of S. frugiperda. Eriopis connexa has good adaptation to different prey corroborating its polyphagous feeding habit, which evidences the potential of this natural enemy for controlling corn and sorghum pests.

  2. Designing agricultural landscapes for natural pest control

    NARCIS (Netherlands)

    Steingrover, E.G.; Geertsema, W.; Wingerden, van W.K.R.E.

    2010-01-01

    The green–blue network of semi-natural non-crop landscape elements in agricultural landscapes has the potential to enhance natural pest control by providing various resources for the survival of beneficial insects that suppress crop pests. A study was done in the Hoeksche Waard to explore how

  3. Forest nursery pest management in Cuba

    Science.gov (United States)

    Rene Alberto Lopez Castilla; Angela Duarte Casanova; Celia Guerra Rivero; Haylett Cruz Escoto; Natividad Triguero Issasi

    2002-01-01

    A systematic survey of methods to detect pests in forest nurseries before they damage plants was done. These surveys recorded the most important forest nursery pests during 18 years (from 1980 to 1998) and their geographical and temporal distribution in the principal enterprises in Cuba. Approximately a dozen insect species and three fungi species responsible for the...

  4. Edible insects in Sustainable Food Systems

    DEFF Research Database (Denmark)

    Halloran, Afton; Flore, Roberto; Vantomme, Paul

    Edible insects in Sustainable Food Systems comprehensively covers the basic principles of entomology and population dynamics; edible insects and culture; nutrition and health; gastronomy; insects as animal feed; factors influencing preferences and acceptability of insects; environmental impacts...

  5. Review of Ecologically-Based Pest Management in California Vineyards.

    Science.gov (United States)

    Wilson, Houston; Daane, Kent M

    2017-10-11

    Grape growers in California utilize a variety of biological, cultural, and chemical approaches for the management of insect and mite pests in vineyards. This combination of strategies falls within the integrated pest management (IPM) framework, which is considered to be the dominant pest management paradigm in vineyards. While the adoption of IPM has led to notable and significant reductions in the environmental impacts of grape production, some growers are becoming interested in the use of an explicitly non-pesticide approach to pest management that is broadly referred to as ecologically-based pest management (EBPM). Essentially a subset of IPM strategies, EBPM places strong emphasis on practices such as habitat management, natural enemy augmentation and conservation, and animal integration. Here, we summarize the range and known efficacy of EBPM practices utilized in California vineyards, followed by a discussion of research needs and future policy directions. EBPM should in no way be seen in opposition, or as an alternative to the IPM framework. Rather, the further development of more reliable EBPM practices could contribute to the robustness of IPM strategies available to grape growers.

  6. Review of Ecologically-Based Pest Management in California Vineyards

    Directory of Open Access Journals (Sweden)

    Houston Wilson

    2017-10-01

    Full Text Available Grape growers in California utilize a variety of biological, cultural, and chemical approaches for the management of insect and mite pests in vineyards. This combination of strategies falls within the integrated pest management (IPM framework, which is considered to be the dominant pest management paradigm in vineyards. While the adoption of IPM has led to notable and significant reductions in the environmental impacts of grape production, some growers are becoming interested in the use of an explicitly non-pesticide approach to pest management that is broadly referred to as ecologically-based pest management (EBPM. Essentially a subset of IPM strategies, EBPM places strong emphasis on practices such as habitat management, natural enemy augmentation and conservation, and animal integration. Here, we summarize the range and known efficacy of EBPM practices utilized in California vineyards, followed by a discussion of research needs and future policy directions. EBPM should in no way be seen in opposition, or as an alternative to the IPM framework. Rather, the further development of more reliable EBPM practices could contribute to the robustness of IPM strategies available to grape growers.

  7. Efficacy of pyramided Bt proteins Cry1F, Cry1A.105, and cry2Ab2 expressed in Smartstax corn hybrids against lepidopteran insect pests in the northern United States.

    Science.gov (United States)

    Rule, D M; Nolting, S P; Prasifka, P L; Storer, N P; Hopkins, B W; Scherder, E F; Siebert, M W; Hendrix, W H

    2014-02-01

    Commercial field corn (Zea mays L.) hybrids transformed to express some or all of the lepidopteran insect-resistant traits present in SmartStax corn hybrids were evaluated for insecticidal efficacy against a wide range oflepidopteran corn pests common to the northern United States, during 2008 to 2011 at locations in 15 states. SmartStax hybrids contain a pyramid of two Bacillus thuringiensis (Bt) derived events for lepidopteran control: event TC1507 expressing Cry1F protein and MON 89034 expressing CrylA.105 + Cry2Ab2. These studies focused on characterization of the relative efficacy of each event when expressed alone or in combination, and compared with non-Bt hybrid. Corn hybrids containing pyramided insecticidal proteins Cry1F + Cry1A.105 + Cry2Ab2 (SmartStax) consistently showed reduced plant feeding damage by a wide range of lepidopteran larvae compared with single event and non-Bt hybrids. Corn hybrids expressing TC1507 or MON 89034 as single or pyramided events were consistently efficacious against Ostrinia nubilalis (Hübner). SmartStax hybrids had less injury from Agrotis ipsilon (Hufnagel) and Striacosta albicosta (Smith) than corn hybrids containing only event MON 89034 but were not more efficacious than single event TC1507 hybrids. Corn hybrids with event MON 89034 provided better control of Helicoverpa zea (Boddie), than event TC1507 alone. Spodoptera frugiperda (J.E. Smith) efficacy was higher for hybrids with pyramid events and single events compared with the non-Bt hybrids. The spectra of activity of events TC1507 and MON 89034 differed. The combination of TC1507 + MON 89034 provided redundant control of some pests where the spectra overlapped and thereby are expected to confer a resistance management benefit.

  8. Hosting Capacity of Horticultural Plants for Insect Pests in Brazil Capacidad de Alojamiento de Plantas Hortícolas para Plagas de Insectos en Brasil

    Directory of Open Access Journals (Sweden)

    Germano L.D Leite

    2011-09-01

    Full Text Available Factors such as fertilization, allelochemicals, trichomes, weather, and natural enemies can influence pest populations. Thus, it is necessary to understand the factors that predispose vegetable species to pests and the role of polyculture, crop rotation, and neighboring plants. The objective of this research was to study the hosting capacity for pests of Abelmoschus esculentus (L., Brassica oleracea L. vars. acephala and capitata, Capsicum annuum L., Cucurbita moschata (Duchesne, Cucurbita maxima Duchesne and Cucumis sativus L., Lycopersicon esculentum Mill., Solanum gilo Raddi and Solanum melongena L., and Phaseolus vulgaris L. The higher density of Bemisia tabaci (Genn. adults on C. sativus can be due to the higher amount of pentacosane and octacosane in this plant. The occurrence of Brevicoryne brassicae (L. only in Brassica spp. can be accounted for by the nonacosane of these plants. The low trichome density and greater palmitic acid level can explain the greatest damage by Aphis gossypii Glover in A. esculentum. Empoasca sp. was more frequent in P. vulgaris followed by A. esculentum, which are plants with lower K content. Solanum melongena was attacked more by Hydrangea similis (Walker and Epitrix sp. perhaps because of higher palmitic acid and 11,14,17-eicosatrienoic methyl ester concentrations in their leaves. Frankliniella sp. exhibited more damage in C. sativus probably owing to higher pentacosane and octacosane in its leaves. Sistena sp. was more frequent in C. maxima and had higher octadecane levels and trichome density. The presence of ¥-humulene and hexacosane can explain the damage by Tuta absoluta (Meyrick on L. esculentum.Factores tales como la fertilización, aleloquímicos, tricomas, el clima y los enemigos naturales pueden influir en las poblaciones de plagas. Por lo tanto, es necesario comprender los factores que predisponen a las especies vegetales a las plagas y el papel de policultivos, rotación de cultivos y las plantas

  9. Weather-based pest forecasting for efficient crop protection

    Science.gov (United States)

    Rabiu Olatinwo; Gerrit Hoogenboom

    2014-01-01

    Although insects, pathogens, mites, nematodes, weeds, vertebrates, and arthropods are different in many ways, they are regarded as pests. They are a major constraint to crop productivity and profitability around the world caused by direct and indirect damage to valuable crops. Insect pests, pathogens, and weeds account for an estimated 45% of pre- and post-harvest...

  10. Mesoamerican origin and pre- and post-columbian expansions of the ranges of Acanthoscelides obtectus say, a cosmopolitan insect pest of the common bean.

    Directory of Open Access Journals (Sweden)

    Márcia Rodrigues Carvalho Oliveira

    Full Text Available An unprecedented global transfer of agricultural resources followed the discovery of the New World; one consequence of this process was that staple food plants of Neotropical origin, such as the common bean (Phaseolus vulgaris, soon expanded their ranges overseas. Yet many pests and diseases were also transported. Acanthoscelides obtectus is a cosmopolitan seed predator associated with P. vulgaris. Codispersal within the host seed seems to be an important determinant of the ability of A. obtectus to expand its range over long distances. We examined the phylogeographic structure of A. obtectus by (a sampling three mitochondrial gene sequences (12s rRNA, 16s rRNA, and the gene that encodes cytochrome c oxidase subunit I (COI throughout most of the species' range and (b exploring its late evolutionary history. Our findings indicate a Mesoamerican origin for the current genealogical lineages of A. obtectus. Each of the two major centers of genetic diversity of P. vulgaris (the Andes and Mesoamerica contains a highly differentiated lineage of the bean beetle. Brazil has two additional, closely related lineages, both of which predate the Andean lineage and have the Mesoamerican lineage as their ancestor. The cosmopolitan distribution of A. obtectus has resulted from recent expansions of the two Brazilian lineages. We present additional evidence for both pre-Columbian and post-Columbian range expansions as likely events that shaped the current distribution of A. obtectus worldwide.

  11. De novo transcriptome analysis and microsatellite marker development for population genetic study of a serious insect pest, Rhopalosiphum padi (L.) (Hemiptera: Aphididae).

    Science.gov (United States)

    Duan, Xinle; Wang, Kang; Su, Sha; Tian, Ruizheng; Li, Yuting; Chen, Maohua

    2017-01-01

    The bird cherry-oat aphid, Rhopalosiphum padi (L.), is one of the most abundant aphid pests of cereals and has a global distribution. Next-generation sequencing (NGS) is a rapid and efficient method for developing molecular markers. However, transcriptomic and genomic resources of R. padi have not been investigated. In this study, we used transcriptome information obtained by RNA-Seq to develop polymorphic microsatellites for investigating population genetics in this species. The transcriptome of R. padi was sequenced on an Illumina HiSeq 2000 platform. A total of 114.4 million raw reads with a GC content of 40.03% was generated. The raw reads were cleaned and assembled into 29,467 unigenes with an N50 length of 1,580 bp. Using several public databases, 82.47% of these unigenes were annotated. Of the annotated unigenes, 8,022 were assigned to COG pathways, 9,895 were assigned to GO pathways, and 14,586 were mapped to 257 KEGG pathways. A total of 7,936 potential microsatellites were identified in 5,564 unigenes, 60 of which were selected randomly and amplified using specific primer pairs. Fourteen loci were found to be polymorphic in the four R. padi populations. The transcriptomic data presented herein will facilitate gene discovery, gene analyses, and development of molecular markers for future studies of R. padi and other closely related aphid species.

  12. A new approach to quantify semiochemical effects on insects based on energy landscapes.

    Directory of Open Access Journals (Sweden)

    Rory P Wilson

    Full Text Available Our ability to document insect preference for semiochemicals is pivotal in pest control as these agents can improve monitoring and be deployed within integrated pest management programmes for more efficacious control of pest species. However, methods used to date have drawbacks that limit their utility. We present and test a new concept for determining insect motivation to move towards, or away from, semiochemicals by noting direction and speed of movement as animals work against a defined energy landscape (environmentally dependent variation in the cost of transport requiring different powers to negotiate. We conducted trials with the pine weevils Hylobius abietis and peach-potato aphids Myzus persicae exposed to various attractants and repellents and placed so that they either moved up defined slopes against gravity or had to travel over variously rough surfaces.Linear Mixed Models demonstrated clear reductions in travel speed by insects moving along increasingly energetically taxing energy landscapes but also that responses varied according to different semiochemicals, thus highlighting the value of energy landscapes as a new concept to help measure insect motivation to access or avoid different attractants or repellents across individuals.New sensitive, detailed indicators of insect motivation derived from this approach should prove important in pest control across the world.

  13. Beneficial Insects: Beetles

    OpenAIRE

    Hodgson, Erin W.; Patterson, Ron

    2007-01-01

    There are many beneficial beetles in Utah besides lady beetles or ladybugs. Beetles can significantly reduce common insect and weed problems and in some cases eliminate the need for chemical control. Examples of beneficial beetles include: ground beetles, rove beetles, tiger beetles and tortoise beetles. Many of these beetles are native to Utah, while others have been purposely introduced to help control damage from exotic insect and weed pests.

  14. [Phagodeterrent activity of the plants Tithonia diversifolia and Montanoa hibiscifolia (Asteraceae) on adults of the pest insect Bemisia tabaci (Homoptera: Aleyrodidae)].

    Science.gov (United States)

    Bagnarello, Gina; Hilje, Luko; Bagnarello, Vanessa; Cartín, Victor; Calvo, Marco

    2009-12-01

    Bemisia tabaci (Gennadius) is a polyphagous, cosmopolitan and worldwide relevant pest, mainly acting as a virus vector on many crops. A sound preventive approach to deal with it would be the application of repellent or deterrent substances hopefully present in tropical plants, which in turn may contribute to take advantage of the remarkable rich Mesoamerican biodiversity. Therefore, extracts of two wild plants belonging to family Asteraceae, titonia (Tithonia diversifolia) and "tora" (Montanoa hibiscifolia), were tested for phagodeterrence to B. tabaci adults. The crude leaf extract of each one, as well as four fractions thereof (hexane, dichlorometane, ethyl acetate, and methanol) were tested under greenhouse conditions; in addition, the extracts were submitted to a phytochemical screening to determine possible metabolites causing phagodeterrence. Both restricted-choice and unrestricted-choice experiments were conducted. In the former ones, each fraction was tested at four doses (0.1, 0.5, 1.0 and 1.5% v/v), which were compared with four control treatments: distilled water, endosulfan, an agricultural oil (Aceite Agricola 81 SC), and the emulsifier Citowett. Tomato plants were sprayed and placed inside sleeve cages, where 50 B. tabaci adults were released. The criterion to appraise phagodeterrence was the number of landed adults on plants at 48h. For the unrestricted-choice experiments, only the two highest doses (1.0 and 1.5%) of the crude extracts of each species were tested, and compared to distilled water and the agricultural oil. The titonia and "tora" crude extracts caused phagodeterrence, and for both plant species the methanol fraction stood out. Results suggest that metabolites causing phagodeterrence are several sesquiterpenic lactones, polyphenolic compounds (flavonoids and tannins) and saponins.

  15. Field Insect Pests and Crop Damage Assessment of Pigeon Pea (Cajanus cajan [L.] Huth grown under Ratoon and in Mixture with Maize Evaluación de Campo de Insectos Pestes y Daño del cultivo de Gandul (Cajanus cajan [L.] Huth creciendo bajo Rebrotes o en Mezcla con Maíz

    Directory of Open Access Journals (Sweden)

    Madang A Dasbak

    2012-03-01

    Full Text Available The widespread adoption of cropping systems that are sustainable and environmentally friendly is vital for the macroeconomic survival of civilization. Intercropping could ensure stability of insect populations in a system. A 3-yr (2005-2007 field trial was therefore carried out in Nigeria under regular and ratoon crops to evaluate five recently developed pigeon pea (Cajanus cajan [L.] Huth genotypes (ICPL 87, ICPL 161, ICPL 85063, ICP 7120, and ICPL 87119 from the International Crops Research Institute for Semi-Arid Tropics (ICRISAT and one local variety for their relative performance and susceptibility to insect pests. The pigeon pea genotypes were in a mixture with two maize genotypes (Zea mays L., open-pollinated and hybrid in regular crops for 2 yr (2005-2006 followed by a ratoon crop for 1 yr (2007. Termites (Odontotermes badius, crickets (Gymnogryllus lucens, and variegated grasshoppers (Zonocerus variegatus were the crop's seedling pests and caused minimal damage. Clavigralla spp. infestations were high at the reproductive stage causing 24% and 29% seed damage in regular and ratoon pigeon pea crops, respectively. Maize slightly suppressed insect pest incidence and damage to pigeon pea pods and seeds but significantly (P La extendida adopción de sistemas de cultivo que son sustentables y benignos para el medio ambiente es vital para la supervivencia macro-económica de la civilización. El intercultivo podría asegurar la estabilidad de población de insectos en un sistema. Un ensayo de campo de 3 anos (2005-2007 fue realizado en Nigeria bajo condiciones de cultivo regular y ratoon para evaluar cinco genotipos de poroto gandul (Cajanus cajan [L.] Huth: ICPL 87, ICPL 161, ICPL 85063, ICP 7120, e ICPL 87119 desde International Crops Research Institute for Semi-Arid Tropics (ICRISAT y una variedad local, por sus rendimientos y susceptibilidades relativas a insectos plaga. Los genotipos de poroto gandul estaban en mezcla con dos genotipos de

  16. Two Kunitz-type inhibitors with activity against trypsin and papain from Pithecellobium dumosum seeds: purification, characterization, and activity towards pest insect digestive enzyme.

    Science.gov (United States)

    Oliveira, A S; Migliolo, L; Aquino, R O; Ribeiro, J K C; Macedo, L L P; Bemquerer, M P; Santos, E A; Kiyota, S; de Sales, M P

    2009-01-01

    Two trypsin inhibitors (called PdKI-3.1 and PdKI-3.2) were purified from the seeds of the Pithecellobium dumosum tree. Inhibitors were obtained by TCA precipitation, affinity chromatography on Trypsin-Sepharose and reversed-phase-HPLC. SDS-PAGE analysis with or without reducing agent showed that they are a single polypeptide chain, and MALDI-TOF analysis determined molecular masses of 19696.96 and 19696.36 Da, respectively. The N-terminal sequence of both inhibitors showed strong identity to the Kunitz family trypsin inhibitors. They were stable over a wide pH (2-9) and temperature (37 to 100 degrees C) range. These inhibitors reduced over 84% of trypsin activity with inhibition constant (Ki) of 4.20 x 10(-8) and 2.88 x 10(-8) M, and also moderately inhibited papain activity, a cysteine proteinase. PdKI-3.1 and PdKI-3.2 mainly inhibited digestive enzymes from Plodia interpunctella, Zabrotes subfasciatus and Ceratitis capitata guts. Results show that both inhibitors are members of the Kunitz-inhibitor family and that they affect the digestive enzyme larvae of diverse orders, indicating a potential insect antifeedant.

  17. In vitro production of two chitinolytic proteins with an inhibiting effect on the insect coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae) and the fungus Hemileia vastatrix the most limiting pests of coffee crops.

    Science.gov (United States)

    Martínez, Claudia P; Echeverri, Claudia; Florez, Juan C; Gaitan, Alvaro L; Góngora, Carmenza E

    2012-03-30

    Two genes from Streptomyces albidoflavus, one exochitinase (905-bp) and an endochitinase (1100-bp) were functionally expressed in Escherichia coli in form of a fusion protein with a maltose binding protein (MBP). The goal was to produce and test proteins that inhibit both the coffee berry borer insect Hypothenemus hampei and the coffee rust fungus Hemileia vastatrix. Both recombinant proteins MBP/exochitinase and MBP/endochitinase showed chitinolytic activity. When recombinant purified proteins were added to an artificial coffee-based diet for the coffee berry borer, MBP/exochitinase at a concentration of 0.5% W/W caused delayed growth of larvae and 100% mortality between days 8 and 15, while MBP/endochitinase caused 100% mortality at day 35. H. vastatrix urediniospores presented total cell wall degradation in their germinative tubes within 18 h of exposure to the proteins at enzyme concentrations of 5 and 6 mg ml-1, with exochitinase having the greatest effect. The dual deleterious effect of S. albidoflavus chitinases on two of the most limiting coffee pests worldwide, the coffee borer and the coffee rust, make them potential elements to be incorporated in integrated control strategies.

  18. Microbial ecology-based methods to characterize the bacterial communities of non-model insects.

    Science.gov (United States)

    Prosdocimi, Erica M; Mapelli, Francesca; Gonella, Elena; Borin, Sara; Crotti, Elena

    2015-12-01

    Among the animals of the Kingdom Animalia, insects are unparalleled for their widespread diffusion, diversity and number of occupied ecological niches. In recent years they have raised researcher interest not only because of their importance as human and agricultural pests, disease vectors and as useful breeding species (e.g. honeybee and silkworm), but also because of their suitability as animal models. It is now fully recognized that microorganisms form symbiotic relationships with insects, influencing their survival, fitness, development, mating habits and the immune system and other aspects of the biology and ecology of the insect host. Thus, any research aimed at deepening the knowledge of any given insect species (perhaps species of applied interest or species emerging as novel pests or vectors) must consider the characterization of the associated microbiome. The present review critically examines the microbiology and molecular ecology techniques that can be applied to the taxonomical and functional analysis of the microbiome of non-model insects. Our goal is to provide an overview of current approaches and methods addressing the ecology and functions of microorganisms and microbiomes associated with insects. Our focus is on operational details, aiming to provide a concise guide to currently available advanced techniques, in an effort to extend insect microbiome research beyond simple descriptions of microbial communities. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Peptidergic control of a fruit crop pest: the spotted-wing drosophila, Drosophila suzukii

    Science.gov (United States)

    Neuropeptides play an important role in the regulation of feeding in insects and offer potential targets for the development of new chemicals to control insect pests. A pest that has attracted much recent attention is the highly invasive Drosophila suzukii, a polyphagous pest that can cause serious...

  20. Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions

    OpenAIRE

    Chidawanyika, Frank; Mudavanhu, Pride; Nyamukondiwa, Casper

    2012-01-01

    The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such oppor...

  1. Effect of intercropping of maize, bean, cabbage and toxicants on the population levels of some insect pests and associated predators in sugar beet plantations

    Directory of Open Access Journals (Sweden)

    S.K.M. El-Fakharany

    2012-01-01

    Full Text Available Experiments were carried out at El-Riad district, Kafr El-Sheikh Governorate in two successive growing seasons (2009/10 and 2010/11 to study the effect of intercropping of faba bean, maize and cabbage with sugar beet on the population density of Empoasca spp. (nymphs and adults, Aphis spp. (nymphs and adults, Bemisia tabaci (adults, Pegomyia mixta (eggs and larvae, Cassida vittata (larvae, pupae and adults and predators in sugar beet plantations compared with the non-intercropped plants and the resulting yield. The toxicity of certain compounds: fenitrothion, super misrona, sour orange oil, acidless orange oil, and Bermectine in reducing the population density of P. mixta and C. vittata larvae infesting sugar beet was evaluated. The rate of infestation was higher in the sole sugar beet plants than in those intercropped with faba bean, maize and cabbage plants which caused reduction of sucking pests and P. mixta eggs in the two seasons. The intercropping of faba bean plants led to higher infestation rate of P. mixta larvae in the two seasons and C. vittata (larvae, pupae and adults in the first season. The intercropping with maize led to a higher population density of Chrysoperla carnea, Paederus alfierii and Scymnus spp. in the two seasons. Low population density of true spiders was observed in sole sugar beet (control when compared with faba bean, maize and cabbage plants intercropped in the two seasons. Concerning the obtained root yield, the intercropping with maize and cabbage plants reduced the resultant yield of sugar beet roots in the two seasons. Bermectine and fenitrothion were the most effective toxicants followed by super misrona and then, sour orange that induced the lowest reduction in P. mixta larvae. Also, fenitrothion and Bermectine were the most potent compounds in reducing the population density of C. vittata larvae followed by super misrona and then, plant oil extracts. Concerning the side effects of these compounds on

  2. Light microscopy with differential staining techniques for the characterisation and discrimination of insects versus marine arthropods processed animal proteins.

    Science.gov (United States)

    Ottoboni, Matteo; Tretola, Marco; Cheli, Federica; Marchis, Daniela; Veys, Pascal; Baeten, Vincent; Pinotti, Luciano

    2017-08-01

    The aim of this study was to evaluate the use of light microscopy with differential staining techniques for the discrimination of insect material from marine arthropods - classified as fishmeal. Specifically, three samples of single-species insect material, Hermetia illucens (HI), Bombyx mori (BM) and Tenebrio molitor (TM), and two samples of marine arthropods, shrimp material and krill, were analysed and compared after staining by two reagents to enhance fragment identification. Alizarin Red (AR) and Chlorazol Black (CB), which react respectively with calcium salts and chitin, were tested for their potential efficacy in distinguishing between insect and marine materials. Results indicated that AR failed to stain HI, BM and TM materials. By contrast, the three insect species materials tested were stained by CB. When shrimp fragments and krill were considered, AR and CB stained marine materials reddish-pink and light blue to black, respectively. By combining these results, it can be suggested that CB staining may efficiently be used to mark insect materials; AR does stain shrimp fragments but does not stain the tested insect material, indicating a possible approach for discriminating between insects and marine arthropods. However, since the present study was performed on pure materials and a small set of samples, possible implementation of this technique still needs to be confirmed in complex matrices such as compound feed.

  3. Temperature and population density: interactional effects of environmental factors on phenotypic plasticity, immune defenses, and disease resistance in an insect pest

    OpenAIRE

    Silva, Farley W. S.; Elliot, Simon L.

    2016-01-01

    Abstract Temperature and crowding are key environmental factors mediating the transmission and epizooty of infectious disease in ectotherm animals. The host physiology may be altered in a temperature?dependent manner and thus affects the pathogen development and course of diseases within an individual and host population, or the transmission rates (or infectivity) of pathogens shift linearly with the host population density. To our understanding, the knowledge of interactive and synergistic e...

  4. Insect-derived cecropins display activity against Acinetobacter baumannii in a whole-animal high-throughput Caenorhabditis elegans model.

    Science.gov (United States)

    Jayamani, Elamparithi; Rajamuthiah, Rajmohan; Larkins-Ford, Jonah; Fuchs, Beth Burgwyn; Conery, Annie L; Vilcinskas, Andreas; Ausubel, Frederick M; Mylonakis, Eleftherios

    2015-03-01

    The rise of multidrug-resistant Acinetobacter baumannii and a concomitant decrease in antibiotic treatment options warrants a search for new classes of antibacterial agents. We have found that A. baumannii is pathogenic and lethal to the model host organism Caenorhabditis elegans and have exploited this phenomenon to develop an automated, high-throughput, high-content screening assay in liquid culture that can be used to identify novel antibiotics effective against A. baumannii. The screening assay involves coincubating C. elegans with A. baumannii in 384-well plates containing potential antibacterial compounds. At the end of the incubation period, worms are stained with a dye that stains only dead animals, and images are acquired using automated microscopy and then analyzed using an automated image analysis program. This robust assay yields a Z' factor consistently greater than 0.7. In a pilot experiment to test the efficacy of the assay, we screened a small custom library of synthetic antimicrobial peptides (AMPs) that were synthesized using publicly available sequence data and/or transcriptomic data from immune-challenged insects. We identified cecropin A and 14 other cecropin or cecropin-like peptides that were able to enhance C. elegans survival in the presence of A. baumannii. Interestingly, one particular hit, BR003-cecropin A, a cationic peptide synthesized by the mosquito Aedes aegypti, showed antibiotic activity against a panel of Gram-negative bacteria and exhibited a low MIC (5 μg/ml) against A. baumannii. BR003-cecropin A causes membrane permeability in A. baumannii, which could be the underlying mechanism of its lethality. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Strategic and tactical use of movement information in pest management

    Science.gov (United States)

    Knipling, E. F.

    1979-01-01

    Several insect movement problems are discussed. Much more information is needed to make a better appraisal of the practical significance of the insect dispersal problem. Data on the time, rate, and extent of movement of insects are provided. Better techniques for measuring insect movement are developed. A better understanding of the importance of insect movement in the development and implementation of more effective and ecologically acceptable pest management strategies and tactics was proved.

  6. Dispersal of forest insects

    Science.gov (United States)

    Mcmanus, M. L.

    1979-01-01

    Dispersal flights of selected species of forest insects which are associated with periodic outbreaks of pests that occur over large contiguous forested areas are discussed. Gypsy moths, spruce budworms, and forest tent caterpillars were studied for their massive migrations in forested areas. Results indicate that large dispersals into forested areas are due to the females, except in the case of the gypsy moth.

  7. Procedures for declaring pest free status

    International Nuclear Information System (INIS)

    Barclay, H.J.; Hargrove, J.W.; Clift, A.; Meats, A.

    2005-01-01

    Procedures are presented for declaring an area to be 'pest free' following an area-wide eradication programme against a population of an insect pest. These involve two probability models to deal with null trapping results, and a growth model to help verify that pests were no longer present when control actions were stopped. The two probability models are presented for a situation in which trapping for an insect pest is ongoing, and for which the trapping results are all negative. The models calculate the probability of such negative results if in fact insects were present. If this probability is sufficiently low, then the hypothesis that insects are present is rejected. The models depend on knowledge of the efficiency of the traps, and also the area of attractiveness of the traps. The possibility of a rebound of an incipient but non-detectable population, that remains after control measures are discontinued, is considered. Using a growth model, the rate of increase, of an insect population that starts from one or two insects, is examined. An example is given for tsetse flies - both means and confidence limits are calculated for a period of 24 reproductive periods after control has been terminated. If insects are disease vectors, it is also suggested that the progress of the disease be monitored to detect continuing transmission. This should be done in conjunction with a disease transmission model. (author)

  8. Odorant Receptor Desensitization in Insects

    Directory of Open Access Journals (Sweden)

    Hao Guo

    2017-12-01

    Full Text Available Insects and other arthropods transmit devastating human diseases, and these vectors use chemical senses to target humans. Understanding how these animals detect, respond, and adapt to volatile odorants may lead to novel ways to disrupt host localization or mate recognition in these pests. The past decade has led to remarkable progress in understanding odorant detection in arthropods. Insects use odorant-gated ion channels, first discovered in Drosophila melanogaster , to detect volatile chemicals. In flies, 60 “tuning” receptor subunits combine with a common subunit, Orco ( o dorant r eceptor co receptor to form ligand-gated ion channels. The mechanisms underlying odorant receptor desensitization in insects are largely unknown. Recent work reveals that dephosphorylation of serine 289 on the shared Orco subunit is responsible for slow, odor-induced receptor desensitization. Dephosphorylation has no effect on the localization of the receptor protein, and activation of the olfactory neurons in the absence of odor is sufficient to induce dephosphorylation and desensitization. These findings reveal a major component of receptor modulation in this important group of disease vectors, and implicate a second messenger feedback mechanism in this process.

  9. Recombinant DNA technology and insect control

    International Nuclear Information System (INIS)

    Seawright, J.A.; Cockburn, Andrew F.

    1989-01-01

    In the past, the most successful avenue for the use of genetics in insect control has been the employment of the sterile insect technique, in which huge numbers of a species are produced in a factory, sterilized by exposure to ionizing radiation and released into the native habitat. this method is suitable for some species, but for logistical, economical, and biological reasons this control technique is not suitable for many economically important species. Our ability to use genetic approaches to cope with the myriad of insect pests will improve in the near future because of progress in the biochemical manipulation of genes. Molecular geneticists have created bacteria, plants, animals, and fungi that have useful new properties, and many of these are being used or tested for commercial use. A reasonable forecast is that a virtual revolution will occur in the way that we currently practice and perceive the genetic control of insects. Using genetic engineering manipulations to develop control techniques for insects of agricultural and public health importance is an exciting prospect and a highly desirable goal

  10. How Insects Survive Winter in the Midwest

    Science.gov (United States)

    Understanding how insects cope with cold temperatures can not only help entomologists more accurately forecast when and where insects are active, but it may also help us understand how climate change will influence insect pests. This newsletter article provides a comprehensive overview of how Midwes...

  11. Large scale RNAi screen in Tribolium reveals novel target genes for pest control and the proteasome as prime target.

    Science.gov (United States)

    Ulrich, Julia; Dao, Van Anh; Majumdar, Upalparna; Schmitt-Engel, Christian; Schwirz, Jonas; Schultheis, Dorothea; Ströhlein, Nadi; Troelenberg, Nicole; Grossmann, Daniela; Richter, Tobias; Dönitz, Jürgen; Gerischer, Lizzy; Leboulle, Gérard; Vilcinskas, Andreas; Stanke, Mario; Bucher, Gregor

    2015-09-03

    Insect pest control is challenged by insecticide resistance and negative impact on ecology and health. One promising pest specific alternative is the generation of transgenic plants, which express double stranded RNAs targeting essential genes of a pest species. Upon feeding, the dsRNA induces gene silencing in the pest resulting in its death. However, the identification of efficient RNAi target genes remains a major challenge as genomic tools and breeding capacity is limited in most pest insects impeding whole-animal-high-throughput-screening. We use the red flour beetle Tribolium castaneum as a screening platform in order to identify the most efficient RNAi target genes. From about 5,000 randomly screened genes of the iBeetle RNAi screen we identify 11 novel and highly efficient RNAi targets. Our data allowed us to determine GO term combinations that are predictive for efficient RNAi target genes with proteasomal genes being most predictive. Finally, we show that RNAi target genes do not appear to act synergistically and that protein sequence conservation does not correlate with the number of potential off target sites. Our results will aid the identification of RNAi target genes in many pest species by providing a manageable number of excellent candidate genes to be tested and the proteasome as prime target. Further, the identified GO term combinations will help to identify efficient target genes from organ specific transcriptomes. Our off target analysis is relevant for the sequence selection used in transgenic plants.

  12. 7 CFR 319.56-5 - Pest-free areas.

    Science.gov (United States)

    2010-01-01

    ...) Survey protocols. APHIS must approve the survey protocol used to determine and maintain pest-free status... insect-proof mesh screens or plastic tarpaulins, including while in transit to the packinghouse and while... transit to a port, they must be packed in insect-proof cartons or containers or be covered by insect-proof...

  13. Population suppression in support of the sterile insect technique

    International Nuclear Information System (INIS)

    Mangan, R.L.

    2005-01-01

    Suppression or eradication of insect pest populations by the release of sterile insects is often dependent on supplementary methods of pest reduction to levels where the target pest population can be overflooded with sterile insects. Population suppression activities take place in advance of, or coincide with, the production of sterile insects. Supplementary methods to remove breeding opportunities, or management methods that prevent access of pests to the hosts, may reduce the population or prevent damage. Insecticides have been used widely in direct applications or applied as baits, in traps, or on specific sites where the pest makes contact or reproduces. As sterile insect release does not kill the pest, adult biting pests or fertile mated females of the pests will continue to attack hosts after the release of sterile insects. Thus supplementary pest suppression programmes and quarantine measures are essential to prevent damage or the spread of disease. Eradication or effective pest management requires that the entire population of the pest be treated, or that the programme apply immigration barriers. When supplementary pest control activities benefit the human population in areas being treated, such as in mosquito or screwworm eradication programmes, these activities are usually acceptable to the public, but when the public receives no direct benefit from supplementary control activities such as in fruit fly programmes, social resistance may develop. (author)

  14. Broadening the application of evolutionarily based genetic pest management.

    Science.gov (United States)

    Gould, Fred

    2008-02-01

    Insect- and tick-vectored diseases such as malaria, dengue fever, and Lyme disease cause human suffering, and current approaches for prevention are not adequate. Invasive plants and animals such as Scotch broom, zebra mussels, and gypsy moths continue to cause environmental damage and economic losses in agriculture and forestry. Rodents transmit diseases and cause major pre- and postharvest losses, especially in less affluent countries. Each of these problems might benefit from the developing field of Genetic Pest Management that is conceptually based on principles of evolutionary biology. This article briefly describes the history of this field, new molecular tools in this field, and potential applications of those tools. There will be a need for evolutionary biologists to interact with researchers and practitioners in a variety of other fields to determine the most appropriate targets for genetic pest management, the most appropriate methods for specific targets, and the potential of natural selection to diminish the effectiveness of genetic pest management. In addition to producing environmentally sustainable pest management solutions, research efforts in this area could lead to new insights about the evolution of selfish genetic elements in natural systems and will provide students with the opportunity to develop a more sophisticated understanding of the role of evolutionary biology in solving societal problems.

  15. What Do Secondary Students Really Learn during Investigations with Living Animals? Parameters for Effective Learning with Social Insects

    Science.gov (United States)

    Sammet, Rebecca; Dreesmann, Daniel

    2017-01-01

    Exemplary for social insects, "Temnothorax" ants allow for various hands-on investigations in biology classes. The aim of this study was to provide a quantitative and qualitative analysis of secondary school students' learning achievement after teaching units with ants lasting between one and six weeks. The questionnaires included…

  16. Development of botanical-based biopesticides and repellents against biting flies on livestock animals

    Science.gov (United States)

    Biting flies are important insect pests causing millions of dollars in losses to the livestock industry. The attack by biting flies causes significant losses in animal production and potential food contamination and disease transmission. This presentation reports our recent findings on the developme...

  17. Selected examples of dispersal of arthropods associated with agricultural crop and animal production

    Science.gov (United States)

    Henneberry, T. J.

    1979-01-01

    The economic importance of arthropods in agricultural production systems and the possibilities of using dispersal behavior to develop and manipulate control are examined. Examples of long and short distance dispersal of economic insect pests and beneficial species from cool season host reservoirs and overwintering sites are presented. Significant dispersal of these species often occurring during crop and animal production is discussed.

  18. Bacillus thuringiensis: generalidades: Un acercamiento a su empleo en el biocontrol de insectos lepidópteros que son plagas agrícolas Bacillus thuringiensis: general aspects: An approach to its use in the biological control of lepidopteran insects behaving as agricultural pests

    Directory of Open Access Journals (Sweden)

    Diego H. Sauka

    2008-06-01

    Full Text Available Bacillus thuringiensis es el insecticida biológico más aplicado en el mundo y se utiliza para controlar diversos insectos que afectan la agricultura, la actividad forestal y que transmiten patógenos humanos y animales. B. thuringiensis constituyó durante las últimas décadas un tema de investigación intensiva. Estos esfuerzos brindaron datos importantes sobre las relaciones entre la estructura, el mecanismo de acción y la genética de sus proteínas cristalinas pesticidas, y una visión más clara y coherente sobre estas relaciones ha emergido gracias a ellos. Otros estudios se centraron en el rol ecológico de las proteínas cristalinas de B. thuringiensis, su funcionamiento en sistemas agrícolas y en otros sistemas naturales. Teniendo como base todo el conocimiento generado y las herramientas de la biotecnología, los investigadores están ahora divulgando resultados prometedores sobre el desarrollo de toxinas más útiles, bacterias recombinantes, formulaciones nuevas y plantas transgénicas que expresan actividad pesticida, con el objetivo de asegurar que estos productos sean utilizados con un mayor beneficio y eficacia. Este artículo constituye una tentativa de integrar todos estos progresos recientes sobre el estudio de B. thuringiensis en un contexto de control biológico de plagas de insectos lepidópteros de importancia agrícola.Bacillus thuringiensis is the most widely applied biological pesticide used to control insects that affect agriculture and forestry and which transmit human and animal pathogens. During the past decades B. thuringiensis has been the subject of intensive research. These efforts have yielded considerable data about the relationships between the structure, mechanism of action, and genetics of their pesticidal crystal proteins. As a result, a coherent picture of these relationships has emerged. Other studies have focused on the ecological role of the B. thuringiensis crystal proteins and their performance

  19. An appropriate method for extracting the insect repellent citronellol from an indigenous plant (Pelargonium graveolens L'Her for potential use by resource-limited animal owners

    Directory of Open Access Journals (Sweden)

    B.M. Botha

    2000-07-01

    Full Text Available Veterinary needs appraisals in rural, peri-urban and urban areas have indicated a need for affordable and accessible veterinary health care. It was also found that farmers and animal owners used indigenous plants for treating animals. In Africa, insects such as Culex, Culicoides and Stomoxys may transmit diseases, cause irritation to animals or prevent wound healing. Insect repellents used topically are generally safer and cheaper than insecticides. Using readily available commercial sources of ethanol 43 %v/v (brandy and cane spirits, it was shown that citronellol could be extracted from uncrushed leaves of the indigenous shrub Pelargonium graveolens L'Hér. Efficacy of extraction was compared to that using reagent grade absolute ethanol. The peak concentration of citronellol was achieved within 7 days of extraction and thereafter remained constant for 4 months. Extraction methods using tap water and cooking oil were not successful. The extraction was also less successful when the leaves were crushed or macerated before being placed into ethanol. Gas chromatography was used to monitor the concentration of citronellol in the different extracts.

  20. Predicting the potential establishment of two insect species using the simulation environment INSIM (INsect SIMulation)

    NARCIS (Netherlands)

    Hemerik, Lia; Nes, van Egbert H.

    2016-01-01

    Degree-day models have long been used to predict events in the life cycle of insects and therewith the timing of outbreaks of insect pests and their natural enemies. This approach assumes, however, that the effect of temperature is linear, whereas developmental rates of insects are non-linearly

  1. A thousand bites - Insect introductions and late Holocene environments

    Science.gov (United States)

    Panagiotakopulu, Eva; Buckland, Paul C.

    2017-01-01

    The impact of insect species directly associated with man-made habitats and human dispersal has been, and remains globally significant. Their early expansion from their original niches into Europe is intrinsically related to discussions of climate change, origins of domesticated plants and animals, the spread of agriculture and infectious diseases. The Holocene fossil records of the dispersal of three storage pest species, Sitophilus granarius, Oryzaephilus surinamensis, and Tribolium castaneum, the housefly, Musca domestica, and the human flea, Pulex irritans from 221 sites have been mapped ranging from the Near East to Europe and from the Neolithic to the post medieval period. The importance of human induced change as a driver for the spread of synanthropic faunas and the potential for the spread of disease during this process are discussed. The results show links between mobility of farming groups and distribution of synanthropic insect species and produce a roadmap for the different cultural periods of the Late Holocene based on dispersal of these synanthropic insects. During the Neolithic, the first wave of insect introductions shows the northern European frontiers of storage of cereals, introduction of domestic animals and pastoralism and exchange. Pest introductions, linked with the itinerary of the Roman army, reached the most northerly parts of the Empire. During the medieval period, the insect records indicate further expansion and changes which parallel the spread of epidemic diseases like Plague. Understanding the timing and the rates of change of synanthropic insects provides key information about the development of the homogenised and highly anthropogenic environments in which we live today.

  2. Insect pest management agents: Hormonogen esters (juvenogens)

    Czech Academy of Sciences Publication Activity Database

    Wimmer, Zdeněk; Jurček, Ondřej; Jedlička, Pavel; Hanus, Robert; Kuldová, Jelena; Hrdý, Ivan; Bennettová, Blanka; Šaman, David

    2007-01-01

    Roč. 55, č. 18 (2007), s. 7387-7393 ISSN 0021-8561 R&D Projects: GA ČR GA203/05/2146 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z40550506; CEZ:AV0Z50070508 Source of funding: V - iné verejné zdroje Keywords : Pyrrhocoris apterus * Prorhinotermes simple * Reticulitermes santonensis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.532, year: 2007 http://dx.doi.org/10.1021/jf0710682

  3. RNAi technology: a new platform for crop pest control.

    Science.gov (United States)

    Mamta, B; Rajam, M V

    2017-07-01

    The insect pests are big threat in meeting the food demands for future generation. The present pest control strategies, including the existing transgenic approaches show certain limitations and are not completely successful in limiting the insect pests. However, the sequence-specific gene silencing via RNA interference (RNAi) holds a great promise for effective management of agricultural pests. RNAi is naturally occurring conserved process responsible for gene regulation and defense against pathogens. The efficacy of RNAi varies among different insect orders and also depends upon various factors, including the target gene selection, method of dsRNAs delivery, expression of dsRNAs and presence of off-target effects. RNAi-mediated silencing of different insect genes involved in various physiological processes was found to be detrimental to insects growth, development and survival. In this article, we have reviewed the potential of RNAi-based strategies for effective management of insect pests. We have also discussed the various parameters, which are to be considered for host-induced RNAi-mediated control of insect pests without producing any effect on non-target organisms and environment.

  4. Diseases and pests in biomass production systems

    International Nuclear Information System (INIS)

    Royle, D.J.; Hunter, Tom; McNabb, H.S. Jr.

    1998-01-01

    The current status of disease and pest problems in willow and poplar biomass systems for energy within Canada, Sweden, the United Kingdom and the United States is described. The IEA Disease and Pest Activities within the recent Task XII (1995-1997), and previous Tasks since 1987, have provided outstanding opportunities for international co-operation which has served substantially to augment national research programmes. Work is described on recognizing different forms of an insect pest or pathogen and understanding the genetic basis of its variability, which is of fundamental importance in developing pest management strategies that exclude inputs of energy-rich materials such as pesticides. Options for more natural pest control are considered including breeding for resistance, plantation designs based on host genotype diversity and biological control 16 refs, 2 figs

  5. Edible insects in Sustainable Food Systems

    DEFF Research Database (Denmark)

    Halloran, Afton; Flore, Roberto; Vantomme, Paul

    Edible insects in Sustainable Food Systems comprehensively covers the basic principles of entomology and population dynamics; edible insects and culture; nutrition and health; gastronomy; insects as animal feed; factors influencing preferences and acceptability of insects; environmental impacts...... and conservation; considerations for insect farming and policy and legislation. The book contains practical information for researchers, NGOs and international organizations, decision-makers, entrepreneurs and students...

  6. Mushroom flora and associated insect fauna in Nsukka Urban ...

    African Journals Online (AJOL)

    The mushroom flora and associated insect pests of mushrooms in Nsukka urban was studied. The abundance of mushrooms from sampled communites is indicaed with the family, Agaricaceae predominating “out of home” environment yielded more mushrooms (4.62) than the homestead environment (3.26). Insect pests ...

  7. Biological activity of insect juvenile hormone analogues against the stable fly and toxicity studies in domestic animals.

    Science.gov (United States)

    Wright, J E; Smalley, H E

    1977-01-01

    The insect JHAs are effective inhibitors of adult stable fly development. Laboratory and field evaluation studies demonstrated that area application of the analogues to larval breeding sites was efficacious for stable fly control in cattle feed lots and in marine grasses. Analytical methods by quantification with gas chromatography with flame ionization detection was developed to measure residual properties as well as aging and leaching in fly breeding media. The analogues did not interfere with the oviposition and development of the endoparasites, M. raptor and S. endius. Toxicity studies against swine, hamsters, and sheep showed that when compounds of high purity were used that no toxic effects were observed in any of the species.

  8. Advances and Perspectives of the use of the entomopathogenic fungi beauveria bassiana and metarhizium anisopliae for the control of arthropod pests in poultry production

    Directory of Open Access Journals (Sweden)

    DGP Oliveira

    2014-03-01

    Full Text Available Global poultry production is plagued by a wide variety of arthropods. The problems associated with their chemical control have led to an increasing search for control alternatives, and entomopathogenic fungi seem to be a promising strategy. Despite the large number of insects and mites considered as important pests in animal production, studies on the use of entomopathogenic fungi for their control are still scarce compared with agricultural pests, particularly in Brazil. This article reviews some damages and control aspects of the main arthropod pests that affect Brazilian poultry production, including house flies, lesser mealworms, and feather mites, by the use of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae. Studies published in the last 20 years were reviewed, and the main problems and limitations of that pest-control strategy are discussed.

  9. Climate Change and Pest Management: Unanticipated Consequences of Trophic Dislocation

    Directory of Open Access Journals (Sweden)

    R. A. J. Taylor

    2018-01-01

    Full Text Available The growth of plants and insects occurs only above a minimum temperature threshold. In insects, the growth rate depends on the temperature above the threshold up to a maximum. In plants the growth rate above the threshold generally depends on the availability of sunlight. Thus, the relative growth rates of crops and insect phytophages are expected to differ between temperature regimes. We should therefore expect insect pest pressure at a location to change with climate warming. In this study, we used actual and simulated climate data developed for the IPCC 4th Assessment Report to drive linked plant and insect growth models to examine likely changes in insect-crop interaction. Projections of insect-crop dynamics through the 21st century suggest increases in pest pressure over much of the American Midwest, which could result in substantial increases in pesticide use to maintain productivity. Thus, climate warming could cause an increase in agriculture’s carbon footprint.

  10. Engineering insect-resistant crops: A review

    African Journals Online (AJOL)

    dgeorge

    Insect pests cause significant damage to crops world-wide. This is despite integrated pest management strategies combining such control measures as chemical control, use of resistant varieties and other measures. Other control measures such as use of genetically modified crops are being adopted. Transgenic crops ...

  11. Personal Insect Repellents and Minimum Risk Pesticides

    Science.gov (United States)

    An exempt pesticide product may not bear claims to control rodent, insect or microbial pests in a way that links the pests with specific disease. We are considering a proposal to remove personal mosquito and tick repellents from the minimum risk exemption.

  12. Insects: Bugged Out!

    Science.gov (United States)

    Piehl, Kathy

    2011-01-01

    Insects really need no introduction. They have lived on earth much longer than humans and vastly outnumber people and all other animal species combined. People encounter them daily in their houses and yards. Yet, when children want to investigate insects, books can help them start their explorations. "Paleo Bugs" carries readers back to the time…

  13. Magnetic compasses in insects

    Science.gov (United States)

    The use of magnetic information for orientation and navigation is a widespread phenomenon in animals. In contrast to navigational systems in vertebrates, our understanding of the mechanisms underlying the insect magnetic perception and use of the information is at an early stage. Some insects use ma...

  14. Review of Ecologically-Based Pest Management in California Vineyards

    OpenAIRE

    Wilson, Houston; Daane, Kent M.

    2017-01-01

    Grape growers in California utilize a variety of biological, cultural, and chemical approaches for the management of insect and mite pests in vineyards. This combination of strategies falls within the integrated pest management (IPM) framework, which is considered to be the dominant pest management paradigm in vineyards. While the adoption of IPM has led to notable and significant reductions in the environmental impacts of grape production, some growers are becoming interested in the use of a...

  15. (ESCapp): A MODEL FOR ENVIRONMENTALLY SOUND PEST

    African Journals Online (AJOL)

    African Crop Science Journal 2:531-538. Greathead, D. J. 1989. Present possibilities for biological control of insect pests and weeds in tropical Africa. In: The Search for Sustainable. Solutions to Crop Protection in Africa. Yaninek, J. S. and Herren, H. R. (Eds.), pp. | 73-194, IITA Publication Series. Herren, H. R. and Bennett, ...

  16. Marine cargo imports and forest pest introductions

    Science.gov (United States)

    Frank H. Koch

    2009-01-01

    A major pathway for the introduction of nonindigenous forest pests is accidental transport on cargo imported from overseas. Diseases may be brought into the United States via commercial trade of nursery stock or other live plant material, as has been suggested for Phytophthora ramorum, the pathogen that causes sudden oak death (Ivors and others 2006). Insects may...

  17. DEMONSTRATING INTEGRATED PEST MANAGEMENT OF HOT PEPPERS

    Science.gov (United States)

    We studied the effects of organic and synthetic chemical fertilizers on crop growth, yield and associated insect pests for two varieties of hot pepper, Capsicum chinense Jacquin (Solanaceae): “Scotch Bonnet” and “Caribbean Red” in north Florida. Hot peppers were grown under three treatments: poultr...

  18. Towards integrated pest management in red clover seed production.

    Science.gov (United States)

    Lundin, Ola; Rundlöf, Maj; Smith, Henrik G; Bommarco, Riccardo

    2012-10-01

    The development of integrated pest management is hampered by lack of information on how insect pest abundances relate to yield losses, and how pests are affected by control measures. In this study, we develop integrated pest management tactics for Apion spp. weevils (Coleoptera: Brentidae) in seed production of red clover, Trifolium pratense L. We tested a method to forecast pest damage, quantified the relationship between pest abundance and yield, and evaluated chemical and biological pest control in 29 Swedish red clover fields in 2008 and 2011. Pest inflorescence abundance, which had a highly negative effect on yield, could be predicted with pan trap catches of adult pests. In 2008, chemical control with typically one application of pyrethroids was ineffective both in decreasing pest abundances and in increasing yields. In 2011, when chemical control included applications of the neonicotinoid thiacloprid, pest abundances decreased and yields increased considerably in treated field zones. A post hoc analysis indicated that using pyrethroids in addition to thiacloprid was largely redundant. Infestation rates by parasitoids was higher and reached average levels of around 40% in insecticide treated field zones in 2011, which is a level of interest for biological pest control. Based on the data presented, an economic threshold for chemical control is developed, and guidelines are provided on minimum effective chemical pest control.

  19. Training for Certification: Demonstration & Research Pest Control.

    Science.gov (United States)

    Mississippi State Univ., State College. Cooperative Extension Service.

    This Cooperative Extension Service publication from Mississippi State University is a training guide for commercial pesticide applicators. Focusing on agricultural pest control, this publication includes a full range of topics from uses of pesticides for agricultural animal pest control to the toxicity of common pesticides to fish and bees.…

  20. Biological control of livestock pests: Pathogens

    Science.gov (United States)

    Interest in biological methods for livestock and poultry pest management is largely motivated by the development of resistance to most of the available synthetic pesticides by the major pests. There also has been a marked increase in organic systems, and those that promote animal welfare by reducing...

  1. The promise of insect genomics

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, Cornelis J P; Cazzamali, Giuseppe; Williamson, Michael

    2007-01-01

    Insects are the largest animal group in the world and are ecologically and economically extremely important. This importance of insects is reflected by the existence of currently 24 insect genome projects. Our perspective discusses the state-of-the-art of these genome projects and the impacts...

  2. Influence of silicon on the development, productivity and infestation by insect pests in potato crops Influência de silício no desenvolvimento de batateiras e na ocorrência de insetos-praga

    Directory of Open Access Journals (Sweden)

    Valkíria Fabiana da Silva

    2010-12-01

    Full Text Available Potato crops are susceptible to various insect pests including the aphid Myzus persicae (Hemiptera, Aphididae and the beetle Diabrotica speciosa (Coleoptera, Chrysomelidae. Induced resistance through silicon treatment of plants represents a potential strategy in pest management. The objective of the present study was to evaluate the effects of silicic acid on the development, productivity and level of infestation by beetles and aphids following foliar application to potato plants cultivated in the presence of organic compost or chemical fertiliser. Four experimental groups were studied, namely, plants cultivated in soil supplied with organic compost (30 t/ha and either treated or non-treated with 0.5% silicic acid, and plants cultivated in soil supplied with NPK fertiliser (4:14:8; 4 t/ha and either treated or non-treated with 0.5% silicic acid. The number of aphids and beetles detected on the leaves and the number of lesions caused by the beetles were evaluated. The height and the stem diameter of the plants were determined 60 days after the emergence and the productivity was determined 95 days after the planting of the seed potatoes. The results demonstrated that there were no interactions between silicic acid treatment and way of cultivation. Moreover, the incidence of beetles and aphids was not influenced by weekly application of silicon, and neither were the development and the productivity of plants. Although the development and productivity of organically cultivated plants were inferior to those grown in the presence of chemical fertiliser, plants cultivated on organic compost were less susceptible to attack by beetles.A cultura da batata é suscetível a diversos insetos-praga, incluindo os pulgões (Hemiptera: Aphididae e a vaquinha Diabrotica speciosa (Coleoptera: Chrysomelidae. A indução de resistência, por meio do tratamento com silício, é uma das táticas usadas no manejo integrado de pragas. Objetivou-se, no presente trabalho

  3. Transgenic plants as vital components of integrated pest management

    NARCIS (Netherlands)

    Kos, Martine; van Loon, J.J.A.; Dicke, M.; Vet, L.E.M.

    2009-01-01

    Although integrated pest management (IPM) strategies have been developed worldwide, further improvement of IPM effectiveness is required. The use of transgenic technology to create insect-resistant plants can offer a solution to the limited availability of highly insect-resistant cultivars.

  4. Farmers' experiences in the management of pests and diseases of ...

    African Journals Online (AJOL)

    Mo

    Insect pests that may become important on calliandra, and thus require regular monitoring and control, include a scale insect, Pulvinarisca jacksoni (Newstead) and a termite species, Marcrotermes subhyalinus (Rambur). Other damaging agents reported by farmers included livestock, humans, birds and wild mammals.

  5. The most important sugar beet pests in Ukraine and integral measures for their control

    Directory of Open Access Journals (Sweden)

    Fedorenko Vitaly P.

    2006-01-01

    Full Text Available The report delivers the origins of the insect complex formation on sugar beet fields in Ukraine. Biological, ethological and ecological peculiarities of the most numerous pest species have been shown. Regularities of many-year dynamics of pests, the problems of phytosanitary state of agrocenosis of sugar beet fields and conceptual grounds of pest control in contemporary conditions have been substantiated.

  6. Agricultural applications of insect ecological genomics.

    Science.gov (United States)

    Poelchau, Monica F; Coates, Brad S; Childers, Christopher P; Peréz de León, Adalberto A; Evans, Jay D; Hackett, Kevin; Shoemaker, DeWayne

    2016-02-01

    Agricultural entomology is poised to benefit from the application of ecological genomics, particularly the fields of biofuels generation and pest control. Metagenomic methods can characterize microbial communities of termites, wood-boring beetles and livestock pests, and transcriptomic approaches reveal molecular bases behind wood-digesting capabilities of these insects, leading to potential mechanisms for biofuel generation. Genome sequences are being exploited to develop new pest control methods, identify candidate antigens to vaccinate livestock, and discover RNAi target sequences and potential non-target effects in other insects. Gene content analyses of pest genome sequences and their endosymbionts suggest metabolic interdependencies between organisms, exposing potential gene targets for insect control. Finally, genome-wide association studies and genotyping by high-throughput sequencing promise to improve management of pesticide resistance. Published by Elsevier Inc.

  7. When Eggs Don't Hatch. The Benefits of the Sterile Insect Technique

    International Nuclear Information System (INIS)

    Kilian, Lizette

    2012-01-01

    Insect pests, such as the medfly, tsetse flies and carob moth can devastate crops and infect herds, causing severe economic hardship. To suppress the insect pest population and protect their livestock and crops, farmers usually use large quantities of pesticides. However, these pesticides are expensive, a risk to public health and cause environmental damage. Another technique, however, can reduce the insect pest population using natural means that do not require toxic chemicals: the sterile insect technique, or SIT. When female insect pests mate with male partners that have been radiation sterilized, the insemination produces eggs that cannot hatch. Since mating does not produce offspring, the insect population decreases naturally. The pest population can be suppressed with little or no use of pesticides. With the help of the IAEA, farmers have applied SIT successfully in over 20 countries on five continents, for over 15 insect species worldwide.

  8. insect diet of some afrotropical insectivorous passerines at the jos ...

    African Journals Online (AJOL)

    Administrator

    are highly efficient and cost effective insect pest control agents. (Dhindsa & Saini, 1994; Asokan et al., 2008). A good knowledge of the type of insects that bird feeds on in any reserve is .... hypotheses concerning population divergence, evolution of sexual ... conducted in Malaysia (Burton 1998), insects mostly ants, beetles.

  9. The role of allelopathy in agricultural pest management.

    Science.gov (United States)

    Farooq, Muhammad; Jabran, Khawar; Cheema, Zahid A; Wahid, Abdul; Siddique, Kadambot H M

    2011-05-01

    Allelopathy is a naturally occurring ecological phenomenon of interference among organisms that may be employed for managing weeds, insect pests and diseases in field crops. In field crops, allelopathy can be used following rotation, using cover crops, mulching and plant extracts for natural pest management. Application of allelopathic plant extracts can effectively control weeds and insect pests. However, mixtures of allelopathic water extracts are more effective than the application of single-plant extract in this regard. Combined application of allelopathic extract and reduced herbicide dose (up to half the standard dose) give as much weed control as the standard herbicide dose in several field crops. Lower doses of herbicides may help to reduce the development of herbicide resistance in weed ecotypes. Allelopathy thus offers an attractive environmentally friendly alternative to pesticides in agricultural pest management. In this review, application of allelopathy for natural pest management, particularly in small-farm intensive agricultural systems, is discussed. Copyright © 2011 Society of Chemical Industry.

  10. Prospects for managing turfgrass pests with reduced chemical inputs.

    Science.gov (United States)

    Held, David W; Potter, Daniel A

    2012-01-01

    Turfgrass culture, a multibillion dollar industry in the United States, poses unique challenges for integrated pest management. Why insect control on lawns, golf courses, and sport fields remains insecticide-driven, and how entomological research and extension can best support nascent initiatives in environmental golf and sustainable lawn care are explored. High standards for aesthetics and playability, prevailing business models, risk management-driven control decisions, and difficulty in predicting pest outbreaks fuel present reliance on preventive insecticides. New insights into pest biology, sampling methodology, microbial insecticides, plant resistance, and conservation biological control are reviewed. Those gains, and innovations in reduced-risk insecticides, should make it possible to begin constructing holistic management plans for key turfgrass pests. Nurturing the public's interest in wildlife habitat preservation, including beneficial insects, may be one means to change aesthetic perceptions and gain leeway for implementing integrated pest management practices that lend stability to turfgrass settings. Copyright © 2012 by Annual Reviews. All rights reserved.

  11. Multiorganismal insects: diversity and function of resident microorganisms.

    Science.gov (United States)

    Douglas, Angela E

    2015-01-07

    All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests.

  12. Animals

    International Nuclear Information System (INIS)

    Skuterud, L.; Strand, P.; Howard, B.J.

    1997-01-01

    The radionuclides of most concern with respect to contamination of animals after a nuclear accident are radioiodine, radiocaesium and radiostrontium (ICRP 30, 1979). Of the other significant anthropogenic radionuclides likely to be released in most accidents, only small proportions of that ingested will be absorbed in an animals gut, and the main animal products, milk and meat, will not normally be contaminated to a significant extent. Animal products will mostly be contaminated as a result of ingestion of contaminated feed and possibly, but to a much lesser extent, from inhalation (for radioiodine only). Direct external contamination of animals is of little or no consequence in human food production. Radioiodine and radiostrontium are important with respect to contamination of milk; radiocaesium contaminates both milk and meat. The physical and chemical form of a radionuclide can influence its absorption in the animal gut. For example, following the Chernobyl accident radiocaesium incorporated into vegetation by root uptake was more readily absorbed than that associated with the original deposit. The transfer of radiocaesium and radiostrontium to animals will be presented both as transfer coefficients and aggregated transfer coefficients. For most animal meat products, only radiocaesium is important as other radionuclides do not significantly contaminate muscle. Farm animal products are the most important foodstuff determining radiocaesium intake by the average consumer in the Nordic countries. The major potential source of radioiodine and radiostrontium to humans is milk and milk products. Of the different species, the smaller animals have the highest transfer of radiocaesium from fodder to meat and milk. (EG)

  13. Efeito de doses e de refúgio sobre a seletividade de inseticidas a predadores e parasitóides de pragas de soja Effect of doses and of refuge on the insecticide selectivity to predators and parasitoids of soybean insect pests

    Directory of Open Access Journals (Sweden)

    Ivan Carlos Corso

    1999-09-01

    Full Text Available Com o objetivo de avaliar o impacto sazonal de alguns inseticidas sobre predadores e parasitóides de pragas da cultura da soja, instalou-se um experimento com delineamento de blocos ao acaso, constando de oito tratamentos e três repetições, no campo experimental da Embrapa-Centro Nacional de Pesquisa de Soja, em Londrina, PR. Os tratamentos consistiram de aplicações de inseticidas para o controle da lagarta-da-soja (pulverizados em 21/1/93 e percevejos (4/3/93. A técnica empregada para levantamento da população de insetos foi a do método do choque, que consiste na aplicação de um inseticida de alto impacto sobre a comunidade de insetos presente nas plantas, sua coleta sobre panos estendidos no solo, e sua posterior identificação e contagem em laboratório. A análise da variância revelou não haver diferenças significativas entre as populações de predadores, himenópteros e dípteros encontrados, nos diferentes tratamentos estudados. Também n��o foram verificados os fenômenos de ressurgência de pragas ou o aparecimento de elevadas populações de pragas secundárias.A field experiment was conducted to evaluate seasonal effect of insecticides on predators and parasitoids of soybean insect pests. A randomized block design was used, with three replications, and the experiment was set up in the experimental station of the Embrapa-Centro Nacional de Pesquisa de Soja, located at Londrina, PR, Brazil. Treatments consisted of insecticide application to control the velvetbean caterpillar (1/21/1993 or the stink bug complex (3/4/1993. Insect population was sampled through the shock technique, consisting of an application of a broad spectrum insecticide over the plants to be sampled, being the insects collected on cloths placed on the ground, and transferred to the laboratory to be identified and counted. Statistical analysis revealed no differences on the populations of species of predators, diptera or himenoptera as a group. No

  14. Monitoring the agricultural landscape for insect resistance

    Science.gov (United States)

    Casas, Joseph; Glaser, J. A.; Copenhaver, Ken

    Farmers in 25 countries on six continents are using plant biotechnology to solve difficult crop production challenges and conserve the environment. In fact, 13.3 million farmers, which include 90 percent of the farming in developing countries, choose to plant biotech crops. Over the past decade, farmers increased area planted in genetically modified (GM) crops by more than 10 percent each year, thus increasing their farm income by more than 44 billion US dollars (1996-2007), and achieved economic, environmental and social benefits in crops such as soybeans, canola, corn and cotton. To date, total acres of biotech crops harvested exceed more than 2 billion with a proven 13-year history of safe use. Over the next decade, expanded adoption combined with current research on 57 crops in 63 countries will broaden the advantages of genetically modified foods for growers, consumers and the environment. Genetically modified (GM) crops with the ability to produce toxins lethal to specific insect pests are covering a larger percentage of the agricultural landscape every year. The United States department of Agriculture (USDA) estimated that 63 percent of corn and 65 percent of cotton contained these specific genetic traits in 2009. The toxins could protect billions of dollars of loss from insect damage for crops valued at greater than 165 billion US dollars in 2008. The stable and efficient production of these crops has taken on even more importance in recent years with their use, not only as a food source, but now also a source of fuel. It is in the best interest of the United States Environmental Protection Agency (USEPA) to ensure the continued efficacy of toxin producing GM crops as their use reduces pesticides harmful to humans and animals. However, population genetics models have indicated the risk of insect pests developing resistance to these toxins if a high percentage of acreage is grown in these crops. The USEPA is developing methods to monitor the agricultural

  15. Sterilizing insects with ionizing radiation

    International Nuclear Information System (INIS)

    Bakri, A.; Mehta, K.; Lance, D.R.

    2005-01-01

    Exposure to ionizing radiation is currently the method of choice for rendering insects reproductively sterile for area-wide integrated pest management (AW-IPM) programmes that integrate the sterile insect technique (SIT). Gamma radiation from isotopic sources (cobalt-60 or caesium-137) is most often used, but high-energy electrons and X-rays are other practical options. Insect irradiation is safe and reliable when established safety and quality-assurance guidelines are followed. The key processing parameter is absorbed dose, which must be tightly controlled to ensure that treated insects are sufficiently sterile in their reproductive cells and yet able to compete for mates with wild insects. To that end, accurate dosimetry (measurement of absorbed dose) is critical. Irradiation data generated since the 1950s, covering over 300 arthropod species, indicate that the dose needed for sterilization of arthropods varies from less than 5 Gy for blaberid cockroaches to 300 Gy or more for some arctiid and pyralid moths. Factors such as oxygen level, and insect age and stage during irradiation, and many others, influence both the absorbed dose required for sterilization and the viability of irradiated insects. Consideration of these factors in the design of irradiation protocols can help to find a balance between the sterility and competitiveness of insects produced for programmes that release sterile insects. Many programmes apply 'precautionary' radiation doses to increase the security margin of sterilization, but this overdosing often lowers competitiveness to the point where the overall induced sterility in the wild population is reduced significantly. (author)

  16. From Pests to Pets: Social and Cultural Perceptions of Animals in Post-medieval Urban Centres in England (AD1500 – 1900

    Directory of Open Access Journals (Sweden)

    Rebecca Gordon

    2017-03-01

    Full Text Available In the past, animals and their products were prominent features of urban life. How people utilised these animals as well as their relationships has continually changed. For example, cats, dogs, pigs and other animals lived in close proximity to people in post-medieval urban centres and were viewed in terms of their functional affordances. Cats were kept to deter rodents and exploited for their fur, dogs were protectors of the home and pigs were not only food, but helped to reduce the amount of rubbish where they were kept. However, perceptions and treatment of urban animals were far from static. The emergent animal welfare movement and legislation heralded a change in the species and numbers of animals present in the urban environment and altered human-animal relationships. Now people are detached from ‘livestock’ (e.g. pigs, but have developed closer bonds with companion animals (e.g. cats, dogs, etc.. In this article I will draw upon zooarchaeological and historical evidence in an attempt to show the timing of this transition and highlight some key factors in the accompanying shift in human-animal relationships, while focusing more specifically on pet-keeping in a city context.

  17. Crop domestication, global human-mediated migration, and the unresolved role of geography in pest control

    Directory of Open Access Journals (Sweden)

    Yolanda H. Chen

    2016-05-01

    Full Text Available Abstract Ecological pest management seeks to improve pest control through the manipulation of ecological processes that promote natural enemies and suppress pests. These approaches can involve cultural practices such as reduced tillage, increased use of non-crop plants that provide food and shelter for natural enemies, and intercropping to enhance the abundance and diversity of natural enemies. A major assumption of ecological pest management is that these activities can be equally effective for all insect herbivores. Here, I propose that these strategies may only be effective for a subset of pests and geographic regions because most insect pests have complex evolutionary histories that make them difficult to manage. I discuss how crop domestication and human-mediated migration are major evolutionary events that shape the geography of interactions between plants, herbivores, and natural enemies. Insect herbivores can evolve to be pests through three major modes: 1 herbivores associated with the crop wild ancestor may shift onto the domesticated crop, 2 herbivores may host-shift from native host plants onto an introduced crop, or 3 human-mediated migration can introduce insect pests into new cropping regions. The resulting geographic structure can influence the success of pest management by altering ecological factors such as: species distributions, patterns of biodiversity, community structure, and natural enemy attack rates. I discuss how the different modes of insect pest evolution structure a set of relevant questions and approaches for ecological pest management. By acknowledging how agricultural history and geography shape the ecology and evolution of insect pests, we may collectively develop a better capacity to identify where and how ecological pest management approaches can be most broadly effective.

  18. Animals

    Energy Technology Data Exchange (ETDEWEB)

    Skuterud, L.; Strand, P. [Norwegian Radiation Protection Authority (Norway); Howard, B.J. [Inst. of Terrestrial Ecology (United Kingdom)

    1997-10-01

    The radionuclides of most concern with respect to contamination of animals after a nuclear accident are radioiodine, radiocaesium and radiostrontium (ICRP 30, 1979). Of the other significant anthropogenic radionuclides likely to be released in most accidents, only small proportions of that ingested will be absorbed in an animals gut, and the main animal products, milk and meat, will not normally be contaminated to a significant extent. Animal products will mostly be contaminated as a result of ingestion of contaminated feed and possibly, but to a much lesser extent, from inhalation (for radioiodine only). Direct external contamination of animals is of little or no consequence in human food production. Radioiodine and radiostrontium are important with respect to contamination of milk; radiocaesium contaminates both milk and meat. The physical and chemical form of a radionuclide can influence its absorption in the animal gut. For example, following the Chernobyl accident radiocaesium incorporated into vegetation by root uptake was more readily absorbed than that associated with the original deposit. The transfer of radiocaesium and radiostrontium to animals will be presented both as transfer coefficients and aggregated transfer coefficients. For most animal meat products, only radiocaesium is important as other radionuclides do not significantly contaminate muscle. Farm animal products are the most important foodstuff determining radiocaesium intake by the average consumer in the Nordic countries. The major potential source of radioiodine and radiostrontium to humans is milk and milk products. Of the different species, the smaller animals have the highest transfer of radiocaesium from fodder to meat and milk. (EG). 68 refs.

  19. Global warming presents new challenges for maize pest management

    Energy Technology Data Exchange (ETDEWEB)

    Diffenbaugh, Noah S [Purdue Climate Change Research Center and Department of Earth and Atmospheric Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051 (United States); Krupke, Christian H [Department of Entomology, Purdue University, 901 West State Street, West Lafayette, IN 47907 (United States); White, Michael A [Department of Watershed Sciences, Utah State University, 5210 Old Main Hall, Logan, UT 84322-5210 (United States); Alexander, Corinne E [Department of Agricultural Economics, Purdue University, 403 West State Street, West Lafayette, IN 47907-2056 (United States)], E-mail: diffenbaugh@purdue.edu

    2008-10-15

    It has been conjectured that global warming will increase the prevalence of insect pests in many agro-ecosystems. In this paper, we quantitatively assess four of the key pests of maize, one of the most important systems in North American grain production. Using empirically generated estimates of pest overwintering thresholds and degree-day requirements, along with climate change projections from a high-resolution climate model, we project potential future ranges for each of these pests in the United States. Our analysis suggests the possibility of increased winter survival and greater degree-day accumulations for each of the pests surveyed. We find that relaxed cold limitation could expand the range of all four pest taxa, including a substantial range expansion in the case of corn earworm (H. zea), a migratory, cold-intolerant pest. Because the corn earworm is a cosmopolitan pest that has shown resistance to insecticides, our results suggest that this expansion could also threaten other crops, including those in high-value areas of the western United States. Because managing significant additional pressure from this suite of established pests would require additional pest management inputs, the projected decreases in cold limitation and increases in heat accumulation have the potential to significantly alter the pest management landscape for North American maize production. Further, these range expansions could have substantial economic impacts through increased seed and insecticide costs, decreased yields, and the downstream effects of changes in crop yield variability.

  20. Global warming presents new challenges for maize pest management

    International Nuclear Information System (INIS)

    Diffenbaugh, Noah S; Krupke, Christian H; White, Michael A; Alexander, Corinne E

    2008-01-01

    It has been conjectured that global warming will increase the prevalence of insect pests in many agro-ecosystems. In this paper, we quantitatively assess four of the key pests of maize, one of the most important systems in North American grain production. Using empirically generated estimates of pest overwintering thresholds and degree-day requirements, along with climate change projections from a high-resolution climate model, we project potential future ranges for each of these pests in the United States. Our analysis suggests the possibility of increased winter survival and greater degree-day accumulations for each of the pests surveyed. We find that relaxed cold limitation could expand the range of all four pest taxa, including a substantial range expansion in the case of corn earworm (H. zea), a migratory, cold-intolerant pest. Because the corn earworm is a cosmopolitan pest that has shown resistance to insecticides, our results suggest that this expansion could also threaten other crops, including those in high-value areas of the western United States. Because managing significant additional pressure from this suite of established pests would require additional pest management inputs, the projected decreases in cold limitation and increases in heat accumulation have the potential to significantly alter the pest management landscape for North American maize production. Further, these range expansions could have substantial economic impacts through increased seed and insecticide costs, decreased yields, and the downstream effects of changes in crop yield variability.

  1. Global warming presents new challenges for maize pest management

    Science.gov (United States)

    Diffenbaugh, Noah S.; Krupke, Christian H.; White, Michael A.; Alexander, Corinne E.

    2008-10-01

    It has been conjectured that global warming will increase the prevalence of insect pests in many agro-ecosystems. In this paper, we quantitatively assess four of the key pests of maize, one of the most important systems in North American grain production. Using empirically generated estimates of pest overwintering thresholds and degree-day requirements, along with climate change projections from a high-resolution climate model, we project potential future ranges for each of these pests in the United States. Our analysis suggests the possibility of increased winter survival and greater degree-day accumulations for each of the pests surveyed. We find that relaxed cold limitation could expand the range of all four pest taxa, including a substantial range expansion in the case of corn earworm (H. zea), a migratory, cold-intolerant pest. Because the corn earworm is a cosmopolitan pest that has shown resistance to insecticides, our results suggest that this expansion could also threaten other crops, including those in high-value areas of the western United States. Because managing significant additional pressure from this suite of established pests would require additional pest management inputs, the projected decreases in cold limitation and increases in heat accumulation have the potential to significantly alter the pest management landscape for North American maize production. Further, these range expansions could have substantial economic impacts through increased seed and insecticide costs, decreased yields, and the downstream effects of changes in crop yield variability.

  2. Climate Change, Carbon Dioxide, and Pest Biology: Monitor, Mitigate, Manage.

    Science.gov (United States)

    Ziska, Lewis H; McConnell, Laura L

    2016-01-13

    Rising concentrations of atmospheric carbon dioxide ([CO2]) and subsequent changes in climate, including temperature and precipitation extremes, are very likely to alter pest pressures in both managed and unmanaged plant communities. Such changes in pest pressures can be positive (migration from a region) or negative (new introductions), but are likely to be accompanied by significant economic and environmental consequences. Recent studies indicate the range of invasive weeds such as kudzu and insects such as mountain pine beetle have already expanded to more northern regions as temperatures have risen. To reduce these consequences, a better understanding of the link between CO2/climate and pest biology is needed in the context of existing and new strategies for pest management. This paper provides an overview of the probable biological links and the vulnerabilities of existing pest management (especially chemical control) and provides a preliminary synthesis of research needs that could potentially improve the ability to monitor, mitigate, and manage pest impacts.

  3. Marine insects

    National Research Council Canada - National Science Library

    Cheng, Lanna

    1976-01-01

    .... Not only are true insects, such as the Collembola and insect parasites of marine birds and mammals, considered, but also other kinds of intertidal air-breathing arthropods, notably spiders, scorpions...

  4. Managing Pests in Schools

    Science.gov (United States)

    Provides basic information on integrated pest management in schools, including information on the components of an IPM program and guidance on how to get started. Includes identification and control of pests, educational resources, and contact information

  5. Insect Neurohormones

    African Journals Online (AJOL)

    Although insects and vertebrates appear to have roughly the same nwnber of hormones, those of insects are almost all neurohormones, synthesized in neurosecretory cells distributed throughout the nervous system. Most of the insect neurohor- mones have been discovered in the last 20 years. Only very recently have ...

  6. Consuming insects

    DEFF Research Database (Denmark)

    Roos, Nanna; van Huis, A.

    2017-01-01

    How healthy are insects? This is a highly relevant question in view of the global interest in the potential of insects as a sustainable food source in food systems and diets. Edible insects, like other foods, can provide nutrients and dietary energy to meet the requirements of the human body as a...

  7. Consuming insects

    NARCIS (Netherlands)

    Roos, N.; Huis, van A.

    2017-01-01

    How healthy are insects? This is a highly relevant question in view of the global interest in the potential of insects as a sustainable food source in food systems and diets. Edible insects, like other foods, can provide nutrients and dietary energy to meet the requirements of the human body as a

  8. Edible Insects

    NARCIS (Netherlands)

    Huis, van A.; Dunkel, F.V.

    2016-01-01

    The interest in insects as human food in the Western world is increasingly considered as a viable alternative to other protein sources. In tropical countries it is common practice and about 2000 insect species are eaten. Insects emit low levels of greenhouse gases, need little water, and require

  9. The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: Animal-plant arms-race and co-evolution.

    Science.gov (United States)

    Bock, Karl Walter

    2016-01-01

    UDP-glycosyltransferases (UGTs) are major phase II enzymes of a detoxification system evolved in all kingdoms of life. Lipophilic endobiotics such as hormones and xenobiotics including phytoalexins and drugs are conjugated by vertebrates mainly with glucuronic acid, by invertebrates and plants mainly with glucose. Plant-herbivore arms-race has been the major driving force for evolution of large UGT and other enzyme superfamilies. The UGT superfamily is defined by a common protein structure and signature sequence of 44 amino acids responsible for binding the UDP moiety of the sugar donor. Plants developed toxic phytoalexins stored as glucosides. Upon herbivore attack these conjugates are converted to highly reactive compounds. In turn, animals developed large families of UGTs in their intestine and liver to detoxify these phytoalexins. Interestingly, phytoalexins, exemplified by quercetin glucuronides and glucosinolate-derived isocyanates, are known insect attractant pigments in plants, and antioxidants, anti-inflammatory and chemopreventive compounds of humans. It is to be anticipated that phytochemicals may provide a rich source in beneficial drugs. Copyright © 2015. Published by Elsevier Inc.

  10. Alternatives to neonicotinoid insecticides for pest control: case studies in agriculture and forestry.

    Science.gov (United States)

    Furlan, Lorenzo; Kreutzweiser, David

    2015-01-01

    Neonicotinoid insecticides are widely used for control of insect pests around the world and are especially pervasive in agricultural pest management. There is a growing body of evidence indicating that the broad-scale and prophylactic uses of neonicotinoids pose serious risks of harm to beneficial organisms and their ecological function. This provides the impetus for exploring alternatives to neonicotinoid insecticides for controlling insect pests. We draw from examples of alternative pest control options in Italian maize production and Canadian forestry to illustrate the principles of applying alternatives to neonicotinoids under an integrated pest management (IPM) strategy. An IPM approach considers all relevant and available information to make informed management decisions, providing pest control options based on actual need. We explore the benefits and challenges of several options for management of three insect pests in maize crops and an invasive insect pest in forests, including diversifying crop rotations, altering the timing of planting, tillage and irrigation, using less sensitive crops in infested areas, applying biological control agents, and turning to alternative reduced risk insecticides. Continued research into alternatives is warranted, but equally pressing is the need for information transfer and training for farmers and pest managers and the need for policies and regulations to encourage the adoption of IPM strategies and their alternative pest control options.

  11. Self-reported prevalence of pests in Dutch households and the use of the health belief model to explore householders' intentions to engage in pest control.

    Directory of Open Access Journals (Sweden)

    Stefan A Lipman

    Full Text Available Pests in the home are a health risk because they can be vectors for infectious disease, contribute to allergies and cause damage to buildings. The aims of this study were to record which categories of pests were reported in homes and to use a social cognition model, the health belief model, to investigate which psychological factors influence householders' intentions to control pests. An online questionnaire was completed by 413 respondents between 11 September and 31 November 2015. A large majority of respondents reported pests in or around their home within the previous year. The prevalences were: flying insects 98%, crawling insects 85%, rodents 62%, birds 58%, and moles 20%. Regression analysis for the health belief model revealed that perceiving greater benefits and fewer barriers to pest control and expecting severe consequences of zoonotic infections predicted higher intention to control pests. Intentions towards pest control were not influenced by perceiving oneself as susceptible to catching a disease from pests or health motivation (striving towards a healthy lifestyle. Intentions to engage in pest control were lower for households reporting bird prevalence. The findings suggest that interventions aimed at improving the effectiveness of domestic pest control should focus on increasing the benefits that individuals associate with effective pest control, lowering barriers, and on underlining the severity of the diseases that pests may carry.

  12. Self-reported prevalence of pests in Dutch households and the use of the health belief model to explore householders' intentions to engage in pest control.

    Science.gov (United States)

    Lipman, Stefan A; Burt, Sara A

    2017-01-01

    Pests in the home are a health risk because they can be vectors for infectious disease, contribute to allergies and cause damage to buildings. The aims of this study were to record which categories of pests were reported in homes and to use a social cognition model, the health belief model, to investigate which psychological factors influence householders' intentions to control pests. An online questionnaire was completed by 413 respondents between 11 September and 31 November 2015. A large majority of respondents reported pests in or around their home within the previous year. The prevalences were: flying insects 98%, crawling insects 85%, rodents 62%, birds 58%, and moles 20%. Regression analysis for the health belief model revealed that perceiving greater benefits and fewer barriers to pest control and expecting severe consequences of zoonotic infections predicted higher intention to control pests. Intentions towards pest control were not influenced by perceiving oneself as susceptible to catching a disease from pests or health motivation (striving towards a healthy lifestyle). Intentions to engage in pest control were lower for households reporting bird prevalence. The findings suggest that interventions aimed at improving the effectiveness of domestic pest control should focus on increasing the benefits that individuals associate with effective pest control, lowering barriers, and on underlining the severity of the diseases that pests may carry.

  13. Arthropod pests of dried fish and fish by product in a tropical urban ...

    African Journals Online (AJOL)

    Animal Research International ... A four months research survey of arthropod pests infesting dried fish sold in a tropical urban community market (Ogige), Nsukka, Ngeria showed that 10 genera o dried freshwater fish ... Keywords: Arthropod pests, Visiting pest, Resident pest, Dried fish, Cod, Fish bone, Urban market ...

  14. Insect-resistant biotech crops and their impacts on beneficial arthropods

    Science.gov (United States)

    Gatehouse, A. M. R.; Ferry, N.; Edwards, M. G.; Bell, H. A.

    2011-01-01

    With a projected population of 10 billion by 2050, an immediate priority for agriculture is to achieve increased crop yields in a sustainable and cost-effective way. The concept of using a transgenic approach was realized in the mid-1990s with the commercial introduction of genetically modified (GM) crops. By 2010, the global value of the seed alone was US $11.2 billion, with commercial biotech maize, soya bean grain and cotton valued at approximately US $150 billion. In recent years, it has become evident that insect-resistant crops expressing δ-endotoxin genes from Bacillus thuringiensis have made a significant beneficial impact on global agriculture, not least in terms of pest reduction and improved quality. However, because of the potential for pest populations to evolve resistance, and owing to lack of effective control of homopteran pests, alternative strategies are being developed. Some of these are based on Bacillus spp. or other insect pathogens, while others are based on the use of plant- and animal-derived genes. However, if such approaches are to play a useful role in crop protection, it is desirable that they do not have a negative impact on beneficial organisms at higher trophic levels thus affecting the functioning of the agro-ecosystem. This widely held concern over the ecological impacts of GM crops has led to the extensive examination of the potential effects of a range of transgene proteins on non-target and beneficial insects. The findings to date with respect to both commercial and experimental GM crops expressing anti-insect genes are discussed here, with particular emphasis on insect predators and parasitoids. PMID:21444317

  15. Detection methods for irradiated mites and insects

    International Nuclear Information System (INIS)

    Ignatowicz, S.

    1999-01-01

    Results of the study on the following tests for separation of irradiated pests from untreated ones are reported: (a) test for identification of irradiated mites (Acaridae) based on lack of fecundity of treated females; (b) test for identification of irradiated beetles based on their locomotor activity; (c) test for identification of irradiated pests based on electron spin resonance (ESR) signal derived from treated insects; (d) test for identification of irradiated pests based on changes in the midgut induced by gamma radiation; and (e) test for identification of irradiated pests based on the alterations in total proteins of treated adults. Of these detection methods, only the test based on the pathological changes induced by irradiation in the insect midgut may identify consistently either irradiated larvae or adults. This test is simple and convenient when a rapid processing technique for dehydrating and embedding the midgut is used. (author)

  16. Protecting Plants against Pests and Pathogens with Entomopathogenic Fungi

    DEFF Research Database (Denmark)

    Keyser, Chad Alton

    This thesis investigates the natural occurrence of the fungal genus Metarhizium in association with crop-roots in Denmark, and advances the current understanding of how these fungi interact with other root-associating organisms when applied as a biological control agent. Insect-pest management...... is an increasingly important area of research. Efforts to maximize agricultural output are significantly dependent on reliable means for pest suppression. Biological control, or the use of living organisms to suppress a pest population, is a leading alternative to traditional chemical-based pesticides for crop...... of variability with in the species. The results of these studies further clarify the important role Metarhizium spp. play in the natural environment and highlight their vast potential to be implemented as biological control agents of important pest insects....

  17. Farmers’ perceptions of crop pest severity in Nigeria are associated with landscape, agronomic and socio-economic factors

    NARCIS (Netherlands)

    Zhang, Wei; Kato, Edward; Bianchi, Felix; Bhandary, Prapti; Gort, Gerrit; Werf, van der Wopke

    2018-01-01

    Insect pests are a major cause of crop yield losses around the world and pest management plays a critical role in providing food security and farming income. This study links Nigerian farmers’ perceptions of pest severity to the landscape, agronomic, biophysical, and socio-economic context in which

  18. Early-season movement dynamics of phytophagous pest and natural enemies across a native vegetation-crop ecotone

    NARCIS (Netherlands)

    Macfadyen, S.; Hopkinson, J.; Parry, H.; Neave, M.J.; Bianchi, F.J.J.A.; Zalucki, M.P.; Schellhorn, N.A.

    2015-01-01

    There is limited understanding about how insect movement patterns are influenced by landscape features, and how landscapes can be managed to suppress pest phytophage populations in crops. Theory suggests that the relative timing of pest and natural enemy arrival in crops may influence pest

  19. Short-range movement of major agricultural pests

    Science.gov (United States)

    Vansteenwyk, R.

    1979-01-01

    Visual observations of population fluctuations which cannot be accounted for by either mortality or natality are presented. Lygus bugs in the westside of the San Joaquin Valley of California are used as an example. The dispersal of most agricultural pests in one of the less known facets of their biology is discussed. Results indicate a better understanding of insect movement is needed to develop a sound pest management program.

  20. Pheromone mating disruption offers selective management options for key pests

    OpenAIRE

    Welter, Stephen C.; Pickel, Carolyn; Millar, Jocelyn; Cave, Frances; Van Steenwyk, Robert A.; Dunley, John

    2005-01-01

    The direct management of insect pests using pheromones for mating disruption, or “attract and kill” approaches, can provide excellent suppression of key lepidopteran pests in agriculture. Important successes to date include codling moth in pome fruit, oriental fruit moth in peaches and nectarines, tomato pinworm in vegetables, pink bollworm in cotton and omnivorous leafroller in vineyards. Large-scale implementation projects have yielded significant reductions in pesticide use while maintaini...

  1. Pheromones associated to coleopteran pests in stored products

    OpenAIRE

    Moreira, Marcos Antônio Barbosa; Zarbin, Paulo Henrique Gorgatti; Coracini, Miryan Denise Araújo

    2005-01-01

    One strategy to overcome risks of insecticide-based control in agriculture is to use semiochemicals. In the case of pheromones, these specific compounds can be applied in traps to detect and monitor the occurrence, abundance and distribution of insect pests. Reliable detection helps to time insecticide sprays, to decide the quantity of insecticide that will be used and the place where it will be applied. This manuscript aims to give an overview of the pheromones associated to coleopteran pest...

  2. Farmers’ knowledge and perceptions of potato pests and their management in Uganda

    Directory of Open Access Journals (Sweden)

    Joshua Sikhu Okonya

    2016-03-01

    Full Text Available As we initiate entomological research on potato (Solanum tuberosum L. in Uganda, there is need to understand farmers’ knowledge of existing insect pest problems and their management practices. Such information is important for designing a suitable intervention and successful integrated pest management (IPM strategy. A farm household survey using a structured questionnaire was conducted among 204 potato farmers in six districts of Uganda (i.e., Kabale, Kisoro, Mbale, Kapchorwa, Mubende, and Kyegegwa during August and September 2013. Diseases, insect pests, price fluctuations, and low market prices were the four highest ranked constraints in potato production, in order of decreasing importance. Cutworms (Agrotis spp., aphids (Myzus persicae (Sulzer, and potato tuber moth (Phthorimaea operculella (Zeller were the three most severe insect pests. Ants (Dorylis orantalis Westwood, whiteflies (Bemisia tabaci (Gennadius, and leafminer flies (Liriomyza huidobrensis (Blanchard were pests of moderate importance. Major yield losses are predominantly due to late blight (Phytophthora infestans (Mont. de Bary and reached 100% without chemical control in the districts of Kabale, Kisoro, Mbale, and Kapchorwa. On average, farmers had little to moderate knowledge about pest characteristics. The predominant control methods were use of fungicides (72% of respondents and insecticides (62% of respondents. On average, only 5% of the 204 farmers knew about insect pests and their natural enemies. This lack of knowledge calls for training of both farmers and extension workers in insect pest identification, their biology, and control. Empowering farmers with knowledge about insect pests is essential for the reduction of pesticide misuse and uptake of more environmentally friendly approaches like IPM. Field surveys would need follow-up in order to assess the actual field infestation rates and intensities of each insect pest and compare the results with the responses

  3. Factors driving public tolerance levels and information-seeking behaviour concerning insects in the household environment

    NARCIS (Netherlands)

    Schoelitsz, Bruce; Poortvliet, P.M.; Takken, Willem

    2018-01-01

    BACKGROUND: The public's negative attitudes towards household insects drive tolerance for these insects and their control. Tolerance levels are important in integrated pest management (IPM), as are pest knowledge and information. The risk information seeking and processing (RISP) model describes the

  4. Microbial secondary metabolites are an alternative approaches against insect vector to prevent zoonotic diseases

    Directory of Open Access Journals (Sweden)

    Dharumadurai Dhanasekaran

    2014-08-01

    Full Text Available Approximately 1500 naturally occurring microorganisms have been identified as potentially insecticidal agents. Metabolites from 942 microbial isolates were screened for insecticidal and properties. The isolates included 302 streptomycetes, 502 novel actinobacteria including representatives of 18 genera, 28 unidentified aerobic actinobacteria, 70 fungi and 40 bacteria other than actinobacteria showed the insecticidal activity. Most spore-forming bacteria pathogenic to insects belong to the family Bacillaceae. Only four Bacillus species namely Bacillus thuringiensis, Bacillus popilliae, Bacillus lentimorbus, Bacillus sphaericus have been closely examined as insect control agents. Fungi are applied directly in the form of spores, mycelia or blastospores or by their metabolites. Many viruses that belong to the family Baculoviridae are pathogenic in insects. The microbial insecticides are generally pest-specific, readily biodegradable and usually lack toxicity to higher animals. This review paper communicates the insect problem in the transmission of diseases in human, animals, plants and problem of chemical insecticides control of insects using microbial metabolites from actinobacteria, bacteria, fungi and viruses.

  5. Edible insects

    OpenAIRE

    Huis, van, A.

    2017-01-01

    Is it an impossible task to convince consumers to eat insects? This does not only apply to western consumers who are less familiar with this food habit than consumers in tropical countries. In the tropics too, many people do not consume insects, even though they are easier to collect as food than in temperate zones. Until recently in the western world, eating insects was considered a peculiar tropical food habit and the term 'entomophagy' was coined. How to motivate consumers to substitute me...

  6. Symbiont-mediated RNA interference in insects

    Science.gov (United States)

    Whitten, Miranda M. A.; Facey, Paul D.; Del Sol, Ricardo; Fernández-Martínez, Lorena T.; Evans, Meirwyn C.; Mitchell, Jacob J.; Bodger, Owen G.

    2016-01-01

    RNA interference (RNAi) methods for insects are often limited by problems with double-stranded (ds) RNA delivery, which restricts reverse genetics studies and the development of RNAi-based biocides. We therefore delegated to insect symbiotic bacteria the task of: (i) constitutive dsRNA synthesis and (ii) trauma-free delivery. RNaseIII-deficient, dsRNA-expressing bacterial strains were created from the symbionts of two very diverse pest species: a long-lived blood-sucking bug, Rhodnius prolixus, and a short-lived globally invasive polyphagous agricultural pest, western flower thrips (Frankliniella occidentalis). When ingested, the manipulated bacteria colonized the insects, successfully competed with the wild-type microflora, and sustainably mediated systemic knockdown phenotypes that were horizontally transmissible. This represents a significant advance in the ability to deliver RNAi, potentially to a large range of non-model insects. PMID:26911963

  7. Environment and the sterile insect technique

    International Nuclear Information System (INIS)

    Nagel, P.; Peveling, R.

    2005-01-01

    The sterile insect technique (SIT) is an exceptionally promising pest control method in terms of efficacy and environmental compatibility. Assessments of environmental risks vary according to the status and origin of the target pests. The suppression or eradication of exotic pest populations with the SIT raises few environmental concerns, and these are related mainly to pre-release suppression techniques. However, the elimination of native species, or at least populations of native species, requires more detailed and complex assessments of ecological effects and consequences for biodiversity conservation. Eradication programmes provide opportunities to study these topics within the scope of both environmental impact assessments and operational monitoring programmes. (author)

  8. Engineering insect-resistant crops: A review | George | African ...

    African Journals Online (AJOL)

    Insect pests cause significant damage to crops world-wide. This is despite integrated pest management strategies combining such control measures as chemical control, use of resistant varieties and other measures. Other control measures such as use of genetically modified crops are being adopted. Transgenic crops ...

  9. Insects infesting sorghum (Sorghum bicolor L. Moench) panicles in ...

    African Journals Online (AJOL)

    Surveys in the Upper East Region showed that sorghum panicles were attacked by an insect pest complex of which midge, mirid and pentatomid bugs and head caterpillars were most prominent. Midge was most important on late-planted sorghums while mirid bugs constituted the main pests of early sorghums. The mirid ...

  10. Ethical issues in insect production

    DEFF Research Database (Denmark)

    Röcklinsberg, Helena; Gamborg, Christian; Gjerris, Mickey

    2017-01-01

    welfare and present an account of what is known, or can be inferred, about the capability of insects to experience welfare and where future research needs lie. (2) Animal integrity: Do insects possess integrity and can it be violated through large-scale production systems? To clarify this, we will discuss...

  11. Do Refuge Plants Favour Natural Pest Control in Maize Crops?

    Science.gov (United States)

    Quispe, Reinaldo; Mazón, Marina; Rodríguez-Berrío, Alexander

    2017-07-18

    The use of non-crop plants to provide the resources that herbivorous crop pests' natural enemies need is being increasingly incorporated into integrated pest management programs. We evaluated insect functional groups found on three refuges consisting of five different plant species each, planted next to a maize crop in Lima, Peru, to investigate which refuge favoured natural control of herbivores considered as pests of maize in Peru, and which refuge plant traits were more attractive to those desirable enemies. Insects occurring in all the plants, including the maize crop itself, were sampled weekly during the crop growing cycle, from February to June 2011. All individuals collected were identified and classified into three functional groups: herbivores, parasitoids, and predators. Refuges were compared based on their effectiveness in enhancing the populations of predator and parasitoid insects of the crop enemies. Refuges A and B were the most effective, showing the highest richness and abundance of both predators and parasitoids, including several insect species that are reported to attack the main insect pests of maize ( Spodoptera frugiperda and Rhopalosiphum maidis ), as well as other species that serve as alternative hosts of these natural enemies.

  12. New Insights into the Microbiota of Moth Pests

    Directory of Open Access Journals (Sweden)

    Valeria Mereghetti

    2017-11-01

    Full Text Available In recent years, next generation sequencing (NGS technologies have helped to improve our understanding of the bacterial communities associated with insects, shedding light on their wide taxonomic and functional diversity. To date, little is known about the microbiota of lepidopterans, which includes some of the most damaging agricultural and forest pests worldwide. Studying their microbiota could help us better understand their ecology and offer insights into developing new pest control strategies. In this paper, we review the literature pertaining to the microbiota of lepidopterans with a focus on pests, and highlight potential recurrent patterns regarding microbiota structure and composition.

  13. Oscillation in Pest Population and Its Management: A Mathematical Study

    Directory of Open Access Journals (Sweden)

    Samit Bhattacharyya

    2013-01-01

    Full Text Available We study the role of predation dynamics in oscillation of pest population in insect ecology. A two-dimensional pest control model (under the use of insecticides with time delay in predation is considered in this paper. By the Hopf bifurcation theory, we prove the existence of the stable oscillation of the system. We also consider the economic viability of the control process. First we improve the Pontryagin maximum principle (PMP where the delay in the system is sufficiently small and control function is linear, and then we apply the improved version of PMP to perform the optimal analysis of the pest control model as a special case.

  14. House Fly (Musca domestica L. Attraction to Insect Honeydew.

    Directory of Open Access Journals (Sweden)

    Kim Y Hung

    Full Text Available House flies are of major concern as vectors of food-borne pathogens to food crops. House flies are common pests on cattle feedlots and dairies, where they develop in and feed on animal waste. By contacting animal waste, house flies can acquire human pathogenic bacteria such as Escherichia coli and Salmonella spp., in addition to other bacteria, viruses, or parasites that may infect humans and animals. The subsequent dispersal of house flies from animal facilities to nearby agricultural fields containing food crops may lead to pre-harvest food contamination with these pathogens. We hypothesized that odors from honeydew, the sugary excreta produced by sucking insects feeding on crops, or molds and fungi growing on honeydew, may attract house flies, thereby increasing the risk of food crop contamination. House fly attraction to honeydew-contaminated plant material was evaluated using a laboratory bioassay. House flies were attracted to the following plant-pest-honeydew combinations: citrus mealybug on squash fruit, pea aphid on faba bean plants, whitefly on navel orange and grapefruit leaves, and combined citrus mealybug and cottony cushion scale on mandarin orange leaves. House flies were not attracted to field-collected samples of lerp psyllids on eucalyptus plants or aphids on crepe myrtle leaves. Fungi associated with field-collected honeydews were isolated and identified for further study as possible emitters of volatiles attractive to house flies. Two fungal species, Aureobasidium pullulans and Cladosporium cladosporioides, were repeatedly isolated from field-collected honeydew samples. Both fungal species were grown in potato dextrose enrichment broth and house fly attraction to volatiles from these fungal cultures was evaluated. House flies were attracted to odors from A. pullulans cultures but not to those of C. cladosporioides. Identification of specific honeydew odors that are attractive to house flies could be valuable for the

  15. Concise Syntheses of Insect Pheromones Using Z-Selective Cross Metathesis**

    OpenAIRE

    Herbert, Myles B.; Marx, Vanessa M.; Pederson, Richard L.; Grubbs, Robert H.

    2012-01-01

    The use of insect sex pheromones to limit specifically targeted pest populations has gained increasing popularity as a viable, safe, and environmentally friendly alternative to insecticides. While broad-spectrum insecticides are toxic compounds that have been shown to adversely affect human health,[1] extensive studies have shown that insect pheromones are nontoxic and safe for human consumption at the levels used in pest control practices.[2] Female sex pheromones are mainly employed in pest...

  16. The genome of the model beetle and pest Tribolium castaneum

    DEFF Research Database (Denmark)

    Richards, Stephen; Gibbs, Richard A; Weinstock, George M

    2008-01-01

    Tribolium castaneum is a member of the most species-rich eukaryotic order, a powerful model organism for the study of generalized insect development, and an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved the ability......, but nevertheless offers similar power for the elucidation of gene function and identification of targets for selective insect control. Udgivelsesdato: e-pub.2008-Apr-24...

  17. Potential applications of insect symbionts in biotechnology.

    Science.gov (United States)

    Berasategui, Aileen; Shukla, Shantanu; Salem, Hassan; Kaltenpoth, Martin

    2016-02-01

    Symbiotic interactions between insects and microorganisms are widespread in nature and are often the source of ecological innovations. In addition to supplementing their host with essential nutrients, microbial symbionts can produce enzymes that help degrade their food source as well as small molecules that defend against pathogens, parasites, and predators. As such, the study of insect ecology and symbiosis represents an important source of chemical compounds and enzymes with potential biotechnological value. In addition, the knowledge on insect symbiosis can provide novel avenues for the control of agricultural pest insects and vectors of human diseases, through targeted manipulation of the symbionts or the host-symbiont associations. Here, we discuss different insect-microbe interactions that can be exploited for insect pest and human disease control, as well as in human medicine and industrial processes. Our aim is to raise awareness that insect symbionts can be interesting sources of biotechnological applications and that knowledge on insect ecology can guide targeted efforts to discover microorganisms of applied value.

  18. Eating insects

    NARCIS (Netherlands)

    Tan, Hui Shan Grace

    2017-01-01

    In recent years, edible insects have gained global attention due to their nutritional and environmental advantages over conventional meat. While numerous species of edible insects are enjoyed in various cultures around the world, most Western consumers react with disgust and aversion towards

  19. Insect Keepers

    Science.gov (United States)

    Moore, Virginia J.; Chessin, Debby A.; Theobald, Becky

    2010-01-01

    Insects are fascinating creatures--especially when you and your students get up close and personal with them! To that end, the authors facilitated an inquiry-based investigation with an emphasis on identification of the different types of insects found in the school yard, their characteristics, their habitat, and what they eat, while engaging the…

  20. Edible insects

    NARCIS (Netherlands)

    Huis, van A.

    2017-01-01

    Is it an impossible task to convince consumers to eat insects? This does not only apply to western consumers who are less familiar with this food habit than consumers in tropical countries. In the tropics too, many people do not consume insects, even though they are easier to collect as food than