WorldWideScience

Sample records for angular resolution observations

  1. High angular resolution SZ observations with NIKA and NIKA2

    CERN Document Server

    Comis, B; Ade, P; André, P; Arnaud, M; Bartalucci, I; Beelen, A; Benoît, A; Bideaud, A; Billot, N; Bourrion, O; Calvo, M; Catalano, A; Coiffard, G; Désert, F -X; Doyle, S; Goupy, J; Kramer, C; Lagache, G; Leclercq, S; Macías-Pérez, J F; Mauskopf, P; Mayet, F; Monfardini, A; Pajot, F; Pascale, E; Perotto, L; Pointecouteau, E; Pisano, G; Ponthieu, N; Pratt, G W; Revéret, V; Ritacco, A; Rodriguez, L; Romero, C; Ruppin, F; Savini, G; Schuster, K; Sievers, A; Triqueneaux, S; Tucker, C; Zilch, R

    2016-01-01

    NIKA2 (New IRAM KID Arrays) is a dual band (150 and 260 GHz) imaging camera based on Kinetic Inductance Detectors (KIDs) and designed to work at the IRAM 30 m telescope (Pico Veleta, Spain). Built on the experience of the NIKA prototype, NIKA2 has been installed at the 30 m focal plane in October 2015 and the commissioning phase is now ongoing. Through the thermal Sunyaev-Zeldovich (tSZ) effect, NIKA2 will image the ionized gas residing in clusters of galaxies with a resolution of 12 and 18 arcsec FWHM (at 150 and 260 GHz, respectively). We report on the recent tSZ measurements with the NIKA camera and discuss the future objectives for the NIKA2 SZ large Program, 300h of observation dedicated to SZ science. With this program we intend to perform a high angular resolution follow-up of a cosmologically-representative sample of clusters belonging to SZ catalogues, with redshift greater than 0.5. The main output of the program will be the study of the redshift evolution of the cluster pressure profile as well as ...

  2. High angular resolution SZ observations with NIKA and NIKA2

    OpenAIRE

    Comis, B.; Adam, R.; Ade, P.; André, P.; Arnaud, M; Bartalucci, I.; A. Beelen; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Calvo, M.; Catalano, A; Coiffard, G.; Désert, F. -X.

    2016-01-01

    NIKA2 (New IRAM KID Arrays) is a dual band (150 and 260 GHz) imaging camera based on Kinetic Inductance Detectors (KIDs) and designed to work at the IRAM 30 m telescope (Pico Veleta, Spain). Built on the experience of the NIKA prototype, NIKA2 has been installed at the 30 m focal plane in October 2015 and the commissioning phase is now ongoing. Through the thermal Sunyaev-Zeldovich (tSZ) effect, NIKA2 will image the ionized gas residing in clusters of galaxies with a resolution of 12 and 18 a...

  3. SMA Observations of Class 0 Protostars: A High-Angular Resolution Survey of Protostellar Binary Systems

    CERN Document Server

    Chen, Xuepeng; Zhang, Qizhou; Bourke, Tyler L; Launhardt, Ralf; Jorgensen, Jes K; Lee, Chin-Fee; Foster, Jonathan B; Dunham, Michael M; Pineda, Jaime E; Henning, Thomas

    2013-01-01

    We present high angular resolution 1.3 mm and 850 um dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.5 arcsec, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64+/-0.08 and 0.91+/-0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I YSOs, and approxima...

  4. High Angular Resolution Observations of Four Candidate BLAST High-Mass Starless Cores

    CERN Document Server

    Olmi, Luca; Chapin, Edward L; Gibb, Andrew; Hofner, Peter; Martin, Peter G; Poventud, Carlos M

    2010-01-01

    We discuss high-angular resolution observations of ammonia toward four candidate high-mass starless cores (HMSCs). The cores were identified by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) during its 2005 survey of the Vulpecula region where 60 compact sources were detected simultaneously at 250, 350, and 500 micron. Four of these cores, with no IRAS-PSC or MSX counterparts, were observed with the NRAO Very Large Array (VLA) in the NH3(1,1) and (2,2) spectral lines. Our observations indicate that the four cores are cold (Tk <~ 14K) and show a filamentary and/or clumpy structure. They also show a significant velocity substructure within ~1km/s. The four BLAST cores appear to be colder and more quiescent than other previously observed HMSC candidates, suggesting an earlier stage of evolution.

  5. The Evershed effect observed with 0.2 arsec angular resolution

    CERN Document Server

    Almeida, J S; Bonet, J A; Cerdena, I D

    2006-01-01

    We present an analysis of the Evershed effect observed with a resolution of 0.2 arcsec. Using the new Swedish 1-m Solar Telescope and its Littrow spectrograph, we scan a significant part of a sunspot penumbra. Spectra of the non-magnetic line Fe I 7090.4 A allows us to measure Doppler shifts without magnetic contamination. The observed line profiles are asymmetric. The Doppler shift depends on the part of the line used for measuring, indicating that the velocity structure of penumbrae remains unresolved even with our angular resolution. The observed line profiles are properly reproduced if two components with velocities between zero and several km/s co-exist in the resolution elements. Using Doppler shifts at fixed line depths, we find a local correlation between upflows and bright structures, and downflows and dark structures. This association is not specific of the outer penumbra but it also occurs in the inner penumbra. The existence of such correlation was originally reported by Beckers & Schroter (19...

  6. SMA OBSERVATIONS OF CLASS 0 PROTOSTARS: A HIGH ANGULAR RESOLUTION SURVEY OF PROTOSTELLAR BINARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuepeng [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Arce, Hector G.; Dunham, Michael M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States); Zhang Qizhou; Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Launhardt, Ralf; Henning, Thomas [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Jorgensen, Jes K. [Niels Bohr Institute and Centre for Star and Planet Formation, Copenhagen University, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Lee, Chin-Fei [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Foster, Jonathan B. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Pineda, Jaime E., E-mail: xpchen@pmo.ac.cn, E-mail: xuepeng.chen@yale.edu [ESO, Karl Schwarzschild Str. 2, D-85748 Garching bei Munchen (Germany)

    2013-05-10

    We present high angular resolution 1.3 mm and 850 {mu}m dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.''5, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 AU to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64 {+-} 0.08 and 0.91 {+-} 0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I young stellar objects, and approximately three (for MF) and four (for CSF) times larger than the values found among main-sequence stars, with a similar range of separations. Furthermore, the observed fraction of high-order multiple systems to binary systems in Class 0 protostars (0.50 {+-} 0.09) is also larger than the fractions found in Class I young stellar objects (0.31 {+-} 0.07) and main-sequence stars ({<=}0.2). These results suggest that binary properties evolve as protostars evolve, as predicted by numerical simulations. The distribution of separations for Class 0 protostellar binary/multiple systems shows a general trend in which CSF increases with decreasing companion separation. We find that 67% {+-} 8% of the protobinary systems have circumstellar mass ratios below 0.5, implying that unequal-mass systems are preferred in the process of binary star formation. We suggest an empirical sequential fragmentation picture for binary star formation, based on this

  7. Southern Massive Stars at High Angular Resolution: Observational Campaign and Companion Detection

    CERN Document Server

    Sana, H; Lacour, S; Berger, J -P; Duvert, G; Gauchet, L; Norris, B; Olofsson, J; Pickel, D; Zins, G; Absil, O; de Koter, A; Kratter, K; Schnurr, O; Zinnecker, H

    2014-01-01

    Multiplicity is one of the most fundamental observable properties of massive O-type stars and offers a promising way to discriminate between massive star formation theories. Nevertheless, companions at separations between 1 and 100 mas remain mostly unknown due to intrinsic observational limitations. [...] The Southern MAssive Stars at High angular resolution survey (SMASH+) was designed to fill this gap by providing the first systematic interferometric survey of Galactic massive stars. We observed 117 O-type stars with VLTI/PIONIER and 162 O-type stars with NACO/SAM, respectively probing the separation ranges 1-45 and 30-250mas and brightness contrasts of Delta H < 4 and Delta H < 5. Taking advantage of NACO's field-of-view, we further uniformly searched for visual companions in an 8''-radius down to Delta H = 8. This paper describes the observations and data analysis, reports the discovery of almost 200 new companions in the separation range from 1mas to 8'' and presents the catalog of detections, inc...

  8. First Results from High Angular Resolution ALMA Observations Toward the HL Tau Region

    CERN Document Server

    Partnership, ALMA; Perez, L M; Hunter, T R; Dent, W R F; Hales, A S; Hills, R; Corder, S; Fomalont, E B; Vlahakis, C; Asaki, Y; Barkats, D; Hirota, A; Hodge, J A; Impellizzeri, C M V; Kneissl, R; Liuzzo, E; Lucas, R; Marcelino, N; Matsushita, S; Nakanishi, K; Phillips, N; Richards, A M S; Toledo, I; Aladro, R; Broguiere, D; Cortes, J R; Cortes, P C; Dhawan, V; Espada, D; Galarza, F; Garcia-Appadoo, D; Guzman-Ramirez, L; Humphreys, E M; Jung, T; Kameno, S; Laing, R A; Leon, S; Marconi, G; Nikolic, B; Nyman, L -A; Radiszcz, M; Remijan, A; Rodon, J A; Sawada, T; Takahashi, S; Tilanus, R P J; Vilaro, B Vila; Watson, L C; Wiklind, T; Akiyama, E; Chapillon, E; de Gregorio, I; Di Francesco, J; Gueth, F; Kawamura, A; Lee, C -F; Luong, Q Nguyen; Mangum, J; Pietu, V; Sanhueza, P; Saigo, K; Takakuwa, S; Ubach, C; van Kempen, T; Wootten, A; Castro-Carrizo, A; Francke, H; Gallardo, J; Garcia, J; Gonzalez, S; Hill, T; Kaminski, T; Kurono, Y; Liu, H -Y; Lopez, C; Morales, F; Plarre, K; Schieven, G; Testi, L; Videla, L; Villard, E; Andreani, P; Hibbard, J E; Tatematsu, K

    2015-01-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations from the 2014 Long Baseline Campaign in dust continuum and spectral line emission from the HL Tau region. The continuum images at wavelengths of 2.9, 1.3, and 0.87 mm have unprecedented angular resolutions of 0.075 arcseconds (10 AU) to 0.025 arcseconds (3.5 AU), revealing an astonishing level of detail in the circumstellar disk surrounding the young solar analogue HL Tau, with a pattern of bright and dark rings observed at all wavelengths. By fitting ellipses to the most distinct rings, we measure precise values for the disk inclination (46.72pm0.05 degrees) and position angle (+138.02pm0.07 degrees). We obtain a high-fidelity image of the 1.0 mm spectral index ($\\alpha$), which ranges from $\\alpha\\sim2.0$ in the optically-thick central peak and two brightest rings, increasing to 2.3-3.0 in the dark rings. The dark rings are not devoid of emission, we estimate a grain emissivity index of 0.8 for the innermost dark ring and lower for ...

  9. Milliarcsecond angular resolution of reddened stellar sources in the vicinity of the Galactic Center. II. Additional observations

    CERN Document Server

    Richichi, A; Mason, E

    2008-01-01

    We present lunar occultation observations obtained in August 2006 with the recently demonstrated burst mode of the ISAAC instrument at the ESO VLT. The results presented here follow the previously reported observations carried out in March 2006 on a similar but unrelated set of sources. Interstellar extinction in the inner regions of the galactic bulge amounts to tens of magnitudes at visual wavelengths. As a consequence, the majority of sources in that area are poorly studied and large numbers of potentially interesting sources such as late-type giants with circumstellar shells, stellar masers, infrared stars, remain excluded from the typical investigations which are carried out in less problematic regions. Also undetected are a large numbers of binaries. By observing LO events in this region, we gain the means to investigate at least a selected number of sources with an unprecedented combination of sensitivity and angular resolution. The LO technique permits to achieve mas resolution with a sensitivity of K...

  10. High angular resolution Sunyaev-Zel'dovich observations of MACS J1423.8+2404 with NIKA: Multiwavelength analysis

    Science.gov (United States)

    Adam, R.; Comis, B.; Bartalucci, I.; Adane, A.; Ade, P.; André, P.; Arnaud, M.; Beelen, A.; Belier, B.; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; D'Addabbo, A.; Désert, F.-X.; Doyle, S.; Goupy, J.; Hasnoun, B.; Hermelo, I.; Kramer, C.; Lagache, G.; Leclercq, S.; Macías-Pérez, J.-F.; Martino, J.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Pajot, F.; Pascale, E.; Perotto, L.; Pointecouteau, E.; Ponthieu, N.; Pratt, G. W.; Revéret, V.; Ritacco, A.; Rodriguez, L.; Savini, G.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.

    2016-02-01

    The prototype of the NIKA2 camera, NIKA, is a dual-band instrument operating at the IRAM 30-m telescope, which can observe the sky simultaneously at 150 and 260 GHz. One of the main goals of NIKA (and NIKA2) is to measure the pressure distribution in galaxy clusters at high angular resolution using the thermal Sunyaev-Zel'dovich (tSZ) effect. Such observations have already proved to be an excellent probe of cluster pressure distributions even at intermediate and high redshifts. However, an important fraction of clusters host sub-millimeter and/or radio point sources, which can significantly affect the reconstructed signal. Here we report on sub-millimeter point sources. We examine the morphological distribution of the tSZ signal and compare it to other datasets. The NIKA data are combined with Herschel satellite data to study the spectral energy distribution (SED) of the sub-millimeter point source contaminants. We then perform a joint reconstruction of the intracluster medium (ICM) electronic pressure and density by combining NIKA, Planck, XMM-Newton, and Chandra data, focusing on the impact of the radio and sub-millimeter sources on the reconstructed pressureprofile. We find that large-scale pressure distribution is unaffected by the point sources because of the resolved nature of the NIKA observations. The reconstructed pressure in the inner region is slightly higher when the contribution of point sources are removed. We show that it is not possible to set strong constraints on the central pressure distribution without accurately removing these contaminants. The comparison with X-ray only data shows good agreement for the pressure, temperature, and entropy profiles, which all indicate that MACS J1423.8+2404 is a dynamically relaxed cool core system. The present observations illustrate the possibility of measuring these quantities with a relatively small integration time, even at high redshift and without X-ray spectroscopy. This work is part of a pilot study

  11. High angular resolution Sunyaev-Zel'dovich observations of MACS J1423.8+2404 with NIKA: multi-wavelength analysis

    CERN Document Server

    Adam, R; Bartalucci, I; Adane, A; Ade, P; André, P; Arnaud, M; Beelen, A; Belier, B; Benoît, A; Bideaud, A; Billot, N; Bourrion, O; Calvo, M; Catalano, A; Coiffard, G; D'Addabbo, A; Désert, F -X; Doyle, S; Goupy, J; Hasnoun, B; Hermelo, I; Kramer, C; Lagache, G; Leclercq, S; Macías-Pérez, J -F; Martino, J; Mauskopf, P; Mayet, F; Monfardini, A; Pajot, F; Pascale, E; Perotto, L; Pointecouteau, E; Ponthieu, N; Pratt, G W; Revéret, V; Ritacco, A; Rodriguez, L; Savini, G; Schuster, K; Sievers, A; Triqueneaux, S; Tucker, C; Zylka, R

    2015-01-01

    NIKA, the prototype of the NIKA2 camera, is an instrument operating at the IRAM 30m telescope that can observe the sky simultaneously at 150 and 260GHz. One of the main goals of NIKA is to measure the pressure distribution in galaxy clusters at high angular resolution using the Sunyaev-Zel'dovich (SZ) effect. Such observations have already proved to be an excellent probe of cluster pressure distributions even at high redshifts. However, an important fraction of clusters host submm and/or radio point sources that can significantly affect the reconstructed signal. Here we report <20arcsec angular resolution observations at 150 and 260GHz of the cluster MACSJ1424, which hosts both radio and submm point sources. We examine the morphological distribution of the SZ signal and compare it to other datasets. The NIKA data are combined with Herschel satellite data to study the SED of the submm point source contaminants. We then perform a joint reconstruction of the ICM electronic pressure and density by combining NI...

  12. Systematics in Metallicity Gradient Measurements I : Angular Resolution, Signal-to-Noise and Annuli Binning

    CERN Document Server

    Yuan, T -T; Rich, J

    2013-01-01

    With the rapid progress in metallicity gradient studies at high-redshift, it is imperative that we thoroughly understand the systematics in these measurements. This work investigates how the [NII]/Halpha ratio based metallicity gradients change with angular resolution, signal-to-noise (S/N), and annular binning parameters. Two approaches are used: 1. We downgrade the high angular resolution integral-field data of a gravitationally lensed galaxy and re-derive the metallicity gradients at different angular resolution; 2. We simulate high-redshift integral field spectroscopy (IFS) observations under different angular resolution and S/N conditions using a local galaxy with a known gradient. We find that the measured metallicity gradient changes systematically with angular resolution and annular binning. Seeing-limited observations produce significantly flatter gradients than higher angular resolution observations. There is a critical angular resolution limit beyond which the measured metallicity gradient is subst...

  13. Angular resolution of stacked resistive plate chambers

    CERN Document Server

    Samuel, Deepak; Murgod, Lakshmi P

    2016-01-01

    We present here detailed derivations of mathematical expressions for the angular resolution of a set of stacked resistive plate chambers (RPCs). The expressions are validated against experimental results using data collected from the prototype detectors (without magnet) of the upcoming India-based Neutrino Observatory (INO). In principle, these expressions can be used for any other detector with an architecture similar to that of RPCs.

  14. High-angular Resolution Laser Threat Warner

    Directory of Open Access Journals (Sweden)

    Sushil Kumar

    2007-07-01

    Full Text Available In this paper, the design and development aspects of a high-angular resolution laser-threat Warner developed at the Laser Science & Technology Centre (LASTEC, Delhi are presented. It describes a high-angular resolution laser-threat warner capable of giving warning with a resolution of i 3" when it is exposed to laser radiation from visible and near-IR pulsed solid-state laser source. It has a field of view of 90' in the azimuth direction, whereas the elevation coverage is between -5" and + 25". It is capable of handling multiple types of laser threats covering wavelength from 400 nm to 1100 nm and has an operational range of 4 km for a Q-switched laser source energy (10 ns of 10 mJ/pulse and output beam divergence of 1 mrad. The paper also describes its simulated evaluation process and field-testing which it has undergone. The result of field-testing confirms that it meets all its performance specifications mentioned above.

  15. Angular velocity nonlinear observer from vector measurements

    OpenAIRE

    Magnis, Lionel; Petit, Nicolas

    2015-01-01

    The paper proposes a technique to estimate the angular velocity of a rigid body from vector measurements. Compared to the approaches presented in the literature, it does not use attitude information nor rate gyros as inputs. Instead, vector measurements are directly filtered through a nonlinear observer estimating the angular velocity. Convergence is established using a detailed analysis of the linear-time varying dynamics appearing in the estimation error equation. This equation stems from t...

  16. Towards optical intensity interferometry for high angular resolution stellar astrophysics

    CERN Document Server

    Nunez, Paul D

    2012-01-01

    Most neighboring stars are still detected as point sources and are beyond the angular resolution reach of current observatories. Methods to improve our understanding of stars at high angular resolution are investigated. Air Cherenkov telescopes (ACTs), primarily used for Gamma-ray astronomy, enable us to increase our understanding of the circumstellar environment of a particular system. When used as optical intensity interferometers, future ACT arrays will allow us to detect stars as extended objects and image their surfaces at high angular resolution. Optical stellar intensity interferometry (SII) with ACT arrays, composed of nearly 100 telescopes, will provide means to measure fundamental stellar parameters and also open the possibility of model-independent imaging. A data analysis algorithm is developed and permits the reconstruction of high angular resolution images from simulated SII data. The capabilities and limitations of future ACT arrays used for high angular resolution imaging are investigated via ...

  17. Observing and modeling the dynamic atmosphere of the low mass-loss C-star R Sculptoris at high angular resolution

    CERN Document Server

    Sacuto, Stéphane; Hron, Josef; Nowotny, Walter; Paladini, Claudia; Verhoelst, Tijl; Höfner, Susanne

    2010-01-01

    We study the circumstellar environment of the carbon-rich star R Scl using the near- and mid-infrared high spatial resolution observations from the ESO-VLTI instruments VINCI and MIDI. These observations aim at increasing our knowledge of the dynamic processes in play within the very close circumstellar environment where the mass loss of AGB stars is initiated. Data are interpreted using a self-consistent dynamic model. Interferometric observations do not show any significant variability effect at the 16 m baseline between phases 0.17 and 0.23 in the K band, and for both the 15 m baseline between phases 0.66 and 0.97 and the 31 m baseline between phases 0.90 and 0.97 in the N band. We find fairly good agreement between the dynamic model and the spectrophotometric data from 0.4 to 25 $\\mu$m. The model agrees well with the time-dependent flux data at 8.5 $\\mu$m, whereas it is too faint at 11.3 and 12.5 $\\mu$m. The VINCI visibilities are reproduced well, meaning that the extension of the model is suitable in the...

  18. Cepheids at high angular resolution: circumstellar envelope and pulsation

    CERN Document Server

    Gallenne, Alexandre

    2011-01-01

    In 2005, interferometric observations with VLTI/VINCI and CHARA/FLUOR revealed the existence of a circumstellar envelope (CSE) around some Cepheids. This surrounding material is particularly interesting for two reasons: it could have an impact on the distance estimates and could be linked to a past or on-going mass loss. The use of Baade-Wesselink methods for independent distance determinations could be significantly biased by the presence of these envelopes. Although their observations are difficult because of the high contrast between the photosphere of the star and the CSE, several observation techniques have the potential to improve our knowledge about their physical properties. In this thesis, I discuss in particular high angular resolution techniques that I applied to the study of several bright Galactic Cepheids. First, I used adaptive optic observations with NACO of the Cepheid RS Puppis, in order to deduce the flux ratio between the CSE and the photosphere of the star. In addition, I could carry out ...

  19. Transient sources at the highest angular resolution

    CERN Document Server

    Massi, Maria

    2015-01-01

    By definition transients are sudden events, some, like supernovae, are catastrophic, while others might be due to recurrent phenomena. The aim of studying transients is to reveal the physical conditions causing them, in this sense ideal targets for monitoring are transients in binary systems. In these systems the physical process responsible for the transient depends directly or indirectly on the interaction of the two components of the system. Here I report on transients in stellar binary systems at two extremes of stellar evolution: a T~Tauri system formed by two young low mass stellar objects, and X-ray binary systems formed by a star and a neutron star or a black hole, i.e., end points in the life of massive stars. VLBI observations of the young binary system V773 Tau A resolve the binary separation and can be overlapped with the optical frame. Consecutive VLBI observations showing the evolution of the radio emission with respect to the two stellar objects are an unvaluable tool for a better understanding...

  20. Angular resolution of space-based gravitational wave detectors

    International Nuclear Information System (INIS)

    Proposed space-based gravitational wave antennas involve satellites arrayed either in an equilateral triangle around the Earth in the ecliptic plane (the ecliptic-plane option) or in an equilateral triangle orbiting the Sun in such a way that the plane of the triangle is tilted at 60 deg, relative to the ecliptic (the precessing-plane option). In this paper, we explore the angular resolution of these two classes of detectors for two kinds of sources (essentially monochromatic compact binaries and coalescing massive-black-hole binaries) using time-domain expressions for the gravitational waveform that are accurate to 4/2 PN order. Our results display an interesting effect not previously reported in the literature, and particularly underline the importance of including the higher-order PN terms in the waveform when predicting the angular resolution of ecliptic-plane detector arrays

  1. Cepheids at high angular resolution: circumstellar envelope and pulsation

    Science.gov (United States)

    Gallenne, Alexandre

    2011-12-01

    In 2005, interferometric observations with VLTI/VINCI and CHARA/FLUOR revealed the existence of a circumstellar envelope (CSE) around some Cepheids. This surrounding material is particularly interesting for two reasons: it could have an impact on the distance estimates and could be linked to a past or on-going mass loss. The use of Baade-Wesselink methods for independent distance determinations could be significantly biased by the presence of these envelopes. Although their observations are difficult because of the high contrast between the photosphere of the star and the CSE, several observation techniques have the potential to improve our knowledge about their physical properties. In this thesis, I discuss in particular high angular resolution techniques that I applied to the study of several bright Galactic Cepheids. First, I used adaptive optic observations with NACO of the Cepheid RS Puppis, in order to deduce the flux ratio between the CSE and the photosphere of the star. In addition, I could carry out a statistical study of the speckle noise and inspect a possible asymmetry. Secondly, I analysed VISIR data to study the spectral energy distribution of a sample of Cepheids. These diffraction-limited images enabled me to carry out an accurate photometry in the N band and to detect an IR excess linked to the presence of a circumstellar component. On the other hand, applying a Fourier analysis I showed that some components are resolved. I then explored the K' band with the recombination instrument FLUOR for some bright Cepheids. Thanks to new set of data of Y Oph, I improved the study of its circumstellar envelope, using a ring-like model for the CSE. For two other Cepheids, U Vul and S Sge, I applied the interferometric Baade-Wesselink method in order to estimate their distance.

  2. Statistical Angular Resolution Limit for Ultrawideband MIMO Noise Radar

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhou

    2015-01-01

    Full Text Available The two-dimensional angular resolution limit (ARL of elevation and azimuth for MIMO radar with ultrawideband (UWB noise waveforms is investigated using statistical resolution theory. First, the signal model of monostatic UWB MIMO noise radar is established in a 3D reference frame. Then, the statistical angular resolution limits (SARLs of two closely spaced targets are derived using the detection-theoretic and estimation-theoretic approaches, respectively. The detection-theoretic approach is based on the generalized likelihood ratio test (GLRT with given probabilities of false alarm and detection, while the estimation-theoretic approach is based on Smith’s criterion which involves the Cramér-Rao lower bound (CRLB. Furthermore, the relationship between the two approaches is presented, and the factors affecting the SARL, that is, detection parameters, transmit waveforms, array geometry, signal-to-noise ratio (SNR, and parameters of target (i.e., radar cross section (RCS and direction, are analyzed. Compared with the conventional radar resolution theory defined by the ambiguity function, the SARL reflects the practical resolution ability of radar and can provide an optimization criterion for radar system design.

  3. Angular resolution in underground detectors and a status report of the Soudan II nucleon decay detector

    International Nuclear Information System (INIS)

    This paper is a status report of the Soudan II honeycomb drift chamber project. It reports on the physics goals, present progress and future schedule of our experiment. It also includes a discussion of the angular resolution of cosmic ray muons which can be achieved in underground detectors, and in particular how to calibrate the resolution using the moon's shadow in cosmic rays. This last point has relevance in trying to understand the angular distributions in the reported observations of underground muons from Cygnus X-3. 12 refs., 9 figs

  4. H.E.S.S. observations of RX J1713.7-3946 with improved angular and spectral resolution; evidence for gamma-ray emission extending beyond the X-ray emitting shell

    CERN Document Server

    Abdalla, H; Abramowski, A; Aharonian, F; Benkhali, F Ait; Akhperjanian, A G; Andersson, T; Angüner, E O; Arrieta, M; Aubert, P; Backes, M; Balzer, A; Barnard, M; Becherini, Y; Tjus, J Becker; Berge, D; Bernhard, S; Bernlöhr, K; Blackwell, R; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Büchele, M; Bulik, T; Capasso, M; Carr, J; Casanova, S; Cerruti, M; Chakraborty, N; Chalme-Calvet, R; Chaves, R C G; Chen, A; Chevalier, J; Chrétien, M; Coffaro, M; Colafrancesco, S; Cologna, G; Condon, B; Conrad, J; Cui, Y; Davids, I D; Decock, J; Degrange, B; Deil, C; Devin, J; deWilt, P; Dirson, L; Djannati-Ataï, A; Domainko, W; Donath, A; Drury, L O'C; Dutson, K; Dyks, J; Edwards, T; Egberts, K; Eger, P; Ernenwein, J -P; Eschbach, S; Farnier, C; Fegan, S; Fern, M V; Fiasson, A; Fontaine, G; Förster, A; Funk, S; Füßling, M; Gabici, S; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Gottschall, D; Goyal, A; Grondin, M -H; Hadasch, D; Hahn, J; Haupt, M; Hawkes, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hinton, J A; Hofmann, W; Hoischen, C; Holler, M; Horns, D; Ivascenko, A; Jacholkowska, A; Jamrozy, M; Janiak, M; Jankowsky, D; Jankowsky, F; Jingo, M; Jogler, T; Jouvin, L; Jung-Richardt, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kerszberg, D; Khélifi, B; Kieffer, M; King, J; Klepser, S; Klochkov, D; Kluźniak, W; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Kraus, M; Krüger, P P; Laffon, H; Lamanna, G; Lau, J; Lees, J -P; Lefaucheur, J; Lefranc, V; Lemière, A; Lemoine-Goumard, M; Lenain, J -P; Leser, E; Lohse, T; Lorentz, M; Liu, R; López-Coto, R; Lypova, I; Mar, V; Marcowith, A; Mariaud, C; Marx, R; Maurin, G; Maxted, N; Mayer, M; Meintjes, P J; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Mohrmann, L; Morå, K; Moulin, E; Murach, T; de Naurois, M; Niederwanger, F; Niemiec, J; Oakes, L; O'Brien, P; Odaka, H; Öttl, S; Ohm, S; Ostrowski, M; Oya, I; Padovani, M; Panter, M; Parsons, R D; Pekeur, N W; Pelletier, G; Perennes, C; Petrucci, P -O; Peyaud, B; Piel, Q; Pita, S; Poon, H; Prokhorov, D; Prokoph, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Romoli, C; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Salek, D; Sanchez, D A; Santangelo, A; Sasaki, M; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwemmer, S; Seglar-Arroyo, L; Settimo, M; Seyffert, A S; Shafi, N; Shilon, I; Simoni, R; Sol, H; Spanier, F; Spengler, G; Spies, F; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stycz, K; Sushch, I; Tavernet, J -P; Tavernier, T; Taylor, A M; Terrier, R; Tibaldo, L; Tiziani, D; Tluczykont, M; Trichard, C; Tuffs, R; Uchiyama, Y; van der Walt, D J; van Eldik, C; van Rensburg, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Voisin, F; Völk, H J; Vuillaume, T; Wadiasingh, Z; Wagner, S J; Wagner, P; Wagner, R M; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zaborov, D; Zacharias, M; Zanin, R; Zdziarski, A A; Zech, A; Zefi, F; Ziegler, A; Żywucka, N

    2016-01-01

    Supernova remnants exhibit shock fronts (shells) that can accelerate charged particles up to very high energies. In the past decade, measurements of a handful of shell-type supernova remnants in very-high-energy gamma rays have provided unique insights into the acceleration process. Among those objects, RX$~$J1713.7-3946 (also known as G347.3-0.5) has the largest surface brightness, allowing us in the past to perform the most comprehensive study of morphology and spatially resolved spectra of any such very-high-energy gamma-ray source. Here we present extensive new H.E.S.S. measurements of RX$~$J1713.7-3946, almost doubling the observation time compared to our previous publication. Combined with new improved analysis tools, the previous sensitivity is more than doubled. The H.E.S.S. angular resolution of $0.048^\\circ$ ($0.036^\\circ$ above 2 TeV) is unprecedented in gamma-ray astronomy and probes physical scales of 0.8 (0.6) parsec at the remnant's location. The new H.E.S.S. image of RX$~$J1713.7-3946 allows u...

  5. High angular resolution diffusion imaging with stimulated echoes

    DEFF Research Database (Denmark)

    Lundell, Henrik; Alexander, Daniel C; Dyrby, Tim B

    2014-01-01

    other than the diffusion gradients in the STEAM sequence contribute much greater diffusion weighting than in PGSE and lead to a disrupted experimental design. Here, we introduce a simple compensation to the STEAM acquisition that avoids the orientational bias and disrupted experiment design...... angular resolution diffusion imaging (HARDI) data were acquired with and without the proposed compensation. The data were processed to derive standard diffusion tensor imaging (DTI) maps, which highlight the need for the compensation. Ignoring the other gradient pulses, a bias in DTI parameters from STEAM...

  6. A Role for Improved Angular Observations in Geosynchronous Orbit Determination

    Science.gov (United States)

    Sabol, Christopher Andrew

    1998-12-01

    The goal of this thesis is to show that improved angular observations can aid in the determination of satellite position and velocity in the geosynchronous orbit regime. Raven is a new sensor being developed by the U.S. Air Force Research Laboratory which should allow for angular observations of satellites to be made with a standard deviation of 1 arcsecond (which maps into approximately 170 meters at geosynchronous altitude); this is an order of magnitude improvement over traditional angular observation techniques and represents state of the art accuracy of angular observations for geosynchronous orbit determination work. Simulation studies are undertaken to show that these angular observations can be used in the orbit determination process both as the only cracking data source and as a supplement to other tracking data sources such as radar and radio transponder ranges. Results from the radio transponder range analysis are extended to cover Satellite Laser Ranging (SLR) and Global Positioning System (GPS) observation types as well. The studies target both space surveillance and owner/operator mission support aspects of orbit determination although the emphasis will be on mission support satellite operations. Parameters varied in the simulation studies include the number of observing stations, the density of the angular observations, and the number of nights of optical tracking. The data simulations are calibrated based on real data results from a geosynchronous satellite to ensure the integrity of the simulations and the accuracy of the results. The studies show that including the improved angular observations with traditional high accuracy range observations produces a significant improvement in orbit determination accuracy over the range observations alone. The studies also show single site geosynchronous orbit determination is an attractive alternative when combining improved angular and high accuracy range observations.

  7. How does angular resolution affect diffusion imaging measures?

    Science.gov (United States)

    Zhan, Liang; Leow, Alex D; Jahanshad, Neda; Chiang, Ming-Chang; Barysheva, Marina; Lee, Agatha D; Toga, Arthur W; McMahon, Katie L; de Zubicaray, Greig I; Wright, Margaret J; Thompson, Paul M

    2010-01-15

    A key question in diffusion imaging is how many diffusion-weighted images suffice to provide adequate signal-to-noise ratio (SNR) for studies of fiber integrity. Motion, physiological effects, and scan duration all affect the achievable SNR in real brain images, making theoretical studies and simulations only partially useful. We therefore scanned 50 healthy adults with 105-gradient high-angular resolution diffusion imaging (HARDI) at 4T. From gradient image subsets of varying size (6spherical angular distribution energy, we created SNR plots (versus gradient numbers) for seven common diffusion anisotropy indices: fractional and relative anisotropy (FA, RA), mean diffusivity (MD), volume ratio (VR), geodesic anisotropy (GA), its hyperbolic tangent (tGA), and generalized fractional anisotropy (GFA). SNR, defined in a region of interest in the corpus callosum, was near-maximal with 58, 66, and 62 gradients for MD, FA, and RA, respectively, and with about 55 gradients for GA and tGA. For VR and GFA, SNR increased rapidly with more gradients. SNR was optimized when the ratio of diffusion-sensitized to non-sensitized images was 9.13 for GA and tGA, 10.57 for FA, 9.17 for RA, and 26 for MD and VR. In orientation density functions modeling the HARDI signal as a continuous mixture of tensors, the diffusion profile reconstruction accuracy rose rapidly with additional gradients. These plots may help in making trade-off decisions when designing diffusion imaging protocols. PMID:19819339

  8. CHARRON: Code for High Angular Resolution of Rotating Objects in Nature

    Science.gov (United States)

    Domiciano de Souza, A.; Zorec, J.; Vakili, F.

    2012-12-01

    Rotation is one of the fundamental physical parameters governing stellar physics and evolution. At the same time, spectrally resolved optical/IR long-baseline interferometry has proven to be an important observing tool to measure many physical effects linked to rotation, in particular, stellar flattening, gravity darkening, differential rotation. In order to interpret the high angular resolution observations from modern spectro-interferometers, such as VLTI/AMBER and VEGA/CHARA, we have developed an interferometry-oriented numerical model: CHARRON (Code for High Angular Resolution of Rotating Objects in Nature). We present here the characteristics of CHARRON, which is faster (≃q10-30 s per model) and thus more adapted to model-fitting than the first version of the code presented by Domiciano de Souza et al. (2002).

  9. Angular velocity nonlinear observer from single vector measurements

    OpenAIRE

    Magnis, Lionel; Petit, Nicolas

    2015-01-01

    The paper proposes a technique to estimate the angular velocity of a rigid body from single vector measurements. Compared to the approaches presented in the literature, it does not use attitude information nor rate gyros as inputs. Instead, vector measurements are directly filtered through a nonlinear observer estimating the angular velocity. Convergence is established using a detailed analysis of a linear-time varying dynamics appearing in the estimation error equation. This equation stems f...

  10. Global Exponential Angular Velocity Observer for Rigid Body Systems

    OpenAIRE

    Berkane, Soulaimane; Abdessameud, Abdelkader; Tayebi, Abdelhamid

    2016-01-01

    We present a uniformly globally exponentially stable hybrid angular velocity observer for rigid body systems designed directly on $SO(3)\\times\\mathbb{R}^3$. The global exponential stability result makes this observer a good candidate for a controller-observer combination with a guaranteed separation property. Simulation results are provided to demonstrate the effectiveness of the proposed hybrid observer as a part of an attitude stabilization scheme.

  11. VizieR Online Data Catalog: High angular resolution spectroscopy of NGC 1277 (Walsh+, 2016)

    Science.gov (United States)

    Walsh, J. L.; van den Bosch, R. C. E.; Gebhardt, K.; Yildirim, A.; Richstone, D. O.; Gultekin, K.; Husemann, B.

    2016-03-01

    We obtained high angular resolution spectroscopy of NGC 1277 using the Near-infrared Integral Field Spectrometer (NIFS) with the ALTtitude conjugate Adaptive optics for the InfraRed system on the Gemini North telescope. The observations were taken as part of program GN-2011B-Q-27 over the course of four nights, spanning from 2012 October 30 to 2012 December 27. We observed NGC 1277 using 600s object-sky-object exposures with the H+K filter and K grating centered on 2.2μm. (1 data file).

  12. Understanding Active Galactic Nuclei using near-infrared high angular resolution polarimetry II: Preliminary results

    CERN Document Server

    Marin, F; Goosmann, R; Gratadour, D; Rouan, D; Clénet, Y; Pelat, D; Lobos, P Andrea Rojas

    2016-01-01

    In this second research note of a series of two, we present the first near-infrared results we obtained when modeling Active Galactic Nuclei (AGN). Our first proceedings showed the comparison between the MontAGN and STOKES Monte Carlo codes. Now we use our radiative transfer codes to simulate the polarization maps of a prototypical, NGC 1068-like, type-2 radio-quiet AGN. We produced high angular resolution infrared (1 micron) polarization images to be compared with recent observations in this wavelength range. Our preliminary results already show a good agreement between the models and observations but cannot account for the peculiar linear polarization angle of the torus such as observed. Gratadour et al. 2015 found a polarization position angle being perpendicular to the bipolar outflows axis. Further work is needed to improve the models by adding physical phenomena such as dichroism and clumpiness.

  13. The close environment of high-mass X-ray binaries at high angular resolution I. VLTI/AMBER and VLTI/PIONIER near-infrared interferometric observations of Vela X-1

    CERN Document Server

    Choquet, E; Bouquin, J -B Le; Merand, A; Berger, J -P; Haubois, X; Perrin, G; Petrucci, P -O; Lazareff, B; Pott, J -U

    2013-01-01

    Recent improvements on the sensitivity and spectral resolution of X-ray observations have led to a better understanding of the properties of matter in the vicinity of High Mass X-ray Binaries hosting a supergiant star and a compact object. However the geometry and physical properties of their environment at larger scales are currently only predicted by simulations. We aim at exploring the environment of Vela X-1 at a few stellar radii of the supergiant using spatially resolved observations in the near-infrared and at studying its dynamical evolution along the 9-day orbital period of the system. We observed Vela X-1 in 2010 and 2012 using long baseline interferometry at VLTI, respectively with the AMBER instrument in the K band and the PIONIER instrument in the H band. The PIONIER observations span through one orbital period to monitor possible evolutions in the geometry of the system. We resolved a structure of $8\\pm3~R_\\star$ from the AMBER data and $2.0\\,_{-1.2}^{+0.7}~R_\\star$ from the PIONIER data. From t...

  14. B[e] stars at the highest angular resolution: the case of HD87643

    CERN Document Server

    Millour, Florentin; Borges-Fernandes, Marcelo; Meilland, Anthony

    2009-01-01

    New results on the B[e] star HD87643 are presented here. They were obtained with a wide range of di?erent instruments, from wide-?eld imaging with the WFI camera, high resolution spectroscopy with the FEROS instrument, high angular resolution imaging with the adaptive optics camera NACO, to the highest angular resolution available with AMBER on the VLTI. We report the detection of a companion to HD87643 with AMBER, subsequently con?rmed in the NACO data. Implications of that discovery to some of the previously di?cult-to-understand data-sets are then presented.

  15. Improving the H.E.S.S. angular resolution using the Disp method

    CERN Document Server

    Lu, C -C

    2013-01-01

    The angular resolution of imaging atmospheric Cherenkov telescopes depends on the employed event reconstruction methods. By taking the weighted average of intersections of shower axes, the H.E.S.S. experiment achieves a 0.08 degree angular resolution at 20 degree zenith angle with an image size cut of 160 p.e. for sources with a spectral index of 2. However, the angular resolution degrades to 0.14 degree at 60 degree zenith angle, due to the larger fraction of nearly parallel images. The Disp method reduces the impact of parallel images by including an estimation of the image displacement (disp), inferred from the Hillas parameters, in the reconstruction procedure. By using this technique, the angular resolution at large zenith angles can be improved by 50%. An additional cut on the estimated direction uncertainty can further improve the angular resolution to around 0.05 degrees at the expense of a loss of 50% of effective area. The performance of this reconstruction method on simulated gamma-ray events and r...

  16. High-Angular-Resolution and High-Sensitivity Science Enabled by Beamformed ALMA

    CERN Document Server

    Fish, Vincent; Anderson, James; Asada, Keiichi; Baudry, Alain; Broderick, Avery; Carilli, Chris; Colomer, Francisco; Conway, John; Dexter, Jason; Doeleman, Sheperd; Eatough, Ralph; Falcke, Heino; Frey, Sándor; Gabányi, Krisztina; Gálvan-Madrid, Roberto; Gammie, Charles; Giroletti, Marcello; Goddi, Ciriaco; Gómez, Jose L; Hada, Kazuhiro; Hecht, Michael; Honma, Mareki; Humphreys, Elizabeth; Impellizzeri, Violette; Johannsen, Tim; Jorstad, Svetlana; Kino, Motoki; Körding, Elmar; Kramer, Michael; Krichbaum, Thomas; Kudryavtseva, Nadia; Laing, Robert; Lazio, Joseph; Loeb, Abraham; Lu, Ru-Sen; Maccarone, Thomas; Marscher, Alan; Mart'ı-Vidal, Iván; Martins, Carlos; Matthews, Lynn; Menten, Karl; Miller, Jon; Miller-Jones, James; Mirabel, Félix; Muller, Sebastien; Nagai, Hiroshi; Nagar, Neil; Nakamura, Masanori; Paragi, Zsolt; Pradel, Nicolas; Psaltis, Dimitrios; Ransom, Scott; Rodr'\\iguez, Luis; Rottmann, Helge; Rushton, Anthony; Shen, Zhi-Qiang; Smith, David; Stappers, Benjamin; Takahashi, Rohta; Tarchi, Andrea; Tilanus, Remo; Verbiest, Joris; Vlemmings, Wouter; Walker, R Craig; Wardle, John; Wiik, Kaj; Zackrisson, Erik; Zensus, J Anton

    2013-01-01

    An international consortium is presently constructing a beamformer for the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile that will be available as a facility instrument. The beamformer will aggregate the entire collecting area of the array into a single, very large aperture. The extraordinary sensitivity of phased ALMA, combined with the extremely fine angular resolution available on baselines to the Northern Hemisphere, will enable transformational new very long baseline interferometry (VLBI) observations in Bands 6 and 7 (1.3 and 0.8 mm) and provide substantial improvements to existing VLBI arrays in Bands 1 and 3 (7 and 3 mm). The ALMA beamformer will have impact on a variety of scientific topics, including accretion and outflow processes around black holes in active galactic nuclei (AGN), tests of general relativity near black holes, jet launch and collimation from AGN and microquasars, pulsar and magnetar emission processes, the chemical history of the universe and the evolution of fundame...

  17. Simple Fourier optics formalism for high angular resolution systems and nulling interferometry

    CERN Document Server

    Henault, Francois

    2009-01-01

    In this paper are reviewed various designs of advanced, multi-aperture optical systems dedicated to high angular resolution imaging or to the detection of exo-planets by nulling interferometry. A simple Fourier optics formalism is presented, allowing to derive their imaging and nulling basic relationships as convolution or cross correlation products suitable for fast and accurate computation. The most promising designs seem to be the free-flying, axially recombined interferometers showing an unsurpassed imaging capacity, and a conceptual "super-resolving telescope" utilizing a mosaicing observation procedure. The entire study is only valid in the frame of first-order geometrical optics and scalar diffraction theory. Furthermore, it is assumed that all entrance sub-apertures are optically conjugated with their associated exit pupils, a particularity inducing an instrumental behaviour comparable with those of diffraction gratings.

  18. Non-Parametric Tests of Structure for High Angular Resolution Diffusion Imaging in Q-Space

    CERN Document Server

    Olhede, Sofia C

    2010-01-01

    High angular resolution diffusion imaging data is the observed characteristic function for the local diffusion of water molecules in tissue. This data is used to infer structural information in brain imaging. Non-parametric scalar measures are proposed to summarize such data, and to locally characterize spatial features of the diffusion probability density function (PDF), relying on the geometry of the characteristic function. Summary statistics are defined so that their distributions are, to first order, both independent of nuisance parameters and also analytically tractable. The dominant direction of the diffusion at a spatial location (voxel) is determined, and a new set of axes are introduced in Fourier space. Variation quantified in these axes determines the local spatial properties of the diffusion density. Non-parametric hypothesis tests for determining whether the diffusion is unimodal, isotropic or multi-modal are proposed. More subtle characteristics of white-matter microstructure, such as the degre...

  19. All sky mapping of the Cosmic Microwave Background at 8' angular resolution with a 0.1 K bolometer: simulations

    OpenAIRE

    Giard, M.; Hivon, E.; Nguyen, C.; Gispert, R.; Górski, K. M.; Lange, A; Ristorcelli, I.

    1999-01-01

    We present simulations of observations with the 143 GHz channel of the Planck High Frequency Instrument (HFI). These simulations are performed over the entire sky, using the true angular resolution of this channel: 8 arcmin FWHM, 3.5 arcmin per pixel. We show that with measured 0.1 K bolometer performances, the sensitivity needed on the Cosmic Microwave Background (CMB) survey is obtained using simple and robust data processing techniques, including a destriping algorithm.

  20. Low Power Compact Radio Galaxies at High Angular Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Giroletti, Marcello; Giovannini, G.; /Bologna U. /Bologna, Ist. Radioastronomia; Taylor, G.B.; /KIPAC, Menlo Park /NRAO, Socorro

    2005-06-30

    We present sub-arcsecond resolution multi-frequency (8 and 22 GHz) VLA images of five low power compact (LPC) radio sources, and phase referenced VLBA images at 1.6 GHz of their nuclear regions. At the VLA resolution we resolve the structure and identify component positions and flux densities. The phase referenced VLBA data at 1.6 GHz reveals flat-spectrum, compact cores (down to a few milliJansky) in four of the five sources. The absolute astrometry provided by the phase referencing allows us to identify the center of activity on the VLA images. Moreover, these data reveal rich structures, including two-sided jets and secondary components. On the basis of the arcsecond scale structures and of the nuclear properties, we rule out the presence of strong relativistic effects in our LPCs, which must be intrinsically small (deprojected linear sizes {approx}< 10 kpc). Fits of continuous injection models reveal break frequencies in the GHz domain, and ages in the range 10{sup 5}-10{sup 7} yrs. In LPCs, the outermost edge may be advancing more slowly than in more powerful sources or could even be stationary; some LPCs might also have ceased their activity. In general, the properties of LPCs can be related to a number of reasons, including, but not limited to: youth, frustration, low kinematic power jets, and short-lived activity in the radio.

  1. Chiral resolution of spin angular momentum in linearly polarized and unpolarized light.

    Science.gov (United States)

    Hernández, R J; Mazzulla, A; Provenzano, C; Pagliusi, P; Cipparrone, G

    2015-11-20

    Linearly polarized (LP) and unpolarized (UP) light are racemic entities since they can be described as superposition of opposite circularly polarized (CP) components of equal amplitude. As a consequence they do not carry spin angular momentum. Chiral resolution of a racemate, i.e. separation of their chiral components, is usually performed via asymmetric interaction with a chiral entity. In this paper we provide an experimental evidence of the chiral resolution of linearly polarized and unpolarized Gaussian beams through the transfer of spin angular momentum to chiral microparticles. Due to the interplay between linear and angular momentum exchange, basic manipulation tasks, as trapping, spinning or orbiting of micro-objects, can be performed by light with zero helicity. The results might broaden the perspectives for development of miniaturized and cost-effective devices.

  2. Coexistence of Near-Field and Far-Field Sources: the Angular Resolution Limit

    International Nuclear Information System (INIS)

    Passive source localization is a well known inverse problem in which we convert the observed measurements into information about the direction of arrivals. In this paper we focus on the optimal resolution of such problem. More precisely, we propose in this contribution to derive and analyze the Angular Resolution Limit (ARL) for the scenario of mixed Near-Field (NF) and Far-Field (FF) Sources. This scenario is relevant to some realistic situations. We base our analysis on the Smith's equation which involves the Cramér-Rao Bound (CRB). This equation provides the theoretical ARL which is independent of a specific estimator. Our methodology is the following: first, we derive a closed-form expression of the CRB for the considered problem. Using these expressions, we can rewrite the Smith's equation as a 4-th order polynomial by assuming a small separation of the sources. Finally, we derive in closed-form the analytic ARL under or not the assumption of low noise variance. The obtained expression is compact and can provide useful qualitative informations on the behavior of the ARL

  3. The Prospects and Promise of High Angular Resolution Binary Orbits

    Science.gov (United States)

    Hartkopf, W. I.

    1999-12-01

    Just how many stellar masses are actually known to 1% or 5% or even 10% accuracy? How well do they really define the Mass-Luminosity relation? Is anything known about the M-L relation for post-Main Sequence stars? What progress is being made in improving the situation? How much of an impact did Hipparcos make? What about the new interferometers? This talk will focus on the advances which are finally being made in the determination of stellar masses. I believe we are about to enter a "golden age" for stellar evolution studies, when masses can be determined to sufficient accuracy and in sufficient numbers to define the M-L relation for different luminosity classes and perhaps even discern the subtle effects of metallicity and age. I'll discuss the new observing tools (now at hand or about to come on line) which will be responsible for bringing about these advances in our knowledge of this basic, but all-important stellar property.

  4. Associations of water and methanol masers at milli-arcsec angular resolution in two high-mass young stellar objects

    CERN Document Server

    Goddi, C; Sanna, A; Cesaroni, R; Minier, V

    2006-01-01

    Most previous high-angular (<0.1 arcsec) resolution studies of molecular masers in high-mass star forming regions (SFRs) have concentrated mainly on either water or methanol masers. While high-angular resolution observations have clarified that water masers originate from shocks associated with protostellar jets, different environments have been proposed in several sources to explain the origin of methanol masers. Tha aim of the paper is to investigate the nature of the methanol maser birthplace in SFRs and the association between the water and methanol maser emission in the same young stellar object. We have conducted phase-reference Very Long Baseline Interferometry (VLBI) observations of water and methanol masers toward two high-mass SFRs, Sh 2-255 IR and AFGL 5142. In Sh 2-255 IR water masers are aligned along a direction close to the orientation of the molecular outflow observed on angular scales of 1-10 arcsec, tracing possibly the disk-wind emerging from the disk atmosphere. In AFGL 5142 water maser...

  5. Angular observables for spin discrimination in boosted diboson final states

    CERN Document Server

    Buschmann, Malte

    2016-01-01

    We investigate the prospects for spin determination of a heavy diboson resonance using angular observables. Focusing in particular on boosted fully hadronic final states, we detail both the differences in signal efficiencies and distortions of differential distributions resulting from various jet substructure techniques. We treat the 2 TeV diboson excess as a case study, but our results are generally applicable to any future discovery in the diboson channel. Scrutinizing ATLAS and CMS analyses at 8 TeV and 13 TeV, we find that the specific cuts employed in these analyses have a tremendous impact on the discrimination power between different signal hypotheses. We discuss modified cuts that can offer a significant boost to spin sensitivity in a post-discovery era. Even without altered cuts, we show that CMS, and partly also ATLAS, will be able to distinguish between spin 0, 1, or 2 new physics diboson resonances at the $2\\sigma$ level with 30 fb$^{-1}$ of 13 TeV data, for our 2 TeV case study.

  6. Angular observables for spin discrimination in boosted diboson final states

    Science.gov (United States)

    Buschmann, Malte; Yu, Felix

    2016-09-01

    We investigate the prospects for spin determination of a heavy diboson resonance using angular observables. Focusing in particular on boosted fully hadronic final states, we detail both the differences in signal efficiencies and distortions of differential distributions resulting from various jet substructure techniques. We treat the 2 TeV diboson excess as a case study, but our results are generally applicable to any future discovery in the diboson channel. Scrutinizing ATLAS and CMS analyses at 8 TeV and 13 TeV, we find that the specific cuts employed in these analyses have a tremendous impact on the discrimination power between different signal hypotheses. We discuss modified cuts that can offer a significant boost to spin sensitivity in a post-discovery era. Even without altered cuts, we show that CMS, and partly also ATLAS, will be able to distinguish between spin 0, 1, or 2 new physics diboson resonances at the 2 σ level with 30 fb-1 of 13 TeV data, for our 2 TeV case study.

  7. European Extremely Large Telescope Site Characterization II: High angular resolution parameters

    CERN Document Server

    Ramió, Héctor Vázquez; Muñoz-Tuñón, Casiana; Sarazin, Marc; Varela, Antonia M; Trinquet, Hervé; Delgado, José Miguel; Fuensalida, Jesús J; Reyes, Marcos; Benhida, Abdelmajid; Benkhaldoun, Zouhair; Lambas, Diego García; Hach, Youssef; Lazrek, M; Lombardi, Gianluca; Navarrete, Julio; Recabarren, Pablo; Renzi, Victor; Sabil, Mohammed; Vrech, Rubén

    2012-01-01

    This is the second article of a series devoted to European Extremely Large Telescope (E-ELT) site characterization. In this article we present the main properties of the parameters involved in high angular resolution observations from the data collected in the site testing campaign of the E-ELT during the Design Study (DS) phase. Observations were made in 2008 and 2009, in the four sites selected to shelter the future E-ELT (characterized under the ELT-DS contract): Aklim mountain in Morocco, Observatorio del Roque de los Muchachos (ORM) in Spain, Mac\\'on range in Argentina, and Cerro Ventarrones in Chile. The same techniques, instruments and acquisition procedures were taken on each site. A Multiple Aperture Scintillation Sensor (MASS) and a Differential Image Motion Monitor (DIMM) were installed at each site. Global statistics of the integrated seeing, the free atmosphere seeing, the boundary layer seeing and the isoplanatic angle were studied for each site, and the results are presented here. In order to e...

  8. Development of a high angular resolution diffusion imaging human brain template.

    Science.gov (United States)

    Varentsova, Anna; Zhang, Shengwei; Arfanakis, Konstantinos

    2014-05-01

    Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy.

  9. Identification of sub-grains and low angle boundaries beyond the angular resolution of EBSD maps

    Energy Technology Data Exchange (ETDEWEB)

    Germain, L., E-mail: Lionel.germain@univ-lorraine.fr [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3), UMR 7239, CNRS/Université de Lorraine, F-57045 Metz (France); Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (‘LabEx DAMAS’), Université de Lorraine (France); Kratsch, D. [Laboratoire d' Informatique Théorique et Appliquée (LITA), EA3079, Université de Lorraine, 57045 Metz Cedex 1 (France); Salib, M. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3), UMR 7239, CNRS/Université de Lorraine, F-57045 Metz (France); Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (‘LabEx DAMAS’), Université de Lorraine (France); Institut Jean Lamour (IJL), SI2M Dept., CNRS UMR 7198, Université de Lorraine, Parc de Saurupt, CS 50840, F-54011 Nancy Cedex (France); Gey, N. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3), UMR 7239, CNRS/Université de Lorraine, F-57045 Metz (France); Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (‘LabEx DAMAS’), Université de Lorraine (France)

    2014-12-15

    A new method called ALGrId (Anti-Leak GRain IDentification) is proposed for the detection of sub-grains beyond the relative angular resolution of Electron Backscatter Diffraction maps. It does not use any additional information such as Kikuchi Pattern Quality map nor need data filtering. It uses a modified Dijkstra algorithm which seeks the continuous set of boundaries having the highest average disorientation angle. - Highlights: • ALGrId is a new method to identify sub-grains and low angle boundaries in EBSD maps. • Unlike classical methods, ALGrId works even beyond the relative angular resolution. • If the orientation noise peaks at 0.7°, ALGrid detects 0.4°-boundaries correctly. • In the same example, the classical algorithm identifies 1.1°-boundaries only.

  10. Next Generation X-ray Optics: High Angular Resolution, Light Weight, and Low Production Cost

    Science.gov (United States)

    Zhang, William

    2014-08-01

    Every conceivable future x-ray astronomical mission would require x-ray optics. These optics must meet the three-fold requirements of angular resolution, effective area, and cost.In this poster we will present the rationale, technical approach, and status of an x-ray optics technology development program that has been underway at Goddard Space Flight Center and Marshall Space Flight Center.

  11. Angular Resolution of a Photoelectric Polarimeter in the Focus of an Optical System

    OpenAIRE

    Lazzarotto, Francesco; Fabiani, Sergio; Costa, Enrico; Muleri, Fabio; Soffitta, Paolo; Di Cosimo, Sergio; Di Persio, Giuseppe; Rubini, Alda; Bellazzini, Ronaldo; Brez, Alessandro; Spandre, Gloria; Cotroneo, Vincenzo; Moretti, Alberto; Pareschi, Giovanni; Tagliaferri, Giampiero

    2009-01-01

    The INFN and INAF Italian research institutes developed a space-borne X-Ray polarimetry experiment based on a X-Ray telescope, focussing the radiation on a Gas Pixel Detector (GPD). The instrument obtains the polarization angle of the absorbed photons from the direction of emission of the photoelectrons as visualized in the GPD. Here we will show how we compute the angular resolution of such an instrument.

  12. Sub-Airy disk angular resolution with high dynamic range in the near-infrared

    Directory of Open Access Journals (Sweden)

    Richichi A.

    2011-07-01

    Full Text Available Lunar occultations (LO are a simple and effective high angular resolution method, with minimum requirements in instrumentation and telescope time. They rely on the analysis of the diffraction fringes created by the lunar limb. The diffraction phenomen occurs in space, and as a result LO are highly insensitive to most of the degrading effects that limit the performance of traditional single telescope and long-baseline interferometric techniques used for direct detection of faint, close companions to bright stars. We present very recent results obtained with the technique of lunar occultations in the near-IR, showing the detection of companions with very high dynamic range as close as few milliarcseconds to the primary star. We discuss the potential improvements that could be made, to increase further the current performance. Of course, LO are fixed-time events applicable only to sources which happen to lie on the Moon’s apparent orbit. However, with the continuously increasing numbers of potential exoplanets and brown dwarfs beign discovered, the frequency of such events is not negligible. I will list some of the most favorable potential LO in the near future, to be observed from major observatories.

  13. Method for improving the angular resolution of a neutron scatter camera

    Science.gov (United States)

    Mascarenhas, Nicholas; Marleau, Peter; Gerling, Mark; Cooper, Robert Lee; Mrowka, Stanley; Brennan, James S.

    2012-12-25

    An instrument that will directly image the fast fission neutrons from a special nuclear material source wherein the neutron detection efficiency is increased has been described. Instead of the previous technique that uses a time-of-flight (TOF) between 2 widely spaced fixed planes of neutron detectors to measure scatter neutron kinetic energy, we now use the recoil proton energy deposited in the second of the 2 scatter planes which can now be repositioned either much closer together or further apart. However, by doubling the separation distance between the 2 planes from 20 cm to a distance of 40 cm we improved the angular resolution of the detector from about 12.degree. to about 10.degree.. A further doubling of the separation distance to 80 cm provided an addition improvement in angular resolution of the detector to about 6.degree. without adding additional detectors or ancillary electronics. The distance between planes also may be dynamically changed using a suitable common technique such as a gear- or motor-drive to toggle between the various positions. The angular resolution of this new configuration, therefore, is increased at the expanse of detection sensitivity. However, the diminished sensitivity may be acceptable for those applications where the detector is able to interrogate a particular site for an extended period.

  14. Frequency and Angular Resolution for Measuring, Presenting and Predicting Loudspeaker Polar Data

    DEFF Research Database (Denmark)

    Staffeldt, Henrik; Seidel, Felicity

    1996-01-01

    The spherical polar loudspeaker data available today are usually measured with such a coarse resolution that only rough estimates of the performance of sound systems can be predicted by applying these data. Complex, spherical polar data with higher angular and frequency resolutions than used today...... measurement principles and systems, in terms of specific levels of accuracy, are also discussed. The presented material consists of research the authors have done for the AES Standards Committee SC-04-03, working group on loudspeaker modeling and measurement, toward a goal set by that working group...

  15. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): High Angular Resolution Astronomy at Far-Infrared Wavelengths

    Science.gov (United States)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission. and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however. is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (-0.5 arcsec) in this band. BETTII will use a double- Fourier instrument to simultaneously obtain both spatial and spectral informatioT. he spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  16. Molecular outflows and hot molecular core in G24.78+0.08 at sub-arcsecond angular resolution

    OpenAIRE

    Beltran, M. T.; Cesaroni, R.; Zhang, Q; Galvan-Madrid, R.; Beuther, H.; Fallscheer, C.; Neri, R.; Codella, C.

    2011-01-01

    Context. This study is part of a large project to study the physics of accretion and molecular outflows towards a selected sample of high-mass star-forming regions that show evidence of infall and rotation from previous studies. Aims. We wish to make a thorough study at high-angular resolution of the structure and kinematics of the HMCs and corresponding molecular outflows in the high-mass star-forming region G24.78+0.08. Methods. We carried out SMA and IRAM PdBI observations at 1.3 and 1.4 m...

  17. On the observability of the quark orbital angular momentum distribution

    Energy Technology Data Exchange (ETDEWEB)

    Courtoy, Aurore, E-mail: aurore.courtoy@ulg.be [IFPA, AGO Department, Université de Liège, Bât. B5, Sart Tilman, B-4000 Liège (Belgium); Laboratori Nazionali di Frascati, INFN, Frascati (Italy); Goldstein, Gary R., E-mail: gary.goldstein@tufts.edu [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Osvaldo Gonzalez Hernandez, J., E-mail: jog4m@virginia.edu [Istituto Nazionale di Fisica Nucleare (INFN) – Sezione di Torino, via P. Giuria, 1, 10125 Torino (Italy); Liuti, Simonetta, E-mail: sl4y@virginia.edu [University of Virginia – Physics Department, 382 McCormick Rd., Charlottesville, VA 22904 (United States); Laboratori Nazionali di Frascati, INFN, Frascati (Italy); Rajan, Abha, E-mail: ar5xc@virginia.edu [University of Virginia – Physics Department, 382 McCormick Rd., Charlottesville, VA 22904 (United States)

    2014-04-04

    We argue that due to parity constraints, the helicity combination of the purely momentum space counterparts of the Wigner distributions – the generalized transverse momentum distributions – that describes the configuration of an unpolarized quark in a longitudinally polarized nucleon can enter the deeply virtual Compton scattering amplitude only through matrix elements involving a final state interaction. The relevant matrix elements in turn involve light-cone operators projections in the transverse direction, or they appear in the deeply virtual Compton scattering amplitude at twist three. Orbital angular momentum or the spin structure of the nucleon was a major reason for these various distributions and amplitudes to have been introduced. We show that the twist three contributions associated with orbital angular momentum are related to the target-spin asymmetry in deeply virtual Compton scattering, already measured at HERMES.

  18. On the observability of the quark orbital angular momentum distribution

    International Nuclear Information System (INIS)

    We argue that due to parity constraints, the helicity combination of the purely momentum space counterparts of the Wigner distributions – the generalized transverse momentum distributions – that describes the configuration of an unpolarized quark in a longitudinally polarized nucleon can enter the deeply virtual Compton scattering amplitude only through matrix elements involving a final state interaction. The relevant matrix elements in turn involve light-cone operators projections in the transverse direction, or they appear in the deeply virtual Compton scattering amplitude at twist three. Orbital angular momentum or the spin structure of the nucleon was a major reason for these various distributions and amplitudes to have been introduced. We show that the twist three contributions associated with orbital angular momentum are related to the target-spin asymmetry in deeply virtual Compton scattering, already measured at HERMES.

  19. High-angular resolution observations of the Pistol Star

    CERN Document Server

    Martayan, Christophe; Bouquin, Jean-Baptiste Le; Merand, Antoine; Montagnier, Guillaume; Selman, Fernando; Girard, Julien; Fox, Andrew; Baade, Dietrich; Fremat, Yves; Lobel, Alex; Martins, Fabrice; Patru, Fabien; Rivinius, Thomas; Sana, Hugues; Stefl, Stan; Zorec, Jean; Semaan, Thierry

    2010-01-01

    First results of near-IR adaptive optics (AO)-assisted imaging, interferometry, and spectroscopy of this Luminous Blue Variable (LBV) are presented. They suggest that the Pistol Star is at least double. If the association is physical, it would reinforce questions concerning the importance of multiplicity for the formation and evolution of extremely massive stars.

  20. Noise reduction methods in analysis of near infrared lunar occultation light curves for high angular resolution measurements

    CERN Document Server

    Baug, Tapas

    2013-01-01

    Lunar occultation (LO) technique in the near-infrared provides angular resolution down to milliarcseconds on the occulted source even with ground-based 1m class telescopes. LO observations are limited to brighter objects because they require high signal to noise ratio (S/N ~ 40) for proper extraction of angular diameter values. Hence, methods to improve the S/N ratio by reducing noise using Fourier and Wavelet transforms have been explored in this study. A sample of 54 near-infrared LO light curves observed with IR Camera at Mt Abu observatory has been used. It is seen that both Fourier and Wavelet methods have shown improvement in S/N, compared to the original data. However, the application of wavelet transforms results in slight smoothening of the fringes resulting in a higher angular diameter value. Fourier transforms which reduce discrete noise frequencies do not distort the fringe. Fourier transform method seems to be effective in S/N improvement, as well as improved model fit particularly in the fainter...

  1. A Survey of the Polarized Emission from the Galactic Plane at 1420 MHz with Arcminute Angular Resolution

    CERN Document Server

    Landecker, T L; Reid, R I; Reich, P; Wolleben, M; Kothes, R; Uyaniker, B; Gray, A D; Del Rizzo, D; Furst, E; Taylor, A R; Wielebinski, R

    2010-01-01

    Context: Observations of polarized emission are a significant source of information on the magnetic field that pervades the Interstellar Medium of the Galaxy. Despite the acknowledged importance of the magnetic field in interstellar processes, our knowledge of field configurations on all scales is seriously limited. Aims: This paper describes an extensive survey of polarized Galactic emission at 1.4 GHz that provides data with arcminute resolution and complete coverage of all structures from the broadest angular scales to the resolution limit, giving information on the magneto-ionic medium over a wide range of interstellar environments. Methods: Data from the DRAO Synthesis Telescope, the Effelsberg 100-m Telescope, and the DRAO 26-m Telescope have been combined. Angular resolution is ~1' and the survey extends from l = 66 deg to l = 175 deg over a range -3 deg < b < 5 deg along the northern Galactic plane, with a high-latitude extension from l = 101 deg to l = 116 deg up to b = 17.5 deg. This is the fi...

  2. Astronomy at high angular resolution a compendium of techniques in the visible and near-infrared

    CERN Document Server

    Hussain, Gaitee; Berger, Jean-Philippe; Schmidtobreick, Linda

    2016-01-01

    This book offers an essential compendium of astronomical high-resolution techniques. Recent years have seen considerable developments in such techniques, which are critical to advances in many areas of astronomy. As reflected in the book, these techniques can be divided into direct methods, interferometry, and reconstruction methods, and can be applied to a huge variety of astrophysical systems, ranging from planets, single stars and binaries to active galactic nuclei, providing angular resolution in the micro- to tens of milliarcsecond scales. Written by experts in their fields, the chapters cover adaptive optics, aperture masking imaging, spectra disentangling, interferometry, lucky imaging, Roche tomography, imaging with interferometry, interferometry of AGN, AGN reverberation mapping, Doppler- and magnetic imaging of stellar surfaces, Doppler tomography, eclipse mapping, Stokes imaging, and stellar tomography. This book is intended to enable a next generation of astronomers to apply high-resolution techni...

  3. Observation of Four-Photon Orbital Angular Momentum Entanglement

    Science.gov (United States)

    Hiesmayr, B. C.; de Dood, M. J. A.; Löffler, W.

    2016-02-01

    We demonstrate genuine multipartite quantum entanglement of four photons in their orbital angular momentum degrees of freedom, where a high-dimensional discrete Hilbert space is attached to each photon. This can encode more quantum information compared to the qubit case, but it is a long-standing problem to entangle more than two such photons. In our experiment we use pulsed spontaneous parametric down-conversion to produce the photon quadruplets, which allows us to detect about one four-photon event per second. By means of quantum state reconstruction and a suitable witness operator we find that the photon quadruplets form a genuine multipartite entangled symmetric Dicke state. This opens a new tool for addressing foundational questions in quantum mechanics, and for exploration of novel high-dimensional multiparty quantum information applications such as secret sharing.

  4. X-ray Interferometry with Transmissive Beam Combiners for Ultra-High Angular Resolution Astronomy

    Science.gov (United States)

    Skinner, G. K.; Krismanic, John F.

    2009-01-01

    Abstract Interferometry provides one of the possible routes to ultra-high angular resolution for X-ray and gamma-ray astronomy. Sub-micro-arc-second angular resolution, necessary to achieve objectives such as imaging the regions around the event horizon of a super-massive black hole at the center of an active galaxy, can be achieved if beams from parts of the incoming wavefront separated by 100s of meters can be stably and accurately brought together at small angles. One way of achieving this is by using grazing incidence mirrors. We here investigate an alternative approach in which the beams are recombined by optical elements working in transmission. It is shown that the use of diffractive elements is a particularly attractive option. We report experimental results from a simple 2-beam interferometer using a low-cost commercially available profiled film as the diffractive elements. A rotationally symmetric filled (or mostly filled) aperture variant of such an interferometer, equivalent to an X-ray axicon, is shown to offer a much wider bandpass than either a Phase Fresnel Lens (PFL) or a PFL with a refractive lens in an achromatic pair. Simulations of an example system are presented.

  5. Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction.

    Science.gov (United States)

    Wallis, David; Hansen, Lars N; Ben Britton, T; Wilkinson, Angus J

    2016-09-01

    Dislocations in geological minerals are fundamental to the creep processes that control large-scale geodynamic phenomena. However, techniques to quantify their densities, distributions, and types over critical subgrain to polycrystal length scales are limited. The recent advent of high-angular resolution electron backscatter diffraction (HR-EBSD), based on diffraction pattern cross-correlation, offers a powerful new approach that has been utilised to analyse dislocation densities in the materials sciences. In particular, HR-EBSD yields significantly better angular resolution (densities to be analysed. We develop the application of HR-EBSD to olivine, the dominant mineral in Earth's upper mantle by testing (1) different inversion methods for estimating geometrically necessary dislocation (GND) densities, (2) the sensitivity of the method under a range of data acquisition settings, and (3) the ability of the technique to resolve a variety of olivine dislocation structures. The relatively low crystal symmetry (orthorhombic) and few slip systems in olivine result in well constrained GND density estimates. The GND density noise floor is inversely proportional to map step size, such that datasets can be optimised for analysing either short wavelength, high density structures (e.g. subgrain boundaries) or long wavelength, low amplitude orientation gradients. Comparison to conventional images of decorated dislocations demonstrates that HR-EBSD can characterise the dislocation distribution and reveal additional structure not captured by the decoration technique. HR-EBSD therefore provides a highly effective method for analysing dislocations in olivine and determining their role in accommodating macroscopic deformation. PMID:27337604

  6. Discrete time interval measurement system: fundamentals, resolution and errors in the measurement of angular vibrations

    International Nuclear Information System (INIS)

    The traditional method for measuring the velocity and the angular vibration in the shaft of rotating machines using incremental encoders is based on counting the pulses at given time intervals. This method is generically called the time interval measurement system (TIMS). A variant of this method that we have developed in this work consists of measuring the corresponding time of each pulse from the encoder and sampling the signal by means of an A/D converter as if it were an analog signal, that is to say, in discrete time. For this reason, we have denominated this method as the discrete time interval measurement system (DTIMS). This measurement system provides a substantial improvement in the precision and frequency resolution compared with the traditional method of counting pulses. In addition, this method permits modification of the width of some pulses in order to obtain a mark-phase on every lap. This paper explains the theoretical fundamentals of the DTIMS and its application for measuring the angular vibrations of rotating machines. It also displays the required relationship between the sampling rate of the signal, the number of pulses of the encoder and the rotating velocity in order to obtain the required resolution and to delimit the methodological errors in the measurement

  7. Defining the Observables for Quarks and Gluons Orbital Angular Momentum Distributions

    International Nuclear Information System (INIS)

    We present a critical discussion of the observables that have been recently put forth to describe quarks and gluons orbital angular momentum distributions. Starting from a standard parameterization of the energy momentum tensor in QCD one can single out two forms of angular momentum, a so-called kinetic term, generally associated with the Ji decomposition, and a canonical term from the Jaffe Manohar decomposition. Orbital angular momentum has been connected to a Generalized Transverse Momentum Distribution (GTMD), for the canonical term, and to a twist three Generalized Parton Distribution for the kinetic term. We argue that while the latter appears as an azimuthal angular modulation in the longitudinal target spin asymmetry in deeply virtual Compton scattering, due to parity constraints, the GTMD associated with canonical angular momentum cannot be measured in a similar set of experiments. (author)

  8. Non Local Spatial and Angular Matching: Enabling higher spatial resolution diffusion MRI datasets through adaptive denoising.

    Science.gov (United States)

    St-Jean, Samuel; Coupé, Pierrick; Descoteaux, Maxime

    2016-08-01

    Diffusion magnetic resonance imaging (MRI) datasets suffer from low Signal-to-Noise Ratio (SNR), especially at high b-values. Acquiring data at high b-values contains relevant information and is now of great interest for microstructural and connectomics studies. High noise levels bias the measurements due to the non-Gaussian nature of the noise, which in turn can lead to a false and biased estimation of the diffusion parameters. Additionally, the usage of in-plane acceleration techniques during the acquisition leads to a spatially varying noise distribution, which depends on the parallel acceleration method implemented on the scanner. This paper proposes a novel diffusion MRI denoising technique that can be used on all existing data, without adding to the scanning time. We first apply a statistical framework to convert both stationary and non stationary Rician and non central Chi distributed noise to Gaussian distributed noise, effectively removing the bias. We then introduce a spatially and angular adaptive denoising technique, the Non Local Spatial and Angular Matching (NLSAM) algorithm. Each volume is first decomposed in small 4D overlapping patches, thus capturing the spatial and angular structure of the diffusion data, and a dictionary of atoms is learned on those patches. A local sparse decomposition is then found by bounding the reconstruction error with the local noise variance. We compare against three other state-of-the-art denoising methods and show quantitative local and connectivity results on a synthetic phantom and on an in-vivo high resolution dataset. Overall, our method restores perceptual information, removes the noise bias in common diffusion metrics, restores the extracted peaks coherence and improves reproducibility of tractography on the synthetic dataset. On the 1.2 mm high resolution in-vivo dataset, our denoising improves the visual quality of the data and reduces the number of spurious tracts when compared to the noisy acquisition. Our

  9. Contrast and resolution analysis of angular domain imaging for iterative optical projection tomography reconstruction

    Science.gov (United States)

    Ng, Eldon; Vasefi, Fartash; Kaminska, Bozena; Chapman, Glenn H.; Carson, Jeffrey J. L.

    2010-02-01

    Angular domain imaging (ADI) generates a projection image of an attenuating target within a turbid medium by employing a silicon micro-tunnel array to reject photons that have deviated from the initial propagation direction. In this imaging method, image contrast and resolution are position dependent. The objective of this work was to first characterize the contrast and resolution of the ADI system at a multitude of locations within the imaging plane. The second objective was to compare the reconstructions of different targets using filtered back projection and iterative reconstruction algorithms. The ADI system consisted of a diode laser laser (808nm, CW, ThorLabs) with a beam expander for illumination of the sample cuvette. At the opposite side of the cuvette, an Angular Filter Array (AFA) of 80 μm x 80 μm square-shaped tunnels 1 cm in length was used to reject the transmitted scattered light. Image-forming light exiting the AFA was detected by a linear CCD (16-bit, Mightex). Our approach was to translate two point attenuators (0.5 mm graphite rod, 0.368 mm drill bit) submerged in a 0.6% IntralipidTM dilution using a SCARA robot (Epson E2S351S) to cover a 37x37 and 45x45 matrix of grid points in the imaging plane within the 1 cm path length sample cuvette. At each grid point, a one-dimensional point-spread distribution was collected and system contrast and resolution were measured. Then, the robot was used to rotate the target to collect projection images at several projection angles of various objects, and reconstructed with a filtered back projection and an iterative reconstruction algorithm.

  10. Beyond Higgs couplings: probing the Higgs with angular observables at future e + e - colliders

    Science.gov (United States)

    Craig, Nathaniel; Gu, Jiayin; Liu, Zhen; Wang, Kechen

    2016-03-01

    We study angular observables in the {e}+{e}-to ZHto {ell}+{ell}-boverline{b} channel at future circular e + e - colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy sqrt{s}=240 GeV and 5 (30) ab-1 integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for he Higgs-strahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of both probing BSM corrections to the HZγ coupling and constraining the "blind spot" in indirect limits on supersymmetric scalar top partners.

  11. Beyond Higgs Couplings: Probing the Higgs with Angular Observables at Future $e^+ e^-$ Colliders

    CERN Document Server

    Craig, Nathaniel; Liu, Zhen; Wang, Kechen

    2015-01-01

    We study angular observables in the $e^+e^-\\to Z H\\to \\ell^+ \\ell^-\\,b\\bar{b}$ channel at future circular $e^+ e^-$ colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy $\\sqrt{s} =$ 240 GeV and 5 (30) ${\\rm ab}^{-1}$ integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for the Higgs-strahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of both probing BSM corrections to the $H Z \\gamma$ coupling and constraining the "blind spot" in indirect limits on supersymmetric scalar top partners.

  12. Converting Multi-Shell and Diffusion Spectrum Imaging to High Angular Resolution Diffusion Imaging.

    Science.gov (United States)

    Yeh, Fang-Cheng; Verstynen, Timothy D

    2016-01-01

    Multi-shell and diffusion spectrum imaging (DSI) are becoming increasingly popular methods of acquiring diffusion MRI data in a research context. However, single-shell acquisitions, such as diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), still remain the most common acquisition schemes in practice. Here we tested whether multi-shell and DSI data have conversion flexibility to be interpolated into corresponding HARDI data. We acquired multi-shell and DSI data on both a phantom and in vivo human tissue and converted them to HARDI. The correlation and difference between their diffusion signals, anisotropy values, diffusivity measurements, fiber orientations, connectivity matrices, and network measures were examined. Our analysis result showed that the diffusion signals, anisotropy, diffusivity, and connectivity matrix of the HARDI converted from multi-shell and DSI were highly correlated with those of the HARDI acquired on the MR scanner, with correlation coefficients around 0.8~0.9. The average angular error between converted and original HARDI was 20.7° at voxels with signal-to-noise ratios greater than 5. The network topology measures had less than 2% difference, whereas the average nodal measures had a percentage difference around 4~7%. In general, multi-shell and DSI acquisitions can be converted to their corresponding single-shell HARDI with high fidelity. This supports multi-shell and DSI acquisitions over HARDI acquisition as the scheme of choice for diffusion acquisitions.

  13. Converting Multi-Shell and Diffusion Spectrum Imaging to High Angular Resolution Diffusion Imaging

    Science.gov (United States)

    Yeh, Fang-Cheng; Verstynen, Timothy D.

    2016-01-01

    Multi-shell and diffusion spectrum imaging (DSI) are becoming increasingly popular methods of acquiring diffusion MRI data in a research context. However, single-shell acquisitions, such as diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), still remain the most common acquisition schemes in practice. Here we tested whether multi-shell and DSI data have conversion flexibility to be interpolated into corresponding HARDI data. We acquired multi-shell and DSI data on both a phantom and in vivo human tissue and converted them to HARDI. The correlation and difference between their diffusion signals, anisotropy values, diffusivity measurements, fiber orientations, connectivity matrices, and network measures were examined. Our analysis result showed that the diffusion signals, anisotropy, diffusivity, and connectivity matrix of the HARDI converted from multi-shell and DSI were highly correlated with those of the HARDI acquired on the MR scanner, with correlation coefficients around 0.8~0.9. The average angular error between converted and original HARDI was 20.7° at voxels with signal-to-noise ratios greater than 5. The network topology measures had less than 2% difference, whereas the average nodal measures had a percentage difference around 4~7%. In general, multi-shell and DSI acquisitions can be converted to their corresponding single-shell HARDI with high fidelity. This supports multi-shell and DSI acquisitions over HARDI acquisition as the scheme of choice for diffusion acquisitions. PMID:27683539

  14. Observation of Interaction of Spin and Intrinsic Orbital Angular Momentum of Light

    CERN Document Server

    Vitullo, Dashiell L P; Gregg, Patrick; Smith, Roger A; Reddy, Dileep V; Ramachandran, Siddharth; Raymer, Michael G

    2016-01-01

    Spin and intrinsic orbital angular momentum interaction of light is observed, as evidenced by length-dependent rotations of both spatial patterns and optical polarization in an isotropic optical fiber. The distinction between intrinsic and extrinsic orbital angular momentum (as seen in helically coiled fiber) is made clear by controllable excitation of a small number of optical modes in a straight, few-mode fiber.

  15. ONE-DIMENSIONAL LIGHT BEAM WIDENING USING PRISMS FOR INCREASE OF SPECTROMETER SPECTRAL RESOLUTION AND ANGULAR DISPERSION

    Directory of Open Access Journals (Sweden)

    I. M. Gulis

    2016-01-01

    Full Text Available The increase of angular dispersion and slit resolution limit of grating spectrometers by means of variation of grating parameters is limited by its period and allowable order of diffraction. The special solutions (echelle, holographic, immersion gratings are acceptable in a limited parameter range and are technologically complex in fabrication, thus hardly applicable to instruments of mass production. We propose to decrease slit resolution limit by one-dimensional beam widening in dispersion plane by means of passing it through oblique prism before incidence onto diffraction grating. The increase of angular dispersion can be achieved by narrowing of dispersed beams after grating while passing through other oblique prism. We prove that slit resolution limit in such a system changes approximately as multiplied by angular magnification of the first prism (that is less than 1 times. Also angular dispersion changed approximately as multiplied by angular magnification of the second prism. The Fresnel reflection from the faces of prisms is analyzed. Accounting for that factor gives the increase of resolution about 1,4–1,6 times without loss of light (and can be 2 and more times while using anti-reflective coating. The proposed method is different from the similar ones first of all by its simplicity because it uses simple optical elements – plane reflective grating and thin prisms. It can be applied to amend the analytical characteristics of dispersive spectrometers, first of all the small-sized ones. 

  16. High Angular Resolution Stellar Imaging with Occultations from the Cassini Spacecraft II: Kronocyclic Tomography

    CERN Document Server

    Stewart, Paul N; Nicholson, Philip D; Hedman, Matthew M; Lloyd, James P

    2015-01-01

    We present an advance in the use of Cassini observations of stellar occultations by the rings of Saturn for stellar studies. Stewart et al. (2013) demonstrated the potential use of such observations for measuring stellar angular diameters. Here, we use these same observations, and tomographic imaging reconstruction techniques, to produce two dimensional images of complex stellar systems. We detail the determination of the basic observational reference frame. A technique for recovering model-independent brightness profiles for data from each occulting edge is discussed, along with the tomographic combination of these profiles to build an image of the source star. Finally we demonstrate the technique with recovered images of the {\\alpha} Centauri binary system and the circumstellar environment of the evolved late-type giant star, Mira.

  17. Hard X-ray photoemission with angular resolution and standing-wave excitation

    Energy Technology Data Exchange (ETDEWEB)

    Fadley, Charles S., E-mail: fadley@physics.ucdavis.edu [Department of Physics, University of California Davis, Davis, CA 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2013-10-15

    Highlights: •Hard X-ray photoemission with angle resolution and standing-waves is discussed. •Hard X-ray angle-resolved photoemission yields k{sup →}-resolved bulk electronic structure. •Hard X-ray photoelectron diffraction provides element-specific atomic structure. •Multilayer standing-wave measurements add depth-resolved composition. •Standing-wave excitation also yields element-specific densities of states. -- Abstract: Several aspects of hard X-ray photoemission that make use of angular resolution and/or standing-wave excitation are discussed. These include hard X-ray angle-resolved photoemission (HARPES) from valence levels, which has the capability of determining bulk electronic structure in a momentum-resolved way; hard X-ray photoelectron diffraction (HXPD), which shows promise for studying element-specific bulk atomic structure, including dopant site occupations; and standing wave studies of the composition and chemical states of buried layers and interfaces. Beyond this, standing wave photoemission can be used to derive element-specific densities of states. Some recent examples relevant to all of these aspects are discussed.

  18. The GAMMA-400 gamma-ray telescope characteristics. Angular resolution and electrons/protons separation

    CERN Document Server

    Leonov, A A; Bonvicini, V; Topchiev, N P; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Bergstrom, L; Berti, E; Bigongiari, G; Bobkov, S G; Boezio, M; Bogomolov, E A; Bonechi, S; Bongi, M; Bottai, S; Boyarchuk, K A; Castellini, G; Cattaneo, P W; Cumani, P; Dedenko, G L; De Donato, C; Dogiel, V A; Gorbunov, M S; Gusakov, Yu V; Hnatyk, B I; Kadilin, V V; Kaplin, V A; Kaplun, A A; Kheymits, M D; Korepanov, V E; Larsson, J; Loginov, V A; Longo, F; Maestro, P; Marrocchesi, P S; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Pearce, M; Picozza, P; Popov, A V; Rappoldi, A; Ricciarini, S; Runtso, M F; Ryde, F; Serdin, O V; Sparvoli, R; Spillantini, P; Suchkov, S I; Tavani, M; Taraskin, A A; Tiberio, A; Tyurin, E M; Ulanov, M V; Vacchi, A; Vannuccini, E; Vasilyev, G I; Yurkin, Yu T; Zampa, N; Zirakashvili, V N; Zverev, V G

    2014-01-01

    The measurements of gamma-ray fluxes and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV, which will be implemented by the specially designed GAMMA-400 gamma-ray telescope, concern with the following broad range of science topics. Searching for signatures of dark matter, surveying the celestial sphere in order to study gamma-ray point and extended sources, measuring the energy spectra of Galactic and extragalactic diffuse gamma-ray emission, studying gamma-ray bursts and gamma-ray emission from the Sun, as well as high precision measuring spectra of high-energy electrons and positrons, protons and nuclei up to the knee. To clarify these scientific problems with the new experimental data the GAMMA-400 gamma-ray telescope possesses unique physical characteristics comparing with previous and present experiments. For gamma-ray energies more than 100 GeV GAMMA-400 provides the energy resolution of ~1% and angular resolution better than 0.02 deg. The methods developed to reconstru...

  19. The multiplicity of massive stars: A high angular resolution survey with the HST fine guidance sensor

    Energy Technology Data Exchange (ETDEWEB)

    Aldoretta, E. J.; Gies, D. R.; Henry, T. J.; Jao, W.-C.; Norris, R. P., E-mail: emily@astro.umontreal.ca, E-mail: gies@chara.gsu.edu, E-mail: thenry@chara.gsu.edu, E-mail: jao@chara.gsu.edu, E-mail: norris@chara.gsu.edu [Center for High Angular Resolution Astronomy, Department of Physics and Astronomy, Georgia State University, P. O. Box 5060, Atlanta, GA 30302-5060 (United States); and others

    2015-01-01

    We present the results of an all-sky survey made with the Fine Guidance Sensor on the Hubble Space Telescope to search for angularly resolved binary systems among massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type stars and luminous blue variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to the detection of companions with an angular separation between 0.″01 and 1.″0 and brighter than △m=5. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additional targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations, field stars, and runaway stars. These results confirm the high multiplicity fraction, especially among massive stars in clusters and associations. We show that the period distribution is approximately flat in increments of logP. We identify a number of systems of potential interest for long-term orbital determinations, and we note the importance of some of these companions for the interpretation of the radial velocities and light curves of close binaries that have third companions.

  20. The multiplicity of massive stars: A high angular resolution survey with the HST fine guidance sensor

    International Nuclear Information System (INIS)

    We present the results of an all-sky survey made with the Fine Guidance Sensor on the Hubble Space Telescope to search for angularly resolved binary systems among massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type stars and luminous blue variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to the detection of companions with an angular separation between 0.″01 and 1.″0 and brighter than △m=5. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additional targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations, field stars, and runaway stars. These results confirm the high multiplicity fraction, especially among massive stars in clusters and associations. We show that the period distribution is approximately flat in increments of logP. We identify a number of systems of potential interest for long-term orbital determinations, and we note the importance of some of these companions for the interpretation of the radial velocities and light curves of close binaries that have third companions.

  1. The Multiplicity of Massive Stars: A High Angular Resolution Survey with the HST Fine Guidance Sensor

    CERN Document Server

    Aldoretta, E J; Gies, D R; Nelan, E P; Wallace, D J; Hartkopf, W I; Henry, T J; Jao, W -C; Apellániz, J Maíz; Mason, B D; Moffat, A F J; Norris, R P; Richardson, N D; Williams, S J

    2014-01-01

    We present the results of an all-sky survey made with the Fine Guidance Sensor on Hubble Space Telescope to search for angularly resolved binary systems among the massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type stars and Luminous Blue Variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to detection of companions with an angular separation between 0."01 and 1."0 and brighter than $\\triangle m = 5$. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additional targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations...

  2. Molecular outflows and hot molecular core in G24.78+0.08 at sub-arcsecond angular resolution

    CERN Document Server

    Beltran, M T; Zhang, Q; Galvan-Madrid, R; Beuther, H; Fallscheer, C; Neri, R; Codella, C

    2011-01-01

    Context. This study is part of a large project to study the physics of accretion and molecular outflows towards a selected sample of high-mass star-forming regions that show evidence of infall and rotation from previous studies. Aims. We wish to make a thorough study at high-angular resolution of the structure and kinematics of the HMCs and corresponding molecular outflows in the high-mass star-forming region G24.78+0.08. Methods. We carried out SMA and IRAM PdBI observations at 1.3 and 1.4 mm, respectively, of dust and of typical high-density and molecular outflow tracers with resolutions of <1". Complementary IRAM 30-m 12CO and 13CO observations were carried out to recover the short spacing information of the molecular outflows. Results. The millimeter continuum emission towards cores G24 A1 and A2 has been resolved into 3 and 2 cores, respectively, and named A1, A1b, A1c, A2, and A2b. All these cores are aligned in a southeast-northwest direction coincident with that of the molecular outflows detected i...

  3. Importance of energy and angular resolutions in top-hat electrostatic analysers for solar wind proton measurements

    Science.gov (United States)

    De Marco, R.; Marcucci, M. F.; Bruno, R.; D'Amicis, R.; Servidio, S.; Valentini, F.; Lavraud, B.; Louarn, P.; Salatti, M.

    2016-08-01

    We use a numerical code which reproduces the angular/energy response of a typical top-hat electrostatic analyser starting from solar wind proton velocity distribution functions (VDFs) generated by numerical simulations. The simulations are based on the Hybrid Vlasov-Maxwell numerical algorithm which integrates the Vlasov equation for the ion distribution function, while the electrons are treated as a fluid. A virtual satellite launched through the simulation box measures the particle VDFs. Such VDFs are moved from the simulation Cartesian grid to energy-angular coordinates to mimic the response of a real sensor in the solar wind. Different energy-angular resolutions of the analyser are investigated in order to understand the influence of the phase-space resolution in existing and upcoming space missions, with regards to determining the key parameters of plasma dynamics.

  4. Angular Velocity Observer on the Special Orthogonal Group for Velocity-Free Rigid-Body Attitude Tracking Control

    OpenAIRE

    Wu, Tse-Huai; Lee, Taeyoung

    2015-01-01

    This paper studies a rigid body attitude tracking control problem with attitude measurements only, when angular velocity measurements are not available. An angular velocity observer is constructed such that the estimated angular velocity is guaranteed to converge to the true angular velocity asymptotically from almost all initial estimates. As it is developed directly on the special orthogonal group, it completely avoids singularities, complexities, or discontinuities caused by minimal attitu...

  5. Stability of dislocation structures in copper towards stress relaxation investigated by high angular resolution 3D X-ray diffraction

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Poulsen, Henning Friis; Lienert, Ulrich;

    2009-01-01

    A 300 µm thick tensile specimen of OFHC copper is subjected to a tensile loading sequence and deformed to a maximal strain of 3.11%. Using the novel three-dimensional X-ray diffraction method High angular resolution 3DXRD', the evolution of the microstructure within a deeply embedded grain is cha...

  6. Multi-angular hyperspectral observations of Mediterranean forest with PROBA-CHRIS

    Science.gov (United States)

    Menenti, Massimo; Maselli, Fabio; Chiesi, Marta; Benedetti, Riccardo; Cristofori, Simone; Guzzi, Donatella; Magnani, Federico; Raddi, Sabrina; Maffei, Carmine

    2004-10-01

    Measurements of spectro-directional radiances done with the imaging spectrometer CHRIS on-board the agile platform PROBA are being used to determine key properties of terrestrial vegetation at the appropriate spatial resolution. These data on vegetation properties can then be used to improve the accuracy and the parameterizations of models describing biosphere processes, i.e. photosynthesis and water use by irrigated crops and trees. The vegetation properties considered are: albedo, Leaf Area Index (LAI), fractional cover, fraction of absorbed photosynthetically active radiation (fAPAR) and canopy chlorophyll content. The Natural Park of San Rossore (Pisa, Central Italy) is a primary test site for several national and international research projects dealing with forest ecosystem monitoring. In particular, since 1999 measurements of transpiration and ecosystem gas-exchange have been regularly taken in the park pine forest to characterize its main water and carbon fluxes. In the same period, several aerial flights have been carried out with onboard hyper-spectral sensors (MIVIS, VIRS, AISA), while a series of satellite images have been acquired using both conventional (NOAAAVHRR, Landsat-TM/ETM+) and advanced sensors (CHRIS-PROBA). The final objective of these activities is to calibrate and validate methodologies which integrate remotely sensed and ancillary data for monitoring forest ecosystem. More specifically, a major research effort has been focused on evaluating the additional information content provided by advanced hyper-spectral multi-angular sensors about the main parameters needed for forest characterization (species, LAI, pigment content, etc.). These activities are part of projects which are financed by the Italian and European Space Agencies (ASI and ESA, respectively) within the framework of the CHRIS-PROBA and SPECTRA missions. During 2002 and 2003 nine complete multi-angular acquisitions were successfully performed over the San Rossore site. This

  7. Angular Spread of Solar Energetic Electrons: Multipoint Observations by STEREO, ACE and SOHO (Invited)

    Science.gov (United States)

    Gómez-Herrero, R.; Dresing, N.; Malandraki, O.; Klassen, A.; Wiedenbeck, M. E.; Cohen, C. M.; Mason, G. M.; Heber, B.; Wimmer-Schweingruber, R. F.; Müller-Mellin, R.; Kartavykh, Y.; Droege, W.

    2010-12-01

    Particles accelerated in Solar Energetic Particle (SEP) events sometimes exhibit large angular extents. The broadest angular spreads observed in large events are commonly interpreted in terms of extended acceleration in a shock source which intercepts interplanetary magnetic field lines often separated by more than 100 degrees in longitude. By way of contrast, during impulsive flare-associated events the small spatial scale of the source typically leads to modest angular spread of energetic particles. In absence of shocks, the longitudinal spread of the particles has been attributed to lateral transport in the interplanetary medium or in the corona (e.g. Wibberenz and Cane, 2006) or to quickly diverging open magnetic field lines above the source active region (e.g. Klein et al., 2008). Such kind of processes could also operate during large gradual events with a significant flare contribution. After an extended solar minimum a significant increase in the SEP activity starting late in 2009 has been observed. During this period, several events were detected simultaneously by the Solar Electron and Proton Telescope (SEPT) onboard the two STEREO spacecraft when their longitudinal separation was more than 120 degrees. We present a survey of multi-spacecraft observations of 55-425 keV electron events during the early phase of solar cycle 24. With the aim of understanding the physical processes responsible for the large angular spread of the particles, we link the multi-point in-situ observations at 1 AU to the associated solar phenomena. We discuss the importance of these phenomena with respect to the particle observations. Pure impulsive events are identified by the lack of shock signatures and enhanced 3He abundances. The good observational coverage provided by the two STEREO together with SOHO and ACE provides the opportunity to compare time profiles, onset times, anisotropies and spectra observed by different spacecraft, and to study their dependences with angular

  8. Milliarcsecond angular resolution of reddened stellar sources in the vicinity of the Galactic Center

    CERN Document Server

    Richichi, A; Mason, E; Stegmaier, J; Chandrasekhar, T

    2008-01-01

    For the first time, the lunar occultation technique has been employed on a very large telescope in the near-IR with the aim of achieving systematically milliarcsecond resolution on stellar sources. We have demonstrated the burst mode of the ISAAC instrument, using a fast read-out on a small area of the detector to record many tens of seconds of data at a time on fields of few squared arcsec. We have used the opportunity to record a large number of LO events during a passage of the Moon close to the Galactic Center in March 2006. We have developed a data pipeline for the treatment of LO data, including the automated estimation of the main data analysis parameters using a wavelet-based method, and the preliminary fitting and plotting of all light curves. We recorded 51 LO events over about four hours. Of these, 30 resulted of sufficient quality to enable a detailed fitting. We detected two binaries with subarcsec projected separation and three stars with a marginally resolved angular diameter of about 2 mas. Tw...

  9. On solving the orientation gradient dependency of high angular resolution EBSD

    Energy Technology Data Exchange (ETDEWEB)

    Maurice, Claire, E-mail: maurice@emse.fr [Ecole des Mines de Saint-Etienne, UMR CNRS 5146 LCG, 158 cours Fauriel, F-42023 Saint-Etienne (France); Driver, Julian H. [Ecole des Mines de Saint-Etienne, UMR CNRS 5146 LCG, 158 cours Fauriel, F-42023 Saint-Etienne (France); Fortunier, Roland [Universite de Lyon, ENISE, UMR CNRS 5513 LTDS, 58 rue Jean Parot, F-42100 Saint-Etienne (France)

    2012-02-15

    Current high angular resolution electron backscatter diffraction (HR-EBSD) methods are successful at measuring pure elastic strains but have difficulties with plastically deformed metals containing orientation gradients. The strong influences of these rotations have been systematically studied using simulated patterns based on the many-beam dynamic theory of EBSP formation; a rotation of only 1 Degree-Sign can lead to apparent elastic strains of several hundred microstrains. A new method is proposed to correct for orientation gradient effects using a two-step procedure integrating finite strain theory: (i) reference pattern rotation and (ii) cross-correlation; it reduces the strain errors on the simulated patterns to tens of microstrains. An application to plastically deformed ferritic steel to generates elastic strain maps with significantly reduced values of both strains and residual errors in regions of rotations exceeding 1 Degree-Sign . -- Highlights: Black-Right-Pointing-Pointer Many-beam theory simulations show that HR-EBSD is sensitive to orientation gradients. Black-Right-Pointing-Pointer Finite strain theory and rotation processing the reference EBSP solves the problem. Black-Right-Pointing-Pointer New method succesfully applied to plastically strained IF steel.

  10. Implementation of $ab$ $initio$ perturbed angular correlation observables for analysis of fluctuating quadrupole interactions

    CERN Document Server

    Barbosa, Marcelo

    A review about the nuclear properties, namely the nuclear moments (magnetic dipole moment and electric quadrupole moment) and their interaction with electromagnetic fields external to the nucleus (hyperfine interactions), as well as the angular distribution of radiation produced by $\\gamma$-decay, is presented. A detailed description about the theory of Perturbed Angular Correlations was done, including the comparison between $\\gamma-\\gamma$- correlations and $e^{-}- \\gamma$ correlations. For dynamic nuclear interactions, an introduction to the theory of stochastic states in PAC was performed. We focused on ab-initio implementation of observables for analyzing fluctuating quadrupole hyperfine interactions on time dependent perturbed angular correlations experiments. The development of computacional codes solving the full problem, adapted to fit data obtained on single crystals or polycrystals for two-state transient fields with any axial symmetry and orientation was the main purpose of this work. The final pa...

  11. A super-high angular resolution principle for coded-mask X-ray imaging beyond the diffraction limit of a single pinhole

    Institute of Scientific and Technical Information of China (English)

    Chen Zhang; Shuang-Nan Zhang

    2009-01-01

    High angular resolution X-ray imaging is always useful in astrophysics and solar physics. In principle, it can be performed by using coded-mask imaging with a very long mask-detector distance. Previously, the diffraction-interference effect was thought to degrade coded-mask imaging performance dramatically at the low energy end with its very long mask-detector distance. The diffraction-interference effect is described with numerical calculations, and the difffraction-interference cross correlation reconstruction method (DICC) is developed in order to overcome the imaging performance degradation. Based on the DICC, a super-high angular resolution principle (SHARP) for coded-mask X-ray imaging is proposed. The feasibility of coded mask imaging beyond the diffraction limit of a single pinhole is demonstrated with simulations. With the specification that the mask element size is 50 × 50 μm2 and the mask-detector distance is 50 m, the achieved angular resolution is 0.32arcsec above about 10keV and 0.36arcsec at 1.24keV (λ = 1 nm), where diffraction cannot be neglected. The on-axis source location accuracy is better than 0.02 arcsec. Potential applications for solar observations and wide-field X-ray monitors are also briefly discussed.

  12. High resolution observations of iota Herculis

    International Nuclear Information System (INIS)

    Iota Her (B3 IV) has been known for a long time as a spectrum variable. Smith and Smith and Stern detected different periods in line profile variations and classified iota Her in their 53 Per group. Recently the Nice group and S. Gonzalez-Bedolla in Mexico observed it in photometry and spectrography at 12 A/mm. The main results are the detection of short period variations (0.12 or 0.14 day period) in photometry, radial velocity and on the He I 4387/Mg II 4481 lines intensity ratio. These short periodic variations are superimposed on longer ones which were first detected by Rogerson. The authors present here preliminary results of the 1985 campaign obtained with very high spectral resolution

  13. High-angular-resolution stellar imaging with occultations from the Cassini spacecraft - III. Mira

    Science.gov (United States)

    Stewart, Paul N.; Tuthill, Peter G.; Nicholson, Philip D.; Hedman, Matthew M.

    2016-04-01

    We present an analysis of spectral and spatial data of Mira obtained by the Cassini spacecraft, which not only observed the star's spectra over a broad range of near-infrared wavelengths, but was also able to obtain high-resolution spatial information by watching the star pass behind Saturn's rings. The observed spectral range of 1-5 microns reveals the stellar atmosphere in the crucial water-bands which are unavailable to terrestrial observers, and the simultaneous spatial sampling allows the origin of spectral features to be located in the stellar environment. Models are fitted to the data, revealing the spectral and spatial structure of molecular layers surrounding the star. High-resolution imagery is recovered revealing the layered and asymmetric nature of the stellar atmosphere. The observational data set is also used to confront the state-of-the-art cool opacity-sampling dynamic extended atmosphere models of Mira variables through a detailed spectral and spatial comparison, revealing in general a good agreement with some specific departures corresponding to particular spectral features.

  14. B →K*l+l-: Zeros of angular observables as test of standard model

    Science.gov (United States)

    Kumar, Girish; Mahajan, Namit

    2016-03-01

    We calculate the zeros of angular observables P4' and P5' of the angular distribution of 4-body decay B →K*(→K π )l+l- where LHCb, in its analysis of form-factor independent angular observables, has found deviations from the standard model predictions. In the large recoil region, we obtain relations between the zeros of P4' , P5' and the zero (s^0) of forward-backward asymmetry of lepton pair, AF B. These relations are independent of hadronic uncertainties and depend only on the Wilson coefficients. We also construct a new observable, OTL ,R, whose zero in the standard model coincides with s^0, but in the presence of new physics contributions will show different behavior. Moreover, the profile of the new observable, even within the standard model, is very different from AF B. We point out that precise measurements of these zeros in the near future would provide a crucial test of the standard model and would be useful in distinguishing between different possible new physics contributions to the Wilson coefficients.

  15. $B\\rightarrow K^{*}l^+ l^-$: Zeroes of angular observables as test of standard model

    CERN Document Server

    Kumar, Girish

    2014-01-01

    We calculate the zeroes of angular observables $P_4^{'}$ and $P_5^{'}$ of 4 - body angular distribution of $B\\rightarrow K^{*} (\\rightarrow K \\pi) l^+ l^-$ where LHCb, in its analysis of form factor independent angular observables, has found deviations from standard model predictions in one of the $q^2$ bins. In the large recoil region, we obtain relations between the zeroes of $P_4^{'}$, $P_5^{'}$ and the zero of forward-backward asymmetry of lepton pair. These relations, in the considered region, are independent of hadronic uncertainties and depend only on Wilson coefficients. We also construct a new observable, $\\mathcal{O}_T^{L,R}$, whose zero in the standard model coincides with the zero of forward-backward asymmetry but in presence of new physics contributions will show different behavior. Moreover, the profile of the new observable, even within the standard model, is very different from the forward backward asymmetry. We point out that precise measurements of these zeroes in near future would provide c...

  16. Effective resolution concepts for lidar observations

    OpenAIRE

    Iarlori, M.; Madonna, F.; Rizi, V.; T. Trickl; Amodeo, A.

    2015-01-01

    Since its establishment in 2000, EARLINET (European Aerosol Research Lidar NETwork) has provided, through its database, quantitative aerosol properties, such as aerosol backscatter and aerosol extinction coefficients, the latter only for stations able to retrieve it independently (from Raman or high-spectral-resolution lidars). These coefficients are stored in terms of vertical profiles, and the EARLINET database also includes the details of the range resolution of the verti...

  17. Spacecraft Angular Rates Estimation with Gyrowheel Based on Extended High Gain Observer

    Directory of Open Access Journals (Sweden)

    Xiaokun Liu

    2016-04-01

    Full Text Available A gyrowheel (GW is a kind of electronic electric-mechanical servo system, which can be applied to a spacecraft attitude control system (ACS as both an actuator and a sensor simultaneously. In order to solve the problem of two-dimensional spacecraft angular rate sensing as a GW outputting three-dimensional control torque, this paper proposed a method of an extended high gain observer (EHGO with the derived GW mathematical model to implement the spacecraft angular rate estimation when the GW rotor is working at large angles. For this purpose, the GW dynamic equation is firstly derived with the second kind Lagrange method, and the relationship between the measurable and unmeasurable variables is built. Then, the EHGO is designed to estimate and calculate spacecraft angular rates with the GW, and the stability of the designed EHGO is proven by the Lyapunov function. Moreover, considering the engineering application, the effect of measurement noise in the tilt angle sensors on the estimation accuracy of the EHGO is analyzed. Finally, the numerical simulation is performed to illustrate the validity of the method proposed in this paper.

  18. Spacecraft Angular Rates Estimation with Gyrowheel Based on Extended High Gain Observer.

    Science.gov (United States)

    Liu, Xiaokun; Yao, Yu; Ma, Kemao; Zhao, Hui; He, Fenghua

    2016-04-14

    A gyrowheel (GW) is a kind of electronic electric-mechanical servo system, which can be applied to a spacecraft attitude control system (ACS) as both an actuator and a sensor simultaneously. In order to solve the problem of two-dimensional spacecraft angular rate sensing as a GW outputting three-dimensional control torque, this paper proposed a method of an extended high gain observer (EHGO) with the derived GW mathematical model to implement the spacecraft angular rate estimation when the GW rotor is working at large angles. For this purpose, the GW dynamic equation is firstly derived with the second kind Lagrange method, and the relationship between the measurable and unmeasurable variables is built. Then, the EHGO is designed to estimate and calculate spacecraft angular rates with the GW, and the stability of the designed EHGO is proven by the Lyapunov function. Moreover, considering the engineering application, the effect of measurement noise in the tilt angle sensors on the estimation accuracy of the EHGO is analyzed. Finally, the numerical simulation is performed to illustrate the validity of the method proposed in this paper.

  19. Spacecraft Angular Rates Estimation with Gyrowheel Based on Extended High Gain Observer.

    Science.gov (United States)

    Liu, Xiaokun; Yao, Yu; Ma, Kemao; Zhao, Hui; He, Fenghua

    2016-01-01

    A gyrowheel (GW) is a kind of electronic electric-mechanical servo system, which can be applied to a spacecraft attitude control system (ACS) as both an actuator and a sensor simultaneously. In order to solve the problem of two-dimensional spacecraft angular rate sensing as a GW outputting three-dimensional control torque, this paper proposed a method of an extended high gain observer (EHGO) with the derived GW mathematical model to implement the spacecraft angular rate estimation when the GW rotor is working at large angles. For this purpose, the GW dynamic equation is firstly derived with the second kind Lagrange method, and the relationship between the measurable and unmeasurable variables is built. Then, the EHGO is designed to estimate and calculate spacecraft angular rates with the GW, and the stability of the designed EHGO is proven by the Lyapunov function. Moreover, considering the engineering application, the effect of measurement noise in the tilt angle sensors on the estimation accuracy of the EHGO is analyzed. Finally, the numerical simulation is performed to illustrate the validity of the method proposed in this paper. PMID:27089347

  20. Molecular outflows and hot molecular cores in G24.78+0.08 at sub-arcsecond angular resolution

    Science.gov (United States)

    Beltrán, M. T.; Cesaroni, R.; Zhang, Q.; Galván-Madrid, R.; Beuther, H.; Fallscheer, C.; Neri, R.; Codella, C.

    2011-08-01

    Context. This study is part of a large project to study the physics of accretion and molecular outflows towards a selected sample of high-mass star-forming regions that show evidence of infall and rotation from previous studies. Aims: We wish to make a thorough study at high-angular resolution of the structure and kinematics of the HMCs and corresponding molecular outflows in the high-mass star-forming region G24.78+0.08. Methods: We carried out SMA and IRAM PdBI observations at 1.3 and 1.4 mm, respectively, of dust and of typical high-density and molecular outflow tracers with resolutions of < 1″. Complementary IRAM 30-m 12CO and 13CO observations were carried out to recover the short spacing information of the molecular outflows. Results: The millimeter continuum emission towards cores G24 A1 and A2 has been resolved into three and two cores, respectively, and named A1, A1b, A1c, A2, and A2b. All these cores are aligned in a southeast-northwest direction coincident with that of the molecular outflows detected in the region, which suggests a preferential direction for star formation in this region. The masses of the cores range from 7 to 22 M⊙, and the rotational temperatures from 128 to 180 K. The high-density tracers have revealed the existence of two velocity components towards A1. One of them peaks close to the position of the millimeter continuum peak and of the HC Hii region and is associated with the velocity gradient seen in CH3CN towards this core, while the other one peaks southwest of core A1 and is not associated with any millimeter continuum emission peak. The position-velocity plots along outflow A and the 13CO (2-1) averaged blueshifted and redshifted emission indicate that this outflow is driven by core A2. Core A1 apparently does not drive any outflow. The knotty appearance of the highly collimated outflow C and the 12CO position-velocity plot suggest an episodic outflow, where the knots are made of swept-up ambient gas.

  1. The subsurface radial gradient of solar angular velocity from MDI f-mode observations

    OpenAIRE

    Corbard, T.; Thompson, M. J.

    2001-01-01

    We report quantitative analysis of the radial gradient of solar angular velocity at depths down to about 15 Mm below the solar surface for latitudes up to 75 degree using the Michelson Doppler Imager (MDI) observations of surface gravity waves (f modes) from the Solar and Heliospheric Observatory (SoHO). A negative outward gradient of around -400 nHz/R, equivalent to logarithmic gradient of the rotation frequency with respect to radius which is very close to -1, is found to be remarkably cons...

  2. Direct observation of shear deformation during equal channel angular pressing of pure aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Shan, A. [Shanghai Jiao Tong Univ. (China); Moon, I.G.; Ko, H.S.; Park, J.W. [Korean Inst. of Science and Technology, Seoul (Korea, Republic of). Div. of Metals

    1999-07-23

    Equal Channel Angular (ECA) pressing is a method through which intense plastic strain can be introduced into materials by simple shear. It is suggested that during ECA pressing, only simple shear deformation is introduced into the specimen. The degree of shear deformation can be well predicted by theory and is assumed to be uniform across the specimen except the top and end part. The theory had been proved to be correct by observation of ECA pressing of plasticine with a transparent plexiglass tool and by finite element modeling. However, direct observation of shear deformation had not yet been conducted in metallic materials. One difficulty in observing the shear deformation is that marks or scratches on the surface of the specimen will be erased or destroyed by severe surface deformation caused by friction. In this research, a special method is employed to eliminate the surface friction effect so that a clear shear deformation figure can be observed.

  3. Angular-resolution and material-characterization measurements for a dual-particle imaging system with mixed-oxide fuel

    Science.gov (United States)

    Poitrasson-Rivière, Alexis; Polack, J. Kyle; Hamel, Michael C.; Klemm, Dietrich D.; Ito, Kai; McSpaden, Alexander T.; Flaska, Marek; Clarke, Shaun D.; Pozzi, Sara A.; Tomanin, Alice; Peerani, Paolo

    2015-10-01

    A dual-particle imaging (DPI) system, capable of simultaneously imaging fast neutrons and gamma rays, has been operated in the presence of mixed-oxide (MOX) fuel to assess the system's angular resolution and material-characterization capabilities. The detection principle is based on the scattering physics of neutrons (elastic scattering) and gamma rays (Compton scattering) in organic and inorganic scintillators. The detection system is designed as a combination of a two-plane Compton camera and a neutron-scatter camera. The front plane consists of EJ-309 liquid scintillators and the back plane consists of interleaved EJ-309 and NaI(Tl) scintillators. MCNPX-PoliMi was used to optimize the geometry of the system and the resulting prototype was built and tested using a Cf-252 source as an SNM surrogate. A software package was developed to acquire and process data in real time. The software was used for a measurement campaign to assess the angular resolution of the imaging system with MOX samples. Measurements of two MOX canisters of similar isotopics and intensity were performed for 6 different canister separations (from 5° to 30°, corresponding to distances of 21 cm and 131 cm, respectively). The measurements yielded a minimum separation of 20° at 2.5 m (86-cm separation) required to see 2 separate hot spots. Additionally, the results displayed good agreement with MCNPX-PoliMi simulations. These results indicate an angular resolution between 15° and 20°, given the 5° step. Coupled with its large field of view, and its capability to differentiate between spontaneous fission and (α,n) sources, the DPI system shows its potential for nuclear-nonproliferation applications.

  4. ECG Denoising using Angular Velocity as a State and an Observation in an Extended Kalman Filter Framework

    OpenAIRE

    Akhbari, Mahsa; Shamsollahi, Mohammad,; Jutten, Christian; Coppa, Bertrand

    2012-01-01

    International audience In this paper an efficient filtering procedure based on Extended Kalman Filter (EKF) has been proposed. The method is based on a modified nonlinear dynamic model, previously introduced for the generation of synthetic ECG signals. The proposed method considers the angular velocity of ECG signal, as one of the states of an EKF. We have considered two cases for observation equations, in one case we have assumed a corresponding observation to angular velocity state and i...

  5. Thin fused silica optics for a high angular resolution and large collecting area X Ray telescope after Chandra

    Science.gov (United States)

    Pareschi, Giovanni; Citterio, Oberto; Civitani, Marta M; Basso, Stefano; Campana, Sergio; Conconi, Paolo; Ghigo, Mauro; Mattaini, Enrico; Moretti, Alberto; Parodi, Giancarlo; Tagliaferri, Gianpiero

    2014-08-01

    The implementation of an X-ray mission with high imaging capabilities, similar to those achieved with Chandra (SMART-X project, led by CfA together with other US institutes. This project is based on adjustable segments of thin foil mirrors with piezo-electric actuators, aiming to achieve an effective area >2 m2 at 1 keV and an angular resolution better than 1 arcsec HEW. Another attractive technology to realize an X-ray telescope with similar characteristics is being developed at NASA/Goddard. In this case the mirrors are based on Si substrates that are super-polished and figured starting from a bulky Si ingot, from which they are properly cut. Here we propose an alternative method based on precise direct grinding, figuring and polishing of thin (a few mm) glass shells with innovative deterministic polishing methods. This is followed by a final correction via ion figuring to obtain the desired accuracy. For this purpose, a temporary stiffening structure is used to support the shell from the polishing operations up to its integration in the telescope supporting structure. This paper deals with the technological process under development, the results achieved so far and some mission scenarios based on this kind of optics, aiming to achieve an effective area more than 10 times larger than Chandra and an angular resolution of 1 arcsec HEW on axis and of a few arcsec off-axis across a large field of view (1o in diameter).

  6. Q-ball imaging models: comparison between high and low angular resolution diffusion-weighted MRI protocols for investigation of brain white matter integrity

    Energy Technology Data Exchange (ETDEWEB)

    Caiazzo, Giuseppina; Trojsi, Francesca; Cirillo, Mario; Tedeschi, Gioacchino [MRI Research Center SUN-FISM-Neurological Institute for Diagnosis and Care ' ' Hermitage Capodimonte' ' , Naples (Italy); Second University of Naples, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Naples (Italy); Esposito, Fabrizio [University of Salerno, Department of Medicine and Surgery, Baronissi (Salerno) (Italy); Maastricht University, Department of Cognitive Neuroscience, Maastricht (Netherlands)

    2016-02-15

    Q-ball imaging (QBI) is one of the typical data models for quantifying white matter (WM) anisotropy in diffusion-weighted MRI (DwMRI) studies. Brain and spinal investigation by high angular resolution DwMRI (high angular resolution imaging (HARDI)) protocols exhibits higher angular resolution in diffusion imaging compared to low angular resolution models, although with longer acquisition times. We aimed to assess the difference between QBI-derived anisotropy values from high and low angular resolution DwMRI protocols and their potential advantages or shortcomings in neuroradiology. Brain DwMRI data sets were acquired in seven healthy volunteers using both HARDI (b = 3000 s/mm{sup 2}, 54 gradient directions) and low angular resolution (b = 1000 s/mm{sup 2}, 32 gradient directions) acquisition schemes. For both sequences, tract of interest tractography and generalized fractional anisotropy (GFA) measures were extracted by using QBI model and were compared between the two data sets. QBI tractography and voxel-wise analyses showed that some WM tracts, such as corpus callosum, inferior longitudinal, and uncinate fasciculi, were reconstructed as one-dominant-direction fiber bundles with both acquisition schemes. In these WM tracts, mean percent different difference in GFA between the two data sets was less than 5 %. Contrariwise, multidirectional fiber bundles, such as corticospinal tract and superior longitudinal fasciculus, were more accurately depicted by HARDI acquisition scheme. Our results suggest that the design of optimal DwMRI acquisition protocols for clinical investigation of WM anisotropy by QBI models should consider the specific brain target regions to be explored, inducing researchers to a trade-off choice between angular resolution and acquisition time. (orig.)

  7. Q-ball imaging models: comparison between high and low angular resolution diffusion-weighted MRI protocols for investigation of brain white matter integrity

    International Nuclear Information System (INIS)

    Q-ball imaging (QBI) is one of the typical data models for quantifying white matter (WM) anisotropy in diffusion-weighted MRI (DwMRI) studies. Brain and spinal investigation by high angular resolution DwMRI (high angular resolution imaging (HARDI)) protocols exhibits higher angular resolution in diffusion imaging compared to low angular resolution models, although with longer acquisition times. We aimed to assess the difference between QBI-derived anisotropy values from high and low angular resolution DwMRI protocols and their potential advantages or shortcomings in neuroradiology. Brain DwMRI data sets were acquired in seven healthy volunteers using both HARDI (b = 3000 s/mm2, 54 gradient directions) and low angular resolution (b = 1000 s/mm2, 32 gradient directions) acquisition schemes. For both sequences, tract of interest tractography and generalized fractional anisotropy (GFA) measures were extracted by using QBI model and were compared between the two data sets. QBI tractography and voxel-wise analyses showed that some WM tracts, such as corpus callosum, inferior longitudinal, and uncinate fasciculi, were reconstructed as one-dominant-direction fiber bundles with both acquisition schemes. In these WM tracts, mean percent different difference in GFA between the two data sets was less than 5 %. Contrariwise, multidirectional fiber bundles, such as corticospinal tract and superior longitudinal fasciculus, were more accurately depicted by HARDI acquisition scheme. Our results suggest that the design of optimal DwMRI acquisition protocols for clinical investigation of WM anisotropy by QBI models should consider the specific brain target regions to be explored, inducing researchers to a trade-off choice between angular resolution and acquisition time. (orig.)

  8. Large Angular Jump Mechanism Observed for Hydrogen Bond Exchange in Aqueous Perchlorate Solution

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Minbiao; /SLAC, PULSE /Stanford U., Phys. Dept.; Odelius3, Michael; /Stockholm U.; Gaffney1, K.J.; /aff SLAC, PULSE

    2010-06-11

    The mechanism for hydrogen bond (H-bond) switching in solution has remained subject to debate despite extensive experimental and theoretical studies. We have applied polarization-selective multidimensional vibrational spectroscopy to investigate the H-bond exchange mechanism in aqueous NaClO{sub 4} solution. The results show that a water molecule shifts its donated H-bonds between water and perchlorate acceptors by means of large, prompt angular rotation. Using a jump-exchange kinetic model, we extract an average jump angle of 49 {+-} 4{sup o}, in qualitative agreement with the jump angle observed in molecular dynamics simulations of the same aqueous NaClO{sub 4} solution.

  9. Measurement of branching fractions, isospin asymmetries and angular observables in exclusive electroweak penguin decays

    CERN Document Server

    Owen, Patrick Haworth

    This thesis describes measurements of rare electroweak penguin decays performed with data collected by the Large Hadron Collider beauty experiment corresponding to 3 $\\rm{fb}^{-1}$ of integrated luminosity. The purpose of these measurements is to search for physics beyond the theoretical framework known as the Standard Model (SM). Electroweak penguin decays are sensitive to virtual particles in extensions to the SM whose influence on the decay amplitude can be of similar strength to the SM contribution. The particular measurements that are described in this thesis are the differential branching fractions and isospin asymmetries of $B\\to K^{(*)}\\mu^{+}\\mu^{-}$ decays as well as the angular observables in $B\\to K\\mu^{+}\\mu^{-}$ decays. Although results are consistent with the SM, all the branching fractions of $B\\to K^{(*)}\\mu^{+}\\mu^{-}$ decays tend to favour a lower value than theoretical predictions.

  10. The role of dislocations in varied olivine deformation mechanisms investigated using high-angular resolution electron backscatter diffraction

    Science.gov (United States)

    Wallis, David; Hansen, Lars; Britton, Ben; Wilkinson, Angus

    2016-04-01

    Experimentally-derived flow laws can be used to predict the rheology of rocks deformed under natural conditions only if the same microphysical processes can be demonstrated to control the rate-limiting deformation mechanism in both cases. Olivine rheology may exert a principle control on the strength of the lithosphere, and therefore considerable research effort has been applied to assessing its rheology through experimental, geological, and geophysical approaches. Nonetheless, considerable uncertainty remains regarding the dominant deformation mechanisms in the upper mantle. This uncertainty arises in large part due to our limited understanding of the fundamental deformation processes associated with each mechanism. Future improvements to microphysical models of distinct deformation mechanisms require new insight into the contributions those fundamental processes to the macroscopic behaviour. The dynamics of dislocations is central to modelling viscous deformation of olivine, but characterisation techniques capable of constraining dislocation types, densities, and distributions over the critical grain to polycrystal length-scales have been lacking. High angular resolution electron backscatter diffraction (HR-EBSD), developed and increasingly applied in the material sciences, offers an approach capable of such analyses. HR-EBSD utilises diffraction pattern image cross-correlation to achieve dramatically improved angular resolution (~0.01°) of lattice orientation gradients compared to conventional Hough-based EBSD (~0.5°). This angular resolution allows very low densities (≥ 10^11 m^-2) of geometrically necessary dislocations (GND) to be resolved, facilitating analysis of a wide range of dislocation microstructures. We have developed the application of HR-EBSD to olivine and applied it to samples deformed both experimentally and naturally in grain-size sensitive and grain-size insensitive regimes. The results quantitatively highlight variations in the types and

  11. Angular Scaling In Jets

    Energy Technology Data Exchange (ETDEWEB)

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC

    2012-02-17

    We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.

  12. New diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion imaging (HARDI) models.

    Science.gov (United States)

    Poupon, Cyril; Rieul, Bernard; Kezele, Irina; Perrin, Muriel; Poupon, Fabrice; Mangin, Jean-François

    2008-12-01

    We present new diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion imaging (HARDI) models. The phantom design permits the application of imaging parameters that are typically employed in studies of the human brain. The phantoms were made of small-diameter acrylic fibers, chosen for their high hydrophobicity and flexibility that ensured good control of the phantom geometry. The polyurethane medium was filled under vacuum with an aqueous solution that was previously degassed, doped with gadolinium-tetraazacyclododecanetetraacetic acid (Gd-DOTA), and treated by ultrasonic waves. Two versions of such phantoms were manufactured and tested. The phantom's applicability was demonstrated on an analytical Q-ball model. Numerical simulations were performed to assess the accuracy of the phantom. The phantom data will be made accessible to the community with the objective of analyzing various HARDI models. PMID:19030160

  13. The Impact of Resolution on Observed HII Region Properties from WFPC2 Observations of M101

    CERN Document Server

    Pleuss, P O; Fricke, K J

    2000-01-01

    Two continuum subtracted H-alpha HST frames of M101 are used to determine the positions, angular sizes and absolute fluxes of 237 HII regions using a semi-automated technique. From these we have constructed the luminosity and diameter distribution functions. We repeat this process on the images after artificially reducing the linear resolution to that typically obtained with ground based imaging. We find substantial differences in the luminosity function and diameter distribution. The measured internal properties, such as central surface brightness and radial gradient are dominated by the PSF at linear resolutions less than roughly 40 pc FWHM. From the ground such resolutions are currently only obtainable for the nearest galaxies. We find evidence for two regimes of clustering of the HII regions and diffuse emission, suggesting two different regimes of star formation in late type spiral galaxies. This property in combination with the blending that occurs at ground based resolutions might be responsible for th...

  14. Milliarcsecond angular resolution of reddened stellar sources in the vicinity of the Galactic Center

    OpenAIRE

    Richichi, A.; Fors, O.; Mason, E.; Stegmaier, J; T.Chandrasekhar

    2008-01-01

    For the first time, the lunar occultation technique has been employed on a very large telescope in the near-IR with the aim of achieving systematically milliarcsecond resolution on stellar sources. We have demonstrated the burst mode of the ISAAC instrument, using a fast read-out on a small area of the detector to record many tens of seconds of data at a time on fields of few squared arcsec. We have used the opportunity to record a large number of LO events during a passage of the Moon close ...

  15. High angular resolution diffusion imaging in a child with autism spectrum disorder and comparison with his unaffected identical twin.

    Science.gov (United States)

    Conti, Eugenia; Pannek, Kerstin; Calderoni, Sara; Gaglianese, Anna; Fiori, Simona; Brovedani, Paola; Scelfo, Danilo; Rose, Stephen; Tosetti, Michela; Cioni, Giovanni; Guzzetta, Andrea

    2015-01-01

    In recent years, the use of brain diffusion MRI has led to the hypothesis that children with autism spectrum disorder (ASD) show abnormally connected brains. We used the model of disease-discordant identical twins to test the hypothesis that higher-order diffusion MRI protocols are able to detect abnormal connectivity in a single subject. We studied the structural connectivity of the brain of a child with ASD, and of that of his unaffected identical twin, using high angular resolution diffusion imaging (HARDI) probabilistic tractography. Cortical regions were automatically parcellated from high-resolution structural images, and HARDI-based connection matrices were produced for statistical comparison. Differences in diffusion indexes between subjects were tested by Wilcoxon signed rank test. Tracts were defined as discordant when they showed a between-subject difference of 10 percent or more. Around 11 percent of the discordant intra-hemispheric tracts showed lower fractional anisotropy (FA) values in the ASD twin, while only 1 percent showed higher values. This difference was significant. Our findings in a disease-discordant identical twin pair confirm previous literature consistently reporting lower FA values in children with ASD. PMID:26446271

  16. Determining the dominant partial wave contributions from angular distributions of single- and double-polarization observables in pseudoscalar meson photoproduction

    CERN Document Server

    Wunderlich, Y; Thiel, A; Beck, R

    2016-01-01

    This work presents a simple method to determine the significant partial wave contributions to experimentally determined observables in pseudoscalar meson photoproduction. First, fits to angular distributions are presented and the maximum orbital angular momentum $\\text{L}_{\\mathrm{max}}$ needed to achieve a good fit is determined. Then, recent polarization measurements for $\\gamma p \\rightarrow \\pi^{0} p$ from ELSA, GRAAL, JLab and MAMI are investigated according to the proposed method. This method allows us to project high-spin partial wave contributions to any observable as long as the measurement has the necessary statistical accuracy. We show, that high precision and large angular coverage in the polarization data are needed in order to be sensitive to high-spin resonance-states and thereby also for the finding of small resonance contributions. This task can be achieved via interference of these resonances with the well-known states. For the channel $\\gamma p \\rightarrow \\pi^{0} p$, those are the $N(1680)...

  17. High resolution nitrogen dioxide observations: retrieval, evaluation, and interpretation

    Science.gov (United States)

    Lamsal, L. N.; Janz, S. J.; Krotkov, N. A.; Pickering, K. E.; Kowalewski, M. G.; Loughner, C.; Spurr, R. J. D.; Crawford, J. H.

    2015-12-01

    The Airborne Compact Atmospheric Mapper (ACAM) deployed during the DISCOVER-AQ Maryland field campaign made hyperspectral remote sensing measurements in the 304-910 nm range allowing observations of several tropospheric pollutants including nitrogen dioxide (NO2) at an unprecedented spatial resolution of 1.5x0.75 km2. We apply the DOAS method, include high resolution information for surface reflectivity and vertical distributions of NO2 and aerosols, and account for temporal variation in atmospheric NO2 to retrieve lower tropospheric NO2 column. We compare NO2 from ACAM with observations from in-situ aircraft, ground-based PANDORA, and space-based OMI, and NO2 simulation from air quality models. The high resolution ACAM measurements offer not only new insights into our understanding of atmospheric composition and chemistry through observation of sub-sampling variability in typical satellite and model resolutions, but also opportunities for algorithm improvements for upcoming geostationary air quality missions.

  18. Angular observation of joints of geckos moving on horizontal and vertical surfaces

    Institute of Scientific and Technical Information of China (English)

    LI HongKai; DAI ZhenDong; SHI AiJu; ZHANG Hao; SUN JiuRong

    2009-01-01

    Because of their outstanding climbing and motor coordination ability, geckos have provided the basis for a peculiar bionic model leading to the development of a gecko-robot. A three-dimensional locomo-tion observation system was constructed to measure angular orientations of joints while geckos trotted (337.1 mm/s) and walked (66.7 mm/s) on horizontal surfaces, and trotted (241.5mm/s) and walked (30.6mm/s) on vertical surfaces. Moving over horizontal surfaces, the joints rotated more quickly the greater the speed, and the swinging scope of forelimbs stayed nearly at 59 degrees when swinging forward, but extended from 72 degrees to 79.2 degrees when swinging backward. The lifting angle of forelimbs was always positive to keep the center of mass close to the surface when moving up vertical surfaces, the scope of the forward swinging forelimbs forward extended from 33.7 degrees to 36.7 de-grees with increasing speed, while the scope of backward swinging forelimbs remained almost the same at 87.5 degrees. Alternative gaits had little effect on the swing angle of hindlimbs of the geckos moving on both horizontal and vertical surfaces.

  19. The subsurface radial gradient of solar angular velocity from MDI f-mode observations

    CERN Document Server

    Corbard, T

    2001-01-01

    We report quantitative analysis of the radial gradient of solar angular velocity at depths down to about 15 Mm below the solar surface for latitudes up to 75 degree using the Michelson Doppler Imager (MDI) observations of surface gravity waves (f modes) from the Solar and Heliospheric Observatory (SoHO). A negative outward gradient of around -400 nHz/R, equivalent to logarithmic gradient of the rotation frequency with respect to radius which is very close to -1, is found to be remarkably constant between the equator and 30 degree of latitude. Above 30 degree it decreases in absolute magnitude to a very small value at around 50 degree. At higher latitudes the gradient may reverse its sign: if so this reversal takes place in a thin layer extending only 5 Mm beneath the visible surface, as evidenced by the most superficial modes (with degrees l>250). The signature of the torsional oscillations is seen in this layer, but no other significant temporal variations of the gradient and value of the rotation rate there...

  20. Calibration of Herschel SPIRE FTS observations at different spectral resolutions

    CERN Document Server

    Marchili, N; Fulton, T; Polehampton, E T; Valtchanov, I; Zaretski, J; Naylor, D A; Griffin, M J; Imhof, P; Lim, T; Lu, N; Makiwa, G; Pearson, C; Spencer, L

    2016-01-01

    The SPIRE Fourier Transform Spectrometer on board the Herschel Space Observatory had two standard spectral resolution modes for science observations: high resolution (HR) and low resolution (LR), which could also be performed in sequence (H+LR). A comparison of the HR and LR resolution spectra taken in this sequential mode, revealed a systematic discrepancy in the continuum level. Analysing the data at different stages during standard pipeline processing, demonstrates the telescope and instrument emission affect HR and H+LR observations in a systematically different way. The origin of this difference is found to lie in the variation of both the telescope and instrument response functions, while it is triggered by fast variation of the instrument temperatures. As it is not possible to trace the evolution of the response functions through auxiliary housekeeping parameters, the calibration cannot be corrected analytically. Therefore an empirical correction for LR spectra has been developed, which removes the sys...

  1. ALMA Observations of Asteroid 3 Juno at 60 Kilometer Resolution

    CERN Document Server

    Partnership, ALMA; Kneissl, R; Moullet, A; Brogan, C L; Fomalont, E B; Vlahakis, C; Asaki, Y; Barkats, D; Dent, W R F; Hills, R; Hirota, A; Hodge, J A; Impellizzeri, C M V; Liuzzo, E; Lucas, R; Marcelino, N; Matsushita, S; Nakanishi, K; Perez, L M; Phillips, N; Richards, A M S; Toledo, I; Aladro, R; Broguiere, D; Cortes, J R; Cortes, P C; Dhawan, V; Espada, D; Galarza, F; Garcia-Appadoo, D; Guzman-Ramirez, L; Hales, A S; Humphreys, E M; Jung, T; Kameno, S; Laing, R A; Leon, S; Marconi, G; Nikolic, B; Nyman, L -A; Radiszcz, M; Remijan, A; Rodon, J A; Sawada, T; Takahashi, S; Tilanus, R P J; Vilaro, B Vila; Watson, L C; Wiklind, T; de Gregorio, I; Di Francesco, J; Mangum, J; Francke, H; Gallardo, J; Garcia, J; Gonzalez, S; Hill, T; Kaminski, T; Kurono, Y; Lopez, C; Morales, F; Plarre, K; Randall, S; van kempen, T; Videla, L; Villard, E; Andreani, P; Hibbard, J E; Tatematsu, K

    2015-01-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm continuum images of the asteroid 3 Juno obtained with an angular resolution of 0.042 arcseconds (60 km at 1.97 AU). The data were obtained over a single 4.4 hr interval, which covers 60% of the 7.2 hr rotation period, approximately centered on local transit. A sequence of ten consecutive images reveals continuous changes in the asteroid's profile and apparent shape, in good agreement with the sky projection of the three-dimensional model of the Database of Asteroid Models from Inversion Techniques. We measure a geometric mean diameter of 259pm4 km, in good agreement with past estimates from a variety of techniques and wavelengths. Due to the viewing angle and inclination of the rotational pole, the southern hemisphere dominates all of the images. The median peak brightness temperature is 215pm13 K, while the median over the whole surface is 197pm15 K. With the unprecedented resolution of ALMA, we find that the brightness temperature varies ...

  2. Young massive stars and their environment in the mid-infrared at high angular resolution

    Energy Technology Data Exchange (ETDEWEB)

    Wit, W J de; Hoare, M G; Oudmaijer, R D [School of Physics and Astronomy, University of Leeds, LS2 9JT (United Kingdom); Fujiyoshi, T [Subaru Telescope, NAOJ, 650 North A' ohoku Place, Hilo, HI 96720 (United States)], E-mail: w.j.m.dewit@leeds.ac.uk

    2008-10-15

    We present interferometric and single-dish mid-infrared observations of a sample of massive young stellar objects (BN-type objects), using VLTI-MIDI (10{mu}m) and Subaru-COMICS (24.5 {mu}m). We discuss the regions S140, Mon R2, M8E-IR, and W33A. The observations probe the inner regions of the dusty envelope at scales of 50 milli arcsecond and 0.6'' ({approx}100-1000 AU), respectively. Simultaneous model fits to spectral energy distributions and spatial data are achieved using self-consistent spherical envelope modelling. We conclude that those MYSO envelopes that are best described by a spherical geometry, the commensurate density distribution is a powerlaw with index -1.0. Such a powerlaw is predicted if the envelope is supported by turbulence on the 100-1000 AU scales probed with MIDI and COMICS, but the role of rotation at these spatial scales need testing.

  3. New vacuum solar telescope and observations with high resolution

    International Nuclear Information System (INIS)

    The New Vacuum Solar Telescope (NVST) is a one meter vacuum solar telescope that aims to observe fine structures on the Sun. The main goals of NVST are high resolution imaging and spectral observations, including measurements of the solar magnetic field. NVST is the primary ground-based facility used by the Chinese solar research community in this solar cycle. It is located by Fuxian Lake in southwest China, where the seeing is good enough to perform high resolution observations. We first introduce the general conditions at the Fuxian Solar Observatory and the primary science cases of NVST. Then, the basic structures of this telescope and instruments are described in detail. Finally, some typical high resolution data of the solar photosphere and chromosphere are also shown

  4. Properties of dense cores in clustered massive star-forming regions at high angular resolution

    CERN Document Server

    Sanchez-Monge, Alvaro; Fontani, Francesco; Busquet, Gemma; Juarez, Carmen; Estalella, Robert; Tan, Jonathan C; Sepulveda, Inma; Ho, Paul T P; Zhang, Qizhou; Kurtz, Stan

    2013-01-01

    We aim at characterising dense cores in the clustered environments associated with massive star-forming regions. For this, we present an uniform analysis of VLA NH3(1,1) and (2,2) observations towards a sample of 15 massive star-forming regions, where we identify a total of 73 cores, classify them as protostellar, quiescent starless, or perturbed starless, and derive some physical properties. The average sizes and ammonia column densities are 0.06 pc and 10^15 cm^-2, respectively, with no significant differences between the starless and protostellar cores, while the linewidth and rotational temperature of quiescent starless cores are smaller, 1.0 km/s and 16 K, than those of protostellar (1.8 km/s, 21 K), and perturbed starless (1.4 km/s, 19 K) cores. Such linewidths and temperatures for these quiescent starless cores in the surroundings of massive stars are still significantly larger than the typical values measured in starless cores of low-mass star-forming regions, implying an important non-thermal compone...

  5. The complex evolutionary paths of local infrared bright galaxies: a high angular resolution mid-infrared view

    CERN Document Server

    Alonso-Herrero, A; Roche, P F; Hernan-Caballero, A; Aretxaga, I; Martinez-Paredes, M; Almeida, C Ramos; Pereira-Santaella, M; Diaz-Santos, T; Levenson, N A; Packham, C; Colina, L; Esquej, P; Gonzalez-Martin, O; Ichikawa, K; Imanishi, M; Espinosa, J M Rodriguez; Telesco, C

    2016-01-01

    We investigate the evolutionary connection between local IR-bright galaxies ($\\log L_{\\rm IR}\\ge 11.4\\,L_\\odot$) and quasars. We use high angular resolution ($\\sim$ 0.3-0.4 arcsec $\\sim$ few hundred parsecs) $8-13\\,\\mu$m ground-based spectroscopy to disentangle the AGN mid-IR properties from those of star formation. The comparison between the nuclear $11.3\\,\\mu$m PAH feature emission and that measured with Spitzer/IRS indicates that the star formation is extended over a few kpc in the IR-bright galaxies. The AGN contribution to the total IR luminosity of IR-bright galaxies is lower than in quasars. Although the dust distribution is predicted to change as IR-bright galaxies evolve to IR-bright quasars and then to optical quasars, we show that the AGN mid-IR emission of all the quasars in our sample is not significantly different. In contrast, the nuclear emission of IR-bright galaxies with low AGN contributions appears more heavily embedded in dust although there is no clear trend with the interaction stage or...

  6. Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging.

    Science.gov (United States)

    Ozarslan, Evren; Mareci, Thomas H

    2003-11-01

    A new method for mapping diffusivity profiles in tissue is presented. The Bloch-Torrey equation is modified to include a diffusion term with an arbitrary rank Cartesian tensor. This equation is solved to give the expression for the generalized Stejskal-Tanner formula quantifying diffusive attenuation in complicated geometries. This makes it possible to calculate the components of higher-rank tensors without using the computationally-difficult spherical harmonic transform. General theoretical relations between the diffusion tensor (DT) components measured by traditional (rank-2) DT imaging (DTI) and 3D distribution of diffusivities, as measured by high angular resolution diffusion imaging (HARDI) methods, are derived. Also, the spherical tensor components from HARDI are related to the rank-2 DT. The relationships between higher- and lower-rank Cartesian DTs are also presented. The inadequacy of the traditional rank-2 tensor model is demonstrated with simulations, and the method is applied to excised rat brain data collected in a spin-echo HARDI experiment. PMID:14587006

  7. Thin fused silica optics for a few arcsec angular resolution and large collecting area x-ray telescope

    Science.gov (United States)

    Citterio, O.; Civitani, M. M.; Pareschi, G.; Basso, S.; Campana, S.; Conconi, P.; Ghigo, M.; Mattaini, E.; Moretti, A.; Parodi, G.; Tagliaferri, G.

    2013-09-01

    The implementation of a X-ray mission with high imaging capabilities, similar to those achieved with Chandra (SMART-X project, led by CfA and involving several other US Institutes. This project is based on adjustable segments of thin foil mirrors with piezo-electric actuators, aiming to achieve an effective area mirrors are based on Si substrates that are super-polished and figured starting from a bulky Si ingot, from which they are properly cut. Here we propose an alternative method based on precise direct grinding, figuring and polishing of thin (a few mm) glass shells with innovative deterministic polishing methods. This is followed by a final correction via ion figuring to obtain the desired accuracy in order to achieve the 1 arc sec HEW requirement. For this purpose, a temporary stiffening structure is used to support the shell from the polishing operations up to its integration in the telescope supporting structure. We will present the technological process under development, the results achieved so far and some mission scenarios based on this kind of optics, aiming to achieve an effective area more than 10 times larger than Chandra and an angular resolution of 1 arcsec HEW on axis and of a few arcsec off-axis across a large field of view (1 deg in diameter).

  8. Observation of a critical angular momentum for deep inelastic processes with light heavy ions

    International Nuclear Information System (INIS)

    Studies of collisions between nuclei have shown that the large incoming orbital angular momenta play an important role in systems where Coulomb and centrifugal repulsion for the dominant (near grazing) partial waves are of comparable magnitude (A/sub p/,A/sub t/ 28Si + 12C at backward angles we show here results which demonstrate that the orbital angular momentum of the rotating dinuclear system formed in this collision reaches a critical value beyond which it ceases to increase with increasing bombarding energy

  9. New High-Resolution Sunyaev-Zel'dovich Observations with GBT+MUSTANG

    CERN Document Server

    Mroczkowski, Tony; Dicker, Simon; Korngut, Phillip; Mason, Brian; Reese, Erik; Sarazin, Craig; Sievers, Jonathon; Sun, Ming; Young, Alex

    2011-01-01

    We present recent high angular resolution (9") Sunyaev-Zel'dovich effect (SZE) observations with MUSTANG, a 90-GHz bolometric receiver on the Green Bank Telescope. MUSTANG has now imaged several massive clusters of galaxies in some of the highest-resolution SZE imaging to date, revealing complex pressure substructure within the hot intra-cluster gas in merging clusters. We focus on three merging, intermediate redshift clusters here: MACS J0744.8+3927, MACS J0717.5+3745, RX J1347.5-1145. In one of these merging clusters, MACS J0744.8+3927, the MUSTANG observation has revealed shocked gas that was previously undetected in X-ray observations. Our preliminary results for MACS J0717.5+3745 demonstrate the complementarity these observations provide when combined with X-ray observations of the thermal emission and radio observations of the non-thermal emission. And finally, by revisiting RX J1347.5-1145, we note an inter- esting correlation between its radio emission and the SZE data. While observations of the therm...

  10. ECG denoising using angular velocity as a state and an observation in an Extended Kalman Filter framework.

    Science.gov (United States)

    Akhbari, Mahsa; Shamsollahi, Mohammad B; Jutten, Christian; Coppa, Bertrand

    2012-01-01

    In this paper an efficient filtering procedure based on Extended Kalman Filter (EKF) has been proposed. The method is based on a modified nonlinear dynamic model, previously introduced for the generation of synthetic ECG signals. The proposed method considers the angular velocity of ECG signal, as one of the states of an EKF. We have considered two cases for observation equations, in one case we have assumed a corresponding observation to angular velocity state and in the other case, we have not assumed any observations for it. Quantitative evaluation of the proposed algorithm on the MIT-BIH Normal Sinus Rhythm Database (NSRDB) shows that an average SNR improvement of 8 dB is achieved for an input signal of -4 dB. PMID:23366530

  11. PKS 1502+106: A high-redshift Fermi blazar at extreme angular resolution. Structural dynamics with VLBI imaging up to 86 GHz

    CERN Document Server

    Karamanavis, V; Krichbaum, T P; Angelakis, E; Hodgson, J; Nestoras, I; Myserlis, I; Zensus, J A; Sievers, A; Ciprini, S

    2016-01-01

    Context. Blazars are among the most energetic objects in the Universe. In 2008 August, Fermi/LAT detected the blazar PKS 1502+106 showing a rapid and strong gamma-ray outburst followed by high and variable flux over the next months. This activity at high energies triggered an intensive multi-wavelength campaign covering also the radio, optical, UV, and X-ray bands indicating that the flare was accompanied by a simultaneous outburst at optical/UV/X-rays and a delayed outburst at radio bands. Aims: In the current work we explore the phenomenology and physical conditions within the ultra-relativistic jet of the gamma-ray blazar PKS 1502+106. Additionally, we address the question of the spatial localization of the MeV/GeV-emitting region of the source. Methods: We utilize ultra-high angular resolution mm-VLBI observations at 43 and 86 GHz complemented by VLBI observations at 15 GHz. We also employ single-dish radio data from the F-GAMMA program at frequencies matching the VLBI monitoring. Results: PKS 1502+106 sh...

  12. Thin monolithic glass shells for future high angular resolution and large collecting area x-ray telescope

    Science.gov (United States)

    Civitani, M. M.; Citterio, O.; Ghigo, M.; Mattaini, E.; Pareschi, G.; Parodi, G.

    2013-09-01

    One of the most difficult requests to be accomplished from the technological point of view for next generation x-ray telescopes is to combine high angular resolution and effective area. A significant increase of effective area can be reached with high precision but at the same time thin (2-3 mm thickness for mirror diameters of 30-110 cm) glass mirror shells. In the last few years the Brera Observatory has lead a development program for realizing this kind of monolithic thin glass shell. The fused silica has been chosen as shell substrate due to its thermal and mechanical properties. To bring the mirror shells to the needed accuracy, we have adopted a deterministic direct polishing method (already used for past missions as Einstein, Rosat, Chandra) to ten time thinner shells. The technological challenge has been solved using a temporary stiffening structure that allows the handling and the machining of so thin glass shells. The results obtained with a prototype shell at an intermediate stage of its development (17'' HEW measured in full illumination mode with x-ray) indicate that the working concept is feasible and can be further exploited using the very large Ion Beam Facility available in our labs for the final high accuracy figuring of the thin shells. In this paper we present the required tolerances for the shell realization, the shells production chain flow and the ion beam facility up grading. Forecast on figuring time and expected performances of the figuring will also be given on the basis on the metrological data collected during past shell development.

  13. Orbital Angular Momentum on the Light-Front and QCD Observables

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC

    2006-03-10

    The light-front wavefunction formalism provides a physical, but rigorous, representation for angular momentum in a relativistic quantum field theory. Each n-particle LFWF {psi}{sub n}(x{sub i}, {rvec k}{sub {perpendicular}}i,S{sub i}{sup z}) in the Fock state expansion of a hadron in QCD is frame-independent and satisfies angular momentum conservation J{sup z} = {summation}{sub i=1}{sup n} S{sub i}{sup z} + {summation}{sub i=1}{sup n-1} L{sub i}{sup z}, summed over the n - 1 independent intrinsic orbital angular momenta L{sub i}{sup z} = -i [{rvec k}{sub i}{sup x} {partial_derivative}/{partial_derivative}k{sub i}{sup y} - {rvec k}{sub i}{sup y} {partial_derivative}/{partial_derivative}k{sub i}{sup x}]. Gluons propagate with physical polarization S{sub g}{sup z} = {+-} 1 in light-cone gauge A{sup +} = 0. All of these features are illustrated by the Fock state expansion of the electron in terms of its fermion-boson components.

  14. Effects of angular momentum projection on the nuclear partition function and the observation of the giant dipole resonance in hot nuclei

    OpenAIRE

    Ormand, W. E.; Bortignon, P. F.; Broglia, R A

    1997-01-01

    Procedures for projecting angular momentum in a model describing a hot nucleus that takes into account large-amplitude quadrupole fluctuations are discussed. Particular attention is paid to the effect angular-momentum projection has on the observables associated with the $\\gamma$-decay of the giant-dipole resonance (GDR). We also elaborate on which of the different projection methods provides the best overall description of the GDR, including angular distributions. The main consequence of ang...

  15. High Resolution CO Observations of Massive Star Forming Regions

    CERN Document Server

    Klaassen, P D; Keto, E R; Zhang, Q; Galván-Madrid, R; Liu, H-Y B

    2011-01-01

    Context. To further understand the processes involved in the formation of massive stars, we have undertaken a study of the gas dynamics surrounding three massive star forming regions. By observing the large scale structures at high resolution, we are able to determine properties such as driving source, and spatially resolve the bulk dynamical properties of the gas such as infall and outflow. Aims. With high resolution observations, we are able to determine which of the cores in a cluster forming massive stars is responsible for the large scale structures. Methods. We present CO observations of three massive star forming regions with known HII regions and show how the CO traces both infall and outflow. By combining data taken in two SMA configurations with JCMT observations, we are able to see large scale structures at high resolution. Results. We find large (0.26-0.40 pc), massive (2-3 M_sun) and energetic (13-17 \\times 10^44 erg) outflows emanating from the edges of two HII regions suggesting they are being ...

  16. Observational semantics of the Prolog Resolution Box Model

    CERN Document Server

    Deransart, Pierre; Ferrand, Gérard

    2007-01-01

    This paper specifies an observational semantics and gives an original presentation of the Byrd box model. The approach accounts for the semantics of Prolog tracers independently of a particular Prolog implementation. Prolog traces are, in general, considered as rather obscure and difficult to use. The proposed formal presentation of its trace constitutes a simple and pedagogical approach for teaching Prolog or for implementing Prolog tracers. It is a form of declarative specification for the tracers. The trace model introduced here is only one example to illustrate general problems relating to tracers and observing processes. Observing processes know, from observed processes, only their traces. The issue is then to be able to reconstitute, by the sole analysis of the trace, part of the behaviour of the observed process, and if possible, without any loss of information. As a matter of fact, our approach highlights qualities of the Prolog resolution box model which made its success, but also its insufficiencies...

  17. High-angular resolution observations towards OMC-2 FIR 4: Dissecting an intermediate-mass protocluster

    NARCIS (Netherlands)

    A. López-Sepulcre; V. Taquet; A. Sánchez-Monge; C. Ceccarelli; C. Dominik; M. Kama; E. Caux; F. Fontani; A. Fuente; P.T.P. Ho; R. Neri; Y. Shimajiri

    2013-01-01

    Context. Intermediate-mass stars are an important ingredient of our Galaxy and a key to understanding how high- and low-mass stars form in clusters. One of the closest known young intermediate-mass protoclusters is OMC-2 FIR 4, which is located at a distance of 420 pc in Orion. This region is one of

  18. On high time-range resolution observations of PMSE: Statistical characteristics

    Science.gov (United States)

    Sommer, Svenja; Chau, Jorge L.; Schult, Carsten

    2016-06-01

    We present observations of polar mesospheric summer echoes (PMSE) with an unprecedented temporal sampling of 2 ms and range resolution down to 75 m. On these time and spatial scales, PMSE exhibit features, like correlation in time and range, that have not been described before. To characterize our high resolution observations, we provide a 4-D statistical model, based on random processes. In this way we can distinguish between geophysical and instrumental effects on our measurements. In our simulations, PMSE is statistically characterized in frequency, angular space, and inverse altitude. With this model, we are able to reproduce our observations on a statistical basis and estimate the intrinsic spectral width of PMSE. For chosen data sets, such values range between 0.5 Hz and 4 Hz (1.4 ms-1 to 11.2 ms-1). Furthermore, we show that apparent oscillations in time and an apparent high speed motion of the mean scattering center are just representations of the random nature of PMSE measurements on short time scales.

  19. High Spatial Resolution Fe XII Observations of Solar Active Regions

    Science.gov (United States)

    Testa, Paola; De Pontieu, Bart; Hansteen, Viggo

    2016-08-01

    We use UV spectral observations of active regions with the Interface Region Imaging Spectrograph (IRIS) to investigate the properties of the coronal Fe xii 1349.4 Å emission at unprecedented high spatial resolution (˜0.33″). We find that by using appropriate observational strategies (i.e., long exposures, lossless compression), Fe xii emission can be studied with IRIS at high spatial and spectral resolution, at least for high-density plasma (e.g., post-flare loops and active region moss). We find that upper transition region (TR; moss) Fe xii emission shows very small average Doppler redshifts ({v}{{D}} ˜ 3 km s‑1) as well as modest non-thermal velocities (with an average of ˜24 km s‑1 and the peak of the distribution at ˜15 km s‑1). The observed distribution of Doppler shifts appears to be compatible with advanced three-dimensional radiative MHD simulations in which impulsive heating is concentrated at the TR footpoints of a hot corona. While the non-thermal broadening of Fe xii 1349.4 Å peaks at similar values as lower resolution simultaneous Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) measurements of Fe xii 195 Å, IRIS observations show a previously undetected tail of increased non-thermal broadening that might be suggestive of the presence of subarcsecond heating events. We find that IRIS and EIS non-thermal line broadening measurements are affected by instrumental effects that can only be removed through careful analysis. Our results also reveal an unexplained discrepancy between observed 195.1/1349.4 Å Fe xii intensity ratios and those predicted by the CHIANTI atomic database.

  20. Impurity behaviors in carbon allotropes observed by the time-differential perturbed angular correlation method

    International Nuclear Information System (INIS)

    The time-differential perturbed angular correlation (TDPAC) method is a nuclear spectroscopy that can provide information on the electromagnetic moments of probe nuclei and/or local fields in matter through hyperfine interactions between the probe and extranuclear fields. In this report are presented TDPAC studies on the dynamic behaviors and electronic states of the 140Ce probe introduced in carbon allotropes-fullerenes, graphite, and diamond. Apart from these works, we have developed a new probe 19F making use of a short-lived secondary beam of 19O for a wider application of this spectroscopy to materials science. The new online TDPAC method with the 19F (←19O) probe is also presented here. (author)

  1. Observation of giant Goos-Hänchen and angular shifts at designed metasurfaces

    Science.gov (United States)

    Yallapragada, Venkata Jayasurya; Ravishankar, Ajith P.; Mulay, Gajendra L.; Agarwal, Girish S.; Achanta, Venu Gopal

    2016-01-01

    Metasurfaces with sub-wavelength features are useful in modulating the phase, amplitude or polarization of electromagnetic fields. While several applications are reported for light manipulation and control, the sharp phase changes would be useful in enhancing the beam shifts at reflection from a metasurface. In designed periodic patterns on metal film, at surface plasmon resonance, we demonstrate Goos-Hanchen shift of the order of 70 times the incident wavelength and the angular shifts of several hundred microradians. We have designed the patterns using rigorous coupled wave analysis (RCWA) together with S-matrices and have used a complete vector theory to calculate the shifts as well as demonstrate a versatile experimental setup to directly measure the shifts. The giant shifts demonstrated could prove to be useful in enhancing the sensitivity of experiments ranging from atomic force microscopy to gravitational wave detection.

  2. Physical Version of Singularity Resolution in the Observable Universe

    CERN Document Server

    Song, Daegene

    2016-01-01

    Based on the equivalence of the two different types of measurement protocols and the asymmetry between the Schr\\"odinger and Heisenberg pictures, it has been previously proposed that negative sea fills the universe as a nondeterministic computation - a time-reversal process of the irreversible computations presented since the big bang. The goal of this paper is to extend the proposed subjective universe model, i.e., the universe as a quantum measurement: Motivated by the relationship between quantum theory and classical probability theory with continuity, it is argued that the frame of reference of the observer may be identified with classical probability theory where its choice, along with big bang singularity, should correspond to the quantum observable. That is, the physical version of singularity resolution corresponds to the case, where big bang singularity is equivalent to the continuity of the negative sea, or aether, filling the universe as a frame of reference of the observer. Moreover, based on the ...

  3. High-resolution spectropolarimetric observations of hot subdwarfs

    CERN Document Server

    Petit, P; Bagnulo, S; Charpinet, S; Wade, G A; Green, E M

    2011-01-01

    We report on high-resolution spectropolarimetric observations of the hot subdwarf stars HD 76431 and Feige 66, using the ESPaDOnS echelle spectropolarimeter at CFHT. We compute cross-correlation Stokes I and V line profiles to enhance the signal-to-noise ratio. We then average all available cross-correlation profiles of each star to further decrease the noise level. Although both targets were previously reported to host kilo-gauss magnetic fields, we do not derive any evidence of large-scale photospheric fields from our sets of observations, in spite of tight error bars on the longitudinal field of the order of 60 gauss for HD 76431 and 200 gauss for Feige 66. A new analysis of FORS1 observations of HD 76431, which provided the basis for the original claim of field detection, confirms the absence of any detectable Zeeman signature, with an error bar of about 100 gauss on the longitudinal magnetic field.

  4. TANAMI: Milliarcsecond Resolution Observations of Extragalactic Gamma-ray Sources

    CERN Document Server

    Ojha, Roopesh; Böck, M; Booth, R; Dutka, M S; Edwards, P G; Fey, A L; Fuhrmann, L; Gaume, R A; Hase, H; Horiuchi, S; Jauncey, D L; Johnston, K J; Katz, U; Lister, M; Lovell, J E J; Müller, C; Plötz, C; Quick, J F H; Ros, E; Taylor, G B; Thompson, D J; Tingay, S J; Tosti, G; Tzioumis, A K; Wilms, J; Zensus, J A

    2010-01-01

    The TANAMI (Tracking AGN with Austral Milliarcsecond Interferometry) and associated programs provide comprehensive radio monitoring of extragalactic gamma-ray sources south of declination -30 degrees. Joint quasi-simultaneous observations between the Fermi Gamma-ray Space Telescope and ground based observatories allow us to discriminate between competing theoretical blazar emission models. High resolution VLBI observations are the only way to spatially resolve the sub-parsec level emission regions where the high-energy radiation originates. The gap from radio to gamma-ray energies is spanned with near simultaneous data from the Swift satellite and ground based optical observatories. We present early results from the TANAMI program in the context of this panchromatic suite of observations.

  5. Observation of a Change in Bend of an RNA Kissing Complex Using the Angular Dependence of Fluorescence Resonance Energy Transfer

    CERN Document Server

    Rahmanseresht, Sheema; Gamari, Ben D; Goldner, Lori S

    2014-01-01

    We report on the observation of a change in the bend angle of an RNA kissing complex upon Rop binding using single-molecular-pair FRET. The angular relationship between the dyes, rather than the distance between them, is shown to be responsible for the observed change in energy transfer. It has long been thought that Rop increases the bend angle of the R1inv-R2inv complex upon binding, but this has never been directly observed. In contrast, we find an increase in FRET upon the addition of Rop that is shown via modeling to be consistent with a decrease in the bend angle of the complex of $-15^{\\circ}\\pm7^{\\circ}$. The model predicts FRET from dye trajectories generated using molecular dynamics simulations of Cy3 and Cy5 attached to $5'$ terminal cytosine or guanosine on RNA. While FRET is commonly used to observe global changes in molecular structure attributed to changes in the distance between dyes, it is rarely, if ever, used to elucidate angular changes. Subtle global changes in molecular structure upon bi...

  6. Angular resolution of a neutron scatter imaging system%中子散射成像探测角分辨研究∗

    Institute of Scientific and Technical Information of China (English)

    张美; 张显鹏; 李奎念; 盛亮; 袁媛; 宋朝晖; 李阳

    2015-01-01

    Using a combination of imaging and spectroscopic capabilities, neutron scatter imaging is a novel method of detecting neutrons in an energy range from 1 to 20 MeV. The technique can be applied to measurements in a variety of areas, including solar and atmospheric physics, radiation therapy, and nuclear materials monitoring. Angular resolution is an important parameter for a neutron scatter imaging system. There are some factors causing the uncertainty in the reconstructed image due to the imperfection of the detector system and natures of neutron scattering. These factors mainly are the uncertainties of the position and the energy. In this paper, the contributions of these factors to the angular resolution are discussed. The results show that the angular resolution varies with scatter angle; the position uncertainty not only directly affects the angular resolution, but also indirectly contributes to the angular uncertainty by influencing energy uncertainty; when the detector dimension is less than 5 cm, the energy uncertainty becomes a dominating factor for angular resolution. The prototype is designed based on the above analysis results. The angular resolution of the designed prototype is tested on Cf252 source. The experimental results are basically consistent with the simulation results.%中子散射成像技术是近年来国外正在发展的一项新型辐射成像技术,在深空宇宙探测、核材料监控等方面具有广阔的应用前景。角分辨是衡量该技术成像能力的一项重要参数。研究了位置不确定度和能量分辨对角分辨的影响。理论分析表明:以不同角度散射,成像的角分辨不同;位置不确定不仅直接影响角分辨,还通过影响能量不确定度对角分辨间接贡献;位置分辨主要来源于探测器的结构尺寸,当探测器尺寸小于5 cm,影响角分辨的主要来源是能量不确定度。利用所获得的理论结果指导设计了原理探测系统,并对设计的原

  7. Quantitative observation of tracer transport with high-resolution PET

    Science.gov (United States)

    Kulenkampff, Johannes; Gruendig, Marion; Zakhnini, Abdelhamid; Lippmann-Pipke, Johanna

    2016-04-01

    Transport processes in natural porous media are typically heterogeneous over various scales. This heterogeneity is caused by the complexity of pore geometry and molecular processes. Heterogeneous processes, like diffusive transport, conservative advective transport, mixing and reactive transport, can be observed and quantified with quantitative tomography of tracer transport patterns. Positron Emission Tomography (PET) is by far the most sensitive method and perfectly selective for positron-emitting radiotracers, therefore it is suited as reference method for spatiotemporal tracer transport observations. The number of such PET-applications is steadily increasing. However, many applications are afflicted by the low spatial resolution (3 - 5 mm) of the clinical scanners from cooperating nuclear medical departments. This resolution is low in relation to typical sample dimensions of 10 cm, which are restricted by the mass attenuation of the material. In contrast, our GeoPET-method applies a high-resolution scanner with a resolution of 1 mm, which is the physical limit of the method and which is more appropriate for samples of the size of soil columns or drill cores. This higher resolution is achieved at the cost of a more elaborate image reconstruction procedure, especially considering the effects of Compton scatter. The result of the quantitative image reconstruction procedure is a suite of frames of the quantitative tracer distribution with adjustable frame rates from minutes to months. The voxel size has to be considered as reference volume of the tracer concentration. This continuous variable includes contributions from structures far below the spatial resolution, as far as a detection threshold, in the pico-molar range, is exceeded. Examples from a period of almost 10 years (Kulenkampff et al. 2008a, Kulenkampff et al. 2008b) of development and application of quantitative GeoPET-process tomography are shown. These examples include different transport processes

  8. Providing stringent star formation rate limits of z$\\sim$2 QSO host galaxies at high angular resolution

    CERN Document Server

    Vayner, Andrey; Do, Tuan; Larkin, James E; Armus, Lee; Gallagher, Sarah C

    2014-01-01

    We present integral field spectrograph (IFS) with laser guide star adaptive optics (LGS-AO) observations of z=2 quasi-stellar objects (QSOs) designed to resolve extended nebular line emission from the host galaxy. Our data was obtained with W. M. Keck and Gemini-North Observatories using OSIRIS and NIFS coupled with the LGS-AO systems. We have conducted a pilot survey of five QSOs, three observed with NIFS+AO and two observed with OSIRIS+AO at an average redshift of z=2.15. We demonstrate that the combination of AO and IFS provides the necessary spatial and spectral resolutions required to separate QSO emission from its host. We present our technique for generating a PSF from the broad-line region of the QSO and performing PSF subtraction of the QSO emission to detect the host galaxy. We detect H$\\alpha$ and [NII] for two sources, SDSS J1029+6510 and SDSS J0925+06 that have both star formation and extended narrow-line emission. Assuming that the majority of narrow-line H$\\alpha$ is from star formation, we inf...

  9. Directly measuring mean and variance of infinite-spectrum observables such as the photon orbital angular momentum

    Science.gov (United States)

    Piccirillo, Bruno; Slussarenko, Sergei; Marrucci, Lorenzo; Santamato, Enrico

    2015-01-01

    The standard method for experimentally determining the probability distribution of an observable in quantum mechanics is the measurement of the observable spectrum. However, for infinite-dimensional degrees of freedom, this approach would require ideally infinite or, more realistically, a very large number of measurements. Here we consider an alternative method which can yield the mean and variance of an observable of an infinite-dimensional system by measuring only a two-dimensional pointer weakly coupled with the system. In our demonstrative implementation, we determine both the mean and the variance of the orbital angular momentum of a light beam without acquiring the entire spectrum, but measuring the Stokes parameters of the optical polarization (acting as pointer), after the beam has suffered a suitable spin–orbit weak interaction. This example can provide a paradigm for a new class of useful weak quantum measurements. PMID:26477715

  10. SEE Observations of Ionospheric Heating from HAARP Using Orbital Angular Momentum

    Science.gov (United States)

    Briczinski, S. J.; Bernhardt, P. A.; Siefring, C. L.

    2013-12-01

    High power HF radio waves exciting the ionosphere provide aeronomers with a unique space-based laboratory capability. The High-Frequency Active Auroral Research Program (HAARP) in Gakona, Alaksa is the world's largest heating facility, providing effective radiated powers in the gigawatt range. Experiments performed at HAARP have allowed researchers to study many non-linear effects of wave-plasma interactions. Stimulated Electromagnetic Emission (SEE) is of interest to the ionospheric community for its diagnostic purposes. Typical SEE experiments at HAARP have focused on characterizing the parametric decay of the electromagnetic pump wave into several different wave modes such as upper and lower hybrid, ion acoustic, ion-Bernstein and electron-Bernstein. These production modes have been extensively studied at HAARP using traditional beam heating patterns and SEE detection. New results are present from HAARP experiments using an excitation mode that attempts to impart orbital angular momentum (OAM) into the heating region. This OAM mode is also referred to as a 'twisted beam.' Previous analysis of twisted beam heating shows that the SEE results obtained are nearly identical to the modes without OAM. Recent twisted beam heating experiments have produced SEE modes not previously characterized. These new modes are presented and discussed. One difference in the twisted beam mode is the heating region produced is in the shape of a ring as opposed to the more traditional 'solid spot' region. The ring heating pattern may be more conducive to the creation of artificial ionization clouds. The results of these runs include artificial ionization creation and evolution as pertaining to the twisted beam pattern.

  11. High-Resolution Observations of a Binary Black Hole Candidate

    Science.gov (United States)

    Tsai, Chao-Wei; Phillips, Chris; Norris, Ray; Jarrett, Thomas; Emonts, Bjorn; Cluver, Michelle; Eisenhardt, Peter; Stern, Daniel; Assef, Roberto

    2012-10-01

    We propose a 12-hour 2.3 GHz continuum Long Baseline Array (LBA) observation of WISE J2332-5056, a newly discovered supermassive black hole (SMBH) merger candidate that is located in the nearby universe (z = 0.3447). Our recently acquired 9 GHz ATCA map shows unusual radio morphology: a one-sided, smaller (and likely younger) FR-I jet perpendicular to a larger, Doppler-boosted FR-II jet. Follow-up Gemini-S/GMOS spectroscopy of this WISE-selected radio galaxy reveals broad emission lines blue-shifted by > 3,500 km/s with respect to the narrow lines and host galaxy, hallmarks of a dual AGN system. Combined, the optical spectroscopy and radio morphology of this object are strongly suggestive of a black hole merger system. Even in the local universe these systems are extremely difficult to identify; yet the process of supermassive blackhole growth is vital toward understanding galaxy evolution from the early to the current universe. Moreover, nearby merging SMBHs may serve as outstanding targets for gravitational wave studies. The proposed high resolution LBA map, reaching 50 pc resolution at the source redshift will allow us to investigate the SMBH merger scenario hypothesis.

  12. A Photoisomerizing Rhodopsin Mimic Observed at Atomic Resolution.

    Science.gov (United States)

    Nosrati, Meisam; Berbasova, Tetyana; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James H

    2016-07-20

    The members of the rhodopsin family of proteins are involved in many essential light-dependent processes in biology. Specific photoisomerization of the protein-bound retinylidene PSB at a specified wavelength range of light is at the heart of all of these systems. Nonetheless, it has been difficult to reproduce in an engineered system. We have developed rhodopsin mimics, using intracellular lipid binding protein family members as scaffolds, to study fundamental aspects of protein/chromophore interactions. Herein we describe a system that specifically isomerizes the retinylidene protonated Schiff base both thermally and photochemically. This isomerization has been characterized at atomic resolution by quantitatively interconverting the isomers in the crystal both thermally and photochemically. This event is accompanied by a large pKa change of the imine similar to the pKa changes observed in bacteriorhodopsin and visual opsins during isomerization. PMID:27310917

  13. Providing Stringent Star Formation Rate Limits of z ˜ 2 QSO Host Galaxies at High Angular Resolution

    Science.gov (United States)

    Vayner, Andrey; Wright, Shelley A.; Do, Tuan; Larkin, James E.; Armus, Lee; Gallagher, S. C.

    2016-04-01

    We present integral field spectrograph (IFS) with laser guide star adaptive optics (LGS-AO) observations of z ˜ 2 quasi-stellar objects (QSOs) designed to resolve extended nebular line emission from the host galaxy. Our data was obtained with W. M. Keck and Gemini North Observatories, using OSIRIS and NIFS coupled with the LGS-AO systems, respectively. We have conducted a pilot survey of five QSOs, three observed with NIFS+AO and two observed with OSIRIS+AO at an average redshift of z = 2.2. We demonstrate that the combination of AO and IFSs provides the necessary spatial and spectral resolutions required to separate QSO emission from its host. We present our technique for generating a point-spread function (PSF) from the broad-line region of the QSO and performing PSF subtraction of the QSO emission to detect the host galaxy emission at a separation of ˜0.″2 (˜1.4 kpc). We detect Hα narrow-line emission for two sources, SDSS J1029+6510 (zHα = 2.182) and SDSS J0925+0655 (zHα = 2.197), that have evidence for both star formation and extended narrow-line emission. Assuming that the majority of narrow-line Hα emission is from star formation, we infer a star formation rate (SFR) for SDSS J1029+6510 of 78.4 M⊙ yr-1 originating from a compact region that is kinematically offset by 290-350 km s-1. For SDSS J0925+0655 we infer a SFR of 29 M⊙ yr-1 distributed over three clumps that are spatially offset by ˜7 kpc. The null detections on three of the QSOs are used to infer surface brightness limits and we find that at 1.4 kpc from the QSO the un-reddened star formation limit is ≲0.3 M⊙ yr-1 kpc-2. If we assume typical extinction values for z = 2 type-1 QSOs, the dereddened SFR for our null detections would be ≲0.6 M⊙ yr-1 kpc-2. These IFS observations indicate that while the central black hole is accreting mass at 10%-40% of the Eddington rate, if star formation is present in the host (1.4-20 kpc) it would have to occur diffusely with significant

  14. Improved SOT (Hinode mission) high resolution solar imaging observations

    CERN Document Server

    Goodarzi, Hadis; Adjabshirizadeh, Ali

    2015-01-01

    We consider the best today available observations of the Sun free of turbulent Earth atmospheric effects, taken with the Solar Optical Telescope (SOT) onboard the Hinode spacecraft. Both the instrumental smearing and the observed stray light are analyzed in order to improve the resolution. The Point Spread Function (PSF) corresponding to the blue continuum Broadband Filter Imager (BFI) near 450 nm is deduced by analyzing i/ the limb of the Sun and ii/ images taken during the transit of the planet Venus in 2012. A combination of Gaussian and Lorentzian functions is selected to construct a PSF in order to remove both smearing due to the instrumental diffraction effects (PSF core) and the large-angle stray light due to the spiders and central obscuration (wings of the PSF) that are responsible for the parasitic stray light. A Max-likelihood deconvolution procedure based on an optimum number of iterations is discussed. It is applied to several solar field images, including the granulation near the limb. The norma...

  15. High Resolution Observations and Modeling of Dynamic Fibrils

    CERN Document Server

    De Pontieu, B; van der Voort, L R; Van Noort, M; Carlsson, M

    2006-01-01

    We present unprecedented high resolution H-alpha observations, obtained with the Swedish 1-m Solar Telescope, that, for the first time, spatially and temporally resolve dynamic fibrils in active regions on the Sun. These jet-like features are similar to mottles or spicules in quiet Sun. We find that most of these fibrils follow almost perfect parabolic paths in their ascent and descent. We measure the properties of the parabolic paths taken by 257 fibrils, and present an overview of the deceleration, maximum velocity, maximum length and duration, as well as their widths and the thickness of a bright ring that often occurs above dynamic fibrils. We find that the observed deceleration of the projected path is typically only a fraction of solar gravity, and incompatible with a ballistic path at solar gravity. We report on significant differences of fibril properties between those occurring above a dense plage region, and those above a less dense plage region where the magnetic field seems more inclined from the ...

  16. Observation of light's orbital angular momentum from helical undulator harmonics

    International Nuclear Information System (INIS)

    A spiral interference pattern between fundamental and second harmonic radiations form two tandem-aligned helical undulators was observed by scanning a fiber multi-channel spectrometer placed at the end of beamline downstream of S1 straight section in UVSOR. With these experiments, interference patterns were in good agreement with those by theoretical prediction for right and left circular polarization modes. Also, similar interference measurement was done by using a CCD camera. With this measurement, we observed a rotation of spiral pattern by changing the undulator gap. (author)

  17. OBSERVING CASCADES OF SOLAR BULLETS AT HIGH RESOLUTION. II

    Energy Technology Data Exchange (ETDEWEB)

    Scullion, E.; Engvold, O.; Lin, Y.; Voort, L. Rouppe van der, E-mail: scullie@tcd.ie [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway)

    2015-12-01

    High resolution observations from the Swedish 1-m Solar Telescope revealed bright, discrete, blob-like structures (which we refer to as solar bullets) in the Hα 656.28 nm line core that appear to propagate laterally across the solar atmosphere as clusters in active regions (ARs). These small-scale structures appear to be field aligned and many bullets become triggered simultaneously and traverse collectively as a cluster. Here, we conduct a follow-up study on these rapidly evolving structures with coincident observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly. With the co-aligned data sets, we reveal (a) an evolving multithermal structure in the bullet cluster ranging from chromospheric to at least transition region temperatures, (b) evidence for cascade-like behavior and corresponding bidirectional motions in bullets within the cluster, which indicate that there is a common source of the initial instability leading to bullet formation, and (c) a direct relationship between co-incident bullet velocities observed in Hα and He ii 30.4 nm and an inverse relationship with respect to bullet intensity in these channels. We find evidence supporting that bullets are typically composed of a cooler, higher density core detectable in Hα with a less dense, hotter, and fainter co-moving outer sheath. Bullets unequivocally demonstrate the finely structured nature of the AR corona. We have no clear evidence for bullets being associated with locally heated (or cooled), fast flowing plasma. Fast MHD pulses (such as solitons) could best describe the dynamic properties of bullets whereas the presence of a multithermal structure is new.

  18. Inferring the sun's internal angular velocity from observed p-mode frequency splittings

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.M.; Christensen-Dalsgaard, J.; Dziembowski, W.A.; Goode, P.; Gough, D.O. (High Altitude Observatory, Boulder, CO (USA); Aarhus Universitet (Denmark); Centrum Astronomiczne, Warsaw (Poland); New Jersey Institute of Technology, Newark (USA); Cambridge Univ. (England))

    1989-08-01

    The sun's internal solar velocity Omega is studied as a function of latitude and radius using the solar oscillation data of Brown and Morrow (1987). An attempt is made to separate robust inferences about the sun from artifacts of the analysis. It is found that a latitudinal variation of Omega similar to that observed at the solar surface exists throughout the sun's convection zone and that the variation of Omega with latitude persists to some extent even beneath the convection zone. 44 refs.

  19. PROVIDING STRINGENT STAR FORMATION RATE LIMITS OF z ∼ 2 QSO HOST GALAXIES AT HIGH ANGULAR RESOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Vayner, Andrey; Wright, Shelley A. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Do, Tuan [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Larkin, James E. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Armus, Lee [Spitzer Science Center, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Gallagher, S. C. [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada)

    2016-04-10

    We present integral field spectrograph (IFS) with laser guide star adaptive optics (LGS-AO) observations of z ∼ 2 quasi-stellar objects (QSOs) designed to resolve extended nebular line emission from the host galaxy. Our data was obtained with W. M. Keck and Gemini North Observatories, using OSIRIS and NIFS coupled with the LGS-AO systems, respectively. We have conducted a pilot survey of five QSOs, three observed with NIFS+AO and two observed with OSIRIS+AO at an average redshift of z = 2.2. We demonstrate that the combination of AO and IFSs provides the necessary spatial and spectral resolutions required to separate QSO emission from its host. We present our technique for generating a point-spread function (PSF) from the broad-line region of the QSO and performing PSF subtraction of the QSO emission to detect the host galaxy emission at a separation of ∼0.″2 (∼1.4 kpc). We detect Hα narrow-line emission for two sources, SDSS J1029+6510 (z{sub Hα} = 2.182) and SDSS J0925+0655 (z{sub Hα} = 2.197), that have evidence for both star formation and extended narrow-line emission. Assuming that the majority of narrow-line Hα emission is from star formation, we infer a star formation rate (SFR) for SDSS J1029+6510 of 78.4 M{sub ⊙} yr{sup −1} originating from a compact region that is kinematically offset by 290–350 km s{sup −1}. For SDSS J0925+0655 we infer a SFR of 29 M{sub ⊙} yr{sup −1} distributed over three clumps that are spatially offset by ∼7 kpc. The null detections on three of the QSOs are used to infer surface brightness limits and we find that at 1.4 kpc from the QSO the un-reddened star formation limit is ≲0.3 M{sub ⊙} yr{sup −1} kpc{sup −2}. If we assume typical extinction values for z = 2 type-1 QSOs, the dereddened SFR for our null detections would be ≲0.6 M{sub ⊙} yr{sup −1} kpc{sup −2}. These IFS observations indicate that while the central black hole is accreting mass at 10%–40% of the Eddington rate, if

  20. High resolution geomagnetic field observations at Terra Nova bay, Antarctica

    Directory of Open Access Journals (Sweden)

    P. Palangio

    1996-06-01

    Full Text Available he preliminary results obtained from the analysis in the micropulsation frequency range of high time resolution magnetic field data recorded at the Antarctic Italian geomagnetic observatory at Terra Nova Bay for 11 consecutive days in February 1994 are reported. The spectral index over the whole Pcl-Pc5 frequency range is of the order of 3.5 and its value significantly increases beyond about 50 mHz. Spectral peaks in the Pc3 frequency range are common, especially during the daytime hours, and are probably due to the direct penetration of upstream waves in the cusp region. From the local time distribution of the micro pulsation power, a signifi - cant activity enhancement around the local magnetic noon emerges, in agreement with previous observations. The analysis of the signal polarisation characteristics in the horizontal plane shows a predominant CW polarisation in the Pcl-Pc3 frequency ranges with the major axis of the polarisation ellipse in the first quadrant.

  1. Angular Momentum Transport in Accretion Disks

    DEFF Research Database (Denmark)

    E. Pessah, Martin; Chan, Chi-kwan; Psaltis, Dimitrios;

    2007-01-01

    if the resolution were set equal to the natural dissipation scale in astrophysical disks. We conclude that, in order for MRI-driven turbulent angular momentum transport to be able to account for the large value of the effective alpha viscosity inferred observationally, the disk must be threaded by a significant...

  2. On the magnetic field required for driving the observed angular-velocity variations in the solar convection zone

    OpenAIRE

    Antia, H. M.; Chitre, S. M.; Gough, D. O.

    2012-01-01

    A putative temporally varying circulation-free magnetic-field configuration is inferred in an equatorial segment of the solar convection zone from the helioseismologically inferred angular-velocity variation, assuming that the predominant dynamics is angular acceleration produced by the azimuthal Maxwell stress exerted by a field whose surface values are consistent with photospheric line-of-sight measurements.

  3. On the magnetic field required for driving the observed angular-velocity variations in the solar convection zone

    Science.gov (United States)

    Antia, H. M.; Chitre, S. M.; Gough, D. O.

    2013-01-01

    A putative temporally varying circulation-free magnetic-field configuration is inferred in an equatorial segment of the solar convection zone from the helioseismologically inferred angular-velocity variation, assuming that the predominant dynamics is an angular acceleration produced by the azimuthal Maxwell stress exerted by a field whose surface values are consistent with photospheric line-of-sight measurements.

  4. An extension of the high-resolution millimeter- and submillimeter-wave spectrum of methanol to high angular momentum quantum numbers

    Science.gov (United States)

    Anderson, Todd; Herbst, Eric; De Lucia, Frank C.

    1992-01-01

    The high-resolution laboratory millimeter- and submillimeter-wave spectra of C-12H(3)OH and C-13H(3)OH have been extended to include transitions involving significantly higher angular momentum quantum numbers than studied previously. For C-12H(3)OH, the data set now includes 549 A torsional substate transitions and 524 E torsional substate transitions through J is not greater than 24, exclusive of blends. For C-13H(3)OH the data set now includes 453 A torsional substate transitions and 440 E torsional substate transitions through J is not greater than 24, exclusive of blends. The extended internal axis method Hamiltonian has been used to analyze the transitions to experimental accuracy. The molecular constants determined by this approach have been used to predict accurately the frequencies of many transitions through J = 25 not measured in the laboratory.

  5. Martian surface microtexture from orbital CRISM multi-angular observations: A new perspective for the characterization of the geological processes

    Science.gov (United States)

    Fernando, J.; Schmidt, F.; Douté, S.

    2016-09-01

    volume scattering, are sensitive to the grain morphology and internal structure. The surface material photometric parameters estimated from the CRISM multi-angular observations at 750 nm are compared to the geological units in order to better characterize the geological processes. The photometric results show a high diversity of surface scattering behaviors (from a broad and backward scattering behavior to a narrow and forward scattering behavior) that suggests a high diversity of surface microtexture. A narrow forward scattering behavior has been detected for the first time from martian orbital data and observed in peculiar regions dominated by salt-bearing and clay-bearing materials. Hence the martian photometric results suggest that Mars experimented varied geological processes still preserved in the material microtexture. This study also demonstrates that these properties provide complementary information to mineralogy and geomorphology to better constrain the geological processes.

  6. A Remark on the Estimation of Angular Power Spectra in the Presence of Foregrounds

    CERN Document Server

    White, M

    1998-01-01

    It is common practice to estimate the errors on the angular power spectrum which could be obtained by an experiment with a given angular resolution and noise level. Several authors have also addressed the question of foreground subtraction using multi-frequency observations. In such observations the angular resolution of the different frequency channels is rarely the same. In this report we point out how the ``effective'' beam size and noise level change with ell in this case, and give an expression for the error on the angular power spectrum as a function of ell.

  7. Observation of super-resolution in digital breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Acciavatti, Raymond J.; Maidment, Andrew D. A. [Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104-4206 (United States)

    2012-12-15

    Purpose: Digital breast tomosynthesis (DBT) is a 3D x-ray imaging modality in which tomographic sections of the breast are generated from a limited range of tube angles. Because oblique x-ray incidence shifts the image of an object in subpixel detector element increments with each increasing projection angle, it is demonstrated that DBT is capable of super-resolution (i.e., subpixel resolution). Methods: By convention, DBT reconstructions are performed on planes parallel to the breast support at various depths of the breast volume. In order for resolution in each reconstructed slice to be comparable to the detector, the pixel size should match that of the detector elements; hence, the highest frequency that can be resolved in the plane of reconstruction is the alias frequency of the detector. This study considers reconstruction grids with much smaller pixelation to visualize higher frequencies. For analytical proof of super-resolution, a theoretical framework is developed in which the reconstruction of a high frequency sinusoidal input is calculated using both simple backprojection (SBP) and filtered backprojection. To study the frequency spectrum of the reconstruction, its Fourier transform is also determined. The experimental feasibility of super-resolution was investigated by acquiring images of a bar pattern phantom with frequencies higher than the detector alias frequency. Results: Using analytical modeling, it is shown that the central projection cannot resolve frequencies exceeding the detector alias frequency. The Fourier transform of the central projection is maximized at a lower frequency than the input as evidence of aliasing. By contrast, SBP reconstruction can resolve the input, and its Fourier transform is correctly maximized at the input frequency. Incorporating filters into the reconstruction smoothens pixelation artifacts in the spatial domain and reduces spectral leakage in the Fourier domain. It is also demonstrated that the existence of super-resolution

  8. Giant quiescent solar filament observed with high-resolution spectroscopy

    Science.gov (United States)

    Kuckein, C.; Verma, M.; Denker, C.

    2016-05-01

    Aims: An extremely large filament was studied in various layers of the solar atmosphere. The inferred physical parameters and the morphological aspects are compared with smaller quiescent filaments. Methods: A giant quiet-Sun filament was observed with the high-resolution Echelle spectrograph at the Vacuum Tower Telescope at Observatorio del Teide, Tenerife, Spain, on 2011 November 15. A mosaic of spectra (ten maps of 100″ × 182″) was recorded simultaneously in the chromospheric absorption lines Hα and Na i D2. Physical parameters of the filament plasma were derived using cloud model (CM) inversions and line core fits. The spectra were complemented with full-disk filtergrams (He i λ10830 Å, Hα, and Ca ii K) of the Chromospheric Telescope (ChroTel) and full-disk magnetograms of the Helioseismic and Magnetic Imager (HMI). Results: The filament had extremely large linear dimensions (~817 arcsec), which corresponds to about 658 Mm along a great circle on the solar surface. A total amount of 175119 Hα contrast profiles were inverted using the CM approach. The inferred mean line-of-sight (LOS) velocity, Doppler width, and source function were similar to previous works of smaller quiescent filaments. However, the derived optical thickness was higher. LOS velocity trends inferred from the Hα line core fits were in accord but weaker than those obtained with CM inversions. Signatures of counter-streaming flows were detected in the filament. The largest brightening conglomerates in the line core of Na i D2 coincided well with small-scale magnetic fields as seen by HMI. Mixed magnetic polarities were detected close to the ends of barbs. The computation of photospheric horizontal flows based on HMI magnetograms revealed flow kernels with a size of 5-8 Mm and velocities of 0.30-0.45 km s-1 at the ends of the filament. Conclusions: The physical properties of extremely large filaments are similar to their smaller counterparts, except for the optical thickness, which in

  9. Partonic orbital angular momentum

    Science.gov (United States)

    Arash, Firooz; Taghavi-Shahri, Fatemeh; Shahveh, Abolfazl

    2013-04-01

    Ji's decomposition of nucleon spin is used and the orbital angular momentum of quarks and gluon are calculated. We have utilized the so called valon model description of the nucleon in the next to leading order. It is found that the average orbital angular momentum of quarks is positive, but small, whereas that of gluon is negative and large. Individual quark flavor contributions are also calculated. Some regularities on the total angular momentum of the quarks and gluon are observed.

  10. Observation of long-range, near-side angular correlations in pPb collisions at the LHC

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Aguilo, Ernest; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Reis, Thomas; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Castello, Roberto; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Soares Jorge, Luana; Sznajder, Andre; Vilela Pereira, Antonio; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Carrillo Montoya, Camilo Andres; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Mahrous, Ayman; Radi, Amr; Kadastik, Mario; Müntel, Mait; Murumaa, Marion; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Karjalainen, Ahti; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Millischer, Laurent; Nayak, Aruna; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Florent, Alice; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Juillot, Pierre; Le Bihan, Anne-Catherine; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Beauceron, Stephanie; Beaupere, Nicolas; Bondu, Olivier; Boudoul, Gaelle; Brochet, Sébastien; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sgandurra, Louis; Sordini, Viola; Tschudi, Yohann; Verdier, Patrice; Viret, Sébastien; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Calpas, Betty; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Bontenackels, Michael; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Sauerland, Philip; Stahl, Achim; Aldaya Martin, Maria; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Castro, Elena; Costanza, Francesco; Dammann, Dirk; Diez Pardos, Carmen; Eckerlin, Guenter; Eckstein, Doris; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Gunnellini, Paolo; Habib, Shiraz; Hauk, Johannes; Hellwig, Gregor; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Leonard, Jessica; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Novgorodova, Olga; Olzem, Jan; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Ron, Elias; Rosin, Michele; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Enderle, Holger; Erfle, Joachim; Gebbert, Ulla; Görner, Martin; Gosselink, Martijn; Haller, Johannes; Hermanns, Thomas; Höing, Rebekka Sophie; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Nowak, Friederike; Peiffer, Thomas; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schröder, Matthias; Schum, Torben; Seidel, Markus; Sibille, Jennifer; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Vanelderen, Lukas; Barth, Christian; Berger, Joram; Böser, Christian; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Hauth, Thomas; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Husemann, Ulrich; Katkov, Igor; Komaragiri, Jyothsna Rani; Lobelle Pardo, Patricia; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Röcker, Steffen; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Zeise, Manuel; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Ntomari, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kaur, Manjit; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Ganguly, Sanmay; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Tosi, Silvano; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; De Cosa, Annapaola; Dogangun, Oktay; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Biasotto, Massimo; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Gasparini, Fabrizio; Gozzelino, Andrea; Gulmini, Michele; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Maron, Gaetano; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Taroni, Silvia; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Fanelli, Cristiano; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Demaria, Natale; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Kim, Tae Yeon; Nam, Soon-Kwon; Chang, Sunghyun; Kim, Dong Hee; Kim, Gui Nyun; Kong, Dae Jung; Park, Hyangkyu; Son, Dong-Chul; Son, Taejin; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Juodagalvis, Andrius; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Martínez-Ortega, Jorge; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Bell, Alan James; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Asghar, Muhammad Irfan; Butt, Jamila; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Boimska, Bozena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Seixas, Joao; Varela, Joao; Vischia, Pietro; Belotelov, Ivan; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kossov, Mikhail; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Shreyber, Irina; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Korotkikh, Vladimir; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Popov, Andrey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Vardanyan, Irina; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Soares, Mara Senghi; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Piedra Gomez, Jonatan; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Jorda, Clara; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; D'Enterria, David; Dabrowski, Anne; De Roeck, Albert; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Georgiou, Georgios; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Govoni, Pietro; Gowdy, Stephen; Guida, Roberto; Gundacker, Stefan; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hartl, Christian; Harvey, John; Hegner, Benedikt; Hinzmann, Andreas; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Kousouris, Konstantinos; Lecoq, Paul; Lee, Yen-Jie; Lenzi, Piergiulio; Lourenco, Carlos; Magini, Nicolo; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Musella, Pasquale; Nesvold, Erik; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Bäni, Lukas; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hits, Dmitry; Lecomte, Pierre; Lustermann, Werner; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Hannsjoerg Artur; Wehrli, Lukas; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Kilminster, Benjamin; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Snoek, Hella; Tupputi, Salvatore; Verzetti, Mauro; Chang, Yuan-Hann; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Lu, Yun-Ju; Singh, Anil; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wan, Xia; Wang, Minzu; Asavapibhop, Burin; Srimanobhas, Norraphat; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Karaman, Turker; Karapinar, Guler; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Yildirim, Eda; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Cankocak, Kerem; Levchuk, Leonid; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Basso, Lorenzo; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Ball, Gordon; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Stoye, Markus; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Whyntie, Tom; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Hatakeyama, Kenichi; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Gardner, Michael; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Mall, Orpheus; Miceli, Tia; Pellett, Dave; Ricci-Tam, Francesca; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Yohay, Rachel; Andreev, Valeri; Cline, David; Cousins, Robert; Duris, Joseph; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Rakness, Gregory; Schlein, Peter; Traczyk, Piotr; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Dinardo, Mauro Emanuele; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Evans, David; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; George, Christopher; Golf, Frank; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Magaña Villalba, Ricardo; Mccoll, Nickolas; Pavlunin, Viktor; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Veverka, Jan; Wilkinson, Richard; Xie, Si; Yang, Yong; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Liu, Yueh-Feng; Paulini, Manfred; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Green, Dan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Park, Myeonghun; Remington, Ronald; Rinkevicius, Aurelijus; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Yumiceva, Francisco; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Callner, Jeremy; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Lacroix, Florent; O'Brien, Christine; Silkworth, Christopher; Strom, Derek; Turner, Paul; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Griffiths, Scott; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Swartz, Morris; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Stringer, Robert; Tinti, Gemma; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Peterman, Alison; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Kim, Yongsun; Klute, Markus; Krajczar, Krisztian; Levin, Andrew; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Wyslouch, Bolek; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Zhukova, Victoria; Cooper, Seth; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Snow, Gregory R; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Hahn, Kristan Allan; Kubik, Andrew; Lusito, Letizia; Mucia, Nicholas; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Brinkerhoff, Andrew; Chan, Kwok Ming; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Vuosalo, Carl; Williams, Grayson; Winer, Brian L; Berry, Edmund; Elmer, Peter; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Jindal, Pratima; Koay, Sue Ann; Lopes Pegna, David; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zenz, Seth Conrad; Zuranski, Andrzej; Brownson, Eric; Lopez, Angel; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Akgun, Bora; Boulahouache, Chaouki; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Robles, Jorge; Rose, Keith; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Walker, Matthew; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Florez, Carlos; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sakharov, Alexandre; Anderson, Michael; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Friis, Evan; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Palmonari, Francesco; Pierro, Giuseppe Antonio; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua

    2013-01-01

    Results on two-particle angular correlations for charged particles emitted in pPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV are presented. The analysis uses two million collisions collected with the CMS detector at the LHC. The correlations are studied over a broad range of pseudorapidity, eta, and full azimuth, phi, as a function of charged particle multiplicity and particle transverse momentum, pt. In high-multiplicity events, a long-range (2observation of such correlations in proton-nucleus collisions, resembling the ridge-like correlations seen in high-multiplicity pp collisions at sqrt(s) = 7 TeV and in A on A collisions over a broad range of center-of-mass energies. The correlation strength exhibits a pronounced maximum in the range of pt = 1-1.5 GeV and an approximately linear increase with charged particle...

  11. Observation of Long-Range, Near-Side Angular Correlations in Proton-Proton Collisions at the LHC

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Haensel, Stephan; Hartl, Christian; Hoch, Michael; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kasieczka, Gregor; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Teischinger, Florian; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Benucci, Leonardo; Ceard, Ludivine; De Wolf, Eddi A.; Janssen, Xavier; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Adler, Volker; Beauceron, Stephanie; Blyweert, Stijn; D'Hondt, Jorgen; Devroede, Olivier; Kalogeropoulos, Alexis; Maes, Joris; Maes, Michael; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Villella, Ilaria; Chabert, Eric Christian; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hammad, Gregory Habib; Hreus, Tomas; Marage, Pierre Edouard; Vander Velde, Catherine; Vanlaer, Pascal; Wickens, John; Costantini, Silvia; Grunewald, Martin; Klein, Benjamin; Marinov, Andrey; Ryckbosch, Dirk; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Caudron, Julien; De Favereau De Jeneret, Jerome; Delaere, Christophe; Demin, Pavel; Favart, Denis; Giammanco, Andrea; Grégoire, Ghislain; Hollar, Jonathan; Lemaitre, Vincent; Militaru, Otilia; Ovyn, Severine; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Quertenmont, Loic; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Alves, Gilvan; De Jesus Damiao, Dilson; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Carvalho, Wagner; Da Costa, Eliza Melo; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Otalora Goicochea, Juan Martin; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Sznajder, Andre; Torres Da Silva De Araujo, Felipe; De Almeida Dias, Flavia; Ferreira Dias, Marco Andre; Tomei, Thiago; De Moraes Gregores, Eduardo; Da Cunha Marinho, Franciole; Novaes, Sergio F.; Padula, Sandra; Darmenov, Nikolay; Dimitrov, Lubomir; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vankov, Ivan; Dyulendarova, Milena; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Marinova, Evelina; Mateev, Matey; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Yang, Min; Zang, Jingjing; Zhang, Zhen; Ban, Yong; Guo, Shuang; Hu, Zhen; Li, Wenbo; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Zhu, Bo; Cabrera, Andrés; Gomez Moreno, Bernardo; Ocampo Rios, Alberto Andres; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Lelas, Karlo; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Morovic, Srecko; Attikis, Alexandros; Fereos, Reginos; Galanti, Mario; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A.; Rykaczewski, Hans; Assran, Yasser; Mahmoud, Mohammed; Hektor, Andi; Kadastik, Mario; Kannike, Kristjan; Müntel, Mait; Raidal, Martti; Rebane, Liis; Azzolini, Virginia; Eerola, Paula; Czellar, Sandor; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Klem, Jukka; Kortelainen, Matti J.; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Sillou, Daniel; Besancon, Marc; Dejardin, Marc; Denegri, Daniel; Descamps, Julien; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Gentit, François-Xavier; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Marionneau, Matthieu; Millischer, Laurent; Rander, John; Rosowsky, André; Rousseau, Delphine; Titov, Maksym; Verrecchia, Patrice; Baffioni, Stephanie; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe

    2010-01-01

    Results on two-particle angular correlations for charged particles emitted in proton-proton collisions at center-of-mass energies of 0.9, 2.36, and 7 TeV are presented, using data collected with the CMS detector over a broad range of pseudorapidity (eta) and azimuthal angle ($\\phi$). Short-range correlations in $\\Delta\\eta$, which are studied in minimum bias events, are characterized using a simple "independent cluster" parametrization in order to quantify their strength (cluster size) and their extent in $\\eta$ (cluster decay width). Long-range azimuthal correlations are studied differentially as a function of charged particle multiplicity and particle transverse momentum using a 980 inverse nb data set at 7 TeV. In high multiplicity events, a pronounced structure emerges in the two-dimensional correlation function for particle pairs with intermediate transverse momentum of 1-3 GeV/c, 2.0 < |$\\Delta\\eta$| < 4.8 and $\\Delta\\phi \\approx 0$. This is the first observation of such a long-range, near-side fe...

  12. Reference resolution in multi-modal interaction: Preliminary observations

    NARCIS (Netherlands)

    Nijholt, A.; González González, G.R.

    2002-01-01

    In this paper we present our research on multimodal interaction in and with virtual environments. The aim of this presentation is to emphasize the necessity to spend more research on reference resolution in multimodal contexts. In multi-modal interaction the human conversational partner can apply mo

  13. Earth System Dynamics: The Determination and Interpretation of the Global Angular Momentum Budget using the Earth Observing System. Revised

    Science.gov (United States)

    2003-01-01

    The objective of this investigation has been to examine the mass and momentum exchange between the atmosphere, oceans, solid Earth, hydrosphere, and cryosphere. The investigation has focused on changes in the Earth's gravity field, its rotation rate, atmospheric and oceanic circulation, global sea level change, ice sheet change, and global ground water circulation observed by contemporary sensors and models. The primary component of the mass exchange is water. The geodetic observables provided by these satellite sensors are used to study the transport of water mass in the hydrological cycle from one component of the Earth to another, and they are also used to evaluate the accuracy of models. As such, the investigation is concerned with the overall global water cycle. This report provides a description of scientific, educational and programmatic activities conducted during the period July 1, 1999 through June 30,2000. Research has continued into measurements of time-varying gravity and its relationship to Earth rotation. Variability of angular momentum and the related excitation of polar motion and Earth rotation have been examined for the atmosphere and oceans at time-scales of weeks to several years. To assess the performance of hydrologic models, we have compared geodetic signals derived from them with those observed by satellites. One key component is the interannual mass variability of the oceans obtained by direct observations from altimetry after removing steric signals. Further studies have been conducted on the steric model to quantify its accuracy at global and basin-scales. The results suggest a significant loss of water mass from the Oceans to the land on time-scales longer than 1-year. These signals are not reproduced in any of the models, which have poorly determined interannual fresh water fluxes. Output from a coupled atmosphere-ocean model testing long-term climate change hypotheses has been compared to simulated errors from the Gravity Recovery and

  14. Reference resolution in multi-modal interaction: Preliminary observations

    OpenAIRE

    Nijholt, A.; González González, G.R.

    2002-01-01

    In this paper we present our research on multimodal interaction in and with virtual environments. The aim of this presentation is to emphasize the necessity to spend more research on reference resolution in multimodal contexts. In multi-modal interaction the human conversational partner can apply more than one modality in conveying his or her message to the environment in which a computer detects and interprets signals from different modalities. We show some naturally arising problems but do ...

  15. Aerosol classification by airborne high spectral resolution lidar observations

    OpenAIRE

    S. Groß; Esselborn, M.; Weinzierl, B.; M. Wirth; Fix, A.; Petzold, A

    2012-01-01

    During four aircraft field experiments with the DLR research aircraft Falcon in 1998 (LACE), 2006 (SAMUM-1) and 2008 (SAMUM-2 and EUCAARI), airborne High Spectral Resolution Lidar (HSRL) and in situ measurements of aerosol microphysical and optical properties were performed. Altogether, the properties of six different aerosol types and aerosol mixtures – Saharan mineral dust, Saharan dust mixtures, Canadian biomass burning aerosol, African biomass burning aerosol, anthropogenic polluti...

  16. The 2008 outburst in the Young Stellar System Z CMa. III - Multi-epoch high-angular resolution images and spectra of the components in near-infrared

    CERN Document Server

    Bonnefoy, M; Dougados, C; Kospal, A; Benisty, M; Duchene, G; Bouvier, J; Garcia, P J V; Whelan, E; Antoniucci, S; Podio, L

    2016-01-01

    Z CMa is a complex pre-main sequence binary with a current separation of 100 mas, known to consist of an FU Orionis star (SE component) and an embedded Herbig Be star (NW component). Immediately when the late-2008 outburst of Z CMa was announced to the community, we initiated a high angular resolution imaging campaign with VLT/NaCo, Keck/NIRC2, VLT/SINFONI, and Keck/OSIRIS which aimed at characterizing the outburst of both components of the system in the near-infrared. We confirm that the NW star dominates the system flux in the 1.1-3.8 microns range and is responsible for the photometric outburst. We extract the first medium-resolution (R=2000-4000) near-infrared (1.1-2.4 microns) spectra of the individual components during and after the outburst. The SE component has a spectrum typical of FU Orionis objects. The NW component spectrum is characteristic of embedded outbursting protostars and EX Or objects. It displays numerous emission lines during the outburst whose intensity correlates with the system activ...

  17. Dual-rate-loop control based on disturbance observer of angular acceleration for a three-axis aerial inertially stabilized platform.

    Science.gov (United States)

    Zhou, Xiangyang; Jia, Yuan; Zhao, Qiang; Cai, Tongtong

    2016-07-01

    This paper presents a dual-rate-loop control method based on disturbance observer (DOB) of angular acceleration for a three-axis ISP for aerial remote sensing applications, by which the control accuracy and stabilization of ISP are improved obviously. In stabilization loop of ISP, a dual-rate-loop strategy is designed through constituting inner rate loop and the outer rate loop, by which the capability of disturbance rejection is advanced. Further, a DOB-based on angular acceleration is proposed to attenuate the influences of the main disturbances on stabilization accuracy. Particularly, an information fusion method is suggested to obtain accurate angular acceleration in DOB design, which is the key for the disturbance compensation. The proposed methods are theoretically analyzed and experimentally validated to illustrate the effectiveness. PMID:27016450

  18. Mean angular diameters, distances, and pulsation modes of the classical Cepheids FF Aquilae and T Vulpeculae. CHARA/FLUOR near-infrared interferometric observations

    Science.gov (United States)

    Gallenne, A.; Kervella, P.; Mérand, A.; McAlister, H.; ten Brummelaar, T.; Coudé du Foresto, V.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.

    2012-05-01

    We report the first angular diameter measurements of two classical Cepheids, FF Aql and T Vul, that we obtain using observations with the FLUOR instrument installed at the CHARA interferometric array. We derive average limb-darkened angular diameters of θLD = 0.878 ± 0.013 mas and θLD = 0.629 ± 0.013 mas, respectively, for FF Aql and T Vul. Combining these angular diameters with the HST-FGS trigonometric parallaxes leads to linear radii R = 33.6 ± 2.2 R⊙ and R = 35.6 ± 4.4 R⊙, respectively. The comparison with empirical and theoretical period-radius relations leads to the conclusion that these Cepheids are pulsating in their fundamental mode. The knowledge of this pulsation mode is of prime importance to calibrating the period-luminosity relation with a uniform sample of fundamental mode Cepheids.

  19. Atmospheric Corrections Using MODTRAN for TOA and Surface BRDF Characteristics from High Resolution Spectroradiometric/Angular Measurements from a Helicopter Platform

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    High-resolution spectral radiance measurements were taken by a spectral radiometer on board a heli copter over the US Oklahoma Southern Great Plain near the Atmospheric Radiation Measurements (ARM) site during August 1998. The radiometer has a spectral range from 350 nm to 2500 nm at 1 nm resolution. The measurements covered several grass and cropland scene types at multiple solar zenith angles. Detailed atmospheric corrections using the Moderate Resolution Transmittance (MODTRAN) radiation model and in-situ sounding and aerosol measurements have been applied to the helicopter measurements in order to re trieve the surface and top of atmosphere (TOA) Bidirectional Reflectance Distribution Function (BRDF) characteristics. The atmospheric corrections are most significant in the visible wavelengths and in the strong water vapor absorption wavelengths in the near infrared region. Adjusting the BRDF to TOA requires a larger correction in the visible channels since Rayleigh scattering contributes significantly to the TOA reflectance. The opposite corrections to the visible and near infrarred wavelengths can alter the radiance dif ference and ratio that many remote sensing techniques are based on, such as the normalized difference vege tation index (NDVI). The data show that surface BRDFs and spectral albedos are highly sensitive to the veg etation type and solar zenith angle while BRDF at TOA depends more on atmospheric conditions and the vi ewing geometry. Comparison with the Clouds and the Earth's Radiant Energy System (CERES) derived clear sky Angular Distribution Model (ADM) for crop and grass scene type shows a standard deviation of 0.08 in broadband anisotropic function at 25° solar zenith angle and 0.15 at 50° solar zenith angle, respectively.

  20. Understanding active galactic nuclei using near-infrared high angular resolution polarimetry I : MontAGN - stokes comparison

    CERN Document Server

    Grosset, Lucas; Gratadour, Damien; Goosmann, René; Rouan, Daniel; Clénet, Yann; Pelat, Didier; Lobos, Patricia Andrea Rojas

    2016-01-01

    In this first research note of a series of two, we present a comparison between two Monte Carlo radiative transfer codes: MontAGN and STOKES. Both were developed in order to better understand the observed polarisation of Active Galactic Nuclei (AGN). Our final aim is to use these radiative transfer codes to simulate the polarisation maps of a prototypical type-2 radio-quiet AGN on a wide range of wavelengths, from the infrared band with MontAGN to the X-ray energies with STOKES. Doing so, we aim to analyse in depth the recent SPHERE/IRDIS polarimetric observations conducted on NGC 1068. In order to validate the codes and obtain preliminary results, we set for both codes a common and simple AGN model, and compared their polaro-imaging results.

  1. Aerosol classification by airborne high spectral resolution lidar observations

    Directory of Open Access Journals (Sweden)

    S. Groß

    2012-10-01

    Full Text Available During four aircraft field experiments with the DLR research aircraft Falcon in 1998 (LACE, 2006 (SAMUM-1 and 2008 (SAMUM-2 and EUCAARI, airborne High Spectral Resolution Lidar (HSRL and in situ measurements of aerosol microphysical and optical properties were performed. Altogether, the properties of six different aerosol types and aerosol mixtures – Saharan mineral dust, Saharan dust mixtures, Canadian biomass burning aerosol, African biomass burning aerosol, anthropogenic pollution aerosol, and marine aerosol have been studied. On the basis of this extensive HSRL data set, we present an aerosol classification scheme which is also capable to identify mixtures of different aerosol types. We calculated mixing lines that allowed us to determine the contributing aerosol types. The aerosol classification scheme was validated with in-situ measurements and backward trajectory analyses. Our results demonstrate that the developed aerosol mask is capable to identify complex stratifications with different aerosol types throughout the atmosphere.

  2. Aerosol classification by airborne high spectral resolution lidar observations

    Science.gov (United States)

    Groß, S.; Esselborn, M.; Weinzierl, B.; Wirth, M.; Fix, A.; Petzold, A.

    2013-03-01

    During four aircraft field experiments with the DLR research aircraft Falcon in 1998 (LACE), 2006 (SAMUM-1) and 2008 (SAMUM-2 and EUCAARI), airborne High Spectral Resolution Lidar (HSRL) and in situ measurements of aerosol microphysical and optical properties were performed. Altogether, the properties of six different aerosol types and aerosol mixtures - Saharan mineral dust, Saharan dust mixtures, Canadian biomass burning aerosol, African biomass burning mixture, anthropogenic pollution aerosol, and marine aerosol have been studied. On the basis of this extensive HSRL data set, we present an aerosol classification scheme which is also capable to identify mixtures of different aerosol types. We calculated mixing lines that allowed us to determine the contributing aerosol types. The aerosol classification scheme was supported by backward trajectory analysis and validated with in-situ measurements. Our results demonstrate that the developed aerosol mask is capable to identify complex stratifications with different aerosol types throughout the atmosphere.

  3. Evolution of deformation structures under varying loading conditions followed in situ by high angular resolution 3DXRD

    DEFF Research Database (Denmark)

    Pantleon, Wolfgang; Wejdemann, Christian; Jakobsen, B.;

    2009-01-01

    intermittently. When the traction is terminated, stress relaxation occurs and number, size and orientation of subgrains are found to be constant. The subgrain structure freezes and only a minor clean-up of the dislocation structure is observed. When changing the tensile direction after pre-deformation in tension......, a systematic correlation between the degree of strain path change and the changes in the dislocation structure quantified by the volume fraction of the subgrains is established. For obtaining the subgrain volume fraction, a new fitting method has been developed for partitioning the contributions of subgrains...

  4. Time-resolved orbital angular momentum spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Noyan, Mehmet A.; Kikkawa, James M. [Department of Physics and Astronomy, The University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2015-07-20

    We introduce pump-probe magneto-orbital spectroscopy, wherein Laguerre-Gauss optical pump pulses impart orbital angular momentum to the electronic states of a material and subsequent dynamics are studied with 100 fs time resolution. The excitation uses vortex modes that distribute angular momentum over a macroscopic area determined by the spot size, and the optical probe studies the chiral imbalance of vortex modes reflected off the sample. First observations in bulk GaAs yield transients that evolve on time scales distinctly different from population and spin relaxation, as expected, but with surprisingly large lifetimes.

  5. Time-resolved orbital angular momentum spectroscopy

    International Nuclear Information System (INIS)

    We introduce pump-probe magneto-orbital spectroscopy, wherein Laguerre-Gauss optical pump pulses impart orbital angular momentum to the electronic states of a material and subsequent dynamics are studied with 100 fs time resolution. The excitation uses vortex modes that distribute angular momentum over a macroscopic area determined by the spot size, and the optical probe studies the chiral imbalance of vortex modes reflected off the sample. First observations in bulk GaAs yield transients that evolve on time scales distinctly different from population and spin relaxation, as expected, but with surprisingly large lifetimes

  6. High spatial and temporal resolution observations of the ionospheric cusp

    Directory of Open Access Journals (Sweden)

    M. Pinnock

    Full Text Available The Halley PACE HF radar has been operated in a new mode to provide very high time (10 s and space (15 km resolution measurements of the iono-spheric signatures of the cusp and the low-latitude boundary layer. The first data show that the iono-spheric signature of flux transfer events occur up to 300 km equatorward of regions showing the HF characteristics of the ionospheric cusp. Whilst larger flux transfer events are seen, on average, every 7 min, many much smaller and short-duration events have been identified. On one occasion DMSP data have been used to show that at least four flux transfer events are occurring simultaneously at the edge of the cusp over 2 h of MLT. There is strong, but not conclusive evidence, that reconnection at the magnetopause is both intermittent and patchy. These data also suggest that flux transfer events can be a significant contributor to the cross-polar cap potential.

  7. High Resolution Observations using Adaptive Optics: Achievements and Future Needs

    Indian Academy of Sciences (India)

    K. Sankarasubramanian; T. Rimmele

    2008-03-01

    Over the last few years, several interesting observations were obtained with the help of solar Adaptive Optics (AO). In this paper, few observations made using the solarAOare enlightened and briefly discussed. A list of disadvantages with the current AO system are presented. With telescopes larger than 1.5 m expected during the next decade, there is a need to develop the existing AO technologies for large aperture telescopes. Some aspects of this development are highlighted. Finally, the recent AO developments in India are also presented.

  8. Observations of solar scattering polarization at high spatial resolution

    NARCIS (Netherlands)

    Snik, F.; de Wijn, A.G.; Ichimoto, K.; Fischer, C.E.; Keller, C.U.; Lites, B.W.

    2010-01-01

    Context. The weak, turbulent magnetic fields that supposedly permeate most of the solar photosphere are difficult to observe, because the Zeeman effect is virtually blind to them. The Hanle effect, acting on the scattering polarization in suitable lines, can in principle be used as a diagnostic for

  9. Angular resolution measurements at SPring-8 of a hard X-ray optic for the New Hard X-ray Mission

    CERN Document Server

    Spiga, D; Furuzawa, A; Basso, S; Binda, R; Borghi, G; Cotroneo, V; Grisoni, G; Kunieda, H; Marioni, F; Matsumoto, H; Mori, H; Miyazawa, T; Negri, B; Orlandi, A; Pareschi, G; Salmaso, B; Tagliaferri, G; Uesugi, K; Valsecchi, G; Vernani, D

    2015-01-01

    The realization of X-ray telescopes with imaging capabilities in the hard (> 10 keV) X-ray band requires the adoption of optics with shallow (10 m shall be produced and tested. Full-illumination tests of such mirrors are usually performed with on- ground X-ray facilities, aimed at measuring their effective area and the angular resolution; however, they in general suffer from effects of the finite distance of the X-ray source, e.g. a loss of effective area for double reflection. These effects increase with the focal length of the mirror under test; hence a "partial" full-illumination measurement might not be fully representative of the in-flight performances. Indeed, a pencil beam test can be adopted to overcome this shortcoming, because a sector at a time is exposed to the X-ray flux, and the compensation of the beam divergence is achieved by tilting the optic. In this work we present the result of a hard X-ray test campaign performed at the BL20B2 beamline of the SPring-8 synchrotron radiation facility, aime...

  10. Stellar Diameters and Temperatures VI. High angular resolution measurements of the transiting exoplanet host stars HD 189733 and HD 209458 and implications for models of cool dwarfs

    CERN Document Server

    Boyajian, Tabetha; Feiden, Gregory A; Huber, Daniel; Basu, Sarbani; Demarque, Pierre; Fischer, Debra A; Schaefer, Gail; Mann, Andrew W; White, Timothy R; Maestro, Vicente; Brewer, John; Lamell, C Brooke; Spada, Federico; López-Morales, Mercedes; Ireland, Michael; Farrington, Chris; van Belle, Gerard T; Kane, Stephen R; Jones, Jeremy; Brummelaar, Theo A ten; Ciardi, David R; McAlister, Harold A; Ridgway, Stephen; Goldfinger, P J; Turner, Nils H; Sturmann, Laszlo

    2014-01-01

    We present direct radii measurements of the well-known transiting exoplanet host stars HD 189733 and HD 209458 using the CHARA Array interferometer. We find the limb-darkened angular diameters to be theta_LD = 0.3848 +/- 0.0055 and 0.2254 +/- 0.0072 milliarcsec for HD 189733 and HD 209458, respectively. HD 189733 and HD 209458 are currently the only two transiting exoplanet systems where detection of the respective planetary companion's orbital motion from high resolution spectroscopy has revealed absolute masses for both star and planet. We use our new measurements together with the orbital information from radial velocity and photometric time series data, Hipparcos distances, and newly measured bolometric fluxes to determine the stellar effective temperatures (T_eff = 4875 +/- 43, 6093 +/- 103 K), stellar linear radii (R_* = 0.805 +/- 0.016, 1.203 +/- 0.061 R_sun), mean stellar densities (rho_* = 1.62 +/- 0.11, 0.58 +/- 0.14 rho_sun), planetary radii (R_p = 1.216 +/- 0.024, 1.451 +/- 0.074 R_Jup), and mean ...

  11. A deep look at the nuclear region of UGC 5101 through high angular resolution mid-IR data with GTC/CanariCam

    CERN Document Server

    Martínez-Paredes, M; Aretxaga, I; Almeida, C Ramos; Hernán-Caballero, A; González-Martín, O; Pereira-Santaella, M; Packham, C; Ramos, A Asensio; Díaz-Santos, T; Elitzur, M; Esquej, P; García-Bernete, I; Imanishi, M; Levenson, N A; Espinosa, J M Rodríguez

    2015-01-01

    We present an analysis of the nuclear infrared (IR, 1.6 to 18 $\\mu$m) emission of the ultraluminous IR galaxy UGC 5101 to derive the properties of its active galactic nucleus (AGN) and its obscuring material. We use new mid-IR high angular resolution ($0.3-0.5$ arcsec) imaging using the Si-2 filter ($\\lambda_{C}=8.7\\, \\mu$m) and $7.5-13$ $\\mu$m spectroscopy taken with CanariCam (CC) on the 10.4m Gran Telescopio CANARIAS. We also use archival HST/NICMOS and Subaru/COMICS imaging and Spitzer/IRS spectroscopy. We estimate the near- and mid-IR unresolved nuclear emission by modelling the imaging data with GALFIT. We decompose the Spitzer/IRS and CC spectra using a power-law component, which represents the emission due to dust heated by the AGN, and a starburst component, both affected by foreground extinction. We model the resulting unresolved near- and mid-IR, and the starburst subtracted CC spectrum with the CLUMPY torus models of Nenkova et al. The derived geometrical properties of the torus, including the lar...

  12. Numerical experiments on consistent horizontal and vertical resolution for atmospheric models and observing systems

    Science.gov (United States)

    Fox-Rabinovitz, Michael S.; Lindzen, Richard S.

    1993-01-01

    Simple numerical experiments are performed in order to determine the effects of inconsistent combinations of horizontal and vertical resolution in both atmospheric models and observing systems. In both cases, we find that inconsistent spatial resolution is associated with enhanced noise generation. A rather fine horizontal resolution in a satellite-data observing system seems to be excessive when combined with the usually available relatively coarse vertical resolution. Using horizontal filters of different strengths, adjusted in such a way as to render the effective horizontal resolution more consistent with vertical resolution for the observing system, may result in improvement of the analysis accuracy. The increase of vertical resolution for a satellite data observing system with better vertically resolved data, the results are different in that little or no horizontal filtering is needed to make spatial resolution more consistent for the system. The obtained experimental estimates of consistent vertical and effective horizontal resolution are in a general agreement with consistent resolution estimates previously derived theoretically by the authors.

  13. Angular velocity discrimination

    Science.gov (United States)

    Kaiser, Mary K.

    1990-01-01

    Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.

  14. High time-resolution sprite imaging: observations and implications

    Energy Technology Data Exchange (ETDEWEB)

    Stenbaek-Nielsen, H C [Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Drive, Fairbanks, Ak 99775-7320 (United States); McHarg, M G [Department of Physics, 2354 Fairchild Drive, Suite 2A31, US Air Force Academy, CO 80840 (United States)], E-mail: hnielsen@gi.alaska.edu, E-mail: matthew.mcharg@usafa.edu

    2008-12-07

    Sprites are large scale manifestations of electrical streamers triggered in the upper atmosphere by lightning in an underlying thunderstorm. Imaging of sprites at 10 000 frames per second has provided new insights into their spatial and temporal development. In this paper we discuss the experimental protocols that have been developed for performing high-speed observations of sprites and some new observations that have been obtained of relevance to laboratory experiments. Downward tendrils and upward branches, so characteristic in video recordings, are shown to be formed by very fast streamer heads with velocities up to half the speed of light. The streamer heads are spatially small, {approx}100 m or less, but very bright with emission rates up to {approx}10{sup 24} photons s{sup -1}. The sprite onset begins with a downward streamer. Then, in some sprites, at a little later time and from a lower altitude upward moving streamer heads may also appear. If there are no upward streamers the sprite would be classified as a 'C-sprite'; with both downward and upward streamers it would be a 'carrot sprite'. The optical emissions are primarily from the neutral molecular nitrogen first positive bands emitting in the near-infrared, but there are also blue emissions assumed to be from second positive bands of molecular nitrogen and from first negative bands of nitrogen ions. The streamer heads are observed at times to split into several streamer heads. This process appears to be more frequent in the core of larger sprites.

  15. Angular magnetoresistance in semiconducting undoped amorphous carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sagar, Rizwan Ur Rehman; Saleemi, Awais Siddique; Zhang, Xiaozhong, E-mail: xzzhang@tsinghua.edu.cn [Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People' s Republic of China and Beijing National Center for Electron Microscopy, Beijing 100084 (China)

    2015-05-07

    Thin films of undoped amorphous carbon thin film were fabricated by using Chemical Vapor Deposition and their structure was investigated by using High Resolution Transmission Electron Microscopy and Raman Spectroscopy. Angular magnetoresistance (MR) has been observed for the first time in these undoped amorphous carbon thin films in temperature range of 2 ∼ 40 K. The maximum magnitude of angular MR was in the range of 9.5% ∼ 1.5% in 2 ∼ 40 K. The origin of this angular MR was also discussed.

  16. Angular Cheilitis

    Science.gov (United States)

    ... A This image displays a frequent location for candida infection (angular cheilitis), the corners of the mouth. Overview ... infection, those affected may also have thrush (oral candidiasis). The areas are generally slightly painful. The condition ...

  17. Improving resolution and depth of astronomical observations via modern mathematical methods for image analysis

    CERN Document Server

    Castellano, Marco; Fontana, Adriano; Merlin, Emiliano; Pilo, Stefano; Falcone, Maurizio

    2015-01-01

    In the past years modern mathematical methods for image analysis have led to a revolution in many fields, from computer vision to scientific imaging. However, some recently developed image processing techniques successfully exploited by other sectors have been rarely, if ever, experimented on astronomical observations. We present here tests of two classes of variational image enhancement techniques: "structure-texture decomposition" and "super-resolution" showing that they are effective in improving the quality of observations. Structure-texture decomposition allows to recover faint sources previously hidden by the background noise, effectively increasing the depth of available observations. Super-resolution yields an higher-resolution and a better sampled image out of a set of low resolution frames, thus mitigating problematics in data analysis arising from the difference in resolution/sampling between different instruments, as in the case of EUCLID VIS and NIR imagers.

  18. Angular resolution measurements at SPring-8 of a hard x-ray optic for the New Hard X-ray Mission

    Science.gov (United States)

    Spiga, D.; Raimondi, L.; Furuzawa, A.; Basso, S.; Binda, R.; Borghi, G.; Cotroneo, V.; Grisoni, G.; Kunieda, H.; Marioni, F.; Matsumoto, H.; Mori, H.; Miyazawa, T.; Negri, B.; Orlandi, A.; Pareschi, G.; Salmaso, B.; Tagliaferri, G.; Uesugi, K.; Valsecchi, G.; Vernani, D.

    2011-09-01

    The realization of X-ray telescopes with imaging capabilities in the hard (> 10 keV) X-ray band requires the adoption of optics with shallow (=10 m shall be produced and tested. Full-illumination tests of such mirrors are usually performed with onground X-ray facilities, aimed at measuring their effective area and the angular resolution; however, they in general suffer from effects of the finite distance of the X-ray source, e.g. a loss of effective area for double reflection. These effects increase with the focal length of the mirror under test; hence a "partial" full-illumination measurement might not be fully representative of the in-flight performances. Indeed, a pencil beam test can be adopted to overcome this shortcoming, because a sector at a time is exposed to the X-ray flux, and the compensation of the beam divergence is achieved by tilting the optic. In this work we present the result of a hard X-ray test campaign performed at the BL20B2 beamline of the SPring-8 synchrotron radiation facility, aimed at characterizing the Point Spread Function (PSF) of a multilayer-coated Wolter-I mirror shell manufactured by Nickel electroforming. The mirror shell is a demonstrator for the NHXM hard X-ray imaging telescope (0.3 - 80 keV), with a predicted HEW (Half Energy Width) close to 20 arcsec. We show some reconstructed PSFs at monochromatic X-ray energies of 15 to 63 keV, and compare them with the PSFs computed from post-campaign metrology data, self-consistently treating profile and roughness data by means of a method based on the Fresnel diffraction theory. The modeling matches the measured PSFs accurately.

  19. High-Resolution Images of Diffuse Neutral Clouds in the Milky Way. I. Observations, Imaging, and Basic Cloud Properties

    CERN Document Server

    Pidopryhora, Yurii; Dickey, John M; Rupen, Michael P

    2015-01-01

    A set of diffuse interstellar clouds in the inner Galaxy within a few hundred pc of the Galactic plane has been observed at an angular resolution of ~1 arcmin combining data from the NRAO Green Bank Telescope and the Very Large Array. At the distance of the clouds the linear resolution ranges from ~1.9 pc to ~2.8 pc. These clouds have been selected to be somewhat out of the Galactic plane and are thus not confused with unrelated emission, but in other respects they are a Galactic population. They are located near the tangent points in the inner Galaxy, and thus at a quantifiable distance: $2.3 \\leq R \\leq 6.0$ kpc from the Galactic Center, and $-1000 \\leq z \\leq +610$ pc from the Galactic plane. These are the first images of the diffuse neutral HI clouds that may constitute a considerable fraction of the ISM. Peak HI column densities range from $N_{HI} = 0.8-2.9 \\times 10^{20}$ cm$^{-2}$. Cloud diameters vary between about 10 and 100 pc, and their HI mass spans the range from less than a hundred to a few thou...

  20. Observation of Anisotropy in the Arrival Directions of Galactic Cosmic Rays at Multiple Angular Scales with IceCube

    CERN Document Server

    Abbasi, R; Abu-Zayyad, T; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Bay, R; Alba, J L Bazo; Beattie, K; Beatty, J J; Bechet, S; Becker, J K; Becker, K -H; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Brown, A M; Buitink, S; Caballero-Mora, K S; Carson, M; Chirkin, D; Christy, B; Clem, J; Clevermann, F; Cohen, S; Colnard, C; Cowen, D F; D'Agostino, M V; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Demirörs, L; Denger, T; Depaepe, O; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dierckxsens, M; Dreyer, J; Dumm, J P; Ehrlich, R; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Foerster, M M; Fox, B D; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Gora, D; Grant, D; Griesel, T; Groß, A; Grullon, S; Gurtner, M; Ha, C; Hajismail, A; Hallgren, A; Halzen, F; Han, K; Hanson, K; Heinen, D; Helbing, K; Herquet, P; Hickford, S; Hill, G C; Hoffman, K D; Homeier, A; Hoshina, K; Hubert, D; Huelsnitz, W; a,; Hülß, J -P; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Joseph, J M; Kampert, K -H; Kappes, A; Karg, T; Karle, A; Kenny, P; Kiryluk, J; Kislat, F; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, S; Koskinen, D J; Kowalski, M; Kowarik, T; Krasberg, M; Krings, T; Kroll, G; Kurahashi, N; Kuwabara, T; Labare, M; Lafebre, S; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lünemann, J; Madajczyk, B; Madsen, J; Majumdar, P; Marotta, A; Maruyama, R; Mase, K; Matis, H S; Meagher, K; Merck, M; Mészáros, P; Meures, T; Middell, E; Milke, N; Miller, J; Montaruli, T; b,; Morse, R; Movit, S M; Nahnhauer, R; Nam, J W; Naumann, U; Nießen, P; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Ono, M; Panknin, S; Paul, L; Heros, C Pérez de los; Petrovic, J; Piegsa, A; Pieloth, D; Porrata, R; Posselt, J; Price, C C; Price, P B; Przybylski, G T; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Rodrigues, J P; Roth, P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Schmidt, T; Schönwald, A; Schukraft, A; Schultes, A; Schulz, O; Schunck, M; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Slipak, A; Spiczak, G M; Spiering, C; Stamatikos, M; c,; Stanev, T; Stephens, G; Stezelberger, T; Stokstad, R G; Stössl, A; Stoyanov, S; Strahler, E A; Straszheim, T; Stür, M; Sullivan, G W; Swillens, Q; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Tosi, D; Turčan, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wischnewski, R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, X W; Yodh, G; Yoshida, S; Zarzhitsky, P; Zoll, M

    2011-01-01

    Between May 2009 and May 2010, the IceCube neutrino detector at the South Pole recorded 32 billion muons generated in air showers produced by cosmic rays with a median energy of 20 TeV. With a data set of this size, it is possible to probe the southern sky for per-mille anisotropy on all angular scales in the arrival direction distribution of cosmic rays. Applying a power spectrum analysis to the relative intensity map of the cosmic ray flux in the southern hemisphere, we show that the arrival direction distribution is not isotropic, but shows significant structure on several angular scales. In addition to previously reported large-scale structure in the form of a strong dipole and quadrupole, the data show small-scale structure on scales between 15 degrees and 30 degrees. The skymap exhibits several localized regions of significant excess and deficit in cosmic ray intensity. The relative intensity of the smaller-scale structures is about a factor of 5 weaker than that of the dipole and quadrupole structure. ...

  1. A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales

    Science.gov (United States)

    Fischer, M. L.; Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Gundersen, J. O.; Koch, T. C.; Kreysa, E.; Meinhold, P. R.; Lange, A. E.

    1992-01-01

    We report the performance of a bolometric system designed to measure the anisotropy of the cosmic microwave background (CMB) radiation on angular scales from 0 deg 3 min to 3 deg. The system represents a collaborative effort combining a low-background 1 m diameter balloon-borne telescope with new multimode feed optics, a beam modulation mechanism with high stability, and a four-channel bolometric receiver with passbands centered near frequencies of 3 (90), 6 (180), 9 (270), and 12 (360) cm(exp -1) (GHz). The telescope was flown three times with the bolometric receiver and has demonstrated detector noise limited performance capable of reaching sensitivity levels of Delta(T)/T(sub CMB) is approximately equal to 10(exp -5) with detectors operated at T = 0.3 K.

  2. The effect of sensor resolution on the number of cloud-free observations from space

    Directory of Open Access Journals (Sweden)

    J. M. Krijger

    2006-06-01

    Full Text Available Air quality and surface emission inversions are likely to be focal points for future satellite missions on atmospheric composition. Most important for these applications is sensitivity to the atmospheric composition in the lowest few kilometers of the troposphere. Reduced sensitivity by clouds needs to be minimized. In this study we have quantified the increase in number of useful footprints, i.e. footprints which are sufficient cloud-free, as a function of sensor resolution (footprint area. High resolution (1 km×1 km MODIS TERRA cloud mask observations are aggregated to lower resolutions. Statistics for different thresholds on cloudiness are applied. For each month in 2004 two days of MODIS data are analyzed. Globally the fraction of cloud-free observations drops from 16% at 100 km2 resolution to only 3% at 10 000 km2 if not a single MODIS observation within a footprint is allowed to be cloudy. If up to 5% or 20% of a footprint is allowed to be cloudy, the fraction of cloud-free observations is 9% or 17%, respectively, at 10 000 km2 resolution. The probability of finding cloud-free observations for different sensor resolutions is also quantified as a function of geolocation and season, showing examples over Europe and northern South America.

  3. Angular Momentum

    Science.gov (United States)

    Shakur, Asif; Sinatra, Taylor

    2013-01-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…

  4. Measurement of the Black Hole Mass in NGC 1332 from ALMA Observations at 0.044 arcsecond Resolution

    Science.gov (United States)

    Barth, Aaron J.; Boizelle, Benjamin D.; Darling, Jeremy; Baker, Andrew J.; Buote, David A.; Ho, Luis C.; Walsh, Jonelle L.

    2016-05-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 3 observations of CO(2–1) emission from the circumnuclear disk in the E/S0 galaxy NGC 1332 at 0.″044 resolution. The disk exhibits regular rotational kinematics and central high-velocity emission (±500 km s‑1) consistent with the presence of a compact central mass. We construct models for a thin, dynamically cold disk in the gravitational potential of the host galaxy and black hole and fit the beam-smeared model line profiles directly to the ALMA data cube. Model fits successfully reproduce the disk kinematics out to r = 200 pc. Fitting models just to spatial pixels within projected r = 50 pc of the nucleus (two times larger than the black hole’s gravitational radius of influence), we find {M}{BH}=({6.64}-0.63+0.65)× {10}8 {M}ȯ . This observation demonstrates ALMA’s powerful capability to determine the masses of supermassive black holes by resolving gas kinematics on small angular scales in galaxy nuclei.

  5. Measurement of the Black Hole Mass in NGC 1332 from ALMA Observations at 0.044 Arcsecond Resolution

    CERN Document Server

    Barth, Aaron J; Darling, Jeremy; Baker, Andrew J; Buote, David A; Ho, Luis C; Walsh, Jonelle L

    2016-01-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 3 observations of CO(2-1) emission from the circumnuclear disk in the E/S0 galaxy NGC 1332 at 0.044" resolution. The disk exhibits regular rotational kinematics and central high-velocity emission (+/-500 km/s) consistent with the presence of a compact central mass. We construct models for a thin, dynamically cold disk in the gravitational potential of the host galaxy and black hole, and fit the beam-smeared model line profiles directly to the ALMA data cube. Model fits successfully reproduce the disk kinematics out to r=200 pc. Fitting models just to spatial pixels within projected r=50 pc of the nucleus (two times larger than the black hole's gravitational radius of influence), we find M_BH=6.64(-0.63,+0.65)*10^8 solar masses. This observation demonstrates ALMA's powerful capability to determine the masses of supermassive black holes by resolving gas kinematics on small angular scales in galaxy nuclei.

  6. Observation of Ds1(2536)+ -> D+pi-K+ and angular decomposition of Ds1(2536)+ -> D*+K0S

    CERN Document Server

    Balagura, V; Aihara, H; Arinstein, K; Aulchenko, V; Aushev, T; Bakich, A M; Barberio, E; Bay, A; Belous, K S; Bhardwaj, V; Bitenc, U; Bondar, A; Bozek, A; Bracko, M; Brodzicka, J; Browder, T E; Chang, M C; Chao, Y; Chen, A; Chen, W T; Cheon, B G; Chistov, R; Cho, I S; Choi, Y; Dalseno, J; Danilov, M; Drutskoy, A; Eidelman, S; Epifanov, D; Gabyshev, N; Garmash, A; Golob, B; Ha, H; Haba, J; Hara, T; Hastings, N C; Hayasaka, K; Hayashii, H; Hazumi, M; Heffernan, D; Hoshi, Y; Hou, W S; Hyun, H J; Inami, K; Ishikawa, A; Ishino, H; Itoh, R; Iwasaki, M; Iwasaki, Y; Kah, D H; Kaji, H; Katayama, N; Kawai, H; Kawasaki, T; Kichimi, H; Kim, H J; Kim, H O; Kim, Y J; Kinoshita, K; Korpar, S; Krizan, P; Krokovny, P; Kuo, C C; Kuzmin, A; Kwon, Y J; Lange, J S; Lee, M J; Lee, S E; Lesiak, T; Limosani, A; Lin, S W; Liu, Y; Liventsev, D; Mandl, F; McOnie, S; Medvedeva, T; Mitaroff, W A; Miyake, H; Miyata, H; Miyazaki, Y; Mizuk, R; Mohapatra, D; Moloney, G R; Nagasaka, Y; Nakano, E; Nakao, M; Nakazawa, H; Natkaniec, Z; Nishida, S; Nitoh, O; Ogawa, S; Ohshima, T; Okuno, S; Olsen, S L; Ostrowicz, W; Ozaki, H; Pakhlov, P; Pakhlova, G; Palka, H; Park, C W; Peak, L S; Pestotnik, R; Piilonen, L E; Sakai, Y; Schneider, O; Senyo, K; Shapkin, M; Shen, C P; Shibuya, H; Shiu, J G; Somov, A; Stanic, S; Staric, M; Sumiyoshi, T; Tamai, K; Tanaka, M; Taylor, G N; Teramoto, Y; Tikhomirov, I; Uehara, S; Ueno, K; Uglov, T; Unno, Y; Uno, S; Urquijo, P; Usov, Yu; Varner, G; Vervink, K; Villa, S; Vinokurova, A; Wang, C C; Wang, C H; Wang, M Z; Wang, P; Wang, X L; Watanabe, Y; Won, E; Yabsley, B D; Yamaguchi, A; Yamashita, Y; Yamauchi, M; Zhang, Z P; Zhilich, V; Zhulanov, V; Zupanc, A; Zyukova, O

    2007-01-01

    Using 462/fb of e+e- annihilation data recorded by the Belle detector, we report the first observation of the decay Ds1(2536)+ -> D+pi-K+. The ratio of branching fractions B(Ds1+ -> D+pi-K+)/B(Ds1+ -> D*+K0) is measured to be (3.27+-0.18+-0.37)%. We also study the angular distributions in the Ds1(2536)+ -> D*+K0S decay and measure the ratio of D- and S-wave amplitudes. The S-wave dominates, with a partial width of Gamma_S/Gamma_total=0.72+-0.05+-0.01.

  7. Fundamental parameters of 16 late-type stars derived from their angular diameter measured with VLTI/AMBER

    OpenAIRE

    Cruzalèbes, P.; Jorissen, A.; Rabbia, Y.; Sacuto, S.; Chiavassa, A.; Pasquato, E.; Plez, B.; Eriksson, K; Spang, A.; Chesneau, O.

    2013-01-01

    Thanks to their large angular dimension and brightness, red giants and supergiants are privileged targets for optical long-baseline interferometers. Sixteen red giants and supergiants have been observed with the VLTI/AMBER facility over a two-years period, at medium spectral resolution (R=1500) in the K band. The limb-darkened angular diameters are derived from fits of stellar atmospheric models on the visibility and the triple product data. The angular diameters do not show any significant t...

  8. GroundBIRD: Observing Cosmic Microwave Polarization at Large Angular Scale with Kinetic Inductance Detectors and High-Speed Rotating Telescope

    Science.gov (United States)

    Oguri, S.; Choi, J.; Damayanthi, T.; Hattori, M.; Hazumi, M.; Ishitsuka, H.; Karatsu, K.; Mima, S.; Minowa, M.; Nagasaki, T.; Otani, C.; Sekimoto, Y.; Tajima, O.; Tomita, N.; Yoshida, M.; Won, E.

    2016-08-01

    Cosmic microwave background (CMB) is an important source of information about the origin of our universe. In particular, odd-parity large angular scale patterns in the CMB polarization, the primordial B-modes, are strong evidence for an inflationary universe, related to the accelerating expansion of the metric. We are developing a unique telescope, GroundBIRD, to take CMB polarization measurements. The telescope combines novel techniques: high-speed rotation scanning, cold optics, and microwave kinetic inductance detectors (MKIDs). We evaluated the response of MKIDs on the rotation stage. Method of shielding from the geo-magnetic field is established. We have also developed a receiver cryostat. We are able to maintain a sufficient cold status for observations on the optical configuration. We plan to start commissioning the system by observing CMB in Japan in 2015-2016. We will then deploy GroundBIRD in the Canary Islands for further scientific observations.

  9. Ultra-sensitive and super-resolving angular rotation measurement based on photon orbital angular momentum using parity measurement.

    Science.gov (United States)

    Zhang, Zijing; Qiao, Tianyuan; Ma, Kun; Cen, Longzhu; Zhang, Jiandong; Wang, Feng; Zhao, Yuan

    2016-08-15

    Photon orbital angular momentum has led to many novel insights and applications in quantum measurement. Photon orbital angular momentum can increase the resolution and sensitivity of angular rotation measurement. However, quantum measurement strategy can further surpass this limit and improve the resolution of angular rotation measurement. This Letter proposes and demonstrates a parity measurement method in angular rotation measurement scheme for the first time. Parity measurement can make the resolution superior to the limit of the existing method. The sensitivity can be improved with higher orbital angular momentum photons. Moreover, this Letter gives a detailed discussion of the change of resolution and sensitivity in the presence of photon loss.

  10. Ultra-sensitive and super-resolving angular rotation measurement based on photon orbital angular momentum using parity measurement.

    Science.gov (United States)

    Zhang, Zijing; Qiao, Tianyuan; Ma, Kun; Cen, Longzhu; Zhang, Jiandong; Wang, Feng; Zhao, Yuan

    2016-08-15

    Photon orbital angular momentum has led to many novel insights and applications in quantum measurement. Photon orbital angular momentum can increase the resolution and sensitivity of angular rotation measurement. However, quantum measurement strategy can further surpass this limit and improve the resolution of angular rotation measurement. This Letter proposes and demonstrates a parity measurement method in angular rotation measurement scheme for the first time. Parity measurement can make the resolution superior to the limit of the existing method. The sensitivity can be improved with higher orbital angular momentum photons. Moreover, this Letter gives a detailed discussion of the change of resolution and sensitivity in the presence of photon loss. PMID:27519107

  11. MERIS full-resolution total column water vapor: Observing horizontal convective rolls

    Science.gov (United States)

    Carbajal Henken, C. K.; Diedrich, H.; Preusker, R.; Fischer, J.

    2015-11-01

    This study presents the first analysis of small-scale convective structures observed in a total column water vapor (TCWV) field obtained from full-resolution Medium Resolution Imaging Spectrometer (MERIS) near-infrared measurements. The high-resolution MERIS TCWV field for a high-pressure event occurring in May over central Europe allows the detection of horizontal convective rolls, due to the observation of parallel bands of alternating low- and high-TCWV values. The bands are aligned parallel to the boundary layer winds obtained from a numerical weather prediction model and radiosonde data. Closer examination further reveals that cloud streets observed in the east extend along bands of maximum TCWV. From a quantitative analysis of the TCWV data, combined with auxiliary data, it is shown that the roll wavelength and aspect ratio can be determined, which are found to be 6.5 km and 4.2, respectively, for this case study.

  12. Stellar magnetic field parameters from a Bayesian analysis of high-resolution spectropolarimetric observations

    OpenAIRE

    Petit, V.; Wade, G. A.

    2011-01-01

    In this paper we describe a Bayesian statistical method designed to infer the magnetic properties of stars observed using high-resolution circular spectropolarimetry in the context of large surveys. This approach is well suited for analysing stars for which the stellar rotation period is not known, and therefore the rotational phases of the observations are ambiguous. The model assumes that the magnetic observations correspond to a dipole oblique rotator, a situation commonly encountered in i...

  13. A Multi-Transition Study of Molecules toward NGC 1068 based on High-Resolution Imaging Observations with ALMA

    CERN Document Server

    Nakajima, Taku; Kohno, Kotaro; Harada, Nanase; Herbst, Eric; Tamura, Yoichi; Izumi, Takuma; Taniguchi, Akio; Tosaki, Tomoka

    2014-01-01

    We present 0.8-mm band molecular images and spectra obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) toward one of the nearest galaxies with an active galactic nucleus (AGN), NGC 1068. Distributions of CO isotopic species ($^{13}$CO and C$^{18}$O) $\\it{J}$ = 3--2, CN $\\it{N}$ = 3--2 and CS $\\it{J}$ = 7--6 are observed toward the circumnuclear disk (CND) and a part of the starburst ring with an angular resolution of $\\sim$1.$^{\\prime\\prime}$3 $\\times$ 1.$^{\\prime\\prime}$2. The physical properties of these molecules and shock-related molecules such as HNCO, CH$_{3}$CN, SO, and CH$_{3}$OH detected in the 3-mm band were estimated using rotation diagrams under the assumption of local thermodynamic equilibrium. The rotational temperatures of the CO isotopic species and the shock-related molecules in the CND are, respectively, 14--22 K and upper limits of 20--40 K. Although the column densities of the CO isotopic species in the CND are only from one-fifth to one-third of that in the starburst ri...

  14. Effects of galactic disc inclination and resolution on observed GMC properties and Larson's scaling relations

    Science.gov (United States)

    Pan, Hsi-An; Fujimoto, Yusuke; Tasker, Elizabeth J.; Rosolowsky, Erik; Colombo, Dario; Benincasa, Samantha M.; Wadsley, James

    2016-05-01

    With ALMA (Atacama Large Millimeter/submillimeter Array) making it possible to resolve giant molecular clouds (GMCs) in other galaxies, it is becoming necessary to quantify the observational bias on measured GMC properties. Using a hydrodynamical simulation of a barred spiral galaxy, we compared the physical properties of GMCs formed in position-position-position (PPP) space to the observational position-position-velocity (PPV) space. We assessed the effect of disc inclination: face-on (PPVface) and edge-on (PPVedge), and resolution: 1.5 pc versus 24 pc, on GMC properties and the further implications of using Larson's scaling relations for mass-radius and velocity dispersion-radius. The low-resolution PPV data are generated by simulating ALMA Cycle 3 observations using the CASA package. Results show that the median properties do not differ strongly between PPP and PPVface under both resolutions, but PPVedge clouds deviate from these two. The differences become magnified when switching to the lower, but more realistic resolution. The discrepancy can lead to opposite results for the virial parameter's measure of gravitational binding, and therefore the dynamical state of the clouds. The power-law indices for the two Larson's scaling relations decrease going from PPP, PPVedge to PPVface and decrease from high to low resolutions. We conclude that the relations are not entirely driven by the underlying physical origin and therefore have to be used with caution when considering the environmental dependence, dynamical state, and the extragalactic CO-to-H2 conversion factor of GMCs.

  15. PolarBase: a data base of high resolution spectropolarimetric stellar observations

    OpenAIRE

    Petit, P.; Louge, T.; Théado, S.; Paletou, F; Manset, N.; Morin, J.; Marsden, S. C.; Jeffers, S. V.

    2014-01-01

    PolarBase is an evolving data base that contains all stellar data collected with the ESPaDOnS and NARVAL high-resolution spectropolarimeters, in their reduced form, as soon as they become public. As of early 2014, observations of 2,000 stellar objects throughout the Hertzsprung-Russell diagram are available. Intensity spectra are available for all targets, and the majority of the observations also include simultaneous spectra in circular or linear polarization, with the majority of the polari...

  16. Angular Velocity's Neural Network Observer of the Electric Drive of TVR - IM Type Implemented in Software Environment LabVIEW

    Science.gov (United States)

    Kozlova, L.; Bolovin, E.; Payuk, L.

    2016-06-01

    One of the common ways to manage a smooth starting and stopping of asynchronous motors are soft-start system. For this provision is necessary to use a closed speed asynchronous electric drive of tiristor voltage regulator - induction motor (TVR-IM) type. Using real sensors significantly increases the cost of installation and also introduces a number of inconveniences in the operation of the actuator. Observer has clear advantages that are created on artificial neural network. Creating a neural network observer in program graphic programming LabVIEW will allow to evaluate the speed of rotation of the asynchronous electric.

  17. Effects of Galactic Disc Inclination and Resolution on Observed GMC Properties and Larson's Scaling Relations

    CERN Document Server

    Pan, Hsi-An; Tasker, Elizabeth J; Rosolowsky, Erik; Colombo, Dario; Benincasa, Samantha M; Wadsley, James

    2016-01-01

    With ALMA making it possible to resolve giant molecular clouds (GMCs) in other galaxies, it is becoming necessary to quantify the observational bias on measured GMC properties. Using a hydrodynamical simulation of a barred spiral galaxy, we compared the physical properties of GMCs formed in position-position-position space (PPP) to the observational position-position-velocity space (PPV). We assessed the effect of disc inclination: face-on (PPV_face) and edge-on (PPV_edge), and resolution: 1.5 pc versus 24 pc, on GMC properties and the further implications of using Larson's scaling relations for mass-radius and velocity dispersion-radius. The low-resolution PPV data are generated by simulating ALMA Cycle 3 observations using the CASA package. Results show that the median properties do not differ strongly between PPP and PPV_face under both resolutions, but PPV_edge clouds deviate from these two. The differences become magnified when switching to the lower, but more realistic resolution. The discrepancy can le...

  18. Direct Observation of Cosmic Strings Via Their Strong Gravitational Lensing Effect. 1. Predictions for High Resolution Imaging Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Gasparini, Maria Alice; Marshall, Phil; Treu, Tommaso; /UC, Santa Barbara; Morganson, Eric; /KIPAC, Menlo Park; Dubath, Florian; /Santa Barbara, KITP

    2007-11-14

    We use current theoretical estimates for the density of long cosmic strings to predict the number of strong gravitational lensing events in astronomical imaging surveys as a function of angular resolution and survey area. We show that angular resolution is the single most important factor, and that interesting limits on the dimensionless string tension G{mu}/c{sup 2} can be obtained by existing and planned surveys. At the resolution of the Hubble Space Telescope (0'.14), it is sufficient to survey of order a square degree -- well within reach of the current HST archive -- to probe the regime G{mu}/c{sup 2} {approx} 10{sup -8}. If lensing by cosmic strings is not detected, such a survey would improve the limit on the string tension by an order of magnitude on that available from the cosmic microwave background. At the resolution (0'.028) attainable with the next generation of large ground based instruments, both in the radio and the infra-red with adaptive optics, surveying a sky area of order ten square degrees will allow us to probe the G{mu}/c{sup 2} {approx} 10{sup -9} regime. These limits will not be improved significantly by increasing the solid angle of the survey.

  19. Towards high resolution mapping of 3-D mesoscale dynamics from observations

    Directory of Open Access Journals (Sweden)

    B. Buongiorno Nardelli

    2012-10-01

    Full Text Available The MyOcean R&D project MESCLA (MEsoSCaLe dynamical Analysis through combined model, satellite and in situ data was devoted to the high resolution 3-D retrieval of tracer and velocity fields in the oceans, based on the combination of in situ and satellite observations and quasi-geostrophic dynamical models. The retrieval techniques were also tested and compared with the output of a primitive equation model, with particular attention to the accuracy of the vertical velocity field as estimated through the Q vector formulation of the omega equation. The project focused on a test case, covering the region where the Gulf Stream separates from the US East Coast. This work demonstrated that innovative methods for the high resolution mapping of 3-D mesoscale dynamics from observations can be used to build the next generations of operational observation-based products.

  20. High resolution earth observation satellites and services in the next decade a European perspective

    Science.gov (United States)

    Schreier, Gunter; Dech, Stefan

    2005-07-01

    Projects to use very high resolution optical satellite sensor data started in the late 90s and are believed to be the major driver for the commercialisation of earth observation. The global political security situation and updated legislative frameworks created new opportunities for high resolution, dual use satellite systems. In addition to new optical sensors, very high resolution synthetic aperture radars will become in the next few years an important component in the imaging satellite fleet. The paper will review the development in this domain so far, and give perspectives on future emerging markets and opportunities. With dual-use satellite initiatives and new political frameworks agreed between the European Commission and the European Space Agency (ESA), the European market becomes very attractive for both service suppliers and customers. The political focus on "Global Monitoring for Environment and Security" (GMES) and the "European Defence and Security Policy" drive and amplify this demand which ranges from low resolution climate monitoring to very high resolution reconnaissance tasks. In order to create an operational and sustainable GMES in Europe by 2007, the European infrastructure need to be adapted and extended. This includes the ESA SENTINEL and OXYGEN programmes, aiming for a fleet of earth observation satellites and an open and operational earth observation ground segment. The harmonisation of national and regional geographic information is driven by the European Commission's INSPIRE programme. The necessary satellite capacity to complement existing systems in the delivery of space based data required for GMES is currently under definition. Embedded in a market with global competition and in the global political framework of a Global Earth Observation System of Systems, European companies, agencies and research institutions are now contributing to this joint undertaking. The paper addresses the chances, risks and options for the future.

  1. High Resolution $\\lambda$ = 2.7 mm Observations of L1551 IRS5 A Protobinary System?

    CERN Document Server

    Looney, L W; Welch, W J; Looney, Leslie W.; Mundy, Lee G.

    1997-01-01

    We present sub-arcsecond resolution imaging of the $\\lambda$ = 2.7 mm continuum emission from the young, embedded system L1551 IRS5 using the nine-element, high-resolution configuration of the BIMA array. The observed emission arises from two compact sources separated by $0\\farcs$35, coinciding with the two sources seen at $\\lambda$ = 2 cm and $\\lambda$ = 1.3 cm. When the high resolution data is combined with data from two compact configurations, L1551 IRS5 is argued to consist of a protobinary system separated by $\\sim$50 AU with individual circumstellar disks, a circumbinary structure, and a large-scale envelope. The characteristic masses of the components are: 0.024 M$_{\\sun}$ for the northern circumstellar disk, 0.009 M$_{\\sun}$ for the southern circumstellar disk, 0.04 M$_{\\sun}$ for the circumbinary material, and 0.28 M$_{\\sun}$ for the envelope.

  2. The stellar mass - size relation for cluster galaxies at z=1 with high angular resolution from the Gemini/GeMS multi-conjugate adaptive optics system

    CERN Document Server

    Sweet, Sarah M; Glazebrook, Karl; Rigaut, Francois; Carrasco, Eleazar R; Brodwin, Mark; Baylliss, Matthew; Stalder, Brian; Abraham, Roberto; McGregor, Peter

    2016-01-01

    We present the stellar mass - size relation for 49 galaxies within the $z$ = 1.067 cluster SPT-CL J0546$-$5345, with FWHM $\\sim$80-120 mas $K_{\\mathrm s}$-band data from the Gemini multi-conjugate adaptive optics system (GeMS/GSAOI). This is the first such measurement in a cluster environment, performed at sub-kpc resolution at rest-frame wavelengths dominated by the light of the underlying old stellar populations. The observed stellar mass - size relation is offset from the local relation by 0.21 dex, corresponding to a size evolution proportional to $(1+z)^{-1.25}$, consistent with the literature. The slope of the stellar mass - size relation $\\beta$ = 0.74 $\\pm$ 0.06, consistent with the local relation. The absence of slope evolution indicates that the amount of size growth is constant with stellar mass. This suggests that galaxies in massive clusters such as SPT-CL J0546$-$5345 grow via processes that increase the size without significant morphological interference, such as minor mergers and/or adiabatic ...

  3. High-Resolution Observations of Flare Precursors and Their Relationship with Magnetic Channels

    Science.gov (United States)

    Wang, Haimin; Xu, Yan; Ahn, Kwangsu; Jing, Ju; Liu, Chang; Deng, Na; Huang, Nengyi; Gary, Dale E.; Cao, Wenda

    2016-05-01

    The study of precursors of flares is important for understanding the basic magnetic instability leading to solar flares, which can aid the forecasting of eruptions potentially related to severe space weather effects. Although literatures reported many important clues, high-resolution observations of pre-flare activities before a well-observed solar flare have been rare. Even rarely, the associated magnetic structures in fine scale (below 1") were also observed. In this study we take advantage of multiwavelength high-resolution observations completely covering the 2015 June 22 M6.6 flare, which were obtained under excellent seeing condition with the 1.6 m New Solar Telescope (NST) at Big Bear Solar Observatory. The NST data includes observations of the H-alpha line in five spectral positions at a spatial resolution of 0.1" and magnetograms at a resolution of 0.25". These are complemented by IRIS UV observations with a resolution of 0.25". We find that there are two episodes of pre-flare brightenings (precursors), which are spatially associated with magnetic channels, i.e., elongated structures comprising alternating magnetic polarity inversion lines (Zirin & Wang, 1993, Nature, 363, 426). The pre-flare chromospheric and coronal features reflect an extremely sheared magnetic topology, while the initiation of main flare brightenings correspond to a much less sheared configuration. RHESSI HXR observations reveal that the precursors have both thermal and nonthermal components, and the latter is further evidenced by the microwave observations of the newly expanded Solar Radio Array at Owens Valley.We further investigate the electric current system above the magnetic channels using NLFFF extrapolations, which show strong current sheets above the channel structure. This is consistent with the MHD modeling of Kusano et al (2012, Ap.J., 760, 31), who noted the importance of localized small-scale magnetic structure in triggering the eruption of the whole active region. We

  4. Angular momentum in subbarrier fusion

    International Nuclear Information System (INIS)

    We have measured the ratio of the isomer to ground-state yields of 137Ce produced in the fusion reactions 128Te(12C,3n), 133Cs(7Li,3n), 136Ba(3He,2n), 136Ba(4He,3n), and 137Ba(3He,3n), from energies above the Coulomb barrier to energies typically 20--30% below the barrier by observing the delayed x- and γ-ray emission. We deduce the average angular momentum, , from the measured isomer ratios with a statistical model. In the first three reactions we observe that the values of exhibit the behavior predicted for low energies and the expected variation with the reduced mass of the entrance channel. We analyze these data and the associated cross sections with a barrier penetration model that includes the coupling of inelastic channels. Measurements of average angular momenta and cross sections made on other systems using the γ-multiplicity and fission-fragment angular correlation techniques are then analyzed in a similar way with this model. The discrepancies with theory for the γ-multiplicity data show correlations in cross section and angular momentum that suggest a valid model can be found. The measurements of angular momentum using the fission fragment angular correlation technique, however, do not appear reconcilable with the energy dependence of the cross sections. This systematic overview suggests, in particular, that our current understanding of the relationship of angular momentum and anisotropy in fission fragment angular correlations is incomplete. 26 refs

  5. Moderate resolution imaging spectroradiometer (MODIS) and observations of the land surface

    Science.gov (United States)

    Salomonson, V. V.; Toll, D. L.; Lawrence, W. T.

    1992-01-01

    The moderate resolution imaging spectroradiometer (MODIS) is a NASA facility instrument that is being designed for flight on the Earth Observing System (EOS) series of missions. It is designed to measure biophysical states and dynamics of the land, atmosphere, and ocean. Plans are required for use of other instruments that will be accompanying MODIS on the EOS missions, such as the High-Resolution Imaging Spectrometer (HIRIS) and the Multi-angle Imaging Spectro-Radiometer (MISR). The HIRIS instrument, a spectrometer operating in the visible to shortwave infrared parts of the spectrum, would be employed in combination with the MODIS to understand the impact of sampling the spectrum and the effects of land cover mixtures within the MODIS pixel. The MISR will help in understanding the effects of anisotropy in reflected solar radiation. Both instruments will work in combination with MODIS to better quantify the effects of the atmosphere on observations of surface properties.

  6. Role of light satellites in the high-resolution Earth observation domain

    Science.gov (United States)

    Fishman, Moshe

    1999-12-01

    Current 'classic' applications using and exploring space based earth imagery are exclusive, narrow niche tailored, expensive and hardly accessible. On the other side new, inexpensive and widely used 'consumable' applications will be only developed concurrently to the availability of appropriate imagery allowing that process. A part of these applications can be imagined today, like WWW based 'virtual tourism' or news media, but the history of technological, cultural and entertainment evolution teaches us that most of future applications are unpredictable -- they emerge together with the platforms enabling their appearance. The only thing, which can be ultimately stated, is that the definitive condition for such applications is the availability of the proper imagery platform providing low cost, high resolution, large area, quick response, simple accessibility and quick dissemination of the raw picture. This platform is a constellation of Earth Observation satellites. Up to 1995 the Space Based High Resolution Earth Observation Domain was dominated by heavy, super-expensive and very inflexible birds. The launch of Israeli OFEQ-3 Satellite by MBT Division of Israel Aircraft Industries (IAI) marked the entrance to new era of light, smart and cheap Low Earth Orbited Imaging satellites. The Earth Resource Observation System (EROS) initiated by West Indian Space, is based on OFEQ class Satellites design and it is capable to gather visual data of Earth Surface both at high resolution and large image capacity. The main attributes, derived from its compact design, low weight and sophisticated logic and which convert the EROS Satellite to valuable and productive system, are discussed. The major advantages of Light Satellites in High Resolution Earth Observation Domain are presented and WIS guidelines featuring the next generation of LEO Imaging Systems are included.

  7. Airborne high spectral resolution lidar observation of pollution aerosol during EUCAARI-LONGREX

    OpenAIRE

    Groß, S.; M. Esselborn; F. Abicht; Wirth, M.; Fix, A.(Laboratory of Mathematical Physics, Tomsk Polytechnic University, Tomsk, Russia); Minikin, A.

    2012-01-01

    Airborne high spectral resolution lidar observations over Europe during the EUCAARI field experiment in May 2008 are analysed with respect to spatial distribution and optical properties of continental pollution aerosol. Continental aerosol is characterized by its depolarisation and lidar ratio. Mean values of 6%±1% for the particle linear depolarisation ratio, and 56 sr±6 sr for the lidar ratio were found for pollution aerosol. Both, lidar ratio and depolarisation ...

  8. Airborne high spectral resolution lidar observation of pollution aerosol during EUCAARI-LONGREX

    OpenAIRE

    Groß, Silke; Esselborn, Michael; Abicht, Florian; Wirth, Martin; Fix, Andreas; Minikin, Andreas

    2013-01-01

    Airborne high spectral resolution lidar observations over Europe during the EUCAARI-LONGREX field experiment in May 2008 are analysed with respect to the optical properties of continental pollution aerosol. Continental pollution aerosol is characterized by its depolarisation and lidar ratio. Over all, the measurements of the lidar ratio and the particle linear depolarization ratio of pollution aerosols provide a narrow range of values. Therefore, this data set allows for a distinct characteri...

  9. Coordinated airborne high spectral resolution lidar and in-situ observations of different aerosol types

    OpenAIRE

    Esselborn, Michael; Abicht, Florian; Hamburger, Thomas; Weinzierl, Bernadett; Wirth, Martin; Fix, Andreas; Ehret, Gerhard; Minikin, Andreas; Petzold, Andreas

    2009-01-01

    During three recent field campaigns aerosol properties have been measured by the DLR airborne high spectral resolution lidar (HSRL) and an extensive set of aerosol in-situ probing instruments. SAMUM-1 (Saharan Mineral Dust Experiment, Morocco, 2006) aimed at the characterization of physical, chemical and radiative properties of African mineral dust. SAMUM-2 (Cape Verde Islands, 2008) focused on the observation of aged Sahelian dust and biomass burning aerosol from the African tropical regions...

  10. High spatial resolution FeXII observations of solar active region

    CERN Document Server

    Testa, Paola; Hansteen, Viggo

    2016-01-01

    We use UV spectral observations of active regions with the Interface Region Imaging Spectrograph (IRIS) to investigate the properties of the coronal FeXII 1349.4A emission at unprecedented high spatial resolution (~0.33"). We find that by using appropriate observational strategies (i.e., long exposures, lossless compression), FeXII emission can be studied with IRIS at high spatial and spectral resolution, at least for high density plasma (e.g., post-flare loops, and active region moss). We find that upper transition region (moss) FeXII emission shows very small average Doppler redshifts (v_Dop ~3 km/s), as well as modest non-thermal velocities (with an average ~24 km/s, and the peak of the distribution at ~15 km/s). The observed distribution of Doppler shifts appears to be compatible with advanced 3D radiative MHD simulations in which impulsive heating is concentrated at the transition region footpoints of a hot corona. While the non-thermal broadening of FeXII 1349.4A peaks at similar values as lower resolut...

  11. Multi-Epoch High-Spectral-Resolution Observations of Neutral Sodium in 14 Type Ia Supernovae

    CERN Document Server

    Sternberg, A; Simon, J D; Patat, F; Hillebrandt, W; Phillips, M M; Foley, R J; Thompson, I; Morrell, N; Chomiuk, L; Soderberg, A M; Yong, D; Kraus, A L; Herczeg, G J; Hsiao, E Y; Raskutti, S; Cohen, J G; Mazzali, P A; Nomoto, K

    2013-01-01

    One of the main questions concerning Type Ia supernovae is the nature of the binary companion of the exploding white dwarf. A major discriminant between different suggested models is the presence and physical properties of circumstellar material at the time of explosion. If present, this material will be ionized by the ultra-violet radiation of the explosion and later recombine. This ionization-recombination should manifest itself as time-variable absorption features that can be detected via multi-epoch high-spectral-resolution observations. Previous studies have shown that the strongest effect is seen in the neutral sodium D lines. We report on observations of neutral sodium absorption features observed in multi-epoch high-resolution spectra of 14 Type Ia supernova events. This is the first multi-epoch high-resolution study to include multiple SNe. No variability in line strength that can be associated with circumstellar material is detected. We find that ~18% of the events in the extended sample exhibit tim...

  12. Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) Global Snow-Cover Maps

    Science.gov (United States)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.; Scharfen, Greg R.

    2000-01-01

    Following the 1999 launch of the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS), the capability exists to produce global snow-cover maps on a daily basis at 500-m resolution. Eight-day composite snow-cover maps will also be available. MODIS snow-cover products are produced at Goddard Space Flight Center and archived and distributed by the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado. The products are available in both orbital and gridded formats. An online search and order tool and user-services staff will be available at NSIDC to assist users with the snow products. The snow maps are available at a spatial resolution of 500 m, and 1/4 degree x 1/4 degree spatial resolution, and provide information on sub-pixel (fractional) snow cover. Pre-launch validation work has shown that the MODIS snow-mapping algorithms perform best under conditions of continuous snow cover in low vegetation areas, but can also map snow cover in dense forests. Post-launch validation activities will be performed using field and aircraft measurements from a February 2000 validation mission, as well as from existing satellite-derived snow-cover maps from NOAA and Landsat-7 Enhanced Thematic Mapper Plus (ETM+).

  13. Stellar magnetic field parameters from a Bayesian analysis of high-resolution spectropolarimetric observations

    CERN Document Server

    Petit, V

    2011-01-01

    In this paper we describe a Bayesian statistical method designed to infer the magnetic properties of stars observed using high-resolution circular spectropolarimetry in the context of large surveys. This approach is well suited for analysing stars for which the stellar rotation period is not known, and therefore the rotational phases of the observations are ambiguous. The model assumes that the magnetic observations correspond to a dipole oblique rotator, a situation commonly encountered in intermediate and high-mass stars. Using reasonable assumptions regarding the model parameter prior probability density distributions, the Bayesian algorithm determines the posterior probability densities corresponding to the surface magnetic field geometry and strength by performing a comparison between the observed and computed Stokes V profiles. Based on the results of numerical simulations, we conclude that this method yields a useful estimate of the surface dipole field strength based on a small number (i.e. 1 or 2) of...

  14. Structure of W3(OH) from Very High Spectral Resolution Observations of 5 Centimeter OH Masers

    CERN Document Server

    Fish, Vincent L

    2007-01-01

    Recent studies of methanol and ground-state OH masers at very high spectral resolution have shed new light on small-scale maser processes. The nearby source W3(OH), which contains numerous bright masers in several different transitions, provides an excellent laboratory for high spectral resolution techniques. We present a model of W3(OH) based on EVN observations of the rotationally-excited 6030 and 6035 MHz OH masers taken at 0.024 km/s spectral resolution. The 6.0 GHz masers are becoming brighter with time and show evidence for tangential proper motions. We confirm the existence of a region of magnetic field oriented toward the observer to the southeast and find another such region to the northeast in W3(OH), near the champagne flow. The 6.0 GHz masers trace the inner edge of a counterclockwise rotating torus feature. Masers at 6030 MHz are usually a factor of a few weaker than at 6035 MHz but trace the same material. Velocity gradients of nearby Zeeman components are much more closely correlated than in th...

  15. High Resolution Observations and Modeling of Small-Scale Solar Magnetic Elements

    Science.gov (United States)

    Berger, Thomas E.

    2001-01-01

    This research contract investigating the radiative transfer and dynamic physics of the smallest observable magnetic structures in the solar photosphere. Due to the lack of a high-resolution visible light satellite instrument for solar studies, all data were acquired using ground-based instrumentation. The primary goal of the investigation was to understand the formation and evolution of "G-band bright points" in relation to the associated magnetic elements. G-band bright points are small (on the order of 100 kin or less in diameter) bright signatures associated with magnetic flux elements in the photosphere. They are seen in the A2A-X2 4308 A molecular bandhead of the CH radical ill the solar spectrum and offer the highest spatial resolution and highest contrast "tracers" of small magnetic structure on the Sun.

  16. Autonomous, high-resolution observations of particle flux in the oligotrophic ocean

    Directory of Open Access Journals (Sweden)

    M. L. Estapa

    2013-01-01

    Full Text Available Observational gaps limit our understanding of particle flux attenuation through the upper mesopelagic because available measurements (sediment traps and radiochemical tracers have limited temporal resolution, are labor-intensive, and require ship support. Here, we conceptually evaluate an autonomous, optical proxy-based method for high-resolution observations of particle flux. We present four continuous records of particle flux collected with autonomous, profiling floats in the western Sargasso Sea and the subtropical North Pacific, as well as one shorter record of depth-resolved particle flux near the Bermuda Atlantic Timeseries Study (BATS and Oceanic Flux Program (OFP sites. These observations illustrate strong variability in particle flux over very short (~1 day timescales, but at longer timescales they reflect patterns of variability previously recorded during sediment trap timeseries. While particle flux attenuation at BATS/OFP agreed with the canonical power-law model when observations were averaged over a month, flux attenuation was highly variable on timescales of 1–3 days. Particle fluxes at different depths were decoupled from one another and from particle concentrations and chlorophyll fluorescence in the immediately-overlying surface water, consistent with horizontal advection of settling particles. We finally present an approach for calibrating this optical proxy in units of carbon flux, discuss in detail the related, inherent physical and optical assumptions, and look forward toward the requirements for the quantitative application of this method in highly time-resolved studies of particle export and flux attenuation.

  17. High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom

    Science.gov (United States)

    Briggs, Nathan; Perry, Mary Jane; Cetinić, Ivona; Lee, Craig; D'Asaro, Eric; Gray, Amanda M.; Rehm, Eric

    2011-10-01

    An aggregate flux event was observed by ship and by four underwater gliders during the 2008 sub-polar North Atlantic spring bloom experiment (NAB08). At the height of the diatom bloom, aggregates were observed as spikes in measurements of both particulate backscattering coefficient ( bbp) and chlorophyll a fluorescence. Optical sensors on the ship and gliders were cross-calibrated through a series of simultaneous profiles, and bbp was converted to particulate organic carbon. The aggregates sank as a discrete pulse, with an average sinking rate of ˜75 m d -1; 65% of aggregate backscattering and 90% of chlorophyll fluorescence content was lost between 100 m and 900 m. Mean aggregate organic carbon flux at 100 m in mid-May was estimated at 514 mg C m -2 d -1, consistent with independent flux estimates. The use of optical spikes observed from gliders provides unprecedented coupled vertical and temporal resolution measurements of an aggregate flux event.

  18. Interaction of vacancies with implanted metal atoms in tungsten observed by means of thermal helium desorption spectrometry and perturbed angular correlation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, G.J. van der; Veen, A. van; Post, K.; Pleiter, F.; Hosson, J.T.M. de

    1985-01-01

    With two techniques the defect complexes are studied when formed after implantation of 5 to 100 keV metal ions into tungsten. Perturbed Angular Correlation (PAC) studies clearly indicate the presence of substitutional impurities in samples implanted with Ag or In. With Thermal Helium Desorption Spectrometry (THDS), however, virtually no substitutional implants (Ag, Cu, Mn, Cr, In) could be seen after implantation due to the nearby vacancies. Migration of vacancies towards the implants during annealing at stage III temperature was observed by means of PAC measurements. At upper stage III vacancy-implant complexes disintegrate, while the substitutional fraction increases. According to THDS, no vacancy-implant complexes are left in the case of 5 keV implantation after annealing to temperatures slightly beyond stage III temperature. In the case of 20 keV implantation a vacancy-type defect is formed which is stable up to 1350 K. The results of both techniques are compared with each other and with model calculations.

  19. High resolution radio observations of nuclear and circumnuclear regions of luminous infrared galaxies (LIRGs)

    International Nuclear Information System (INIS)

    High-resolution radio observations of the nuclear region of Luminous and Ultraluminous Infrared Galaxies (ULIRGs) have shown that its radio structure consists of a compact high surface-brightness central radio source immersed in a diffuse low brightness circumnuclear halo. While the central component could be associated with an AGN or compact star-forming regions where radio supernovae are exploding, it is well known that the circumnuclear regions host bursts of star-formation. The studies of radio supernovae can provide essential information about stellar evolution and CSM/ISM properties in regions hidden by dust at optical and IR wavelengths. In this contribution, we show results from radio interferometric observations from NGC 7469, IRAS 18293-3413 and IRAS 17138-1017 where three extremely bright radio supernovae have been found. High-resolution radio observations of these and other LIRGs would allow us to determine the core-collapse supernova rate in them as well as their star-formation rate.

  20. A high-resolution Fourier transform spectrometer for astronomical observations and development of wavelength standards

    Science.gov (United States)

    Lemke, Ulrike; Reiners, Ansgar; Schäfer, Sebastian

    2012-09-01

    At the Institute for Astrophysics Goettingen (IAG), we are purchasing a high resolution Fourier Transform Spectrograph (FTS) for astronomical observations and development of calibration standards aiming at high wavelength precision. Astronomical spectrographs that work in the regime of very high resolution (resolving powers λ/δλ>=105) now achieve unprecedented precision and stability. Precise line shifts can be investigated to conclude for an objects radial velocity relative to the observer. As a long-term scientific goal, the evolution of galaxy redshift due to dark energy can be monitored. Also, the detection of lower mass, down to Earth-like planets will become feasible. Here, M-dwarfs are promising objects where an orbiting exo-Earth can cause a wavelength shift large enough to be detected. Emitting mainly in the near infrared (NIR), these objects require novel calibration standards. Current schemes under consideration are gas cathode lamps (e.g. CN, UNe) and a highly stable Fabry-Perot interferometer (FPI) to act as a cost-efficient alternative to the laser frequency comb (LFC, [1]). In addition to experiments exploring novel wavelength calibration types, light will be fed from our telescopes at IAG. A Vacuum Tower Telescope (VTT) for solar observations and the 50 cm Cassegrain telescope allow to investigate stellar and spatially resolved light at our facilities.

  1. High resolution radio observations of nuclear and circumnuclear regions of luminous infrared galaxies (LIRGs)

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A; Perez-Torres, M A [Instituto de Astrofisica de Andalucia (IAA, CSIC), PO Box 3004, 18080-Granada (Spain); Colina, L [Instituto de Estructura de la Materia - IEM, CSIC, C, Serrano 115, 28005 Madrid (Spain); Torrelles, J M [Instituto de Ciencias del Espacio (ICE, CSIC) and IEEC, Gran Capita 2-4, 08034 Barcelona (Spain)], E-mail: antxon@iaa.es, E-mail: torres@iaa.es, E-mail: colina@damir.iem.csic.es, E-mail: torrelle@ieec.fcr.es

    2008-10-15

    High-resolution radio observations of the nuclear region of Luminous and Ultraluminous Infrared Galaxies (ULIRGs) have shown that its radio structure consists of a compact high surface-brightness central radio source immersed in a diffuse low brightness circumnuclear halo. While the central component could be associated with an AGN or compact star-forming regions where radio supernovae are exploding, it is well known that the circumnuclear regions host bursts of star-formation. The studies of radio supernovae can provide essential information about stellar evolution and CSM/ISM properties in regions hidden by dust at optical and IR wavelengths. In this contribution, we show results from radio interferometric observations from NGC 7469, IRAS 18293-3413 and IRAS 17138-1017 where three extremely bright radio supernovae have been found. High-resolution radio observations of these and other LIRGs would allow us to determine the core-collapse supernova rate in them as well as their star-formation rate.

  2. Comet Shoemaker-Levy 9/Jupiter collision observed with a high resolution speckle imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Gravel, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    During the week of July 16, 1994, comet Shoemaker-Levy 9, broken into 20 plus pieces by tidal forces on its last orbit, smashed into the planet Jupiter, releasing the explosive energy of 500 thousand megatons. A team of observers from LLNL used the LLNL Speckle Imaging Camera mounted on the University of California`s Lick Observatory 3 Meter Telescope to capture continuous sequences of planet images during the comet encounter. Post processing with the bispectral phase reconstruction algorithm improves the resolution by removing much of the blurring due to atmospheric turbulence. High resolution images of the planet surface showing the aftermath of the impact are probably the best that were obtained from any ground-based telescope. We have been looking at the regions of the fragment impacts to try to discern any dynamic behavior of the spots left on Jupiter`s cloud tops. Such information can lead to conclusions about the nature of the comet and of Jupiter`s atmosphere. So far, the Hubble Space Telescope has observed expanding waves from the G impact whose mechanism is enigmatic since they appear to be too slow to be sound waves and too fast to be gravity waves, given the present knowledge of Jupiter`s atmosphere. Some of our data on the G and L impact region complements the Hubble observations but, so far, is inconclusive about spot dynamics.

  3. Electron Temperatures in W51 Complex from High Resolution, Low Frequency Radio Observations

    Indian Academy of Sciences (India)

    P. K. Srivastava; A. Pramesh Rao

    2010-03-01

    W51 is a giant radio complex lying along the tangent to the Sagitarius arm at a distance of about 7 kpc from the Sun, with an extension of about 1° in the sky. It is divided into three components A, B, C where W51A and W51B consist of many compact HII regions while W51C is a supernova remnant. We have made continuum radio observations of these HII regions of the W51 complex at 240, 610, 1060 and 1400 MHz using GMRT with lower resolution (20'' × 15'') at the lowest frequency. The observed spectra of the prominent thermal subcomponents of W51 have been fitted to a free-free emission spectrum and their physical properties like electron temperatures and emission measures have been estimated. The electron temperatures from continuum spectra are found to be lower than the temperatures reported from radio recombination line (RRL) studies of these HII regions indicating the need for a filling factor even at this resolution. Also, the observed brightness at 240 MHz is found to be higher than expected from the best fits suggesting the need for a multicomponent model for the region.

  4. Wide Coverage, Fine Resolution, Geosynchronous SAR For Atmoshphere And Terrain Observations

    Science.gov (United States)

    Guarnieri, Monti A.; Djalaili, F.; Schulz, D.; Khang, V. T.; Recchia, A.; Rocca, F.; Giudici, D.; Hobbs, S.; Strozzi, T.; Werner, C.; Venturini, R.; Broquetas, A.; Ruiz-Rodon, J.; Wadge, G.

    2013-12-01

    The paper proposes a COMmunication SATellite (COMSAT) compatible Synthetic Aperture RADAR(SAR), with regional coverage and continuous observations. Such a system could provide deformations and water-vapour maps over regions of hundreds of kilometers with resolutions in time-space otherwise impossible with that coverage. The basic monostatic concept is reviewed together with its multistatic evolution, capable of exploiting the present clusters of COMSATs at the same longitudinal node. Attention is brought to the most critical issues, such as atmospheric turbulence, target coherence, and clutter decorrelation.

  5. A Compact Airborne High Spectral Resolution Lidar for Observations of Aerosol and Cloud Optical Properties

    Science.gov (United States)

    Hostetler, Chris A.; Hair, John W.; Cook, Anthony L.

    2002-01-01

    We are in the process of developing a nadir-viewing, aircraft-based high spectral resolution lidar (HSRL) at NASA Langley Research Center. The system is designed to measure backscatter and extinction of aerosols and tenuous clouds. The primary uses of the instrument will be to validate spaceborne aerosol and cloud observations, carry out regional process studies, and assess the predictions of chemical transport models. In this paper, we provide an overview of the instrument design and present the results of simulations showing the instrument's capability to accurately measure extinction and extinction-to-backscatter ratio.

  6. The High Visible Resolution (HVR) instrument of the spot ground observation satellite

    Science.gov (United States)

    Otrio, G.

    1980-01-01

    Two identical high resolution cameras, capable of attaining a track width of 116 km in an almost vertical line of sight from the two 60 km images of each instrument, will be carried on the initial mission of the space observation of Earth satellite (SPOT). Specifications for the instrument, including the telescope and CCD devices are summarized. The present status of development is described including the optical characteristics, structure and thermal control, detector assembly, electronic equipment, and calibration. SPOT mission objectives include the developments relating to soil use, the exploration of EART Earth resources, the discrimination of plant species, and cartography.

  7. Exploiting crowdsourced observations: High-resolution mapping of real-time urban air quality throughout Europe

    Science.gov (United States)

    Schneider, Philipp; Castell, Nuria; Vallejo, Islen; van den Bossche, Joris; Lahoz, William; Bartonova, Alena

    2016-04-01

    With the technology of air quality sensors improving rapidly in recent years and with an increasing number of initiatives for collecting air quality information being established worldwide, there is a rapidly increasing amount of information on air quality. Such datasets can provide unprecedented spatial detail and thus exhibit a significant potential for allowing to create observation-based high-resolution maps of air quality in the urban environment. However, most datasets of observations made within a citizen science or crowdsourcing framework tend to have highly variable characteristics in terms of quantity, accuracy, measured parameters, and representativeness, and many more. It is therefore currently unknown how to best exploit this information for mapping purposes. In order to address this challenge we present a novel approach for combining crowdsourced observations of urban air quality with model information, allowing us to produce near-real-time, high-resolution maps of air quality in the urban environment. The approach is based on data fusion techniques, which allow for combining observations with model data in a mathematically objective way and therefore provide a means of adding value to both the observations and the model. The observations are improved by filling spatio-temporal gaps in the data and the model is improved by constraining it with observations. The model further provides detailed spatial patterns in areas where no observations are available. As such, data fusion of observations from high-density low-cost sensor networks together with air quality models can contribute to significantly improving urban-scale air quality mapping. The system has been implemented to run in an automated fashion in near real-time (once every hour) for several cities in Europe. Evaluation of the methodology is being carried out using the leave-one-out cross validation technique and simulated datasets. We present case studies demonstrating the methodology for

  8. High resolution observations of the outer disk around T Cha: the view from ALMA

    CERN Document Server

    Huelamo, N; Macias, E; Pinte, C; Ireland, M; Tuthill, P; Lacour, S

    2015-01-01

    T Cha is a young star surrounded by a transitional disk with signatures of planet formation. We have obtained high-resolution and high-sensitivity ALMA observations of T Cha in the ${\\rm CO}(3$--$2)$, ${\\rm ^{13}CO}(3$--$2)$, and ${\\rm CS}(7$--$6)$ emission lines to reveal the spatial distribution of the gaseous disk around the star. In order to study the dust within the disk we have also obtained continuum images at 850$\\mu$m from the line-free channels. We have spatially resolved the outer disk around T Cha. Using the CO(3-2) emission we derive a radius of $\\sim$230 AU. We also report the detection of the $^{13}$CO(3-2) and the CS(7-8) molecular emissions, which show smaller radii than the CO(3-2) detection. The continuum observations at 850$\\mu$m allow the spatial resolution of the dusty disk, which shows two emission bumps separated by $\\sim$40AU, consistent with the presence of a dust gap in the inner regions of the disk, and an outer radius of $\\sim$80AU. Therefore, T Cha is surrounded by a compact dust...

  9. Observing gas-catalyst dynamics at atomic resolution and single-atom sensitivity.

    Science.gov (United States)

    Helveg, S; Kisielowski, C F; Jinschek, J R; Specht, P; Yuan, G; Frei, H

    2015-01-01

    Transmission electron microscopy (TEM) has become an indispensable technique for studying heterogeneous catalysts. In particular, advancements of aberration-corrected electron optics and data acquisition schemes have made TEM capable of delivering images of catalysts with sub-Ångström resolution and single-atom sensitivity. Parallel developments of differentially pumped electron microscopes and of gas cells enable in situ observations of catalysts during the exposure to reactive gas environments at pressures of up to atmospheric levels and temperatures of up to several hundred centigrade. Here, we outline how to take advantage of the emerging state-of-the-art instrumentation and methodologies to study surface structures and dynamics to improve the understanding of structure-sensitive catalytic functionality. The concept of using low electron dose-rates in TEM in conjunction with in-line holography and aberration-correction at low voltage (80 kV) is introduced to allow maintaining atomic resolution and sensitivity during in situ observations of catalysts. Benefits are illustrated by exit wave reconstructions of TEM images of a nanocrystalline Co3O4 catalyst material acquired in situ during their exposure to either a reducing or oxidizing gas environment. PMID:25245867

  10. High-resolution radio observations of nuclear and circumnuclear starbursts in Luminous Infrared Galaxies

    CERN Document Server

    Perez-Torres, Miguel A

    2008-01-01

    High-resolution radio observations of nearby starburst galaxies have shown that the distribution of their radio emission consists of a compact (<150 pc), high surface brightness, central radio source immersed in a low surface brightness circumnuclear halo. This radio structure is similar to that detected in bright Seyferts galaxies like NGC 7469 or Mrk 331, which display clear circumnuclear rings. While the compact, centrally located radio emission in these starbursts might be generated by a point-like source (AGN), or by the combined effect of multiple radio supernovae and supernova remnants (e.g., the evolved nuclear starburst in Arp~220), it seems well established that the circumnuclear regions of those objects host an ongoing burst of star-formation (e.g., NGC 7469; Colina et al. 2001, Alberdi et al. 2006). Therefore, high-resolution radio observations of Luminous Infra-Red Galaxies (LIRGs) in our local universe are a powerful tool to probe the dominant dust heating mechanism in their nuclear and circu...

  11. High-resolution Very Large Array observations of 18 MIPSGAL bubbles

    CERN Document Server

    Ingallinera, Adriano; Leto, Paolo; Umana, Grazia; Buemi, Carla; Bufano, Filomena; Agliozzo, Claudia; Riggi, Simone; Flagey, Nicolas; Silva, Kevin; Cerrigone, Luciano; Cavallaro, Francesco

    2016-01-01

    We present radio observations of 18 MIPSGAL bubbles performed at 5 GHz (6 cm) with the Karl G. Jansky Very Large Array in configuration B and BnA. The observations were aimed at understanding what kind of information high-resolution and high-sensitivity radio maps can supply on the circumstellar envelopes of different kinds of evolved stars and what their comparison with infrared images with similar resolution can tell us. We found that the 18 bubbles can be grouped into five categories according to their radio morphology. The three bubbles presenting a central point source in the radio images all correspond to luminous blue variable star candidates. Eleven bubbles show an elliptical shape and the total lack of a central object in the radio, and are likely associated with planetary nebulae. Under this assumption we derive their distance, their ionized mass and their distribution on the Galactic plane. We discuss the possibility that the MIPSGAL bubbles catalogue (428 objects) may contain a large fraction of a...

  12. High-Resolution Spectroscopic Database for the NASA Earth Observing System Program

    Science.gov (United States)

    Rothman, Laurence S.; Starr, David (Technical Monitor)

    2002-01-01

    The purpose of this project is to develop and enhance the HITRAN molecular spectroscopic database and associated software to support the observational programs of the Earth Observing System (EOS). In particular, the focus is on the EOS projects: the Atmospheric Infrared Sounder (AIRS), the High-Resolution Dynamics Limb Sounder (HIRDLS), Measurements of Pollution in the Troposphere (MOPITT), the Tropospheric Emission Spectrometer (TES), and the Stratospheric Aerosol and Gas Experiment (SAGE III). The data requirements of these programs in terms of spectroscopy are varied, but usually call for additional spectral parameters or improvements to existing molecular bands. In addition, cross-section data for heavier molecular species must be expanded and made amenable to modeling in remote sensing. The effort in the project also includes developing software and distribution to make access, manipulation, and use of HITRAN functional to the EOS program.

  13. CHIRON TOOLS: Integrated Target Submission, Scheduling and Observing Systems for a High Resolution Fiber Fed Spectrograph

    CERN Document Server

    Brewer, John M; Fischer, Debra A

    2013-01-01

    The CHIRON spectrometer is a new high-resolution, fiber-fed instrument on the 1.5 meter telescope at Cerro Tololo Inter-America Observatory (CTIO). To optimize use of the instrument and limited human resources, we have designed an integrated set of web applications allowing target submission, observing script planning, nightly script execution and logging, and access to reduced data by multiple users. The unified and easy to use interface has dramatically reduced the time needed to submit and schedule observations and improved the efficiency and accuracy of nightly operations. We present our experience to help astronomers and project managers who need to plan for the scope of effort required to commission a queue-scheduled facility instrument.

  14. Aerosol and Cloud Interaction Observed From High Spectral Resolution Lidar Data

    Science.gov (United States)

    Su, Wenying; Schuster, Gregory L.; Loeb, Norman G.; Rogers, Raymond R.; Ferrare, Richard A.; Hostetler, Chris A.; Hair, Johnathan W.; Obland, Michael D.

    2008-01-01

    Recent studies utilizing satellite retrievals have shown a strong correlation between aerosol optical depth (AOD) and cloud cover. However, these retrievals from passive sensors are subject to many limitations, including cloud adjacency (or 3D) effects, possible cloud contamination, uncertainty in the AOD retrieval. Some of these limitations do not exist in High Spectral Resolution Lidar (HSRL) observations; for instance, HSRL observations are not a ected by cloud adjacency effects, are less prone to cloud contamination, and offer accurate aerosol property measurements (backscatter coefficient, extinction coefficient, lidar ratio, backscatter Angstrom exponent,and aerosol optical depth) at a neospatial resolution (less than 100 m) in the vicinity of clouds. Hence, the HSRL provides an important dataset for studying aerosol and cloud interaction. In this study, we statistically analyze aircraft-based HSRL profiles according to their distance from the nearest cloud, assuring that all profile comparisons are subject to the same large-scale meteorological conditions. Our results indicate that AODs from HSRL are about 17% higher in the proximity of clouds (approximately 100 m) than far away from clouds (4.5 km), which is much smaller than the reported cloud 3D effect on AOD retrievals. The backscatter and extinction coefficients also systematically increase in the vicinity of clouds, which can be explained by aerosol swelling in the high relative humidity (RH) environment and/or aerosol growth through in cloud processing (albeit not conclusively). On the other hand, we do not observe a systematic trend in lidar ratio; we hypothesize that this is caused by the opposite effects of aerosol swelling and aerosol in-cloud processing on the lidar ratio. Finally, the observed backscatter Angstrom exponent (BAE) does not show a consistent trend because of the complicated relationship between BAE and RH. We demonstrate that BAE should not be used as a surrogate for Angstrom

  15. High-resolution radar observations of meteoroid fragmentation and flaring at the Jicamarca Radio Observatory

    Science.gov (United States)

    Zhu, Qian; Dinsmore, Ross; Gao, Boyi; Mathews, John D.

    2016-04-01

    Although meteoroid fragmentation has been observed and studied in the optical meteor community since the 1950s, no definitive fragmentation mechanisms for the relatively small meteoroids (mass ≲10-4 kg) have been proposed. This is in part due to the lack of observations to constrain physical models of the fragmentation process. While it is challenging to record fragmentation in faint optical meteors, observing faint meteors using High-Power, Large-Aperture coherent radars can yield considerable micrometeoroid fragmentation information especially when employing interferometric imaging. Radar interferometric imaging can potentially resolve the fragmentation process in three spatial dimensions by monitoring the evolution of the plasma in the meteor head-echo, flare-echo, and trail-echo regions. We present results of applying a newly developed hybrid interferometric-CS (compressed sensing) technique (H-ICS) to radar meteor observations conducted at the Jicamarca Radio Observatory in Peru. With the H-ICS technique - which provides improved spatial resolution over earlier techniques - we analyse five representative meteoroid fragmentation events. Results include observations of both along and transverse to the trajectory spreading of the developing plasma apparently caused by gross fragmentation and plasma diffusion parallel to the geomagnetic field near the geomagnetic equator.

  16. 高分辨力面阵图像式光电编码器的测角技术%Angular measurement technology for high resolution area array image optical encoder

    Institute of Scientific and Technical Information of China (English)

    齐荔荔; 万秋华

    2013-01-01

    In order to realize the miniaturization and high resolution of area array image optical encoder, this paper studies the code disc encoding of the area array image optical encoder and the fine code subdivision algorithm based on image processing technology. Firstly, according to the specification of the optical encoder, corresponding dimension of code disc is designed. Secondly, an image sensor is used to capture the code disc pattern while the shaft rotates; a microprocessor is used to receive the image data; pattern recognition algorithm is used to obtain the coarse code; and the improved baseline centroid algorithm is used to calculate the fine code angular information in sub-pixel level. Finally , the coarse code and fine code are combined to compose the optical encoder angular output data. An area array image optical encoder with diameter of f 45 mm was designed, and experiment was carried out. Experiment result indicates that without any additional optical lens, adopting the proposed fine code subdivision technique, the encoder angular resolution reaches 5 arcseconds and the number of subdivision of 4 096 is achieved; the peak to peak value of the angular measurement error is 61 arcseconds. The area array image optical encoder and fine code subdivision technique could improve the encoder resolution, and reduce the volume and weight of the encoder, which meet the demand of miniaturized optical encoder in aeronautic and astronautic field.%为实现面阵图像式光电编码器的小型化及高分辨力,研究了面阵图像式光电编码器的码盘编码和基于图像处理技术的精码细分算法.首先根据光电编码器的性能指标要求设计相应的码盘尺寸;然后通过图像传感器采集随轴系转动的码盘图样;微处理器接收图像数据,通过图形识别算法得到粗码角度,并采用改进的基准线质心算法,计算亚像素级的精码角度信息.最后由粗码和精码组成光电编码器测角数据.实验

  17. NASA LaRC airborne high spectral resolution lidar aerosol measurements during MILAGRO: observations and validation

    Directory of Open Access Journals (Sweden)

    R. R. Rogers

    2009-04-01

    Full Text Available The NASA Langley Research Center (LaRC airborne High Spectral Resolution Lidar (HSRL measures vertical profiles of aerosol extinction, backscatter, and depolarization at both 532 nm and 1064 nm. In March of 2006 the HSRL participated in the Megacity Initiative: Local and Global Research Observations (MILAGRO campaign along with several other suites of instruments deployed on both aircraft and ground based platforms. This paper presents high spatial and vertical resolution HSRL measurements of aerosol extinction and optical depth from MILAGRO and comparisons of those measurements with similar measurements from other sensors and model predictions. HSRL measurements coincident with airborne in situ aerosol scattering and absorption measurements from two different instrument suites on the C-130 and G-1 aircraft, airborne aerosol optical depth (AOD and extinction measurements from an airborne tracking sunphotometer on the J-31 aircraft, and AOD from a network of ground based Aerosol Robotic Network (AERONET sun photometers are presented as a validation of the HSRL aerosol extinction and optical depth products. Regarding the extinction validation, we find bias differences between HSRL and these instruments to be less than 3% (0.01 km−1 at 532 nm, the wavelength at which the HSRL technique is employed. The rms differences at 532 nm were less than 50% (0.015 km−1. To our knowledge this is the most comprehensive validation of the HSRL measurement of aerosol extinction and optical depth to date. The observed bias differences in ambient aerosol extinction between HSRL and other measurements is within 15–20% at visible wavelengths, found by previous studies to be the differences observed with current state-of-the-art instrumentation (Schmid et al., 2006.

  18. NASA LaRC airborne high spectral resolution lidar aerosol measurements during MILAGRO: observations and validation

    Directory of Open Access Journals (Sweden)

    L. I. Kleinman

    2009-07-01

    Full Text Available The NASA Langley Research Center (LaRC airborne High Spectral Resolution Lidar (HSRL measures vertical profiles of aerosol extinction, backscatter, and depolarization at both 532 nm and 1064 nm. In March of 2006 the HSRL participated in the Megacity Initiative: Local and Global Research Observations (MILAGRO campaign along with several other suites of instruments deployed on both aircraft and ground based platforms. This paper presents high spatial and vertical resolution HSRL measurements of aerosol extinction and optical depth from MILAGRO and comparisons of those measurements with similar measurements from other sensors and model predictions. HSRL measurements coincident with airborne in situ aerosol scattering and absorption measurements from two different instrument suites on the C-130 and G-1 aircraft, airborne aerosol optical depth (AOD and extinction measurements from an airborne tracking sunphotometer on the J-31 aircraft, and AOD from a network of ground based Aerosol Robotic Network (AERONET sun photometers are presented as a validation of the HSRL aerosol extinction and optical depth products. Regarding the extinction validation, we find bias differences between HSRL and these instruments to be less than 3% (0.01 km−1 at 532 nm, the wavelength at which the HSRL technique is employed. The rms differences at 532 nm were less than 50% (0.015 km−1. To our knowledge this is the most comprehensive validation of the HSRL measurement of aerosol extinction and optical depth to date. The observed bias differences in ambient aerosol extinction between HSRL and other measurements is within 15–20% at visible wavelengths, found by previous studies to be the differences observed with current state-of-the-art instrumentation (Schmid et al., 2006.

  19. Mean angular diameters, distances and pulsation modes of the classical Cepheids FF Aql and T Vul - CHARA/FLUOR near-infrared interferometric observations

    CERN Document Server

    Gallenne, A; Mérand, A; McAlister, H; Brummelaar, T ten; Foresto, V Coudé du; Sturmann, J; Sturmann, L; Turner, N; Farrington, C; Goldfinger, P J

    2012-01-01

    We report the first angular diameter measurements of two classical Cepheids, FF Aql and T Vul, that we have obtained with the FLUOR instrument installed at the CHARA interferometric array. We obtain average limb-darkened angular diameters of \\theta_LD = 0.878 +/- 0.013 mas and \\theta_LD = 0.629 +/- 0.013 mas, respectively for FF Aql and T Vul. Combining these angular diameters with the HST-FGS trigonometric parallaxes leads to linear radii R = 33.6 +/- 2.2 Rsol and R = 35.6 +/- 4.4 Rsol, respectively. The comparison with empirical and theoretical Period-Radius relations leads to the conclusion that these Cepheids are pulsating in their fundamental mode. The knowledge of the pulsation mode is of prime importance to calibrate the Period-Luminosity relation with a uniform sample of fundamental mode Cepheids.

  20. Development of High-resolution Real-Time Strong Motion Observation Network in CEORKA

    Science.gov (United States)

    Akazawa, T.; Araki, M.; Sawada, S.; Hayashi, Y.; Horike, M.

    2011-12-01

    The Committee of Earthquake Observation and Research in the Kansai Area (CEORKA), distributing 20 stations throughout the Kansai district in Japan, has obtained many velocity records, not only during major earthquakes (e.g. 1995 Kobe Earthquake and 2011 Tohoku Earthquake) but also during moderate ones (M>2) occurred in and near the district. The committee continues to use the old data loggers, which were installed in 1994 and 1997. It takes more than one hour after the shaking to collect the time history records, because dial-up telecommunication lines are used. In addition, the data logger starts saving the observed data when the ground shaking exceeds a preset level. This "trigger" system do not often store the valuable data properly. We develop a new low-cost data logger (KS-002D), which can send the observed data in real-time through Internet and save it in SD card continuously, for the network of CEORKA. The logger has eight input channels to obtain both high and low gain signals output from the existing strong motion seismograph (VSE-11 & 12). The logger also gets the high accuracy clock signals from GPS system. The observed data show that the new date logger can obtain broadband and high-resolution data from strong motion to microtremor. The developed data loggers are installed to the all stations of CEORKA, in addition to old loggers which are working as back-up systems.

  1. High Resolution Spectroscopic Database for the NASA Earth Observing System Program

    Science.gov (United States)

    Rothman, Laurence

    2004-01-01

    The purpose of this project has been to develop and enhance the HITRAN molecular spectroscopic database and associated software to support the observational programs of the Earth Observing System (EOS). Emphasis has been on the EOS projects: the Atmospheric Infrared Sounder (AIRS), the High-Resolution Dynamics Limb Sounder (HIRDLS), Measurements of Pollution in the Troposphere (MOPITT), the Tropospheric Emission Spectrometer (TES), and the Stratospheric Aerosol and Gas Experiment (SAGE III). The HITRAN program is also involved in the Ozone Monitoring Experiment (OMI). The data requirements of these programs in terms of spectroscopy are varied with respect to constituents being observed, required remote-sensing parameters, and spectral coverage. A general requisite is for additional spectral parameters and improvements to existing molecular bands sufficient for the simulation of the observations leading to retrieval of the atmospheric state. In addition, cross-section data for heavier molecular species must be expanded and made amenable to modeling in remote sensing. The effort in the project also includes developing software and distribution to make access, manipulation, and use of HITRAN functional to the EOS program.

  2. High mass resolution, high angular acceptance time-of-flight mass spectroscopy for planetary missions under the Planetary Instrument Definition and Development Program (PIDDP)

    Science.gov (United States)

    Young, David T.

    1991-01-01

    This final report covers three years and several phases of work in which instrumentation for the Planetary Instrument Definition and Development Program (PIDDP) were successfully developed. There were two main thrusts to this research: (1) to develop and test methods for electrostatically scanning detector field-of-views, and (2) to improve the mass resolution of plasma mass spectrometers to M/delta M approximately 25, their field-of-view (FOV) to 360 degrees, and their E-range to cover approximately 1 eV to 50 keV. Prototypes of two different approaches to electrostatic scanning were built and tested. The Isochronous time-of-flight (TOF) and the linear electric field 3D TOF devices were examined.

  3. Using Medium Resolution Earth Observation Data to Monitor Sensitive Industrial Activities

    Science.gov (United States)

    Verstraete, M. M.; Hunt, L. A.; Gonçalves, J.

    2008-12-01

    Space-borne Earth Observation (EO) techniques have been used for decades to monitor climate and environmental processes, but the application of these tools to quantitatively characterize sensitive industrial complexes and especially to monitor safety - or security - related sites is still in its infancy. Photo- interpretation of very high spatial resolution imagery (from 1 to 10 m sampling frequency) for specific, pre- defined sites by specially-trained operators remains the main (or only) approach so far. This paper shows that medium resolution EO sensors (spatial sampling of the order of 250 m) and modern physically-based techniques of data analysis may prove complementary to these traditional techniques, as the radiometric, spatial, temporal, spectral and directional signatures of targets of interest can help characterize their nature, properties and structure, and differentiate them from ambient background. The re-processing of existing archives will be shown to be useful for the documentation of events, and possibly processes, that have remained hitherto unknown. The preliminary results that will be presented concern the construction time-line of an alleged (undeclared) nuclear facility. Comparing the performance of the MISR and MODIS sensors that implement quite different technologies leads to suggestions concerning the specifications of future EO sensors.

  4. The first observation of titanate nanotubes by spherical aberration corrected high-resolution transmission electron microscopy

    Science.gov (United States)

    Miao, L.; Tanemura, S.; Jiang, T.; Tanemura, M.; Yoshida, K.; Tanaka, N.; Xu, G.

    2009-07-01

    Multi-wall titanate nanotubes (MW-TNNTs) with high aspect ratio, large surface area and good uniformity were produced by alkaline hydrothermal treatment of grounded TiO 2 aerogels and further by applying freeze-drying. Not only the crystal phase and diameter, but also morphology of the starting materials impact on the aspect ratio and transformation efficiency of the obtained nanotubes. Other parameters, such as pH value during neutralization process and drying method for the final products, are important to control length and dispersion of MW-TNNTs. By spherical aberration corrected high-resolution transmission-electron-microscopy (Cs-corrected HRTEM) with lateral space resolution of 0.14 nm at 200 kV accelerating voltage and electron energy loss spectrum (EELS), the detailed structural analysis of MW-TNNTs reveals that (1) diameters of inner and outer tubes are about 4-7 nm and 10 nm, respectively, (2) numbers of layers are different from part to part along the longitudinal tube axis, (3) the walls of the tubes have interlayer spacing of 0.70-0.80 nm and the lateral fringes which are vertical to the walls have spacing of 0.32 nm, (4) each layer of MW-TNNT is the nanosheet composed by the arrayed TiO 6 octahedrons, and respective octahedron being slightly strained, and (5) no chirality of MW-TNNT tubular structure is observed.

  5. High-resolution observations of active region moss and its dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Morton, R. J.; McLaughlin, J. A., E-mail: richard.morton@northumbria.ac.uk [Department of Mathematics and Information Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST (United Kingdom)

    2014-07-10

    The High Resolution Coronal Imager has provided the sharpest view of the EUV corona to date. In this paper, we exploit its impressive resolving power to provide the first analysis of the fine-scale structure of moss in an active region. The data reveal that the moss is made up of a collection of fine threads that have widths with a mean and standard deviation of 440 ± 190 km (FWHM). The brightest moss emission is located at the visible head of the fine-scale structure and the fine structure appears to extend into the lower solar atmosphere. The emission decreases along the features, implying that the lower sections are most likely dominated by cooler transition region plasma. These threads appear to be the cool, lower legs of the hot loops. In addition, the increased resolution allows for the first direct observation of physical displacements of the moss fine structure in a direction transverse to its central axis. Some of these transverse displacements demonstrate periodic behavior, which we interpret as a signature of kink (Alfvénic) waves. Measurements of the properties of the transverse motions are made and the wave motions have means and standard deviations of 55 ± 37 km for the transverse displacement amplitude, 77 ± 33 s for the period, and 4.7 ± 2.5 km s{sup –1} for the velocity amplitude. The presence of waves in the transition region of hot loops could have important implications for the heating of active regions.

  6. Investigation of the Chromosphere-Corona Interface with the Upgraded Very high angular Resolution ULtraviolet Telescope (VAULT2.0) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a three-year effort to upgrade our existing sub-arcsecond Lyman-alpha telescope payload to improve the observing cadence by a factor of 2, increase the...

  7. The High Resolution Spectrometer for SOFIA-GREAT: Instrumentation, Atmospheric Modeling and Observations

    Science.gov (United States)

    Villanueva, Geronimo L.

    2004-10-01

    The purpose of the thesis is the development of a high resolution spectrometer, in association with atmospheric modeling and observations. The new spectrometer, the "Chirp-Transform-Spectrometer (CTS)" as part of the "German REceiver for Astronomy at Terahertz frequencies (GREAT)" on the "Stratospheric Observatory For Infrared Astronomy (SOFIA)", will provide unprecedented spectral resolving power and linearity response. The analog Fourier transform performed by the CTS spectrometer was significantly improved through a new design called "Adaptive Digital Chirp Processor (ADCP)". The principle behind the ADCP consists of digitally generating the dispersive signal which adapts to the convolver dispersive properties, achieving higher spectral resolution and higher dynamic range. This development demanded a rational and optimum combination of different technologies, such as quadrature-modulation, high performance spectral filtering, ultra-stable frequency sources and a deep study of the problem through numerical simulations with an ad hoc model. The newly developed CTS is a prevailing instrument for the study of planetary atmospheres, especially as part of the SOFIA mission providing highly resolved altitude profiles of temperature, wind, water vapour and minor species from ground level up to an altitude of 80 km. Consequently, the link between the spectroscopic observations and the physical phenomena in study was addressed via the development of a general circulation model (GCM) for the Martian atmosphere. A running prototype of SOFIA-GREAT-CTS mounted at the Submillimeter Telescope in Arizona was used for remote sensing of Mars through the broadened line of CO at 345 GHz, providing temperature measurements which were then used as data assimilation inputs for the GCM. The new CTS also demonstrated itself to be a powerful tool for the study of narrow line features typical of cometary bodies, through the detection of hydrogen cyanide and outgassing asymmetries on comet

  8. Dynamics of Saturn’s 2010 Great White Spot from high-resolution Cassini ISS observations

    Science.gov (United States)

    Hueso, Ricardo; Sánchez-Lavega, A.; del Río-Gaztelurrutia, T.

    2012-10-01

    On December 5th 2010 a storm erupted in Saturn’s North Temperate latitudes which were experiencing early spring season. The storm quickly developed to a planet-wide disturbance of the Great White Spot type. The ISS instrument onboard Cassini acquired its first images of the storm on 23th December 2010 and performed repeated observations with a variety of spatial resolutions over the nearly 10 months period the storm continued active. Here we present an analysis of two of the image sequences with better spatial resolution of the mature storm when it was fully developed and very active. We used an image correlation algorithm to measure the cloud motions obtained from images separated 20 minutes and obtained 16,000 wind tracers in a domain of 60 degrees longitude per 20 degrees in latitude. Intense zonal and meridional motions accompanied the storm and reached values of 120 m/s in particular regions of the active storm. The storm released a chain of anticyclonic and cyclonic vortices at planetocentric latitudes of 36° and 32° respectively. The short time difference between the images results in estimated wind uncertainties of 15 m/s that did not allow to perform a complete analysis of the turbulence and kinetic spectrum of the motions. We identify locations of the updrafts and link those with the morphology in different observing filters. The global behaviour of the storm was examined in images separated by 10 hours confirming the intensity of the winds and the global behaviour of the vortices. Acknowledgments: This work was supported by the Spanish MICIIN project AYA2009-10701 with FEDER funds, by Grupos Gobierno Vasco IT-464-07 and by Universidad País Vasco UPV/EHU through program UFI11/55.

  9. PolarBase: a data base of high resolution spectropolarimetric stellar observations

    CERN Document Server

    Petit, P; Théado, S; Paletou, F; Manset, N; Morin, J; Marsden, S C; Jeffers, S V

    2014-01-01

    PolarBase is an evolving data base that contains all stellar data collected with the ESPaDOnS and NARVAL high-resolution spectropolarimeters, in their reduced form, as soon as they become public. As of early 2014, observations of 2,000 stellar objects throughout the Hertzsprung-Russell diagram are available. Intensity spectra are available for all targets, and the majority of the observations also include simultaneous spectra in circular or linear polarization, with the majority of the polarimetric measurements being performed only in circularly polarized light (Stokes V). Observations are associated with a cross-correlation pseudo-line profile in all available Stokes parameters, greatly increasing the detectability of weak polarized signatures. Stokes V signatures are detected for more than 300 stars of all masses and evolutionary stages, and linear polarization is detected in 35 targets. The detection rate in Stokes V is found to be anti-correlated with the stellar effective temperature. This unique set of ...

  10. PolarBase: A Database of High-Resolution Spectropolarimetric Stellar Observations

    Science.gov (United States)

    Petit, P.; Louge, T.; Théado, S.; Paletou, F.; Manset, N.; Morin, J.; Marsden, S. C.; Jeffers, S. V.

    2014-05-01

    PolarBase is an evolving database that contains all stellar data collected with the ESPaDOnS and NARVAL high-resolution spectropolarimeters, in their reduced form, as soon as they become public. As of early 2014, observations of 2000 stellar objects throughout the Hertzsprung-Russell diagram are available. Intensity spectra are available for all targets, and the majority of the observations also include simultaneous spectra in circular or linear polarization, with the majority of the polarimetric measurements being performed only in circularly polarized light (Stokes V). Observations are associated with a cross-correlation pseudoline profile in all available Stokes parameters, greatly increasing the detectability of weak polarized signatures. Stokes V signatures are detected for more than 300 stars of all masses and evolutionary stages, and linear polarization is detected in 35 targets. The detection rate in Stokes V is found to be anticorrelated with the stellar effective temperature. This unique set of Zeeman detections offers the first opportunity to run homogeneous magnetometry studies throughout the H-R diagram. The Web interface of PolarBase is available at http://polarbase.irap.omp.eu.

  11. Slipping reconnection in a solar flare observed in high resolution with the GREGOR solar telescope

    CERN Document Server

    Sobotka, M; Denker, C; Balthasar, H; Jurčák, J; Liu, W; Berkefeld, T; Vera, M Collados; Feller, A; Hofmann, A; Kneer, F; Kuckein, C; Lagg, A; Louis, R E; von der Lühe, O; Nicklas, H; Schlichenmaier, R; Schmidt, D; Schmidt, W; Sigwarth, M; Solanki, S K; Soltau, D; Staude, J; Strassmeier, K G; Volkmer, R; Waldmann, T

    2016-01-01

    A small flare ribbon above a sunspot umbra in active region 12205 was observed on November 7, 2014, at 12:00 UT in the blue imaging channel of the 1.5 m GREGOR telescope, using a 1 A Ca II H interference filter. Context observations from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO), the Solar Optical Telescope (SOT) onboard Hinode, and the Interface Region Imaging Spectrograph (IRIS) show that this ribbon is part of a larger one that extends through the neighboring positive polarities and also participates in several other flares within the active region. We reconstructed a time series of 140 seconds of Ca II H images by means of the multiframe blind deconvolution method, which resulted in spatial and temporal resolutions of 0.1 arcsec and 1 s. Light curves and horizontal velocities of small-scale bright knots in the observed flare ribbon were measured. Some knots are stationary, but three move along the ribbon with speeds of 7-11 km/s. Two of them move in the opposite d...

  12. High-resolution observations of mesospheric layers with the Jicamarca VHF radar

    Science.gov (United States)

    Lehmacher, G. A.; Guo, L.; Kudeki, E.; Reyes, P. M.; Akgiray, A.; Chau, J. L.

    We report new results from the 50-MHz Jicamarca radar in Peru (12°S, 77°W), which is able to observe backscatter from the daytime mesosphere on any given day. Since 2005, the radar has been operated in a high-power MST-ISR mode for 3-day runs four times per year to study the seasonal variation of mesospheric echoes. Doppler spectra are obtained with 1 min and 150-m nominal resolution yielding power, horizontal and vertical winds, and spectral width. The rich echo structures contain braids and billows suggestive of Kelvin-Helmholtz instability (KHI). We present three cases; (1) a short sequence of billows growing in height and becoming unstable; (2) a long train of billows showing high levels of turbulence at two different locations; and (3) a series of billows passing only slowly through the field of view. In all cases, the layers were associated with strong wind shears, mature billows were 1-1.5 km tall, and separation of KH phase fronts was 8-10 km. We compare our observations with OH imager observation and numerical simulations.

  13. The observation of Martian dune migration using very high resolution image analysis and photogrammetric data processing

    Science.gov (United States)

    Kim, Jungrack; Yun, Hyewon; Kim, Younghwi; Baik, Hyunseob

    2016-04-01

    Although the origins and processes of Martian aeolian features, especially dunes, have not been fully identified yet, it has been better understood by the orbital observation method which has led to the identification of Martian dune migration such as a case in Nili Patera (Bridges, 2012), and the numerical model employing advanced computational fluid dynamics (Jackson et al., 2015). Specifically, the recent introduction of very high-resolution image products, such as 25 cm-resolution HiRISE imagery and its precise photogrammetric processor, allows us to trace the estimated, although tiny, dune migration over the Martian surface. In this study, we attempted to improve the accuracy of active dune migration measurements by 1) the introduction of very high resolution ortho images and stereo analysis based on the hierarchical geodetic control (Kim and Muller, 2009) for better initial point settings; 2) positioning error removal throughout polynomial image control; and 3) the improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Consequently, this scheme not only measured Martian dune migration more precisely, but it will further achieve the extension of 3D observations combining stereo analysis and photoclinometry. The established algorithms have been tested using the HiRISE time series images over several dune fields, such as the Kaiser, Procter, and Wirtz craters, which were reported by the Mars Global Digital Dune Database (Hayward et al., 2013). The detected dune migrations were significantly larger than previously reported values and slightly correlated with the wind directions estimated by Martian Climate Database (Bingham et al., 2003). The outcomes in our study will be demonstrated with the quantified values in 2D and volumetric direction. In the future, the method will be further applied to the dune fields in the Mars Global dune database comprehensively and

  14. High-resolution HI and CO observations of high-latitude intermediate-velocity clouds

    Science.gov (United States)

    Röhser, T.; Kerp, J.; Ben Bekhti, N.; Winkel, B.

    2016-08-01

    Context. Intermediate-velocity clouds (IVCs) are HI halo clouds that are likely related to a Galactic fountain process. In-falling IVCs are candidates for the re-accretion of matter onto the Milky Way. Aims: We study the evolution of IVCs at the disk-halo interface, focussing on the transition from atomic to molecular IVCs. We compare an atomic IVC to a molecular IVC and characterise their structural differences in order to investigate how molecular IVCs form high above the Galactic plane. Methods: With high-resolution HI observations of the Westerbork Synthesis Radio Telescope and 12CO(1 → 0) and 13CO(1 → 0) observations with the IRAM 30 m telescope, we analyse the small-scale structures within the two clouds. By correlating HI and far-infrared (FIR) dust continuum emission from the Planck satellite, the distribution of molecular hydrogen (H2) is estimated. We conduct a detailed comparison of the HI, FIR, and CO data and study variations of the XCO conversion factor. Results: The atomic IVC does not disclose detectable CO emission. The atomic small-scale structure, as revealed by the high-resolution HI data, shows low peak HI column densities and low HI fluxes as compared to the molecular IVC. The molecular IVC exhibits a rich molecular structure and most of the CO emission is observed at the eastern edge of the cloud. There is observational evidence that the molecular IVC is in a transient and, thus, non-equilibrium phase. The average XCO factor is close to the canonical value of the Milky Way disk. Conclusions: We propose that the two IVCs represent different states in a gradual transition from atomic to molecular clouds. The molecular IVC appears to be more condensed allowing the formation of H2 and CO in shielded regions all over the cloud. Ram pressure may accumulate gas and thus facilitate the formation of H2. We show evidence that the atomic IVC will evolve also into a molecular IVC in a few Myr. The reduced datacubes are only available at the CDS via

  15. Medium Resolution Global Earth Observations with Landsat: Looking 35 Years Back and 50 Years Forward

    Science.gov (United States)

    Williams, D. L.; Irons, J. R.; Goward, S. N.

    2007-12-01

    The modern era of global medium resolution satellite remote sensing was inaugurated 35 years ago, in July 1972, with the launch of the first Landsat satellite carrying the Multispectral Scanner (MSS) sensor. Ten years after that first launch, Landsat 4 carried a much-improved sensor aloft, the Thematic Mapper. The TM provided better spatial resolution (30 m versus 79 m) than the MSS, as well as additional spectral bands in the mid- infrared (IR) and thermal IR regions. Roughly another decade later, in April 1999, the Enhanced Thematic Mapper Plus (ETM+) instrument was placed in orbit on Landsat 7. The ETM+ provided a new 15 m panchromatic band and a much-improved thermal band resolution (60 m versus 120 m). Through a combination of planning and good luck, the various Landsat missions have delivered a continuous set of calibrated, multispectral images of the Earth's surface spanning this entire 35-year time period. This imagery database has been used in agricultural evaluations, forest management inventories, geological surveys, water resource estimates, coastal zone appraisals, and a host of other applications to meet the needs of a very broad user community, including business, government, science, education, national security, and now -- even the casual observer -- as Landsat imagery provides the skeletal backbone of Google Earth. Landsat established the U.S. as the world leader in terrestrial remote sensing, contributed significantly to the understanding of the Earth's environment, spawned revolutionary uses of space-based data by the commercial value-added industry, and encouraged a new generation of commercial satellites that provide regional, high-resolution spatial images. In spite of the overall success of the Landsat series of satellites, the first 35 years of the Landsat legacy have been extremely challenging as the push to embrace new technologies was often questioned by those who simply wanted to maintain whatever the current capability was at that

  16. Fractional Snowcover Estimates from Earth Observing System (EOS) Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS)

    Science.gov (United States)

    Salomonson, Vincent V.

    2002-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Earth Observing System (EOS) Terra and Aqua missions has shown considerable capability for mapping snowcover. The typical approach that has used, along with other criteria, the Normalized Snow Difference Index (NDSI) that takes the difference between 500 meter observations at 1.64 micrometers (MODIS band 6) and 0.555 micrometers (MODIS band 4) over the sum of these observations to determine whether MODIS pixels are snowcovered or not in mapping the extent of snowcover. For many hydrological and climate studies using remote sensing of snowcover, it is desirable to assess if the MODIS snowcover observations could not be enhanced by providing the fraction of snowcover in each MODIS observation (pixel). Pursuant to this objective studies have been conducted to assess whether there is sufficient "signal%o in the NDSI parameter to provide useful estimates of fractional snowcover in each MODIS 500 meter pixel. To accomplish this objective high spatial resolution (30 meter) Landsat snowcover observations were used and co-registered with MODIS 500 meter pixels. The NDSI approach was used to assess whether a Landsat pixel was or was not snowcovered. Then the number of snowcovered Landsat pixels within a MODIS pixel was used to determine the fraction of snowcover within each MODIS pixel. The e results were then used to develop statistical relationships between the NDSI value for each 500 meter MODIS pixel and the fraction of snowcover in the MODIS pixel. Such studies were conducted for three widely different areas covered by Landsat scenes in Alaska, Russia, and the Quebec Province in Canada. The statistical relationships indicate that a 10 percent accuracy can be attained. The variability in the statistical relationship for the three areas was found to be remarkably similar (-0.02 for mean error and less than 0.01 for mean absolute error and standard deviation). Independent tests of the relationships were

  17. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    Science.gov (United States)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated

  18. A high-resolution spectropolarimetric survey of Herbig Ae/Be stars - I. Observations and measurements

    Science.gov (United States)

    Alecian, E.; Wade, G. A.; Catala, C.; Grunhut, J. H.; Landstreet, J. D.; Bagnulo, S.; Böhm, T.; Folsom, C. P.; Marsden, S.; Waite, I.

    2013-02-01

    This is the first in a series of papers in which we describe and report the analysis of a large survey of Herbig Ae/Be stars in circular spectropolarimetry. Using the ESPaDOnS and Narval high-resolution spectropolarimeters at the Canada-France-Hawaii and Bernard Lyot Telescopes, respectively, we have acquired 132 circularly polarized spectra of 70 Herbig Ae/Be stars and Herbig candidates. The large majority of these spectra are characterized by a resolving power of about 65 000, and a spectral coverage from about 3700 Å to 1 μm. The peak signal-to-noise ratio per CCD pixel ranges from below 100 (for the faintest targets) to over 1000 (for the brightest). The observations were acquired with the primary aim of searching for magnetic fields in these objects. However, our spectra are suitable for a variety of other important measurements, including rotational properties, variability, binarity, chemical abundances, circumstellar environment conditions and structure, etc. In this paper, we describe the sample selection, the observations and their reduction, and the measurements that will comprise the basis of much of our following analysis. We describe the determination of fundamental parameters for each target. We detail the least-squares deconvolution (LSD) that we have applied to each of our spectra, including the selection, editing and tuning of the LSD line masks. We describe the fitting of the LSD Stokes I profiles using a multicomponent model that yields the rotationally broadened photospheric profile (providing the projected rotational velocity and radial velocity for each observation) as well as circumstellar emission and absorption components. Finally, we diagnose the longitudinal Zeeman effect via the measured circular polarization, and report the longitudinal magnetic field and Stokes V Zeeman signature detection probability. As an appendix, we provide a detailed review of each star observed.

  19. MATISSE a web-based tool to access, visualize and analyze high resolution minor bodies observation

    Science.gov (United States)

    Zinzi, Angelo; Capria, Maria Teresa; Palomba, Ernesto; Antonelli, Lucio Angelo; Giommi, Paolo

    2016-07-01

    In the recent years planetary exploration missions acquired data from minor bodies (i.e., dwarf planets, asteroid and comets) at a detail level never reached before. Since these objects often present very irregular shapes (as in the case of the comet 67P Churyumov-Gerasimenko target of the ESA Rosetta mission) "classical" bidimensional projections of observations are difficult to understand. With the aim of providing the scientific community a tool to access, visualize and analyze data in a new way, ASI Science Data Center started to develop MATISSE (Multi-purposed Advanced Tool for the Instruments for the Solar System Exploration - http://tools.asdc.asi.it/matisse.jsp) in late 2012. This tool allows 3D web-based visualization of data acquired by planetary exploration missions: the output could either be the straightforward projection of the selected observation over the shape model of the target body or the visualization of a high-order product (average/mosaic, difference, ratio, RGB) computed directly online with MATISSE. Standard outputs of the tool also comprise downloadable files to be used with GIS software (GeoTIFF and ENVI format) and 3D very high-resolution files to be viewed by means of the free software Paraview. During this period the first and most frequent exploitation of the tool has been related to visualization of data acquired by VIRTIS-M instruments onboard Rosetta observing the comet 67P. The success of this task, well represented by the good number of published works that used images made with MATISSE confirmed the need of a different approach to correctly visualize data coming from irregular shaped bodies. In the next future the datasets available to MATISSE are planned to be extended, starting from the addition of VIR-Dawn observations of both Vesta and Ceres and also using standard protocols to access data stored in external repositories, such as NASA ODE and Planetary VO.

  20. LAMOST OBSERVATIONS IN THE KEPLER FIELD. I. DATABASE OF LOW-RESOLUTION SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Cat, P. De; Ren, A. B.; Yang, X. H. [Royal observatory of Belgium, Ringlaan 3, B-1180 Brussel (Belgium); Fu, J. N. [Department of Astronomy, Beijing Normal University, 19 Avenue Xinjiekouwai, Beijing 100875 (China); Shi, J. R.; Luo, A. L.; Yang, M.; Wang, J. L.; Zhang, H. T.; Shi, H. M.; Zhang, W. [Key Lab for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Dong, Subo [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Road 5, Hai Dian District, Beijing, 100871 (China); Catanzaro, G.; Frasca, A. [INAF—Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Corbally, C. J. [Vatican Observatory Research Group, Steward Observatory, Tucson, AZ 85721-0065 (United States); Gray, R. O. [Department of Physics and Astronomy, Appalachian State University, Boone, NC 28608 (United States); Żakowicz, J. Molenda- [Astronomical Institute of the University of Wrocław, ul. Kopernika 11, 51-622 Wrocław (Poland); Uytterhoeven, K. [Instituto de Astrofísica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Briquet, M. [Institut d’Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août 19C, B-4000 Liège (Belgium); Bruntt, H., E-mail: Peter.DeCat@oma.be [Stellar Astrophysics Center, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); and others

    2015-09-15

    The nearly continuous light curves with micromagnitude precision provided by the space mission Kepler are revolutionizing our view of pulsating stars. They have revealed a vast sea of low-amplitude pulsation modes that were undetectable from Earth. The long time base of Kepler light curves allows for the accurate determination of the frequencies and amplitudes of pulsation modes needed for in-depth asteroseismic modeling. However, for an asteroseismic study to be successful, the first estimates of stellar parameters need to be known and they cannot be derived from the Kepler photometry itself. The Kepler Input Catalog provides values for the effective temperature, surface gravity, and metallicity, but not always with sufficient accuracy. Moreover, information on the chemical composition and rotation rate is lacking. We are collecting low-resolution spectra for objects in the Kepler field of view with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (lamost, Xinglong observatory, China). All of the requested fields have now been observed at least once. In this paper, we describe those observations and provide a useful database for the whole astronomical community.

  1. High-resolution HI and CO observations of high-latitude intermediate-velocity clouds

    CERN Document Server

    Röhser, T; Bekhti, N Ben; Winkel, B

    2016-01-01

    Intermediate-velocity clouds (IVCs) are HI halo clouds that are likely related to a Galactic fountain process. In-falling IVCs are candidates for the re-accretion of matter onto the Milky Way. We study the evolution of IVCs at the disk-halo interface, focussing on the transition from atomic to molecular IVCs. We compare an atomic IVC to a molecular IVC and characterise their structural differences in order to investigate how molecular IVCs form high above the Galactic plane. With high-resolution HI observations of the Westerbork Synthesis Radio Telescope and 12CO(1-0) and 13CO(1-0) observations with the IRAM 30m telescope, we analyse the small-scale structures within the two clouds. By correlating HI and far-infrared (FIR) dust continuum emission from the Planck satellite, the distribution of molecular hydrogen (H2) is estimated. We conduct a detailed comparison of the HI, FIR, and CO data and study variations of the $X_\\rm{CO}$ conversion factor. The atomic IVC does not disclose detectable CO emission. The a...

  2. SOFIA/EXES Observations of Water Absorption in the Protostar AFGL 2591 at High Spectral Resolution

    CERN Document Server

    Indriolo, Nick; DeWitt, C N; Richter, M J; Boogert, A C A; Harper, G M; Jaffe, D T; Kulas, K R; McKelvey, M E; Ryde, N; Vacca, W

    2015-01-01

    We present high spectral resolution (~3 km/s) observations of the nu_2 ro-vibrational band of H2O in the 6.086--6.135 micron range toward the massive protostar AFGL 2591 using the Echelon-Cross-Echelle Spectrograph (EXES) on the Stratospheric Observatory for Infrared Astronomy (SOFIA). Ten absorption features are detected in total, with seven caused by transitions in the nu_2 band of H2O, two by transitions in the first vibrationally excited nu_2 band of H2O, and one by a transition in the nu_2 band of H2{18}O. Among the detected transitions is the nu_2 1(1,1)--0(0,0) line which probes the lowest lying rotational level of para-H2O. The stronger transitions appear to be optically thick, but reach maximum absorption at a depth of about 25%, suggesting that the background source is only partially covered by the absorbing gas, or that the absorption arises within the 6 micron emitting photosphere. Assuming a covering fraction of 25%, the H2O column density and rotational temperature that best fit the observed abs...

  3. Observing a late folding intermediate of Ubiquitin at atomic resolution by NMR.

    Science.gov (United States)

    Surana, Parag; Das, Ranabir

    2016-08-01

    The study of intermediates in the protein folding pathway provides a wealth of information about the energy landscape. The intermediates also frequently initiate pathogenic fibril formations. While observing the intermediates is difficult due to their transient nature, extreme conditions can partially unfold the proteins and provide a glimpse of the intermediate states. Here, we observe the high resolution structure of a hydrophobic core mutant of Ubiquitin at an extreme acidic pH by nuclear magnetic resonance (NMR) spectroscopy. In the structure, the native secondary and tertiary structure is conserved for a major part of the protein. However, a long loop between the beta strands β3 and β5 is partially unfolded. The altered structure is supported by fluorescence data and the difference in free energies between the native state and the intermediate is reflected in the denaturant induced melting curves. The unfolded region includes amino acids that are critical for interaction with cofactors as well as for assembly of poly-Ubiquitin chains. The structure at acidic pH resembles a late folding intermediate of Ubiquitin and indicates that upon stabilization of the protein's core, the long loop converges on the core in the final step of the folding process. PMID:27111887

  4. Technical Note: The effect of sensor resolution on the number of cloud-free observations from space

    Directory of Open Access Journals (Sweden)

    J. M. Krijger

    2007-06-01

    Full Text Available Air quality and surface emission inversions are likely to be focal points for future satellite missions on atmospheric composition. Most important for these applications is sensitivity to the atmospheric composition in the lowest few kilometers of the troposphere. Reduced sensitivity by clouds needs to be minimized. In this study we have quantified the increase in number of useful footprints, i.e. footprints which are sufficient cloud-free, as a function of sensor resolution (footprint area. High resolution (1 km×1 km MODIS TERRA cloud mask observations are aggregated to lower resolutions. Statistics for different thresholds on cloudiness are applied. For each month in 2004 four days of MODIS data are analyzed. Globally the fraction of cloud-free observations drops from 16% at 100 km2 resolution to only 3% at 10 000 km2 if not a single MODIS observation within a footprint is allowed to be cloudy. If up to 5% or 20% of a footprint is allowed to be cloudy, the fraction of cloud-free observations is 9% or 17%, respectively, at 10 000 km2 resolution. The probability of finding cloud-free observations for different sensor resolutions is also quantified as a function of geolocation and season, showing examples over Europe and northern South America (ITCZ.

  5. High resolution near-bed observations in winter near Cape Hatteras, North Carolina

    Science.gov (United States)

    Martini, M.; Armstrong, B.; Warner, J.C.

    2009-01-01

    The U.S. Geological Survey (USGS) Coastal and Marine Science Center in Woods Hole, Massachusetts, is leading an effort to understand the regional sediment dynamics along the coastline of North and South Carolina. As part of the Carolinas Coastal Change Processes Project, a geologic framework study in June of 2008 by the Woods Hole Coastal and Marine Science Center's Sea Floor Mapping Group focused on the seaward limit of Diamond Shoals and provided high resolution bathymetric data, surficial sediment characteristics, and subsurface geologic stratigraphy. These data also provided unprecedented guidance to identify deployment locations for tripods and moorings to investigate the processes that control sediment transport at Diamond Shoals. Equipment was deployed at three sites from early January, 2009 through early May, 2009: north and south of the shoals at 15 m depth, and at the tip at 24 m depth. Many strong storm systems were recorded during that time period. Mounted on the tripods were instruments to measure surface waves, pressure, current velocity, bottom turbulence, suspended-sediment profiles, and sea-floor sand-ripple bedforms. Many instruments were designed and programmed to sample in high resolution in time and space, as fast as 8 Hz hourly bursts and as small as 6 cm bin sizes in near bottom profiles. A second tripod at the north site also held a visual camera system and sonar imaging system which document seafloor bedforms. The region is known for its dynamics, and one of the tripods tipped over towards the end of the experiment. A preliminary look at the data suggests the region is characterized by high energy. Raw data from a burst recorded at the south site on Mar. 26th show instantaneous flow speed at 150 cm/s at 0.5 m above the seabed. This paper reports preliminary highlights of the observations, based on raw data, and lessons learned from a deployment of large tripod systems in such a dynamic location. ??2009 MTS.

  6. High time resolution observations of the January 2000 glitch in the Vela pulsar

    OpenAIRE

    Dodson, R. G.; McCulloch, P. M.; Lewis, D R

    2002-01-01

    Pulsars are rotating neutron stars, sweeping the emission regions from the magnetic poles across our line of sight. Isolated neutron stars lose angular momentum through dipole radiation and (possibly) particle winds, hence they slow down extremely steadily, making them amongst the most reliable timing sources available. However, it is well known that younger pulsars can suffer glitches, when they suddenly deviate from their stable rotation period. On 2000 January 16 (MJD 51559) the rate of pu...

  7. A Fast Algorithm for Image Super-Resolution from Blurred Observations

    Directory of Open Access Journals (Sweden)

    Ng Michael K

    2006-01-01

    Full Text Available We study the problem of reconstruction of a high-resolution image from several blurred low-resolution image frames. The image frames consist of blurred, decimated, and noisy versions of a high-resolution image. The high-resolution image is modeled as a Markov random field (MRF, and a maximum a posteriori (MAP estimation technique is used for the restoration. We show that with the periodic boundary condition, a high-resolution image can be restored efficiently by using fast Fourier transforms. We also apply the preconditioned conjugate gradient method to restore high-resolution images in the aperiodic boundary condition. Computer simulations are given to illustrate the effectiveness of the proposed approach.

  8. Global mesospheric tidal winds observed by the high resolution Doppler imager on board the upper atmosphere research satellite

    Energy Technology Data Exchange (ETDEWEB)

    Morton, Y.T.; Lieberman, R.S.; Hays, P.B.; Ortland, D.A.; Marshall, A.R.; Wu, D.; Skinner, W.R.; Burrage, M.D.; Gell, D.A.; Yee, J.H.

    1993-06-18

    This paper presents results of mesospheric and lower thermospheric wind tides. The observations come from the high resolution doppler imager (HRDI) on board the upper atmosphere research satellite. From these observations, the authors report the observation of tidal effects on top of the meridonal winds observed in this region. Previous measurements have been mainly limited to radar measurements from fixed ground stations, which do not give consistent results, and do not provide a global picture of the wave structure.

  9. Improving Ambiguity Resolution for Medium Baselines Using Combined GPS and BDS Dual/Triple-Frequency Observations

    Directory of Open Access Journals (Sweden)

    Wang Gao

    2015-10-01

    Full Text Available The regional constellation of the BeiDou navigation satellite system (BDS has been providing continuous positioning, navigation and timing services since 27 December 2012, covering China and the surrounding area. Real-time kinematic (RTK positioning with combined BDS and GPS observations is feasible. Besides, all satellites of BDS can transmit triple-frequency signals. Using the advantages of multi-pseudorange and carrier observations from multi-systems and multi-frequencies is expected to be of much benefit for ambiguity resolution (AR. We propose an integrated AR strategy for medium baselines by using the combined GPS and BDS dual/triple-frequency observations. In the method, firstly the extra-wide-lane (EWL ambiguities of triple-frequency system, i.e., BDS, are determined first. Then the dual-frequency WL ambiguities of BDS and GPS were resolved with the geometry-based model by using the BDS ambiguity-fixed EWL observations. After that, basic (i.e., L1/L2 or B1/B2 ambiguities of BDS and GPS are estimated together with the so-called ionosphere-constrained model, where the ambiguity-fixed WL observations are added to enhance the model strength. During both of the WL and basic AR, a partial ambiguity fixing (PAF strategy is adopted to weaken the negative influence of new-rising or low-elevation satellites. Experiments were conducted and presented, in which the GPS/BDS dual/triple-frequency data were collected in Nanjing and Zhengzhou of China, with the baseline distance varying from about 28.6 to 51.9 km. The results indicate that, compared to the single triple-frequency BDS system, the combined system can significantly enhance the AR model strength, and thus improve AR performance for medium baselines with a 75.7% reduction of initialization time on average. Besides, more accurate and stable positioning results can also be derived by using the combined GPS/BDS system.

  10. A demonstration of the conservation of the orbital angular momentum of Earth

    Science.gov (United States)

    Pellizza, Leonardo J.; Mayochi, Mariano G.; Ciocci Brazzano, Ligia; Pedrosa, Susana E.

    2015-12-01

    We describe a simple but quantitative experiment to demonstrate the conservation of angular momentum. We measure the correlation of the apparent radius and angular velocity of the Sun with respect to the stars, due to the conservation of the angular momentum of Earth in its orbit. We also determine the direction of Earth's angular momentum vector and show that it is conserved. The experiment can be performed using a small telescope and a digital camera. It is conceptually simple, allowing students to get direct physical insight from the data. The observations are performed near the resolution limit imposed by the atmosphere, and in the presence of strong competing effects. These effects necessitate a careful experimental setup and allow students to improve their skills in experimentation.

  11. Orbital angular momentum induced beam shifts

    OpenAIRE

    Hermosa N.; Merano M.; Aiello A.; Woerdman J.P.

    2011-01-01

    We present experiments on Orbital Angular Momentum (OAM) induced beam shifts in optical reflection. Specifically, we observe the spatial Goos-H\\"anchen shift in which the beam is displaced parallel to the plane of incidence and the angular Imbert-Fedorov shift which is a transverse angular deviation from the geometric optics prediction. Experimental results agree well with our theoretical predictions. Both beam shifts increase with the OAM of the beam; we have measured these for OAM indices u...

  12. Quantifying angular clustering in wide-area radio surveys

    CERN Document Server

    Blake, C; Blake, Chris; Wall, Jasper

    2002-01-01

    We quantify the angular clustering of radio galaxies in the NVSS and FIRST radio surveys using the two-point correlation function and the moments of counts-in-cells - both important points of comparison with theory. These investigations consistently demonstrate that the slope of the correlation function for radio galaxies agrees with that for optically-selected galaxies, gamma = 1.8. We describe how to disentangle the imprint of galaxy clustering from the two observational problems: resolution of radio galaxies into multiple components and gradients in source surface density induced by difficulties in processing "snapshot" radio observations (significant in both surveys below 15 mJy). This study disagrees in some respects with previous analyses of the angular clustering of radio galaxies.

  13. High Angular Resolution JHK Imaging of the Centers of the Metal-Poor Globular Clusters NGC5272 (M3), NGC6205 (M13), NGC6287, and NGC6341 (M92)

    CERN Document Server

    Davidge, T J

    1998-01-01

    The Canada-France-Hawaii Telescope (CFHT) Adaptive Optics Bonnette (AOB) has been used to obtain high angular resolution JHK images of the centers of the metal-poor globular clusters NGC5272 (M3), NGC6205 (M13), NGC6287, and NGC6341 (M92). The color-magnitude diagrams (CMDs) derived from these data include the upper main sequence and most of the red giant branch (RGB), and the cluster sequences agree with published photometric measurements of bright stars in these clusters. The photometric accuracy is limited by PSF variations, which introduce systematic errors of a few hundredths of a magnitude near the AO reference star. The clusters are paired according to metallicity, and the near-infrared CMDs and luminosity functions are used to investigate the relative ages within each pair. The near-infrared CMDs provide the tightest constraints on the relative ages of the classical second parameter pair NGC5272 and NGC6205, and indicate that these clusters have ages that differ by no more than +/- 1 Gyr. These result...

  14. High resolution observations of the 6 cm H2CO maser in NGC 6240

    Institute of Scientific and Technical Information of China (English)

    Jun-Zhi Wang; Zhi-Yu Zhang; Yu Gao

    2013-01-01

    We present high resolution (~ 1") H2CO maser and 5 GHz radio continuum observations toward nearby merging galaxy NGC 6240 made with the Very Large Array in an A configuration.Two concentrations of H2CO emission at about a 6σ level have been detected,one of which is associated with the strongest CO peak in the overlap region while the other is about 2" southwest of the southern galaxy.Both H2CO concentrations are associated with near infrared H2 emission,which is thought to be from shocked molecular gas.The total H2CO line luminosity in NGC 6240 is about 60% of that in Arp 220.Based on the distribution of H2CO emission in NGC 6240,which has both active galactic nuclei and an extreme starburst,the H2CO megamaser is likely to be related to the effect of the starburst instead of nuclear activity.Radio continuum cannot be the inversion mechanism of H2CO megamasers,because the two H2CO concentrations in NGC 6240 are not associated with radio continuum emission.Instead,with the association of near infrared H2 emission,shock dynamics may produce the inverted population of H2CO needed to generate megamasers.

  15. A high-resolution spectropolarimetric survey of Herbig Ae/Be stars - I. Observations and measurements

    CERN Document Server

    Alecian, E; Catala, C; Grunhut, J H; Landstreet, J D; Bagnulo, S; Böhm, T; Folsom, C P; Marsden, S; Waite, I

    2012-01-01

    This is the first in a series of papers in which we describe and report the analysis of a large survey of Herbig Ae/Be stars in circular spectropolarimetry. Using the ESPaDOnS and Narval high-resolution spectropolarimeters at the Canada-France-Hawaii and Bernard Lyot Telescopes, respectively, we have acquired 132 circularly-polarised spectra of 70 Herbig Ae/Be stars and Herbig candidates. The large majority of these spectra are characterised by a resolving power of about 65,000, and a spectral coverage from about 3700 ang to 1 micron. The peak SNR per CCD pixel ranges from below 100 (for the faintest targets) to over 1000 (for the brightest). The observations were acquired with the primary aim of searching for magnetic fields in these objects. However, our spectra are suitable for a variety of other important measurements, including rotational properties, variability, binarity, chemical abundances, circumstellar environment conditions and structure, etc. In this first paper, we describe the sample selection, ...

  16. The Appearance of Spicules in High Resolution Observations of Ca II H and H-alpha

    CERN Document Server

    Pereira, Tiago M D; Carlsson, Mats

    2016-01-01

    Solar spicules are chromospheric fibrils that appear everywhere on the Sun, yet their origin is not understood. Using high resolution observations of spicules obtained with the Swedish 1-m Solar Telescope we aim to understand how spicules appear in filtergrams and Dopplergrams, how they compare in Ca II H and H-alpha, and what can make them appear and disappear. We find spicules display a rich and detailed spatial structure, and show a distribution of transverse velocities that when aligned with the line of sight can make them appear at different H-alpha wing positions. They become more abundant at positions closer to the line core, reflecting a distribution of Doppler shifts and widths. In H-alpha width maps they stand out as bright features both on disk and off-limb, reflecting their large Doppler motions and possibly higher temperatures than in the typical H-alpha formation region. Spicule lifetimes measured from narrowband images at only a few positions will be an underestimate because Doppler shifts can ...

  17. Double Bright Band Observations with High-Resolution Vertically Pointing Radar, Lidar, and Profiles

    Science.gov (United States)

    Emory, Amber E.; Demoz, Belay; Vermeesch, Kevin; Hicks, Michael

    2014-01-01

    On 11 May 2010, an elevated temperature inversion associated with an approaching warm front produced two melting layers simultaneously, which resulted in two distinct bright bands as viewed from the ER-2 Doppler radar system, a vertically pointing, coherent X band radar located in Greenbelt, MD. Due to the high temporal resolution of this radar system, an increase in altitude of the melting layer of approximately 1.2 km in the time span of 4 min was captured. The double bright band feature remained evident for approximately 17 min, until the lower atmosphere warmed enough to dissipate the lower melting layer. This case shows the relatively rapid evolution of freezing levels in response to an advancing warm front over a 2 h time period and the descent of an elevated warm air mass with time. Although observations of double bright bands are somewhat rare, the ability to identify this phenomenon is important for rainfall estimation from spaceborne sensors because algorithms employing the restriction of a radar bright band to a constant height, especially when sampling across frontal systems, will limit the ability to accurately estimate rainfall.

  18. Validation of CALIPSO Lidar Observations Using Data From the NASA Langley Airborne High Spectral Resolution Lidar

    Science.gov (United States)

    Hostetler, Chris; Hair, Johnathan; Liu, Zhaoyan; Ferrare, Rich; Harper, David; Cook, Anthony; Vaughan, Mark; Trepte, Chip; Winker, David

    2006-01-01

    This poster focuses on preliminary comparisons of data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft with data acquired by the NASA Langley Airborne High Spectral Resolution Lidar (HSRL). A series of 20 aircraft validation flights was conducted from 14 June through 27 September 2006, under both day and night lighting conditions and a variety of aerosol and cloud conditions. This poster presents comparisons of CALIOP measurements of attenuated backscatter at 532 and 1064 nm and depolarization at 532 nm with near coincident measurements from the Airborne HSRL as a preliminary assessment of CALIOP calibration accuracy. Note that the CALIOP data presented here are the pre-release version. These data have known artifacts in calibration which have been corrected in the December 8 CALIPSO data release which was not available at the time the comparisons were conducted for this poster. The HSRL data are also preliminary. No artifacts are known to exist; however, refinements in calibration and algorithms are likely to be implemented before validation comparisons are made final.

  19. A giant quiescent solar filament observed with high-resolution spectroscopy

    CERN Document Server

    Kuckein, C; Denker, C

    2016-01-01

    A giant, quiet-Sun filament was observed with the high-resolution Echelle spectrograph at the Vacuum Tower Telescope at Observatorio del Teide on 2011 November 15. A mosaic of spectra (10 maps of 100" X 182") was recorded simultaneously in the chromospheric absorption lines H-alpha and Na I D2. Physical parameters of the filament plasma were derived using Cloud Model (CM) inversions and line core fits. The spectra were complemented with full-disk filtergrams (He I 10830 A, H-alpha, and Ca II K) of the Chromspheric Telescope (ChroTel) and full-disk magnetograms of HMI. The filament had extremely large linear dimensions (817"), which corresponds to about 658 Mm along a great circle on the solar surface. A total amount of 175119 H-alpha contrast profiles were inverted using the CM approach. The inferred mean line-of-sight (LOS) velocity, Doppler width, and source function were similar to previous works of smaller quiescent filaments. However, the derived optical thickness was larger. LOS velocity trends inferred...

  20. High Resolution HC3N Observations toward the Central Region of Sagittarius B2

    Science.gov (United States)

    Chung, Hyun Soo; Ohishi, Masatoshi; Morimoto, Masaki

    1994-04-01

    We have observed the emission of HC3N J=4-3, 5-4, 10-9 and 12-11 transitions toward the Sgr B2 central region in an area of 150"*150" with resolution of 16"-48". The intensities and central velocities of line profiles show significant variations with positions. In contrast to the intensities of the low J-level transitions which gradually increase from the central source toward the outside region, the HC3N emission of the high J-level transition become stronger toward the central radio continuum source MD5. Systematic change in the radial velocity of each line profile occurs along north-south direction. There are a few peaks in most line profiles, and these indicate that there are multiple velocity components along the line of sight. Distributions of excitation temperature and column density which were estimated from the excitation calculations show the existence of a small(1*2pc), hot(Tex > 50K) core which contains two temperature peaks at about 15" east and north of MD5. The column density of HC3N is (1-3)*10E14 /cm2. Column density at distant position from MD5 is larger than that in the central region. We have deduced that this 'hot-core' has a mass of 10E5 Mo, which is about an order of magnitude larger than those obtained by previous studies.

  1. Professional AngularJS

    CERN Document Server

    Karpov, Valeri

    2015-01-01

    A comprehensive guide to AngularJS, Google's open-source client-side framework for app development. Most of the existing guides to AngularJS struggle to provide simple and understandable explanations for more advanced concepts. As a result, some developers who understand all the basic concepts of AngularJS struggle when it comes to building more complex real-world applications. Professional AngularJS provides a thorough understanding of AngularJS, covering everything from basic concepts, such as directives and data binding, to more advanced concepts like transclusion, build systems, and auto

  2. High spectral resolution observation of extended sources in future interplanetary missions

    Science.gov (United States)

    Hosseini, Sona

    2016-10-01

    The most commonly used technique for high spectral resolution (R) studies are grating spectrometers. They can achieve broad bandpasses but they have small FOV and relatively low étendue so they have to be paired with large aperture telescopes such Keck (10m), Hubble (2.4m) or JWST (6.5m). Fabry-Pérot Interferometers (FPI) and FTS are the other best known types of high étendue, high R spectrometers used in astronomy. But their opto-mechnical tolerances becomes challenging and they use transmitting optics, where transmission drops especially below 130 nm. Spatial Heterodyne Spectrometer (SHS) is a candidate for high étendue, high spectral R spectroscopy in compact low cost, low-mass, low-power architecture using no or small aperture telescope for UV to IR wavelengths. High R spectrometers are usually limited by the telescope aperture size and complicated opto-mechanical tolerances but that's not the case for SHS. SHS provides integrated spectra at high spectral R, over a wide FOV in compact designs in which it offers the ability to make key science measurements for a variety of planetary targets. SHS could be implemented on a dedicated SmallSat or ISS that can sit and stare at its target for long duration of time that cannot be done from the ground or on big missions. SmallSats are lower cost, faster to build, relatively easy to correct and upgrade. For UV observation, currently HST is the only telescope capable of collecting the necessary observations and the next major UV space telescope might be able to fly in 10 years or more. SHS instrument can quickly fill the technology gap for UV space spectrometers.

  3. CHANDRA HIGH-RESOLUTION OBSERVATIONS OF CID-42, A CANDIDATE RECOILING SUPERMASSIVE BLACK HOLE

    Energy Technology Data Exchange (ETDEWEB)

    Civano, F.; Elvis, M.; Lanzuisi, G.; Aldcroft, T.; Trichas, M.; Fruscione, A. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Bongiorno, A.; Brusa, M. [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching (Germany); Blecha, L.; Loeb, A. [Department of Astronomy, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States); Comastri, A.; Gilli, R. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, Bologna 40127 (Italy); Salvato, M.; Komossa, S. [Max-Planck-Institute for Plasma Physics, Excellence Cluster, Boltzmannstrass 2, 85748 Garching (Germany); Koekemoer, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Mainieri, V. [ESO, Karl-Schwarzschild-Strasse 2, 85748 Garching (Germany); Piconcelli, E. [INAF-Osservatorio Astronomico di Roma, Via Frascati 33, Monteporzio-Catone 00040 (Italy); Vignali, C. [Dipartimento di Astronomia, Universita di Bologna, Via Ranzani 1, Bologna 40127 (Italy)

    2012-06-10

    We present Chandra High Resolution Camera observations of CID-42, a candidate recoiling supermassive black hole (SMBH) at z = 0.359 in the COSMOS survey. CID-42 shows two optical compact sources resolved in the HST/ACS image embedded in the same galaxy structure and a velocity offset of {approx}1300 km s{sup -1} between the H{beta} broad and narrow emission line, as presented by Civano et al. Two scenarios have been proposed to explain the properties of CID-42: a gravitational wave (GW) recoiling SMBH and a double Type 1/Type 2 active galactic nucleus (AGN) system, where one of the two is recoiling because of slingshot effect. In both scenarios, one of the optical nuclei hosts an unobscured AGN, while the other one, either an obscured AGN or a star-forming compact region. The X-ray Chandra data allow us to unambiguously resolve the X-ray emission and unveil the nature of the two optical sources in CID-42. We find that only one of the optical nuclei is responsible for the whole X-ray unobscured emission observed and a 3{sigma} upper limit on the flux of the second optical nucleus is measured. The upper limit on the X-ray luminosity plus the analysis of the multiwavelength spectral energy distribution indicate the presence of a star-forming region in the second source rather than an obscured SMBH, thus favoring the GW recoil scenario. However, the presence of a very obscured SMBH cannot be fully ruled out. A new X-ray feature, in a SW direction with respect to the main source, is discovered and discussed.

  4. Clumpy galaxies seen in H-alpha: inflated observed clump properties due to limited spatial resolution and sensitivity

    CERN Document Server

    Tamburello, Valentina; Mayer, Lucio; Cava, Antonio; Dessauges-Zavadsky, Miroslava; Schaerer, Daniel

    2016-01-01

    High-resolution simulations of star-forming massive galactic discs have shown that clumps form with a characteristic baryonic mass in the range $10^7-10^8~M_{\\odot}$, with a small tail exceeding $10^9~M_{\\odot}$ produced by clump-clump mergers. This is in contrast with the observed kpc-size clumps with masses up to $10^{10}~M_{\\odot}$ in high-redshift star-forming galaxies. In this paper we show that the comparison between simulated and observed star-forming clumps is hindered by limited observational spatial resolution and sensitivity. We post-process high-resolution hydrodynamical simulations of clumpy discs using accurate radiative transfer to model the effect of ionizing radiation from young stars and to compute H$\\alpha$ emission maps. By comparing the intrinsic clump size and mass distributions with those inferred from convolving the H$\\alpha$ maps with different gaussian apertures, we mimick the typical resolution used in observations. We found that with 100 pc resolution, mock observations can recover...

  5. An advanced high resolution x-ray imager for laser-plasma interaction observation

    Directory of Open Access Journals (Sweden)

    Dennetiere D.

    2013-11-01

    Full Text Available We present here the latest results obtained with our high resolution broadband X-ray microscope. These results, both spatial and spectral, were obtained in several facilities such as Berlin's synchrotron Bessy II and LULI's laser ELFIE 100TW. The results show clearly the opportunity in high resolution microscopy that offer mirror based diagnostics.

  6. An advanced high resolution x-ray imager for laser-plasma interaction observation

    Science.gov (United States)

    Dennetiere, D.; Troussel, Ph.; Courtois, C.; Wrobel, R.; Audebert, P.

    2013-11-01

    We present here the latest results obtained with our high resolution broadband X-ray microscope. These results, both spatial and spectral, were obtained in several facilities such as Berlin's synchrotron Bessy II and LULI's laser ELFIE 100TW. The results show clearly the opportunity in high resolution microscopy that offer mirror based diagnostics.

  7. Achromatic orbital angular momentum generator

    CERN Document Server

    Bouchard, Frédéric; Mirhosseini, Mohammad; Karimi, Ebrahim; Boyd, Robert W

    2014-01-01

    We describe a novel approach for generating light beams that carry orbital angular momentum (OAM) by means of total internal reflection in an isotropic medium. A continuous space-varying cylindrically symmetric reflector, in the form of \\textit{two glued hollow axicons}, is used to introduce a nonuniform rotation of polarisation into a linearly polarised input beam. This device acts as a full spin-to-orbital angular momentum convertor. It functions by switching the helicity of the incoming beam's polarisation, and by conservation of total angular momentum thereby generates a well-defined value of OAM. Our device is broadband, since the phase shift due to total internal reflection is nearly independent of wavelength. We verify the broad-band behaviour by measuring the conversion efficiency of the device for three different wavelengths corresponding to the RGB colours, red, green and blue. An average conversion efficiency of $95\\%$ for these three different wavelengths is observed. %, which confirms its wavelen...

  8. Monitoring Changes in Water Resources Systems Using High Resolution Satellite Observations: Application to Lake Urmia

    Science.gov (United States)

    Norouzi, H.; AghaKouchak, A.; Madani, K.; Mirchi, A.; Farahmand, A.; Conway, C.

    2013-12-01

    Lake Urmia with its unique ecosystem in northwestern Iran is the second largest saltwater lake in the world. It is home of more than 300 species of birds, reptiles, and mammals with high salinity level of more than 300 g/l. In recent years, a significant water retreat has occurred in this lake. In this study, we tried to monitor the desiccation of the lake over more than four decades using remote sensing observations. Multi-spectral high-resolution LandSat images of the Lake Urmia region from 1972 to 2012 were acquired to derive the lake area. The composite maps of the lake were created, and a Bayesian Maximum Likelihood classification technique was used to classify land and water in the composite maps. The time series of the lake area reveals that it has shrunk by more than 40% in the past ten years. Moreover, water budget related components such as precipitation, soil moisture, and drought indices from remote sensing of the lake basin were utilized to investigate if droughts or climate change are the primary driving forces behind this phenomenon. These analyses show that the retreat of the lake is not related to droughts or global climate change as it has survived several drought events before year 2000. Similar analyses conducted on Lake Van located about 400 km west of Lake Urmia with very similar climate pattern revealed no significant areal change despite the lake's exposure to similar drought events. These results raise serious concern about the destructive role of unbridled development coupled with supply-oriented water management scheme driven by a classic upstream-downstream competition for water in the Lake Urmia region. There is an urgent need to investigate sustainable restoration initiatives for Lake Urmia in order to prevent an environmental disaster comparable to catastrophic death of Aral Sea.

  9. NIOZ high-resolution moored temperature observations: benefits and new challenges.

    Science.gov (United States)

    Cimatoribus, Andrea; Gostiaux, Louis; Cyr, Frederic; van Haren, Hans

    2016-04-01

    The Royal Netherlands Institute for Sea Research has been developing for several years a family of temperature sensors (NIOZ1 to NIOZ5). In the latest iterations of this project, these instruments are precise (10‑3 K or better), have a very low noise level (below 10‑3 K), are relatively fast (sampling rate of 1Hz) and can measure for extended periods of time (several months). Being also compact and lightweight, several thermistors can be attached on a single line at a fine vertical spacing (20cm or more). When mounted on a cable, the instruments are all synchronised to a single clock, thus providing simultaneous measurements throughout the depth range of the mooring (usually in the order of 100m). Recently, the instruments have also been deployed in a group of 5 lines approximately 5m apart from each other, providing a unique view on the three-dimensional temperature field. After almost 10 years of successful deployments at sea, we try to draw some conclusions from this effort, from the scientific and technical point of view. This observational system provides temperature measurements with vertical spatial resolution comparable to that of microstructure profilers, but in comparison to ship-borne systems it offers some distinctive features: providing instantaneous measurements throughout the mooring, observations of waves and overturning structures are not influenced by the time delay between measurements at different depths; the very low noise level and high precision enables the study of the deep, weakly stratified ocean; by using a heavy ballast at the bottom and a high net buoyancy at the top of the mooring, Eulerian measurements are effectively obtained; continuous, high sampling rate Eulerian measurements enable to assess the intermittent, sporadic nature of turbulence and wave activity in the ocean; the large range of time scales included in the observations (100 ‑ 106 s) allows to study a large portion of the turbulence inertial range, the full

  10. WSRT AND VLA OBSERVATIONS OF HI IN THE DIRECTION OF 3C-10

    NARCIS (Netherlands)

    SCHWARZ, UJ; GOSS, WM; KALBERLA, PM; BENAGLIA, P

    1995-01-01

    Westerbork Synthesis Radio Telescope HI observations combined with Effelsberg 100 m antenna observations have been made of the galactic supernova remnant 3C 10 (Tycho) with an angular resolution similar or equal to 50 '' and a velocity resolution of 0.62 km s(-1) and with the VLA with resolutions of

  11. On Asymmetry of Magnetic Helicity in Emerging Active Regions: High Resolution Observations

    OpenAIRE

    Tian, Lirong; Démoulin, Pascal; Alexander, David; Zhu, Chunming

    2011-01-01

    We employ the DAVE (differential affine velocity estimator, Schuck 2005; 2006) tracking technique on a time series of MDI/1m high spatial resolution line- of-sight magnetograms to measure the photospheric flow velocity for three newly emerging bipolar active regions. We separately calculate the magnetic helicity injection rate of the leading and following polarities to confirm or refute the magnetic helicity asymmetry, found by Tian & Alexander (2009) using MDI/96m low spatial resolution magn...

  12. Characterization of foreground emission at degree angular scale for CMB B-modes observations. Thermal Dust and Synchrotron signal from Planck and WMAP data

    CERN Document Server

    Krachmalnicoff, N; Aumont, J; Bersanelli, M; Mennella, A

    2015-01-01

    We quantify the contamination from polarized diffuse Galactic synchrotron and thermal dust emissions to the B-modes of the CMB anisotropies on the degree angular scale, using data from the Planck and WMAP satellites. We compute power spectra of foreground polarized emissions in 352 circular sky patches located at Galactic latitude |b|>20{\\deg}, each of which covering a fraction of the sky of about 1.5%. We make use of the spectral properties derived from Planck and WMAP data to extrapolate, in frequency, the amplitude of synchrotron and thermal dust B-modes spectra in the multipole bin centered at $\\ell\\simeq80$. In this way we estimate, for each analyzed region, the amplitude and frequency of the foreground minimum. We detect both dust and synchrotron signal, at degree angular scale and at 3 confidence level, in 28 regions. Here the minimum of the foreground emission is found at frequencies between 60 and 100 GHz with an amplitude,expressed in terms of the equivalent tensor-to-scalar ratio, r_FG, between ~0....

  13. A High-Resolution 3D Weather Radar, MSG, and Lightning Sensor Observation Composite

    Science.gov (United States)

    Diederich, Malte; Senf, Fabian; Wapler, Kathrin; Simmer, Clemens

    2013-04-01

    Within the research group 'Object-based Analysis and SEamless prediction' (OASE) of the Hans Ertel Centre for Weather Research programme (HerZ), a data composite containing weather radar, lightning sensor, and Meteosat Second Generation observations is being developed for the use in object-based weather analysis and nowcasting. At present, a 3D merging scheme combines measurements of the Bonn and Jülich dual polarimetric weather radar systems (data provided by the TR32 and TERENO projects) into a 3-dimensional polar-stereographic volume grid, with 500 meters horizontal, and 250 meters vertical resolution. The merging takes into account and compensates for various observational error sources, such as attenuation through hydrometeors, beam blockage through topography and buildings, minimum detectable signal as a function of noise threshold, non-hydrometeor echos like insects, and interference from other radar systems. In addition to this, the effect of convection during the radar 5-minute volume scan pattern is mitigated through calculation of advection vectors from subsequent scans and their use for advection correction when projecting the measurements into space for any desired timestamp. The Meteosat Second Generation rapid scan service provides a scan in 12 spectral visual and infrared wavelengths every 5 minutes over Germany and Europe. These scans, together with the derived microphysical cloud parameters, are projected into the same polar stereographic grid used for the radar data. Lightning counts from the LINET lightning sensor network are also provided for every 2D grid pixel. The combined 3D radar and 2D MSG/LINET data is stored in a fully documented netCDF file for every 5 minute interval, and is made ready for tracking and object based weather analysis. At the moment, the 3D data only covers the Bonn and Jülich area, but the algorithms are planed to be adapted to the newly conceived DWD polarimetric C-Band 5 minute interval volume scan strategy. An

  14. On Angular Momentum

    Science.gov (United States)

    Schwinger, J.

    1952-01-26

    The commutation relations of an arbitrary angular momentum vector can be reduced to those of the harmonic oscillator. This provides a powerful method for constructing and developing the properties of angular momentum eigenvectors. In this paper many known theorems are derived in this way, and some new results obtained. Among the topics treated are the properties of the rotation matrices; the addition of two, three, and four angular momenta; and the theory of tensor operators.

  15. Quark Orbital Angular Momentum

    OpenAIRE

    Burkardt Matthias

    2015-01-01

    Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asy...

  16. Angular Momentum Transfer in Catastrophic Asteroid Impacts

    Science.gov (United States)

    Love, S. G.; Ahrens, T. J.

    1996-09-01

    Incomplete knowledge of angular momentum transfer in asteroid impacts has hampered efforts to deduce asteroid collisional histories from their rotation rates. This problem traditionally has been investigated using impact experiments on cm-scale, strength-dominated targets. Recent evidence, however, indicates that impacts on asteroids of km size and larger may be controlled by gravity rather than strength, and that the analogy to laboratory impacts may not hold. Accordingly, we have modelled catastrophic impacts on gravitating asteroids to better understand angular momentum transfer in such events. We employ a 3--D, strengthless, gravitating SPH computer code. Target bodies are 10 to 1000 km in diameter and do not initially rotate. Impact speeds are 3--7 km/s; impact angles are 15--75(deg) . Each target is composed of 1791 mass elements: spatial resolution is coarse but acceptable for large scale energy transfer. We simulate the hydrodynamic phase of each impact, after which particle motions are ballistic and treated analytically. Escaping particles have kinetic energy greater than the gravitational energy binding them to the rest of the system; the others reaccrete to form a ``rubble pile'' which is assumed spherical. The rubble pile's size, mass, and angular momentum define its rotation rate. Spin rates for ejected fragments cannot be determined. The target's final spin period depends on the impact angle and the fraction of target mass ejected, but not on impact speed or target size in the ranges tested. The lack of size dependence cannot explain the observed excess of slowly rotating asteroids of ~ 100 km diameter. The fraction of projectile angular momentum retained by the target varies dramatically with impact speed and angle and with target size and fraction of mass removed, complicating its use in models where collision geometry varies. The final spin period of an asteroid losing 50% of its mass is 6--10 hours, comparable to the asteroidal mean of 8 hours

  17. The surface layer observed by a high-resolution sodar at DOME C, Antarctica

    Directory of Open Access Journals (Sweden)

    Stefania Argentini

    2014-01-01

    Full Text Available One year field experiment has started on December 2011 at the French - Italian station of Concordia at Dome C, East Antarctic Plateau. The objective of the experiment is the study of the surface layer turbulent processes under stable/very stable stratifications, and the mechanisms leading to the formation of the warming events. A sodar was improved to achieve the vertical/time resolution needed to study these processes. The system, named Surface Layer sodar (SL-sodar, may operate both in high vertical resolution (low range and low vertical resolution (high range modes. In situ turbulence and radiation measurements were also provided in the framework of this experiment. A few preliminary results, concerning the standard summer diurnal cycle, a summer warming event, and unusually high frequency boundary layer atmospheric gravity waves are presented.

  18. Vibronic motion with joint angstrom-femtosecond resolution observed through Fano progressions recorded within one molecule.

    Science.gov (United States)

    Lee, Joonhee; Perdue, Shawn M; Rodriguez Perez, Alejandro; Apkarian, Vartkess Ara

    2014-01-28

    Electroluminescence (EL) in scanning tunneling microscopy (STM), which enables spectroscopy with submolecular spatial resolution, is shown to be due to radiative ionization with vibronic shape resonances that carry Fano line profiles. Since Fano progressions retain phase information, the spectra can be transformed to the time domain to reconstruct the vibronic motion. In effect, measurements within a molecule are accessible with joint space-time resolution at the Å-fs limit. We demonstrate this through EL-STM on the Jahn-Teller-active Zn-etioporphyrin radical anion and visualize the orbiting motion of scattered electrons upon sudden reduction and oxidation. We discuss the elements that enable spectroscopy with submolecular spatial resolution through EL-STM and the closely related STM-Raman process.

  19. Observation of Kondo resonance in rare-earth hexaborides using high resolution photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, Kalobaran; Patil, Swapnil; Adhikary, Ganesh [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Balakrishnan, Geetha, E-mail: kbmaiti@tifr.res.in [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom)

    2011-01-01

    We studied the electronic structure of rare earth hexaborides, CeB{sub 6}, PrB{sub 6} and NdB{sub 6} using state-of-the-art high resolution photoemission spectroscopy. CeB{sub 6} is a dense Kondo system. PrB{sub 6} and NdB{sub 6} are antiferromagnetic (Neel temperature {approx}7 K), known to be stable moment systems and do not exhibit Kondo effect. Photoemission spectra exhibit distinct signature of surface and bulk electronic structures of these compounds. The energy position of the surface feature is not influenced by the 4f density of states. High resolution spectra of CeB{sub 6} reveal multiple Kondo resonance features in the bulk spectra due to various photoemission final states. Interestingly, high resolution photoemission spectra of antiferromagnetic PrB{sub 6} also exhibit a sharp feature at the Fermi level that shows temperature dependence similar to the Kondo resonance features.

  20. Does high harmonic generation conserve angular momentum?

    CERN Document Server

    Fleischer, Avner; Diskin, Tzvi; Sidorenko, Pavel; Cohen, Oren

    2013-01-01

    High harmonic generation (HHG) is a unique and useful process in which infrared or visible radiation is frequency up converted into the extreme ultraviolet and x ray spectral regions. As a parametric process, high harmonic generation should conserve the radiation energy, momentum and angular momentum. Indeed, conservation of energy and momentum have been demonstrated. Angular momentum of optical beams can be divided into two components: orbital and spin (polarization). Orbital angular momentum is assumed to be conserved and recently observed deviations were attributed to propagation effects. On the other hand, conservation of spin angular momentum has thus far never been studied, neither experimentally nor theoretically. Here, we present the first study on the role of spin angular momentum in extreme nonlinear optics by experimentally generating high harmonics of bi chromatic elliptically polarized pump beams that interact with isotropic media. While observing that the selection rules qualitatively correspond...

  1. Evaluation on newly developed high resolution of surface solar radiation from MTSAT observations for the Tibetan Plateau

    Science.gov (United States)

    Niu, X.; Yang, K.; Tang, W.; Qin, J.

    2015-12-01

    Neither surface measurement nor existing remote sensing products of the Surface Solar Radiation (SSR) can meet the application requirements of hydrological and land process modeling in the Tibetan Plateau (TP). High resolution (hourly; 0.1⁰) of SSR estimates have been derived recently from the geostationary satellite observations - the Multi-functional Transport Satellite (MTSAT). This SSR estimation is based on updating an existing physical model, the UMD-SRB (University of Maryland Surface Radiation Budget) which is the basis of the well-known GEWEX-SRB model. In the updated framework introduced is the high-resolution Global Land Surface Broadband Albedo Product (GLASS) with spatial continuity. The developed SSR estimates are demonstrated at different temporal resolutions over the TP and are evaluated against ground observations and other satellite products from: (1) China Meteorological Administration (CMA) radiation stations in TP; (2) three TP radiation stations contributed from the Institute of Tibetan Plateau Research; (3) and the universal used satellite products (i.e. ISCCP-FD, GEWEX-SRB) in relatively low spatial resolution (0.5º-2.5º) and temporal resolution (3-hourly, daily, or monthly).

  2. Observations of movement dynamics of flying insects using high resolution lidar

    DEFF Research Database (Denmark)

    Kirkeby, Carsten Thure; Wellenreuther, Maren; Brydegaard, Mikkel

    2016-01-01

    Insects are fundamental to ecosystem functioning and biodiversity, yet the study of insect movement, dispersal and activity patterns remains a challenge. Here we present results from a novel high resolution laser-radar (lidar) system for quantifying flying insect abundance recorded during one...

  3. Io from High-Resolution Galileo PPR Data Taken Simultaneously with SSI or NIMS Observations

    Science.gov (United States)

    Rathbun, J. A.; Block, M. G.; Spencer, J. R.

    2005-03-01

    Io is the most volcanically active body in the solar system. Here, we present high-resolution Galileo PPR data taken simultaneously with NIMS and SSI. The data are used to examine volcano temperatures at Emakong, Pele, Zamama, Amirani, and other locations.

  4. Observation of Tropical Rain Forest Trees by Airborne High-Resolution Interferometric Radar

    NARCIS (Netherlands)

    Hoekman, D.H.; Varekamp, C.

    2001-01-01

    The Indonesian Radar Experiment (INDREX) Campaign was executed in Indonesia to study the potential of high-resolution interferometric airborne radar in support of sustainable tropical forest management. Severe cloud cover limits the use of aerial photography, which is currently applied on a routine

  5. Angular Momentum Acquisition in Galaxy Halos

    CERN Document Server

    Stewart, Kyle R; Bullock, James S; Maller, Ariyeh H; Diemand, Juerg; Wadsley, James; Moustakas, Leonidas A

    2013-01-01

    We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky Way sized galaxies. We find that cold mode accreted gas enters a galaxy halo with ~70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by \\lambda~0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms "cold flow disks". We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.

  6. Mirror-concentrator for space telescope with wide field of view and "high" angular resolution for observation of ultrahigh energy cosmic rays and other atmospheric flashes

    Science.gov (United States)

    Sharakin, Sergey A.; Khrenov, Boris A.; Klimov, Pavel A.; Panasyuk, Mikhail I.; Potanin, Sergey A.; Yashin, Ivan V.

    2012-09-01

    Idea of ultrahigh cosmic rays (UHECR) measurement from satellites was suggested by Linsley in 1981 and since has being developed into projects of cosmic rays telescopes for International Space Station (ISS): JEM-EUSO - to be installed on the Japanese experimental module and KLYPVE - on the Russian ISS segment. A series of space-based detectors for measurements of background phenomena in those telescopes were developed in Russia (Universitetsky-Tatiana, Universitetsky-Tatiana-2 , Chibis satellites). The satellite Lomonosov with UHECR detector TUS on its board will be launched in 2013. TUS contains multi-channel photo receiver and Fresnel-type mirror manufactured with use of special multi-layer carbon plastic technology in RSC “Energia". In this paper one and two component optical systems with 360 cm entrance diameter and 400 cm focal distance for wide angle detector KLYPVE are studied. In one component case using generalized Davies-Cotton systems (Fresnel-type mirror with ellipsoidal gross surface) it is possible to obtain 8-10° field of view (FoV) with focal spot size less than pixel size equal to 15 x 15 mm. In two component system (parabolic mirror and a Fresnel lens, mounted close to photo receiver) it is possible to increase FoV up to 10-12° and significantly simplify the primary mirror construction.

  7. A High Resolution Spectroscopic Observation of CAL 83 with XMM-Newton/RGS

    CERN Document Server

    Paerels, F B S; Hartmann, H W; Heise, J; Brinkman, A C; De Vries, C P; Den Herder, J M; Paerels, Frits; Rasmussen, Andrew P.

    2001-01-01

    We present the first high resolution photospheric X-ray spectrum of a Supersoft X-ray Source, the famous CAL~83 in the Large Magellanic Cloud. The spectrum was obtained with the Reflection Grating Spectrometer on XMM-Newton during the Calibration/Performance Verification phase of the observatory. The spectrum covers the range 20-40 A at an approximately constant resolution of 0.05 A, and shows very significant, intricate detail, that is very sensitive to the physical properties of the object. We present the results of an initial investigation of the spectrum, from which we draw the conclusion that the spectral structure is probably dominated by numerous absorption features due to transitions in the L-shells of the mid-$Z$ elements and the M-shell of Fe, in addition to a few strong K-shell features due to CNO.

  8. Real-time observation of Zn electro-deposition with high-resolution microradiology

    CERN Document Server

    Tsai, W L; Hwu, Y; Chen, C H; Chang, L W; Je, J H; Margaritondo, G

    2003-01-01

    We used phase contrast radiography to study the electro-deposition of Zn in real time and with high lateral resolution. Using unmonochromatic synchrotron X-rays and an optics-less imaging setup, we were able to obtain real-time radiographs of the electro-deposition in situ with mu m resolution. A detailed analysis of the microstructure evolution relates the different growth parameters - such as the electric current density, the voltage bias, the pH value and the ion concentration - to very different growth morphology, ranging from film, porous, whisker and dendrite deposition. This link is both global and local. Local variations of the metal ion concentration in the electrolyte were also successfully imaged and the density profile is used to compare with the standard theory to explain the phenomenon of metal ion depletion near the electrode. The potential application of this technique to study growth with micropatterned electrodes and pulsed electric current is evaluated.

  9. Observations of movement dynamics of flying insects using high resolution lidar

    OpenAIRE

    Carsten Kirkeby; Maren Wellenreuther; Mikkel Brydegaard

    2016-01-01

    Insects are fundamental to ecosystem functioning and biodiversity, yet the study of insect movement, dispersal and activity patterns remains a challenge. Here we present results from a novel high resolution laser-radar (lidar) system for quantifying flying insect abundance recorded during one summer night in Sweden. We compare lidar recordings with data from a light trap deployed alongside the lidar. A total of 22808 insect were recorded, and the relative temporal quantities measured matched ...

  10. Observation of Fine Lung Structure by Ultrahigh-Resolution Optical Coherence Tomography Using 800, 1060, and 1300 nm Supercontinua

    Science.gov (United States)

    Ishida, Shutaro; Nishizawa, Norihiko; Kitatsuji, Masashi; Ohshima, Hiroyoshi; Hasegawa, Yoshinori; Matsushima, Miyoko; Kawabe, Tsutomu

    2012-04-01

    Cross-sectional imaging of isolated rat lungs was demonstrated by ultrahigh-resolution optical coherence tomography using supercontinua at 800, 1060, and 1300 nm wavelengths. The detailed structure of the trachea, including cartilage, mucosa, and annular ligaments, were observed clearly. In the imaging of visceral pleura and alveoli, when phosphate-buffered saline was instilled into the lung, the penetration depth of imaging was improved, and clear images of the fine structure of the lung, including alveoli, were observed owing to the index-matching effect. The wavelength dependence of the light source was discussed for the observation of fine structure and imaging contrast.

  11. Transverse and longitudinal angular momenta of light

    International Nuclear Information System (INIS)

    We review basic physics and novel types of optical angular momentum. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields, and discuss methods for their experimental measurements. In particular, we describe the well-known longitudinal (i.e., aligned with the mean momentum) spin and orbital angular momenta in polarized vortex beams. Then, we focus on the transverse (i.e., orthogonal to the mean momentum) spin and orbital angular momenta, which were recently actively discussed in theory and observed in experiments. First, the recently-discovered transverse spin  angular momenta appear in various structured fields: evanescent waves, interference fields, and focused beams. We show that there are several kinds of transverse spin angular momentum, which differ strongly in their origins and physical properties. We describe extraordinary features of the transverse optical spins and overview recent experiments. In particular, the helicity-independent transverse spin inherent in edge evanescent waves offers robust spin–direction coupling at optical interfaces (the quantum spin Hall effect of light). Second, we overview the transverse orbital angular momenta of light, which can be both extrinsic and intrinsic. These two types of the transverse orbital angular momentum are produced by spatial shifts of the optical beams (e.g., in the spin Hall effect of light) and their Lorentz boosts, respectively. Our review is underpinned by a unified theory of the angular momentum of light based on the canonical momentum and spin densities, which avoids complications associated with the separation of spin and orbital angular momenta in the Poynting picture. It allows us to construct a comprehensive classification of all known optical angular momenta based on their key parameters and main physical properties

  12. Improvement of GPS ambiguity resolution using prior height information. Part Ⅱ: The method of using quasi observation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper deals with the method of using quasi observation. In the paper a simple algorithm is developed for the adjustment computation with quasi observation at first. And then the ability of quasi observation to improve ambiguity search technique is studied in detail. The robustness of the method is also discussed. A method to determine the weight of quasi observation is proposed. The results show that a prior height can be taken as a quasi observation and used together with GPS observations. It can strengthen residual tests, especially in situation where there are fewer satellites in the sky. It also can change structure of incorrect solutions, which will theoretically make less incorrect solutions left in search space. At last the field tests are carried out to show that the proposed method is effective. The success rate of ambiguity resolution in the four field tests is improved significantly.

  13. Orbital angular momentum in the nucleons

    OpenAIRE

    Lorcé, Cédric

    2014-01-01

    In the last decade, it has been realized that the orbital angular momentum of partons inside the nucleon plays a major role. It contributes significantly to nucleon properties and is at the origin of many asymmetries observed in spin physics. It is therefore of paramount importance to determine this quantity if we want to understand the nucleon internal structure and experimental observables. This triggered numerous discussions and controversies about the proper definition of orbital angular ...

  14. DVL Angular Velocity Recorder

    Science.gov (United States)

    Liebe, Wolfgang

    1944-01-01

    In many studies, especially of nonstationary flight motion, it is necessary to determine the angular velocities at which the airplane rotates about its various axes. The three-component recorder is designed to serve this purpose. If the angular velocity for one flight attitude is known, other important quantities can be derived from its time rate of change, such as the angular acceleration by differentiations, or - by integration - the angles of position of the airplane - that is, the angles formed by the airplane axes with the axis direction presented at the instant of the beginning of the motion that is to be investigated.

  15. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias

    2015-01-01

    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  16. Design of Angular Velocity and Position Observer for Servo Motors With Magnetic Encoders%基于磁编码器的伺服电机速度及位置观测器设计

    Institute of Scientific and Technical Information of China (English)

    吴忠; 吕绪明

    2011-01-01

    磁编码器是一种基于磁阻效应或霍尔效应的轴角传感器,输出信号是转子角位置的正余弦函数.为获取转子角位置和角速度信息,设计了一种基于状态观测器的磁编码器解调算法.理论分析表明,当伺服电机匀速旋转时,基于二阶和三阶状态观测器的解调算法误差均可渐近收敛至零;当伺服电机匀加速或匀减速旋转时,前者存在原理性偏差,而后者解调误差依然可以渐近收敛至零.与反正切法相比,该算法不需通过数值差分即可获得角速度信息,具有较强的干扰抑制能力.与基于锁相环的角度跟踪法相比,该算法考虑了电机的转速变化,角位置和角速度解算精度较高.实验结果表明,该解调算法是可行的.%Magnetic encoder was a kind of rotary sensors based on magnetoresistance effects or Hall effects, and it could output two orthogonal signals which were sine or cosine functions of the rotor angular position. In order to obtain the rotor angular position and velocity information, a state-observer-based algorithm was presented to demodulate output signals of the magnetic encoder. Theoretical analysis showed that both the second-order state observer and the third-order one could make the demodulation error converge to zero asymptotically when the motor rotated under constant speed. Once the motor speed varied uniformly, the demodulation error of the former algorithm would exist bias in principle and the latter still could converge to zero asymptotically. Comparing with the arc-tangent method, this algorithm could obtain angular velocity information without needing differential operator, thus had a strong ability to suppress random disturbances. Comparing with the phase-locked loop tracking method, this algorithm could obtain angular position and velocity with higher precision since the variation of the motor speed was taken into consideration. Experimental results indicated that the demodulation algorithm

  17. Constraining precipitation initiation in marine stratocumulus using aircraft observations and LES with high spectral resolution bin microphysics

    Science.gov (United States)

    Witte, M.; Chuang, P. Y.; Rossiter, D.; Ayala, O.; Wang, L. P.

    2015-12-01

    Turbulence has been suggested as one possible mechanism to accelerate the onset of autoconversion and widen the process "bottleneck" in the formation of warm rain. While direct observation of the collision-coalescence process remains beyond the reach of present-day instrumentation, co-located sampling of atmospheric motion and the drop size spectrum allows for comparison of in situ observations with simulation results to test representations of drop growth processes. This study evaluates whether observations of drops in the autoconversion regime can be replicated using our best theoretical understanding of collision-coalescence. A state-of-the-art turbulent collisional growth model is applied to a bin microphysics scheme within a large-eddy simulation such that the full range of cloud drop growth mechanisms are represented (i.e. CCN activation, condensation, collision-coalescence, mixing, etc.) at realistic atmospheric conditions. The spectral resolution of the microphysics scheme has been quadrupled in order to (a) more closely match the resolution of the observational instrumentation and (b) limit numerical diffusion, which leads to spurious broadening of the drop size spectrum at standard mass-doubling resolution. We compare simulated cloud drop spectra with those obtained from aircraft observations to assess the quality and limits of our theoretical knowledge. The comparison is performed for two observational cases from the Physics of Stratocumulus Top (POST) field campaign: 12 August 2008 (drizzling night flight, Rmax~2 mm/d) and 15 August 2008 (nondrizzling day flight, Rmaxjumps, and entrainment rates. Initial results from a collision box model suggest that enhancements of approximately 2 orders of magnitude over theoretical turbulent collision rates may be necessary to reproduce the observations.

  18. Lens Models of Herschel-Selected Galaxies From High-Resolution Near-IR Observations

    CERN Document Server

    Calanog, J A; Cooray, A; Wardlow, J; Ma, B; Amber, S; Baes, M; Bock, J; Bourne, N; Bussmann, R S; Casey, C M; Chapman, S C; Clements, D L; Conley, A; Dannerbauer, H; DeZotti, G; Dunne, L; Dye, S; Eales, S; Farrah, D; Furlanetto, C; Harris, A I; Ivison, R J; Maddox, S J; Magdis, G; Michalowski, M J; Negrello, M; Nightingale, J; O'Bryan, J M; Oliver, S J; Riechers, D; Scott, D; Serjeant, S; Simpson, J; Smith, M; Timmons, N; Thacker, C; Valiante, E; Vieira, J D

    2014-01-01

    We present Keck-Adaptive Optics and Hubble Space Telescope high resolution near-infrared (IR) imaging for 500 um-bright candidate lensing systems identified by the Herschel Multi-tiered Extra-galactic Survey (HerMES) and Herschel Astrophysical Terahertz Survey (H-ATLAS). Out of 87 candidates with near-IR imaging, 15 (~17%) display clear near-IR lensing morphologies. We present near-IR lens models to reconstruct and recover basic rest-frame optical morphological properties of the background galaxies from 12 new systems. Sources with the largest near-IR magnification factors also tend to be the most compact, consistent with the size bias predicted from simulations and pre- vious lensing models for sub-millimeter galaxies. For four new sources that also have high-resolution sub-mm maps, we test for differential lensing between the stellar and dust components and find that the 880 um magnification factor (u_880) is ~1.5 times higher than the near-IR magnification factor (u_NIR), on average. We also find that the ...

  19. Spectral Diagnostics for Early-Type Stars in Support of High-Resolution Satellite Observation

    Science.gov (United States)

    MacFarlane, Joseph J.

    2001-01-01

    High-resolution X-ray spectra have recently been obtained using the Chandra X-ray Satellite Observatory for the two hot supergiant stars zeta Pup and delta Ori. The spectra show the presence of strong K-shell line emission from O, Ne, Mg, Si, and S, as well as strong L-shell line emission from Fe. Initial examination of the spectra indicates that the lines are significantly broader than what would be expected for a stationary plasma, and appear to be consistent with Doppler-broadened emission from hot plasma forming in shock-heated regions embedded in the wind (see Figure 1). Chandra has sufficient spectral resolution to study the velocity structure of isolated X-ray line profiles. Our analysis for zeta Pup has shown blue-shifted and skewed line profiles, providing the most direct evidence that the X-ray source is embedded in the stellar wind. The sensitivity of the He-like fir (forbidden-intercombination-resonance) lines to a strong UV radiation field is used to estimate the radial distances at which lines of O VII, Ne IX, Mg XI, Si XIII, and S XV originate.

  20. LENS MODELS OF HERSCHEL-SELECTED GALAXIES FROM HIGH-RESOLUTION NEAR-IR OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Calanog, J. A.; Cooray, A.; Ma, B.; Casey, C. M. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Fu, Hai [Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, IA 52242 (United States); Wardlow, J. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Amber, S. [Department of Physical Sciences, The Open University, Milton Keynes MK7 6AA (United Kingdom); Baker, A. J. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Baes, M. [1 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent (Belgium); Bock, J. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Bourne, N.; Dye, S. [School of Physics and Astronomy, University of Nottingham, NG7 2RD (United Kingdom); Bussmann, R. S. [Department of Astronomy, Space Science Building, Cornell University, Ithaca, NY 14853-6801 (United States); Chapman, S. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Clements, D. L. [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Conley, A. [Center for Astrophysics and Space Astronomy 389-UCB, University of Colorado, Boulder, CO 80309 (United States); Dannerbauer, H. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CE-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France); De Zotti, G. [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Dunne, L.; Eales, S. [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); and others

    2014-12-20

    We present Keck-Adaptive Optics and Hubble Space Telescope high resolution near-infrared (IR) imaging for 500 μm bright candidate lensing systems identified by the Herschel Multi-tiered Extragalactic Survey and Herschel Astrophysical Terahertz Large Area Survey. Out of 87 candidates with near-IR imaging, 15 (∼17%) display clear near-IR lensing morphologies. We present near-IR lens models to reconstruct and recover basic rest-frame optical morphological properties of the background galaxies from 12 new systems. Sources with the largest near-IR magnification factors also tend to be the most compact, consistent with the size bias predicted from simulations and previous lensing models for submillimeter galaxies (SMGs). For four new sources that also have high-resolution submillimeter maps, we test for differential lensing between the stellar and dust components and find that the 880 μm magnification factor (μ{sub 880}) is ∼1.5 times higher than the near-IR magnification factor (μ{sub NIR}), on average. We also find that the stellar emission is ∼2 times more extended in size than dust. The rest-frame optical properties of our sample of Herschel-selected lensed SMGs are consistent with those of unlensed SMGs, which suggests that the two populations are similar.

  1. Variation in Angular Velocity and Angular Acceleration of a Particle in Rectilinear Motion

    Science.gov (United States)

    Mashood, K. K.; Singh, V. A.

    2012-01-01

    We discuss the angular velocity ([image omitted]) and angular acceleration ([image omitted]) associated with a particle in rectilinear motion with constant acceleration. The discussion was motivated by an observation that students and even teachers have difficulty in ascribing rotational motion concepts to a particle when the trajectory is a…

  2. Optical Angular Momentum

    International Nuclear Information System (INIS)

    For many years the Institute of Physics has published books on hot topics based on a collection of reprints from different journals, including some remarks by the editors of each volume. The book on Optical Angular Momentum, edited by L Allen, S M Barnett and M J Padgett, is a recent addition to the series. It reproduces forty four papers originally published in different journals and in a few cases it provides direct access to works not easily accessible to a web navigator. The collection covers nearly a hundred years of progress in physics, starting from an historic 1909 paper by Poynting, and ending with a 2002 paper by Padgett, Barnett and coworkers on the measurement of the orbital angular momentum of a single photon. The field of optical angular momentum has expanded greatly, creating an interdisciplinary attraction for researchers operating in quantum optics, atomic physics, solid state physics, biophysics and quantum information theory. The development of laser optics, especially the control of single mode sources, has made possible the specific design of optical radiation modes with a high degree of control on the light angular momentum. The editors of this book are important figures in the field of angular momentum, having contributed to key progress in the area. L Allen published an historical paper in 1999, he and M J Padgett (together with M Babiker) produced few years ago a long review article which is today still the most complete basic introduction to the angular momentum of light, while S M Barnett has contributed several high quality papers to the progress of this area of physics. The editors' choice provides an excellent overview to all readers, with papers classified into eight different topics, covering the basic principles of the light and spin and orbital angular momentum, the laboratory tools for creating laser beams carrying orbital angular momentum, the optical forces and torques created by laser beams carrying angular momentum on

  3. High resolution 12CO(2-1) observations of the molecular gas in Centaurus A

    NARCIS (Netherlands)

    Rydbeck, G.; Wiklind, T.; Cameron, M.; Wild, W.; Eckart, A.; Genzel, R.; Rothermel, H.

    1993-01-01

    Observations of (C-12)O(2-1) emission in the dust lane of Centaurus A show that, except for the center region, the overall distribution and kinematics of the molecular gas is consistent with that of ionized gas. Deconvolution of the observed emission reveals (i) a structure agreeing with what would

  4. Average Angular Velocity

    OpenAIRE

    Van Essen, H.

    2004-01-01

    This paper addresses the problem of the separation of rotational and internal motion. It introduces the concept of average angular velocity as the moment of inertia weighted average of particle angular velocities. It extends and elucidates the concept of Jellinek and Li (1989) of separation of the energy of overall rotation in an arbitrary (non-linear) $N$-particle system. It generalizes the so called Koenig's theorem on the two parts of the kinetic energy (center of mass plus internal) to th...

  5. LAMOST observations in the Kepler field. Database of low-resolution spectra

    CERN Document Server

    De Cat, P; Ren, A B; Yang, X H; Shi, J R; Luo, A L; Yang, M; Wang, J L; Zhang, H T; Shi, H M; Zhang, W; Dong, Subo; Catanzaro, G; Corbally, C J; Frasca, A; Gray, R O; Molenda-Zakowicz, J; Uytterhoeven, K; Briquet, M; Bruntt, H; Frandsen, S; Kiss, L; Kurtz, D W; Marconi, M; Niemczura, E; Oestensen, R H; Ripepi, V; Smalley, B; Southworth, J; Szabo, R; Telting, J H; Karoff, C; Aguirre, V Silva; Wu, Y; Hou, Y H; Jin, G; Zhou, X L

    2015-01-01

    The nearly continuous light curves with micromagnitude precision provided by the space mission Kepler are revolutionising our view of pulsating stars. They have revealed a vast sea of low-amplitude pulsation modes that were undetectable from Earth. The long time base of Kepler light curves allows an accurate determination of frequencies and amplitudes of pulsation modes needed for in-depth asteroseismic modeling. However, for an asteroseismic study to be successful, the first estimates of stellar parameters need to be known and they can not be derived from the Kepler photometry itself. The Kepler Input Catalog (KIC) provides values for the effective temperature, the surface gravity and the metallicity, but not always with a sufficient accuracy. Moreover, information on the chemical composition and rotation rate is lacking. We are collecting low-resolution spectra for objects in the Kepler field of view with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST, Xinglong observatory, China). Al...

  6. Angular velocity: a new dimension in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, R.M.; Stephens, F.S.

    1984-08-09

    Nuclei can be studied from their ground states (approx.O(h/2..pi..)) up to angular momenta of order 100 (h/2..pi..), where they are literally pulled apart by centrifugal effects. This range of angular momenta can be viewed as resulting from cranking the nucleus around a rotation axis, where the critical variable is the cranking velocity. The calculated response of nuclei to such an imposed angular velocity corresponds well with recent observations, and includes a rich and varied interplay of collective and single-particle phenomena.

  7. Observation of off-Hugoniot shocked states with ultrafast time resolution

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, M; Crowhurst, J; Bastea, S; Zaug, J

    2010-02-23

    We apply ultrafast single shot interferometry to determine the pressure and density of argon shocked from up to 7.8 GPa static initial pressure in a diamond anvil cell. This method enables the observation of thermodynamic states distinct from those observed in either single shock or isothermal compression experiments, and the observation of ultrafast dynamics in shocked materials. We also present a straightforward method for interpreting ultrafast shock wave data which determines the index of refraction at the shock front, and the particle and shock velocities for shock waves in transparent materials. Based on these methods, we observe shocked thermodynamic states between the room temperature isotherm of argon and the shock adiabat of cryogenic argon at final shock pressures up to 28 GPa.

  8. A radar observation opeator for high-resolution non-hydrostatic numerical weather prevision

    OpenAIRE

    Caumont, O.; V. Ducrocq; Delrieu, G.; M.; Gosset; Parent Du Chatelet, J.; PINTY, JP; Andrieu, H.; Lemaitre, Y.; SCIALOM, G

    2004-01-01

    In order to specify an observation operator for radar reflectivities for the next numerical weather prediction model of Meteo-France, a radar simulator was implemented in the research model Meso-NH. This tool was made up of building blocks that each describe a particular physical process (scattering, beam bending, etc.). Sensitivity experiments were carried out using different configurations for the modules. They allowed to specify an observation operator as a compromise between accuracy and ...

  9. Smoke Dispersion Modeling Over Complex Terrain Using High-Resolution Meteorological Data and Satellite Observations: The FireHub Platform

    Science.gov (United States)

    Solomos, S.; Amiridis, V.; Zanis, P.; Gerasopoulos, E.; Sofiou, F. I.; Herekakis, T.; Brioude, J.; Stohl, A.; Kahn, R. A.; Kontoes, C.

    2015-01-01

    A total number of 20,212 fire hot spots were recorded by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument over Greece during the period 2002e2013. The Fire Radiative Power (FRP) of these events ranged from 10 up to 6000 MW at 1 km resolution, and many of these fire episodes resulted in long-range transport of smoke over distances up to several hundred kilometers. Three different smoke episodes over Greece are analyzed here using real time hot-spot observations from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) satellite instrument as well as from MODIS hot-spots. Simulations of smoke dispersion are performed with the FLEXPART-WRF model and particulate matter emissions are calculated directly from the observed FRP. The modeled smoke plumes are compared with smoke stereo-heights from the Multiangle Imaging Spectroradiometer (MISR) instrument and the sensitivities to atmospheric and modeling parameters are examined. Driving the simulations with high resolution meteorology (4 4 km) and using geostationary satellite data to identify the hot spots allows the description of local scale features that govern smoke dispersion. The long-range transport of smoke is found to be favored over the complex coastline environment of Greece due to the abrupt changes between land and marine planetary boundary layers (PBL) and the decoupling of smoke layers from the surface.

  10. The physics of angular momentum radio

    CERN Document Server

    Thidé, B; Then, H; Someda, C G; Ravanelli, R A

    2014-01-01

    Wireless communications, radio astronomy and other radio science applications are mainly implemented with techniques built on top of the electromagnetic linear momentum (Poynting vector) physical layer. As a supplement and/or alternative to this conventional approach, techniques rooted in the electromagnetic angular momentum physical layer have been advocated, and promising results from proof-of-concept radio communication experiments using angular momentum were recently published. This sparingly exploited physical observable describes the rotational (spinning and orbiting) physical properties of the electromagnetic fields and the rotational dynamics of the pertinent charge and current densities. In order to facilitate the exploitation of angular momentum techniques in real-world implementations, we present a systematic, comprehensive theoretical review of the fundamental physical properties of electromagnetic angular momentum observable. Starting from an overview that puts it into its physical context among ...

  11. First MMS Observations of High Time Resolution 3D Electric and Magnetic fields at the Dayside Magnetopause.

    Science.gov (United States)

    Torbert, R. B.; Burch, J. L.; Russell, C. T.; Magnes, W.; Ergun, R. E.; Lindqvist, P. A.; Le Contel, O.; Vaith, H.; Macri, J.; Myers, S.; Rau, D.; Needell, J.; King, B.; Granoff, M.; Chutter, M.; Dors, I.; Argall, M. R.; Shuster, J. R.; Olsson, G.; Marklund, G. T.; Khotyaintsev, Y. V.; Eriksson, A. I.; Kletzing, C.; Bounds, S. R.; Anderson, B. J.; Baumjohann, W.; Steller, M.; Bromund, K. R.; Le, G.; Nakamura, R.; Strangeway, R. J.; Leinweber, H. K.; Tucker, S.; Westfall, J.; Fischer, D.; Plaschke, F.; Pollock, C. J.; Giles, B. L.; Moore, T. E.; Mauk, B.; Fuselier, S. A.

    2015-12-01

    The electrodynamics at the magnetopause is key to our understanding of ion and electron acceleration within reconnection regions. The Magnetospheric Multiscale (MMS) fleet of four spacecraft was launched into its Phase-1 equatorial orbit of 12 Re apogee specifically to investigate these regions at the Earth's magnetopause. In addition to a comprehensive suite of particle measurements, MMS makes very high time resolution 3D electric and magnetic field measurements of high accuracy using flux-gate, search coil, 3-axis double probe, and electron drift sensors. In September 2015, the MMS fleet will begin to encounter the dusk-side magnetopause in its initial configuration of approximately 160 km separation, allowing investigation of the spatial and temporal characteristics of important electrodynamics during reconnection. Using these field and particle measurements, we present first observations of 3D magnetic and electric fields (including their parallel component), and inferred current sheets, during active magnetopause crossings using the highest time resolution data available on MMS.

  12. An Observation of the Soft X-ray Diffuse Background with High Energy Resolution Micro-calorimeters

    Science.gov (United States)

    Galeazzi, M.; Almy, R.; Apodaca, E.; Bergmann Tiest, W.; Deiker, S.; Lesser, A.; McCammon, D.; Sanders, W. T.; Figueroa, E.; Kelley, R. L.; Porter, F. S.; Stahle, C. K.; Szymkowiak, A. E.

    2000-10-01

    A high spectral resolution observation of the diffuse X-ray background in the energy range 30-1000 eV has been performed using an array of thirty-six cryogenic micro-calorimeters flown on a sounding rocket. The effective area of the detectors is 0.308 cm2 and a composite spectrum of ~1 steradian of the background centered at l=90o, b=+60o was obtained with a net energy resolution of ~9 eV FWHM. The target area includes bright 1/4 keV regions, but avoids Loop I and the North Polar Spur. With 100 s of on-target observation it has been possible to clearly detect lines of C VI, O VII, and O VIII with intensities of 5.4 +/- 2.3, 5.0 +/- 0.9, and 1.6 +/- 0.4 photons cm2 s-1 sr-1 respectively. The oxygen lines alone account for a majority of the diffuse background observed in the ROSAT R4 band that is not due to extragalactic discrete sources. Upper limits on Fe lines appear inconsistent with normal abundances. The interpretation of the spectrum below 300 eV is still under investigation. Preliminary results on emission from the local hot bubble and an observation on the possible existence of interacting dark matter will be presented.

  13. High time resolution observations of HF cross-modulation within the D region ionosphere

    Science.gov (United States)

    Langston, J.; Moore, R. C.

    2013-05-01

    High-frequency cross-modulation is employed to probe the D region ionosphere during HF heating experiments at the High-frequency Active Auroral Research Program (HAARP) observatory. We have adapted Fejer's well-known cross-modulation probing method to determine the extent of ionospheric conductivity modification in the D region ionosphere with high (5 μsec) time resolution. We demonstrate that the method can be used to analyze D region conductivity changes produced by HF heating both during the initial stages of heating and under steady state conditions. The sequence of CW probe pulses used allow the separation of cross-modulation effects that occur as the probe pulse propagates upward and downward through the heated region. We discuss how this probing technique can be applied to benefit ELF/VLF wave generation experiments and ionospheric irregularities experiments at higher altitudes. We demonstrate that large phase changes equivalent to Doppler shift velocities >60 km/s can be imposed on HF waves propagating through the heated D region ionosphere.

  14. Observations of movement dynamics of flying insects using high resolution lidar.

    Science.gov (United States)

    Kirkeby, Carsten; Wellenreuther, Maren; Brydegaard, Mikkel

    2016-01-01

    Insects are fundamental to ecosystem functioning and biodiversity, yet the study of insect movement, dispersal and activity patterns remains a challenge. Here we present results from a novel high resolution laser-radar (lidar) system for quantifying flying insect abundance recorded during one summer night in Sweden. We compare lidar recordings with data from a light trap deployed alongside the lidar. A total of 22808 insect were recorded, and the relative temporal quantities measured matched the quantities recorded with the light trap within a radius of 5 m. Lidar records showed that small insects (wing size 2.5 mm(2) in cross-section) were most abundant near the lidar beam before 22:00 and then moved towards the light trap between 22:00 and 23:30. We could distinguish three insect clusters based on morphology and found that two contained insects predominantly recorded above the field in the evening, whereas the third was formed by insects near the forest at around 21:30. Together our results demonstrate the capability of lidar for distinguishing different types of insect during flight and quantifying their movements. PMID:27375089

  15. NGC 4102: High Resolution Infrared Observations of a Nuclear Starburst Ring

    CERN Document Server

    Beck, Sara C; Turner, Jean L

    2010-01-01

    The composite galaxy NGC 4102 hosts a LINER nucleus and a starburst. We mapped NGC 4102 in the 12.8 micron line of [NeII], using the echelon spectrometer TEXES on the NASA IRTF, to obtain a data cube with 1.5" spatial and 25 km/s spectral, resolution. Combining near-infrared, radio, and the [NeII] data shows that the extinction to the starburst is substantial, more than 2 magnitudes at K band, and that the neon abundance is less than half solar. We find that the star formation in the nuclear region is confined to a rotating ring or disk of 4.3" (~300 pc) diameter, inside the Inner Lindblad Resonance. This region is an intense concentration of mass, with a dynamical mass of ~3 x 10^9 solar masses, and of star formation. The young stars in the ring produce the [NeII] flux reported by Spitzer for the entire galaxy. The mysterious blue component of line emission detected in the near-infrared is also seen in [NeII]; it is not a normal AGN outflow.

  16. ALMA high spatial resolution observations of the dense molecular region of NGC 6302

    CERN Document Server

    Santander-García, M; Alcolea, J; Castro-Carrizo, A; Sánchez-Contreras, C; Quintana-Lacaci, G; Corradi, R L M; Neri, R

    2016-01-01

    The mechanism behind the shaping of bipolar planetary nebulae is still poorly understood. Accurately tracing the molecule-rich equatorial regions of post-AGB stars can give valuable insight into the ejection mechanisms at work. We investigate the physical conditions, structure and velocity field of the dense molecular region of the planetary nebula NGC 6302 by means of ALMA band 7 interferometric maps. The high spatial resolution of the $^{12}$CO and $^{13}$CO J=3-2 ALMA data allows for an analysis of the geometry of the ejecta in unprecedented detail. We built a spatio-kinematical model of the molecular region with the software SHAPE and performed detailed non-LTE calculations of excitation and radiative transfer with the SHAPEMOL plug-in. We find that the molecular region consists of a massive ring out of which a system of fragments of lobe walls emerge and enclose the base of the lobes visible in the optical. The general properties of this region are in agreement with previous works, although the much grea...

  17. Observations of movement dynamics of flying insects using high resolution lidar

    Science.gov (United States)

    Kirkeby, Carsten; Wellenreuther, Maren; Brydegaard, Mikkel

    2016-07-01

    Insects are fundamental to ecosystem functioning and biodiversity, yet the study of insect movement, dispersal and activity patterns remains a challenge. Here we present results from a novel high resolution laser-radar (lidar) system for quantifying flying insect abundance recorded during one summer night in Sweden. We compare lidar recordings with data from a light trap deployed alongside the lidar. A total of 22808 insect were recorded, and the relative temporal quantities measured matched the quantities recorded with the light trap within a radius of 5 m. Lidar records showed that small insects (wing size insects (wing size >2.5 mm2 in cross-section) were most abundant near the lidar beam before 22:00 and then moved towards the light trap between 22:00 and 23:30. We could distinguish three insect clusters based on morphology and found that two contained insects predominantly recorded above the field in the evening, whereas the third was formed by insects near the forest at around 21:30. Together our results demonstrate the capability of lidar for distinguishing different types of insect during flight and quantifying their movements.

  18. Active region fine structure observed at 0.08 arcsec resolution

    CERN Document Server

    Schlichenmaier, R; Hoch, S; Soltau, D; Berkefeld, T; Schmidt, D; Schmidt, W; Denker, C; Balthasar, H; Hofmann, A; Strassmeier, K G; Staude, J; Feller, A; Lagg, A; Solanki, S K; Collados, M; Sigwarth, M; Volkmer, R; Waldmann, T; Kneer, F; Nicklas, H; Sobotka, M

    2016-01-01

    The various mechanisms of magneto-convective energy transport determines the structure of sunspots and active regions. We characterise the appearance of light bridges and other fine structure details and elaborate on their magneto-convective nature. We present speckle-reconstructed images taken with the broad band imager at the 1.5 m GREGOR telescope in the 486nm and 589nm bands. We estimate the spatial resolution from the noise characteristics of the image bursts and obtain 0.08" at 589nm. We describe structure details in individual best images as well as the temporal evolution of selected features. We find branched dark lanes extending along thin (~1") light bridges in sunspots at various heliocentric angles. In thick (~2") light bridges the branches are disconnected from the central lane and have a `Y' shape with a bright grain toward the umbra. The images reveal that light bridges exist on varying intensity levels and that their small-scale features evolve on time scales of minutes. Faint light bridges sh...

  19. Ozone Profile Retrieval from Satellite Observation Using High Spectral Resolution Infrared Sounding Instrument

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper presents a preliminary result on the retrieval of atmospheric ozone profiles using an im proved regression technique and utilizing the data from the Atmospheric InfraRed Sounder (AIRS), a hyper-spectral instrument expected to be flown on the EOS-AQUA platform in 2002. Simulated AIRS spectra were used to study the sensitivity of AIRS radiance on the tropospheric and stratospheric ozone changes, and to study the impact of various channel combinations on the ozone profile retrieval. Sensitivity study results indicate that the AIRS high resolution spectral channels between the wavenumber 650- 800 cm-1 provide very useful information to accurately retrieve tropospheric and stratospheric ozone pro files. Eigenvector decomposition of AIRS spectra indicate that no more than 100 eigenvectors are needed to retrieve very accurate ozone profiles. The accuracy of the retrieved atmospheric ozone profile from the pres ent technique and utilizing the AIRS data was compared with the accuracy obtained from current Advanced TIROS Operational Vertical Sounder (ATOVS) data aboard National Oceanic and Atmospheric Admini stration (NOAA) satellites. As expected, a comparison of retrieval results confirms that the ozone profile re trieved with the AIRS data is superior to that of ATOVS.

  20. SPAM: A data reduction recipe for high-resolution, low-frequency radio-interferometric observations

    CERN Document Server

    Intema, H T

    2014-01-01

    High-resolution astronomical imaging at sub-GHz radio frequencies has been available for more than 15 years, with the VLA at 74 and 330 MHz, and the GMRT at 150, 240, 330 and 610 MHz. Recent developments include wide-bandwidth upgrades for VLA and GMRT, and commissioning of the aperture-array-based, multi-beam telescope LOFAR. A common feature of these telescopes is the necessity to deconvolve the very many detectable sources within their wide fields-of-view and beyond. This is complicated by gain variations in the radio signal path that depend on viewing direction. One such example is phase errors due to the ionosphere. Here I discuss the inner workings of SPAM, a set of AIPS-based data reduction scripts in Python that includes direction-dependent calibration and imaging. Since its first version in 2008, SPAM has been applied to many GMRT data sets at various frequencies. Many valuable lessons were learned, and translated into various SPAM software modifications. Nowadays, semi-automated SPAM data reduction ...

  1. Travelling ionospheric disturbances (TIDs) and tides observed by a super-resolution HF direction finding system

    Science.gov (United States)

    Hawlitschka, S.

    2006-02-01

    In this paper, the occurrence of tides, large-scale travelling ionospheric disturbances (LSTIDs) and medium-scale travelling ionospheric disturbances (MSTIDs) at mid-latitudes is investigated with respect to different geomagnetic conditions described by the K-index. As measurement system a high-frequency (HF) super-resolution direction-finding system has been used. An ionospherically refracted HF wave is affected by tilts and wave-like variations of the height of the ionosphere and its propagation is deviated from the great circle path. The temporal evolution of the deviation of the measured bearing and the respective power spectrum has been analyzed to detect the occurrence of TIDs and tides. During dusk and dawn, expected deviations of the bearing due to tides were found in agreement with the gradient of TEC in the respective TECmaps. At daytime, LSTIDs could generally be related to magnetic storms. Rarely they occurred as special events when the magnetosphere was extremely quiet (KK-index. MSTIDs passed in all measurements during all geomagnetic conditions at any time of the day or night. The power spectrum of the temporal evolution of the bearing showed characteristic shapes depending on whether LSTIDs were present or not. Parameters are defined which detect the occurrence of LSTIDs in the power spectrum.

  2. Soil moisture-runoff relation at the catchment scale as observed with coarse resolution microwave remote sensing

    Directory of Open Access Journals (Sweden)

    K. Scipal

    2005-01-01

    Full Text Available Microwave remote sensing offers emerging capabilities to monitor global hydrological processes. Instruments like the two dedicated soil moisture missions SMOS and HYDROS or the Advanced Scatterometer onboard METOP will provide a flow of coarse resolution microwave data, suited for macro-scale applications. Only recently, the scatterometer onboard of the European Remote Sensing Satellite, which is the precursor instrument of the Advanced Scatterometer, has been used successfully to derive soil moisture information at global scale with a spatial resolution of 50 km. Concepts of how to integrate macro-scale soil moisture data in hydrologic models are however still vague. In fact, the coarse resolution of the data provided by microwave radiometers and scatterometers is often considered to impede hydrological applications. Nevertheless, even if most hydrologic models are run at much finer scales, radiometers and scatterometers allow monitoring of atmosphere-induced changes in regional soil moisture patterns. This may prove to be valuable information for modelling hydrological processes in large river basins (>10 000 km2. In this paper, ERS scatterometer derived soil moisture products are compared to measured runoff of the Zambezi River in south-eastern Africa for several years (1992–2000. This comparison serves as one of the first demonstrations that there is hydrologic relevant information in coarse resolution satellite data. The observed high correlations between basin-averaged soil moisture and runoff time series (R2>0.85 demonstrate that the seasonal change from low runoff during the dry season to high runoff during the wet season is well captured by the ERS scatterometer. It can be expected that the high correlations are to a certain degree predetermined by the pronounced inter-annual cycle observed in the discharge behaviour of the Zambezi. To quantify this effect, time series of anomalies have been compared. This analysis showed that

  3. Dynamic properties along the neutral line of a delta spot inferred from high-resolution observations

    Energy Technology Data Exchange (ETDEWEB)

    Cristaldi, A.; Guglielmino, S. L.; Zuccarello, F.; Falco, M. [Dipartimento di Fisica e Astronomia-Sezione Astrofisica, Università di Catania, via S. Sofia 78, I-95123 Catania (Italy); Romano, P. [INAF-Osservatorio Astrofisico di Catania, via S. Sofia 78, I-95123 Catania (Italy); Rouppe van der Voort, L. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); De la Cruz Rodríguez, J. [Institute for Solar Physics, Department of Astronomy, Stockholm University, Albanova University Center, SE-10691 Stockholm (Sweden); Ermolli, I. [INAF-Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monte Porzio Catone (Italy); Criscuoli, S. [NSO-National Solar Observatory, Sacramento Peak Box 62, Sunspot, NM 88349 (United States)

    2014-07-10

    Delta (δ) spots are complex magnetic configurations of sunspots characterized by umbrae of opposite polarity sharing a common penumbra. In order to investigate the fine structure of the region separating the two magnetic polarities of a δ spot, we studied the morphology, the magnetic configuration, and the velocity field in such a region using observations of active region (AR) NOAA 11267 obtained with the CRisp Imaging SpectroPolarimeter (CRISP) at the Swedish Solar Telescope on 2011 August 6. The analysis of CRISP data shows upflows and downflows of ∼ ± 3 km s{sup –1} in proximity of the δ spot polarity inversion line (PIL), and horizontal motions along the PIL of the order of ∼1 km s{sup –1}. The results obtained from the SIR inversion of CRISP data also indicate that the transverse magnetic field in the brighter region separating the two opposite magnetic polarities of the δ spot is tilted about ∼45° with respect to the PIL. Solar Dynamics Observatory/Helioseismic and Magnetic Imager observations confirm the presence of motions of ∼ ± 3 km s{sup –1} in proximity of the PIL, which were observed to last 15 hr. From the data analyzed, we conclude that the steady, persistent, and subsonic motions observed along the δ spot PIL can be interpreted as being due to Evershed flows occurring in the penumbral filaments that show a curved, wrapped configuration. The fluting of the penumbral filaments and their bending, continuously increased by the approaching motion of the negative umbra toward the positive one, give rise to the complex line-of-sight velocity maps that we observed.

  4. GALEX Observations of Diffuse UV Radiation at High Spatial Resolution from the Sandage Nebulosity

    OpenAIRE

    Sujatha, N. V.; Murthy, Jayant; Karnataki, Abhay; Henry, Richard Conn; Bianchi, Luciana

    2008-01-01

    Using the GALEX ultraviolet imagers we have observed a region of nebulosity first identified as starlight scattered by interstellar dust by Sandage (1976). Apart from airglow and zodiacal emission, we have found a diffuse UV background of between 500 and 800 \\phunit in both the \\galex FUV (1350 -- 1750 \\AA) and NUV (1750 -- 2850 \\AA). Of this emission, up to 250 \\phunit is due to \\htwo fluorescent emission in the FUV band; the remainder is consistent with scattering from interstellar dust. We...

  5. Fast-response high-resolution temperature sonde aimed at contamination-free profile observations

    Directory of Open Access Journals (Sweden)

    K. Shimizu

    2010-12-01

    Full Text Available An innovative temperature sonde, equipped with an ultra thin tungsten wire (10 μm in diameter, has been developed to meet the scientific requirements suitable for climate change research. The response time, shorter than 40 ms achieved at the altitude of 30 km, enables the temperature observations with the radiation correction of less than 0.5 K in the whole observation range. Test flights during the development stage reveal significant artificial perturbations in the observed temperature profiles. They are identified as the thermal contamination arising primarily from radiosonde package box with some additional effect from the launching balloon. The modification of the sensor mount successfully removed the contribution from the former effect. On the other hand, some filtering procedure need to be applied to remove the latter, although the use of a long suspension line will be effective. There remain unavoidable small fluctuations (less than 0.4 K that are brought about by the solid angle modulation of the illumination against the sensor body in the daytime. While conventional radiation correction may unintentionally have taken a part of such contaminations into account, they may not be properly corrected in existing radiosonde data, as the origin of errors has not been identified. Our tungsten sonde that scarcely relies on the ambiguous correction procedures will be ideal for serving as a kind of an international reference.

  6. Fast-response high-resolution temperature sonde aimed at contamination-free profile observations

    Directory of Open Access Journals (Sweden)

    K. Shimizu

    2010-08-01

    Full Text Available An innovative temperature sonde, equipped with an ultra thin tungsten wire, has been developed to meet the scientific requirements suitable for climate change research. The response time, shorter than 40 ms achieved at the altitude of 30 km, enables the temperature observations with the radiation correction of less than 0.4 K in the whole observation range. Test flights during the development stage reveal significant artificial perturbations in the observed temperature profiles. They are identified as the thermal contamination arising primarily from radiosonde package box with some additional effect from the launching balloon. The modification of the sensor mount successfully removed the contribution from the former effect. On the other hand, some filtering procedure need to be applied to remove the latter, although the use of a long suspension line will be effective to reduce the noise. There remain unavoidable small fluctuations (less than 0.4 K that are brought about by the solid angle modulation of the illumination against the sensor body in the daytime. While conventional radiation correction may unintentionally have taken a part of such contaminations into account, they may not be properly corrected in existing radiosonde data, as the origin of errors has not been identified. Our tungsten sonde that scarcely relies on the ambiguous correction procedures is ideal for serving as an international reference.

  7. High-resolution observations of SN 2001gd in NGC 5033

    CERN Document Server

    Pérez-Torres, M A; Marcaide, J M; Guerrero, M A; Lundqvist, P; Shapiro, I I; Ros, E; Lara, L; Guirado, J C; Weiler, K W; Stockdale, C J; Perez-Torres, Miguel A.

    2005-01-01

    We report on 8.4 GHz VLBI observations of SN2001gd in the spiral galaxy NGC5033 made on 26 June 2002 and 8 April 2003. Our data nominally suggests a relatively strong deceleration for the expansion of SN2001gd, but we cannot dismiss the possibility of a free supernova expansion. From our VLBI observations on 8 April 2003, we inferred a minimum total energy in relativistic particles and magnetic fields in the supernova shell of E_min =(0.3-14) 10^{47} ergs, and a corresponding equipartition average magnetic field of B_min = (50--350) mG. We also present multiwavelength VLA measurements of SN2001gd, which are well fit by an optically thin, synchrotron spectrum, partially absorbed by thermal plasma. We obtain a supernova flux density of (1.02 +/- 0.05) mJy at the observing frequency of 8.4 GHz for the second epoch, which results in an isotropic radio luminosity of (6.0 +/- 0.3) * 10^{36} ergs between 1.4 and 43.3 GHz, at an adopted distance of 13.1 Mpc. Finally, we report on an XMM-Newton X-ray detection of SN20...

  8. Observation of directional exitance and retrieval of soil and foliage component temperatures: case studies with bi-angular ATSR radiometric data

    NARCIS (Netherlands)

    Jia, L.; Menenti, M.; Su, Z.; Li, Z.L.

    2002-01-01

    A mixture of foliage and soil is thermally heterogeneous, so the radiometric temperature of the mixture depends on view direction. A simple linear mixture model was applied to estimate the component surface temperatures of foliage and soil temperatures. The potential of directional observations in t

  9. Achromatic orbital angular momentum generator

    International Nuclear Information System (INIS)

    We describe a novel approach for generating light beams that carry orbital angular momentum (OAM) by means of total internal reflection in an isotropic medium. A continuous space-varying cylindrically symmetric reflector, in the form of two glued hollow axicons, is used to introduce a nonuniform rotation of polarization into a linearly polarized input beam. This device acts as a full spin-to-orbital angular momentum convertor. It functions by switching the helicity of the incoming beam's polarization, and by conservation of total angular momentum thereby generates a well-defined value of OAM. Our device is broadband, since the phase shift due to total internal reflection is nearly independent of wavelength. We verify the broad-band behaviour by measuring the conversion efficiency of the device for three different wavelengths corresponding to the RGB colours, red, green and blue. An average conversion efficiency of 95% for these three different wavelengths is observed. This device may find applications in imaging from micro- to astronomical systems where a white vortex beam is needed. (paper)

  10. Oxygen lines in solar granulation. I. Testing 3D models against new observations with high spatial and spectral resolution

    CERN Document Server

    Pereira, Tiago M D; Asplund, Martin

    2009-01-01

    Aims: we seek to provide additional tests of the line formation of theoretical 3D solar photosphere models. In particular, we set out to test the spatially-resolved line formation at several viewing angles, from the solar disk-centre to the limb and focusing on atomic oxygen lines. The purpose of these tests is to provide additional information on whether the 3D model is suitable to derive the solar oxygen abundance. We also aim to empirically constrain the NLTE recipes for neutral hydrogen collisions, using the spatially-resolved observations of the OI 777 nm lines. Methods: using the Swedish 1-m Solar Telescope we obtained high-spatial-resolution observations of five atomic oxygen lines (along with lines for other species) for five positions on the solar disk. These observations have a high spatial and spectral resolution, and a continuum intensity contrast up to 9% at 615 nm. The theoretical line profiles were computed using the 3D model, with a full 3D NLTE treatment for oxygen and LTE for the other lines...

  11. The NASA Earth Observing System (EOS) Terra and Aqua Mission Moderate Resolution Imaging Spectroradiometer (MODIS: Science and Applications

    Science.gov (United States)

    Salomnson, Vincent V.

    2003-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra Mission began to produce data in February 2000. The EOS Aqua mission was launched successfully May 4,2002 with another MODIS on it and "first light" observations occurred on June 24,2002. The Terra MODIS is in a sun-synchronous orbit going north to south in the daylight portion of the orbit crossing the equator at about 1030 hours local time. The Aqua spacecraft operates in a sun-synchronous orbit going south to north in the daylight portion of the orbit crossing the equator at approximately 1330 hours local time. The spacecraft, instrument, and data systems for both MODIS instruments are performing well and are producing a wide variety of data products useful for scientific and applications studies in relatively consistent fashion extending from November 2000 to the present. Within the approximately 40 MODIS data products, several are new and represent powerful and exciting capabilities such the ability to provide observations over the globe of fire occurrences, microphysical properties of clouds and sun-stimulated fluorescence from phytoplankton in the surface waters of the ocean. The remainder of the MODIS products exceeds or, at a minimum, matches the capabilities of products from heritage sensors such as, for example, the Advanced Very High Resolution Radiometer (AVHRR). Efforts are underway to provide data sets for the greater Earth science community and to improve access to these products at the various Distributed Active Archive Centers (DAAC's) or through Direct Broadcast (DB) stations.

  12. Creating high-harmonic beams with controlled orbital angular momentum.

    Science.gov (United States)

    Gariepy, Genevieve; Leach, Jonathan; Kim, Kyung Taec; Hammond, T J; Frumker, E; Boyd, Robert W; Corkum, P B

    2014-10-10

    A beam with an angular-dependant phase Φ = ℓϕ about the beam axis carries an orbital angular momentum of ℓℏ per photon. Such beams are exploited to provide superresolution in microscopy. Creating extreme ultraviolet or soft-x-ray beams with controllable orbital angular momentum is a critical step towards extending superresolution to much higher spatial resolution. We show that orbital angular momentum is conserved during high-harmonic generation. Experimentally, we use a fundamental beam with |ℓ| = 1 and interferometrically determine that the harmonics each have orbital angular momentum equal to their harmonic number. Theoretically, we show how any small value of orbital angular momentum can be coupled to any harmonic in a controlled manner. Our results open a route to microscopy on the molecular, or even submolecular, scale.

  13. Metamaterial Broadband Angular Selectivity

    CERN Document Server

    Shen, Yichen; Wang, Zhiyu; Wang, Li; Celanovic, Ivan; Ran, Lixin; Joannopoulos, John D; Soljacic, Marin

    2014-01-01

    We demonstrate how broadband angular selectivity can be achieved with stacks of one-dimensionally periodic photonic crystals, each consisting of alternating isotropic layers and effective anisotropic layers, where each effective anisotropic layer is constructed from a multilayered metamaterial. We show that by simply changing the structure of the metamaterials, the selective angle can be tuned to a broad range of angles; and, by increasing the number of stacks, the angular transmission window can be made as narrow as desired. As a proof of principle, we realize the idea experimentally in the microwave regime. The angular selectivity and tunability we report here can have various applications such as in directional control of electromagnetic emitters and detectors.

  14. Fluidic angular velocity sensor

    Science.gov (United States)

    Berdahl, C. M. (Inventor)

    1986-01-01

    A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.

  15. Recognition processes at a functionalized lipid surface observed with molecular resolution

    DEFF Research Database (Denmark)

    Vaknin, D.; Als-Nielsen, J.; Piepenstock, M.;

    1991-01-01

    The specific binding of proteins to functionalized lipid monolayers on aqueous subphases was characterized by neutron reflectivity and fluorescence microscopy measurements. Due to the high affinity and high specificity of their noncovalent interaction, streptavidin (SA) and biotin (vitamin H) were...... with a monolayer of a biotinylated lipid in situ. Refinement of the reflectivity data and independent fluorescence microscopic observation of the interface using FITC-labeled SA showed that the protein forms macroscopically homogeneous (and presumably crystalline) domains covering a large portion of the surface...... investigation of molecular recognition processes in protein/lipid model systems....

  16. Alternate conformations observed in catalytic serine of Bacillus subtilis lipase determined at 1.3 A resolution.

    Science.gov (United States)

    Kawasaki, Kosei; Kondo, Hidemasa; Suzuki, Mamoru; Ohgiya, Satoru; Tsuda, Sakae

    2002-07-01

    Bacillus subtilis extracellular lipase (BsL) has an exceptionally low molecular weight (19.4 kDa) for a member of the lipase family. A crystallographic study was performed on BsL in order to design and produce mutant BsL that will be more suitable for industrial uses based on analysis of the three-dimensional structure. Recently, the crystal structure of BsL has been determined at 1.5 A resolution [van Pouderoyen et al. (2001). J. Mol. Biol. 309, 215-226]. In the present study, a new crystal form of BsL which provides diffraction data to higher resolution was obtained and its structure was determined at 1.3 A using the MAD method. It was found that the active-site residue Ser77 has alternate side-chain conformations. The O(gamma) atom of the first conformer forms a hydrogen bond to the N(epsilon) atom of His155, a member of the catalytic triad. In contrast, the second conformer is constructed with a hydrogen bond to the side-chain atom of the adjacent His76. These two conformers presumably correspond to the active and inactive states, respectively. Similar alternate conformations in the catalytic serine residue have been observed in Fusarium solani cutinase determined at 1.0 A resolution and Penicillium purpurogenum acetylxylan esterase at 0.9 A resolution. In addition, a glycerol molecule, which was used as a cryoprotectant, is found to be located in the active site. On the basis of these results, a model for substrate binding in the reaction-intermediate state of BsL is proposed. PMID:12077437

  17. Mountains on Io: High-resolution Galileo observations, initial interpretations, and formation models

    Science.gov (United States)

    Turtle, E.P.; Jaeger, W.L.; Keszthelyi, L.P.; McEwen, A.S.; Milazzo, M.; Moore, J.; Phillips, C.B.; Radebaugh, J.; Simonelli, D.; Chuang, F.; Schuster, P.; Alexander, D.D.A.; Capraro, K.; Chang, S.-H.; Chen, A.C.; Clark, J.; Conner, D.L.; Culver, A.; Handley, T.H.; Jensen, D.N.; Knight, D.D.; LaVoie, S.K.; McAuley, M.; Mego, V.; Montoya, O.; Mortensen, H.B.; Noland, S.J.; Patel, R.R.; Pauro, T.M.; Stanley, C.L.; Steinwand, D.J.; Thaller, T.F.; Woncik, P.J.; Yagi, G.M.; Yoshimizu, J.R.; Alvarez Del Castillo, E.M.; Beyer, R.; Branston, D.; Fishburn, M.B.; Muller, Birgit; Ragan, R.; Samarasinha, N.; Anger, C.D.; Cunningham, C.; Little, B.; Arriola, S.; Carr, M.H.; Asphaug, E.; Morrison, D.; Rages, K.; Banfield, D.; Bell, M.; Burns, J.A.; Carcich, B.; Clark, B.; Currier, N.; Dauber, I.; Gierasch, P.J.; Helfenstein, P.; Mann, M.; Othman, O.; Rossier, L.; Solomon, N.; Sullivan, R.; Thomas, P.C.; Veverka, J.; Becker, T.; Edwards, K.; Gaddis, L.; Kirk, R.; Lee, E.; Rosanova, T.; Sucharski, R.M.; Beebe, R.F.; Simon, A.; Belton, M.J.S.; Bender, K.; Fagents, S.; Figueredo, P.; Greeley, R.; Homan, K.; Kadel, S.; Kerr, J.; Klemaszewski, J.; Lo, E.; Schwarz, W.; Williams, D.; Williams, K.; Bierhaus, B.; Brooks, S.; Chapman, C.R.; Merline, B.; Keller, J.; Tamblyn, P.; Bouchez, A.; Dyundian, U.; Ingersoll, A.P.; Showman, A.; Spitale, J.; Stewart, S.; Vasavada, A.; Breneman, H.H.; Cunningham, W.F.; Johnson, T.V.; Jones, T.J.; Kaufman, J.M.; Klaasen, K.P.; Levanas, G.; Magee, K.P.; Meredith, M.K.; Orton, G.S.; Senske, D.A.; West, A.; Winther, D.; Collins, G.; Fripp, W.J.; Head, J. W.; Pappalardo, R.; Pratt, S.; Prockter, L.; Spaun, N.; Colvin, T.; Davies, M.; DeJong, E.M.; Hall, J.; Suzuki, S.; Gorjian, Z.; Denk, T.; Giese, B.; Koehler, U.; Neukum, G.; Oberst, J.; Roatsch, T.; Tost, W.; Wagner, R.; Dieter, N.; Durda, D.; Geissler, P.; Greenberg, R.J.; Hoppa, G.; Plassman, J.; Tufts, R.; Fanale, F.P.; Granahan, J.C.

    2001-01-01

    During three close flybys in late 1999 and early 2000 the Galileo spacecraft ac-quired new observations of the mountains that tower above Io's surface. These images have revealed surprising variety in the mountains' morphologies. They range from jagged peaks several kilometers high to lower, rounded structures. Some are very smooth, others are covered by numerous parallel ridges. Many mountains have margins that are collapsing outward in large landslides or series of slump blocks, but a few have steep, scalloped scarps. From these observations we can gain insight into the structure and material properties of Io's crust as well as into the erosional processes acting on Io. We have also investigated formation mechanisms proposed for these structures using finite-element analysis. Mountain formation might be initiated by global compression due to the high rate of global subsidence associated with Io's high resurfacing rate; however, our models demonstrate that this hypothesis lacks a mechanism for isolating the mountains. The large fraction (???40%) of mountains that are associated with paterae suggests that in some cases these features are tectonically related. Therefore we have also simulated the stresses induced in Io's crust by a combination of a thermal upwelling in the mantle with global lithospheric compression and have shown that this can focus compressional stresses. If this mechanism is responsible for some of Io's mountains, it could also explain the common association of mountains with paterae. Copyright 2001 by the American Geophysical Union.

  18. The solar chromosphere observed at 1 Hz and 0."2 resolution

    CERN Document Server

    Lipartito, Isabel; Reardon, Kevin; Cauzzi, Gianna

    2014-01-01

    We recently reported extremely rapid changes in chromospheric fine structure observed using the IBIS instrument in the red wing of H alpha. Here, we examine data obtained during the same observing run (August 7 2010), of a mature active region NOAA 11094. We analyze more IBIS data including wavelength scans and data from the Solar Dynamics Observatory, all from within a 30 minute interval. Using a slab radiative transfer model, we investigate the physical nature of fibrils in terms of tube-like vs. sheet-like structures. Principal Component Analysis shows that the very rapid H alpha variations in the line wings depend mostly on changes of line width and line shift, but for Ca II 854.2 the variations are dominated by changes in column densities. The tube model must be rejected for a small but significant class of fibrils undergoing very rapid changes. If our wing data arise from the same structures leading to "type II spicules", our analysis calls into question much recent work. Instead the data do not reject ...

  19. The solar chromosphere observed at 1 Hz and 0.''2 resolution

    Energy Technology Data Exchange (ETDEWEB)

    Lipartito, Isabel [Smith College, 99 Paradise Road, Northampton, MA 01063 (United States); Judge, Philip G. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Reardon, Kevin [National Solar Observatory/Sacramento Peak, P.O. Box 62, Sunspot, NM 88349 (United States); Cauzzi, Gianna, E-mail: iliparti@smith.edu, E-mail: judge@ucar.edu, E-mail: kreardon@arcetri.astro.it, E-mail: gcauzzi@arcetri.astro.it [INAF-Ossevatorio Astrofisico di Arcetri, I-50125 Firenze (Italy)

    2014-04-20

    We recently reported extremely rapid changes in chromospheric fine structure observed using the IBIS instrument in the red wing of Hα. Here, we examine data obtained during the same observing run (2010 August 7), of a mature active region NOAA 11094. We analyze more IBIS data including wavelength scans and data from the Solar Dynamics Observatory, all from within a 30 minute interval. Using a slab radiative transfer model, we investigate the physical nature of fibrils in terms of tube-like versus sheet-like structures. Principal Component Analysis shows that the very rapid Hα variations in the line wings depend mostly on changes of line width and line shift, but for Ca II 854.2 the variations are dominated by changes in column densities. The tube model must be rejected for a small but significant class of fibrils undergoing very rapid changes. If our wing data arise from the same structures leading to 'type II spicules', our analysis calls into question much recent work. Instead, the data do not reject the hypothesis that some fibrils are optical superpositions of plasma collected into sheets. We review how Parker's theory of tangential discontinuities naturally leads to plasma collecting into sheets, and show that the sheet picture is falsifiable. Chromospheric fine structures seem to be populated by both tubes and sheets. We assess the merits of spectral imaging versus slit spectroscopy for future studies.

  20. Aircraft-based observations and high-resolution simulations of an Icelandic dust storm

    Directory of Open Access Journals (Sweden)

    A.-M. Blechschmidt

    2012-11-01

    Full Text Available The first aircraft-based observations of an Icelandic dust storm are presented. The measurements were carried out over the ocean near Iceland's south coast in February 2007. This dust event occurred in conjunction with an easterly barrier jet of more than 30 m s−1. The aircraft measurements show high particle mass mixing ratios in an area of low wind speeds in the wake of Iceland near the coast, decreasing abruptly towards the jet. Simulations from the Weather Research and Forecasting Model coupled with Chemistry (WRF/Chem indicate that the measured high mass mixing ratios and observed low visibility inside the wake are due to dust transported from Icelandic sand fields towards the ocean. This is confirmed by meteorological station data. Glacial outwash terrains located near the Mýrdalsjökull glacier are among simulated dust sources. Sea salt aerosols produced by the impact of strong winds on the ocean surface started to dominate as the aircraft flew away from Iceland into the jet. The present results support recent studies which suggest that Icelandic deserts should be considered as important dust sources in global and regional climate models.

  1. Aircraft-based observations and high-resolution simulations of an Icelandic dust storm

    Directory of Open Access Journals (Sweden)

    A.-M. Blechschmidt

    2012-03-01

    Full Text Available The first aircraft-based observations of an Icelandic dust storm are presented. The measurements were carried out over the ocean near Iceland's south coast in February 2007. This dust event occurred in conjunction with an easterly barrier jet of more than 30 m s−1. The aircraft measurements show high particle mass mixing ratios in an area of low wind speeds in the wake of Iceland near the coast, decreasing abruptly towards the jet. Simulations from the Weather Research and Forecasting Model coupled with Chemistry (WRF/Chem indicate that the measured high mass mixing ratios and observed low visibility inside the wake are due to dust transported from Icelandic sand fields towards the ocean. This is confirmed by meteorological station data. Primary dust sources are glacial outwash terrains located near the Mýrdalsjökull glacier. Sea salt aerosols produced by the impact of strong winds on the ocean surface started to dominate as the aircraft flew away from Iceland into the jet. The present results support recent studies which suggest that Icelandic deserts should be considered as important dust sources in global and regional climate models.

  2. Average Angular Velocity

    CERN Document Server

    Essén, H

    2003-01-01

    This paper addresses the problem of the separation of rotational and internal motion. It introduces the concept of average angular velocity as the moment of inertia weighted average of particle angular velocities. It extends and elucidates the concept of Jellinek and Li (1989) of separation of the energy of overall rotation in an arbitrary (non-linear) $N$-particle system. It generalizes the so called Koenig's theorem on the two parts of the kinetic energy (center of mass plus internal) to three parts: center of mass, rotational, plus the remaining internal energy relative to an optimally translating and rotating frame.

  3. Ghost Imaging Using Orbital Angular Momentum

    Institute of Scientific and Technical Information of China (English)

    赵生妹; 丁建; 董小亮; 郑宝玉

    2011-01-01

    We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum. In the signal arm, object spatial information is encoded as a phase matrix. For an N-grey-scale object, different phase matrices, varying from 0 to K with increment n/N, are used for different greyscales, and then they are modulated to a signal beam by a spatial light modulator. According to the conservation of the orbital angular momentum in the ghost imaging system, these changes will give different coincidence rates in measurement, and hence the object information can be extracted in the idler arm. By simulations and experiments, the results show that our scheme can improve the resolution of the image effectively. Compared with another encoding method using orbital angular momentum, our scheme has a better performance for both characters and the image object.%We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum.In the signal arm,object spatial information is encoded as a phase matrix.For an N-grey-scale object,different phase matrices,varying from 0 to π with increment π/N,are used for different greyscales,and then they are modulated to a signal beam by a spatial light modulator.According to the conservation of the orbital angular momentum in the ghost imaging system,these changes will give different coincidence rates in measurement,and hence the object information can be extracted in the idler arm.By simulations and experiments,the results show that our scheme can improve the resolution of the image effectively.Compared with another encoding method using orbital angular momentum,our scheme has a better performance for both characters and the image object.

  4. Ellerman bombs at high resolution III. Simultaneous observations with IRIS and SST

    CERN Document Server

    Vissers, Gregal J M; Rutten, Robert J; Carlsson, Mats; De Pontieu, Bart

    2015-01-01

    Ellerman bombs are transient brightenings of the extended wings of the solar Balmer lines in emerging active regions. We describe their properties in the ultraviolet lines sampled by the Interface Region Imaging Spectrograph (IRIS), using simultaneous imaging spectroscopy in H$\\alpha$ with the Swedish 1-m Solar Telescope (SST) and ultraviolet images from the Solar Dynamics Observatory for Ellerman bomb detection and identification. We select multiple co-observed Ellerman bombs for detailed analysis. The IRIS spectra strengthen the view that Ellerman bombs mark reconnection between bipolar kilogauss fluxtubes with the reconnection and the resulting bi-directional jet located within the solar photosphere and shielded by overlying chromospheric fibrils in the cores of strong lines. The spectra suggest that the reconnecting photospheric gas underneath is heated sufficiently to momentarily reach stages of ionization normally assigned to the transition region and the corona. We also analyze similar outburst phenome...

  5. Advancing Access to New Technology for Sustained High Resolution Observations of Plankton: From Bloom Dynamics to Climate Change

    Science.gov (United States)

    Sosik, H. M.; Olson, R. J.

    2012-12-01

    The combination of ocean observatory infrastructure and automated submersible flow cytometry can provide unprecedented capability for sustained high resolution time series of plankton, including taxa that are harmful or early indicators of ecosystem response to environmental change. Over the past decade, we have developed the FlowCytobot series of instruments that exemplify this capability. FlowCytobot and Imaging FlowCytobot use a combination of laser-based scattering and fluorescence measurements and video imaging of individual particles to enumerate and characterize cells ranging from picocyanobacteria to large chaining-forming diatoms. The process of developing these complex instruments was streamlined by access to the Martha's Vineyard Coastal Observatory (MVCO), a cabled facility on the New England Shelf, where real time two-way communications and access to shore power expedited cycles of instrument evaluation and design refinement. Repeated deployments at MVCO, typically 6 months in duration, have produced multi-year high resolution (hourly to daily) time series that are providing new insights into dynamics of community structure such as blooms, seasonality, and possibly even trends linked to regional climate change. The high temporal resolution observations of single cell properties make it possible not only to characterize taxonomic composition and size structure, but also to quantify taxon-specific growth rates. To meet the challenge of broadening access to this enabling technology, we have taken a two-step approach. First, we are partnering with a few scientific collaborators interested in using the instruments in different environments and to address different applications, notably the detection and characterization of harmful algal bloom events. Collaboration at this stage ensured that these first users outside the developers' lab had access to technical know-how required for successful outcomes; it also provided additional feedback that could be

  6. Potential for added value in precipitation simulated by high-resolution nested Regional Climate Models and observations

    Energy Technology Data Exchange (ETDEWEB)

    Di Luca, Alejandro; Laprise, Rene [Universite du Quebec a Montreal (UQAM), Centre ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Departement des Sciences de la Terre et de l' Atmosphere, PK-6530, Succ. Centre-ville, B.P. 8888, Montreal, QC (Canada); De Elia, Ramon [Universite du Quebec a Montreal, Ouranos Consortium, Centre ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Montreal (Canada)

    2012-03-15

    Regional Climate Models (RCMs) constitute the most often used method to perform affordable high-resolution regional climate simulations. The key issue in the evaluation of nested regional models is to determine whether RCM simulations improve the representation of climatic statistics compared to the driving data, that is, whether RCMs add value. In this study we examine a necessary condition that some climate statistics derived from the precipitation field must satisfy in order that the RCM technique can generate some added value: we focus on whether the climate statistics of interest contain some fine spatial-scale variability that would be absent on a coarser grid. The presence and magnitude of fine-scale precipitation variance required to adequately describe a given climate statistics will then be used to quantify the potential added value (PAV) of RCMs. Our results show that the PAV of RCMs is much higher for short temporal scales (e.g., 3-hourly data) than for long temporal scales (16-day average data) due to the filtering resulting from the time-averaging process. PAV is higher in warm season compared to cold season due to the higher proportion of precipitation falling from small-scale weather systems in the warm season. In regions of complex topography, the orographic forcing induces an extra component of PAV, no matter the season or the temporal scale considered. The PAV is also estimated using high-resolution datasets based on observations allowing the evaluation of the sensitivity of changing resolution in the real climate system. The results show that RCMs tend to reproduce relatively well the PAV compared to observations although showing an overestimation of the PAV in warm season and mountainous regions. (orig.)

  7. High time resolution observation and statistical analysis of atmospheric light extinction properties and the chemical speciation of fine particulates

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In recent years,the visibility deterioration caused by regional fine particulate pollution becomes one of the crucial air pollution problems in the urban areas of our country.The rapid variation of visibility and fine particulates make it difficult to estimate the relationship between them precisely and accurately unless high time resolution observation data can be accessed.This study aims to fill this gap in the field of atmospheric science by establishing a formula using multiple linear regressions.Excellent fitting goodness (R2=0.913,n=3167) was obtained using 10 min average of high-resolution real-time light scattering coefficients,light absorption coefficients,main chemical speciation concentration in PM1 and some meteorological parameters from 17 Jan to 16 Feb,2009.It shows that the average light extinction coefficient during the observation in the winter of Shenzhen was measured to be 290 ± 183 Mm?1,consisting of 72% of light scattering and 21% of absorption.In terms of the percentage contribution of PM1 chemical species to the total light extinction,the organic matter was estimated to be most with an average of 45%,followed by ammonium sulfate with an average of 24%.The contributions of black carbon and ammonium nitrate were 17% and 12%,respectively.Besides,the diurnal variation of light extinction was investigated as well in this study.

  8. Herschel observations of EXtra-Ordinary Sources: The Terahertz spectrum of Orion KL seen at high spectral resolution

    CERN Document Server

    Crockett, N R; Wang, S; Lis, D C; Bell, T A; Blake, G A; Boogert, A; Bumble, B; Cabrit, S; Caux, E; Ceccarelli, C; Cernicharo, J; Comito, C; Daniel, F; Dubernet, M -L; Emprechtinger, M; Encrenaz, P; Falgarone, E; Gerin, M; Giesen, T F; Goicoechea, J R; Goldsmith, P F; Gupta, H; Gusten, R; Hartogh, P; Helmich, F; Herbst, E; Honingh, N; Joblin, C; Johnstone, D; Karpov, A; Kawamura, J H; Kooi, J; Krieg, J -M; Langer, W D; Latter, W D; Lord, S D; Maret, S; Martin, P G; Melnick, G J; Menten, K M; Morris, P; Muller, H S P; Murphy, J A; Neufeld, D A; Ossenkopf, V; Pearson, J C; Perault, M; Phillips, T G; Plume, R; Qin, S -L; Roelfsema, P; Schieder, R; Schilke, P; Schlemmer, S; Stutzki, J; van der Tak, F F S; Tielens, A; Trappe, N; Vastel, C; Yorke, H W; Yu, S; Zmuidzinas, J

    2010-01-01

    We present the first high spectral resolution observations of Orion KL in the frequency ranges 1573.4 - 1702.8 GHz (band 6b) and 1788.4 - 1906.8 GHz (band 7b) obtained using the HIFI instrument on board the Herschel Space Observatory. We characterize the main emission lines found in the spectrum, which primarily arise from a range of components associated with Orion KL including the hot core, but also see widespread emission from components associated with molecular outflows traced by H2O, SO2, and OH. We find that the density of observed emission lines is significantly diminished in these bands compared to lower frequency Herschel/HIFI bands.

  9. CHIRON TOOLS: Integrated Target Submission, Scheduling and Observing Systems for a High-Resolution Fiber-Fed Spectrograph

    Science.gov (United States)

    Brewer, John M.; Giguere, Matthew; Fischer, Debra A.

    2014-01-01

    The CHIRON spectrometer is a new high-resolution, fiber-fed instrument on the 1.5 m telescope at Cerro Tololo Inter-America Observatory (CTIO). To optimize use of the instrument and limited human resources, we have designed an integrated set of Web applications allowing target submission, observing script planning, nightly script execution and logging, and access to reduced data by multiple users. The unified and easy-to-use interface has dramatically reduced the time needed to submit and schedule observations and improved the efficiency and accuracy of nightly operations. We present our experience to help astronomers and project managers who need to plan for the scope of effort required to commission a queue-scheduled facility instrument.

  10. A new active array MST radar system with enhanced capabilities for high resolution atmospheric observations

    Science.gov (United States)

    Durga rao, Meka; Jayaraman, Achuthan; Patra, Amit; Venkat Ratnam, Madineni; Narayana Rao, T.; Kamaraj, Pandian; Jayaraj, Katta; Kmv, Prasad; Kamal Kumar, J.; Raghavendra, J.; Prasad, T. Rajendra; Thriveni, A.; Yasodha, Polisetti

    2016-07-01

    A new version of the 53-MHz MST Radar, using the 1024 solid state Transmit-Receive Modules (TRM), necessary feeder network, multi-channel receiver and a modified radar controller has been established using the existing antenna array of 1024 crossed Yagis. The new system has been configured for steering the beam on a pulse-to-pulse basis in all 360o azimuth and 20o zenith angle, providing enhanced capability to study the Mesosphere-Stratosphere-Troposphere and Ionosphere. The multi channel receiver system has been designed for Spaced Antenna (SA) and Interferometry/ Iamging applications. The new system has also been configured for radiating in circular polarization for its application in the Ionosphere Incoherent Scatter mode. The new active array MST radar at Very-High-Frequency (53-MHz) located at Gadanki (13.45°N, 79.18°E), a tropical station in India, will be used to enhance the observations of winds, turbulence during the passage of convective events over the radar site as deep convection occurs very often at tropical latitudes. The new configuration with enhanced average power, beam agility with multi-channel experiments will be a potential source for studying middle atmosphere and ionosphere. In this paper, we present the system configuration, new capabilities and the first results obtained using the new version of the MST Radar.

  11. Observation of lens aberrations for high resolution electron microscopy II: Simple expressions for optimal estimates

    Energy Technology Data Exchange (ETDEWEB)

    Saxton, W. Owen, E-mail: wos1@cam.ac.uk

    2015-04-15

    This paper lists simple closed-form expressions estimating aberration coefficients (defocus, astigmatism, three-fold astigmatism, coma / misalignment, spherical aberration) on the basis of image shift or diffractogram shape measurements as a function of injected beam tilt. Simple estimators are given for a large number of injected tilt configurations, optimal in the sense of least-squares fitting of all the measurements, and so better than most reported previously. Standard errors are given for most, allowing different approaches to be compared. Special attention is given to the measurement of the spherical aberration, for which several simple procedures are given, and the effect of foreknowledge of this on other aberration estimates is noted. Details and optimal expressions are also given for a new and simple method of analysis, requiring measurements of the diffractogram mirror axis direction only, which are simpler to make than the focus and astigmatism measurements otherwise required. - Highlights: • Optimal estimators for CTEM lens aberrations are more accurate and/or use fewer observations. • Estimators have been found for defocus, astigmatism, three-fold astigmatism, coma and spherical aberration. • Estimators have been found relying on diffractogram shape, image shift and diffractogram orientation only, for a variety of beam tilts. • The standard error for each estimator has been found.

  12. Coastal High-resolution Observations and Remote Sensing of Ecosystems (C-HORSE)

    Science.gov (United States)

    Guild, Liane

    2016-01-01

    Coastal benthic marine ecosystems, such as coral reefs, seagrass beds, and kelp forests are highly productive as well as ecologically and commercially important resources. These systems are vulnerable to degraded water quality due to coastal development, terrestrial run-off, and harmful algal blooms. Measurements of these features are important for understanding linkages with land-based sources of pollution and impacts to coastal ecosystems. Challenges for accurate remote sensing of coastal benthic (shallow water) ecosystems and water quality are complicated by atmospheric scattering/absorption (approximately 80+% of the signal), sun glint from the sea surface, and water column scattering (e.g., turbidity). Further, sensor challenges related to signal to noise (SNR) over optically dark targets as well as insufficient radiometric calibration thwart the value of coastal remotely-sensed data. Atmospheric correction of satellite and airborne remotely-sensed radiance data is crucial for deriving accurate water-leaving radiance in coastal waters. C-HORSE seeks to optimize coastal remote sensing measurements by using a novel airborne instrument suite that will bridge calibration, validation, and research capabilities of bio-optical measurements from the sea to the high altitude remote sensing platform. The primary goal of C-HORSE is to facilitate enhanced optical observations of coastal ecosystems using state of the art portable microradiometers with 19 targeted spectral channels and flight planning to optimize measurements further supporting current and future remote sensing missions.

  13. Combining angular response classification and backscatter imagery segmentation for benthic biological habitat mapping

    Science.gov (United States)

    Che Hasan, Rozaimi; Ierodiaconou, Daniel; Laurenson, Laurie

    2012-01-01

    Backscatter information from multibeam echosounders (MBES) have been shown to contain useful information for the characterisation of benthic habitats. Compared to backscatter imagery, angular response of backscatter has shown advantages for feature discrimination. However its low spatial resolution inhibits the generation of fine scale habitat maps. In this study, angular backscatter response was combined with image segmentation of backscatter imagery to characterise benthic biological habitats in Discovery Bay Marine National Park, Victoria, Australia. Angular response of backscatter data from a Reson Seabat 8101 MBES (240 kHz) was integrated with georeferenced underwater video observations for constructing training data. To produce benthic habitat maps, decision tree supervised classification results were combined with mean shift image segmentation for class assignment. The results from mean angular response characteristics show effects of incidence angle at the outer angle for invertebrates (INV) and mixed red and invertebrates (MRI) classes, whilst mixed brown algae (MB) and mixed brown algae and invertebrates (MBI) showed similar responses independent from incidence angle. Automatic segmentation processing produce over segmented results but showed good discrimination between heterogeneous regions. Accuracy assessment from habitat maps produced overall accuracies of 79.6% (Kappa coefficient = 0.66) and 80.2% (Kappa coefficient = 0.67) for biota and substratum classifications respectively. MRI and MBI produced the lowest average accuracy while INV the highest. The ability to combine angular response and backscatter imagery provides an alternative approach for investigating biological information from acoustic backscatter data.

  14. Surface solar radiation variability over Eastern Mediterranean: A high spatial resolution view from satellite and ground-based observations

    Science.gov (United States)

    Alexandri, Georgia; Georgoulias, Aristeidis K.; Meleti, Charikleia; Balis, Dimitris

    2013-04-01

    Surface Solar Radiation (SSR) has been measured for decades from ground-based observations for several spots around the planet. On the other hand, during the last decades, satellite observations made possible the assessment of the spatial variability of the SSR at a global as well as regional scale. In this study, a detailed view of the SSR spatiotemporal variability is presented at a high spatial resolution, focusing on the region of Eastern Mediterranean. This is a region of particular interest since it is affected by aerosols of various origins (continental, sea, dust and biomass burning particles) and encloses countries with significant socioeconomical changes during the last decades. The SSR satellite data used in this study have been obtained from the Satellite Application Facility on Climate Monitoring (CM SAF) (www.cmsaf.eu). The CM SAF SSR dataset is based on reflections in the visible channel of Meteosat First Generation, has a spatial resolution of 0.03ox0.03o and spans from 1983 to 2005. The satellite observations are validated against ground-based measurements for the city of Thessaloniki, a coastal city of ~1 million inhabitants in northern Greece, situated in the heart of Eastern Mediterranean. Measurements from two pyranometers, an Eppley Precision pyranometer (1983-1992) and a Kipp & Zonen CM-11 pyranometer (1993-2005), both located at the center of the city, were homogenized and a uniform time series for the 23 year period was constructed. SSR was also calculated with the use of MODIS level-2 aerosol and cloud satellite data for the region of Thessaloniki and the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model. These new satellite-based results are compared to both CM SAF and ground-based observations in order to examine whether SBDART and MODIS could be further used for the investigation of the spatial patterns of SSR in the area.

  15. New Insights on Dynamic Recrystallization Mechanisms in Ice from High Resolution EBSD Observations and Strain Field Measurements.

    Science.gov (United States)

    Montagnat, M.; Chauve, T.; Journaux, B.; Barou, F.

    2015-12-01

    Dynamic recrystallization (DRX) strongly affects the evolution of microstructure (grain size and shape) and texture (crystal preferred orientation) during deformation at high temperature. Since texturing leads to anisotropic physical properties, predicting the effect of DRX in metals is essential for industrial applications, in rocks for interpreting geophysical data and modeling geodynamic flows, or in ice for predicting ice sheet flow and climate evolution. Along ice cores extracted from ice sheets, Continuous DRX (CDRX) and Discontinuous DRX (DDRX) mechanisms are observed at various depths, the later being favoured by the high temperature encountered close to the bedrock, and local high level of strain. In laboratory conditions, with higher strain rate and stress levels, DDRX dominates mechanical response during tertiary creep, when deviatoric stress is low enough to avoid micro fracturation (σ nucleation mechanisms and strain heterogeneities at the grain scale remain poorly known and therefore poorly constrained in DRX modeling. We will present recent observations performed on laboratory made and deformed ice polycrystals (σ ~ 0.5 MPa, T ~ -7°C) that enable to access high resolution observations of intragranular sub-structures (dislocation field, subgrains, nucleus) via Electron BackScattering Diffraction (EBSD), and high resolution strain field measurements around DRX nucleation area. Analyses of these observations highlight the complexity of nucleation mechanisms in ice, with the formation of kink bands, of bulging, and of "spontaneous" nucleation. Strain field measurements evidence the influence of nucleation on the relaxation of strain incompatibilities at grain boundaries and triple junctions. At last, torsion experiments enabled to draw hypotheses about the role of nucleation on DRX textures.

  16. Induced Angular Momentum

    Science.gov (United States)

    Parker, G. W.

    1978-01-01

    Discusses, classically and quantum mechanically, the angular momentum induced in the bound motion of an electron by an external magnetic field. Calculates the current density and its magnetic moment, and then uses two methods to solve the first-order perturbation theory equation for the required eigenfunction. (Author/GA)

  17. Observations of PAN and its confinement in the Asian summer monsoon anticyclone in high spatial resolution

    Science.gov (United States)

    Ungermann, Jörn; Ern, Mandfred; Kaufmann, Martin; Müller, Rolf; Spang, Reinhold; Ploeger, Felix; Vogel, Bärbel; Riese, Martin

    2016-07-01

    This paper presents an analysis of trace gases in the Asian summer monsoon (ASM) region on the basis of observations by the CRISTA infrared limb sounder taken in low-earth orbit in August 1997. The spatially highly resolved measurements of peroxyacetyl nitrate (PAN) and O3 allow a detailed analysis of an eddy-shedding event of the ASM anticyclone. We identify enhanced PAN volume mixing ratios (VMRs) within the main anticyclone and within the eddy, which are suitable as a tracer for polluted air originating in India and China. Plotting the retrieved PAN VMRs against potential vorticity (PV) and potential temperature reveals that the PV value at which the PAN VMRs exhibit the strongest decrease with respect to PV increases with potential temperature. These PV values might be used to identify the extent of the ASM. Using temperature values also derived from CRISTA measurements, we also computed the location of the thermal tropopause according to the WMO criterion and find that it confines the PAN anomaly vertically within the main ASM anticyclone. In contrast, the shed eddy exhibits enhanced PAN VMRs for 1 to 2 km above the thermal tropopause. Using the relationship between PAN as a tropospheric tracer and O3 as a stratospheric tracer to identify mixed air parcels, we further found the anticyclone to contain few such air parcels, whereas the region between the anticyclone and the eddy as well as the eddy itself contains many mixed air parcels. In combination, this implies that while the anticyclone confines polluted air masses well, eddy shedding provides a very rapid horizontal transport pathway of Asian pollution into the extratropical lowermost stratosphere with a timescale of only a few days.

  18. Seismic diagnostics for transport of angular momentum in stars 2. Interpreting observed rotational splittings of slowly-rotating red giant stars

    CERN Document Server

    Goupil, M J; Marques, J P; Ouazzani, R M; Belkacem, K; Lebreton, Y; Samadi, R

    2012-01-01

    Asteroseismology with the space-borne missions CoRoT and Kepler provides a powerful mean of testing the modeling of transport processes in stars. Rotational splittings are currently measured for a large number of red giant stars and can provide stringent constraints on the rotation profiles. The aim of this paper is to obtain a theoretical framework for understanding the properties of the observed rotational splittings of red giant stars with slowly rotating cores. This allows us to establish appropriate seismic diagnostics for rotation of these evolved stars. Rotational splittings for stochastically excited dipolar modes are computed adopting a first-order perturbative approach for two $1.3 M_\\odot$ benchmark models assuming slowly rotating cores. For red giant stars with slowly rotating cores, we show that the variation of the rotational splittings of $\\ell=1$ modes with frequency depends only on the large frequency separation, the g-mode period spacing, and the ratio of the average envelope to core rotatio...

  19. Observing the fine structure of loops through high resolution spectroscopic observations of coronal rain with the CRISP instrument at the Swedish Solar Telescope

    CERN Document Server

    Antolin, Patrick

    2011-01-01

    We present here one of the first high resolution spectroscopic observations of coronal rain, performed with the CRISP instrument at the Swedish Solar Telescope. This work constitutes the first attempt to assess the importance of coronal rain in the understanding of the coronal magnetic field in active regions. A large statistical set is obtained in which dynamics (total velocities and accelerations), shapes (lengths and widths), trajectories (angles of fall) and thermodynamic properties (temperatures) of the condensations are derived. Specifically, we find that coronal rain is composed of small and dense chromospheric cores with average widths and lengths of 310 km and 710 km respectively, average temperatures below 7000 K, displaying a broad distribution of falling speeds with an average of 70 km/s and accelerations largely below the effective gravity along loops. Through estimates of the ion-neutral coupling in the blobs we show that coronal rain acts as a tracer of the coronal magnetic field, thus supporti...

  20. High resolution observations of sporadic-E layers within the polar cap ionosphere using a new incoherent scatter radar experiment

    Directory of Open Access Journals (Sweden)

    B. Damtie

    Full Text Available High resolution observations of sporadic-E layers using a new experiment with the EISCAT (European Incoherent SCATter Svalbard radar (ESR are presented. The observations were made by means of a new type of hardware, which was connected in parallel with the standard receiver. The radar beam was aligned with the geomagnetic field. The experiment applies a new modulation principle. Two phase codes, one with 22 bits and the other with 5 bits, were transmitted at separate frequencies. Each bit was further modulated by a 5-bit Barker code. The basic bit length of both transmissions was 6 µs. Instead of storing the lagged products of the ionospheric echoes in the traditional way, samples of both the transmitted pulses and the ionospheric echoes were taken at intervals of 1 µs and stored on hard disk. The lagged products were calculated later in an off-line analysis. In the analysis a sidelobe-free Barker decoding technique was used. The experiment produces range ambiguities, which were removed by mathematical inversion. Sporadic-E layers were observed at 105–115 km altitudes, and they are displayed with a 150-m range resolution and a 10-s time resolution. The layers show sometimes complex shapes, including triple peaked structures. The thickness of these sublayers is of the order of 1–2 km and they may be separated by 5 km in range. While drifting downwards, the sublayers merge together to form a single layer. The plasma inside a layer is found to have a longer correlation length than that of the surrounding plasma. This may be an indication of heavy ions inside the layer. The field-aligned ion velocity is also calculated. It reveals shears in the meridional wind, which suggests that shears probably also exist in the zonal wind. Hence the wind shear mechanism is a possible generation mechanism of the layer. However, observations from the coherent SuperDARN radar indicate the presence of an ionospheric electric field pointing in the sector between

  1. AO-assisted observations of G61.48+0.09. Massive star formation at high resolution

    Science.gov (United States)

    Puga, E.; Alvarez, C.; Feldt, M.; Henning, Th.; Wolf, S.

    2004-10-01

    The characterisation of the stellar populations of ultra-compact HII (UCHII{}) regions is one of the key means of understanding the formation and evolution of massive stars. Adaptive Optics (AO) assisted near-infrared (NIR) observations provide sufficient resolution and sensitivity to detect such populations at moderate extinction values. We present NIR high-resolution observations of G61.48+0.09, a morphologically complex UCHII region with two components, whose accessible stellar content in the NIR has been widely studied before. A polarimetric map in the K' band, as well as H2(1-0) S(1) and Brγ narrow-band images of the region have been obtained with the AO system ALFA at the Calar Alto Observatory's 3.5 m telescope. We also present high-resolution imaging of the same region in the L' band with NAOS+CONICA at the VLT (UT4). The study of the nebular scattered light points to an internal-illumination model for the eastern component (B2). This model is confirmed by the detection of a point-like source in the L'-band data. In the western component (B1) the observed NIR colours of star 82 are consistent with spectral types BIa or early OV, while star 83 is reproduced by a B0V. Therefore, we identify these objects as the main detected ionising sources. However, in terms of illumination, our polarimetric map indicates that these two stars are not the dominating illuminators of the reflection nebula. Illumination from multiple sources (possibly still undetected) seems to influence the polarisation pattern for this component. Geometric considerations in the calculation of the energetics of this region, combined with the knowledge of the detected stellar content, also points to the presence of other ionising sources. Our study reinforces the hypothesis that there is a champagne flow towards the south-west part of the region. Visiting Astronomer, German-Spanish Astronomical Centre, Calar Alto, operated by the Max-Planck-Institute for Astronomy, Heidelberg, jointly with the

  2. Meeting Earth Observation Requirements for Global Agricultural Monitoring: An Evaluation of the Revisit Capabilities of Current and Planned Moderate Resolution Optical Earth Observing Missions

    Directory of Open Access Journals (Sweden)

    Alyssa K. Whitcraft

    2015-01-01

    Full Text Available Agriculture is a highly dynamic process in space and time, with many applications requiring data with both a relatively high temporal resolution (at least every 8 days and fine-to-moderate (FTM < 100 m spatial resolution. The relatively infrequent revisit of FTM optical satellite observatories coupled with the impacts of cloud occultation have translated into a barrier for the derivation of agricultural information at the regional-to-global scale. Drawing upon the Group on Earth Observations Global Agricultural Monitoring (GEOGLAM Initiative’s general satellite Earth observation (EO requirements for monitoring of major production areas, Whitcraft et al. (this issue have described where, when, and how frequently satellite data acquisitions are required throughout the agricultural growing season at 0.05°, globally. The majority of areas and times of year require multiple revisits to probabilistically yield a view at least 70%, 80%, 90%, or 95% clear within eight days, something that no present single FTM optical observatory is capable of delivering. As such, there is a great potential to meet these moderate spatial resolution optical data requirements through a multi-space agency/multi-mission constellation approach. This research models the combined revisit capabilities of seven hypothetical constellations made from five satellite sensors—Landsat 7 Enhanced Thematic Mapper (Landsat 7 ETM+, Landsat 8 Operational Land Imager and Thermal Infrared Sensor (Landsat 8 OLI/TIRS, Resourcesat-2 Advanced Wide Field Sensor (Resourcesat-2 AWiFS, Sentinel-2A Multi-Spectral Instrument (MSI, and Sentinel-2B MSI—and compares these capabilities with the revisit frequency requirements for a reasonably cloud-free clear view within eight days throughout the agricultural growing season. Supplementing Landsat 7 and 8 with missions from different space agencies leads to an improved capacity to meet requirements, with Resourcesat-2 providing the largest

  3. Angular-momentum-bearing modes in fission

    International Nuclear Information System (INIS)

    The angular-momentum-bearing degrees of freedom involved in the fission process are identified and their influence on experimental observables is discussed. The excitation of these modes is treated in the ''thermal'' limit, and the resulting distributions of observables are calculated. Experiments demonstrating the role of these modes are presented and discussed. 61 refs., 12 figs

  4. OBSERVING THE FINE STRUCTURE OF LOOPS THROUGH HIGH-RESOLUTION SPECTROSCOPIC OBSERVATIONS OF CORONAL RAIN WITH THE CRISP INSTRUMENT AT THE SWEDISH SOLAR TELESCOPE

    International Nuclear Information System (INIS)

    Observed in cool chromospheric lines, such as Hα or Ca II H, coronal rain corresponds to cool and dense plasma falling from coronal heights. Considered as a peculiar sporadic phenomenon of active regions, it has not received much attention since its discovery more than 40 years ago. Yet, it has been shown recently that a close relationship exists between this phenomenon and the coronal heating mechanism. Indeed, numerical simulations have shown that this phenomenon is most likely due to a loss of thermal equilibrium ensuing from a heating mechanism acting mostly toward the footpoints of loops. We present here one of the first high-resolution spectroscopic observations of coronal rain, performed with the CRisp Imaging Spectro Polarimeter (CRISP) instrument at the Swedish Solar Telescope. This work constitutes the first attempt to assess the importance of coronal rain in the understanding of the coronal magnetic field in active regions. With the present resolution, coronal rain is observed to literally invade the entire field of view. A large statistical set is obtained in which dynamics (total velocities and accelerations), shapes (lengths and widths), trajectories (angles of fall of the blobs), and thermodynamic properties (temperatures) of the condensations are derived. Specifically, we find that coronal rain is composed of small and dense chromospheric cores with average widths and lengths of ∼310 km and ∼710 km, respectively, average temperatures below 7000 K, displaying a broad distribution of falling speeds with an average of ∼70 km s–1, and accelerations largely below the effective gravity along loops. Through estimates of the ion-neutral coupling in the blobs we show that coronal rain acts as a tracer of the coronal magnetic field, thus supporting the multi-strand loop scenario, and acts as a probe of the local thermodynamic conditions in loops. We further elucidate its potential in coronal heating. We find that the cooling in neighboring strands

  5. Chandra Observations of Neutron Stars -- An Overview

    OpenAIRE

    Weisskopf, M. C.

    2002-01-01

    We present a brief review of Chandra observations of neutron stars, with a concentration on neutron stars in supernova remnants. The early Chandra results clearly demonstrate how critical the angular resolution has been in order to separate the neutron star emission from the surrounding nebulosity.

  6. High Resolution HI Observations of the Galaxy NGC404: a dwarf S0 with abundant Interstellar gas

    CERN Document Server

    Del Rio, M S; Cepa, J

    2004-01-01

    (Abridged) We present HI maps of the S0 galaxy NGC404, at a spatial resolution of 15.2" x 14.4" and a velocity resolution of 2.6km/s. The HI has been traced out to a radius R~8R_25 or 48 disc scale-lengths, making it one of the largest HI extents reported (800" or 12.6kpc at the assumed distance of 3.3Mpc). Approximately 75% of the HI resides in a doughnut which is seen close to face-on and the optical galaxy fits snugly within the hole of the doughnut. The remaining 25% of the neutral gas is found in an annulus concentric with the doughnut and with a somewhat larger ellipticity. A total HI mass of 1.52 x 10^8 Msol is found, which implies an M(HI)/L_B = 0.22 in solar units. We argue that most if not all of this gas is of external origin, most likely due to the merger of a dwarf irregular galaxy with M_B ~ -15.5mag. The velocity field shows a steeply declining observed rotation curve, compatible with Keplerian decline. However, because the galaxy is close to face-on there is a degeneracy in the determination o...

  7. Intense energetic electron flux enhancements in Mercury's magnetosphere: An integrated view with high-resolution observations from MESSENGER

    Science.gov (United States)

    Baker, Daniel N.; Dewey, Ryan M.; Lawrence, David J.; Goldsten, John O.; Peplowski, Patrick N.; Korth, Haje; Slavin, James A.; Krimigis, Stamatios M.; Anderson, Brian J.; Ho, George C.; McNutt, Ralph L.; Raines, Jim M.; Schriver, David; Solomon, Sean C.

    2016-03-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X-Ray Spectrometer and Gamma-Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near-tail region of Mercury's magnetosphere and are subsequently "injected" onto closed magnetic field lines on the planetary nightside. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and prenoon sectors, at times executing multiple complete drifts around the planet to form "quasi-trapped" populations.

  8. Energetic-electron flux enhancements in Mercury's magnetosphere: An integrated view with high-resolution observations from MESSENGER

    Science.gov (United States)

    Baker, Daniel N.

    2016-04-01

    The MESSENGER mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer (EPS), as well as data arising from energetic electrons recorded by the X-Ray Spectrometer (XRS) and Gamma-Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near-tail region of Mercury's magnetosphere and are subsequently "injected" onto closed magnetic field lines on the planetary night side. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and pre-noon sectors, at time executing multiple complete drifts around the planet to form "quasi-trapped" populations.

  9. Source geometry from exceptionally high resolution long period event observations at Mt Etna during the 2008 eruption

    CERN Document Server

    De Barros, Louis; Lokmer, Ivan; Saccorotti, Gilberto; Zucarello, Luciano; O'Brien, Gareth; Métaxian, Jean-Philippe; Patanè, Domenico; 10.1029/2009GL041273

    2010-01-01

    During the second half of June, 2008, 50 broadband seismic stations were deployed on Mt Etna volcano in close proximity to the summit, allowing us to observe seismic activity with exceptionally high resolution. 129 long period events (LP) with dominant frequencies ranging between 0.3 and 1.2 Hz, were extracted from this dataset. These events form two families of similar waveforms with different temporal distributions. Event locations are performed by cross-correlating signals for all pairs of stations in a two-step scheme. In the first step, the absolute location of the centre of the clusters was found. In the second step, all events are located using this position. The hypocentres are found at shallow depths (20 to 700 m deep) below the summit craters. The very high location resolution allows us to detect the temporal migration of the events along a dike-like structure and 2 pipe shaped bodies, yielding an unprecedented view of some elements of the shallow plumbing system at Mount Etna. These events do not s...

  10. Mapping High-Resolution Soil Moisture over Heterogeneous Cropland Using Multi-Resource Remote Sensing and Ground Observations

    Directory of Open Access Journals (Sweden)

    Lei Fan

    2015-10-01

    Full Text Available High spatial resolution soil moisture (SM data are crucial in agricultural applications, river-basin management, and understanding hydrological processes. Merging multi-resource observations is one of the ways to improve the accuracy of high spatial resolution SM data in the heterogeneous cropland. In this paper, the Bayesian Maximum Entropy (BME methodology is implemented to merge the following four types of observed data to obtain the spatial distribution of SM at 100 m scale: soil moisture observed by wireless sensor network (WSN, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER-derived soil evaporative efficiency (SEE, irrigation statistics, and Polarimetric L-band Multi-beam Radiometer (PLMR-derived SM products (~700 m. From the poor BME predictions obtained by merging only WSN and SEE data, we observed that the SM heterogeneity caused by irrigation and the attenuating sensitivity of the SEE data to SM caused by the canopies result in BME prediction errors. By adding irrigation statistics to the merged datasets, the overall RMSD of the BME predictions during the low-vegetated periods can be successively reduced from 0.052 m3·m−3 to 0.033 m3·m−3. The coefficient of determination (R2 and slope between the predicted and in situ measured SM data increased from 0.32 to 0.64 and from 0.38 to 0.82, respectively, but large estimation errors occurred during the moderately vegetated periods (RMSD = 0.041 m3·m−3, R = 0.43 and the slope = 0.41. Further adding the downscaled SM information from PLMR SM products to the merged datasets, the predictions were satisfactorily accurate with an RMSD of 0.034 m3·m−3, R2 of 0.4 and a slope of 0.69 during moderately vegetated periods. Overall, the results demonstrated that merging multi-resource observations into SM estimations can yield improved accuracy in heterogeneous cropland.

  11. Model Photospheres for Late-Type Stars from the Inversion of High-Resolution Spectroscopic Observations The Sun

    CERN Document Server

    Allende-Prieto, C; García-López, R J; Prieto, Carlos Allende; Cobo, Basilio Ruiz; Lopez, Ramon J. Garcia

    1998-01-01

    An inversion technique has been developed to recover LTE one-dimensional model photospheres for late-type stars from very high resolution, high signal-to-noise stellar line profiles. It is successfully applied to the Sun by using a set of clean Ti I, Ca I, Cr I, and Fe I normalized line profiles with accurate transition probabilities and taking advantage of the well understood collisional enhancement of the wings of the Ca I line at 6162 A. Line and continuum center-to-limb variations, continuum flux, and wings of strong metal lines are synthesized by means of the model obtained and are compared with solar observations, as well as with predictions from other well known theoretical and empirical solar models, showing the reliability of the inversion procedure. The prospects for and limitations of the application of this method to other late-type stars are discussed.

  12. Quantum Heuristics of Angular Momentum

    Science.gov (United States)

    Levy-Leblond, Jean-Marc

    1976-01-01

    Discusses the quantization of angular momentum components, Heisenberg-type inequalities for their spectral dispersions, and the quantization of the angular momentum modulus, without using operators or commutation relations. (MLH)

  13. High-Resolution Reciprocal Space Mapping for Characterizing Deformation Structures

    DEFF Research Database (Denmark)

    Pantleon, Wolfgang; Wejdemann, Christian; Jakobsen, Bo;

    2014-01-01

    With high-angular resolution three-dimensional X-ray diffraction (3DXRD), quantitative information is gained about dislocation structures in individual grains in the bulk of a macroscopic specimen by acquiring reciprocal space maps. In high-resolution 3D reciprocal space maps of tensile-deformed ......With high-angular resolution three-dimensional X-ray diffraction (3DXRD), quantitative information is gained about dislocation structures in individual grains in the bulk of a macroscopic specimen by acquiring reciprocal space maps. In high-resolution 3D reciprocal space maps of tensile...... relaxation occurs, but no changes in number, size and orientation of the subgrains are observed. The radial profile asymmetry becomes reversed, when pre-deformed specimens are deformed in tension along a perpendicular axis....

  14. Intense energetic-electron flux enhancements in Mercury's magnetosphere: An integrated view with high-resolution observations from MESSENGER

    Science.gov (United States)

    Dewey, R. M.; Baker, D. N.; Slavin, J. A.; Raines, J. M.; Lawrence, D. J.; Goldsten, J. O.; Peplowski, P. N.; Korth, H.; Krimigis, S. M.; Anderson, B. J.; Ho, G. C.; McNutt, R. L., Jr.; Schriver, D.; Solomon, S. C.

    2015-12-01

    One of the surprising observations by Mariner 10 during its March 1974 flyby of Mercury was the detection of intense bursts of energetic particles in Mercury's magnetosphere in association with substorm-like magnetic field reconfigurations. A full understanding of where, when, and how such particle bursts occur was not possible from the limited Mariner 10 data. The MESSENGER mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer (EPS), as well as data arising from energetic electrons recorded by the X-Ray Spectrometer (XRS) and Gamma-Ray and Neutron Spectrometer (GRNS) instruments, recent work has greatly extended our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near-tail region of Mercury's magnetosphere and are subsequently "injected" onto closed magnetic field lines on the planetary night side. The electrons evidently fill the plasma sheet volume and drift rapidly eastward toward the dawn and pre-noon sectors, at time executing multiple complete drifts around the planet to form "quasi-trapped" populations.

  15. Goddard High Resolution Spectrograph Observations of Variability in the RS Canum Venaticorum System V711 Tauri (HR 1099)

    Science.gov (United States)

    Dempsey, Robert C.; Neff, James E.; Thorpe, Marjorie J.; Linsky, Jeffrey L.; Brown, Alexander; Cutispoto, Giuseppe; Rodono, Marcello

    1996-01-01

    Goddard High Resolution Spectrograph (GHRS) observations of the RS CVn-type binary V711 Tau (Kl IV+G5 IV) were obtained at several phases over two consecutive stellar orbital cycles in order to study ultraviolet emission-line profile and flux variability. Spectra cover the Mg II h and k lines, C IV doublet, and Si IV region, as well as the density-sensitive lines of C III] (1909 A) and Si III] (1892 A). IUE spectra, Extreme Ultra Violet (EUV) data, and Ultraviolet, Blue, Visual (UBV) photometry were obtained contemporaneously with the GHRS data. Variable extended wings were detected in the Mg II lines. We discuss the Mg II line profile variability using various Gaussian emission profile models. No rotational modulation of the line profiles was observed, but there were several large flares. These flares produced enhanced emission in the extended line wings, radial velocity shifts, and asymmetries in some line profiles. Nearly continuous flaring for more than 24 hr, as indicated in the IUE data, represents the most energetic and long-lived chromospheric and transition region flare ever observed with a total energy much greater than 5 x 10(exp 35) ergs. The C III] to Si III] line ratio is used to estimate the plasma density during the flares.

  16. Angular momentum projected semiclassics

    Science.gov (United States)

    Hasse, Rainer W.

    1987-06-01

    By using angular momentum projected plane waves as wave functions, we derive semiclassical expressions for the single-particle propagator, the partition function, the nonlocal density matrix, the single-particle density and the one particle-one hole level density for fixed angular momentum and fixed z-component or summed over the z-components. Other quantities can be deduced from the propagator. In coordinate space ( r, r') the relevant quantities depend on |r-r'| instead of | r- r'| and in Wigner space ( R, P) they become proportional to the angular momentum constraints δ(| R × P|/ h̵-l) and δ( R × P) z/ h̵-m) . As applications we calculate the single-particle and one-particle-one hole level densities for harmonic oscillator and Hill-Wheeler box potentials and the imaginary part of the optical potential and its volume integral with an underlying harmonic oscillator potential and a zero range two-body interaction.

  17. Ionospheric disturbances detected by high-resolution GPS-TEC observations after an earthquake and a tornado

    Science.gov (United States)

    Tsugawa, Takuya; Otsuka, Yuichi; Saito, Akinori; Ishii, Mamoru; Nishioka, Michi

    Ionospheric disturbances following the 2011 Tohoku earthquake and the 2013 Moore tornado were observed by high-resolution GPS total electron content (TEC) observations using dense GPS receiver networks. After the 2011 Tohoku earthquake, concentric waves with short propagation distance propagated in the radial direction in the propagation velocity of 3,457, 783, 423 m/s for the first, second, third peak, respectively. Following these waves, concentric waves with long propagation distance appeared to propagate at the velocity of 138-288 m/s. In the vicinity of the epicenter, sudden TEC depletions and short-period oscillations with a period of approximately 4 minutes were also observed. The center of these ionospheric variations, termed the "ionospheric epicenter", corresponded to the tsunami source. Comparing to the results of a numerical simulation using non-hydrostatic compressible atmosphere-ionosphere model, the first peak of circular wave would be caused by the acoustic waves generated from the propagating Rayleigh wave. The second and third waves would be caused by atmospheric gravity waves excited in the lower ionosphere due to the acoustic wave propagations from the tsunami source. The fourth and following waves are considered to be caused by the atmospheric gravity waves induced by the wavefronts of traveling tsunami. After the EF5 tornado hit Moore, Oklahoma, USA, on 20 May 2013, clear concentric waves and short-period oscillations were observed. These concentric waves were non-dispersive waves with a horizontal wavelength of approximately 120 km and a period of approximately 13 minutes. They were observed for more than seven hours throughout North America. TEC oscillations with a period of approximately 4 minutes were also observed in the south of Moore for more than eight hours. Comparison between the GPS-TEC observations and the infrared cloud images from the GOES satellite indicates that the concentric waves and the short-period oscillations would be

  18. The SKA as a Doorway to Angular Momentum

    CERN Document Server

    Obreschkow, D; Popping, A; Power, C; Quinn, P; Staveley-Smith, L

    2015-01-01

    Angular momentum is one of the most fundamental physical quantities governing galactic evolution. Differences in the colours, morphologies, star formation rates and gas fractions amongst galaxies of equal stellar/baryon mass M are potentially widely explained by variations in their specific stellar/baryon angular momentum j. The enormous potential of angular momentum science is only just being realised, thanks to the emergence of the first simulations of galaxies with converged spins, paralleled by a dramatic increase in kinematic observations. Such observations are still challenged by the fact that most of the stellar/baryon angular momentum resides at large radii. In fact, the radius that maximally contributes to the angular momentum of an exponential disk (3Re-4Re) is twice as large as the radius that maximally contributes to the disk mass; thus converged measurements of angular momentum require either extremely deep IFS data or, alternatively, kinematic measurements of neutral atomic hydrogen (HI), which ...

  19. Ambient Observations of Organic Nitrogen Compounds in Submicrometer Aerosols in New York Using High Resolution Aerosol Mass Spectrometry

    Science.gov (United States)

    Zhou, S.; Ge, X.; Xu, J.; Sun, Y.; Zhang, Q.

    2015-12-01

    Organic nitrogen (ON) compounds, which include amines, nitriles, organic nitrates, amides, and N-containing aromatic heterocycles, are an important class of compounds ubiquitously detected in atmospheric particles and fog and cloud droplets. Previous studies indicate that these compounds can make up a significant fraction (20-80%) of the total nitrogen (N) content in atmospheric condensed phases and play important roles in new particle formation and growth and affecting the optical and hygroscopicity of aerosols. In this study, we report the observation of ON compounds in submicrometer particles (PM1) at two locations in New York based on measurements using Aerodyne high-resolution time-of-flight mass spectrometer (HR-ToF-AMS). One study was conducted as part of the US Department of Energy funded Aerosol Lifecyle - Intensive Operation Period (ALC-IOP) campaign at Brookhaven National Lab (BNL, 40.871˚N, 72.89˚W) in summer, 2011 and the other was conducted at the Queen's College (QC) in New York City (NYC) in summer, 2009. We observed a notable amount of N-containing organic fragment ions, CxHyNp+ and CxHyOzNp+, in the AMS spectra of organic aerosols at both locations and found that they were mainly associated with amino functional groups. Compared with results from lab experiments, the C3H8N+ at m/z = 58 was primarily attributed to trimethylamine. In addition, a significant amount of organonitrates was observed at BNL. Positive matrix factorization (PMF) analysis of the high resolution mass spectra (HRMS) of organic aerosols identified a unique nitrogen-enriched OA (NOA) factor with elevated nitrogen-to-carbon (N/C) at both BNL and QC. Analysis of the size distributions, volatility profiles, and correlations with external tracer indicates that acid-base reactions of amino compounds with sulfate and acidic gas were mainly responsible for the formation of amine salts. Photochemical production was also observed to play a role in the formation of NOA. Bivariate polar

  20. The impact of orbital sampling, monthly averaging and vertical resolution on climate chemistry model evaluation with satellite observations

    Directory of Open Access Journals (Sweden)

    A. M. Aghedo

    2011-07-01

    troposphere, respectively. Up to 8 % bias was calculated in the upper troposphere water vapour due to monthly-mean operators, which may impact the detection of water vapour feedback in response to global warming. Our results reveal the importance of using the averaging kernel and the a priori profiles to account for the limited vertical resolution and clouds of a nadir observation during model application. Neglecting the observation operators resulted in large biases, which are more than 60 % for ozone, ±30 % for carbon monoxide, and range between −1.5 K and 5 K for atmospheric temperature, and between −60 % and 100 % for water vapour.

  1. The impact of orbital sampling, monthly averaging and vertical resolution on climate chemistry model evaluation with satellite observations

    Directory of Open Access Journals (Sweden)

    A. M. Aghedo

    2011-03-01

    troposphere water vapour due to monthly-mean operators, which may impact the detection of water vapour feedback in response to global warming. Our results reveal the importance of using the averaging kernel and the a priori profiles to account for the limited vertical resolution of a nadir observation during model application. Neglecting the observation operators resulted in large biases, which are more than 60% for ozone, ±30% for carbon monoxide, and range between −1.5 K and 5 K for atmospheric temperature, and between −60% and 100% for water vapour.

  2. WESTERBORK OBSERVATIONS OF HIGH-VELOCITY CLOUDS - THE DATA

    NARCIS (Netherlands)

    WAKKER, BP

    1991-01-01

    The results of Westerbork * observations of small-scale structure in high-velocity clouds (HVCs) at 1' angular and 1 km s-1 velocity resolution are presented in the form of a table of observational parameters, maps of hydrogen column density, velocity-right ascension cuts, and histograms of the line

  3. LAMOST Observations in the Kepler Field. Analysis of the Stellar Parameters Measured with LASP Based on Low-resolution Spectra

    Science.gov (United States)

    Ren, Anbing; Fu, Jianning; De Cat, Peter; Wu, Yue; Yang, Xiaohu; Shi, Jianrong; Luo, Ali; Zhang, Haotong; Dong, Subo; Zhang, Ruyuan; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Cao, Zihuang; Du, Bing

    2016-08-01

    All 14 subfields of the Kepler field were observed at least once with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (lamost, Xinglong Observatory, China) during the 2012-2014 observation seasons. There are 88,628 reduced spectra with a signal-to-noise ratio in the g band (S/N g ) ≥ 6 after the first round (2012-2014) of observations of the lamost- Kepler project (LK-project). By adopting the upgraded version of the lamost Stellar Parameter pipeline (lasp), we have determined the atmospheric parameters ({T}{eff}, {log}g, and [Fe/H]) and heliocentric radial velocity v rad for 51,406 stars with 61,226 spectra. Compared with the atmospheric parameters derived from both high-resolution spectroscopy and asteroseismology for common stars in Huber et al., an external calibration of lasp atmospheric parameters was made, leading to the determination of the external errors for giants and dwarfs. Multiple spectroscopic observations of the same objects in the LK-project were used to estimate the internal uncertainties of the atmospheric parameters as a function of S/N g with the unbiased estimation method. The lasp atmospheric parameters were calibrated based on both the external and internal uncertainties for the giants and dwarfs. A general statistical analysis of the stellar parameters leads to the discovery of 106 candidate metal-poor stars, 9 candidate very metal-poor stars, and 18 candidate high-velocity stars. Fitting formulae were obtained segmentally for both the calibrated atmospheric parameters of the LK-project and the Kepler Input Catalog (KIC) parameters with common stars. The calibrated atmospheric parameters and radial velocities of the LK-project will be useful for studying stars in the Kepler field. ) located at the Xinglong Observatory, China.

  4. Observation of antisite domain boundaries in Cu2ZnSnS4 by atomic-resolution transmission electron microscopy

    Science.gov (United States)

    Kattan, N. A.; Griffiths, I. J.; Cherns, D.; Fermín, D. J.

    2016-07-01

    Atomic resolution transmission electron microscopy has been used to examine antisite defects in Cu2ZnSnS4 (CZTS) kesterite crystals grown by a hot injection method. High angle annular dark field (HAADF) imaging at sub-0.1 nm resolution, and lower magnification dark field imaging using reflections sensitive to cation ordering, are used to reveal antisite domain boundaries (ADBs). These boundaries, typically 5-20 nm apart, and extending distances of 100 nm or more into the crystals, lie on a variety of planes and have displacements of the type ½[110] or ¼[201], which translate Sn, Cu and Zn cations into antisite positions. It is shown that some ADBs describe a change in the local stoichiometry by removing planes of S and either Cu or Zn atoms, implying that these boundaries can be electrically charged. The observations also showed a marked increase in cation disorder in regions within 1-2 nm of the grain surfaces suggesting that growth of the ordered crystal takes place at the interface with a disordered shell. It is estimated that the ADBs contribute on average ~0.1 antisite defect pairs per unit cell. Although this is up to an order of magnitude less than the highest antisite defect densities reported, the presence of high densities of ADBs that may be charged suggests these defects may have a significant influence on the efficiency of CZTS solar cells.Atomic resolution transmission electron microscopy has been used to examine antisite defects in Cu2ZnSnS4 (CZTS) kesterite crystals grown by a hot injection method. High angle annular dark field (HAADF) imaging at sub-0.1 nm resolution, and lower magnification dark field imaging using reflections sensitive to cation ordering, are used to reveal antisite domain boundaries (ADBs). These boundaries, typically 5-20 nm apart, and extending distances of 100 nm or more into the crystals, lie on a variety of planes and have displacements of the type ½[110] or ¼[201], which translate Sn, Cu and Zn cations into antisite

  5. High-time resolution conjugate SuperDARN radar observations of the dayside convection response to changes in IMF By

    Directory of Open Access Journals (Sweden)

    J. -P. Villain

    Full Text Available We present data from conjugate SuperDARN radars describing the high-latitude ionosphere's response to changes in the direction of IMF By during a period of steady IMF Bz southward and Bx positive. During this interval, the radars were operating in a special mode which gave high-time resolution data (30 s sampling period on three adjacent beams with a full scan every 3 min. The location of the radars around magnetic local noon at the time of the event allowed detailed observations of the variations in the ionospheric convection patterns close to the cusp region as IMF By varied. A significant time delay was observed in the ionospheric response to the IMF By changes between the two hemispheres. This is explained as being partially a consequence of the location of the dominant merging region on the magnetopause, which is ~8-12RE closer to the northern ionosphere than to the southern ionosphere (along the magnetic field line due to the dipole tilt of the magnetosphere and the orientation of the IMF. This interpretation supports the anti-parallel merging hypothesis and highlights the importance of the IMF Bx component in solar wind-magnetosphere coupling.Key words: Ionosphere (plasma convection - Magnetospheric physics (magnetopause, cusp, and boundary layers; solar wind - magnetosphere interactions

  6. A medaka model of cancer allowing direct observation of transplanted tumor cells in vivo at a cellular-level resolution.

    Science.gov (United States)

    Hasegawa, Sumitaka; Maruyama, Kouichi; Takenaka, Hikaru; Furukawa, Takako; Saga, Tsuneo

    2009-08-18

    The recent success with small fish as an animal model of cancer with the aid of fluorescence technique has attracted cancer modelers' attention because it would be possible to directly visualize tumor cells in vivo in real time. Here, we report a medaka model capable of allowing the observation of various cell behaviors of transplanted tumor cells, such as cell proliferation and metastasis, which were visualized easily in vivo. We established medaka melanoma (MM) cells stably expressing GFP and transplanted them into nonirradiated and irradiated medaka. The tumor cells were grown at the injection sites in medaka, and the spatiotemporal changes were visualized under a fluorescence stereoscopic microscope at a cellular-level resolution, and even at a single-cell level. Tumor dormancy and metastasis were also observed. Interestingly, in irradiated medaka, accelerated tumor growth and metastasis of the transplanted tumor cells were directly visualized. Our medaka model provides an opportunity to visualize in vivo tumor cells "as seen in a culture dish" and would be useful for in vivo tumor cell biology. PMID:19666513

  7. High-resolution CO observation of the carbon star CIT 6 revealing the spiral structure and a nascent bipolar outflow

    CERN Document Server

    Kim, Hyosun; Hirano, Naomi; Zhao-Geisler, Ronny; Trejo, Alfonso; Yen, Hsi-Wei; Taam, Ronald E; Kemper, Francisca; Kim, Jongsoo; Byun, Do-Young; Liu, Tie

    2015-01-01

    CIT 6 is a carbon star in the transitional phase from the asymptotic giant branch (AGB) to the protoplanetary nebulae (pPN). Observational evidences of two point sources in the optical, circumstellar arc segments in an HC$_3$N line emission, and a bipolar nebula in near-infrared provide strong support for the presence of a binary companion. Hence, CIT 6 is very attractive for studying the role of companions in the AGB-pPN transition. We have carried out high resolution $^{12}$CO $J=2-1$ and $^{13}$CO $J=2-1$ observations of CIT 6 with the Submillimeter Array combined with the Submillimeter Telescope (single-dish) data. The $^{12}$CO channel maps reveal a spiral-shell pattern connecting the HC$_3$N segments in a continuous form, and an asymmetric outflow corresponding to the near-infrared bipolar nebula. Rotation of the $^{12}$CO channel peak position may be related to the inner spiral winding and/or the bipolar outflow. An eccentric orbit binary is suggested for the presences of an anisotropic mass loss to th...

  8. High-Resolution NDVI from Planet's Constellation of Earth Observing Nano-Satellites: A New Data Source for Precision Agriculture

    KAUST Repository

    Houborg, Rasmus

    2016-09-19

    Planet Labs ("Planet") operate the largest fleet of active nano-satellites in orbit, offering an unprecedented monitoring capacity of daily and global RGB image capture at 3-5 m resolution. However, limitations in spectral resolution and lack of accurate radiometric sensor calibration impact the utility of this rich information source. In this study, Planet\\'s RGB imagery was translated into a Normalized Difference Vegetation Index (NDVI): a common metric for vegetation growth and condition. Our framework employs a data mining approach to build a set of rule-based regression models that relate RGB data to atmospherically corrected Landsat-8 NDVI. The approach was evaluated over a desert agricultural landscape in Saudi Arabia where the use of near-coincident (within five days) Planet and Landsat-8 acquisitions in the training of the regression models resulted in NDVI predictabilities with an r2 of approximately 0.97 and a Mean Absolute Deviation (MAD) on the order of 0.014 (~9%). The MAD increased to 0.021 (~14%) when the Landsat NDVI training image was further away (i.e., 11-16 days) from the corrected Planet image. In these cases, the use of MODIS observations to inform on the change in NDVI occurring between overpasses was shown to significantly improve prediction accuracies. MAD levels ranged from 0.002 to 0.011 (3.9% to 9.1%) for the best performing 80% of the data. The technique is generic and extendable to any region of interest, increasing the utility of Planet\\'s dense time-series of RGB imagery.

  9. The angular momentum of baryons and dark matter halos revisited

    OpenAIRE

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive mesh refinement, we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole....

  10. Quantum Entanglement of High Angular Momenta

    International Nuclear Information System (INIS)

    Full text: Orbital angular momentum (OAM) of single photons represents a relatively novel optical degree of freedom for the entanglement of photons. One physical realization of OAM carrying light beams are the so called Laguerre-Gaussian modes which have the required helical phase structure. One big advantage over the well-known polarization degree of freedom is the possibility of realizing entanglement between two photons with very high quantum numbers and momenta respectively. However, the creation of photonic OAM entanglement by the widely used spontaneous parametric down conversion (SPDC) process is limited by the strongly reduced efficiency for higher momenta. We have realized a novel method to create entanglement between two photons which is not constrained by the SPDC efficiency or conservation law for the OAM degree of freedom. We created and measured the entanglement of two photons with up to 600ħ difference in their angular momentum by transferring the polarization entanglement to the orbital angular momentum degree of freedom within an interferometric scheme. Additionally, we used hybrid entangled biphoton states between polarization and OAM to show the angular resolution enhancement in possible remote sensing applications. (author)

  11. Femtosecond dynamics of spin and orbital angular momentum in nickel

    Energy Technology Data Exchange (ETDEWEB)

    Stamm, Christian; Pontius, Niko; Holldack, Karsten; Quast, Torsten; Kachel, Torsten; Wietstruk, Marko; Mitzner, Rolf; Duerr, Hermann A. [Elektronenspeicherring BESSY II, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, 12489 Berlin (Germany)

    2009-07-01

    At the BESSY femtoslicing source we measure X-ray magnetic circular dichroism (XMCD) with 100 fs time resolution. By virtue of the XMCD sum rules, we find that the spin and orbital momenta in a thin nickel film are quenched with a time constant of 150 fs upon excitation with a fs laser pulse. This represents the first unambiguous proof that the total electronic angular momentum is transferred to the lattice on the same ultrafast time scale. The quenching of orbital angular momentum also is a serious constraint for models of angular momentum dissipation.

  12. Quark Orbital Angular Momentum

    Science.gov (United States)

    Burkardt, Matthias

    2016-06-01

    Generalized parton distributions provide information on the distribution of quarks in impact parameter space. For transversely polarized nucleons, these impact parameter distributions are transversely distorted and this deviation from axial symmetry leads on average to a net transverse force from the spectators on the active quark in a DIS experiment. This force when acting along the whole trajectory of the active quark leads to transverse single-spin asymmetries. For a longitudinally polarized nucleon target, the transverse force implies a torque acting on the quark orbital angular momentum (OAM). The resulting change in OAM as the quark leaves the target equals the difference between the Jaffe-Manohar and Ji OAMs.

  13. AngularJS directives

    CERN Document Server

    Vanston, Alex

    2013-01-01

    This book uses a practical, step-by-step approach, starting with how to build directives from the ground up before moving on to creating web applications comprised of multiple modules all working together to provide the best user experience possible.This book is intended for intermediate JavaScript developers who are looking to enhance their understanding of single-page web application development with a focus on AngularJS and the JavaScript MVC frameworks.It is expected that readers will understand basic JavaScript patterns and idioms and can recognize JSON formatted data.

  14. High Spectral Resolution Infrared and Raman Lidar Observations for the ARM Program: Clear and Cloudy Sky Applications

    Energy Technology Data Exchange (ETDEWEB)

    Revercomb, Henry; Tobin, David; Knuteson, Robert; Borg, Lori; Moy, Leslie

    2009-06-17

    This grant began with the development of the Atmospheric Emitted Radiance Interferometer (AERI) for ARM. The AERI has provided highly accurate and reliable observations of downwelling spectral radiance (Knuteson et al. 2004a, 2004b) for application to radiative transfer, remote sensing of boundary layer temperature and water vapor, and cloud characterization. One of the major contributions of the ARM program has been its success in improving radiation calculation capabilities for models and remote sensing that evolved from the multi-year, clear-sky spectral radiance comparisons between AERI radiances and line-by-line calculations (Turner et al. 2004). This effort also spurred us to play a central role in improving the accuracy of water vapor measurements, again helping ARM lead the way in the community (Turner et al. 2003a, Revercomb et al. 2003). In order to add high-altitude downlooking AERI-like observations over the ARM sites, we began the development of an airborne AERI instrument that has become known as the Scanning High-resolution Interferometer Sounder (Scanning-HIS). This instrument has become an integral part of the ARM Unmanned Aerospace Vehicle (ARM-UAV) program. It provides both a cross-track mapping view of the earth and an uplooking view from the 12-15 km altitude of the Scaled Composites Proteus aircraft when flown over the ARM sites for IOPs. It has successfully participated in the first two legs of the “grand tour” of the ARM sites (SGP and NSA), resulting in a very good comparison with AIRS observations in 2002 and in an especially interesting data set from the arctic during the Mixed-Phase Cloud Experiment (M-PACE) in 2004.

  15. Photon Orbital Angular Momentum in Astrophysics

    OpenAIRE

    Harwit, Martin

    2003-01-01

    Astronomical observations of the orbital angular momentum of photons, a property of electromagnetic radiation that has come to the fore in recent years, have apparently never been attempted. Here, I show that measurements of this property of photons have a number of astrophysical applications.

  16. Angular momentum and the electromagnetic top

    Indian Academy of Sciences (India)

    GIANFRANCO SPAVIERI; GEORGE T GILLIES

    2016-08-01

    The electric charge–magnetic dipole interaction is considered. If $\\Gamma_{\\rm em}$ is the electromagnetic and $\\Gamma_{\\rm mech}$ the mechanical angular momentum, the conservation law for the total angular momentum $\\Gamma_{\\rm tot}$ holds: $\\Gamma_{\\rm tot}$ =$\\Gamma_{\\rm em}$ + $\\Gamma_{\\rm mech}$ = ${\\rm const.}$, but when the dipole moment varies with time, $\\Gamma_{\\rm mech}$ is not conserved. We show that the non-conserved $\\Gamma_{\\rm mech}$ of such a macroscopic isolated system might be experimentally observable. With advanced technology, the strength of the interaction hints to the possibility of novel applications for gyroscopes, such as the electromagnetic top.

  17. On the vector model of angular momentum

    Science.gov (United States)

    Saari, Peeter

    2016-09-01

    Instead of (or in addition to) the common vector diagram with cones, we propose to visualize the peculiarities of quantum mechanical angular momentum by a completely quantized 3D model. It spotlights the discrete eigenvalues and noncommutativity of components of angular momentum and corresponds to outcomes of measurements—real or computer-simulated. The latter can be easily realized by an interactive worksheet of a suitable program package of algebraic calculations. The proposed complementary method of visualization helps undergraduate students to better understand the counterintuitive properties of this quantum mechanical observable.

  18. A sequential model for disaggregating near-surface soil moisture observations using multi-resolution thermal sensors

    OpenAIRE

    Merlin, O.; al Bitar, A.; Walker, J.P.; Kerr, Y.H.

    2009-01-01

    A sequential model is developed to disaggregate microwave-derived soil moisture from 40 km to 4 km resolution using MODIS (Moderate Imaging Spectroradiometer) data and subsequently from 4 km to 500 m resolution using ASTER (Advanced Scanning Thermal Emission and Reflection Radiometer) data. The 1 km resolution airborne data collected during the three-week National Airborne Field Experiment 2006 (NAFE'06) are used to simulate the 40 km pixels, and a thermal-based disaggregation algorithm is ap...

  19. Ultrafast angular momentum transfer in multisublattice ferrimagnets.

    Science.gov (United States)

    Bergeard, N; López-Flores, V; Halté, V; Hehn, M; Stamm, C; Pontius, N; Beaurepaire, E; Boeglin, C

    2014-03-11

    Femtosecond laser pulses can be used to induce ultrafast changes of the magnetization in magnetic materials. However, one of the unsolved questions is that of conservation of the total angular momentum during the ultrafast demagnetization. Here we report the ultrafast transfer of angular momentum during the first hundred femtoseconds in ferrimagnetic Co0.8Gd0.2 and Co0.74Tb0.26 films. Using time-resolved X-ray magnetic circular dichroism allowed for time-resolved determination of spin and orbital momenta for each element. We report an ultrafast quenching of the magnetocrystalline anisotropy and show that at early times the demagnetization in ferrimagnetic alloys is driven by the local transfer of angular momenta between the two exchange-coupled sublattices while the total angular momentum stays constant. In Co0.74Tb0.26 we have observed a transfer of the total angular momentum to an external bath, which is delayed by ~150 fs.

  20. Quantitative Assessment of a Novel Super-Resolution Restoration Technique Using HiRISE with Navcam Images: how much Resolution Enhancement is Possible from Repeat-Pass Observations

    Science.gov (United States)

    Tao, Y.; Muller, J.-P.

    2016-06-01

    Higher spatial resolution imaging data is always desirable to the international community of planetary scientists interested in improving understanding of surface formation processes. We have previously developed a novel Super-resolution restoration (SRR) technique (Tao & Muller, 2016) using Gotcha sub-pixel matching, orthorectification, and segmented 4th order PDE-TV, called GPT SRR, which is able to restore 5 cm-12.5 cm near rover scale images (equivalent to Navcam projected FoV at a range of ≥ 5 m) from multiple 25 cm resolution NASA MRO HiRISE images. The SRR technique has been successfully applied to the rover traverses for the MER and MSL missions within the EU FP-7 PRoViDE project. These SRR results have revealed new surface information including the imaging of individual rocks (diameter ≥ 25 cm) by comparison of the original HiRISE image and rover Navcam orthorectified image mosaics. In this work, we seek evidence from processing a very large number of stereo reconstruction results from all Navcam stereo images within PRoViDE, registration and comparison with the corresponding SRR image, in order to derive a quantitative assessment on key features including rocks (diameter < 150 cm) and rover track wheel spacing. We summarise statistics from SRR-Navcam measurements and demonstrate that our unique SRR datasets will greatly support the geological and morphological analysis and monitoring of Martian surface and can also be applied to landing site selection, in order to avoid unsuitable terrain, for any future lander/rover as well as help to define future rover paths.

  1. Slow aging in Secondary Organic Aerosol observed by Liquid Chromatography coupled with High-Resolution Mass Spectrometry

    Science.gov (United States)

    Bones, D. L.; Bateman, A. P.; Nguyen, T. B.; Laskin, J.; Laskin, A.; Nizkorodov, S.

    2009-12-01

    This study investigated long term changes in the chemical composition of model biogenic secondary organic aerosol (SOA) prepared via ozonolysis of the terpene limonene. This SOA has been observed to turn brown when exposed to NH4+. Our hypothesis is that the chromophoric compounds responsible for this color change are suspected to be imidazole-like or pyridinium-like compounds. These compounds are only present in small relative amounts, hence standard mass spectrometry is insufficient to unambiguously detect these compounds. However, a combination of HPLC and high resolution electrospray ionization mass spectrometry allows assignments of chemical formulae to individual peaks. These and other experiments confirm the presence of N-containing compounds in treated SOA. We are in the process of determining the exact identity of these species by MS/MS methods. LC-MS can also provide information about the polarity of the compounds in SOA. Most compounds in limonene-O3 SOA are polar and are detected at short retention times; peaks suggesting trimeric species appear at longer retention times in the case of fresh SOA, but at shorter times with the bulk of the components for aged SOA. Limonene SOA has been shown to be composed of monomers, dimers, trimers and larger oligomers. The appearance of trimers in specific regions of the chromatogram suggests these species are genuine SOA components and not an artifact of electrospray ionization. Changes in biogenic SOA over time are important because of the propensity of SOA to affect direct and indirect radiative forcing.

  2. Investigating the Source of Planck-Detected AME: High-Resolution Observations at 15 GHz

    Directory of Open Access Journals (Sweden)

    Yvette C. Perrott

    2013-01-01

    Full Text Available The Planck 28.5 GHz maps were searched for potential Anomalous Microwave Emission (AME regions on the scale of ~3° or smaller, and several new regions of interest were selected. Ancillary data at both lower and higher frequencies were used to construct spectral energy distributions (SEDs, which seem to confirm an excess consistent with spinning dust models. Here we present higher resolution observations of two of these new regions with the Arcminute Microkelvin Imager Small Array (AMI SA between 14 and 18 GHz to test for the presence of a compact (~10 arcmin or smaller component. For AME-G107.1+5.2, dominated by the Hii region S140, we find evidence for the characteristic rising spectrum associated with either the spinning dust mechanism for AME or an ultra- /hypercompact Hii region across the AMI frequency band; however, for AME-G173.6+208 we find no evidence for AME on scales of ~2–10 arcmin.

  3. HIGH-RESOLUTION CO OBSERVATION OF THE CARBON STAR CIT 6 REVEALING THE SPIRAL STRUCTURE AND A NASCENT BIPOLAR OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyosun; Liu, Sheng-Yuan; Hirano, Naomi; Zhao-Geisler, Ronny; Trejo, Alfonso; Yen, Hsi-Wei; Taam, Ronald E.; Kemper, Francisca [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Kim, Jongsoo; Byun, Do-Young; Liu, Tie, E-mail: hkim@asiaa.sinica.edu.tw [Korea Astronomy and Space Science Institute, 776, Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of)

    2015-11-20

    CIT 6 is a carbon star in the transitional phase from the asymptotic giant branch (AGB) to the protoplanetary nebulae (pPNs). Observational evidences of two point sources in the optical, circumstellar arc segments in an HC{sub 3}N line emission, and a bipolar nebula in near-infrared provide strong support for the presence of a binary companion. Hence, CIT 6 is very attractive for studying the role of companions in the AGB–pPN transition. We have carried out high-resolution {sup 12}CO J = 2–1 and {sup 13}CO J = 2–1 observations of CIT 6 with the Submillimeter Array combined with the Submillimeter Telescope (single-dish) data. The {sup 12}CO channel maps reveal a spiral-shell pattern connecting the HC{sub 3}N segments in a continuous form and an asymmetric outflow corresponding to the near-infrared bipolar nebula. Rotation of the {sup 12}CO channel peak position may be related to the inner spiral winding and/or the bipolar outflow. An eccentric orbit binary is suggested for the presence of an anisotropic mass loss to the west and a double spiral pattern. The lack of interarm emission to the west may indicate a feature corresponding to the periastron passage of a highly eccentric orbit of the binary. Spatially averaged radial and spectral profiles of {sup 12}CO J = 2–1 and {sup 13}CO J = 2–1 are compared with simple spherical radiative transfer models, suggesting a change of {sup 12}CO/{sup 13}CO abundance ratio from ∼30 to ∼50 inward in the CSE of CIT 6. The millimeter continuum emission is decomposed into extended dust thermal emission (spectral index ∼ −2.4) and compact emission from radio photosphere (spectral index ∼ −2.0)

  4. Conservation of Orbital Angular Momentum in Stimulated Down-Conversion

    OpenAIRE

    Caetano, D. P.; Almeida, M. P.; Ribeiro, P. H. Souto; Huguenin, J. A. O.; Santos, B. Coutinho dos; Khoury, A. Z.

    2001-01-01

    We report on an experiment demonstrating the conservation of orbital angular momentum in stimulated down-conversion. The orbital angular momentum is not transferred to the individual beams of the spontaneous down-conversion, but it is conserved when twin photons are taken individually. We observe the conservation law for an individual beam of the down-conversion through cavity-free stimulated emission.

  5. Multi-wavelength Airborne High Spectral Resolution Lidar Observations of Aerosol Above Clouds in California during DISCOVER-AQ

    Science.gov (United States)

    Hostetler, C. A.; Burton, S. P.; Ferrare, R. A.; Rogers, R. R.; Mueller, D.; Chemyakin, E.; Cook, A. L.; Harper, D. B.; Ziemba, L. D.; Beyersdorf, A. J.; Anderson, B. E.

    2013-12-01

    Accurately representing the vertical profile of aerosols is important for determining their radiative impact, which is still one of the biggest uncertainties in climate forcing. Aerosol radiative forcing can be either positive or negative depending on aerosol absorption properties and underlying albedo. Therefore, accurately characterizing the vertical distribution of aerosols, and specifically aerosols above clouds, is vital to understanding climate change. Unlike passive sensors, airborne lidar has the capability to make vertically resolved aerosol measurements of aerosols above and between clouds. Recently, NASA Langley Research Center has built and deployed the world's first airborne multi-wavelength High Spectral Resolution Lidar, HSRL-2. The HSRL-2 instrument employs the HSRL technique to measure extinction at both 355 nm and 532 nm and also measures aerosol depolarization and backscatter at 355 nm, 532 nm and 1064 nm. Additional HSRL-2 data products include aerosol type and range-resolved aerosol microphysical parameters (e.g., effective radius, number concentration, and single scattering albedo). HSRL-2 was deployed in the San Joaquin Valley, California, from January 16 to February 6, 2013, on the DISCOVER-AQ field campaign (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality). On February 6, the observation region was mostly cloudy, and HSRL-2 saw two distinct aerosol layers above the clouds. One layer was aged boundary-layer pollution located just above cloud top at approximately 1.5 km above sea level. An aged smoke layer was also observed over land and over the ocean at altitudes 4-7 km ASL. In this study, we will show HSRL-2 products for these cases, and compare them with airborne in situ measurements of the 1.5-km layer from a coincident flight of the NASA P3B. We will also compare and contrast the HSRL-2 measurements of these two aerosol layers with each other and the clear-air boundary

  6. High resolution observations with Artemis-IV and the NRH. I. Type IV associated narrow-band bursts

    Science.gov (United States)

    Bouratzis, C.; Hillaris, A.; Alissandrakis, C. E.; Preka-Papadema, P.; Moussas, X.; Caroubalos, C.; Tsitsipis, P.; Kontogeorgos, A.

    2016-02-01

    Context. Narrow-band bursts appear on dynamic spectra from microwave to decametric frequencies as fine structures with very small duration and bandwidth. They are believed to be manifestations of small scale energy release through magnetic reconnection. Aims: We analyzed 27 metric type IV events with embedded narrow-band bursts, which were observed by the ARTEMIS-IV radio spectrograph from 30 June 1999 to 1 August 2010. We examined the morphological characteristics of isolated narrow-band structures (mostly spikes) and groups or chains of structures. Methods: The events were recorded with the SAO high resolution (10 ms cadence) receiver of ARTEMIS-IV in the 270-450 MHz range. We measured the duration, spectral width, and frequency drift of ~12 000 individual narrow-band bursts, groups, and chains. Spike sources were imaged with the Nançay radioheliograph (NRH) for the event of 21 April 2003. Results: The mean duration of individual bursts at fixed frequency was ~100 ms, while the instantaneous relative bandwidth was ~2%. Some bursts had measurable frequency drift, either positive or negative. Quite often spikes appeared in chains, which were closely spaced in time (column chains) or in frequency (row chains). Column chains had frequency drifts similar to type-IIId bursts, while most of the row chains exhibited negative frequently drifts with a rate close to that of fiber bursts. From the analysis of NRH data, we found that spikes were superimposed on a larger, slowly varying, background component. They were polarized in the same sense as the background source, with a slightly higher degree of polarization of ~65%, and their size was about 60% of their size in total intensity. Conclusions: The duration and bandwidth distributions did not show any clear separation in groups. Some chains tended to assume the form of zebra, lace stripes, fiber bursts, or bursts of the type-III family, suggesting that such bursts might be resolved in spikes when viewed with high

  7. Orbital angular momentum microlaser

    Science.gov (United States)

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M.; Feng, Liang

    2016-07-01

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes.

  8. Orbital angular momentum microlaser.

    Science.gov (United States)

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M; Feng, Liang

    2016-07-29

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes. PMID:27471299

  9. Evaluation of applicability of high-resolution multiangle imaging photo-polarimetric observations for aerosol atmospheric correction

    Science.gov (United States)

    Kalashnikova, Olga; Garay, Michael; Xu, Feng; Diner, David; Seidel, Felix

    2016-07-01

    Multiangle spectro-polarimetric measurements have been advocated as an additional tool for better understanding and quantifying the aerosol properties needed for atmospheric correction for ocean color retrievals. The central concern of this work is the assessment of the effects of absorbing aerosol properties on remote sensing reflectance measurement uncertainty caused by neglecting UV-enhanced absorption of carbonaceous particles and by not accounting for dust nonsphericity. In addition, we evaluate the polarimetric sensitivity of absorbing aerosol properties in light of measurement uncertainties achievable for the next generation of multi-angle polarimetric imaging instruments, and demonstrate advantages and disadvantages of wavelength selection in the UV/VNIR range. In this work a vector Markov Chain radiative transfer code including bio-optical models was used to quantitatively evaluate in water leaving radiances between atmospheres containing realistic UV-enhanced and non-spherical aerosols and the SEADAS carbonaceous and dust-like aerosol models. The phase matrices for the spherical smoke particles were calculated using a standard Mie code, while those for non-spherical dust particles were calculated using the numerical approach developed for modeling dust for the AERONET network of ground-based sunphotometers. As a next step, we have developed a retrieval code that employs a coupled Markov Chain (MC) and adding/doubling radiative transfer method for joint retrieval of aerosol properties and water leaving radiance from Airborne Multiangle SpectroPolarimetric Imager-1 (AirMSPI-1) polarimetric observations. The AirMSPI-1 instrument has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. AirMSPI typically acquires observations of a target area at 9 view angles between ±67° at 10 m resolution. AirMSPI spectral channels are centered at 355, 380, 445, 470, 555, 660, and 865 nm, with 470, 660, and 865 reporting linear polarization. We

  10. Radio & Optical Interferometry: Basic Observing Techniques and Data Analysis

    CERN Document Server

    Monnier, John D

    2012-01-01

    Astronomers usually need the highest angular resolution possible, but the blurring effect of diffraction imposes a fundamental limit on the image quality from any single telescope. Interferometry allows light collected at widely-separated telescopes to be combined in order to synthesize an aperture much larger than an individual telescope thereby improving angular resolution by orders of magnitude. Radio and millimeter wave astronomers depend on interferometry to achieve image quality on par with conventional visible and infrared telescopes. Interferometers at visible and infrared wavelengths extend angular resolution below the milli-arcsecond level to open up unique research areas in imaging stellar surfaces and circumstellar environments. In this chapter the basic principles of interferometry are reviewed with an emphasis on the common features for radio and optical observing. While many techniques are common to interferometers of all wavelengths, crucial differences are identified that will help new practi...

  11. On the relation between angular momentum and angular velocity

    Science.gov (United States)

    Silva, J. P.; Tavares, J. M.

    2007-01-01

    Students of mechanics usually have difficulties when they learn about the rotation of a rigid body. These difficulties are rooted in the relation between angular momentum and angular velocity, because these vectors are not parallel, and we need in general to utilize a rotating frame of reference or a time dependent inertia tensor. We discuss a series of problems that introduce both difficulties.

  12. High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP). I. Lucky imaging observations of 101 systems in the southern hemisphere

    CERN Document Server

    Evans, D F; Maxted, P F L; Skottfelt, J; Hundertmark, M; Jørgensen, U G; Dominik, M; Alsubai, K A; Andersen, M I; Bozza, V; Bramich, D M; Burgdorf, M J; Ciceri, S; D'Ago, G; Jaimes, R Figuera; Gu, S H; Haugbølle, T; Hinse, T C; Juncher, D; Kains, N; Kerins, E; Korhonen, H; Kuffmeier, M; Peixinho, N; Popovas, A; Rabus, M; Rahvar, S; Schmidt, R W; Snodgrass, C; Starkey, D; Surdej, J; Tronsgaard, R; von Essen, C; Wang, Yi-Bo; Wertz, O

    2016-01-01

    (abridged) Context. Wide binaries are a potential pathway for the formation of hot Jupiters. The binary fraction among host stars is an important discriminator between competing formation theories, but has not been well characterised. Additionally, contaminating light from unresolved stars can significantly affect the accuracy of photometric and spectroscopic measurements in studies of transiting exoplanets. Aims. We observed 101 transiting exoplanet host systems in the Southern hemisphere in order to create a homogeneous catalogue of both bound companion stars and contaminating background stars. We investigate the binary fraction among the host stars in order to test theories for the formation of hot Jupiters, in an area of the sky where transiting exoplanetary systems have not been systematically searched for stellar companions. Methods. Lucky imaging observations from the Two Colour Instrument on the Danish 1.54m telescope at La Silla were used to search for previously unresolved stars at small angular sep...

  13. High spatio-temporal resolution observations of crater lake temperatures at Kawah Ijen volcano, East Java, Indonesia

    Science.gov (United States)

    Lewicki, Jennifer L.; Caudron, Corentin; van Hinsberg, Vincent J.; Hilley, George E.

    2016-08-01

    The crater lake of Kawah Ijen volcano, East Java, Indonesia, has displayed large and rapid changes in temperature at point locations during periods of unrest, but measurement techniques employed to date have not resolved how the lake's thermal regime has evolved over both space and time. We applied a novel approach for mapping and monitoring variations in crater lake apparent surface ("skin") temperatures at high spatial (˜32 cm) and temporal (every 2 min) resolution at Kawah Ijen on 18 September 2014. We used a ground-based FLIR T650sc camera with digital and thermal infrared (TIR) sensors from the crater rim to collect (1) a set of visible imagery around the crater during the daytime and (2) a time series of co-located visible and TIR imagery at one location from pre-dawn to daytime. We processed daytime visible imagery with the Structure-from-Motion photogrammetric method to create a digital elevation model onto which the time series of TIR imagery was orthorectified and georeferenced. Lake apparent skin temperatures typically ranged from ˜21 to 33 °C. At two locations, apparent skin temperatures were ˜4 and 7 °C less than in situ lake temperature measurements at 1.5 and 5-m depth, respectively. These differences, as well as the large spatio-temporal variations observed in skin temperatures, were likely largely associated with atmospheric effects such as the evaporative cooling of the lake surface and infrared absorption by water vapor and SO2. Calculations based on orthorectified TIR imagery thus yielded underestimates of volcanic heat fluxes into the lake, whereas volcanic heat fluxes estimated based on in situ temperature measurements (68 to 111 MW) were likely more representative of Kawah Ijen in a quiescent state. The ground-based imaging technique should provide a valuable tool to continuously monitor crater lake temperatures and contribute insight into the spatio-temporal evolution of these temperatures associated with volcanic activity.

  14. Very high resolution Earth observation features for monitoring plant and animal community structure across multiple spatial scales in protected areas

    Science.gov (United States)

    Mairota, Paola; Cafarelli, Barbara; Labadessa, Rocco; Lovergine, Francesco; Tarantino, Cristina; Lucas, Richard M.; Nagendra, Harini; Didham, Raphael K.

    2015-05-01

    Monitoring the status and future trends in biodiversity can be prohibitively expensive using ground-based surveys. Consequently, significant effort is being invested in the use of satellite remote sensing to represent aspects of the proximate mechanisms (e.g., resource availability) that can be related to biodiversity surrogates (BS) such as species community descriptors. We explored the potential of very high resolution (VHR) satellite Earth observation (EO) features as proxies for habitat structural attributes that influence spatial variation in habitat quality and biodiversity change. In a semi-natural grassland mosaic of conservation concern in southern Italy, we employed a hierarchical nested sampling strategy to collect field and VHR-EO data across three spatial extent levels (landscape, patch and plot). Species incidence and abundance data were collected at the plot level for plant, insect and bird functional groups. Spectral and textural VHR-EO image features were derived from a Worldview-2 image. Three window sizes (grains) were tested for analysis and computation of textural features, guided by the perception limits of different organisms. The modelled relationships between VHR-EO features and BS responses differed across scales, suggesting that landscape, patch and plot levels are respectively most appropriate when dealing with birds, plants and insects. This research demonstrates the potential of VHR-EO for biodiversity mapping and habitat modelling, and highlights the importance of identifying the appropriate scale of analysis for specific taxonomic groups of interest. Further, textural features are important in the modelling of functional group-specific indices which represent BS in high conservation value habitat types, and provide a more direct link to species interaction networks and ecosystem functioning, than provided by traditional taxonomic diversity indices.

  15. Fundamental parameters of 16 late-type stars derived from their angular diameter measured with VLTI/AMBER

    CERN Document Server

    Cruzalèbes, P; Rabbia, Y; Sacuto, S; Chiavassa, A; Pasquato, E; Plez, B; Eriksson, K; Spang, A; Chesneau, O

    2013-01-01

    Thanks to their large angular dimension and brightness, red giants and supergiants are privileged targets for optical long-baseline interferometers. Sixteen red giants and supergiants have been observed with the VLTI/AMBER facility over a two-years period, at medium spectral resolution (R=1500) in the K band. The limb-darkened angular diameters are derived from fits of stellar atmospheric models on the visibility and the triple product data. The angular diameters do not show any significant temporal variation, except for one target: TX Psc, which shows a variation of 4% using visibility data. For the eight targets previously measured by Long-Baseline Interferometry (LBI) in the same spectral range, the difference between our diameters and the literature values is less than 5%, except for TX Psc, which shows a difference of 11%. For the 8 other targets, the present angular diameters are the first measured from LBI. Angular diameters are then used to determine several fundamental stellar parameters, and to loca...

  16. Searching for fast optical transients by means of a wide-field monitoring observations with high temporal resolution

    Science.gov (United States)

    Beskin, G.; Karpov, S.; Plokhotnichenko, V.; Bondar, S.; Ivanov, E.; Perkov, A.; Greco, G.; Guarnieri, A.; Bartolini, C.

    We discuss the strategy of search for fast optical transients accompanying gamma-ray bursts by means of continuous monitoring of wide sky fields with high temporal resolution. We describe the design, performance and results of our cameras, FAVOR and TORTORA. Also we discuss the perspectives of this strategy and possible design of next-generation equipment for wide-field monitoring which will be able to detect optical transients and to study their color and polarization properties with high time resolution.

  17. THE 2014 MARCH 29 X-FLARE: SUBARCSECOND RESOLUTION OBSERVATIONS OF Fe XXI λ1354.1

    Energy Technology Data Exchange (ETDEWEB)

    Young, Peter R. [College of Science, George Mason University, Fairfax, VA 22030 (United States); Tian, Hui [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Jaeggli, Sarah [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717 (United States)

    2015-02-01

    The Interface Region Imaging Spectrometer (IRIS) is the first solar instrument to observe ∼10 MK plasma at subarcsecond spatial resolution through imaging spectroscopy of the Fe XXI λ1354.1 forbidden line. IRIS observations of the X1 class flare that occurred on 2014 March 29 at 17:48 UT reveal Fe XXI emission from both the flare ribbons and the post-flare loop arcade. Fe XXI appears at all of the chromospheric ribbon sites, although typically with a delay of one raster (75 s) and sometimes offset by up to 1''. 100-200 km s{sup –1} blue-shifts are found at the brightest ribbons, suggesting hot plasma upflow into the corona. The Fe XXI ribbon emission is compact with a spatial extent of <2'', and can extend beyond the chromospheric ribbon locations. Examples are found of both decreasing and increasing blue-shift in the direction away from the ribbon locations, and blue-shifts were present for at least six minutes after the flare peak. The post-flare loop arcade, seen in Atmospheric Imaging Assembly 131 Å filtergram images that are dominated by Fe XXI, exhibited bright loop-tops with an asymmetric intensity distribution. The sizes of the loop-tops are resolved by IRIS at ≥1'', and line widths in the loop-tops are not broader than in the loop-legs suggesting the loop-tops are not sites of enhanced turbulence. Line-of-sight speeds in the loop arcade are typically <10 km s{sup –1}, and mean non-thermal motions fall from 43 km s{sup –1} at the flare peak to 26 km s{sup –1} six minutes later. If the average velocity in the loop arcade is assumed to be at rest, then it implies a new reference wavelength for the Fe XXI line of 1354.106 ± 0.023 Å.

  18. Evaluating the potential use of a high-resolution X-band polarimetric radar observations in Urban Hydrology

    Science.gov (United States)

    Anagnostou, Marios N.; Kalogiros, John; Marzano, Frank S.; Anagnostou, Emmanouil N.; Baldini, Luca; Nikolopoulos, EfThymios; Montopoli, Mario; Picciotti, Errico

    2014-05-01

    operational, low-frequency (C-band or S-ban) and high-power weather radars. The above hypothesis is examined using data collected during the HyMEX 2012 Special Observation Period (Nov-Feb) the urban and sub-urban complex terrain area in the Central Italy (CI). The area is densely populated and it includes the high-density populated urban and industrial area of Rome. The orography of CI is quite complex, going from sea level to nearly 3000 m in less than 150 km. The CI area involves many rivers, including two major basins: the Aniene-Tiber basin (1000 km long) and the Aterno-Pescara basin (300 km long), respectively on the west and on the east side of the Apennines ridge. Data include observations from i) the National Observatory of Athens' X-band polarimetric weather radar (XPOL), ii) two X-band miniradars (WR25X located in CNR, WR10X located in Rome Sapienza), iii) a dense network of raingauges and disdrometers (i.e. Parsivel type and 2D-video type). In addition, the experimental area is also covered from the nearby the National Research Council (CNR)'s C-band dual-polarization weather radar (Polar55C), which were involved also in the analysis. A number of storm events are selected and compared with the nearby C-band radar to investigate the potential of using high-resolution and microphysically-derived rainfall based on X-band polarimetric radar observations. Events have been discriminated on the basis of rainfall intensity and hydrological response. Results reveal that in contrast with the other two rainfall sources (in situ and C-band radar), X-band radar rainfall estimates offer an improved representation of the local precipitation variability, which turns to have a significant impact in simulating the peak flows associated with these events.

  19. A diagnostic evaluation of modeled mercury wet depositions in Europe using atmospheric speciated high-resolution observations.

    Science.gov (United States)

    Bieser, J; De Simone, F; Gencarelli, C; Geyer, B; Hedgecock, I; Matthias, V; Travnikov, O; Weigelt, A

    2014-01-01

    This study is part of the Global Mercury Observation System (GMOS), a European FP7 project dedicated to the improvement and validation of mercury models to assist in establishing a global monitoring network and to support political decisions. One key question about the global mercury cycle is the efficiency of its removal out of the atmosphere into other environmental compartments. So far, the evaluation of modeled wet deposition of mercury was difficult because of a lack of long-term measurements of oxidized and elemental mercury. The oxidized mercury species gaseous oxidized mercury (GOM) and particle-bound mercury (PBM) which are found in the atmosphere in typical concentrations of a few to a few tens pg/m(3) are the relevant components for the wet deposition of mercury. In this study, the first European long-term dataset of speciated mercury taken at Waldhof/Germany was used to evaluate deposition fields modeled with the chemistry transport model (CTM) Community Multiscale Air Quality (CMAQ) and to analyze the influence of the governing parameters. The influence of the parameters precipitation and atmospheric concentration was evaluated using different input datasets for a variety of CMAQ simulations for the year 2009. It was found that on the basis of daily and weekly measurement data, the bias of modeled depositions could be explained by the bias of precipitation fields and atmospheric concentrations of GOM and PBM. A correction of the modeled wet deposition using observed daily precipitation increased the correlation, on average, from 0.17 to 0.78. An additional correction based on the daily average GOM and PBM concentration lead to a 50% decrease of the model error for all CMAQ scenarios. Monthly deposition measurements were found to have a too low temporal resolution to adequately analyze model deficiencies in wet deposition processes due to the nonlinear nature of the scavenging process. Moreover, the general overestimation of atmospheric GOM by the CTM

  20. Global significance of a sub-Moho boundary layer (SMBL) deduced from high-resolution seismic observations

    Science.gov (United States)

    Fuchs, K.; Tittgemeyer, M.; Ryberg, T.; Wenzel, F.; Mooney, W.

    2002-01-01

    We infer the fine structure of a sub-Moho boundary layer (SMBL) at the top of the lithospheric mantle from high-resolution seismic observations of Peaceful Nuclear Explosions (PNE) on superlong-range profiles in Russia. Densely recorded seismograms permit recognition of previously unknown features of teleseismic propagation of the well known Pn and Sn phases, such as a band of incoherent, scattered, high-frequency seismic energy, developing consistently from station to station, apparent velocities of sub-Moho material, and high-frequency energy to distances of more than 3000 km with a coda band, incoherent at 10 km spacing and yet consistently observed to the end of the profiles. Estimates of the other key elements of the SMBL were obtained by finite difference calculations of wave propagation in elastic 2D models from a systematic grid search through parameter space. The SMBL consists of randomly distributed, mild velocity fluctuations of 2% or schlieren of high aspect ratios (???40) with long horizontal extent (???20 km) and therefore as thin as 0.5 km only; SMBL thickness is 60-100 km. It is suggested that the SMBL is of global significance as the physical base of the platewide observed high-frequency phases Pn and Sn. It is shown that wave propagation in the SMBL waveguide is insensitive to the background velocity distribution on which its schlieren are superimposed. This explains why the Pn and Sn phases traverse geological provinces of various age, heat flow, crustal thickness, and tectonic regimes. Their propagation appears to be independent of age. temperature, pressure, and stress. Dynamic stretching of mantle material during subduction or flow, possibly combined with chemical differentiation have to be considered as scale-forming processes in the upper mantle. However, it is difficult to distinguish with the present sets of Pn/Sn array data whether (and also where) the boundary layer is a frozen-in feature of paleo-processes or whether it is a response to

  1. Intrinsic Angular Momentum of Light.

    Science.gov (United States)

    Santarelli, Vincent

    1979-01-01

    Derives a familiar torque-angular momentum theorem for the electromagnetic field, and includes the intrinsic torques exerted by the fields on the polarized medium. This inclusion leads to the expressions for the intrinsic angular momentum carried by the radiation traveling through a charge-free medium. (Author/MA)

  2. Galactic HI on the 50-AU scale in the direction of three extra-galactic sources observed with MERLIN

    OpenAIRE

    Goss, W.M.; Richards, A. M. S.; Muxlow, T. W. B.; Thomasson, P.

    2008-01-01

    We present MERLIN observations of Galactic 21-cm HI absorption at an angular resolution of c. 0.1-0.2 arcsec and a velocity resolution of 0.5 km/s, in the direction of three moderately low latitude (-8< b

  3. Interpretation of 1.5-m resolution AUV bathymetry using ROV observations and samples at Davidson and Rodriguez Seamounts

    Science.gov (United States)

    Paduan, J. B.; Clague, D. A.; Caress, D. W.; Thomas, H.; Conlin, D.; Thompson, D.

    2010-12-01

    The summits and upper flanks of Rodriguez and Davidson Seamounts off California were mapped at 1.5-m resolution by the MBARI Mapping AUV. The seamounts were built by episodic eruptions on abandoned spreading ridges 10-12 and 10-15 Ma, respectively. They consist of ridges and elongate cones that parallel the old spreading axes, yet have strikingly different summit morphologies. Video observations and samples from prior ROV Tiburon dives are used to interpret the textures revealed in the AUV data, and are extrapolated to make geologic maps of the seamounts. The summit of Davidson is rugged and studded with cones of three general classes: completely smooth cones with nearly circular bases, mounds elongated into subparallel ridges, and disorganized mounds of rounded shapes. The elongated mound ridge-lines are roughly rectangular in cross-section, and smooth apron-like slopes descend below. They and the smooth cones occupy the highest points on the seamount but also occur deeper, whereas the disorganized mounds occur only deeper. Smooth, flat pockets lie between the cones. The disorganized mounds were identified as pillow lavas during ROV dives. The mounds that form ridges are blocky ’a’a-like flows, probably oriented over eruptive fissures. Lava samples vary from basalt to trachyte, and there is no correlation between the presumed fluidity of the lavas and occurrence of pillows. The smooth aprons below the blocky flows, and presumably the smooth cones, are glass-rich, volcaniclastic debris produced by explosive activity above. The debris has bedding parallel to the steep slopes, and has lithified into pavement. Pelagic sediment has accumulated between the cones. An inflated flow drained at its distal end in a valley between two ridges; collapses in the flow have drainback veneers like bath-tub rings on the inner surfaces. The summit of Rodriguez has no cones, but they dot the flanks. They are smooth with nearly circular bases and mounds elongated into ridges with

  4. Angular signal radiography.

    Science.gov (United States)

    Li, Panyun; Zhang, Kai; Bao, Yuan; Ren, Yuqi; Ju, Zaiqiang; Wang, Yan; He, Qili; Zhu, Zhongzhu; Huang, Wanxia; Yuan, Qingxi; Zhu, Peiping

    2016-03-21

    Microscopy techniques using visible photons, x-rays, neutrons, and electrons have made remarkable impact in many scientific disciplines. The microscopic data can often be expressed as the convolution of the spatial distribution of certain properties of the specimens and the inherent response function of the imaging system. The x-ray grating interferometer (XGI), which is sensitive to the deviation angle of the incoming x-rays, has attracted significant attention in the past years due to its capability in achieving x-ray phase contrast imaging with low brilliance source. However, the comprehensive and analytical theoretical framework is yet to be presented. Herein, we propose a theoretical framework termed angular signal radiography (ASR) to describe the imaging process of the XGI system in a classical, comprehensive and analytical manner. We demonstrated, by means of theoretical deduction and synchrotron based experiments, that the spatial distribution of specimens' physical properties, including absorption, refraction and scattering, can be extracted by ASR in XGI. Implementation of ASR in XGI offers advantages such as simplified phase retrieval algorithm, reduced overall radiation dose, and improved image acquisition speed. These advantages, as well as the limitations of the proposed method, are systematically investigated in this paper. PMID:27136780

  5. Intelligent Cognitive Radio Models for Enhancing Future Radio Astronomy Observations

    Directory of Open Access Journals (Sweden)

    Ayodele Abiola Periola

    2016-01-01

    Full Text Available Radio astronomy organisations desire to optimise the terrestrial radio astronomy observations by mitigating against interference and enhancing angular resolution. Ground telescopes (GTs experience interference from intersatellite links (ISLs. Astronomy source radio signals received by GTs are analysed at the high performance computing (HPC infrastructure. Furthermore, observation limitation conditions prevent GTs from conducting radio astronomy observations all the time, thereby causing low HPC utilisation. This paper proposes mechanisms that protect GTs from ISL interference without permanent prevention of ISL data transmission and enhance angular resolution. The ISL transmits data by taking advantage of similarities in the sequence of observed astronomy sources to increase ISL connection duration. In addition, the paper proposes a mechanism that enhances angular resolution by using reconfigurable earth stations. Furthermore, the paper presents the opportunistic computing scheme (OCS to enhance HPC utilisation. OCS enables the underutilised HPC to be used to train learning algorithms of a cognitive base station. The performances of the three mechanisms are evaluated. Simulations show that the proposed mechanisms protect GTs from ISL interference, enhance angular resolution, and improve HPC utilisation.

  6. Spitzer/infrared spectrograph investigation of mipsgal 24 μm compact bubbles: low-resolution observations

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, M. [Département de Physique, École Normale Supérieure de Cachan, 61 Avenue du Président Wilson, F-94235 Cachan (France); Flagey, N. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Noriega-Crespo, A.; Carey, S. J.; Van Dyk, S. D. [Spitzer Science Center, California Institute of Technology, 1200 East California Boulevard, MC 314-6, Pasadena, CA 91125 (United States); Billot, N. [Instituto de Radio Astronomía Milimétrica, Avenida Divina Pastora, 7, Local 20, E-18012 Granada (Spain); Paladini, R., E-mail: mathias.nowak@ens-cachan.fr [NASA Herschel Science Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-12-01

    We present Spitzer/InfraRed Spectrograph (IRS) low-resolution observations of 11 compact circumstellar bubbles from the MIPSGAL 24 μm Galactic plane survey. We find that this set of MIPSGAL bubbles (MBs) is divided into two categories and that this distinction correlates with the morphologies of the MBs in the mid-infrared (IR). The four MBs with central sources in the mid-IR exhibit dust-rich, low-excitation spectra, and their 24 μm emission is accounted for by the dust continuum. The seven MBs without central sources in the mid-IR have spectra dominated by high-excitation gas lines (e.g., [O IV] 26.0 μm, [Ne V] 14.3 and 24.3 μm, and [Ne III] 15.5 μm), and the [O IV] line accounts for 50% to almost 100% of the 24 μm emission in five of them. In the dust-poor MBs, the [Ne V] and [Ne III] line ratios correspond to high-excitation conditions. Based on comparisons with published IRS spectra, we suggest that the dust-poor MBs are highly excited planetary nebulae (PNs) with peculiar white dwarfs (e.g., Wolf-Rayet [WR] and novae) at their centers. The central stars of the four dust-rich MBs are all massive star candidates. Dust temperatures range from 40 to 100 K in the outer shells. We constrain the extinction along the lines of sight from the IRS spectra. We then derive distance, dust masses, and dust production rate estimates for these objects. These estimates are all consistent with the nature of the central stars. We summarize the identifications of MBs made to date and discuss the correlation between their mid-IR morphologies and natures. Candidate Be/B[e]/luminous blue variable and WR stars are mainly 'rings' with mid-IR central sources, whereas PNs are mostly 'disks' without mid-IR central sources. Therefore we expect that most of the 300 remaining unidentified MBs will be classified as PNs.

  7. Design of a High Resolution Open Access Global Snow Cover Web Map Service Using Ground and Satellite Observations

    Science.gov (United States)

    Kadlec, J.; Ames, D. P.

    2014-12-01

    The aim of the presented work is creating a freely accessible, dynamic and re-usable snow cover map of the world by combining snow extent and snow depth datasets from multiple sources. The examined data sources are: remote sensing datasets (MODIS, CryoLand), weather forecasting model outputs (OpenWeatherMap, forecast.io), ground observation networks (CUAHSI HIS, GSOD, GHCN, and selected national networks), and user-contributed snow reports on social networks (cross-country and backcountry skiing trip reports). For adding each type of dataset, an interface and an adapter is created. Each adapter supports queries by area, time range, or combination of area and time range. The combined dataset is published as an online snow cover mapping service. This web service lowers the learning curve that is required to view, access, and analyze snow depth maps and snow time-series. All data published by this service are licensed as open data; encouraging the re-use of the data in customized applications in climatology, hydrology, sports and other disciplines. The initial version of the interactive snow map is on the website snow.hydrodata.org. This website supports the view by time and view by site. In view by time, the spatial distribution of snow for a selected area and time period is shown. In view by site, the time-series charts of snow depth at a selected location is displayed. All snow extent and snow depth map layers and time series are accessible and discoverable through internationally approved protocols including WMS, WFS, WCS, WaterOneFlow and WaterML. Therefore they can also be easily added to GIS software or 3rd-party web map applications. The central hypothesis driving this research is that the integration of user contributed data and/or social-network derived snow data together with other open access data sources will result in more accurate and higher resolution - and hence more useful snow cover maps than satellite data or government agency produced data by

  8. High spatio-temporal resolution observations of crater-lake temperatures at Kawah Ijen volcano, East Java, Indonesia

    Science.gov (United States)

    Lewicki, Jennifer L.; Corentin Caudron,; Vincent van Hinsberg,; George Hilley,

    2016-01-01

    The crater lake of Kawah Ijen volcano, East Java, Indonesia, has displayed large and rapid changes in temperature at point locations during periods of unrest, but measurement techniques employed to-date have not resolved how the lake’s thermal regime has evolved over both space and time. We applied a novel approach for mapping and monitoring variations in crater-lake apparent surface (“skin”) temperatures at high spatial (~32 cm) and temporal (every two minutes) resolution at Kawah Ijen on 18 September 2014. We used a ground-based FLIR T650sc camera with digital and thermal infrared (TIR) sensors from the crater rim to collect (1) a set of visible imagery around the crater during the daytime and (2) a time series of co-located visible and TIR imagery at one location from pre-dawn to daytime. We processed daytime visible imagery with the Structure-from-Motion photogrammetric method to create a digital elevation model onto which the time series of TIR imagery was orthorectified and georeferenced. Lake apparent skin temperatures typically ranged from ~21 to 33oC. At two locations, apparent skin temperatures were ~ 4 and 7 oC less than in-situ lake temperature measurements at 1.5 and 5 m depth, respectively. These differences, as well as the large spatio-temporal variations observed in skin temperatures, were likely largely associated with atmospheric effects such as evaporative cooling of the lake surface and infrared absorption by water vapor and SO2. Calculations based on orthorectified TIR imagery thus yielded underestimates of volcanic heat fluxes into the lake, whereas volcanic heat fluxes estimated based on in-situ temperature measurements (68 to 111 MW) were likely more representative of Kawah Ijen in a quiescent state. The ground-based imaging technique should provide a valuable tool to continuously monitor crater-lake temperatures and contribute insight into the spatio-temporal evolution of these temperatures associated with volcanic activity.

  9. Development of emulsion track expansion techniques for optical-microscopy-observation of low-velocity ion tracks with ranges beyond optical resolution limit

    Energy Technology Data Exchange (ETDEWEB)

    Naka, T. [F-lab., Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Natsume, M. [F-lab., Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)], E-mail: natsume@flab.phys.nagoya-u.ac.jp; Niwa, K.; Hoshino, K.; Nakamura, M.; Nakano, T.; Sato, O. [F-lab., Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2007-11-01

    We succeeded to observe tracks of low-velocity Kr ions, having originally ranges below optical resolution, in a fine grain nuclear emulsion with an optical microscope after expanding the emulsion along the incident direction. This opens up the possibility of tracking low-velocity nuclear recoils from massive dark matter particles using optical microscope scanning systems.

  10. Detection of a spinning object using light's orbital angular momentum.

    Science.gov (United States)

    Lavery, Martin P J; Speirits, Fiona C; Barnett, Stephen M; Padgett, Miles J

    2013-08-01

    The linear Doppler shift is widely used to infer the velocity of approaching objects, but this shift does not detect rotation. By analyzing the orbital angular momentum of the light scattered from a spinning object, we observed a frequency shift proportional to product of the rotation frequency of the object and the orbital angular momentum of the light. This rotational frequency shift was still present when the angular momentum vector was parallel to the observation direction. The multiplicative enhancement of the frequency shift may have applications for the remote detection of rotating bodies in both terrestrial and astronomical settings.

  11. Angular width of Cherenkov radiation with inclusion of multiple scattering: an path-integral approach

    CERN Document Server

    Zheng, Jian

    2016-01-01

    Visible Cherenkov radiation can offers a method of the measurement of the velocity of a charged particles. The angular width of the radiation is important since it determines the resolution of the velocity measurement. In this article, the angular width of Cherenkov radiation with inclusion of multiple scattering is calculated through the path-integral method, and and the analytical expressions are presented. The condition that multiple scattering process dominates the angular distribution is obtained.

  12. Angular width of the Cherenkov radiation with inclusion of multiple scattering

    Science.gov (United States)

    Zheng, Jian

    2016-06-01

    Visible Cherenkov radiation can offer a method of the measurement of the velocity of charged particles. The angular width of the radiation is important since it determines the resolution of the velocity measurement. In this article, the angular width of Cherenkov radiation with inclusion of multiple scattering is calculated through the path-integral method, and the analytical expressions are presented. The condition that multiple scattering processes dominate the angular distribution is obtained.

  13. SMA Observations of Class 0 Protostars

    DEFF Research Database (Denmark)

    Chen, Xuepeng; Arce, Héctor G.; Zhang, Qizhou;

    2013-01-01

    We present high angular resolution 1.3 mm and 850 μm dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance <500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in...... the survey is 2.''5, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 AU to 5000 AU. The numbers of singles......, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64 ± 0.08 and 0.91 ± 0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are...

  14. The resolution-dependence of satellite-based cloud retrievals: First results from ASTER and MODIS observations

    Science.gov (United States)

    Werner, F.; Wind, G.; Zhang, Z.; Platnick, S. E.; Di Girolamo, L.

    2015-12-01

    The spatial resolution dependence of retrieved optical and microphysical cloud properties of marine shallow convective water clouds is presented using data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), as well as the Moderate-resolution Imaging Spectroradiometer (MODIS) onboard the scientific research satellite Terra. Both instruments are characterized by vastly different spatial resolutions of 15m (ASTER) and 1000m (MODIS), respectively. Cloud optical thickness (τ) and effective droplet radius (reff) are derived by means of the Cross-platform HIgh resolution Multi-instrument AtmosphEric Retrieval Algorithms (CHIMAERA) system which yields MODIS-like cloud property retrievals via a shared-core architecture. The retrieval algorithm employs a standard bi-spectral retrieval scheme with two reflectances (ρ) in the visible to near-infrared spectral wavelength range (VNIR, 0.86μm) and shortwave infrared spectral wavelength range (SWIR, 2.1μm), respectively. For an exemplary granule the high-resolution ρ sampled by the ASTER instrument are aggregated from 15m to an increasingly coarse spatial resolution between (30-1000m). Subsequently, retrieved τ and reff from aggregated ρ are compared to the mean of the high-resolution cloud properties within the aggregated pixels. The differences in retrieved τ and reff are related to the sub-pixel covariance of ρ in the VNIR and SWIR band, as well as the inhomogeneity index (i.e., the ratio of standard deviation to mean value of ρ in the VNIR). This analysis highlights the impact of sub-pixel inhomogeneity and plane-parallel assumptions in the cloud property retrieval. CHIMAERA also allows for a comparison of ASTER and MODIS retrievals without introducing biases due to individual instrument algorithms. Retrieved τ and reff from the 1000m aggregated ρ sampled by ASTER are compared to the retrieved cloud properties provided by MODIS. The presented results highlight the different

  15. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Susskind, J.; Aumann, H. H.

    2015-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  16. High-spatial-resolution mapping of precipitable water vapour using SAR interferograms, GPS observations and ERA-Interim reanalysis

    Science.gov (United States)

    Tang, Wei; Liao, Mingsheng; Zhang, Lu; Li, Wei; Yu, Weimin

    2016-09-01

    A high spatial and temporal resolution of the precipitable water vapour (PWV) in the atmosphere is a key requirement for the short-scale weather forecasting and climate research. The aim of this work is to derive temporally differenced maps of the spatial distribution of PWV by analysing the tropospheric delay "noise" in interferometric synthetic aperture radar (InSAR). Time series maps of differential PWV were obtained by processing a set of ENVISAT ASAR (Advanced Synthetic Aperture Radar) images covering the area of southern California, USA from 6 October 2007 to 29 November 2008. To get a more accurate PWV, the component of hydrostatic delay was calculated and subtracted by using ERA-Interim reanalysis products. In addition, the ERA-Interim was used to compute the conversion factors required to convert the zenith wet delay to water vapour. The InSAR-derived differential PWV maps were calibrated by means of the GPS PWV measurements over the study area. We validated our results against the measurements of PWV derived from the Medium Resolution Imaging Spectrometer (MERIS) which was located together with the ASAR sensor on board the ENVISAT satellite. Our comparative results show strong spatial correlations between the two data sets. The difference maps have Gaussian distributions with mean values close to zero and standard deviations below 2 mm. The advantage of the InSAR technique is that it provides water vapour distribution with a spatial resolution as fine as 20 m and an accuracy of ˜ 2 mm. Such high-spatial-resolution maps of PWV could lead to much greater accuracy in meteorological understanding and quantitative precipitation forecasts. With the launch of Sentinel-1A and Sentinel-1B satellites, every few days (6 days) new SAR images can be acquired with a wide swath up to 250 km, enabling a unique operational service for InSAR-based water vapour maps with unprecedented spatial and temporal resolution.

  17. Coherent Control of Photoelectron Wavepacket Angular Interferograms

    OpenAIRE

    Hockett, Paul; Wollenhaupt, Matthias; Baumert, Thomas,

    2015-01-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the cohere...

  18. Angular momentum evolution for galaxies

    CERN Document Server

    Pedrosa, Susana

    2015-01-01

    Using cosmological hydrodynamics simulations we study the angular momentum content of the simulated galaxies in relation with their morphological type. We found that not only the angular momentum of the disk component follow the expected theoretical relation, Mo, Mao & Whiye (1998), but also the spheroidal one, with a gap due to its lost of angular momentum, in agreement with Fall & Romanowsky (2013),. We also found that the galaxy size can plot in one general relation, despite the morphological type, as found by Kravtsov (2013).

  19. AngularJS testing cookbook

    CERN Document Server

    Bailey, Simon

    2015-01-01

    This book is intended for developers who have an understanding of the basic principles behind both AngularJS and test-driven development. You, as a developer, are interested in eliminating the fear related to either introducing tests to an existing codebase or starting out testing on a fresh AngularJS application. If you're a team leader or part of a QA team with the responsibility of ensuring full test coverage of an application, then this book is ideal for you to comprehend the full testing scope required by your developers. Whether you're new to or are well versed with AngularJS, this book

  20. A high angular-resolution and time-of-flight detector system for recoil protons from the reactions p(γ,γ)p and p(γ,π0)p

    International Nuclear Information System (INIS)

    Using the Mainz NaI(Tl)-BaF2 photon spectrometer CATS (Compton And Two photon Spectrometer) together with the prototype of a universal spectrometer for recoil protons TRAJAN (TRAjectory ANalyser) we have studied different methods to disentangle Compton scattering by the proton from the large π0 background through the energy range of the Δ resonance. CATS is a modular 48cm x 64cm NaI(Tl) detector with an energy resolution of 1.5% combined with a 2π array of 61 BaF2 detectors. TRAJAN consists of a hodoscope with two planes, a wire chamber with horizontal and vertical wires and a grid of horizontal and vertical plastic scintillator strips, followed by a wall of nine NaI(Tl) detectors. By this arrangement the proton energy was obtained via a time-of-flight analysis and the recoil angle of the protons via a trajectory reconstruction. Additionally, a ΔE-E analysis of the detected particles allows us to suppress the electromagnetic background. By reconstructing the proton trajectory the segment of the scattering target can be determined where the Compton scattering process or the π0 production process had taken place. In this way it is possible to correct the event distributions for the smearing-out caused by the finite target length and thus to improve on the separation of the two types of events. (orig.)

  1. High definition clouds and precipitation for climate prediction -results from a unified German research initiative on high resolution modeling and observations

    Science.gov (United States)

    Rauser, F.

    2013-12-01

    We present results from the German BMBF initiative 'High Definition Cloud and Precipitation for advancing Climate Prediction -HD(CP)2'. This initiative addresses most of the problems that are discussed in this session in one, unified approach: cloud physics, convection, boundary layer development, radiation and subgrid variability are approached in one organizational framework. HD(CP)2 merges both observation and high performance computing / model development communities to tackle a shared problem: how to improve the understanding of the most important subgrid-scale processes of cloud and precipitation physics, and how to utilize this knowledge for improved climate predictions. HD(CP)2 is a coordinated initiative to: (i) realize; (ii) evaluate; and (iii) statistically characterize and exploit for the purpose of both parameterization development and cloud / precipitation feedback analysis; ultra-high resolution (100 m in the horizontal, 10-50 m in the vertical) regional hind-casts over time periods (3-15 y) and spatial scales (1000-1500 km) that are climatically meaningful. HD(CP)2 thus consists of three elements (the model development and simulations, their observational evaluation and exploitation/synthesis to advance CP prediction) and its first three-year phase has started on October 1st 2012. As a central part of HD(CP)2, the HD(CP)2 Observational Prototype Experiment (HOPE) has been carried out in spring 2013. In this campaign, high resolution measurements with a multitude of instruments from all major centers in Germany have been carried out in a limited domain, to allow for unprecedented resolution and precision in the observation of microphysics parameters on a resolution that will allow for evaluation and improvement of ultra-high resolution models. At the same time, a local area version of the new climate model ICON of the Max Planck Institute and the German weather service has been developed that allows for LES-type simulations on high resolutions on

  2. Geology of the Alarcón Rise Based on 1-m Resolution Bathymetry and ROV Observations and Sampling

    Science.gov (United States)

    Clague, D. A.; Caress, D. W.; Lundsten, L.; Martin, J. F.; Paduan, J. B.; Portner, R. A.; Bowles, J. A.; Castillo, P. R.; Dreyer, B. M.; Guardado-France, R.; Nieves-Cardoso, C.; Rivera-Huerta, H.; Santa Rosa-del Rio, M.; Spelz-Madero, R.

    2012-12-01

    Alarcón Rise is a ~50 km-long segment of the northernmost East Pacific Rise, bounded on the north and south by the Pescadero and Tamayo Fracture Zones. In April 2012, the MBARI AUV D. Allan B. completed a 1.5-3.1-km wide bathymetric map along the neovolcanic zone between the two fracture zones during 10 surveys. A single AUV survey was also completed on Alarcón Seamount, a near-ridge seamount with 4 offset calderas. Bathymetric data have 1 m lateral and 0.2 m vertical resolution. The maps guided 8 dives of the ROV Doc Ricketts on the ridge and 1 on the seamount. The morphology of the rise changes dramatically along strike and includes an inflated zone, centered ~14 km from the southern end, paved by a young sheet flow erupted from an 8-km-long en echelon fissure system. A young flat-topped volcano and an older shield volcano occur near the center of the ridge segment. Areas nearer the fracture zones are mainly pillow mounds and ridges, some strongly cut by faults and fissures, but others have few structural disruptions. More than 150 of the 194 lava samples recovered from the neovolcanic zone are aphyric to plagioclase-phyric to ultraphyric N-MORB with glass MgO ranging up to 8.5%. The basal cm from 87 short cores contain common limu o Pele and adequate foramifers to provide minimum radiocarbon ages for the underlying lava flows. A rugged lava dome of rhyolite (based on glass compositions) is surrounded by large pillow flows of dacite, centered ~8 km from the north end of the Rise. Pillow flows are steeply uptilted for 2-3 km north and south of the dome, possibly reflecting intrusion of viscous rhyolitic dikes along strike. Near the southern end of this deformed zone, an andesite flow crops out in a fault scarp. Mapping data also reveal the presence of about 110 apparent hydrothermal chimney structures as tall as 18 m, scattered along roughly the central half of the Rise. Subsequent ROV dives observed 70 of these structures and found active venting at 22 of them

  3. Cygnus A: A Long Wavelength Resolution of the Hot Spots

    CERN Document Server

    Lazio, T J W; Kassim, N E; Perley, R A; Erickson, W C; Carilli, C L; Crane, P C

    2006-01-01

    This paper presents observations of Cygnus A at 74 and 327 MHz at angular resolutions of approximately 10" and 3", respectively. These observations are among the highest angular resolutions obtained below 1000 MHz for this object. While the angular resolution at 74 MHz is not sufficient to separate clearly the hot spots from the lobes, guided by 151 and 327 MHz images, we have estimated the 74 MHz emission from the hot spots. We confirm that the emission from both the western and eastern hot spots flattens at low frequencies and that there is a spectral asymmetry between the two. For the eastern hot spot, a low-energy cutoff in the electron energy spectrum appears to explain the flattening, which implies a cutoff Lorentz factor \\gamma_min ~ 300, though we cannot exclude the possibility that there might be a moderate level of free-free absorption. For the western hot spot, the current observations are not sufficient to distinguish between a free-free absorped power-law spectrum and a synchrotron self-absorbed ...

  4. Spatially and angularly resolved cathodoluminescence study of single ZnO nanorods.

    Science.gov (United States)

    Li, Chengyao; Gao, Min; Zhang, Xiaoxian; Peng, Lian-Mao; Chen, Qing

    2010-11-01

    Single ZnO nanorods were studied with cathodoluminescence at high spatial and angular resolution. A newly developed luminescence detector consisting a fiber probe controlled by a nano-manipulator is attached to a scanning electron microscope to carry out the cathodoluminescence measurements. Excitonic emission from the sidewalls and redshifted near band edge emission guided along the nanorod axis are observed as the fiber probe axis is aligned to be perpendicular and parallel to the nanorod axis, respectively, demonstrating the angular resolving power of the experimental setup and waveguiding behavior of the nanorods. High spatial resolution cathodoluminescence measurement shows that the near band edge emission can propagate parallel and perpendicular to the nanorod axis and an increased propagation distance results in more redshift of the guided luminescence. In addition, the high spatial resolution and temperature dependent cathodoluminescence measurements demonstrate the important role of free exciton-longitudinal optical phonon interaction in the waveguiding behavior and the propagation of the near band edge emission in ZnO nanorods. PMID:21137887

  5. High Spatial Resolution mapping of Precipitable Water Vapor using SAR interferograms, GPS observations and ERA-Interim reanalysis

    OpenAIRE

    W. Tang; M. S. Liao; Zhang, L.; Li, W.; Yu, W. M.

    2016-01-01

    A high spatial resolution of the Precipitable Water Vapor (PW V) in the atmosphere is a key requirement for the short-scale weather forecasting and climate research. The aim of this work is to derive temporally-differenced maps of the spatial distribution of PWV by analyzing the atmospheric delay "noise" in Interferometric Synthetic Aperture Radar (InSA R). A time series maps of differential PW V were obtained by processing a set of ENVISAT ASAR images cover the...

  6. Use of high resolution sonar for near-turbine fish observations (DIDSON) - We@Sea 2007-002

    OpenAIRE

    Couperus, A.S.; Winter, H. V.; Keeken, van, O.A.; Kooten, van, G.C.; Tribuhl, S.V.; Burggraaf, D.

    2010-01-01

    In this study we investigate small scale distribution of pelagic fish within a windfarm by means of a high resolution sonar (DIDSON, Dual frequency IDentification SONar; Soundmetrics). In addition we assess the bias of small scale variations induced by the effects of wind turbines (monopiles) on distribution of the pelagic fish community in the hydro acoustic surveys carried out on the OWEZ Near Shore Wind farm (NSW).

  7. Gemini Planet Imager Observational Calibrations III: Empirical Measurement Methods and Applications of High-Resolution Microlens PSFs

    OpenAIRE

    Ingraham, Patrick; Ruffio, Jean-Baptiste; Perrin, Marshall D.; Wolff, Schuyler G.; Draper, Zachary H.; Maire, Jerome; Marchis, Franck; Fesquet, Vincent

    2014-01-01

    The newly commissioned Gemini Planet Imager (GPI) combines extreme adaptive optics, an advanced coronagraph, precision wavefront control and a lenslet-based integral field spectrograph (IFS) to measure the spectra of young extrasolar giant planets between 0.9-2.5 um. Each GPI detector image, when in spectral model, consists of ~37,000 microspectra which are under or critically sampled in the spatial direction. This paper demonstrates how to obtain high-resolution microlens PSFs and discusses ...

  8. Modeling atmospheric transport of CO2 at High Resolution to estimate the potentialities of spaceborne observation to monitor anthropogenic emissions

    Science.gov (United States)

    Ciais, P.; Chimot, J.; Klonecki, A.; Prunet, P.; Vinuessa, J.; Nussli, C.; Breon, F.

    2010-12-01

    There is a crucial and urgent need to quantify and monitor anthropogenic fossil fuel emissions of CO2. Spaceborne measurements, such as those from GOSAT or the forthcoming OCO-2, or other space missions in preparation, could provide the necessary information, in particular over regions with few in-situ measurements of atmospheric concentration are too scarce. Contrarily to biogenic flux, anthropogenic emissions are highly heterogeneous in space with typical values that vary by several orders of magnitudes. A proper analysis of the impact of anthropogenic emissions on the atmospheric concentration of CO2 therefore requires a high spatial resolution, typically of a few km. Simulations of the transport of fossil CO2 plumes were performed with a resolution of 1 km over the main industrialized regions of France, and using other models of lower resolution to account for the influence of distant sources advected into the area of interest. The results clearly show the plumes from intense yet localized sources, such as urban areas or power plants, and how their structures vary with the meteorology (wind speed and direction). They also show that the plume from distant sources, such as the large emission from Northern Europe, may sometime mask the local plume, even from large cities like Paris or Lyon. These atmospheric transport simulations are then sampled according to cloud cover, spaceborne instrument sampling and typical errors, to analyze the information content of the remote sensing data and how they can improve the current knowledge on anthropogenic emissions.

  9. The integration of angular velocity

    OpenAIRE

    Boyle, Michael

    2016-01-01

    A common problem in physics and engineering is determination of the orientation of an object given its angular velocity. When the direction of the angular velocity changes in time, this is a nontrivial problem involving coupled differential equations. Several possible approaches are examined, along with various improvements over previous efforts. These are then evaluated numerically by comparison to a complicated but analytically known rotation that is motivated by the important astrophysical...

  10. Achromatic orbital angular momentum generator

    OpenAIRE

    Bouchard, Frédéric; Mand, Harjaspreet; Mirhosseini, Mohammad; Karimi, Ebrahim; Boyd, Robert W

    2014-01-01

    We describe a novel approach for generating light beams that carry orbital angular momentum (OAM) by means of total internal reflection in an isotropic medium. A continuous space-varying cylindrically symmetric reflector, in the form of \\textit{two glued hollow axicons}, is used to introduce a nonuniform rotation of polarisation into a linearly polarised input beam. This device acts as a full spin-to-orbital angular momentum convertor. It functions by switching the helicity of the incoming be...

  11. Comparison of observer performance on soft-copy reading of digital chest radiographs: High resolution liquid-crystal display monitors versus cathode-ray tube monitors

    International Nuclear Information System (INIS)

    The purpose of this study is to compare observer performance for detection of abnormalities on chest radiographs with 5-megapixel resolution liquid-crystal displays (LCD) and 5-megapixel resolution cathode-ray tube (CRT) monitors under bright and subdued ambient light conditions. Six radiologists reviewed a total of 254 digital chest radiographs under four different conditions with a combination of two types of monitors (a 5-megapixel resolution LCD and a 5-megapixel resolution CRT monitor) and with two types of ambient light (460 and 50 lux). The abnormalities analyzed were nodules, pneumothorax and interstitial lung disease. For each reader, the detection performance using 5-megapixel LCD and 5-megapixel CRT monitors under bright and subdued ambient light conditions were compared using multi-case and multi-modality ROC analysis. For each type of ambient light, the average detection performance with the two types of monitors was also compared. For each reader, the observer performance of 5-megapixel LCD and 5-megapixel CRT monitors, under both bright and subdued ambient light conditions, showed no significant statistical differences for detecting nodules, pneumothorax and interstitial lung disease. In addition, there was no significant statistical difference in the average performance when the two monitor displays, under both bright and subdued ambient light conditions, were compared

  12. Mass and Angular Momentum in General Relativity

    CERN Document Server

    Jaramillo, J L

    2010-01-01

    We present an introduction to mass and angular momentum in General Relativity. After briefly reviewing energy-momentum for matter fields, first in the flat Minkowski case (Special Relativity) and then in curved spacetimes with or without symmetries, we focus on the discussion of energy-momentum for the gravitational field. We illustrate the difficulties rooted in the Equivalence Principle for defining a local energy-momentum density for the gravitational field. This leads to the understanding of gravitational energy-momentum and angular momentum as non-local observables that make sense, at best, for extended domains of spacetime. After introducing Komar quantities associated with spacetime symmetries, it is shown how total energy-momentum can be unambiguously defined for isolated systems, providing fundamental tests for the internal consistency of General Relativity as well as setting the conceptual basis for the understanding of energy loss by gravitational radiation. Finally, several attempts to formulate q...

  13. Velocity-space observation regions of high-resolution two-step reaction gamma-ray spectroscopy

    DEFF Research Database (Denmark)

    Salewski, Mirko; Nocente, M.; Gorini, G.;

    2015-01-01

    as an example. The energy-dependent cross sections of this reaction suggest that GRS is sensitive to alpha particles above about 1.7 MeV and highly sensitive to alpha particles at the resonance energies of the reaction. Here we demonstrate that highresolution two-step reaction GRS measurements are not only......High-resolution γ-ray spectroscopy (GRS) measurements resolve spectral shapes of Dopplerbroadened γ-rays. We calculate weight functions describing velocity-space sensitivities of any two-step reaction GRS measurements in magnetized plasmas using the resonant nuclear reaction 9Be(α, nγ)12C...

  14. Simultaneous observations of structure function parameter of refractive index using a high-resolution radar and the DataHawk small airborne measurement system

    Science.gov (United States)

    Scipión, Danny E.; Lawrence, Dale A.; Milla, Marco A.; Woodman, Ronald F.; Lume, Diego A.; Balsley, Ben B.

    2016-09-01

    The SOUSY (SOUnding SYstem) radar was relocated to the Jicamarca Radio Observatory (JRO) near Lima, Peru, in 2000, where the radar controller and acquisition system were upgraded with state-of-the-art parts to take full advantage of its potential for high-resolution atmospheric sounding. Due to its broad bandwidth (4 MHz), it is able to characterize clear-air backscattering with high range resolution (37.5 m). A campaign conducted at JRO in July 2014 aimed to characterize the lower troposphere with a high temporal resolution (8.1 Hz) using the DataHawk (DH) small unmanned aircraft system, which provides in situ atmospheric measurements at scales as small as 1 m in the lower troposphere and can be GPS-guided to obtain measurements within the beam of the radar. This was a unique opportunity to make coincident observations by both systems and to directly compare their in situ and remotely sensed parameters. Because SOUSY only points vertically, it is only possible to retrieve vertical radar profiles caused by changes in the refractive index within the resolution volume. Turbulent variations due to scattering are described by the structure function parameter of refractive index Cn2. Profiles of Cn2 from the DH are obtained by combining pressure, temperature, and relative humidity measurements along the helical trajectory and integrated at the same scale as the radar range resolution. Excellent agreement is observed between the Cn2 estimates obtained from the DH and SOUSY in the overlapping measurement regime from 1200 m up to 4200 m above sea level, and this correspondence provides the first accurate calibration of the SOUSY radar for measuring Cn2.

  15. SHARP : I. A high-resolution multiband view of the infrared Einstein ring of JVAS B1938+666

    NARCIS (Netherlands)

    Lagattuta, D. J.; Vegetti, S.; Fassnacht, C. D.; Auger, M. W.; Koopmans, L. V. E.; McKean, J. P.

    2012-01-01

    We present new mass models for the gravitational lens system B1938+666, using multiwavelength data acquired from Keck adaptive optics (AO) and Hubble Space Telescope (HST) observations. These models are the first results from the Strong lensing at High Angular Resolution Program (SHARP), a project d

  16. Mechanical Faraday effect for orbital angular momentum-carrying beams

    OpenAIRE

    Wisniewski-Barker, Emma; Gibson, Graham; Franke-Arnold, Sonja; Boyd, Robert W; Padgett, Miles J.

    2014-01-01

    When linearly polarised light is transmitted through a spinning window, the plane of polarisation is rotated. This rotation arises through a phase change that is applied to the circularly polarised states corresponding to the spin angular momentum (SAM). Here we show an analogous effect for the orbital angular momentum (OAM), where a differential phase between the positive and negative modes (±ℓ) is observed as a rotation of the transmitted image. For normal materials, this rotation is on the...

  17. Orbital Angular Momentum and Generalized Transverse Momentum Distribution

    OpenAIRE

    Zhao, Yong; Liu, Keh-Fei; Yang, Yibo

    2015-01-01

    We show that, when boosted to the infinite momentum frame, the quark and gluon orbital angular momentum operators defined in the nucleon spin sum rule of X. S. Chen et al. are the same as those derived from generalized transverse momentum distributions. This completes the connection between the infinite momentum limit of each term in that sum rule and experimentally measurable observables. We also show that these orbital angular momentum operators can be defined locally, and discuss the strat...

  18. An Observational Method for Verifying Trends in Urban CO2 Emissions Using Continuous Measurements and High Resolution Meteorology (Invited)

    Science.gov (United States)

    Wofsy, S. C.; McKain, K.; Eluszkiewicz, J.; Nehrkorn, T.; Pataki, D. E.; Ehleringer, J.

    2010-12-01

    Nations of the world are attempting to reach international and domestic agreements to limit greenhouse gas emissions. Participants will demonstrate their compliance to such commitments with self-reported emissions estimates based largely on measurements of behavior and generalized conversion factors. Atmospheric observations are the only source of information that will allow reported emissions to be independently and directly verified. Testing of observation-based verification methods is required to establish current capabilities, identify and prioritize areas for improvement, and ensure that policy goals are verifiable. In particular, observations made in major source regions, such as cities, could provide a great deal of information about trends and patterns in anthropogenic emissions with relatively modest investment. This study presents an inaugural effort to estimate carbon dioxide (CO2) emissions from a city using atmospheric measurements. We have developed an observation-modeling framework to track changes in urban emissions, which, in addition to the observations, utilizes an atmospheric transport model and a prior emissions estimates. We have conducted a pilot study of the method using an existing longterm dataset of CO2 observations from Salt Lake City, Utah. Model-simulated CO2 concentrations track diurnal and synoptic patterns in observations reasonably well, although areas for improvement are evident. The modeling framework tends to underestimate observed CO2 enhancements, especially at night, which could be due to underestimated emissions and/or to excessive ventilation in the modeled meteorology. Despite some deficiencies, modeled and observed CO2 values are quantitatively and systematically related and application of a scaling factor to previously estimated emissions improves the match between modeled and observed values. This pilot-study presents a generalized, albeit provisional, method for using urban atmospheric greenhouse gas observations to

  19. A Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI), International Journal of Applied Earth Observation and Geoinformation

    KAUST Repository

    Houborg, Rasmus

    2015-12-12

    Satellite remote sensing has been used successfully to map leaf area index (LAI) across landscapes, but advances are still needed to exploit multi-scale data streams for producing LAI at both high spatial and temporal resolution. A multi-scale Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI) has been developed to generate 4-day time-series of Landsat-scale LAI from existing medium resolution LAI products. STEM-LAI has been designed to meet the demands of applications requiring frequent and spatially explicit information, such as effectively resolving rapidly evolving vegetation dynamics at sub-field (30 m) scales. In this study, STEM-LAI is applied to Moderate Resolution Imaging Spectroradiometer (MODIS) based LAI data and utilizes a reference-based regression tree approach for producing MODIS-consistent, but Landsat-based, LAI. The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) is used to interpolate the downscaled LAI between Landsat acquisition dates, providing a high spatial and temporal resolution improvement over existing LAI products. STARFM predicts high resolution LAI by blending MODIS and Landsat based information from a common acquisition date, with MODIS data from a prediction date. To demonstrate its capacity to reproduce fine-scale spatial features observed in actual Landsat LAI, the STEM-LAI approach is tested over an agricultural region in Nebraska. The implementation of a 250 m resolution LAI product, derived from MODIS 1 km data and using a scale consistent approach based on the Normalized Difference Vegetation Index (NDVI), is found to significantly improve accuracies of spatial pattern prediction, with the coefficient of efficiency (E) ranging from 0.77–0.94 compared to 0.01–0.85 when using 1 km LAI inputs alone. Comparisons against an 11-year record of in-situ measured LAI over maize and soybean highlight the utility of STEM-LAI in reproducing observed LAI dynamics (both characterized by r2 = 0

  20. Factors influencing perceived angular velocity

    Science.gov (United States)

    Kaiser, Mary K.; Calderone, Jack B.

    1991-01-01

    Angular velocity perception is examined for rotations both in depth and in the image plane and the influence of several object properties on this motion parameter is explored. Two major object properties are considered, namely, texture density which determines the rate of edge transitions for rotations in depth, i.e., the number of texture elements that pass an object's boundary per unit of time, and object size which determines the tangential linear velocities and 2D image velocities of texture elements for a given angular velocity. Results of experiments show that edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities had an impact on perceived angular velocity; this bias was associated with 2D image velocity rather than 3D tangential velocity. Despite these biases judgements were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter appeared to be good for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).