WorldWideScience

Sample records for angular distribution optical

  1. Orbital angular momentum in optical waves propagating through distributed turbulence.

    Science.gov (United States)

    Sanchez, Darryl J; Oesch, Denis W

    2011-11-21

    This is the second of two papers demonstrating that photons with orbital angular momentum can be created in optical waves propagating through distributed turbulence. In the companion paper, it is shown that propagation through atmospheric turbulence can create non-trivial angular momentum. Here, we extend the result and demonstrate that this momentum is, at least in part, orbital angular momentum. Specifically, we demonstrate that branch points (in the language of the adaptive optic community) indicate the presence of photons with non-zero OAM. Furthermore, the conditions required to create photons with non-zero orbital angular momentum are ubiquitous. The repercussions of this statement are wide ranging and these are cursorily enumerated.

  2. Optical angular momentum and atoms.

    Science.gov (United States)

    Franke-Arnold, Sonja

    2017-02-28

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  3. Optical orbital angular momentum

    Science.gov (United States)

    Barnett, Stephen M.; Babiker, Mohamed; Padgett, Miles J.

    2017-01-01

    We present a brief introduction to the orbital angular momentum of light, the subject of our theme issue and, in particular, to the developments in the 13 years following the founding paper by Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)). The papers by our invited authors serve to bring the field up to date and suggest where developments may take us next. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069775

  4. Optical orbital angular momentum

    Science.gov (United States)

    Barnett, Stephen M.; Babiker, Mohamed; Padgett, Miles J.

    2017-02-01

    We present a brief introduction to the orbital angular momentum of light, the subject of our theme issue and, in particular, to the developments in the 13 years following the founding paper by Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)). The papers by our invited authors serve to bring the field up to date and suggest where developments may take us next. This article is part of the themed issue 'Optical orbital angular momentum'.

  5. Effects of Turbulent Aberrations on Probability Distribution of Orbital Angular Momentum for Optical Communication

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi-Xin; CANG Ji

    2009-01-01

    Effects of atmospheric turbulence tilt, defocus, astigmatism and coma aberrations on the orbital angular mo-mentum measurement probability of photons propagating in weak turbulent regime are modeled with Rytov approximation. By considering the resulting wave as a superposition of angular momentum eigenstates, the or-bital angular momentum measurement probabilities of the transmitted digit axe presented. Our results show that the effect of turbulent tilt aberration on the orbital angular momentum measurement probabilities of photons is the maximum among these four kinds of aberrations. As the aberration order increases, the effects of turbulence aberrations on the measurement probabilities of orbital angular momentum generally decrease, whereas the effect of turbulence defoens can be ignored. For tilt aberration, as the difference between the measured orbital angular momentum and the original orbital angular momentum increases, the orbital angular momentum measurement probabifity decreases.

  6. An analytical approach to the light transport in columnar phosphors. Detector Optical Gain, angular distribution and the CsI:Tl paradigm.

    Science.gov (United States)

    Psichis, Konstantinos; Kalyvas, Nektarios; Kandarakis, Ioannis; Panayiotakis, George

    2017-03-01

    An analytical model has been developed for the light propagation in columnar phosphors, based on the optical photon propagation physical and geometrical principles. This model accounts for the multiple reflections on the sides of the crystal column, as well as for the infinite forward and backward reflections of the propagated optical photon beams created in the crystal bulk. Additionally it considers the lateral propagated optical photon beams after multiple refractions from the neighbor columns and the optical photon attenuation inside the scintillator. The model was used to predict the Detector Optical Gain (DOG), and the angular distribution, of the columnar CsI:Tl scintillators, used in medical imaging. The model was validated against CsI:Tl optical photon transmission published results and good agreement was observed. It was, also, found that the DOG is affected by the length of the columns, as well as the incident X-ray energy spectrum. The results of the angular distribution are in accordance with the theory that the longer crystal columns have more directional light distribution. The results of DOG are in accordance with the use of short crystal columns for lower energies (mammography) and the use of long crystal columns for higher energies (general radiology). Angular distribution was found more directive for long crystal columns. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. Optical angular momentum in dispersive media

    CERN Document Server

    Philbin, T G

    2012-01-01

    The angular momentum density and flux of light in a dispersive, rotationally symmetric medium are derived from Noether's theorem. Optical angular momentum in a dispersive medium has no simple relation to optical linear momentum, even if the medium is homogeneous. A circularly polarized monochromatic beam in a homogeneous, dispersive medium carries a spin angular momentum per unit energy of $\\pm\\omega^{-1}$, as in vacuum. This result demonstrates the non-trivial interplay of dispersive contributions to optical angular momentum and energy.

  8. Localization of angular momentum in optical waves propagating through turbulence.

    Science.gov (United States)

    Sanchez, Darryl J; Oesch, Denis W

    2011-12-01

    This is the first in a series of papers demonstrating that photons with orbital angular momentum can be created in optical waves propagating through distributed turbulence. The scope of this first paper is much narrower. Here, we demonstrate that atmospheric turbulence can impart non-trivial angular momentum to beams and that this non-trivial angular momentum is highly localized. Furthermore, creation of this angular momentum is a normal part of propagation through atmospheric turbulence.

  9. Angular distributions as lifetime probes

    Energy Technology Data Exchange (ETDEWEB)

    Dror, Jeff Asaf; Grossman, Yuval [Department of Physics, LEPP, Cornell University,Ithaca, NY 14853 (United States)

    2014-06-27

    If new TeV scale particles are discovered, it will be important to determine their width. There is, however, a problematic region, where the width is too small to be determined directly, and too large to generate a secondary vertex. For a collection of colored, spin polarized particles, hadronization depolarizes the particles prior to their decay. The amount of depolarization can be used to probe the lifetime in the problematic region. In this paper we apply this method to a realistic scenario of a top-like particle that can be produced at the LHC. We study how depolarization affects the angular distributions of the decay products and derive an equation for the distributions that is sensitive to the lifetime.

  10. Angular Distributions as Lifetime Probes

    CERN Document Server

    Dror, Jeff Asaf

    2013-01-01

    If new TeV scale particles are discovered, it will be important to determine their width. There is, however, a problematic region, where the width is too small to be determined directly, and too large to generate a secondary vertex. For a collection of colored, spin polarized particles, hadronization depolarizes the particles prior to their decay. The amount of depolarization can be used to probe the lifetime in the problematic region. In this paper we apply this method to a realistic scenario of a top-like particle that can be produced at the LHC. We study how depolarization affects the angular distributions of the decay products and derive an equation for the distributions that is sensitive to the lifetime.

  11. Angular Momentum Distribution in the Transverse Plane

    CERN Document Server

    Adhikari, Lekha

    2016-01-01

    Several possibilities to relate the $t$-dependence of Generalized Parton Distributions (GPDs) to the distribution of angular momentum in the transverse plane are discussed. Using a simple spectator model we demonstrate that non of them correctly describes the orbital angular momentum distribution that for a longitudinally polarized nucleon obtained directly from light-front wavefunctions.

  12. Inspection of 56Fe γ-Ray angular distributions as a function of incident neutron energy using optical model approaches

    Science.gov (United States)

    Vanhoy, J. R.; Ramirez, A. P.; Alcorn-Dominguez, D. K.; Hicks, S. F.; Peters, E. E.; McEllistrem, M. T.; Mukhopadhyay, S.; Yates, S. W.

    2017-09-01

    Neutron inelastic scattering cross sections measured directly through (n,n) or deduced from γ-ray production cross sections following inelastic neutron scattering (n,n'γ) are a focus of basic and applied research at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerator). For nuclear data applications, angle-integrated cross sections are desired over a wide range of fast neutron energies. Several days of experimental beam time are required for a data set at each incident neutron energy, which limits the number of angular distributions that can be measured in a reasonable amount of time. Approximations can be employed to generate cross sections with a higher energy resolution, since at 125o, the a2P2 term of the Legendre expansion is identically zero and the a4P4 is assumed to be very small. Provided this assumption is true, a single measurement at 125o would produce the γ-ray production cross section. This project tests these assumptions and energy dependences using the codes CINDY/SCAT and TALYS/ECIS06/SCAT. It is found that care must be taken when interpreting γ-ray excitation functions as cross sections when the incident neutron energy is < 1000 keV above threshold or before the onset of feeding.

  13. Chirality and angular momentum in optical radiation

    CERN Document Server

    Coles, Matt M

    2012-01-01

    This paper develops, in precise quantum electrodynamic terms, photonic attributes of the "optical chirality density", one of several measures long known to be conserved quantities for a vacuum electromagnetic field. The analysis lends insights into some recent interpretations of chiroptical experiments, in which this measure, and an associated chirality flux, have been treated as representing physically distinctive "superchiral" phenomena. In the fully quantized formalism the chirality density is promoted to operator status, whose exploration with reference to an arbitrary polarization basis reveals relationships to optical angular momentum and helicity operators. Analyzing multi-mode beams with complex wave-front structures, notably Laguerre-Gaussian modes, affords a deeper understanding of the interplay between optical chirality and optical angular momentum. By developing theory with due cognizance of the photonic character of light, it emerges that only the spin angular momentum of light is engaged in such...

  14. Novel Detection of Optical Orbital Angular Momentum

    Science.gov (United States)

    2014-11-16

    Spreeuw, J. P . Woerdman, “ Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A, 45(11), 8185-8189...AFRL-RD-PS- AFRL-RD-PS TR-2014-0045 TR-2014-0045 Novel Detection of Optical Orbital Angular Momentum David Voelz Klipsch... Orbital Angular Momentum FA9451-13-1-0261 GR0004113 David Voelz Klipsch School of ECE New Mexico State University MSC 3-O, PO Box 30001 Las Cruces, NM

  15. Angular distribution in complex oscillation theory

    Institute of Scientific and Technical Information of China (English)

    WU Shengjian

    2005-01-01

    Let f1 and f2 be two linearly independent solutions of the differential equation f" + Af =0,where A is an entire function.Set E-f1f2.In this paper,we shall study the angular distribution of E and establish a relation between zero accumulation rays and Borel directions of E.Consequently we can obtain some results in the complex differential equation by using known results in angular distribution theory of meromorphic functions.

  16. Single beam optical vortex tweezers with tunable orbital angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Gecevičius, Mindaugas; Drevinskas, Rokas, E-mail: rd1c12@orc.soton.ac.uk; Beresna, Martynas; Kazansky, Peter G. [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2014-06-09

    We propose a single beam method for generating optical vortices with tunable optical angular momentum without altering the intensity distribution. With the initial polarization state varying from linear to circular, we gradually control the torque transferred to the trapped non-absorbing and non-birefringent silica beads. The continuous transition from the maximum rotation speed to zero without changing the trapping potential gives a way to study the complex tribological interactions.

  17. Study of the Angular Distribution of Scintillation Photons

    CERN Document Server

    Fornaro, Giulia Alice; Ghezzi, Alessio; Knapitsch, Arno; Modrzynski, Pawel; Pizzichemi, Marco; Lecoq, Paul; Auffray, Etiennette

    2014-01-01

    This paper presents a characterization method to experimentally determine the angular distribution of scintillation light. By exciting LYSO crystals with a radioactive source, we measured the light angular profiles obtained with samples of different geometries in different conditions of wrapping. We also measured the angular distribution of light emitting in glue and compared it with the one emitting in air. Angular distribution of light output of photonic crystals is also provided. Consistency of the measurements is verified with conventional light output measurements.

  18. Optical communications beyond orbital angular momentum

    Science.gov (United States)

    Rosales-Guzmán, Carmelo; Trichili, Abderrahmen; Dudley, Angela; Ndagano, Bienvenu; Ben Salem, Amine; Zghal, Mourad; Forbes, Andrew

    2016-09-01

    Current optical communication technologies are predicted to face a bandwidth capacity limit in the near future. The nature of the limitation is fundamental rather than technological and is set by nonlinearities in optical fibers. One solution, suggested over 30 years ago, comprises the use of spatial modes of light as information carriers. Along this direction, light beams endowed with orbital angular momentum (OAM) have been demonstrated as potential information carriers in both, free space and fibres. However, recent studies suggest that purely OAM modes does not increase the bandwidth of optical communication systems. In fact, in all work to date, only the azimuthal component of transverse spatial modes has been used. Crucially, all transverse spatial modes require two degrees of freedom to be described; in the context of Laguerre-Gaussian (LGp`) beams these are azimuthal (l) and radial (p), the former responsible for OAM. Here, we demonstrate a technique where both degrees of freedom of LG modes are used as information carrier over free space. We transfer images encoded using 100 spatial modes in three wavelengths as our basis, and employ a spatial demultiplexing scheme that detects all 100 modes simultaneously. Our scheme is a hybrid of MIMO and SMM, and serves as a proof-of-principle demonstration. The cross-talk between the modes is small and independent of whether OAM modes are used or not.

  19. Optical communication beyond orbital angular momentum

    Science.gov (United States)

    Trichili, Abderrahmen; Rosales-Guzmán, Carmelo; Dudley, Angela; Ndagano, Bienvenu; Ben Salem, Amine; Zghal, Mourad; Forbes, Andrew

    2016-06-01

    Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom. We achieve this with a holographic approach that allows over 100 modes to be encoded on a single hologram, across a wide wavelength range, in a wavelength independent manner. Our results offer a new tool that will prove useful in realizing higher bit rates for next generation optical networks.

  20. Electron energy and angular distributions in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Deasy, J.O.

    1992-01-01

    Electron energy and angular distributions and associated effects for radiotherapy accelerators and beta-ray ophthalmic applicators have been measured and modeled. Ophthalmic applicator extrapolation chamber calibration geometries were studied using Monte Carlo calculations and analytic methods. A large interface effect increases the surface dose by a factor of about 1.5 and makes very small gap width measurements necessary (0.1--0.2 mm). Dose deposition in tissue near the surface was simulated using the Monte Carlo technique. Charge collection in the extrapolation chamber was analytically modeled on the basis of ionized free electrons back-diffusing into the cathode, while taking into account attachment to O[sub 2] ions. Two small, portable, magnetic spectrometers for the measurement of clinical radiotherapy electron beams were constructed. One employs film as a spectrograph and is suitable for routine measurements; the second is a 90[degree] single-focusing spectrometer and uses fast pulse counting electrons and pulse-height analysis. Spectra were measured for the University of Louisville's Theratronics T20 and Philips SL25 linear accelerators. The T20 spectra were all Gaussian with energy widths of about 5%. The SL25 energy spectra were of varied shapes, with energy widths of 10--20%. Evidence of 3--7% shifts in the average energy of the SL25 beams was observed. Angular measurements were made which showed the Gaussian angular spread of the incident beam. The Monte Carlo code CYLTRAN and measured spectra were used to reconstruct depth dose curves. The peak energy structure only marginally affects the shape of the depth-dose curve, and some features of the depth-dose curves must be affected by incident straggled or widely-scattered electrons. In the absence of lower energy straggled electrons, the range parameters and the maximum dose gradient depend on the mean energy of the peak electrons.

  1. Orbital angular momentum in optical fibers

    Science.gov (United States)

    Bozinovic, Nenad

    Internet data traffic capacity is rapidly reaching limits imposed by nonlinear effects of single mode fibers currently used in optical communications. Having almost exhausted available degrees of freedom to orthogonally multiplex data in optical fibers, researchers are now exploring the possibility of using the spatial dimension of fibers, via multicore and multimode fibers, to address the forthcoming capacity crunch. While multicore fibers require complex manufacturing, conventional multi-mode fibers suffer from mode coupling, caused by random perturbations in fibers and modal (de)multiplexers. Methods that have been developed to address the problem of mode coupling so far, have been dependent on computationally intensive digital signal processing algorithms using adaptive optics feedback or complex multiple-input multiple-output algorithms. Here we study the possibility of using the orbital angular momentum (OAM), or helicity, of light, as a means of increasing capacity of future optical fiber communication links. We first introduce a class of specialty fibers designed to minimize mode coupling and show their potential for OAM mode generation in fibers using numerical analysis. We then experimentally confirm the existence of OAM states in these fibers using methods based on fiber gratings and spatial light modulators. In order to quantify the purity of created OAM states, we developed two methods based on mode-image analysis, showing purity of OAM states to be 90% after 1km in these fibers. Finally, in order to demonstrate data transmission using OAM states, we developed a 4-mode multiplexing and demultiplexing systems based on free-space optics and spatial light modulators. Using simple coherent detection methods, we successfully transmit data at 400Gbit/s using four OAM modes at a single wavelength, over 1.1 km of fiber. Furthermore, we achieve data transmission at 1.6Tbit/s using 10 wavelengths and two OAM modes. Our study indicates that OAM light can exist

  2. Optical angular momentum in classical electrodynamics

    Science.gov (United States)

    Mansuripur, Masud

    2017-06-01

    Invoking Maxwell’s classical equations in conjunction with expressions for the electromagnetic (EM) energy, momentum, force, and torque, we use a few simple examples to demonstrate the nature of the EM angular momentum. The energy and the angular momentum of an EM field will be shown to have an intimate relationship; a source radiating EM angular momentum will, of necessity, pick up an equal but opposite amount of mechanical angular momentum; and the spin and orbital angular momenta of the EM field, when absorbed by a small particle, will be seen to elicit different responses from the particle.

  3. Catenary optics for achromatic generation of perfect optical angular momentum.

    Science.gov (United States)

    Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Zhao, Zeyu; Wang, Changtao; Hu, Chenggang; Gao, Ping; Huang, Cheng; Ren, Haoran; Li, Xiangping; Qin, Fei; Yang, Jing; Gu, Min; Hong, Minghui; Luo, Xiangang

    2015-10-01

    The catenary is the curve that a free-hanging chain assumes under its own weight, and thought to be a "true mathematical and mechanical form" in architecture by Robert Hooke in the 1670s, with nevertheless no significant phenomena observed in optics. We show that the optical catenary can serve as a unique building block of metasurfaces to produce continuous and linear phase shift covering [0, 2π], a mission that is extremely difficult if not impossible for state-of-the-art technology. Via catenary arrays, planar optical devices are designed and experimentally characterized to generate various kinds of beams carrying orbital angular momentum (OAM). These devices can operate in an ultra-broadband spectrum because the anisotropic modes associated with the spin-orbit interaction are almost independent of the incident light frequency. By combining the optical and topological characteristics, our approach would allow the complete control of photons within a single nanometric layer.

  4. Angular distribution of 6He+p elastic scattering

    Institute of Scientific and Technical Information of China (English)

    LIU Xin; SU Jun; ZENG Sheng; YAN Sheng-Quan; LIAN Gang; HUANG Wu-Zhen; LIU Wei-Ping; WANG You-Bao; LI Zhi-Hong; JIN Sun-Jun; WANG Bao-Xiang; LI Yun-Ju; LI Er-Tao; BAI Xi-Xiang; GUO Bing

    2012-01-01

    The angular distribution of 1H(6He,p)6He elastic scattering has been measured at Ec.m.=4.3 MeV by using a thick-target inverse kinematic method.The experimental differential cross sections are reproduced by the distorted-wave Born approximation calculation utilizing the CH89 global optical potential parameter set.The real part of CH89 is reduced comparing with other potentials,which may be attributed to the couplings necessary for the weakly bound nuclei.

  5. Electron Energy and Angular Distributions in Radiotherapy.

    Science.gov (United States)

    Deasy, Joseph Owen

    1992-01-01

    Electron energy and angular distributions and associated effects for radiotherapy accelerators and beta -ray ophthalmic applicators have been measured and modeled. Ophthalmic applicator extrapolation chamber calibration geometries were studied using Monte Carlo calculations and analytic methods. A large interface effect increases the surface dose by a factor of about 1.5 and makes very small gap width measurements necessary (0.1-0.2 mm). Dose deposition in tissue near the surface was simulated using the Monte Carlo technique. Charge collection in the extrapolation chamber was analytically modeled on the basis of ionized free electrons back-diffusing into the cathode, while taking into account attachment to O_2 ions. Previous models underpredict the charge loss, mainly because they assume that all the charge carriers are ions. Two small, portable, magnetic spectrometers for the measurement of clinical radiotherapy electron beams were constructed. One employs film as a spectrograph and is suitable for routine measurements; the second is a 90^circ single-focusing spectrometer and uses fast pulse counting electronics and pulse-height analysis. Tests with monoenergetic electron beams at the National Research Council of Canada's electron linear accelerator showed that the system is free from spectral distortion and verified the spectrometers' energy calibrations. Spectra were measured for the University of Louisville's Theratronics T20 and Philips SL25 linear accelerators. The T20 spectra were all nearly Gaussian in shape with energy widths of about 5%. The SL25 energy spectra were of varied shapes, with energy widths of 10-20%. Evidence of 3-7% shifts in the average energy of the SL25 beams was observed. Angular measurements were made which showed the Gaussian angular spread of the incident beam. The Monte Carlo code CYLTRAN and measured spectra were used to reconstruct depth dose curves. Comparisons with measured depth dose curves show that the peak energy structure

  6. Angular and radial mode analyzer for optical beams.

    Science.gov (United States)

    Abouraddy, Ayman F; Yarnall, Timothy M; Saleh, Bahaa E A

    2011-12-01

    We describe an approach to determining both the angular and the radial modal content of a scalar optical beam in terms of optical angular momentum modes. A modified Mach-Zehnder interferometer that incorporates a spatial rotator to determine the angular modes and an optical realization of the fractional Hankel transform (fHT) to determine the radial modes is analyzed. Varying the rotation angle and the order of the fHT produces a two-dimensional (2D) interferogram from which we extract the modal coefficients by simple 2D Fourier analysis.

  7. Photoinduced dichroism and optical anisotropy in a liquid-crystalline azobenzene side chain polymer caused by anisotropic angular distribution of trans and cis isomers

    Science.gov (United States)

    Blinov, Lev M.; Kozlovsky, Mikhail V.; Ozaki, Masanori; Skarp, Kent; Yoshino, Katsumi

    1998-10-01

    Photochromism has been studied for two comb-like liquid-crystalline copolymers (I) and (II) containing azobenzene chromophores in their side chains. In a smectic glass phase of both copolymers, upon short-time irradiation by UV light, long-living cis isomers are observed. Both copolymers manifest the photoinduced anisotropy, the physical mechanisms of which seem to be quite different. In spin-coated films of polymer (II), the origin of the anisotropy is a strong stable dichroism, which is due to an enrichment and depletion of the chosen angular direction, correspondingly, with trans and cis isomers of the azobenzene chromophores. Polymer (I) manifests no dichroism at all, and its induced optical anisotropy may be accounted for by a rather slow chromophore reorientation. In copolymer (II) a considerable reorientation of the mesogenic groups also occurs as a secondary phenomenon at the stage of the cis isomer formation only. This observation shed more light on the general process of the light-induced molecular reorientation in polymers, liquid crystals, and Langmuir-Blodgett films, which is of great importance for holographic information recording.

  8. Towards optical intensity interferometry for high angular resolution stellar astrophysics

    CERN Document Server

    Nunez, Paul D

    2012-01-01

    Most neighboring stars are still detected as point sources and are beyond the angular resolution reach of current observatories. Methods to improve our understanding of stars at high angular resolution are investigated. Air Cherenkov telescopes (ACTs), primarily used for Gamma-ray astronomy, enable us to increase our understanding of the circumstellar environment of a particular system. When used as optical intensity interferometers, future ACT arrays will allow us to detect stars as extended objects and image their surfaces at high angular resolution. Optical stellar intensity interferometry (SII) with ACT arrays, composed of nearly 100 telescopes, will provide means to measure fundamental stellar parameters and also open the possibility of model-independent imaging. A data analysis algorithm is developed and permits the reconstruction of high angular resolution images from simulated SII data. The capabilities and limitations of future ACT arrays used for high angular resolution imaging are investigated via ...

  9. Quantum correlations in optical angle-orbital angular momentum variables.

    Science.gov (United States)

    Leach, Jonathan; Jack, Barry; Romero, Jacqui; Jha, Anand K; Yao, Alison M; Franke-Arnold, Sonja; Ireland, David G; Boyd, Robert W; Barnett, Stephen M; Padgett, Miles J

    2010-08-06

    Entanglement of the properties of two separated particles constitutes a fundamental signature of quantum mechanics and is a key resource for quantum information science. We demonstrate strong Einstein, Podolsky, and Rosen correlations between the angular position and orbital angular momentum of two photons created by the nonlinear optical process of spontaneous parametric down-conversion. The discrete nature of orbital angular momentum and the continuous but periodic nature of angular position give rise to a special sort of entanglement between these two variables. The resulting correlations are found to be an order of magnitude stronger than those allowed by the uncertainty principle for independent (nonentangled) particles. Our results suggest that angular position and orbital angular momentum may find important applications in quantum information science.

  10. Imaging the Earth's Interior: the Angular Distribution of Terrestrial Neutrinos

    CERN Document Server

    Fields, Brian D

    2004-01-01

    Decays of radionuclides throughout the Earth's interior produce geothermal heat, but also are a source of antineutrinos. The (angle-integrated) geoneutrino flux places an integral constraint on the terrestrial radionuclide distribution. In this paper, we calculate the angular distribution of geoneutrinos, which opens a window on the differential radionuclide distribution. We develop the general formalism for the neutrino angular distribution, and we present the inverse transformation which recovers the terrestrial radioisotope distribution given a measurement of the neutrino angular distribution. Thus, geoneutrinos not only allow a means to image the Earth's interior, but offering a direct measure of the radioactive Earth, both (1) revealing the Earth's inner structure as probed by radionuclides, and (2) allowing for a complete determination of the radioactive heat generation as a function of radius. We present the geoneutrino angular distribution for the favored Earth model which has been used to calculate g...

  11. Optical angular momentum conversion in a nanoslit

    NARCIS (Netherlands)

    Chimento, P.F.; Alkemade, P.F.A.; T Hooft, G.W.; Eliel, E.R.

    2012-01-01

    We demonstrate partial conversion of circularly polarized light into orbital angular momentum-carrying vortex light with opposite-handed circular polarization. This conversion is accomplished in a novel manner using the birefringent properties of a circular subwavelength slit in a thin metal film. O

  12. On the angular distribution of extensive air showers

    CERN Document Server

    Zotov, M Yu; Kulikov, G V; Sulakov, V P

    2009-01-01

    Angular distributions of extensive air showers with different number of charged particles in the range 2.5x10^5--4x10^7 are derived using the experimental data obtained with the EAS MSU array. Possible approximations of the obtained distributions with different empiric functions available in literature, are analysed. It is shown that the exponential function provides the best approximation of the angular distributions in the sense of the chi-squared criterion.

  13. Evolution equations for higher moments of angular momentum distributions

    CERN Document Server

    Hägler, P

    1998-01-01

    Based on a sumrule for the nucleon spin we expand quark and gluon orbital angular momentum operators and derive an evolution matrix for higher moments of the corresponding distributions. In combination with the spin-dependent DGLAP-matrix we find a complete set of spin and orbital angular momentum evolution equations.

  14. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation.

    Science.gov (United States)

    Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing

    2015-05-29

    A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system.

  15. A detection system with broad angular acceptance for particle identification and angular distribution measurements

    Energy Technology Data Exchange (ETDEWEB)

    Carnelli, P.F.F., E-mail: carnelli@tandar.cnea.gov.ar [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, C1033AAJ, Buenos Aires (Argentina); Universidad Nacional de San Martín, Campus Miguelete, B1650BWA, San Martín, Buenos Aires (Argentina); Arazi, A. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, C1033AAJ, Buenos Aires (Argentina); Fernández Niello, J.O. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, C1033AAJ, Buenos Aires (Argentina); Universidad Nacional de San Martín, Campus Miguelete, B1650BWA, San Martín, Buenos Aires (Argentina); Capurro, O.A. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires (Argentina); and others

    2013-10-21

    A new detection system for time-optimized heavy-ion angular distribution measurements has been designed and constructed. This device is composed by an ionization chamber with a segmented-grid anode and three position-sensitive silicon detectors. This particular arrangement allows identifying reaction products emitted within a 30° wide angular range with better than 1° angular resolution. As a demonstration of its capabilities, angular distributions of the elastic scattering cross-section and the production of alpha particles in the {sup 7}Li+{sup 27}Al system, at an energy above the Coulomb barrier, are presented. -- Highlights: • We constructed a detection system for time-optimized heavy-ion angular distribution measurements. • We characterized this device and obtained an energy resolution of 3% and an angular resolution of 1°. • We measured elastic scattering cross-sections in {sup 7}Li+{sup 27}Al finding good agreement with previous data. • The performed tests included the measurement of alpha particle production cross-sections in {sup 7}Li+{sup 27}Al.

  16. Electro-optic analyzer of angular momentum hyperentanglement.

    Science.gov (United States)

    Wu, Ziwen; Chen, Lixiang

    2016-02-25

    Characterizing a high-dimensional entanglement is fundamental in quantum information applications. Here, we propose a theoretical scheme to analyze and characterize the angular momentum hyperentanglement that two photons are entangled simultaneously in spin and orbital angular momentum. Based on the electro-optic sampling with a proposed hyper-entanglement analyzer and the simple matrix operation using Cramer rule, our simulations show that it is possible to retrieve effectively both the information about the degree of polarization entanglement and the spiral spectrum of high-dimensional orbital angular momentum entanglement.

  17. Quantum optimal control of photoelectron spectra and angular distributions

    CERN Document Server

    Goetz, R Esteban; Santra, Robin; Koch, Christiane P

    2016-01-01

    Photoelectron spectra and photoelectron angular distributions obtained in photoionization reveal important information on e.g. charge transfer or hole coherence in the parent ion. Here we show that optimal control of the underlying quantum dynamics can be used to enhance desired features in the photoelectron spectra and angular distributions. To this end, we combine Krotov's method for optimal control theory with the time-dependent configuration interaction singles formalism and a splitting approach to calculate photoelectron spectra and angular distributions. The optimization target can account for specific desired properties in the photoelectron angular distribution alone, in the photoelectron spectrum, or in both. We demonstrate the method for hydrogen and then apply it to argon under strong XUV radiation, maximizing the difference of emission into the upper and lower hemispheres, in order to realize directed electron emission in the XUV regime.

  18. Effects of transverse electron beam size on transition radiation angular distribution

    Energy Technology Data Exchange (ETDEWEB)

    Chiadroni, E., E-mail: enrica.chiadroni@lnf.infn.it [Laboratori Nazionali di Frascati-INFN, via E. Fermi, 40, 00044 Frascati (Italy); Castellano, M. [Laboratori Nazionali di Frascati-INFN, via E. Fermi, 40, 00044 Frascati (Italy); Cianchi, A. [University of Rome ' Tor Vergata' and INFN-Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Honkavaara, K.; Kube, G. [Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg (Germany)

    2012-05-01

    In this paper we consider the effect of the transverse electron beam size on the Optical Transition Radiation (OTR) angular distribution in case of both incoherent and coherent emission. Our results confute the theoretical argumentations presented first in Optics Communications 211, 109 (2002), which predicts a dependence of the incoherent OTR angular distribution on the beam size and emission wavelength. We present here theoretical and experimental data not only to validate the well-established Ginzburg-Frank theory, but also to show the impact of the transverse beam size in case of coherent emission.

  19. Angular Distributions of Discrete Mesoscale Mapping Functions

    Directory of Open Access Journals (Sweden)

    Kroszczyński Krzysztof

    2015-08-01

    Full Text Available The paper presents the results of analyses of numerical experiments concerning GPS signal propagation delays in the atmosphere and the discrete mapping functions defined on their basis. The delays were determined using data from the mesoscale non-hydrostatic weather model operated in the Centre of Applied Geomatics, Military University of Technology. A special attention was paid to investigating angular characteristics of GPS slant delays for low angles of elevation. The investigation proved that the temporal and spatial variability of the slant delays depends to a large extent on current weather conditions

  20. Effect of Orbital Angular Momentum on Nondiffracting Ultrashort Optical Pulses.

    Science.gov (United States)

    Ornigotti, Marco; Conti, Claudio; Szameit, Alexander

    2015-09-01

    We introduce a new class of nondiffracting optical pulses possessing orbital angular momentum. By generalizing the X-wave solution of the Maxwell equation, we discover the coupling between angular momentum and the temporal degrees of freedom of ultrashort pulses. The spatial twist of propagation invariant light pulse turns out to be directly related to the number of optical cycles. Our results may trigger the development of novel multilevel classical and quantum transmission channels free of dispersion and diffraction. They may also find application in the manipulation of nanostructured objects by ultrashort pulses and for novel approaches to the spatiotemporal measurements in ultrafast photonics.

  1. Nanoradian angular stabilization of x-ray optical components.

    Science.gov (United States)

    Stoupin, Stanislav; Lenkszus, Frank; Laird, Robert; Goetze, Kurt; Kim, Kwang-Je; Shvyd'ko, Yuri

    2010-05-01

    An x-ray free-electron laser oscillator (XFELO) has been recently proposed [K. Kim et al., Phys. Rev. Lett. 100, 244802 (2008)]. Angular orientation and position in space of Bragg mirrors of the XFELO optical cavity must be continuously adjusted to compensate for the instabilities and maximize the output intensity. An angular stability of about 10 nrad (rms) is required [K. Kim and Y. Shvyd'ko, Phys. Rev. ST Accel. Beams 12, 030703 (2009)]. To approach this goal, a feedback loop based on a null-detection principle was designed and used for stabilization of a high-energy-resolution x-ray monochromator (DeltaE/E approximately 4 x 10(-8), E=23.7 keV) and a high-heat-load monochromator. Angular stability of about 13 nrad (rms) has been demonstrated for x-ray optical elements of the monochromators.

  2. Nanoradian angular stabilization of x-ray optical components

    CERN Document Server

    Stoupin, Stanislav; Laird, Robert; Goetze, Kurt; Kim, Kwang-Je; Shvydko, Yuri

    2010-01-01

    An x-ray free electron laser oscillator (XFELO) has been recently proposed [K. Kim, Y. Shvyd'ko, and S. Reiche, Phys. Rev. Lett. 100, 244802 (2008)]. Angular orientation and position in space of Bragg mirrors of the XFELO optical cavity must be continuously adjusted to compensate instabilities and maximize the output intensity. An angular stability of about 10 nrad (rms) is required [K. Kim and Y. Shvyd'ko Phys. Rev. STAB 12, 030703 (2009)]. To approach this goal, a feedback loop based on a null-detection principle was designed and used for stabilization of a high energy resolution x-ray monochromator ($\\Delta E/E \\simeq 4 \\times 10^{-8}$, $E$ = 23.7 keV) and a high heat load monochromator. Angular stability of about 13 nrad (rms) has been demonstrated for x-ray optical elements of the monochromators.

  3. Transfer of optical orbital angular momentum to a bound electron

    Science.gov (United States)

    Schmiegelow, Christian T.; Schulz, Jonas; Kaufmann, Henning; Ruster, Thomas; Poschinger, Ulrich G.; Schmidt-Kaler, Ferdinand

    2016-10-01

    Photons can carry angular momentum, not only due to their spin, but also due to their spatial structure. This extra twist has been used, for example, to drive circular motion of microscopic particles in optical tweezers as well as to create vortices in quantum gases. Here we excite an atomic transition with a vortex laser beam and demonstrate the transfer of optical orbital angular momentum to the valence electron of a single trapped ion. We observe strongly modified selection rules showing that an atom can absorb two quanta of angular momentum from a single photon: one from the spin and another from the spatial structure of the beam. Furthermore, we show that parasitic ac-Stark shifts from off-resonant transitions are suppressed in the dark centre of vortex beams. These results show how light's spatial structure can determine the characteristics of light-matter interaction and pave the way for its application and observation in other systems.

  4. Axions and the Galactic Angular Momentum Distribution

    CERN Document Server

    Banik, N

    2013-01-01

    We analyze the behavior of axion dark matter before it falls into a galactic gravitational potential well. The axions thermalize sufficiently fast by gravitational self-interactions that almost all go to their lowest energy state consistent with the total angular momentum acquired from tidal torquing. That state is a state of rigid rotation on the turnaround sphere. It predicts the occurrence and detailed properties of the caustic rings of dark matter for which observational evidence had been found earlier. We show that the vortices in the axion Bose-Einstein condensate (BEC) are attractive, unlike those in superfluid $^4$He and dilute gases. We expect that a large fraction of the vortices in the axion BEC join into a single big vortex along the rotation axis of the galaxy. The resulting enhancement of caustic rings explains the typical size of the rises in the Milky Way rotation curve attributed to caustic rings. We show that baryons and ordinary cold dark matter particles are entrained by the axion BEC and ...

  5. Optical angular momentum conversion in a nanoslit: reply

    NARCIS (Netherlands)

    Chimento, P.F.; Alkemade, P.F.A.; T Hooft, G.W.; Eliel, E.R.

    2013-01-01

    We respond to a Comment on our Letter [Opt. Lett. 37, 4946 (2012)], in which we reported on the spin-to-orbital optical angular momentum conversion of a circular nanoslit in a thin metal layer. We claimed, in an unfortunately worded sentence, that the conversion efficiency was independent of the sli

  6. Resolving enantiomers using the optical angular momentum of twisted light.

    Science.gov (United States)

    Brullot, Ward; Vanbel, Maarten K; Swusten, Tom; Verbiest, Thierry

    2016-03-01

    Circular dichroism and optical rotation are crucial for the characterization of chiral molecules and are of importance to the study of pharmaceutical drugs, proteins, DNA, and many others. These techniques are based on the different interactions of enantiomers with circularly polarized components of plane wave light that carries spin angular momentum (SAM). For light carrying orbital angular momentum (OAM), for example, twisted or helical light, the consensus is that it cannot engage with the chirality of a molecular system as previous studies failed to demonstrate an interaction between optical OAM and chiral molecules. Using unique nanoparticle aggregates, we prove that optical OAM can engage with materials' chirality and discriminate between enantiomers. Further, theoretical results show that compared to circular dichroism, mainly based on magnetic dipole contributions, the OAM analog helical dichroism (HD) is critically dependent on fundamentally different chiral electric quadrupole contributions. Our work opens new venues to study chirality and can find application in sensing and chiral spectroscopy.

  7. A Differential Reflective Intensity Optical Fiber Angular Displacement Sensor.

    Science.gov (United States)

    Jia, Binghui; He, Lei; Yan, Guodong; Feng, Yong

    2016-09-16

    In this paper, a novel differential reflective intensity optical fiber angular displacement sensor was proposed. This sensor can directly measure the angular and axial linear displacement of a flat surface. The structure of the sensor probe is simple and its basic principle was first analyzed according to the intensity modulation mechanisms. Secondly, in order to trim the dark output voltage to zero, the photoelectric conversion circuit was developed to adjust the signals. Then, the sensor model including the photoelectric conversion circuit has been established, and the influence of design parameters on the sensor output characteristic has been simulated. Finally, the design parameters of the sensor structure were obtained based on the simulation results; and an experimental test system was built for the sensor calibration. Experimental results show that the linear angular range and the sensitivity of the sensor were 74.4 and 0.051 V/°, respectively. Its change rules confirm the operating principle of the sensor well.

  8. A Differential Reflective Intensity Optical Fiber Angular Displacement Sensor

    Science.gov (United States)

    Jia, Binghui; He, Lei; Yan, Guodong; Feng, Yong

    2016-01-01

    In this paper, a novel differential reflective intensity optical fiber angular displacement sensor was proposed. This sensor can directly measure the angular and axial linear displacement of a flat surface. The structure of the sensor probe is simple and its basic principle was first analyzed according to the intensity modulation mechanisms. Secondly, in order to trim the dark output voltage to zero, the photoelectric conversion circuit was developed to adjust the signals. Then, the sensor model including the photoelectric conversion circuit has been established, and the influence of design parameters on the sensor output characteristic has been simulated. Finally, the design parameters of the sensor structure were obtained based on the simulation results; and an experimental test system was built for the sensor calibration. Experimental results show that the linear angular range and the sensitivity of the sensor were 74.4 and 0.051 V/°, respectively. Its change rules confirm the operating principle of the sensor well. PMID:27649199

  9. Satellite Angular Velocity Estimation Based on Star Images and Optical Flow Techniques

    Directory of Open Access Journals (Sweden)

    Giancarmine Fasano

    2013-09-01

    Full Text Available An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components.

  10. Analogies between optical and quantum mechanical angular momentum

    Science.gov (United States)

    Nienhuis, Gerard

    2017-02-01

    The insight that a beam of light can carry orbital angular momentum (AM) in its propagation direction came up in 1992 as a surprise. Nevertheless, the existence of momentum and AM of an electromagnetic field has been well known since the days of Maxwell. We compare the expressions for densities of AM in general three-dimensional modes and in paraxial modes. Despite their classical nature, these expressions have a suggestive quantum mechanical appearance, in terms of linear operators acting on mode functions. In addition, paraxial wave optics has several analogies with real quantum mechanics, both with the wave function of a free quantum particle and with a quantum harmonic oscillator. We discuss how these analogies can be applied. This article is part of the themed issue 'Optical orbital angular momentum'.

  11. Measurement of Dijet Angular Distributions and Search for Quark Compositeness

    Science.gov (United States)

    Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alves, G. A.; Amidi, E.; Amos, N.; Anderson, E. W.; Astur, R.; Baarmand, M. M.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Banerjee, S.; Bantly, J.; Bartlett, J. F.; Bazizi, K.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahland, T.; Fatyga, M.; Fatyga, M. K.; Featherly, J.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Geld, T. L.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gibbard, B.; Glenn, S.; Gobbi, B.; Goforth, M.; Goldschmidt, A.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Green, J.; Greenlee, H.; Grim, G.; Grinstein, S.; Grossman, N.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, P.; Gutnikov, Y. E.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jesik, R.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Kang, J. S.; Kehoe, R.; Kelly, M. L.; Kim, C. L.; Kim, S. K.; Klatchko, A.; Klima, B.; Klopfenstein, C.; Klyukhin, V. I.; Kochetkov, V. I.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kourlas, J.; Kozelov, A. V.; Kozlovski, E. A.; Krane, J.; Kirshnaswamy, M. R.; Krzywdzinski, S.; Kunori, S.; Lami, S.; Lan, H.; Lander, R.; Landry, F.; Landsberg, G.; Lauer, B.; Leflat, A.; Li, H.; Li, J.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Q.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Mani, S.; Mao, H. S.; Markeloff, R.; Marshall, T.; Martin, M. I.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miettinen, H.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Nicola, M.; Norman, D.; Oesch, L.; Oguri, V.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Pang, M.; Para, A.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Podstavkov, V. M.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rasmussen, L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roe, N. A.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shupe, M.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sood, P. M.; Sosebee, M.; Sotnikova, N.; Souza, M.; Spadafora, A. L.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stichelbaut, F.; Stoianova, D. A.; Stoker, D.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yanagisawa, C.; Yang, J.; Yasuda, T.; Yepes, P.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zverev, E. G.; Zylberstejn, A.

    1998-01-01

    We have measured the dijet angular distribution in s = 1.8 TeV pp¯ collisions using the D0 detector. Order α3s QCD predictions are in good agreement with the data. At 95% confidence limit the data exclude models of quark compositeness in which the contact interaction scale is below 2 TeV.

  12. Drell-Yan lepton angular distribution at small transverse momentum

    NARCIS (Netherlands)

    Boer, Daniel; Vogelsang, Werner

    2006-01-01

    We investigate the dependence of the Drell-Yan cross section on lepton polar and azimuthal angles, as generated by the lowest-order QCD annihilation and Compton processes. We focus, in particular, on the azimuthal-angular distributions, which are of the form cos phi and cos2 phi. At small transverse

  13. Manipulating atomic states via optical orbital angular-momentum

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Optical orbital angular-momentum(OAM)has more complex mechanics than the spin degree of photons,and may have a broad range of application.Manipulating atomic states via OAM has become an interesting topic.In this paper,we first review the general theory of generating adiabatic gauge field in ultracold atomic systems by coupling atoms to external optical fields with OAM,and point out the applications of the generated adiabatic gauge field.Then,we review our work in this field,including the generation of macroscopic superposition of vortex-antivortex states and spin Hall effect(SHE)in cold atoms.

  14. Light beams with orbital angular momentum for free space optics

    Institute of Scientific and Technical Information of China (English)

    Wu Jing-Zhi; Li Yang-Jun

    2007-01-01

    The light's orbital angular momentum (OAM) is a consequence of the spiral flow of the electromagnetic energy. In this paper, an analysis of light beams with OAM used for free space optics (FSO) is conducted. The basic description and conception of light's OAM are reviewed. Both encoding information into OAM states of single light beam and encoding information into spatial structure of the mixed optical vortex with OAM are discussed, and feasibility to improve the FSO's performance of security and obstruction of line of sight is examined.

  15. Angular distributions and total yield of laser ablated silver

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Nordskov, A.; Schou, Jørgen;

    1997-01-01

    The angular distribution of laser ablated silver has been measured in situ with a newly constructed setup with an array of microbalances. The distribution is strongly peaked in the forward direction corresponding to cospθ, where p varies between 5 and 9 for laser fluences from 2 to 7 J/cm2 at 355...... nm for a beam spot of 0.015 cm2. The total deposited yield is of the order 1015 Ag-atoms per pulse....

  16. Energy and angular distributions of atmospheric muons at the Earth

    CERN Document Server

    Shukla, Prashant

    2016-01-01

    A fair knowledge of the atmospheric muon distributions at Earth is a prerequisite for the simulations of cosmic ray setups and rare event search detectors. A modified power law is proposed for atmospheric muon energy distribution which gives good description of the cosmic muon data in low as well as high energy regime. Using this distribution, analytical forms for zenith angle ($\\theta$) distribution are obtained. Assuming a flat Earth, it leads to the $\\cos^{n-1}\\theta$ form where it is shown that the parameter $n$ is nothing but the power of the energy distribution. A new analytical form for zenith angle distribution is obtained without assuming a flat Earth which gives an improved description of the data at all angles even above $70^o$. These distributions are tested with the available atmospheric muon data of energy and angular distributions. The parameters of these distributions can be used to characterize the cosmic muon data as a function of energy, angle and altitude.

  17. Optical Momentum, Spin, and Angular Momentum in Dispersive Media

    Science.gov (United States)

    Bliokh, Konstantin Y.; Bekshaev, Aleksandr Y.; Nori, Franco

    2017-08-01

    We examine the momentum, spin, and orbital angular momentum of structured monochromatic optical fields in dispersive inhomogeneous isotropic media. There are two bifurcations in this general problem: the Abraham-Minkowski dilemma and the kinetic (Poynting-like) versus canonical (spin-orbital) pictures. We show that the kinetic Abraham momentum describes the energy flux and group velocity of the wave in the medium. At the same time, we introduce novel canonical Minkowski-type momentum, spin, and orbital angular momentum densities of the field. These quantities exhibit fairly natural forms, analogous to the Brillouin energy density, as well as multiple advantages as compared with previously considered formalisms. As an example, we apply this general theory to inhomogeneous surface plasmon-polariton (SPP) waves at a metal-vacuum interface and show that SPPs carry a "supermomentum," proportional to the wave vector kp>ω /c , and a transverse spin, which can change its sign depending on the frequency ω .

  18. Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light.

    Science.gov (United States)

    Yu, Haohai; Zhang, Huaijin; Wang, Yicheng; Han, Shuo; Yang, Haifang; Xu, Xiangang; Wang, Zhengping; Petrov, V; Wang, Jiyang

    2013-11-12

    We demonstrate the optical orbital angular momentum conservation during the transfer process from subwavelength plasmonic vortex lens (PVLs) to light and the generating process of surface plasmon polaritons (SPPs). Illuminating plasmonic vortex lenses with beams carrying optical orbital angular momentum, the SP vortices with orbital angular momentum were generated and inherit the optical angular momentum of light beams and PVLs. The angular momentum of twisting SP electromagnetic field is tunable by the twisted metal/dielectric interfaces of PVLs and angular momentum of illuminating singular light. This work may open the door for several possible applications of SP vortices in subwavelength region.

  19. Statistical mechanics of collisionless orbits. IV. Distribution of angular momentum

    CERN Document Server

    Williams, Liliya L R; Wojtak, Radoslaw

    2014-01-01

    It has been shown in previous work that DARKexp, which is a theoretically derived, maximum entropy, one shape parameter model for isotropic collisionless systems, provides very good fits to simulated and observed dark-matter halos. Specifically, it fits the energy distribution, N(E), and the density profiles, including the central cusp. Here, we extend DARKexp N(E) to include the distribution in angular momentum, L^2, for spherically symmetric systems. First, we argue, based on theoretical, semi-analytical, and simulation results, that while dark-matter halos are relaxed in energy, they are not nearly as relaxed in angular momentum, which precludes using maximum entropy to uniquely derive N(E,L^2). Instead, we require that when integrating N(E,L^2) over squared angular momenta one retrieves the DARKexp N(E). Starting with a general expression for N(E,L^2) we show how the distribution of particles in L^2 is related to the shape of the velocity distribution function, VDF, and velocity anisotropy profile, \\beta(...

  20. Chip-Scale Continuously Tunable Optical Orbital Angular Momentum Generator

    CERN Document Server

    Sun, Jie; Moresco, Michele; Coolbaugh, Douglas; Watts, Michael R

    2014-01-01

    Light carrying orbital angular momentum (OAM) has potential to impact a wide variety of applications ranging from optical communications to quantum information and optical forces for the excitation and manipulation of atoms, molecules, and micro-particles. The unique advantage of utilizing OAM in these applications relies, to a large extent, on the use of multiple different OAM states. Therefore, it is desirable to have a device that is able to gen- erate light with freely adjustable OAM states in an integrated form for large- scale integration. We propose and demonstrate a compact silicon photonic integrated circuit to generate a free-space optical beam with OAM state con- tinuously tuned from a single electrical input signal, realizing both integer and non-integer OAM states. The compactness and flexibility of the device and its compatibility with complementary metal-oxide-semiconductor (CMOS) pro- cessing hold promise for integration with other silicon photonic components for wide-ranging applications.

  1. Angular distribution and atomic effects in condensed phase photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.F.

    1981-11-01

    A general concept of condensed phase photoelectron spectroscopy is that angular distribution and atomic effects in the photoemission intensity are determined by different mechanisms, the former being determined largely by ordering phenomena such as crystal momentum conservation and photoelectron diffraction while the latter are manifested in the total (angle-integrated) cross section. In this work, the physics of the photoemission process is investigated in several very different experiments to elucidate the mechanisms of, and correlation between, atomic and angular distribution effects. Theoretical models are discussed and the connection betweeen the two effects is clearly established. The remainder of this thesis, which describes experiments utilizing both angle-resolved and angle-integrated photoemission in conjunction with synchrotron radiation in the energy range 6 eV less than or equal to h ..nu.. less than or equal to 360 eV and laboratory sources, is divided into three parts.

  2. BaF2 TIME DIFFERENTIAL PERTURBED ANGULAR DISTRIBUTION SPECTROMETER

    Institute of Scientific and Technical Information of China (English)

    朱升云; 勾振辉; 等

    1994-01-01

    A BaF2 time differential perturbed angular distribution spectrometer has been established at the HI-13 tandem accelerator in CIAE.The time resolution of the spectrometer is 195ps and the nonlinearity is less than 2%.The spectrometer works very stably and no time drift is found over a period of experimental runs.This spectrometer has been successfully used in the g-factor measurement of 43Sc(19/2-,3.1232MeV).

  3. Reconstructing the galaxy redshift distribution from angular cross power spectra

    CERN Document Server

    Sun, L; Tao, C

    2015-01-01

    The control of photometric redshift (photo-$z$) errors is a crucial and challenging task for precision weak lensing cosmology. The spacial cross-correlations (equivalently, the angular cross power spectra) of galaxies between tomographic photo-$z$ bins are sensitive to the true redshift distribution $n_i(z)$ of each bin and hence can help calibrate the photo-$z$ error distribution for weak lensing surveys. Using Fisher matrix analysis, we investigate the contributions of various components of the angular power spectra to the constraints of $n_i(z)$ parameters and demonstrate the importance of the cross power spectra therein, especially when catastrophic photo-$z$ errors are present. We further study the feasibility of reconstructing $n_i(z)$ from galaxy angular power spectra using Markov Chain Monte Carlo estimation. Considering an LSST-like survey with $10$ photo-$z$ bins, we find that the underlying redshift distribution can be determined with a fractional precision ($\\sigma(\\theta)/\\theta$ for parameter $\\...

  4. Accessing the quark orbital angular momentum with Wigner distributions

    CERN Document Server

    Cedric, Lorce

    2012-01-01

    The quark orbital angular momentum (OAM) has been recognized as an important piece of the proton spin puzzle. A lot of effort has been invested in trying to extract it quantitatively from the generalized parton distributions (GPDs) and the transverse-momentum dependent parton distributions (TMDs), which are accessed in high-energy processes and provide three-dimensional pictures of the nucleon. Recently, we have shown that it is more natural to access the quark OAM from the phase-space or Wigner distributions. We discuss the concept of Wigner distributions in the context of quantum field theory and show how they are related to the GPDs and the TMDs. We summarize the different definitions discussed in the literature for the quark OAM and show how they can in principle be extracted from the Wigner distributions.

  5. Angular Distribution and Angular Dispersion in Collision of 19F+27A1 at 114 MeV

    Institute of Scientific and Technical Information of China (English)

    WANG Qi; Li Zhi-Chang; LU Xiu-Qin; ZHAO Kui; LIU Jian-Cheng; SERGEY Yu-Kun; DONG Yu-Chuan; LI Song-Lin; DUAN Li-Min; XU Hu-Shan; XU Hua-Gen; CHEN Ruo-Fu; WU He-Yu; HAN Jian-Long

    2004-01-01

    Angular distributions of fragments B, C, N, O, F, Ne, Na, Mg and Al induced by the collision of 19F+27 A1 at 114MeV have been measured. Angular dispersion parameters are extracted from the experimental data and compared with the theoretical ones. The dynamic dispersions for dissipative products depend strongly on the charge number Z of the fragments.

  6. Compact and high-resolution optical orbital angular momentum sorter

    Directory of Open Access Journals (Sweden)

    Chenhao Wan

    2017-03-01

    Full Text Available A compact and high-resolution optical orbital angular momentum (OAM sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.

  7. Development of an optical fiber sensor for angular displacement measurements.

    Science.gov (United States)

    Jung, Gu-In; Kim, Ji-Sun; Lee, Tae-Hee; Choi, Ju-Hyeon; Oh, Han-Byeol; Kim, A-Hee; Eom, Gwang-Moon; Lee, Jeong-Hwan; Chung, Soon-Cheol; Park, Jong-Rak; Lee, Young-Jae; Park, Hee-Jung; Jun, Jae-Hoon

    2014-01-01

    For diagnostic and therapeutic purposes, the joint angle measurement of a patient after an accident or a surgical operation is significant for monitoring and evaluating the recovering process. This paper proposed an optical fiber sensor for the measurement of angular displacement. The effect of beveled fiber angle on the detected light signal was investigated to find an appropriate mathematical model. Beveled fiber tips redirected the light over a range of angles away from the fiber axis. Inverse polynomial models were applied to directly obtain and display the joint angle change in real time with the Lab-VIEW program. The actual joint angle correlated well with the calculated LabVIEW output angle over the test range. The proposed optical sensor is simple, cost effective, small in size, and can evaluate the joint angle in real time. This method is expected to be useful in the field of rehabilitation and sport science.

  8. Fission fragment angular distributions in pre-actinide nuclei

    Science.gov (United States)

    Banerjee, Tathagata; Nath, S.; Jhingan, A.; Kaur, Gurpreet; Dubey, R.; Yadav, Abhishek; Laveen, P. V.; Shamlath, A.; Shareef, M.; Gehlot, J.; Saneesh, N.; Prasad, E.; Sugathan, P.; Pal, Santanu

    2016-10-01

    Background: Complete fusion of two nuclei leading to formation of a heavy compound nucleus (CN) is known to be hindered by various fission-like processes, in which the composite system reseparates after capture of the target and the projectile inside the potential barrier. As a consequence of these non-CN fission (NCNF) processes, fusion probability (PCN) starts deviating from unity. Despite substantial progress in understanding, the onset and the experimental signatures of NCNF and the degree of its influence on fusion have not yet been unambiguously identified. Purpose: This work aims to investigate the presence of NCNF, if any, in pre-actinide nuclei by systematic study of fission angular anisotropies and fission cross sections (σfis) in a number of nuclear reactions carried out at and above the Coulomb barrier (VB) . Method: Fission fragment angular distributions were measured for six 28Si-induced reactions involving isotopically enriched targets of 169Tm,176Yb,175Lu,180Hf,181Ta, and 182W leading to probable formation of CN in the pre-actinide region, at a laboratory energy (Elab) range of 129-146 MeV. Measurements were performed with large angular coverage (θlab=41∘ -170∘) in which fission fragments (FFs) were detected by nine hybrid telescope (E -Δ E ) detectors. Extracted fission angular anisotropies and σfis were compared with statistical model (SM) predictions. Results: Barring two reactions involving targets with large non-zero ground state spin (J ) , viz., 175Lu(7/2+) and 181Ta(7/2+) , experimental fission angular anisotropies were found to be higher in comparison with predictions of the statistical saddle point model (SSPM), at Ec .m . near VB. Comparison of present results with those from neighboring systems revealed that experimental anisotropies increasingly deviated from SSPM predictions as one moved from pre-actinide to actinide nuclei. For reactions involving targets with large nonzero J , this deviation was subdued. Comparison between

  9. Spin-to-orbit conversion at acousto-optic diffraction of light: conservation of optical angular momentum.

    Science.gov (United States)

    Skab, Ihor; Vlokh, Rostyslav

    2012-04-01

    Acousto-optic diffraction of light in optically active cubic crystals is analyzed from the viewpoint of conservation of optical angular momentum. It is shown that the availability of angular momentum in the diffracted optical beam can be necessarily inferred from the requirements of angular momentum conservation law. As follows from our analysis, a circularly polarized diffracted wave should bear an orbital angular momentum. The efficiency of the spin-to-orbit momentum conversion is governed by the efficiency of acousto-optic diffraction.

  10. Angular Distribution of Photons in Coherent Bremsstrahlung in Deformed Crystals

    CERN Document Server

    Parazian, V V

    2010-01-01

    We investigate the angular distribution of photons in the coherent bremsstrahlung process by high-energy electrons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross-section is derived for an arbitrary deformation field. The case is considered in detail when the electron enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for SiO2 single crystal and Moliere parameterization of the screened atomic potentials in the case of the deformation field generated by the acoustic wave of S -type.

  11. Photon Angular Distribution and Polarization of Radiative Recombination

    Institute of Scientific and Technical Information of China (English)

    OU Wei-Ying; SHEN Tian-Ming; CHEN Chong-Yang; Roger Hutton; ZOU Ya-Ming

    2005-01-01

    @@ A systematic study is carried out on the angular distribution and polarization of photons emitted following radiative-recombination of bare and He-like ions of Ne, Ar, Ni and Mo with a unidirectional electron beam. In order to incorporate the screening effect due to inner-shell electrons, a distorted wave method is used. Scaling rules for polarization of the photon following radiative recombination to both bare and He-like ions are given for the incident energy regions up to six times the ionization threshold energy of the final state.

  12. Neutron angular distribution in plutonium-240 spontaneous fission

    Energy Technology Data Exchange (ETDEWEB)

    Marcath, Matthew J., E-mail: mmarcath@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Shin, Tony H.; Clarke, Shaun D. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Peerani, Paolo [European Commission at the Joint Research Centre, Ispra (Italy); Pozzi, Sara A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States)

    2016-09-11

    Nuclear safeguards applications require accurate fission models that exhibit prompt neutron anisotropy. In the laboratory reference frame, an anisotropic neutron angular distribution is observed because prompt fission neutrons carry momentum from fully accelerated fission fragments. A liquid organic scintillation detector array was used with pulse shape discrimination techniques to produce neutron-neutron cross-correlation time distributions and angular distributions from spontaneous fission in a {sup 252}Cf, a 0.84 g {sup 240}Pu{sub eff} metal, and a 1.63 g {sup 240}Pu{sub eff} metal sample. The effect of cross-talk, estimated with MCNPX-PoliMi simulations, is removed from neutron-neutron coincidences as a function of the angle between detector pairs. Fewer coincidences were observed at detector angles near 90°, relative to higher and lower detector angles. As light output threshold increases, the observed anisotropy increases due to spectral effects arising from fission fragment momentum transfer to emitted neutrons. Stronger anisotropy was observed in Cf-252 spontaneous fission prompt neutrons than in Pu-240 neutrons. - Highlights: • Pu-240 prompt fission fast-neutron anisotropy was quantified for the first time. • MCNPX-PoliMi and MPPost codes were used to remove cross-talk neutron detections from experiment results. • Cf-252 spontaneous fission neutrons were found to be more anisotropic than Pu-240 neutrons.

  13. Neutron angular distribution in plutonium-240 spontaneous fission

    Science.gov (United States)

    Marcath, Matthew J.; Shin, Tony H.; Clarke, Shaun D.; Peerani, Paolo; Pozzi, Sara A.

    2016-09-01

    Nuclear safeguards applications require accurate fission models that exhibit prompt neutron anisotropy. In the laboratory reference frame, an anisotropic neutron angular distribution is observed because prompt fission neutrons carry momentum from fully accelerated fission fragments. A liquid organic scintillation detector array was used with pulse shape discrimination techniques to produce neutron-neutron cross-correlation time distributions and angular distributions from spontaneous fission in a 252Cf, a 0.84 g 240Pueff metal, and a 1.63 g 240Pueff metal sample. The effect of cross-talk, estimated with MCNPX-PoliMi simulations, is removed from neutron-neutron coincidences as a function of the angle between detector pairs. Fewer coincidences were observed at detector angles near 90°, relative to higher and lower detector angles. As light output threshold increases, the observed anisotropy increases due to spectral effects arising from fission fragment momentum transfer to emitted neutrons. Stronger anisotropy was observed in Cf-252 spontaneous fission prompt neutrons than in Pu-240 neutrons.

  14. Holographic tool kit for optical communication beyond orbital angular momentum

    CERN Document Server

    Trichili, Abderrahmen; Dudley, Angela; Ndagano, Bienvenu; Salem, Amine Ben; Zghal, Mourad; Forbes, Andrew

    2016-01-01

    Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom. We achieve this with a holographic approach that allows over 100 modes to be encoded on a single hologram, across a wide wavelength range, in a wavelength independent manner. Our results offer a new tool that will prove useful in realising higher bit rates for next generation optical networks.

  15. Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects.

    Science.gov (United States)

    Berkhout, Gregorius C G; Beijersbergen, Marco W

    2008-09-05

    We present an efficient method for probing the orbital angular momentum of optical vortices of arbitrary sizes. This method, based on a multipoint interferometer, has its most important application in measuring the orbital angular momentum of light from astronomical sources, opening the way to interesting new astrophysics. We demonstrate its viability by measuring the orbital angular momentum of Laguerre-Gaussian laser beams.

  16. Ion angular distribution simulation of the HEMP Thruster

    Science.gov (United States)

    Duras, Julia; Koch, Norbert; Kahnfeld, Daniel; Bandelow, Gunnar; Matthias, Paul; Lüskow, Karl Felix; Schneider, Ralf; Kemnitz, Stefan

    2016-10-01

    Ion angular current and energy distributions are important parameters for ion thrusters, which are typically measured at a few tens of centimetres to a few meters distance from thruster exit. However, fully kinetic Particle-in-Cell simulations are not able to simulate such domain sizes, due to high computational costs. Therefore, a parallelisation strategy of the code is presented to reduce computational time. To map diagnostics information from the domain boundary of the calculational domain to the positions of experimental diagnostics the concept of transfer functions is introduced. The calculated ion beam angular distributions in the plume region are quite sensitive to boundary conditions of the potential, possible additional source contributions, e.g. from secondary electron emission at vessel walls, and charge exchange collisions. This work was supported by the Bavarian State Ministry of Education Science and the Arts and the German Space Agency DLR. We also like to thank R. Heidemann from THALES Electron Devices GmbH, for interesting and stimulating discussions.

  17. Angular distribution in the neutron-induced fission of actinides

    Directory of Open Access Journals (Sweden)

    Leong L.S.

    2013-12-01

    Full Text Available Above 1 MeV of incident neutron energy the fission fragment angular distribution (FFAD has generally a strong anisotropic behavior due to the combination of the incident orbital momentum and the intrinsic spin of the fissioning nucleus. This effect has to be taken into account for the efficiency estimation of devices used for fission cross section measurements. In addition it bears information on the spin deposition mechanism and on the structure of transitional states. We designed and constructed a detection device, based on Parallel Plate Avalanche Counters (PPAC, for measuring the fission fragment angular distributions of several isotopes, in particular 232Th. The measurement has been performed at n_TOF at CERN taking advantage of the very broad energy spectrum of the neutron beam. Fission events were recognized by back to back detection in coincidence in two position-sensitive detectors surrounding the targets. The detection efficiency, depending mostly on the stopping of fission fragments in backings and electrodes, has been computed with a Geant4 simulation and validated by the comparison to the measured case of 235U below 3 keV where the emission is isotropic. In the case of 232Th, the result is in good agreement with previous data below 10 MeV, with a good reproduction of the structures associated to vibrational states and the opening of second chance fission. In the 14 MeV region our data are much more accurate than previous ones which are broadly scattered.

  18. Atomic ionization by twisted photons: Angular distribution of emitted electrons

    CERN Document Server

    Matula, Oliver; Serbo, Valeriy G; Surzhykov, Andrey; Fritzsche, Stephan

    2013-01-01

    We investigate the angular distribution of electrons that are emitted in the ionization of hydrogen-like ions by twisted photons. Analysis is performed based on the first-order perturbation theory and the non-relativistic Schr\\"odinger equation. Special attention is paid to the dependence of the electron emission pattern on the impact parameter b of the ion with respect to the centre of the twisted wave front. In order to explore such a dependence, detailed calculations were carried out for the photoionization of the 1s ground and 2 py excited states of neutral hydrogen atoms. Based on these calculations, we argue that for relatively small impact parameters the electron angular distributions may be strongly affected by altering the position of the atom within the wave front. In contrast, if the atom is placed far from the front centre, the emission pattern of the electrons is independent on the impact parameter b and resembles that observed in the photoionization by plane wave photons.

  19. Symmetries in the angular distribution of exclusive semileptonic B decays

    CERN Document Server

    Egede, Ulrik; Matias, Joaquim; Ramon, Marc; Reece, Will

    2010-01-01

    We discuss a method to construct observables protected against QCD uncertainties based on the angular distribution of the exclusive Bd -> K(*0}(-> Kpi) l+ l- decay. We focus on the identification and the interpretation of all the symmetries of the distribution. They constitute a key ingredient to construct a set of so-called transverse observables. We work in the framework of QCD factorization at NLO supplemented by an estimate of power-suppressed Lambda/mb corrections. A discussion of the new physics properties of two of the transverse asymmetries, AT^{(2)} and AT^{(5)}, is presented. A comparison between the transverse asymmetry AT^{(2)} and the forward-backward asymmetry shows that AT^{(2)} emerges as an improved version of it.

  20. Symmetries in the angular distribution of exclusive semileptonic B decays

    CERN Document Server

    Egede, Ulrik; Matias, Joaquim; Ramon, Marc; Reece, Will

    2010-01-01

    We discuss a method to construct observables protected against QCD uncertainties based on the angular distribution of the exclusive Bd -> K(*0}(-> Kpi) l+ l- decay. We focus on the identification and the interpretation of all the symmetries of the distribution. They constitute a key ingredient to construct a set of so-called transverse observables. We work in the framework of QCD factorization at NLO supplemented by an estimate of power-suppressed Lambda/mb corrections. A discussion of the new physics properties of two of the transverse asymmetries, AT^{(2)} and AT^{(5)}, is presented. A comparison between the transverse asymmetry AT^{(2)} and the forward-backward asymmetry shows that AT^{(2)} emerges as an improved version of it.

  1. Angular distributions of very low energy recoil ions

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Lepera, C.E.; Breinig, M.; Burgdoerfer, J.; DeSerio, R.; Elston, S.B.; Gibbons, J.P.; Huelskoetter, H.P.; Liljeby, L.; Vane, C.R.; Sellin, I.A.

    1986-01-01

    We present the first measurements of the angular distribution of recoil ions near 90/sup 0/ with respect to the incident projectile direction. Beams of 22.5 and 33 MeV chlorine ions (incident charge states q =4,5,8) have been used as ''hammer'' beams incident on Ne atoms. We confirm the long standing assumption that these recoil ions are ejected preferentially at angles near 90/sup 0/ with respect to the primary beam direction and with energies typically less than 5 eV. Recoil ions ejected around 90/sup 0/ have an energy distribution appreciably wider than those ejected at either larger or smaller angles. 9 refs., 6 figs.

  2. Spin O decay angular distribution for interfering mesons in electroproduction

    Energy Technology Data Exchange (ETDEWEB)

    Funsten, H.; Gilfoyle, G.

    1994-04-01

    Self analyzing meson electroproduction experiments are currently being planned for the CEBAF CLAS detector. These experiments deduce the spin polarization of outgoing unstable spin s (?)0 mesons from their decay angular distribution, W({theta},{psi}). The large angular acceptance of the CLAS detector permits kinematic tracking of a sufficient number of these events to accurately determine electroproduction amplitudes from the deduced polarization. Maximum polarization information is obtained from W({theta},{psi}) for decay into spin 0 daughters. The helicity of the decaying meson is transferred to the daughter`s relative orbital angular momentum m-projection; none is {open_quotes}absorbed{close_quotes} into daughter helicities. The decaying meson`s helicity maximally appears in W({theta},{psi}). W({theta},{psi}) for spin 0 daughters has been derived for (1) vector meson electroproduction and (2) general interfering mesons produced by incident pions. This paper derives W({theta},{psi}) for electroproduction of two interfering mesons that decay into spin 0 daughters. An application is made to the case of interfering scalar and vector mesons. The derivation is an extension of work by Schil using the general decay formalism of Martin. The expressions can be easily extended to the case of N interfering mesons since interference occurs pairwise in the observable W ({theta},{psi}), a quadratic function of the meson amplitudes. The derivation uses the virtual photon density matrix of Schil which is transformed by a meson electroproduction transition operator, T. The resulting density matrix for the interfering mesons is then converted into a corresponding statistical tensor and contracted into the efficiency tensor for spin 0 daughters.

  3. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices

    CERN Document Server

    He, Li; Li, Mo

    2016-01-01

    Photons carry linear momentum, and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, while angular momentum transfer induces optical torque. Optical forces including radiation pressure and gradient forces have long been utilized in optical tweezers and laser cooling. In nanophotonic devices optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect remain unexplored in integrated photonics. Here, we demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mecha...

  4. Cavity modes with optical orbital angular momentum in a metamaterial ring based on transformation optics.

    Science.gov (United States)

    Wu, H W; Wang, F; Dong, Y Q; Shu, F Z; Zhang, K; Peng, R W; Xiong, X; Wang, Mu

    2015-12-14

    In this work, we theoretically study the cavity modes with transverse orbital angular momentum in metamaterial ring based on transformation optics. The metamaterial ring is designed to transform the straight trajectory of light into the circulating one by enlarging the azimuthal angle, effectively presenting the modes with transverse orbital angular momentum. The simulation results confirm the theoretical predictions, which state that the transverse orbital angular momentum of the mode not only depends on the frequency of the incident light, but also depends on the transformation scale of the azimuthal angle. Because energy dissipation inevitably reduces the field amplitude of the modes, the confined electromagnetic energy and the quality factor of the modes inside the ring are also studied in order to evaluate the stability of those cavity modes. The results show that the metamaterial ring can effectively confine light with a high quality factor and maintain steady modes with the orbital angular momentum, even if the dimension of the ring is much smaller than the wavelength of the incident light. This technique for exploiting the modes with optical transverse orbital angular momentum may provides a unique platform for applications related to micromanipulation.

  5. Angular momentum of disc galaxies with a lognormal density distribution

    CERN Document Server

    Marr, John Herbert

    2015-01-01

    Whilst most galaxy properties scale with galaxy mass, similar scaling relations for angular momentum are harder to demonstrate. A lognormal (LN) density distribution for disc mass provides a good overall fit to the observational data for disc rotation curves for a wide variety of galaxy types and luminosities. In this paper, the total angular momentum J and energy $\\vert{}$E$\\vert{}$ were computed for 38 disc galaxies from the published rotation curves and plotted against the derived disc masses, with best fit slopes of 1.683$\\pm{}$0.018 and 1.643$\\pm{}$0.038 respectively, using a theoretical model with a LN density profile. The derived mean disc spin parameter was $\\lambda{}$=0.423$\\pm{}$0.014. Using the rotation curve parameters V$_{max}$ and R$_{max}$ as surrogates for the virial velocity and radius, the virial mass estimator $M_{disc}\\propto{}R_{max}V_{max}^2$ was also generated, with a log-log slope of 1.024$\\pm{}$0.014 for the 38 galaxies, and a proportionality constant ${\\lambda{}}^*=1.47\\pm{}0.20\\time...

  6. Angular and spectral sensitivity of fly photoreceptors. I. Integrated facet lens and rhabdomere optics

    NARCIS (Netherlands)

    Stavenga, D.G.

    2003-01-01

    Three optical components of a fly’s eye determine the angular sensitivity of the photoreceptors: the light diffracting facet lens, the wave-guiding rhabdomere and the light-absorbing visual pigment in the rhabdomere. How the integrated optical system of the fly eye shapes the angular sensitivity cur

  7. Design method for a laser line beam shaper of a general 1D angular power distribution

    Science.gov (United States)

    Oved, E.; Oved, A.

    2016-05-01

    Laser line is a beam of laser, spanned in one direction using a beam shaper to form a fan of light. This illumination tool is important in laser aided machine vision, 3D scanners, and remote sensing. For some applications the laser line should have a specific angular power distribution. If the distribution is nonsymmetrical, the beam shaper is required to be nonsymmetrical freeform, and its design process using optical design software is time consuming due to the long optimization process which usually converges to some local minimum. In this paper we introduce a new design method of a single element refractive beam shaper of any predefined general 1D angular power distribution. The method makes use of a notion of "prism space", a geometrical representation of all double refraction prisms, and any 1D beam shaper can be described by a continuous curve in this space. It is shown that infinitely many different designs are possible for any given power distribution, and it is explained how an optimal design is selected among them, based on criteria such as high transmission, low surface slopes, robustness to manufacturing errors etc. The method is non-parametric and hence does not require initial guess of a functional form, and the resultant optical surfaces are described by a sequence of points, rather than by an analytic function.

  8. Nucleon form factors, generalized parton distributions and quark angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kroll, Peter [Bergische Univ., Wuppertal (Germany). Fachbereich Physik; Regensburg Univ. (Germany). Institut fuer Theoretische Physik

    2013-02-15

    We extract the individual contributions from u and d quarks to the Dirac and Pauli form factors of the proton, after a critical examination of the available measurements of electromagnetic nucleon form factors. From this data we determine generalized parton distributions for valence quarks, assuming a particular form for their functional dependence. The result allows us to study various aspects of nucleon structure in the valence region. In particular, we evaluate Ji's sum rule and estimate the total angular momentum carried by valence quarks at the scale {mu}=2 GeV to be J{sup u}{sub v}=0.230{sup +0.009}{sub -0.024} and J{sup d}{sub v}=-0.004{sup +0.010}{sub -0.016}.

  9. Visualization of scattering angular distributions with the SAP code

    Science.gov (United States)

    Fernandez, J. E.; Scot, V.; Basile, S.

    2010-07-01

    SAP (Scattering Angular distribution Plot) is a graphical tool developed at the University of Bologna to compute and plot Rayleigh and Compton differential cross-sections (atomic and electronic), form-factors (FFs) and incoherent scattering functions (SFs) for single elements, compounds and mixture of compounds, for monochromatic excitation in the range of 1-1000 keV. The computation of FFs and SFs may be performed in two ways: (a) by interpolating Hubbell's data from EPDL97 library and (b) by using semi-empirical formulas as described in the text. Two kinds of normalization permit to compare the plots of different magnitudes, by imposing a similar scale. The characteristics of the code SAP are illustrated with one example.

  10. Angular Distribution of Particles Emerging from a Diffusive Region and its Implications for the Fleck-Canfield Random Walk Algorithm for Implicit Monte Carlo Radiation Transport

    CERN Document Server

    Cooper, M A

    2000-01-01

    We present various approximations for the angular distribution of particles emerging from an optically thick, purely isotropically scattering region into a vacuum. Our motivation is to use such a distribution for the Fleck-Canfield random walk method [1] for implicit Monte Carlo (IMC) [2] radiation transport problems. We demonstrate that the cosine distribution recommended in the original random walk paper [1] is a poor approximation to the angular distribution predicted by transport theory. Then we examine other approximations that more closely match the transport angular distribution.

  11. Measurement of the total optical angular momentum transfer in optical tweezers

    CERN Document Server

    Parkin, S; Knoener, G; Nieminen, T A; Rubinsztein-Dunlop, H; Heckenberg, Norman R.; Knoener, Gregor; Nieminen, Timo A.; Parkin, Simon; Rubinsztein-Dunlop, Halina

    2006-01-01

    We describe a way to determine the total angular momentum, both spin and orbital, transferred to a particle trapped in optical tweezers. As an example an LG02 mode of a laser beam with varying degrees of circular polarisation is used to trap and rotate an elongated particle with a well defined geometry. The method successfully estimates the total optical torque applied to the particle. For this technique, there is no need to measure the viscous drag on the particle, as it is an optical measurement. Therefore, knowledge of the particle's size and shape, as well as the fluid's viscosity, is not required.

  12. Pulsed laser deposition of lysozyme: the dependence on shot numbers and the angular distribution

    DEFF Research Database (Denmark)

    Constantinescu, C.; Matei, A.; Schou, Jørgen

    2013-01-01

    . This was verified by matrix-assisted laser desorption ionization (MALDI) spectrometry of thin films deposited on silicon substrates. The deposition rate of lysozyme was found to decrease with the number of shots and was correlated with increasing thermal damage of the lysozyme. This was monitored by measurements...... of the optical reflectivity of dry lysozyme. The angular distribution of the mass deposition can be fitted well by Anisimov’s hydrodynamic model. The total deposited yield over the entire hemisphere from direct laser ablation of lysozyme was estimated from this model and found to be three orders of magnitude...

  13. The Schiff angular bremsstrahlung distribution from composite media

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M.L., E-mail: michael.taylor@rmit.edu.au [School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne (Australia); Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne (Australia); Dalton, B.; Franich, R.D. [School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne (Australia)

    2012-12-15

    The Schiff differential for the angular distribution of bremsstrahlung is widely employed, but calculations involving composite materials (i.e. compounds and mixtures) are often undertaken in a somewhat ad hoc fashion. In this work, we suggest an alternative approach to power-law estimates of the effective atomic number utilising Seltzer and Berger's combined approach in order to generate single-valued effective atomic numbers applicable over a large energy range (in the worst case deviation from constancy of about 2% between 10 keV and 1 GeV). Differences with power-law estimates of Z for composites are potentially significant, particularly for low-Z media such as biological or surrogate materials as relevant within the context of medical physics. As an example, soft tissue differs by >70% and cortical bone differs by >85%, while for high-Z composites such as a tungsten-rhenium alloy the difference is of the order of 1%. Use of the normalised Schiff formula for shape only does not exhibit strong Z dependence. Consequently, in such contexts the differences are negligible - the power-law approach overestimates the magnitude by 1.05% in the case of water and underestimates it by <0.1% for the high-Z alloys. The differences in the distribution are most pronounced for small angles and where the bremsstrahlung quanta are low energy.

  14. Angular distributions in the radiative decays of the state of charmonium originating from polarized collisions

    Science.gov (United States)

    Wong, Cheuk-Ping; Mok, Alex W. K.; Sit, Wai-Yu

    2015-03-01

    Using the helicity formalism, we calculate the combined angular distribution function of the two gamma photons ( and ) and the electron () in the triple cascade process , when and are arbitrarily polarized. We also derive six different partially integrated angular distribution functions which give the angular distributions of one or two particles in the final state. Our results show that by measuring the two-particle angular distribution of and and that of and , one can determine the relative magnitudes as well as the relative phases of all the helicity amplitudes in the two charmonium radiative transitions and.

  15. Control of ion energy and angular distributions using voltage waveform

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, S.

    1999-07-01

    A number of plasma-aided microelectronics manufacturing processes sensitively depend on the ion characteristics at the substrate, in particular the ion energy (IEDF) and angular (IADF) distribution functions. The outcome of these processes can be much more precisely controlled if one has direct control over the IEDFs and IADFs. Past studies have explored the influence of rb bias voltage amplitude and frequency, inductive power deposition and gas pressure on the ion characteristics at the substrate. The factor that influences the ion dynamics most is however the time-dependent sheath voltage and, as demonstrated in this paper, sheath voltage can be accurately controlled using the rf bias voltage waveform. In this paper, the authors computationally examine the influence of the rf bias voltage waveform on the IEDFs and IADFs at the substrate in an inductively coupled plasma (ICP) reactor. This study has been conducted using a coupled set of the Hybrid Plasma Equipment Model (HPEM) and a circuit model, and the Plasma Chemistry Monte Carlo Simulation (PCMCS).

  16. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices.

    Science.gov (United States)

    He, Li; Li, Huan; Li, Mo

    2016-09-01

    Photons carry linear momentum and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, whereas transfer of angular momentum induces optical torque. Optical forces including radiation pressure and gradient forces have long been used in optical tweezers and laser cooling. In nanophotonic devices, optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect have only been used in optical tweezers but remain unexplored in integrated photonics. We demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mechanical effect of photon's polarization degree of freedom and demonstrates its control in integrated photonic devices. Exploiting optical torque and optomechanical interaction with photon angular momentum can lead to torsional cavity optomechanics and optomechanical photon spin-orbit coupling, as well as applications such as optomechanical gyroscopes and torsional magnetometry.

  17. Static and dynamic characteristics of angular velocity and acceleration transducers based on optical tunneling effect

    Science.gov (United States)

    Busurin, V. I.; Korobkov, V. V.; Htoo Lwin, Naing; Tuan, Phan Anh

    2016-08-01

    Theoretical and experimental analysis of quasi-linear conversion function of angular velocity and acceleration microoptoelectromechnical (MOEM) transducers based on optical tunneling effect (OTE) are conducted. Equivalent oscillating circuit is developed and dynamic characteristics of angular velocity and acceleration MOEM-transducers are investigated.

  18. The use of orbital angular momentum of light beams for optical data storage

    NARCIS (Netherlands)

    Voogd, R.J.; Singh, M.; Braat, J.J.M.

    2004-01-01

    We present a method to optically store multiple information in one location by having angular momentum imparted to the scanning beam by optical phase objects that make up the information areas on a surface. We show that the light beam thus perturbed carries an optical vortex, the rotation of which c

  19. Numerical calculations for the angular distribution of gamma radiation emitted by oriented 58Co NUCLEI

    NARCIS (Netherlands)

    Cox, J.A.M.; Groot, S.R. de; Hartogh, Chr.D.

    1953-01-01

    In this note the theoretical results for the angular distribution of γ-radiation emitted by oriented radioactive nuclei are applied to the case of 58Co nuclei. The angular distribution function of the γ-radiation has been calculated for an arbitrary degree of nuclear orientation and in dependence of

  20. The SAMI Galaxy Survey: the link between angular momentum and optical morphology

    CERN Document Server

    Cortese, L; Bekki, K; van de Sande, J; Couch, W; Catinella, B; Colless, M; Obreschkow, D; Taranu, D; Tescari, E; Barat, D; Bland-Hawthorn, J; Bloom, J; Bryant, J J; Cluver, M; Croom, S M; Drinkwater, M J; d'Eugenio, F; Konstantopoulos, I S; Lopez-Sanchez, A; Mahajan, S; Scott, N; Tonini, C; Wong, O I; Allen, J T; Brough, S; Goodwin, M; Green, A W; Ho, I -T; Kelvin, L S; Lawrence, J S; Lorente, N P F; Medling, A M; Owers, M S; Richards, S; Sharp, R; Sweet, S M

    2016-01-01

    We investigate the relationship between stellar and gas specific angular momentum $j$, stellar mass $M_{*}$ and optical morphology for a sample of 488 galaxies extracted from the SAMI Galaxy Survey. We find that $j$, measured within one effective radius, monotonically increases with $M_{*}$ and that, for $M_{*}>$10$^{9.5}$ M$_{\\odot}$, the scatter in this relation strongly correlates with optical morphology (i.e., visual classification and S\\'ersic index). These findings confirm that massive galaxies of all types lie on a plane relating mass, angular momentum and stellar light distribution, and suggest that the large-scale morphology of a galaxy is regulated by its mass and dynamical state. We show that the significant scatter in the $M_{*}-j$ relation is accounted for by the fact that, at fixed stellar mass, the contribution of ordered motions to the dynamical support of galaxies varies by at least a factor of three. Indeed, the stellar spin parameter (quantified via $\\lambda_R$) correlates strongly with S\\'...

  1. Angular distributions of the polarized photons and electron in the decays of the state of charmonium

    Science.gov (United States)

    Mok, Alex W. K.; Wong, Cheuk-Ping; Sit, Wai-Yu

    2014-02-01

    We calculate the combined angular-distribution functions of the polarized photons ( and ) and electron () produced in the cascade process , when the colliding and are unpolarized. Our results are independent of any dynamical models and are expressed in terms of the spherical harmonics whose coefficients are functions of the angular-momentum helicity amplitudes of the individual processes. Once the joint angular distribution of (, ) and that of (, ) with the polarization of either one of the two particles are measured, our results will enable one to determine the relative magnitudes as well as the relative phases of all the angular-momentum helicity amplitudes in the radiative decay processes and.

  2. Conservation of orbital angular momentum in air core optical fibers

    CERN Document Server

    Gregg, P; Ramachandran, S

    2014-01-01

    Light's orbital angular momentum (OAM) is a conserved quantity in cylindrically symmetric media; however, it is easily destroyed by free-space turbulence or fiber bends, because anisotropic perturbations impart angular momentum. We observe the conservations of OAM even in the presence of strong bend perturbations, with fibers featuring air cores that appropriately sculpt the modal density of states. In analogy to the classical reasoning for the enhanced stability of spinning tops with increasing angular velocity, these states' lifetimes with OAM magnitude. Consequently, contrary to convention wisdom that ground states of systems are the most stable, OAM longevity in air-core fiber increases with mode order. Aided by conservation of this fundamental quantity, we demonstrate fiber propagation of 12 distinct higher-order OAM modes, of which 8 remain low-loss and >98% pure from near-degenerate coupling after km-length propagation. The first realization of long-lived higher-order OAM states, thus far posited to ex...

  3. Angular distribution of single-photon superradiance in a dilute and cold atomic ensemble

    Science.gov (United States)

    Kuraptsev, A. S.; Sokolov, I. M.; Havey, M. D.

    2017-08-01

    On the basis of a quantum microscopic approach we study the dynamics of the afterglow of a dilute Gaussian atomic ensemble excited by pulsed radiation. Taking into account the vector nature of the electromagnetic field we analyze in detail the angular and polarization distribution of single-photon superradiance of such an ensemble. The dependence of the angular distribution of superradiance on the length of the pulse and its carrier frequency as well as on the size and the shape of the atomic clouds is studied. We show that there is substantial dependence of the superradiant emission on the polarization and the direction of fluorescence. We observe essential peculiarities of superradiance in the region of the forward diffraction zone and in the area of the coherent backscattering cone. We demonstrate that there are directions for which the rate of fluorescence is several times more than the decay rate of the timed-Dicke state. We show also that single-photon superradiance can be excited by incoherent excitation when atomic polarization in the ensemble is absent. Besides a quantum microscopic approach, we analyze single-photon superradiance on the basis of the theory of incoherent multiple scattering in optically thick media (random walk theory). In the case of very short resonant and long nonresonant pulses we derive simple analytical expressions for the decay rate of single-photon superradiance for incoherent fluorescence in an arbitrary direction.

  4. Holographic toolkit for optical communication beyond orbital angular momentum

    CSIR Research Space (South Africa)

    Rosales-Guzman, C

    2016-09-01

    Full Text Available , suggested over 30 years ago, comprises the use of spatial modes of light as information carriers. Along this direction, light beams endowed with orbital angular momentum (OAM) have been demonstrated as potential information carriers in both, free space...

  5. On the natures of the spin and orbital parts of optical angular momentum

    Science.gov (United States)

    Barnett, Stephen M.; Allen, L.; Cameron, Robert P.; Gilson, Claire R.; Padgett, Miles J.; Speirits, Fiona C.; Yao, Alison M.

    2016-06-01

    The modern field of optical angular momentum began with the realisation by Allen et al in 1992 that, in addition to the spin associated with polarisation, light beams with helical phase fronts carry orbital angular momentum. There has been much confusion and debate, however, surrounding the intricacies of the field and, in particular, the separation of the angular momentum into its spin and orbital parts. Here we take the opportunity to state the current position as we understand it, which we present as six perspectives: (i) we start with a reprise of the 1992 paper in which it was pointed out that the Laguerre-Gaussian modes, familiar from laser physics, carry orbital angular momentum. (ii) The total angular momentum may be separated into spin and orbital parts, but neither alone is a true angular momentum. (iii) The spin and orbital parts, although not themselves true angular momenta, are distinct and physically meaningful, as has been demonstrated clearly in a range of experiments. (iv) The orbital part of the angular momentum in the direction of propagation of a beam is not simply the azimuthal component of the linear momentum. (v) The component of spin in the direction of propagation is not the helicity, although these are related quantities. (vi) Finally, the spin and orbital parts of the angular momentum correspond to distinct symmetries of the free electromagnetic field and hence are separately conserved quantities.

  6. Resilience of hybrid optical angular momentum qubits to turbulence.

    Science.gov (United States)

    Farías, Osvaldo Jiménez; D'Ambrosio, Vincenzo; Taballione, Caterina; Bisesto, Fabrizio; Slussarenko, Sergei; Aolita, Leandro; Marrucci, Lorenzo; Walborn, Stephen P; Sciarrino, Fabio

    2015-02-12

    Recent schemes to encode quantum information into the total angular momentum of light, defining rotation-invariant hybrid qubits composed of the polarization and orbital angular momentum degrees of freedom, present interesting applications for quantum information technology. However, there remains the question as to how detrimental effects such as random spatial perturbations affect these encodings. Here, we demonstrate that alignment-free quantum communication through a turbulent channel based on hybrid qubits can be achieved with unit transmission fidelity. In our experiment, alignment-free qubits are produced with q-plates and sent through a homemade turbulence chamber. The decoding procedure, also realized with q-plates, relies on both degrees of freedom and renders an intrinsic error-filtering mechanism that maps errors into losses.

  7. Measurement of angular distribution of cosmic-ray muon fluence rate

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jeng-Wei [Institute of Nuclear Engineering and Science, Natioanl Tsing Hua University, 101 Sec. 2, Kung Fu Road, Hsinchu 30013, Taiwan (China); Chen, Yen-Fu [Department of Engineering and System Science, Natioanl Tsing Hua University, 101 Sec. 2, Kung Fu Road, Hsinchu 30013, Taiwan (China); Sheu, Rong-Jiun [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30013, Taiwan (China); Jiang, Shiang-Huei, E-mail: Shjiang@mx.nthu.edu.t [Institute of Nuclear Engineering and Science, Natioanl Tsing Hua University, 101 Sec. 2, Kung Fu Road, Hsinchu 30013, Taiwan (China); Department of Engineering and System Science, Natioanl Tsing Hua University, 101 Sec. 2, Kung Fu Road, Hsinchu 30013, Taiwan (China)

    2010-07-21

    In this work a Berkeley Lab cosmic ray detector was used to measure the angular distribution of the cosmic-ray muon fluence rate. Angular response functions of the detector at each measurement orientation were calculated by using the FLUKA Monte Carlo code, where no energy attenuation was taken into account. Coincidence counting rates were measured at ten orientations with equiangular intervals. The muon angular fluence rate spectrum was unfolded from the measured counting rates associated with the angular response functions using both the MAXED code and the parameter adjusting method.

  8. Angular distribution of sputtered atoms induced by low-energy heavy ion bombardment

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lai; ZHANG Zhu-Lin

    2004-01-01

    The sputtering yield angular distributions have been calculated based on the ion energy dependence of total sputtering yields for Ni and Motargets bombarded by low-energy Hg+ ion. The calculated curves show excellent agreement with the corresponding Wehner's experimental results of sputtering yield angular distribution. The fact clearly demonstrated the intrinsic relation between the ion energy dependence of total sputtering yields and the sputtering yield angular distribution. This intrinsic relation had been ignored in Yamamura's papers (1981,1982) due to some obvious mistakes.

  9. Creating optical near-field orbital angular momentum in a gold metasurface.

    Science.gov (United States)

    Chen, Ching-Fu; Ku, Chen-Ta; Tai, Yi-Hsin; Wei, Pei-Kuen; Lin, Heh-Nan; Huang, Chen-Bin

    2015-04-01

    Nanocavities inscribed in a gold thin film are optimized and designed to form a metasurface. We demonstrate both numerically and experimentally the creation of surface plasmon (SP) vortex carrying orbital angular momentum in the metasurface under linearly polarized optical excitation that carries no optical angular momentum. Moreover, depending on the orientation of the exciting linearly polarized light, we show that the metasurface is capable of providing dynamic switching between SP vortex formation or SP subwavelength focusing. The resulting SP intensities are experimentally measured using a near-field scanning optical microscope and are found in excellent quantitative agreements as compared to the numerical results.

  10. Invited Paper: Optical fibers for the transmission of orbital angular momentum modes

    Science.gov (United States)

    Brunet, Charles; Rusch, Leslie A.

    2016-09-01

    Orbital angular momentum (OAM) of light is a promising means for exploiting the spatial dimension of light to increase the capacity of optical fiber links. We summarize how OAM enables efficient mode multiplexing for optical communications, with emphasis on the design of OAM fibers.

  11. Resonant mixing of optical orbital and spin angular momentum by using chiral silicon nanosphere clusters.

    Science.gov (United States)

    Al-Jarro, Ahmed; Biris, Claudiu G; Panoiu, Nicolae C

    2016-04-01

    We present an in-depth analysis of the resonant intermixing between optical orbital and spin angular momentum of Laguerre-Gaussian (LG) beams, mediated by chiral clusters made of silicon nanospheres. In particular, we establish a relationship between the spin and orbital quantum numbers characterizing the LG beam and the order q of the rotation symmetry group q of the cluster of nanospheres for which resonantly enhanced coupling between the two components of the optical angular momentum is observed. Thus, similar to the case of diffraction grating-mediated transfer of linear momentum between optical beams, we demonstrate that clusters of nanospheres that are invariant to specific rotation transformations can efficiently transfer optical angular momentum between LG beams with different quantum numbers. We also discuss the conditions in which the resonant interaction between LG beams and a chiral cluster of nanospheres leads to the generation of superchiral light.

  12. Engineering of orbital angular momentum supermodes in coupled optical waveguides

    CERN Document Server

    Turpin, A; Polo, J; Mompart, J; Ahufinger, V

    2016-01-01

    In this work we demonstrate the existence of orbital angular momentum (OAM) bright and dark supermodes in a three-evanescent coupled cylindrical waveguides system. Bright and dark supermodes are characterized by its coupling and decoupling from one of the waveguides, respectively. In addition, we demonstrate that complex couplings between modes of different waveguides appear naturally due to the characteristic spiral phase-front of OAM modes in two-dimensional configurations where the waveguides are arranged forming a triangle. Finally, by adding dissipation to the waveguide uncoupled to the dark supermode, we are able to filter it out, allowing for the design of OAM mode clonners and inverters.

  13. Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases

    CSIR Research Space (South Africa)

    Mafu, M

    2013-09-01

    Full Text Available We present an experimental study of higher-dimensional quantum key distribution protocols based on mutually unbiased bases, implemented by means of photons carrying orbital angular momentum. We perform (d + 1) mutually unbiased measurements in a...

  14. Next Generation X-ray Optics: High Angular Resolution, Light Weight, and Low Production Cost

    Science.gov (United States)

    Zhang, William

    2014-08-01

    Every conceivable future x-ray astronomical mission would require x-ray optics. These optics must meet the three-fold requirements of angular resolution, effective area, and cost.In this poster we will present the rationale, technical approach, and status of an x-ray optics technology development program that has been underway at Goddard Space Flight Center and Marshall Space Flight Center.

  15. The Monte Carlo Generator for J/ψ Decays with Angular Distribution

    Institute of Scientific and Technical Information of China (English)

    PING Rong-Gang; DU Shu-Xian

    2005-01-01

    @@ We present a Monte Carlo scheme to generate events of J/ψ decays with angular distributions based on the acceptance-rejection sampling method. We test this scheme with J/ψ→ pp and J/ψ→ AA → ppπ+π-, and the results show that the input angular distributions are well reproduced, and efficiency of the HOWL generator of this scheme is also discussed.

  16. Three-dimensional angular domain optical projection tomography

    Science.gov (United States)

    Ng, Eldon; Vasefi, Fartash; Roumeliotis, Michael; Kaminska, Bozena; Carson, Jeffrey J. L.

    2011-03-01

    Angular Domain Imaging (ADI) has been previously demonstrated to generate projection images of attenuating targets embedded within a turbid medium. The imaging system employs a silicon micro-tunnel array positioned between the sample and the detection system to reject scattered photons that have deviated from the initial propagation direction and to select for ballistic and quasi-ballistic photons that have retained their forward trajectory. Two dimensional tomographic images can be reconstructed from ADI projections collected at a multitude of angles. The objective of this work was to extend the system to three dimensions by collecting several tomographic images and stacking the reconstructed slices to generate a three dimensional volume representative of the imaging target. A diode laser (808nm, CW) with a beam expander was used to illuminate the sample cuvette. An Angular Filter Array (AFA) of 80 μm × 80 μm square-shaped tunnels 2 cm in length was used to select for image forming quasi-ballistic photons. Images were detected with a linear CCD. Our approach was to use a SCARA robot to rotate and translate the sample to collect sufficient projections to reconstruct a three dimensional volume. A custom designed 3D target consisting of 4 truncated cones was imaged and reconstructed with filtered backprojection and iterative methods. A 0.5 mm graphite rod was used to collect the forward model, while a truncated pseudoinverse was used to approximate the backward model for the iterative algorithm.

  17. ELECTRON ANGULAR DISTRIBUTIONS IN DISSOCIATIVE PHOTOIONIZATION OF THE HYDROGEN MOLECULE.

    Directory of Open Access Journals (Sweden)

    Jhon F. Pérez-Torres

    2009-06-01

    Full Text Available Se propone un método para calcular distribuciones angulares de electrones ionizados en la molécula de hidrógeno fija en el espacio sometida a pulsos láser intensos y ultracortos, basado en la solución desde primeros principios de la ecuación de Schrödinger dependiente del tiempo. Esta solución nos permite tener una visión temporal de la interferencias generadas en el canal de ionización disociativa (en el espectro de energía cinética de los protones debido a la presencia de la autoionización de estados doblemente excitados de la molécula de hidrógeno. Se muestra específicamente cómo la autoionización durante el proceso de fotoionización disociativa también puede inducir una asimetría en la distribución angular del electrón ionizado con respecto a la inversión nuclear, un efecto no intuitivo a pesar de estar tratando con un sistema homonuclear. 

  18. Measurements of angular distributions for7Li elastically scattered from58Ni at energies around the Coulomb barrier

    Science.gov (United States)

    Amador-Valenzuela, P.; Aguilera, E. F.; Martinez-Quiroz, E.; Lizcano, D.; Morales-Rivera, J. C.

    2017-07-01

    Recently, experimental measurements of elastic scattering angular distributions for the system7Li+58Ni at ten different energies around the Coulomb barrier were made by the Heavy-Ion Group. The measurements were made at the Tandem Van de Graaff Particle Accelerator Laboratory in the National Institute for Nuclear Research (ININ) in Mexico. In this work, preliminary elastic scattering angular distributions for five energies (E lab , = 12.0, 12.5, 13.0, 13.5 and 14.22 MeV) are presented. The preliminary experimental data were analyzed using the São Paulo Optical Model Potential (SPP) which is based on a double-folding potential, reproducing very well these data. A comparison is made with old data reported back in 1973 and in 2012. Further analysis is in progress in order to fully understand this particular system, specially because7Li is known to be a weakly bound nucleus.

  19. Laboratory-Frame Photoelectron Angular Distributions in Anion Photodetachment: Insight into Electronic Structure and Intermolecular Interactions

    Science.gov (United States)

    Sanov, Andrei

    2014-04-01

    This article provides an overview of some recent advances in the modeling of photoelectron angular distributions in negative-ion photodetachment. Building on the past developments in threshold photodetachment spectroscopy that first tackled the scaling of the partial cross sections with energy, depending on the angular momentum quantum number ℓ, it examines the corresponding formulation of the central potential model and extends it to the more general case of hybrid molecular orbitals. Several conceptual approaches to understanding photoelectron angular distributions are discussed. In one approach, the angular distributions are examined based on the contributions of the symmetry-allowed s and p partial waves of the photodetached electron. In another related approach, the parent molecular orbitals are described based on their dominant s and p characters, whereas the continuum electron is described in terms of interference of the corresponding ℓ = ±1 photodetachment channels.

  20. Angular distribution of ejected electrons from 20 keV He/sup +/ impact on He

    Energy Technology Data Exchange (ETDEWEB)

    Tokoro, N.; Takenouchi, S.; Urakawa, J.; Oda, N. (Tokyo Inst. of Tech. (Japan). Research Lab. of Nuclear Reactor)

    1982-10-28

    The angular distributions of ejected electrons in the energy range 5-70 eV have been measured at angles from 30 to 150/sup 0/ for 20 keV He/sup +/ impact on He. The angular dependence of excitation cross sections of autoionisation states 2s/sup 2/ /sup 1/S and 2p/sup 2/ /sup 1/D+2s2p /sup 1/P are in good agreement with previous data measured by Bordenave-Montesquieu et al (Phys. Rev.; A25:245 (1982)). The continuous parts of the electron spectra show symmetrical angular distributions around 90/sup 0/ in the laboratory frame for low-energy electrons (angular distributions are discussed in connection with the molecular autoionisation mechanism.

  1. Distributed nonlinear optical response

    DEFF Research Database (Denmark)

    Nikolov, Nikola Ivanov

    2005-01-01

    The purpose of the research presented here is to investigate basic physical properties in nonlinear optical materials with delayed or nonlocal nonlinearity. Soliton propagation, spectral broadening and the influence of the nonlocality or delay of the nonlinearity are the main focusses in the work...

  2. Investigating the hohlraum radiation properties through the angular distribution of the radiation temperature

    Science.gov (United States)

    Zhang, H.; Yang, D.; Song, P.; Zou, S.; Zhao, Y.; Li, S.; Li, Z.; Guo, L.; Wang, F.; Zheng, W.; Gu, P.; Pei, W.; Zhu, S.; Jiang, S.; Ding, Y.

    2016-08-01

    The symmetric radiation drive is essential to the capsule implosion in the indirect drive fusion but is hard to achieve due to the non-uniform radiation distribution inside the hohlraum. In this work, the non-uniform radiation properties of both vacuum and gas-filled hohlraums are studied by investigating the angular distribution of the radiation temperature experimentally and numerically. It is found that the non-uniform radiation distribution inside the hohlraum induces the variation of the radiation temperature between different view angles. The simulations show that both the angular distribution of the radiation temperature and the hohlraum radiation distribution can be affected by the electron heat flux. The measured angular distribution of the radiation temperature is more consistent with the simulations when the electron heat flux limiter f e = 0.1 . Comparisons between the experiments and simulations further indicate that the x-ray emission of the blow-off plasma is overestimated in the simulations when it stagnates around the hohlraum axis. The axial position of the laser spot can also be estimated by the angular distribution of the radiation temperature due to their sensitive dependence. The inferred laser spot moves closer to the laser entrance hole in the gas-filled hohlraum than that in the vacuum hohlraum, consisting with the x-ray images taken from the framing camera. The angular distribution of the radiation temperature provides an effective way to investigate the hohlraum radiation properties and introduces more constraint to the numerical modeling of the hohlraum experiments.

  3. The Gaussian Laser Angular Distribution in HYDRA's 3D Laser Ray Trace Package

    Energy Technology Data Exchange (ETDEWEB)

    Sepke, Scott M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-10

    In this note, the angular distribution of rays launched by the 3D LZR ray trace package is derived for Gaussian beams (npower==2) with bm model=3±. Beams with bm model=+3 have a nearly at distribution, and beams with bm model=-3 have a nearly linear distribution when the spot size is large compared to the wavelength.

  4. Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light

    Science.gov (United States)

    Luo, Xi-Wang; Zhou, Xingxiang; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Chuanwei; Zhou, Zheng-Wei

    2017-07-01

    All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon's internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities.

  5. Specific Angular Momentum Distribution of Disc Galaxies Formed in Preheated Intergalactic Media

    Institute of Scientific and Technical Information of China (English)

    LUO Zhi-Jian; FU Li-Ping; SHU Cheng-Gang

    2004-01-01

    Assuming that baryons within a galactic halo have the same specific angular momentum as the dark matter where they locate initially and a disc forms due to the gas cooling and condensation with the conservation of angular momentum, we investigate the angular momentum distribution in a resulting galactic disc under the new preheated galaxy formation model suggested by Mo and Mao (Mon. Not. R. Astron. Soc. 333 (2002) 768).Compared with the observational results, it can be concluded that the preheated galaxy formation model can match current observations. This model can be a good approach to solve the problems of both the angular momentum catastrophe and the mismatch of angular-momentum profiles in current disc galaxy formation models.

  6. The photon angular momentum controversy: Resolution of a conflict between laser optics and particle physics

    Science.gov (United States)

    Leader, Elliot

    2016-05-01

    The claim some years ago, contrary to all textbooks, that the angular momentum of a photon (and gluon) can be split in a gauge-invariant way into an orbital and spin term, sparked a major controversy in the Particle Physics community, exacerbated by the realization that many different forms of the angular momentum operators are, in principle, possible. A further cause of upset was the realization that the gluon polarization in a nucleon, a supposedly physically meaningful quantity, corresponds only to the gauge-variant gluon spin derived from Noether's theorem, evaluated in a particular gauge. On the contrary, Laser Physicists have, for decades, been happily measuring physical quantities which correspond to photon orbital and spin angular momentum evaluated in a particular gauge. This paper reconciles the two points of view, and shows that it is the gauge invariant version of the canonical angular momentum which agrees with the results of a host of laser optics experiments.

  7. The photon angular momentum controversy: Resolution of a conflict between laser optics and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Leader, Elliot, E-mail: e.leader@imperial.ac.uk

    2016-05-10

    The claim some years ago, contrary to all textbooks, that the angular momentum of a photon (and gluon) can be split in a gauge-invariant way into an orbital and spin term, sparked a major controversy in the Particle Physics community, exacerbated by the realization that many different forms of the angular momentum operators are, in principle, possible. A further cause of upset was the realization that the gluon polarization in a nucleon, a supposedly physically meaningful quantity, corresponds only to the gauge-variant gluon spin derived from Noether's theorem, evaluated in a particular gauge. On the contrary, Laser Physicists have, for decades, been happily measuring physical quantities which correspond to photon orbital and spin angular momentum evaluated in a particular gauge. This paper reconciles the two points of view, and shows that it is the gauge invariant version of the canonical angular momentum which agrees with the results of a host of laser optics experiments.

  8. The photon angular momentum controversy: Resolution of a conflict between laser optics and particle physics

    Directory of Open Access Journals (Sweden)

    Elliot Leader

    2016-05-01

    Full Text Available The claim some years ago, contrary to all textbooks, that the angular momentum of a photon (and gluon can be split in a gauge-invariant way into an orbital and spin term, sparked a major controversy in the Particle Physics community, exacerbated by the realization that many different forms of the angular momentum operators are, in principle, possible. A further cause of upset was the realization that the gluon polarization in a nucleon, a supposedly physically meaningful quantity, corresponds only to the gauge-variant gluon spin derived from Noether's theorem, evaluated in a particular gauge. On the contrary, Laser Physicists have, for decades, been happily measuring physical quantities which correspond to photon orbital and spin angular momentum evaluated in a particular gauge. This paper reconciles the two points of view, and shows that it is the gauge invariant version of the canonical angular momentum which agrees with the results of a host of laser optics experiments.

  9. Optical Device, System, and Method of Generating High Angular Momentum Beams

    Science.gov (United States)

    Savchenkov, Anatoliy A. (Inventor); Matsko, Andrey B. (Inventor); Strekalov, Dmitry V. (Inventor); Grudinin, Ivan S. (Inventor); Maleki, Lute (Inventor)

    2009-01-01

    An optical device, optical system, and method of generating optical beams having high angular momenta are provided. The optical device includes a whispering gallery mode resonator defining a resonator radius and an elongated wavegWde having a length defined between a first end and a second end of the waveguide. The waveguide defines a waveguide radius which increases at least along a portion of the length of the waveguide in a direction from the first end to the second end. The waveguide radius at the first end of the waveguide is smaller than the resonator radius and the resonator is integrally formed with the first end of the waveguide.

  10. Photokinetic analysis of the forces and torques exerted by optical tweezers carrying angular momentum

    Science.gov (United States)

    Yevick, Aaron; Evans, Daniel J.; Grier, David G.

    2017-02-01

    The theory of photokinetic effects expresses the forces and torques exerted by a beam of light in terms of experimentally accessible amplitude and phase profiles. We use this formalism to develop an intuitive explanation for the performance of optical tweezers operating in the Rayleigh regime, including effects arising from the influence of light's angular momentum. First-order dipole contributions reveal how a focused beam can trap small objects, and what features limit the trap's stability. The first-order force separates naturally into a conservative intensity-gradient term that forms a trap and a non-conservative solenoidal term that drives the system out of thermodynamic equilibrium. Neither term depends on the light's polarization; light's spin angular momentum plays no role at dipole order. Polarization-dependent effects, such as trap-strength anisotropy and spin-curl forces, are captured by the second-order dipole-interference contribution to the photokinetic force. The photokinetic expansion thus illuminates how light's angular momentum can be harnessed for optical micromanipulation, even in the most basic optical traps. This article is part of the themed issue 'Optical orbital angular momentum'.

  11. New optical and radio frequency angular tropospheric refraction models for deep space applications

    Science.gov (United States)

    Berman, A. L.; Rockwell, S. T.

    1976-01-01

    The development of angular tropospheric refraction models for optical and radio frequency usage is presented. The models are compact analytic functions, finite over the entire domain of elevation angle, and accurate over large ranges of pressure, temperature, and relative humidity. Additionally, FORTRAN subroutines for each of the models are included.

  12. AFOSR Indo-UK -US Joint Physics Initiative for Study of Angular Optical Mode Fiber Amplification

    Science.gov (United States)

    2017-02-20

    AFRL-AFOSR-UK-TR-2017-0011 AFOSR Indo-UK -US Joint Physics Initiative for study of angular optical mode fiber amplification Johan Nilsson UNIVERSITY...20-02-2017 2. REPORT TYPE Final 3. DATES COVERED (From - To) 30 Sep 2015 to 29 Sep 2016 4. TITLE AND SUBTITLE AFOSR Indo-UK -US Joint Physics ...optical mode fiber amplication - Physics of transverse mode instability in large area high-energy fiber lasers January 19 2017 Name of Principal

  13. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hong; Duan, Lian; Lan, Hui [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Wang, Xinbing, E-mail: xbwang@hust.edu.cn; Chen, Ziqi; Zuo, Duluo [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Lu, Peixiang [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-05-21

    Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressed as a function of the opacity using the Beer–Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.

  14. Projectile-breakup-induced fission-fragment angular distributions in the 6Li+232Th reaction

    Science.gov (United States)

    Pal, A.; Santra, S.; Chattopadhyay, D.; Kundu, A.; Ramachandran, K.; Tripathi, R.; Roy, B. J.; Nag, T. N.; Sawant, Y.; Sarkar, D.; Nayak, B. K.; Saxena, A.; Kailas, S.

    2017-08-01

    Background: Experimental anisotropy in fission-fragment (FF) angular distribution in reactions involving weakly bound stable projectiles with actinide targets are enhanced compared to statistical saddle-point model (SSPM) predictions. Contributions from breakup- or transfer-induced fission to total fission are cited as possible reasons for such enhancement. Purpose: To identify the breakup- or transfer-induced fission channels in 6Li+232Th reaction and to investigate their effects on FF angular anisotropy. Methods: The FF angular distributions have been measured exclusively at three beam energies (28, 32, and 36 MeV) around the Coulomb barrier in coincidence with projectile breakup fragments like α , d , and p using Si strip detectors. The angular anisotropy obtained for different exclusive breakup- or transfer-induced fission channels are compared with that for total fission. SSPM and pre-equilibrium fission models have been employed to obtain theoretical FF angular anisotropy. Results: Angular anisotropy of the fission fragments produced by different transfer- or breakup-induced fission reactions have been obtained separately in the rest frame of respective recoiling nuclei. Some of these anisotropies were found to be stronger than those of the inclusive fission. Overall angular distributions of transfer or breakup fission, integrated over all possible recoil angles with weight factor proportional to differential cross section of the complementary breakup fragment emitted in coincidence in all possible directions, were obtained. It was observed that the overall FF angular anisotropy for each of these fission channels is less than or equal to the anisotropy of total fission at all the measured energies. Assuming isotropic out-of-plane correlations between the fission fragments and light-charged particles, the overall breakup- or transfer-induced fission fragment angular distributions do not explain the observed enhancement in FF anisotropy of total fission. Pre

  15. Improved MODIS Dark Target aerosol optical depth algorithm over land: angular effect correction

    Science.gov (United States)

    Wu, Yerong; de Graaf, Martin; Menenti, Massimo

    2016-11-01

    Aerosol optical depth (AOD) product retrieved from MODerate Resolution Imaging Spectroradiometer (MODIS) measurements has greatly benefited scientific research in climate change and air quality due to its high quality and large coverage over the globe. However, the current product (e.g., Collection 6) over land needs to be further improved. The is because AOD retrieval still suffers large uncertainty from the surface reflectance (e.g., anisotropic reflection) although the impacts of the surface reflectance have been largely reduced using the Dark Target (DT) algorithm. It has been shown that the AOD retrieval over dark surface can be improved by considering surface bidirectional distribution reflectance function (BRDF) effects in previous study. However, the relationship of the surface reflectance between visible and shortwave infrared band that applied in the previous study can lead to an angular dependence of the AOD retrieval. This has at least two reasons. The relationship based on the assumption of isotropic reflection or Lambertian surface is not suitable for the surface bidirectional reflectance factor (BRF). However, although the relationship varies with the surface cover type by considering the vegetation index NDVISWIR, this index itself has a directional effect and affects the estimation of the surface reflection, and it can lead to some errors in the AOD retrieval. To improve this situation, we derived a new relationship for the spectral surface BRF in this study, using 3 years of data from AERONET-based Surface Reflectance Validation Network (ASRVN). To test the performance of the new algorithm, two case studies were used: 2 years of data from North America and 4 months of data from the global land. The results show that the angular effects of the AOD retrieval are largely reduced in most cases, including fewer occurrences of negative retrievals. Particularly, for the global land case, the AOD retrieval was improved by the new algorithm compared to the

  16. Influence of slowing down in the radiator on the Cherenkov radiation angular distributions from relativistic heavy ions at FAIR, SPS and LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Fiks, E.I., E-mail: elenafiks@gmail.com [National Research Tomsk Polytechnic University, Tomsk (Russian Federation); Pivovarov, Yu.L. [National Research Tomsk Polytechnic University, Tomsk (Russian Federation); Bogdanov, O.V. [National Research Tomsk Polytechnic University, Tomsk (Russian Federation); INFN Laboratori Nazionali di Frascati, Frascati (RM) (Italy); Geissel, H.; Scheidenberger, C. [Helmholtzzentrum für Schwerionenforschung GSI, Darmstadt (Germany)

    2013-08-15

    The calculations of Cherenkov radiation (ChR) angular distributions from relativistic heavy ions (RHI) at very high energies (from 30 GeV/u up to 3000 GeV/u) taking into account their slowing-down (ionization energy loss) in a radiator are performed for the first time. The slowing-down of RHI in an optically transparent solid radiator can drastically change the ChR angular distributions at RHI energies of order of 1 GeV/u. The results of calculation show that at higher RHI energies (>30 GeV/u) (FAIR, SPS and LHC), the ChR angular distribution (at the reasonable radiator thickness) is very close to the Tamm–Frank distribution and practically does not depend on the RHI slowing-down in a radiator, if only ionization energy loss is taken into account.

  17. Fission fragment angular distribution in heavy-ion-induced fission with anomalous behavior

    Science.gov (United States)

    Soheyli, S.; Feizi, B.

    2014-08-01

    Fission fragment angular distribution in heavy-ion-induced fission reactions is of particular importance. Transition state theory is provided to determine the angular distribution of fission fragments which includes standard saddle-point statistical and standard scission-point statistical models. The standard saddle-point statistical model was not able to reproduce the experimental fission fragment angular anisotropies for several heavy-ion-induced fission systems. In contrast to the standard saddle-point model, the standard scission-point statistical model was fairly successful in the prediction of angular anisotropy in heavy-ion-induced fission reaction systems with an anomalous behavior in angular anisotropy of fission fragments, but this model is not widely used as the standard saddle-point statistical model. In this research, a generalized model is introduced for the prediction of fission fragments angular anisotropy in the heavy-ion-induced fission reaction systems having an anomalous behavior. For this purpose, we study the N14,O16,F19+Th232;O16,F19+U238;Mg24,Si28,S32+Pb208;S32+Au197; and O16+Cm248 reaction systems. Finally, it is shown that the presented model is much more successful than previous models.

  18. Crossed molecular beam studies of unimolecular reaction dynamics. [Angular and velocity distributions

    Energy Technology Data Exchange (ETDEWEB)

    Buss, R.J.

    1979-04-01

    The study of seven radical-molecule reactions using the crossed molecular beam technique with supersonic nozzle beams is reported. Product angular and velocity distributions were obtained and compared with statistical calculations in order to identify dynamical features of the reactions. In the reaction of chlorine and fluorine atoms with vinyl bromide, the product energy distributions are found to deviate from predictions of the statistical model. A similar effect is observed in the reaction of chlorine atoms with 1, 2 and 3-bromopropene. The reaction of oxygen atoms with ICl and CF/sub 3/I has been used to obtain an improved value of the IO bond energy, 55.0 +- 2.0 kcal mol/sup -1/. In all reactions studied, the product energy and angular distributions are found to be coupled, and this is attributed to a kinematic effect of the conservation of angular momentum.

  19. Measuring the Angular Momentum Distribution in Core-Collapse Supernova Progenitors with Gravitational Waves

    CERN Document Server

    Abdikamalov, Ernazar; DeMaio, Alexandra M; Ott, Christian D

    2013-01-01

    The late collapse, core bounce, and the early postbounce phase of rotating core collapse leads to a characteristic gravitational wave (GW) signal. The precise shape of the signal is governed by the interplay of gravity, rotation, nuclear equation of state (EOS), and electron capture during collapse. We explore the dependence of the signal on total angular momentum and its distribution in the progenitor core by means of a large set of axisymmetric general-relativistic core collapse simulations in which we vary the initial angular momentum distribution in the core. Our simulations include a microphysical finite-temperature EOS, an approximate electron capture treatment during collapse, and a neutrino leakage scheme for the postbounce evolution. We find that the precise distribution of angular momentum is relevant only for very rapidly rotating cores with T/|W|>~8% at bounce. We construct a numerical template bank from our baseline set of simulations, and carry out additional simulations to generate trial wavefo...

  20. A Markov Chain-based quantitative study of angular distribution of photons through turbid slabs via isotropic light scattering

    Science.gov (United States)

    Li, Xuesong; Northrop, William F.

    2016-04-01

    This paper describes a quantitative approach to approximate multiple scattering through an isotropic turbid slab based on Markov Chain theorem. There is an increasing need to utilize multiple scattering for optical diagnostic purposes; however, existing methods are either inaccurate or computationally expensive. Here, we develop a novel Markov Chain approximation approach to solve multiple scattering angular distribution (AD) that can accurately calculate AD while significantly reducing computational cost compared to Monte Carlo simulation. We expect this work to stimulate ongoing multiple scattering research and deterministic reconstruction algorithm development with AD measurements.

  1. Quantum Key Distribution with Fibonacci Orbital Angular Momentum States

    OpenAIRE

    Simon, David S.; Lawrence, Nate; Trevino, Jacob; Negro, Luca Dal; Sergienko, Alexander V.

    2012-01-01

    Quantum cryptography and quantum key distribution (QKD) have been the most successful applications of quantum information processing, highlighting the unique capability of quantum mechanics, through the no-cloning theorem, to protect the security of shared encryption keys. Here we present a new and fundamentally different approach to high-capacity, high-efficiency QKD by exploiting interplay between cross-disciplinary ideas from quantum information and light scattering of aperiodic photonic m...

  2. Robustness of plasmonic angular momentum confinement in cross resonant optical antennas

    Energy Technology Data Exchange (ETDEWEB)

    Klaer, Peter; Lehr, Martin; Krewer, Keno; Schertz, Florian; Schönhense, Gerd; Elmers, Hans Joachim, E-mail: elmers@uni-mainz.de [Institut für Physik, Johannes Gutenberg-Universität, Staudingerweg 7, D-55099 Mainz (Germany); Razinskas, Gary; Wu, Xiao-Fei; Hecht, Bert [Institut für Physik, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg (Germany)

    2015-06-29

    Using a combination of photoemission electron microscopy and numerical simulations, we investigated the angular moment transfer in strongly enhanced optical near-fields of artificially fabricated optical antennas. The polarization dependence of the optical near-field enhancement has been measured in a maximum symmetric geometry, i.e., excitation by a normal incident planar wave. Finite-difference time-domain simulations for the realistic antenna geometries as determined by high-resolution electron microscopy reveal a very good agreement with experimental data. The agreement confirms that the geometrical asymmetries and inhomogeneities due to the nanoscale fabrication process preserve the circular polarization in the gap regions with strong near-field enhancement.

  3. Coherent control of optical spin-to-orbital angular momentum conversion in metasurface

    CERN Document Server

    Zhang, Huifang; Zhang, Xueqian; Guo, Wengao; Lu, Changgui; Li, Yanfeng; Zhang, Weili; Han, Jiaguang

    2016-01-01

    We propose and experimentally demonstrate that a metasurface consisting of Pancharatnam-Berry phase optical elements can enable the full control of optical spin-to-orbital angular momentum conversion. Our approach relies on the critical interference between the transmission and reflection upon the metasurfaceto create actively tunable and controllable conversion with a high output via coherent control of the two incident beams. The introduced control methodology is general and could be an important step toward the development of functional optical devices for practical applications.

  4. Radiation quantities: significance of the angular and energy distribution of the radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, M.; Perks, C.A. (AEA Corporate Safety Directorate, Harwell (United Kingdom)); Thomas, D.J.; Naismith, O.F. (National Physical Lab., Teddington (United Kingdom))

    1994-01-01

    This paper discusses the effects of changing from the old to new (ICRP 60 and ICRU 47) dosimetric quantities, and the relationship between quantities, as a function of the energy and angular distribution, for practical radiation fields. It considers: X rays, gamma rays, neutrons and beta rays; reviews the limited data on practical energy and angular distributions for photons and neutrons in the workplace; and calculates relevant dosimetric quantities based on realistic assumptions. The results are used to illustrate how the relationship between quantities might vary in practical fields and to draw conclusions about the implications of recent ICRP and ICRU publications. (Author).

  5. A Template Measurement of the Top Quark Angular Distribution Using Boosted Lepton + Jets Events

    Science.gov (United States)

    Eminizer, Nick; CMS Collaboration

    2017-01-01

    We present a template-based technique for measuring the angular distribution of top quark pairs decaying semileptonically using data collected by the CMS experiment at the LHC. The analysis is optimized for high-momentum ``boosted'' decays wherein the hadronically decaying top quark's jets become either partially or fully merged, and the final state lepton is not necessarily isolated from nearby jets. The technique can be used to examine multiple physics processes affecting the angular distribution of top pairs, including the parton-level top quark forward-backward asymmetry AFB and anomalous chromoelectric/chromomagnetic moments. CMS is the Compact Muon Solenoid experiment at the Large Hadron Collider.

  6. Angular distributions of the quenched energy flow from dijets with different radius parameters in CMS

    Science.gov (United States)

    McGinn, Christopher F.

    2016-12-01

    The flow of the quenched energy in imbalanced dijet events has been previously studied by transverse vector sum of charged particles with the CMS detector, namely the missing pT measurement. The results have led to new theoretical insights to order to explain the wide angle radiation. The missing pT technique has been improved so that it allows the study of angular distribution of the energy flow with respect to the dijet axis. The measurements are performed using different distance parameters R with the anti-kT clustering algorithm, which provide information about how the angular distribution of the quenched energy depends on the jet width.

  7. Angular Distribution of the 12C(6He, 7Li)11B Reaction

    Institute of Scientific and Technical Information of China (English)

    LI Er-Tao; LI Zhi-Hong; LI Yun-Ju; YAN Sheng-Quan; BAI Xi-Xiang; GUO Bing; SU Jun; WANG You-Bao; WANG Bao-Xiang; LIAN Gang; ZENG Sheng; FANG Xiao; ZHAO Wei-Juan; LIU Wei-Ping

    2009-01-01

    Angular distribution of the 12C(6He, 7Li)11B transfer reaction is measured with a secondary 6He beam of 36.4 Me V for the first time. The experimental angular distribution is well reproduced by the distorted-wave Born approxima-tion (DWBA) calculation. The success of the present experiment shows that it is feasible to measure one-nucleon transfer reaction on a light nucleus target with the secondary beam facility of the HI-13 tandem accelerator at China Institute of Atomic Energy (CIAE), Beifing.

  8. Spectral and angular characteristics of dielectric resonator metasurface at optical frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Longfang [School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA 5005 (Australia); Department of Electrical and Electronic Engineering, The University of Bristol, Bristol, BS8 1TH (United Kingdom); López-García, Martin; Oulton, Ruth; Klemm, Maciej [Department of Electrical and Electronic Engineering, The University of Bristol, Bristol, BS8 1TH (United Kingdom); Withayachumnankul, Withawat; Fumeaux, Christophe, E-mail: christophe.fumeaux@adelaide.edu.au [School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA 5005 (Australia); Shah, Charan M.; Mitchell, Arnan; Bhaskaran, Madhu; Sriram, Sharath [Functional Materials and Microsystems Research Group, School of Electrical and Computer Engineering, RMIT University, Melbourne VIC 3001 (Australia)

    2014-11-10

    The capability of manipulating light at subwavelength scale has fostered the applications of flat metasurfaces in various fields. Compared to metallic structure, metasurfaces made of high permittivity low-loss dielectric resonators hold the promise of high efficiency by avoiding high conductive losses of metals at optical frequencies. This letter investigates the spectral and angular characteristics of a dielectric resonator metasurface composed of periodic sub-arrays of resonators with a linearly varying phase response. The far-field response of the metasurface can be decomposed into the response of a single grating element (sub-array) and the grating arrangement response. The analysis also reveals that coupling between resonators has a non-negligible impact on the angular response. Over a wide wavelength range, the simulated and measured angular characteristics of the metasurface provide a definite illustration of how different grating diffraction orders can be selectively suppressed or enhanced through antenna sub-array design.

  9. Angular distributions in $J/\\psi\\to p\\bar{p}\\pi^{0}(\\eta)$ decays

    CERN Document Server

    Dmitriev, V F; Salnikov, S G

    2016-01-01

    The differential decay rates of the processes $J/\\psi\\to p\\bar{p}\\pi^{0}$ and $J/\\psi\\to p\\bar{p}\\eta$ close to the $p\\bar{p}$ threshold are calculated with the help of the $N\\bar{N}$ optical potential. The same calculations are made for the decays of $\\psi(2S)$. We use the potential which has been suggested to fit the cross sections of $N\\bar{N}$ scattering together with $N\\bar{N}$ and six pion production in $e^{+}e^{-}$ annihilation close to the $p\\bar{p}$ threshold. The $p\\bar{p}$ invariant mass spectra is in agreement with the available experimental data. The anisotropy of the angular distributions, which appears due to the tensor forces in the $N\\bar{N}$ interaction, is predicted close to the $p\\bar{p}$ threshold. This anisotropy is large enough to be investigated experimentally. Such measurements would allow one to check the accuracy of the model of $N\\bar{N}$ interaction.

  10. Entanglement Distribution in Optical Networks

    CERN Document Server

    Ciurana, Alex; Martinez-Mateo, Jesus; Schrenk, Bernhard; Peev, Momtchil; Poppe, Andreas

    2014-01-01

    The ability to generate entangled photon-pairs over a broad wavelength range opens the door to the simultaneous distribution of entanglement to multiple users in a network by using centralized sources and flexible wavelength-division multiplexing schemes. Here we show the design of a metropolitan optical network consisting of tree-type access networks whereby entangled photon-pairs are distributed to any pair of users, independent of their location. The network is constructed employing commercial off-the-shelf components and uses the existing infrastructure, which allows for moderate deployment costs. We further develop a channel plan and a network-architecture design to provide a direct optical path between any pair of users, thus allowing classical and one-way quantum communication as well as entanglement distribution. This allows the simultaneous operation of multiple quantum information technologies. Finally, we present a more flexible backbone architecture that pushes away the load limitations of the ori...

  11. Pancharatnam-Berry optical element sorter of full angular momentum eigenstate.

    Science.gov (United States)

    Walsh, Gary F

    2016-03-21

    We propose and numerically demonstrate a Pancharatnam-Berry optical element (PBOE) device that simultaneously sorts spin (SAM) and orbital (OAM) angular momentum. This device exploits the circular polarization selective properties of PBOEs to modulate independently the orthogonal SAM eigenstates within a geometric optical transformation that sorts OAM, enabling single measurement characterization of the full angular momentum eigenstate. This expands the available state space for OAM communication and enables characterization of the eigenmode composition of structured polarization beams. We define the two-dimensional orientation patterns of the transversely varying half-waveplate PBOEs that implement the angular momentum sorter. We show that the device discriminates the OAM and SAM eigenstates of optical beams including laser cavity modes such as Laguerre-Gaussian OAM eigenmodes, Hermite-Gaussian modes, and hybrid modes with complex structured polarization. We also demonstrate that it can determine the m parameter of higher order LGml Laguerre-Gaussian modes. The ability of this device to decode information from spatially structured optical phase has potential for applications in communication, encryption, modal characterization, and scientific measurements.

  12. Compton scattering of twisted light: angular distribution and polarization of scattered photons

    CERN Document Server

    Stock, S; Fritzsche, S; Seipt, D

    2015-01-01

    Compton scattering of twisted photons is investigated within a non-relativistic framework using first-order perturbation theory. We formulate the problem in the density matrix theory, which enables one to gain new insights into scattering processes of twisted particles by exploiting the symmetries of the system. In particular, we analyze how the angular distribution and polarization of the scattered photons are affected by the parameters of the initial beam such as the opening angle and the projection of orbital angular momentum. We present analytical and numerical results for the angular distribution and the polarization of Compton scattered photons for initially twisted light and compare them with the standard case of plane-wave light.

  13. Investigation of creating possibilities of multi-channel optical system with discrete angular field

    Science.gov (United States)

    Repin, Vladislav A.; Gorbunova, Elena V.; Chertov, Aleksandr N.

    2016-04-01

    Often, in practice, there is a problem of large areas of space viewing in order to fix certain parameters of moving objects. A multichannel optical-electronic monitoring system with a discrete angular field (or, as they say, artificial compound eye system) is an interesting variant to solve this problem. Such systems can be used for the analysis of various parameters of the objects, as an example for positioning of the object in wide annular zone. Using these systems we can get a wide angular field up to the full sphere due to a combination of a large number of elementary light detecting channels (like compound eyes of insects) and have a gain in the useful signal due to overlapping angular fields of channels. Currently, multichannel optoelectronic systems with discrete angular field are described and studied less than other up-to-date monitoring devices. But existing analogues are presented by experimental samples, which demonstrate the relevance of the research and design of such devices. This work presents a brief review of monitoring system with discrete angular field and theoretical description of proposed prototype. Results of experimental studies of mentioned prototype are presented as well.

  14. Evolution of the angular distribution of laser-generated fast electrons due to resistive self-collimation

    Science.gov (United States)

    Robinson, A. P. L.; Schmitz, H.

    2015-10-01

    The evolution of the angular distribution of laser-generated fast electrons propagating in dense plasmas is studied by 3D numerical simulations. As resistively generated magnetic fields can strongly influence and even pinch the fast electron beam, the question of the effect on the angular distribution is of considerable interest. It was conjectured that in the limit of strong collimation, there will only be minimal changes to the angular distribution, whereas the largest reduction in the angular distribution will occur where there is only modest pinching of the fast electron beam and the beam is able to expand considerably. The results of the numerical simulations indicate this conjecture.

  15. Nondestructive on-chip detection of optical orbital angular momentum through a single plasmonic nanohole

    CERN Document Server

    Wei, Dunzhao; Liu, Dongmei; Zhu, Yunzhi; Zhong, Weihao; Fang, Xinyuan; Zhang, Yong; Xiao, Min

    2016-01-01

    Optical orbital angular momentum (OAM) provides an additional dimension for photons to carry information in high-capacity optical communication. Although the practical needs have intrigued the generations of miniaturized devices to manipulate the OAM modes in various integrated platforms, the on-chip OAM detection is still challenging to match the newly-developed compact OAM emitter and OAM transmission fiber. Here, we demonstrate an ultra-compact device, i.e., a single plasmonic nanohole, to efficiently measure an optical beam's OAM state in a nondestructive way. The device size is reduced down to a few hundreds of nanometers, which can be easily fabricated and installed in the current OAM devices. It is a flexible and robust way for in-situ OAM monitoring and detection in optical fiber networks and long-distance optical communication systems. With proper optimization of the nanohole parameters, this approach could be further extended to discriminate the OAM information multiplexed in multiple wavelengths an...

  16. Formation and evolution of planetary systems: the impact of high angular resolution optical techniques

    CERN Document Server

    Absil, Olivier; 10.1007/s00159-009-0028-y

    2009-01-01

    The direct images of giant extrasolar planets recently obtained around several main sequence stars represent a major step in the study of planetary systems. These high-dynamic range images are among the most striking results obtained by the current generation of high angular resolution instruments, which will be superseded by a new generation of instruments in the coming years. It is therefore an appropriate time to review the contributions of high angular resolution visible/infrared techniques to the rapidly growing field of extrasolar planetary science. During the last 20 years, the advent of the Hubble Space Telescope, of adaptive optics on 4- to 10-m class ground-based telescopes, and of long-baseline infrared stellar interferometry has opened a new viewpoint on the formation and evolution of planetary systems. By spatially resolving the optically thick circumstellar discs of gas and dust where planets are forming, these instruments have considerably improved our models of early circumstellar environments...

  17. Angular Ion and Neutral Energy-Distribution in a Collisional Rf Sheath

    NARCIS (Netherlands)

    Manenschijn, A.; W. J. Goedheer,

    1991-01-01

    A numerical study on the ion and neutral angular impact energy distribution at the rf-driven electrode of a reactive ion etcher is presented. The calculations for the ions are performed using a Monte Carlo method that includes charge exchange and elastic scattering. The contribution of both collisio

  18. Angular distribution of electrons ejected by charged particles. IV. Combined classical and quantum-mechanical treatment

    NARCIS (Netherlands)

    Boesten, L.G.J.; Bonsen, T.F.M.

    1975-01-01

    Angular distributions of electrons ejected from helium by 100 and 300 keV protons have been calculated by a method which is a comination of the classical three-body collision theory and the quantum-mechanical Born approximation. The results of this theory have been compared with the corresponding ex

  19. Angular distribution in two-particle emission induced by neutrinos and electrons

    CERN Document Server

    Simo, I Ruiz; Amaro, J E; Barbaro, M B; Caballero, J A; Donnelly, T W

    2014-01-01

    The angular distribution of the phase space arising in two-particle emission reactions induced by electrons and neutrinos is computed in the laboratory (Lab) system by boosting the isotropic distribution in the center of mass (CM) system used in Monte Carlo generators. The Lab distribution has a singularity for some angular values, coming from the Jacobian of the angular transformation between CM and Lab systems. We recover the formula we obtained in a previous calculation for the Lab angular distribution. This is in accordance with the Monte Carlo method used to generate two-particle events for neutrino scattering~\\cite{Sob12}. Inversely, by performing the transformation to the CM system, it can be shown that the phase-space function, which is proportional to the two particle-two hole (2p-2h) hadronic tensor for a constant current operator, can be computed analytically in the frozen nucleon approximation, if Pauli blocking is absent. The results in the CM frame confirm our previous work done using an alterna...

  20. Determination of angular distribution of radiation in an isotropically scattering slab

    Science.gov (United States)

    Cengel, Y. A.; Ozisik, M. N.; Yener, Y.

    1984-02-01

    Ozisik (1982) has employed the Galerkin method to arrive at a solution of the radiative transfer equation in an absorbing, emitting, isotropically scattering plane-parallel slab in order to predict radiation flux. This method is presently developed to accurately determine the angular distribution of radiation intensity anywhere in the medium, subject to general boundary conditions.

  1. Imaging molecular shapes with molecular-frame photoelectron angular distributions from core hole ionization

    Science.gov (United States)

    Trevisan, C. S.; McCurdy, C. W.; Rescigno, T. N.

    2012-10-01

    We demonstrate, for a class of molecules containing a single heavy atom, the striking result that molecular-frame photoelectron angular distributions resulting from core-level ionization can be used to obtain three-dimensional images of the target molecule at low photoelectron energies. We demonstrate this finding with the results of theoretical calculations on methane, ammonia and water.

  2. Laboratory measurements of angular distributions of light scattered by phytoplankton and silt

    NARCIS (Netherlands)

    Volten, H.; De Haan, J.; Hovenier, J.W.; Schreurs, R.; Vassen, W.; Dekker, A.G.; Hoogenboom, H.J.; Charlton, F.; Wouts, R.

    1998-01-01

    We present laboratory measurements of scattering properties of 15 different types of coastal and inland water phytoplankton species and two types of estuarine sediments. These properties are the scattering function as well as the angular distribution of a ratio of scattering matrix elements, which

  3. Calculation of multiple-scattering angular distributions of electrons and positrons

    Energy Technology Data Exchange (ETDEWEB)

    Negreanu, C. [Paul Scherrer Institute, CH-5232 PSI Villigen (Switzerland); Swiss Federal Institute of Technology (EPFL), CH-1015 Laussane (Switzerland); Llovet, X. [Serveis Cientifico-Tecnics, Universitat de Barcelona, Societat Catalana de Fisica (IEC), Lluis Sole i Sabaris 1-3, ES-08028 Barcelona (Spain); Chawla, R. [Paul Scherrer Institute, CH-5232 PSI Villigen (Switzerland); Swiss Federal Institute of Technology (EPFL), CH-1015 Laussane (Switzerland); Salvat, F. [Facultat de Fisica (ECM), Universitat de Barcelona, Societat Catalana de Fisica (IEC), Diagonal 647, ES-08028 Barcelona (Spain)]. E-mail: cesc@ecm.ub.es

    2005-12-15

    A robust numerical algorithm for the calculation of multiple-scattering angular distributions of high-energy electrons and positrons is described. This algorithm implements the multiple-scattering theories of Goudsmit-Saunderson, which disregards energy losses, and of Lewis, which accounts for energy losses within the continuous slowing down approximation. We have used partial-wave elastic scattering differential cross sections, generated with a recently developed program ELSEPA, in the calculations. The contribution of inelastic collisions to multiple-scattering angular distributions is treated in detail using inelastic scattering angular differential cross sections obtained from the Sternheimer-Liljequist generalised oscillator strength model. The stopping powers adopted in the calculations are consistent with the values recommended in the ICRU 37 report. The coefficients in the Legendre expansion of the single-scattering distribution are calculated by using the N-point Gauss-Legendre integration formula, coded in such a way that it allows the generation of a large number of expansion coefficients simultaneously. A computer program has been written to calculate angular multiple-scattering distributions for given path lengths, which can be readily adopted for class I Monte Carlo simulations.

  4. Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination

    Energy Technology Data Exchange (ETDEWEB)

    Barada, Daisuke [Graduate School of Engineering, Utsunomiya University, Utsunomiya 321-8585 (Japan); Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya 321-8585 (Japan); Juman, Guzhaliayi; Yoshida, Itsuki [Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522 (Japan); Miyamoto, Katsuhiko; Omatsu, Takashige, E-mail: omatsu@faculty.chiba-u.jp [Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522 (Japan); Molecular Chirality Research Center, Chiba University, Chiba 263-8522 (Japan); Kawata, Shigeo [Graduate School of Engineering, Utsunomiya University, Utsunomiya 321-8585 (Japan); Ohno, Seigo [Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan)

    2016-02-01

    It was discovered that optical vortices twist isotropic and homogenous materials, e.g., azo-polymer films to form spiral structures on a nano- or micro-scale. However, the formation mechanism has not yet been established theoretically. To understand the mechanism of the spiral surface relief formation in the azo-polymer film, we theoretically investigate the optical radiation force induced in an isotropic and homogeneous material under irradiation using a continuous-wave optical vortex with arbitrary topological charge and polarization. It is revealed that the spiral surface relief formation in azo-polymer films requires the irradiation of optical vortices with a positive (negative) spin angular momentum and a positive (negative) orbital angular momentum (constructive spin-orbital angular momentum coupling), i.e., the degeneracy among the optical vortices with the same total angular momentum is resolved.

  5. Angularly resolved ellipsometric optical biosensing by means of Bloch surface waves.

    Science.gov (United States)

    Sinibaldi, Alberto; Anopchenko, Aleksei; Rizzo, Riccardo; Danz, Norbert; Munzert, Peter; Rivolo, Paola; Frascella, Francesca; Ricciardi, Serena; Michelotti, Francesco

    2015-05-01

    In label-free biosensing, a continuous improvement of the limit of detection is necessary to resolve the small change of the surface refractive index produced by interacting biomolecules at a very small concentration. In the present work, optical sensors based on one-dimensional photonic crystals supporting Bloch surface waves are proposed and adopted for label-free optical biosensing. We describe the implementation of an angularly resolved ellipsometric optical sensing scheme based on Bloch surface waves sustained by tantala/silica multilayers. The angular operation is obtained using a focused beam at fixed wavelength and detection of the angular reflectance spectrum by means of an array detector. The results show that the experimental limit of detection for a particular photonic crystal design is 6.5 × 10(-7) refractive index units (RIU)/Hz(1/2) and further decrease could be obtained. For the first time, we report on the practical application of this technique to a cancer biomarker protocol that aims at the detection of a specific glycoprotein (angiopoietin 2) involved in angiogenesis and inflammation processes.

  6. Coherent transfer of optical orbital angular momentum in multi-order Raman sideband generation

    CERN Document Server

    Strohaber, J; Sokolov, A V; Kolomenskii, A A; Paulus, G G; Schuessler, H A

    2012-01-01

    Experimental results from the generation of Raman sidebands using optical vortices are presented. By generating two sets of sidebands originating from different locations in a Raman active crystal, one set containing optical orbital angular momentum and the other serving as a reference, a Young's double slit experiment was simultaneously realized for each sideband. The interference between the two sets of sidebands was used to determine the helicity and topological charge in each order. Topological charges in all orders were found to be discrete and follow selection rules predicted by a cascaded Raman process.

  7. Coherent transfer of optical orbital angular momentum in multi-order Raman sideband generation.

    Science.gov (United States)

    Strohaber, J; Zhi, M; Sokolov, A V; Kolomenskii, A A; Paulus, G G; Schuessler, H A

    2012-08-15

    Experimental results from the generation of Raman sidebands using optical vortices are presented. By generating two sets of sidebands originating from different locations in a Raman-active crystal, one set containing optical orbital angular momentum and the other serving as a reference, Young's double slit experiment was simultaneously realized for each sideband. The interference between the two sets of sidebands was used to determine the helicity and topological charge in each order. Topological charges in all orders were found to be discrete and follow selection rules predicted by a cascaded Raman process.

  8. Orbital angular momentum (OAM) multiplexing in free-space optical data transfer

    Science.gov (United States)

    Lin, Jiao; Yuan, Xiao-Cong; Tao, Shaohua

    2006-08-01

    In the optical wireless communication systems proposed by Gibson, et al, the information is encoded as states of orbital angular momentum (OAM) of light and the transmitter unit can produce laser beam with single OAM-state in a time-slot. Recently we have proved that it is possible to generate multiple OAM-states simultaneously by single spatial light modulator. This method is adopted in our free-space optical wireless communication system and these OAM-states can be detected in the receiving unit by a computer-generated hologram. Hence, the transmission capacity is enhanced significantly without increasing the complexity of system.

  9. Correlated angular distributions in {tau}{sup +}{tau}{sup -} semileptonic decays

    Energy Technology Data Exchange (ETDEWEB)

    Dova, M.T. [La Plata Univ. Nacional (Argentina). Dept. de Fisica; Epele, L.N. [La Plata Univ. Nacional (Argentina). Dept. de Fisica; Fanchiotti, H. [La Plata Univ. Nacional (Argentina). Dept. de Fisica; Garcia Canal, C.A. [La Plata Univ. Nacional (Argentina). Dept. de Fisica; Lacentre, P.E. [La Plata Univ. Nacional (Argentina). Dept. de Fisica

    1995-06-01

    The spin correlated angular distribution for {tau}{sup -}{tau}{sup +} pairs at energies of the Z{sup 0} resonance, both decaying semi-leptonically up to 3 hadrons in each final state, was derived assuming general vector and axial vector couplings. The use of these distributions to test the V - A structure of the {tau}-W-{nu}{sub {tau}} vertex at LEP energies is analized. (orig.)

  10. Instability in the dense supernova neutrino gas with flavor-dependent angular distributions.

    Science.gov (United States)

    Mirizzi, Alessandro; Serpico, Pasquale Dario

    2012-06-08

    The usual description of self-induced flavor conversions for neutrinos (ν's) in supernovae is based on the simplified assumption that all the ν's of the different species are emitted "half-isotropically" by a common neutrinosphere, in analogy to a blackbody emission. However, realistic supernova simulations show that ν angular distributions at decoupling are far from being half-isotropic and, above all, are flavor dependent. We show that flavor-dependent angular distributions may lead to crossing points in the angular spectra of different ν species (where F(ν(e))=F(ν(x)) and F(ν(e))=F(ν(x))) around which a new multiangle instability can develop. To characterize this effect, we carry out a linearized flavor stability analysis for different supernova neutrino angular distributions. We find that this instability can shift the onset of the flavor conversions toward low radii and produce a smearing of the splitting features found with trivial ν emission models. As a result the spectral differences among ν's of different flavors could be strongly reduced.

  11. Galactic disc profiles and a universal angular momentum distribution from statistical physics

    Science.gov (United States)

    Herpich, Jakob; Tremaine, Scott; Rix, Hans-Walter

    2017-06-01

    We show that the stellar surface brightness profiles in disc galaxies - observed to be approximately exponential - can be explained if radial migration efficiently scrambles the individual stars' angular momenta while conserving the circularity of the orbits and the total mass and angular momentum. In this case, the disc's distribution of specific angular momenta j should be near a maximum entropy state and therefore approximately exponential, dN ∝ \\exp (-j/rotation curve v∞(R) and R_e({R})≡ < j\\rangle /v_c (R). We show that such a profile matches the observed surface brightness profiles of disc-dominated galaxies just as well as the empirical exponential profile. Disc galaxies that exhibit population gradients cannot have fully reached a maximum-entropy state but appear to be close enough that their surface brightness profiles are well fit by this idealized model.

  12. Optical fiber design with orbital angular momentum light purity higher than 99.9.

    Science.gov (United States)

    Zhang, Zhishen; Gan, Jiulin; Heng, Xiaobo; Wu, Yuqing; Li, Qingyu; Qian, Qi; Chen, Dongdan; Yang, Zhongmin

    2015-11-16

    The purity of the synthesized orbital-angular-momentum (OAM) light in the fiber is inversely proportional to channel crosstalk level in the OAM optical fiber communication system. Here the relationship between the fiber structure and the purity is firstly demonstrated in theory. The graded-index optical fiber is proposed and designed for the OAM light propagation with the purity higher than 99.9%. 16 fiber modes (10 OAM modes) have been supported by a specific designed graded-index optical fiber with dispersion less than 35 ps/(km∙nm). Such fiber design has suppressed the intrinsic crosstalk to be lower than -30 dB, and can be potentially used for the long distance OAM optical communication system.

  13. Orbital angular momentum of helical necklace beams in colloid-based nonlinear optical metamaterials (Conference Presentation)

    Science.gov (United States)

    Walasik, Wiktor T.; Silahli, Salih Z.; Litchinitser, Natalia M.

    2016-09-01

    Colloidal metamaterials are a robust and flexible platform for engineering of optical nonlinearities and studies of light filamentation. To date, nonlinear propagation and modulation instability of Gaussian beams and optical vortices carrying orbital angular momentum were studied in such media. Here, we investigate the propagation of necklace beams and the conservation of the orbital angular momentum in colloidal media with saturable nonlinearity. We study various scenarios leading to generation of helical necklace beams or twisted beams, depending on the radius, power, and charge of the input vortex beam. Helical beams are build of two separate solitary beams with circular cross-sections that spiral around their center of mass as a result of the equilibrium between the attraction force of in-phase solitons and the centrifugal force associated with the rotational movement. A twisted beam is a single beam with an elliptical cross-section that rotates around it's own axis. We show that the orbital angular momentum is converted into the rotational motion at different rates for helical and twisted beams. While earlier studies reported that solitary beams are expelled form the initial vortex ring along straight trajectories tangent to the vortex ring, we show that depending on the charge and the power of the initial beam, these trajectories can diverge from the tangential direction and may be curvilinear. These results provide a detailed description of necklace beam dynamics in saturable nonlinear media and may be useful in studies of light filamentation in liquids and light propagation in highly scattering colloids and biological samples.

  14. Optical near-field studies of waveguiding organic nanofibers by angular dependent excitation

    DEFF Research Database (Denmark)

    Maibohm, Christian

      Optical near-field studies of waveguiding organic nanofibers by angular dependent excitation.   Authors: Christian Maibohm¹, Tomasz Kawalec¹, Vladimir G. Bordo² and Horst-Günter Rubahn¹. Institutions: 1) NanoSYD, MCI, University of southern Denmark, DK- 6400         Sønderborg Denmark .        ......  Optical near-field studies of waveguiding organic nanofibers by angular dependent excitation.   Authors: Christian Maibohm¹, Tomasz Kawalec¹, Vladimir G. Bordo² and Horst-Günter Rubahn¹. Institutions: 1) NanoSYD, MCI, University of southern Denmark, DK- 6400         Sønderborg Denmark...... .                    2) Institute of General Physics, Russian Academy of Science, 119991 Moscow, Russia. Abstract:   Single crystalline organic nanofibers of para-phenylene are grown in UHV by MBE and dipole assisted self-assembly. In the optical far-field the fluorescence from a single nanofiber is spectrally well...... defined and highly polarized. By UV excitation in a fluorescence microscope it has also been shown that nanofibers have waveguiding properties. To further characterize the waveguiding properties the optical near-field has to be investigated. This is done by transferring nanofibers to an quartz half sphere...

  15. Measurement of the dijet angular distributions and search for quark compositeness with the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hinzmann, Andreas Dominik

    2011-10-07

    {sub 2}} {sup vertical} {sup stroke}, where y{sub 1} and y{sub 2} are the rapidities of the two jets, y {identical_to} (1)/(2)ln [(E+p{sub z})/(E-p{sub z})], and p{sub z} is the projection of the jet momentum along the beam axis. The choice of the variable {chi}{sub dijet} is motivated by the fact that the normalized differential cross section (1)/({sigma}) (d{sigma})/(d{chi}{sub dijet}) (the dijet angular distribution) is flat in this variable for Rutherford scattering, characteristic for spin-1 particle exchange. In contrast to QCD which predicts a dijet angular distribution similar to Rutherford scattering, new physics, such as quark compositeness, that might have a more isotropic dijet angular distribution would produce an excess at low values of {chi}{sub dijet}. Since the shapes of the dijet angular distributions for the qg {yields}qg, qq{sup '} {yields}qq{sup '} and gg {yields}gg scattering processes are similar, the QCD prediction does not strongly depend on the parton distribution functions (PDFs) which describe the momentum distribution of the partons inside the protons. Due to the normalization, the dijet angular distribution has a reduced sensitivity to several predominant experimental uncertainties (e.g. the jet energy scale and luminosity uncertainties). The dijet angular distribution is therefore well suited to test the predictions of QCD and to search for signals of new physics, in particular for signs of quark compositeness. In the following a measurement of the dijet angular distributions and a search for quark compositeness with the CMS experiment is presented. (orig.)

  16. Influence of the halo upon angular distributions for elastic scattering and breakup

    Energy Technology Data Exchange (ETDEWEB)

    Capel, P., E-mail: capel@nscl.msu.ed [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Physique Quantique, CP 165/82, and Physique Nucleaire Theorique et Physique Mathematique, CP229, Universite Libre de Bruxelles (ULB), B-1050 Brussels (Belgium); Hussein, M.S., E-mail: hussein@if.usp.b [Instituto de Fisica, Universidade de Sao Paulo C.P. 66318, 05315-970 Sao Paulo, S.P. (Brazil); Baye, D., E-mail: dbaye@ulb.ac.b [Physique Quantique, CP 165/82, and Physique Nucleaire Theorique et Physique Mathematique, CP229, Universite Libre de Bruxelles (ULB), B-1050 Brussels (Belgium)

    2010-10-11

    The angular distributions for elastic scattering and breakup of halo nuclei are analysed using a near-side/far-side decomposition within the framework of the dynamical eikonal approximation. This analysis is performed for {sup 11}Be impinging on Pb at 69 MeV/nucleon. These distributions exhibit very similar features. In particular they are both near-side dominated, as expected from Coulomb-dominated reactions. The general shape of these distributions is sensitive mostly to the projectile-target interactions, but is also affected by the extension of the halo. This suggests the elastic scattering not to be affected by a loss of flux towards the breakup channel.

  17. Angular distributions of electrons emitted from free and deposited Na{sub 8} clusters

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Matthias [Institut fuer Theoretische Physik, Universitaet Erlangen (Germany); Dinh, Phuong Mai; Suraud, Eric [Laboratoire de Physique Theorique, IRSAMC, UPS and CNRS, Universite de Toulouse (France); Moskaleva, Lyudmila V.; Roesch, Notker [Department Chemie and Catalysis Research Center, Theoretische Chemie, Technische Universitaet Muenchen, Garching (Germany); Reinhard, Paul-Gerhard [Institut fuer Theoretische Physik, Universitaet Erlangen (Germany); Laboratoire de Physique Theorique, IRSAMC, UPS and CNRS, Universite de Toulouse (France)

    2010-05-15

    We explore from a theoretical perspective angular distributions of electrons emitted from a Na{sub 8} cluster after excitation by a short laser pulse. The tool of the study is time-dependent density-functional theory (TDDFT) at the level of the local-density approximation (LDA) augmented by a self-interaction correction (SIC) to put emission properties in order. We consider free Na{sub 8} and Na{sub 8} deposited on the surfaces MgO(001) or Ar(001). For the case of free Na{sub 8}, we distinguish between a hypothetical situation of known cluster orientation and a more realistic ensemble of orientations. We also consider the angular distributions for emission from separate single-electron levels. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. Photoelectron angular distribution in two-pathway ionization of neon with femtosecond XUV pulses

    CERN Document Server

    Douguet, Nicolas; Staroselskaya, Ekaterina I; Bartschat, Klaus; Grum-Grzhimailo, Alexei N

    2016-01-01

    We analyze the photoelectron angular distribution in two-pathway interference between non\\-resonant one-photon and resonant two-photon ionization of neon. We consider a bichromatic femtosecond XUV pulse whose fundamental frequency is tuned near the $2p^5 3s$ atomic states of neon. The time-dependent Schr\\"odinger equation is solved and the results are employed to compute the angular distribution and the associated anisotropy parameters at the main photoelectron line. We also employ a time-dependent perturbative approach, which allows obtaining information on the process for a large range of pulse parameters, including the steady-state case of continuous radiation, i.e., an infinitely long pulse. The results from the two methods are in relatively good agreement over the domain of applicability of perturbation theory.

  19. 2p-2h excitations in neutrino scattering: angular distribution and frozen approximation

    CERN Document Server

    Simo, I Ruiz; Amaro, J E; Barbaro, M B; Caballero, J A; Donnelly, T W

    2015-01-01

    We study the phase-space dependence of 2p-2h excitations in neutrino scattering using the relativistic Fermi gas model. We follow a similar approach to other authors, but focusing in the phase-space properties, comparing with the non-relativistic model. A careful mathematical analysis of the angular distribution function for the outgoing nucleons is performed. Our goals are to optimize the CPU time of the 7D integral to compute the hadron tensor in neutrino scattering, and to conciliate the different relativistic and non relativistic models by describing general properties independently of the two-body current. For some emission angles the angular distribution becomes infinite in the Lab system, and we derive a method to integrate analytically around the divergence. Our results show that the frozen approximation, obtained by neglecting the momenta of the two initial nucleons inside the integral of the hadron tensor, reproduces fairly the exact response functions for constant current matrix elements.

  20. Measurement of the Angular Distribution of Electrons from $W \\to e\

    CERN Document Server

    Abbott, B; Abramov, V; Acharya, B S; Adams, D L; Adams, M; Alves, G A; Amos, N; Anderson, E W; Baarmand, M M; Babintsev, V V; Babukhadia, L R; Baden, A; Baldin, B Yu; Balm, P W; Banerjee, S; Bantly, J; Barberis, E; Baringer, P; Bartlett, J F; Bassler, U; Bean, A; Begel, M; Belyaev, A; Beri, S B; Bernardi, G; Bertram, I; Besson, A; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Bhattacharjee, M; Blazey, G C; Blessing, S; Böhnlein, A; Bozhko, N; Borcherding, F; Brandt, A; Breedon, R; Briskin, G M; Brock, R; Brooijmans, G; Bross, A; Buchholz, D; Bühler, M; Büscher, V; Burtovoi, V S; Butler, J M; Canelli, F; Carvalho, W S; Casey, D; Casilum, Z; Castilla-Valdez, H; Chakraborty, D; Chan, K M; Chekulaev, S V; Cho, D K; Choi, S; Chopra, S; Christenson, J H; Chung, M; Claes, D; Clark, A R; Cochran, J; Coney, L; Connolly, B; Cooper, W E; Coppage, D; Cummings, M A C; Cutts, D; Dahl, O I; Davis, G A; Davis, K; De, K; Del Signore, K; Demarteau, M; Demina, R; Demine, P; Denisov, D S; Denisov, S P; Desai, S V; Diehl, H T; Diesburg, M; DiLoreto, G; Doulas, S; Draper, P; Ducros, Y; Dudko, L V; Duensing, S; Dugad, S R; Dyshkant, A; Edmunds, D L; Ellison, J; Elvira, V D; Engelmann, R; Eno, S; Eppley, G; Ermolov, P; Eroshin, O V; Estrada, J K; Evans, H; Evdokimov, V N; Fahland, T; Fehér, S; Fein, D; Ferbel, T; Fisk, H E; Fisyak, Yu; Flattum, E M; Fleuret, F; Fortner, M R; Frame, K C; Fuess, S; Gallas, E J; Galjaev, A N; Gartung, P E; Gavrilov, V; Genik, R J; Genser, K; Gerber, C E; Gershtein, Yu; Gibbard, B; Gilmartin, R; Ginther, G; Gómez, B; Gómez, G; Goncharov, P I; González-Solis, J L; Gordon, H; Goss, L T; Gounder, K; Goussiou, A; Graf, N; Graham, G; Grannis, P D; Green, J A; Greenlee, H; Grinstein, S; Groer, L S; Grudberg, P M; Grünendahl, S; Sen-Gupta, A; Gurzhev, S N; Gutíerrez, G; Gutíerrez, P; Hadley, N J; Haggerty, H; Hagopian, S L; Hagopian, V; Hahn, K S; Hall, R E; Hanlet, P; Hansen, S; Hauptman, J M; Hays, C; Hebert, C; Hedin, D; Heinson, A P; Heintz, U; Heuring, T C; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoftun, J S; Hou, S; Huang, Y; Ito, A S; Jerger, S A; Jesik, R; Johns, K; Johnson, M; Jonckheere, A M; Jones, M; Jöstlein, H; Juste, A; Kahn, S; Kajfasz, E; Karmanov, D E; Karmgard, D J; Kehoe, R; Kim, S K; Klima, B; Klopfenstein, C; Knuteson, B; Ko, W; Kohli, J M; Kostritskii, A V; Kotcher, J; Kotwal, A V; Kozelov, A V; Kozlovskii, E A; Krane, J; Krishnaswamy, M R; Krzywdzinski, S; Kubantsev, M A; Kuleshov, S; Kulik, Y; Kunori, S; Kuznetsov, V E; Landsberg, G L; Leflat, A; Lehner, F; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J T; Lipton, R; Lucotte, A; Lueking, L H; Lundstedt, C; Maciel, A K A; Madaras, R J; Manankov, V; Mao, H S; Marshall, T; Martin, M I; Martin, R D; Mauritz, K M; May, B; Mayorov, A A; McCarthy, R; McDonald, J; McMahon, T; Melanson, H L; Meng, X C; Merkin, M; Merritt, K W B; Miao, C; Miettinen, H; Mihalcea, D; Mincer, A; Mishra, C S; Mokhov, N V; Mondal, N K; Montgomery, H E; Moore, R W; Mostafa, M A; Da Motta, H; Nagy, E; Nang, F; Narain, M; Narasimham, V S; Neal, H A; Negret, J P; Negroni, S; Norman, D; Oesch, L H; Oguri, V; Olivier, B; Oshima, N; Padley, P; Pan, L J; Para, A; Parashar, N; Partridge, R; Parua, N; Paterno, M; Patwa, A; Pawlik, B; Perkins, J; Peters, M; Peters, O; Piegaia, R; Piekarz, H; Pope, B G; Popkov, E; Prosper, H B; Protopopescu, S D; Qian, J; Quintas, P Z; Raja, R; Rajagopalan, S; Ramberg, E; Rapidis, P A; Reay, N W; Reucroft, S; Rha, J; Rijssenbeek, M; Rockwell, T; Roco, M T; Rubinov, P M; Ruchti, R C; Rutherfoord, John P; Santoro, A F S; Sawyer, L; Schamberger, R D; Schellman, H; Schwartzman, A; Scully, J R; Sen, N; Shabalina, E; Shankar, H C; Shivpuri, R K; Shpakov, D; Shupe, M A; Sidwell, R A; Simák, V; Singh, H; Singh, J B; Sirotenko, V I; Slattery, P F; Smith, E; Smith, R P; Snihur, R; Snow, G A; Snow, J; Snyder, S; Solomon, J; Sorin, V; Sosebee, M; Sotnikova, N; Soustruznik, K; Souza, M; Stanton, N R; Steinbruck, G; Stephens, R W; Stevenson, M L; Stichelbaut, F; Stoker, D; Stolin, V; Stoyanova, D A; Strauss, M; Streets, K; Strovink, M; Stutte, L; Sznajder, A; Taylor, W; Tentindo-Repond, S; Thompson, J; Toback, D; Tripathi, S M; Trippe, T G; Turcot, A S; Tuts, P M; Van Gemmeren, P; Vaniev, V; Van Kooten, R; Varelas, N; Volkov, A A; Vorobev, A P; Wahl, H D; Wang, H; Wang, Z M; Warchol, J; Watts, G; Wayne, M; Weerts, H; White, A; White, J T; Whiteson, D; Wightman, J A; Wijngaarden, D A; Willis, S; Wimpenny, S J; Wirjawan, J V D; Womersley, J; Wood, D R; Yamada, R; Yamin, P; Yasuda, T; Yip, K; Youssef, S; Yu, J; Yu, Z; Zanabria, M E; Zheng, H; Zhou, Z; Zhu, Z H; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G; Zylberstejn, A

    2001-01-01

    We present the first measurement of the electron angular distribution parameter alpha_2 in W to e nu events produced in proton-antiproton collisions as a function of the W boson transverse momentum. Our analysis is based on data collected using the D0 detector during the 1994--1995 Fermilab Tevatron run. We compare our results with next-to-leading order perturbative QCD, which predicts an angular distribution of (1 +/- alpha_1 cos theta* + alpha_2 cos^2 theta*), where theta* is the polar angle of the electron in the Collins-Soper frame. In the presence of QCD corrections, the parameters alpha_1 and alpha_2 become functions of p_T^W, the W boson transverse momentum. This measurement provides a test of next-to-leading order QCD corrections which are a non-negligible contribution to the W boson mass measurement.

  1. Neutron angular distribution in a plasma focus obtained using nuclear track detectors.

    Science.gov (United States)

    Castillo-Mejía, F; Herrera, J J E; Rangel, J; Golzarri, J I; Espinosa, G

    2002-01-01

    The dense plasma focus (DPF) is a coaxial plasma gun in which a high-density, high-temperature plasma is obtained in a focused column for a few nanoseconds. When the filling gas is deuterium, neutrons can be obtained from fusion reactions. These are partially due to a beam of deuterons which are accelerated against the background hot plasma by large electric fields originating from plasma instabilities. Due to a beam-target effect, the angular distribution of the neutron emission is anisotropic, peaked in the forward direction along the axis of the gun. The purpose of this work is to illustrate the use of CR-39 nuclear track detectors as a diagnostic tool in the determination of the time-integrated neutron angular distribution. For the case studied in this work, neutron emission is found to have a 70% contribution from isotropic radiation and a 30% contribution from anisotropic radiation.

  2. Measurement of the angular distribution in anti-p p ---> psi(2S) ---> e+ e-

    Energy Technology Data Exchange (ETDEWEB)

    Ambrogiani, M.; Andreotti, M.; Argiro, S.; Bagnasco, S.; Baldini, W.; Bettoni, D.; Borreani, G.; Buzzo, A.; Calabrese, R.; Cester, R.; Cibinetto, G.; Dalpiaz, P.; Fan,; Garzoglio, G.; Gollwitzer, K.E.; Graham, M.; Hahn, A.; Hu, M.; Jin, S.; Joffe, D.; Kasper, J.; /Fermilab /INFN, Ferrara /Ferrara U. /INFN, Genoa /Genoa U. /INFN, Turin /Turin

    2004-12-01

    The authors present the first measurement of the angular distribution for the exclusive process {bar p}p {yields} {psi}(2S) {yields} e{sup +}e{sup -} based on a sample of 6844 events collected by the Fermilab E835 experiment. They find that the angular distribution is well described by the expected functional form dN/d cos {theta}* {proportional_to} 1 + {lambda} cos{sup 2} {theta}*, where {theta}* is the angle between the antiproton and the electron in the center of mass frame, with {lambda} = 0.67 {+-} 0.15(stat.) {+-} 0.04(sys.). The measured value for {lambda} implies a small but non zero {psi}(2S) helicity 0 formation amplitude in {bar p}p, comparable to what is observed in J/{psi} decays to baryon pairs.

  3. chi_{c1} and chi_{c2} decay angular distributions at the Fermilab Tevatron

    CERN Document Server

    Kniehl, Bernd A; Palisoc, C P

    2003-01-01

    We consider the hadroproduction of chi_{c1} and chi_{c2} mesons and their subsequent radiative decays to J/psi mesons and photons in the factorization formalism of nonrelativistic quantum chromodynamics, and study the decay angular distributions, by means of helicity density matrices, in view of their sensitivity to color-octet processes. We present numerical results appropriate for the Fermilab Tevatron.

  4. Angular distribution of cosmic muons using INO–ICAL prototype detector at TIFR

    Indian Academy of Sciences (India)

    S Pal; G Majumder; M K Mondal; D Samuel; B Satyanarayana

    2012-11-01

    The India-based Neutrino Observatory Collaboration is planning to set up a magnetized 50 kt iron calorimeter (ICAL) with resistive plate chambers (RPC) as active detectors to study neutrino oscillations and precisely measure its parameters. A prototype detector stack is set up at TIFR (18°54'N, 72°48'E) to track cosmic ray muons. Using the muon data, angular distribution of cosmic ray muons at the sea level is studied here.

  5. {beta}-ray Angular Distribution from Purely Nuclear Spin Aligned {sup 20}Na

    Energy Technology Data Exchange (ETDEWEB)

    Minamisono, K., E-mail: minamiso@nscl.msu.edu [NSCL/MSU (United States); Matsuta, K.; Minamisono, T. [Osaka University, Department of Physics (Japan); Levy, C. D. P. [TRIUMF (Canada); Nagatomo, T.; Ogura, M. [Osaka University, Department of Physics (Japan); Sumikama, T. [RIKEN (Japan); Behr, J. A.; Jackson, K. P. [TRIUMF (Canada); Fujiwara, H.; Mihara, M.; Fukuda, M. [Osaka University, Department of Physics (Japan)

    2004-12-15

    The alignment correlation term in the {beta}-decay angular distribution from purely nuclear spin aligned {sup 20}Na has been measured for the first time. The final objective is to test the G parity symmetry, one of the fundamental symmetry in the weak nucleon current. For artificial creation of the alignment, the knowledge of the hyperfine interaction of {sup 20}Na implanted in a single-crystal ZnO was utilized.

  6. Beta-ray angular distributions of spin aligned {sup 8}Li and {sup 8}B

    Energy Technology Data Exchange (ETDEWEB)

    Sumikama, T. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Iwakoshi, T. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Nagatomo, T. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Ogura, M. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Nakashima, Y. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Fujiwara, H. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Matsuta, K. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Minamisono, T. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Mihara, M. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Fukuda, M. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Minamisono, K. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 (Canada); Yamaguchi, T. [Gesellschaft fuer Schwerionenforschung, Planckstrasse 1, D-64291 Darmstadt (Germany)

    2004-12-27

    The alignment correlation terms in the {beta}-ray angular distributions from spin aligned {sup 8}Li and {sup 8}B have been measured precisely. The difference of these terms between the mirror pair is compared with the prediction. As a result, the G-parity violating induced tensor term is found to be small. The significant contribution from the second-forbidden matrix elements is shown by comparing with the {beta}-{alpha} correlation coefficients.

  7. Angular distribution of hypersatellite and satellite radiation emitted after resonant and excitation into $U^{91+}$ ions

    CERN Document Server

    Zakowicz, S; Harman, Z; Scheid, W

    2003-01-01

    In collisions of heavy few-electron projectile ions with light targets, an electron can be transferred from the target with the simultaneous excitation of a projectile electron. We study the angular distribution of de-excitation X rays following the resonant capture process. Our results are compared to experimental values of Ma et al. [Phys. Rev. A (joint to this issue)] for collisions of U91+ ions with a hydrogen gas target.

  8. {beta}-Ray angular distribution from purely nuclear spin aligned {sup 20}F

    Energy Technology Data Exchange (ETDEWEB)

    Nagatomo, T., E-mail: nagatomo@riken.jp [RIKEN Nishina Center (Japan); Matsuta, K. [Osaka University (Japan); Minamisono, K. [NSCL/MSU (United States); Sumikama, T. [Tokyo University of Science (Japan); Mihara, M. [Osaka University (Japan); Ozawa, A.; Tagishi, Y. [University of Tsukuba (Japan); Ogura, M.; Matsumiya, R.; Fukuda, M. [Osaka University (Japan); Yamaguchi, M.; Yasuno, T.; Ohta, H.; Hashizume, Y. [University of Tsukuba (Japan); Fujiwara, H. [Osaka University (Japan); Chiba, A. [University of Tsukuba (Japan); Minamisono, T. [Fukui University of Technology (Japan)

    2007-11-15

    The alignment correlation term in the {beta}-ray angular distribution from purely nuclear spin aligned {sup 20}F has been measured to test the G-parity conservation law which is one of the fundamental symmetries in the weak nucleon current. We utilized the hyperfine interaction of {sup 20}F in an MgF{sub 2} single crystal and successfully created the pure alignment from the polarization by means of the spin manipulation technique based on the {beta}-NMR method.

  9. Testing the anisotropy in the angular distribution of $Fermi$/GBM gamma-ray bursts

    CERN Document Server

    Tarnopolski, Mariusz

    2015-01-01

    Gamma-ray bursts (GRBs) were confirmed to be of extragalactic origin due to their isotropic angular distribution, combined with the fact that they exhibited an intensity distribution that deviated strongly from the $-3/2$ power law. This finding was later confirmed with the first redshift, equal to at least $z=0.835$, measured for GRB970508. Despite this result, the data from $CGRO$/BATSE and $Swift$/BAT indicate that long GRBs are indeed distributed isotropically, but the distribution of short GRBs is anisotropic. $Fermi$/GBM has detected 1669 GRBs up to date, and their sky distribution is examined in this paper. A number of statistical tests is applied: nearest neighbour analysis, fractal dimension, dipole and quadrupole moments of the distribution function decomposed into spherical harmonics, binomial test, and the two point angular correlation function. Monte Carlo benchmark testing of each test is performed in order to evaluate its reliability. It is found that short GRBs are distributed anisotropically ...

  10. Inner engine shutdown from transitions in the angular momentum distribution in collapsars

    Science.gov (United States)

    Batta, Aldo; Lee, William H.

    2016-06-01

    For the collapsar scenario to be effective in the production of gamma ray bursts (GRBs), the infalling star's angular momentum J(r) must be larger than the critical angular momentum needed to form an accretion disc around a black hole (BH), namely Jcrit = 2rgc for a Schwarzschild BH. By means of 3D smoothed particle hydrodynamics simulations, here we study the collapse and accretion on to BHs of spherical rotating envelopes, whose angular momentum distribution has transitions between supercritical (J > Jcrit) and subcritical (J hydrodynamical simulations, we find that a substantial amount of subcritical material fed to the accretion disc, lingers around long enough to contribute significantly to the energy loss rate. Increasing the amount of angular momentum in the subcritical material increases the time spent at the accretion disc, and only when the bulk of this subcritical material is accreted before it is replenished by a massive outermost supercritical shell, the inner engine experiences a shutdown. Once the muffled accretion disc is provided again with enough supercritical material, the shutdown will be over and a quiescent time in the long GRB produced afterwards could be observed.

  11. The angular momentum distribution and baryon content of star forming galaxies at z~1-3

    CERN Document Server

    Burkert, A; Genzel, R; Lang, P; Tacconi, L J; Wisnioski, E; Wuyts, S; Bandara, K; Beifiori, A; Bender, R; Brammer, G; Chan, J; Davies, R; Dekel, A; Fabricius, M; Fossati, M; Kulkarni, S; Lutz, D; Mendel, J T; Momcheva, I; Nelson, E J; Naab, T; Renzini, A; Saglia, R; Sharples, R M; Sternberg, A; Wilman, D; Wuyts, E

    2015-01-01

    We analyze the angular momenta of massive star forming galaxies (SFGs) at the peak of the cosmic star formation epoch (z~0.8-2.6). Our sample of ~360 log(M*/Msun) ~ 9.3-11.8 SFGs is mainly based on the KMOS^3D and SINS/zC-SINF surveys of H\\alpha\\ kinematics, and collectively provides a representative subset of the massive star forming population. The inferred halo scale, angular momentum distribution is broadly consistent with that theoretically predicted for their dark matter halos, in terms of mean spin parameter ~ 0.037 and its dispersion ($\\sigma_{log(\\lambda)}$~0.2). Spin parameters correlate with the disk radial scale, and with their stellar surface density, but do not depend significantly on halo mass, stellar mass, or redshift. Our data thus support the long-standing assumption that on average the specific angular momentum of early disks reflects that of their dark matter halos (jd = jDM), despite the fact that gas enters the virial radius with substantially higher angular momentum, requiring subsequ...

  12. Inner Engine Shutdown from Transitions in the Angular Momentum Distribution in Collapsars

    CERN Document Server

    Batta, Aldo

    2016-01-01

    For the collapsar scenario to be effective in the production of Gamma Ray Bursts, the infalling star's angular momentum $J(r)$ must be larger than the critical angular momentum needed to form an accretion disk around a blackhole (BH), namely $J_{\\rm crit} = 2r_{g}c$ for a Schwarzschild BH. By means of 3D SPH simulations, here we study the collapse and accretion onto black holes of spherical rotating envelopes, whose angular momentum distribution has transitions between supercritical ($J>J_{\\rm crit}$) and subcritical ($Jangular momentum in the subcritical material increases the time spent at the accretion disk, and only when the bulk of this subcritical material is accreted before it is replenished by a massive outermost supe...

  13. Generation and excitation of different orbital angular momentum states in a tunable microstructure optical fiber.

    Science.gov (United States)

    Huang, Wei; Liu, Yan-ge; Wang, Zhi; Zhang, Wanchen; Luo, Mingming; Liu, Xiaoqi; Guo, Junqi; Liu, Bo; Lin, Lie

    2015-12-28

    A tunable microstructure optical fiber for different orbital angular momentum states generation is proposed and investigated by simulation. The microstructure optical fiber is composed of a high refractive index ring and a hollow core surrounded by four small air holes. The background material of the microstructure fiber is pure silica. The hollow core and the surrounded four small air holes are infiltrated by optical functional material whose refractive index can be modulated via physical parameters, leading to the conversion between circular polarized fundamental mode and different orbital angular momentum states at tunable operating wavelengths. A theoretical model is established and the coupling mechanism is systematically analyzed and investigated based on coupled mode theory. The fiber length can be designed specifically to reach the maximum coupling efficiency for every OAM mode respectively, and can also be fixed at a certain value for several OAM modes generation under tunable refractive index conditions. The proposed fiber coupler is flexible and compact, making it a good candidate for tunable OAM generation and sensing systems.

  14. Angular momentum distribution during the collapse of primordial star-forming clouds

    Science.gov (United States)

    Dutta, Jayanta

    2016-01-01

    It is generally believed that angular momentum is distributed during the gravitational collapse of the primordial star forming cloud. However, so far there has been little understanding of the exact details of the distribution. We use the modified version of the Gadget-2 code, a three-dimensional smoothed-particle hydrodynamics simulation, to follow the evolution of the collapsing gas in both idealized as well as more realistic minihalos. We find that, despite the lack of any initial turbulence and magnetic fields in the clouds the angular momentum profile follows the same characteristic power-law that has been reported in studies that employed fully self-consistent cosmological initial conditions. The fit of the power-law appears to be roughly constant regardless of the initial rotation of the cloud. We conclude that the specific angular momentum of the self-gravitating rotating gas in the primordial minihalos maintains a scaling relation with the gas mass as L ∝ M^{1.125}. We also discuss the plausible mechanisms for the power-law distribution.

  15. Simulations of energy and angular distributions in plasma processing reactors using CFD-ACE +

    Science.gov (United States)

    Bhoj, Ananth; Jain, Kunal; Megahed, Mustafa

    2013-09-01

    Several plasma processing reactors employ energetic ion bombardment at the substrate to enable surface reactions such as plasma etching, deposition or sputtering. The knowledge and control of the energy and angular distributions is an important requirement and can be used to suppress or enhance reaction rates. The CFD-ACE + platform is used for reactor scale modeling of generic inductively coupled and capacitively coupled rf plasma reactors. CFD-ACE + has a coupled solver approach that includes modules to address in a sequential and iterative manner, fluid flow, heat transfer, the Poisson equation for electric fields, charged species transport equations for species fluxes, surface charge on dielectrics and chemical kinetics in the gas and on all plasma-bounding surfaces. The Monte Carlo transport module of CFD-ACE + is based on the work of Kushner and co-workers and tracks pseudo-particles representing actual species based on source functions in the reactor. Model outputs for visualization include species densities and energy and angular distribution functions. Results discussed will include the effect of process variables such as pressure, power and frequency on the energy and angular distributions. R. J. Hoekstra and M.J. Kushner, Journal of Applied Physics, 79, 2275 (1996).

  16. Non-dipole effects in angular distributions of secondary electrons in fast particle-atom scattering

    CERN Document Server

    Amusia, M Ya; Liverts, E Z

    2010-01-01

    We demonstrate that the angular distribution of electrons knocked out from an atom by a fast charge particle is determined not only by dipole but also by quadrupole transitions, the contribution of which can be considerably enhanced as compared to the case of photoionization. To obtain these matrix elements one has to study the angular distribution of electrons emitted by the atom in its collision with a fast charged particle. The distribution has to be measured relative to the momentum q transferred from the projectile to the target atom. The situation is similar, but not identical to the photoionization studies, where the matrix elements of continuous spectrum atomic quadrupole transitions can be determined by measuring the so-called non-dipole angular anisotropy parameters of photoelectrons. However, they are strongly suppressed as compared to the dipole matrix elements by small ratio of atomic size to the photon wavelength. This suppression is controlled in fast electron-atom collisions, where it can be m...

  17. Tunable orbital angular momentum mode filter based on optical geometric transformation.

    Science.gov (United States)

    Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E

    2014-03-15

    We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB.

  18. 850-nm hybrid fiber/free-space optical communications using orbital angular momentum modes

    DEFF Research Database (Denmark)

    Jurado-Navas, Antonio; Tatarczak, Anna; Lu, Xiaofeng;

    2015-01-01

    Light beams can carry orbital angular momentum (OAM) associated to the helicity of their phasefronts. These OAM modes can be employed to encode information onto a laser beam for transmitting not only in a fiber link but also in a free-space optical (FSO) one. Regarding this latter scenario, FSO...... modes can be seen as an efficient solution to increase the capacity and the security in the link. In this paper, we discuss an experimental demonstration of a proposal for next generation FSO communication system where a light beam carrying different OAM modes and affected by M turbulence is coupled...

  19. Kinetic Energy and Angular Distributions of He and Ar Atoms Evaporating from Liquid Dodecane.

    Science.gov (United States)

    Patel, Enamul-Hasan; Williams, Mark A; Koehler, Sven P K

    2017-01-12

    We report both kinetic energy and angular distributions for He and Ar atoms evaporating from C12H26. All results were obtained by performing molecular dynamics simulations of liquid C12H26 with around 10-20 noble gas atoms dissolved in the liquid and by subsequently following the trajectories of the noble gas atoms after evaporation from the liquid. Whereas He evaporates with a kinetic energy distribution of (1.05 ± 0.03) × 2RT (corrected for the geometry used in experiments: (1.08 ± 0.03) × 2RT, experimentally obtained value: (1.14 ± 0.01) × 2RT), Ar displays a kinetic energy distribution that better matches a Maxwell-Boltzmann distribution at the temperature of the liquid ((0.99 ± 0.04) × 2RT). This behavior is also reflected in the angular distributions, which are close to a cosine distribution for Ar but slightly narrower, especially for faster atoms, in the case of He. This behavior of He is most likely due to the weak interaction potential between He and the liquid hydrocarbon.

  20. Angular distribution, kinetic energy distributions, and excitation functions of fast metastable oxygen fragments following electron impact of CO2

    Science.gov (United States)

    Misakian, M.; Mumma, M. J.; Faris, J. F.

    1975-01-01

    Dissociative excitation of CO2 by electron impact was studied using the methods of translational spectroscopy and angular distribution analysis. Earlier time of flight studies revealed two overlapping spectra, the slower of which was attributed to metastable CO(a3 pi) fragments. The fast peak is the focus of this study. Threshold energy, angular distribution, and improve time of flight measurements indicate that the fast peak actually consists of five overlapping features. The slowest of the five features is found to consist of metastable 0(5S) produced by predissociation of a sigma u + state of CO2 into 0(5S) + CO(a3 pi). Oxygen Rydberg fragments originating directly from a different sigma u + state are believed to make up the next fastest feature. Mechanisms for producing the three remaining features are discussed.

  1. Angular distributions of emitted particles by laser ablation of silver at 355 nm

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Schou, Jørgen; Hansen, T.;

    1998-01-01

    The angular distribution of laser ablated silver in vacuum has been measured in situ with an array of quartz-crystal microbalances. The silver surface was irradiated by ns pulses from a Nd:YAG laser operating at 355 nm for fluences ranging from 0.7 J/cm2 to 8 J/cm2. The distribution is strongly p...... peaked in the forward direction corresponding to cosp/, where p varies from 5 to 12 for the largest beam spot, but is less peaked for the smallest beam spots. The total collected yield of ablated atoms is about 221015 Ag atoms per pulse for the highest pulse energies....

  2. Volumetric rendering and metrology of spherical gradient refractive index lens imaged by angular scan optical coherence tomography system.

    Science.gov (United States)

    Yao, Jianing; Thompson, Kevin P; Ma, Bin; Ponting, Michael; Rolland, Jannick P

    2016-08-22

    In this paper, we develop the methodology, including the refraction correction, geometrical thickness correction, coordinate transformation, and layer segmentation algorithms, for 3D rendering and metrology of a layered spherical gradient refractive index (S-GRIN) lens based on the imaging data collected by an angular scan optical coherence tomography (OCT) system. The 3D mapping and rendering enables direct 3D visualization and internal defect inspection of the lens. The metrology provides assessment of the surface geometry, the lens thickness, the radii of curvature of the internal layer interfaces, and the misalignment of the internal S-GRIN distribution with respect to the lens surface. The OCT metrology results identify the manufacturing defects, and enable targeted process development for optimizing the manufacturing parameters. The newly fabricated S-GRIN lenses show up to a 7x spherical aberration reduction that allows a significantly increased utilizable effective aperture.

  3. Angular momentum distribution during the collapse of primordial star-forming clouds

    CERN Document Server

    Dutta, Jayanta

    2015-01-01

    It is generally believed that angular momentum is distributed during the gravitational collapse of the primordial star forming cloud. However, so far there has been little understanding of the exact details of the distribution. We use the modified version of the Gadget-2 code, a three-dimensional smoothed-particle hydrodynamics simulation, to follow the evolution of the collapsing gas in both idealized as well as more realistic minihalos. We find that, despite the lack of any initial turbulence and magnetic fields in the clouds the angular momentum profile follows the same characteristic power-law that has been reported in studies that employed fully self-consistent cosmological initial conditions. The fit of the power-law appears to be roughly constant regardless of the initial rotation of the cloud. We conclude that the specific angular momentum of the self-gravitating rotating gas in the primordial minihalos maintains a scaling relation with the gas mass as $L \\propto M^{1.125}$. We also discuss the plausi...

  4. Photoelectron angular distributions from photodetachment of negative ions in strong laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Bai Lihua; Liu Yuheng; Cui Tingting; Wang Yan; Zhang Huifang; Deng Dongmei [Department of Physics, Shanghai University, Shanghai 200444 (China); Ren Xianghe, E-mail: lhbai@163.com [Institute of Advance Energy, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 (Japan)

    2011-02-01

    Using a nonperturbative scattering theory, the photoelectron angular distributions (PADs) of negative ions irradiated by intense laser fields are studied. Various PADs are obtained. Similar to that of atoms, PADs of negative ions show main lobes and jet-like structures. Here, the main lobe means the formation of the detached photoelectrons around the direction of laser polarization, while the jet-like structure means a peaked-out formation of photoelectrons emitted from the waist between the two main lobes. For a set of above-threshold-detachment peaks, with one-more-photon absorption, the number of the jet-like structures is not always increased by one, which verifies that the jet-like structures are irrelevant to photoelectron angular momentum.

  5. Production of black holes and their angular momentum distribution in models with split fermions

    CERN Document Server

    Dai, D C; Stojkovic, D; Dai, De-Chang; Starkman, Glenn D.; Stojkovic, Dejan

    2006-01-01

    In models with TeV-scale gravity it is expected that mini black holes will be produced in near-future accelerators. On the other hand, TeV-scale gravity is plagued with many problems like fast proton decay, unacceptably large neutron-antineutron oscillations, flavor changing neutral currents, large mixing between leptons, etc. Most of these problems can be solved if different fermions are localized at different points in the extra dimensions. We study the cross-section for the production of black holes and their angular momentum distribution in these models with "split" fermions. We find that, for a fixed value of the fundamental mass scale, the total production cross section is reduced compared with models where all the fermions are localized at the same point in the extra dimensions. Fermion splitting also implies that the bulk component of the black hole angular momentum must be taken into account in studies of the black hole decay via Hawking radiation.

  6. Fast neutrino flavor conversions near the supernova core with realistic flavor-dependent angular distributions

    Science.gov (United States)

    Dasgupta, Basudeb; Mirizzi, Alessandro; Sen, Manibrata

    2017-02-01

    It has been recently pointed out that neutrino fluxes from a supernova can show substantial flavor conversions almost immediately above the core. Using linear stability analyses and numerical solutions of the fully nonlinear equations of motion, we perform a detailed study of these fast conversions, focussing on the region just above the supernova core. We carefully specify the instabilities for evolution in space or time, and find that neutrinos travelling towards the core make fast conversions more generic, i.e., possible for a wider range of flux ratios and angular asymmetries that produce a crossing between the zenith-angle spectra of νe and bar nue. Using fluxes and angular distributions predicted by supernova simulations, we find that fast conversions can occur within tens of nanoseconds, only a few meters away from the putative neutrinospheres. If these fast flavor conversions indeed take place, they would have important implications for the supernova explosion mechanism and nucleosynthesis.

  7. Fast neutrino flavor conversions near the supernova core with realistic flavor-dependent angular distributions

    CERN Document Server

    Dasgupta, Basudeb; Sen, Manibrata

    2016-01-01

    It has been recently pointed out that neutrino fluxes from a supernova can show substantial flavor conversions almost immediately above the core. Using linear stability analyses and numerical solutions of the fully nonlinear equations of motion, we perform a detailed study of these fast conversions, focussing on the region just above the supernova core. We carefully specify the instabilities for evolution in space or time, and find that neutrinos travelling towards the core make fast conversions more generic, i.e., possible for a wider range of flux ratios and angular asymmetries. Using fluxes and angular distributions predicted by supernova simulations, we find that fast conversions can occur within tens of nanoseconds, only a few meters away from the putative neutrinospheres. If these fast flavor conversions indeed take place, they would have important implications for the supernova explosion mechanism and nucleosynthesis.

  8. Geometrical parameter analysis of the high sensitivity fiber optic angular displacement sensor

    CERN Document Server

    Sakamoto, João M S; Kitano, Cláudio; Tittmann, Bernhard R

    2015-01-01

    In this work, we present an analysis of the influence of the geometrical parameters on the sensitivity and linear range of the fiber optic angular displacement sensor, through computational simulations and experiments. The geometrical parameters analyzed were the lens focal length, the gap between fibers, the fibers cladding radii, the emitting fiber critical angle (or, equivalently, the emitting fiber numerical aperture), and the standoff distance (distance between the lens and the reflective surface). Besides, we analyzed the sensor sensitivity regarding any spurious linear displacement. The simulation and experimental results showed that the parameters which play the most important roles are the emitting fiber core radius, the lens focal length, and the light coupling efficiency, while the remaining parameters have little influence on sensor characteristics. This paper was published in Applied Optics and is made available as an electronic reprint with the permission of OSA. The paper can be found at the fo...

  9. Reverse propagation and negative angular momentum density flux of an optical nondiffracting nonparaxial fractional Bessel vortex beam of progressive waves.

    Science.gov (United States)

    Mitri, F G

    2016-09-01

    Energy and angular momentum flux density characteristics of an optical nondiffracting nonparaxial vector Bessel vortex beam of fractional order are examined based on the dual-field method for the generation of symmetric electric and magnetic fields. Should some conditions determined by the polarization state, the half-cone angle as well as the beam-order (or topological charge) be met, the axial energy and angular momentum flux densities vanish (representing Poynting singularities), before they become negative. These negative counterintuitive properties suggest retrograde (negative) propagation as well as a rotation reversal of the angular momentum with respect to the beam handedness. These characteristics of nondiffracting nonparaxial Bessel fractional vortex beams of progressive waves open new capabilities in optical tractor beam tweezers, optical spanners, invisibility cloaks, optically engineered metamaterials, and other applications.

  10. Studies of torsional properties of DNA and nucleosomes using angular optical trapping

    Science.gov (United States)

    Sheinin, Maxim Y.

    DNA in vivo is subjected to torsional stress due to the action of molecular motors and other DNA-binding proteins. Several decades of research have uncovered the fascinating diversity of DNA transformations under torsion and the important role they play in the regulation of vital cellular processes such as transcription and replication. Recent studies have also suggested that torsion can influence the structure and stability of nucleosomes---basic building blocks of the eukaryotic genome. However, our understanding of the impact of torsion is far from being complete due to significant experimental challenges. In this work we have used a powerful single-molecule experimental technique, angular optical trapping, to address several long-standing issues in the field of DNA and nucleosome mechanics. First, we utilized the high resolution and direct torque measuring capability of the angular optical trapping to precisely measure DNA twist-stretch coupling. Second, we characterized DNA melting under tension and torsion. We found that torsionally underwound DNA forms a left-handed structure, significantly more flexible compared to the regular B-DNA. Finally, we performed the first comprehensive investigation of the single nucleosome behavior under torque and force. Importantly, we discovered that positive torque causes significant dimer loss, which can have implications for transcription through chromatin.

  11. Spatio-angular Minimum-variance Tomographic Controller for Multi-Object Adaptive Optics systems

    CERN Document Server

    Correia, Carlos M; Veran, Jean-Pierre; Andersen, David; Lardiere, Olivier; Bradley, Colin

    2015-01-01

    Multi-object astronomical adaptive-optics (MOAO) is now a mature wide-field observation mode to enlarge the adaptive-optics-corrected field in a few specific locations over tens of arc-minutes. The work-scope provided by open-loop tomography and pupil conjugation is amenable to a spatio-angular Linear-Quadratic Gaussian (SA-LQG) formulation aiming to provide enhanced correction across the field with improved performance over static reconstruction methods and less stringent computational complexity scaling laws. Starting from our previous work [1], we use stochastic time-progression models coupled to approximate sparse measurement operators to outline a suitable SA-LQG formulation capable of delivering near optimal correction. Under the spatio-angular framework the wave-fronts are never explicitly estimated in the volume,providing considerable computational savings on 10m-class telescopes and beyond. We find that for Raven, a 10m-class MOAO system with two science channels, the SA-LQG improves the limiting mag...

  12. High Angular Resolution and Lightweight X-Ray Optics for Astronomical Missions

    Science.gov (United States)

    Zhang, W. W.; Biskach, M. P.; Blake, P. N.; Chan, K. W.; Evans, T. C.; Hong, M.; Jones, W. D.; Jones, W. D.; Kolos, L. D.; Mazzarella, J. M.; McClelland, R. S.; ODell, S. L.; Saha, T. T.; Sharpe, M. V.

    2011-01-01

    X-ray optics with both high angular resolution and lightweight is essential for further progress in x-ray astronomy. High angular resolution is important in avoiding source confusion and reducing background to enable the observation of the most distant objects of the early Universe. It is also important in enabling the use of gratings to achieve high spectral resolution to study, among other things, the myriad plasmas that exist in planetary, stellar, galactic environments, as well as interplanetary, inter-stellar, and inter-galactic media. Lightweight is important for further increase in effective photon collection area, because x-ray observations must take place on space platforms and the amount of mass that can be launched into space has always been very limited and is expected to continue to be very limited. This paper describes an x-ray optics development program and reports on its status that meets these two requirements. The objective of this program is to enable Explorer type missions in the near term and to enable flagship missions in the long term.

  13. Energy dependence and angular dependence of an optically stimulated luminescence dosimeter in the mammography energy range.

    Science.gov (United States)

    Kawaguchi, Ai; Matsunaga, Yuta; Suzuki, Shoichi; Chida, Koichi

    2017-03-01

    This study aimed to investigate the energy dependence and the angular dependence of commercially available optically stimulated luminescence (OSL) point dosimeters in the mammography energy range. The energy dependence was evaluated to calculate calibration factors (CFs). The half-value layer range was 0.31-0.60 mmAl (Mo/Mo 22-28 kV, Mo/Rh 28-32 kV, and W/Rh 30-34 kV at 2-kV intervals). Mo/Rh 28 kV was the reference condition. Angular dependence was tested by rotating the X-ray tube from -90° to 90° in 30° increments, and signal counts from angled nanoDots were normalized to the 0° signal counts. Angular dependence was compared with three tube voltage and target/filter combinations (Mo/Mo 26 kV, Mo/Rh 28 kV and W/Rh 32 kV). The CFs of energy dependence were 0.94-1.06. In Mo/Mo 26-28 kV and Mo/Rh 28-32 kV, the range of CF was 0.99-1.01, which was very similar. For angular dependence, the most deteriorated normalized values (Mo/Mo, 0.37; Mo/Rh, 0.43; and W/Rh, 0.58) were observed when the X-ray tube was rotated at a 90° angle, compared to 0°. The most angular dependences of ± 30°, 60°, and 90° decreased by approximately 4%, 14%, and 63% respectively. The mean deteriorated measurement 30° intervals from 0° to ± 30° was 2%, from ± 30° to ± 60° was 8%, and from ± 60° to ± 90° was 40%. The range of energy dependence in typical mammography energy range was not as much as that in general radiography and computed tomography. For accurate measurement using nanoDot, the tilt needs to be under 30°.

  14. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges

    Energy Technology Data Exchange (ETDEWEB)

    Bouchard, Frédéric; De Leon, Israel; Schulz, Sebastian A.; Upham, Jeremy; Karimi, Ebrahim, E-mail: ekarimi@uottawa.ca [Department of Physics, University of Ottawa, 25 Templeton, Ottawa, Ontario K1N 6N5 Canada (Canada); Boyd, Robert W. [Department of Physics, University of Ottawa, 25 Templeton, Ottawa, Ontario K1N 6N5 Canada (Canada); Institute of Optics, University of Rochester, Rochester, New York 14627 (United States)

    2014-09-08

    Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ=±2qℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.

  15. Calculation of photon angular distribution and polarization for radiative recombination for high-charged hydrogen-like ions

    Institute of Scientific and Technical Information of China (English)

    Shen Tian-Ming; Chen Chong-Yang; Wang Yan-Sen

    2007-01-01

    In this paper a systematic study is carried out on the angular distribution and polarization of photons emitted following radiative recombination of H-like ions by a non-relativistic dipole approximation. In order to incorporate the screening effect due to inner-shell electrons, a distorted wave approach is used. The dependences of the calculated angular distribution and polarization on the reduced energy and nuclear charge are fitted by the corresponding empirical formulas respectively.

  16. Measurement of the Angular Distribution of the Electron from $W \\to e + \

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Manuel Martin [Univ. of Zargoza (Spain)

    1996-10-01

    The goal of this thesis is to scan the extensive literature dealing with the properties of the W and Z bosons. Iit is clear that, besides the measurements confirming the weak interactions theory, no specific work related to the angular distributions of the emerging particles from the leptonic decay of the boson has been done. The aim of the work is to obtain experimentally the values of α2, as function of the transverse momentum of the W, that appear in the expression 0.3 and to compare the values obtained with the theoretical predictions.

  17. Angular distribution of isothermal expansions of non-quasi-neutral plasmas into a vacuum

    Science.gov (United States)

    Yongsheng, Huang; Xiaojiao, Duan; Yijin, Shi; Xiaofei, Lan; Zhixin, Tan; Naiyan, Wang; Xiuzhang, Tang; Yexi, He

    2008-04-01

    A two dimensional planar model is developed for self-similar isothermal expansions of non-quasi-neutral plasmas into a vacuum of solid targets heated by ultraintense laser pulses. The angular ion distribution and the dependence of the maximum ion velocity on laser parameters and target thicknesses are predicted. Considering the self-generated magnetic field of plasma beams as a perturbation, the ion energy on edge at the ion opening angle has an increase of 2% relative to that on the front center. Therefore, the self-generated magnetic field of plasma beams is not large enough to interpret for the ring structures.

  18. Imaging Polyatomic Molecules in Three Dimensions Using Molecular Frame Photoelectron Angular Distributions

    Science.gov (United States)

    Williams, J. B.; Trevisan, C. S.; Schöffler, M. S.; Jahnke, T.; Bocharova, I.; Kim, H.; Ulrich, B.; Wallauer, R.; Sturm, F.; Rescigno, T. N.; Belkacem, A.; Dörner, R.; Weber, Th.; McCurdy, C. W.; Landers, A. L.

    2012-06-01

    We demonstrate a method for determining the full three-dimensional molecular-frame photoelectron angular distribution in polyatomic molecules using methane as a prototype. Simultaneous double Auger decay and subsequent dissociation allow measurement of the initial momentum vectors of the ionic fragments and the photoelectron in coincidence, allowing full orientation by observing a three-ion decay pathway, (H+, H+, CH2+). We find the striking result that at low photoelectron energies the molecule is effectively imaged by the focusing of photoelectrons along bond directions.

  19. Angular distribution of high-energy $e^+e^-$ photoproduction close to the end of spectrum

    CERN Document Server

    Di Piazza, A

    2012-01-01

    We consider the differential cross section of electron-positron pair production by a high-energy photon in a strong Coulomb field close to the end of the electron or positron spectrum. When the momentum transfer largely exceeds the electron mass, the cross section is obtained analytically in a compact form. Coulomb corrections essentially modify the cross section even for moderate values of the nuclear charge number $Z$. In the same kinematical region, the angular distribution for bound-free pair production, bremsstrahlung, and photorecombination is also obtained.

  20. Angular distribution of positrons in coherent pair production in deformed crystals

    CERN Document Server

    Parazian, V V

    2008-01-01

    We investigate the angular distribution of positrons in the coherent process electron-positron pair creation process by high-energy photons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross-section is derived for an arbitrary deformation field. The case is considered in detail when the photon enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for ${\\mathrm{SiO}}_{2}$ single crystal and Moliere parameterization of the screened atomic potentials in the case of the deformation field generated by the acoustic wave of S -type.

  1. Angular distribution of positrons in coherent pair production in deformed crystals.

    Science.gov (United States)

    Parazian, V V

    2009-05-01

    We investigate the angular distribution of positrons in the coherent process electron-positron pair creation process by high-energy photons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross section is derived for an arbitrary deformation field. The case is considered in detail when the photon enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for SiO(2) and diamond single crystals and Moliere parameterization of the screened atomic potentials in the case of the deformation field generated by an acoustic wave of S-type.

  2. Alignment correlation term in the {beta}-ray angular distribution from spin aligned {sup 20}Na

    Energy Technology Data Exchange (ETDEWEB)

    Minamisono, K. [TRIUMF, 4004 Wesbrook Mall, Vancouver, B. C., V6T 2A3 (Canada); Matsuta, K. [Department of Physics, Osaka University, Toyonaka 560-0043, Osaka (Japan); Minamisono, T. [Department of Physics, Osaka University, Toyonaka 560-0043, Osaka (Japan); Levy, C.D.P. [TRIUMF, 4004 Wesbrook Mall, Vancouver, B. C., V6T 2A3 (Canada); Nagatomo, T. [Department of Physics, Osaka University, Toyonaka 560-0043, Osaka (Japan); Ogura, M. [Department of Physics, Osaka University, Toyonaka 560-0043, Osaka (Japan); Sumikama, T. [Department of Physics, Osaka University, Toyonaka 560-0043, Osaka (Japan); Behr, J.A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, B. C., V6T 2A3 (Canada); Jackson, K.P. [TRIUMF, 4004 Wesbrook Mall, Vancouver, B. C., V6T 2A3 (Canada); Fujiwara, H. [Department of Physics, Osaka University, Toyonaka 560-0043, Osaka (Japan); Mihara, M. [Department of Physics, Osaka University, Toyonaka 560-0043, Osaka (Japan); Fukuda, M. [Department of Physics, Osaka University, Toyonaka 560-0043, Osaka (Japan)

    2004-12-27

    The alignment correlation term in the {beta}-ray angular distribution from nuclear-spin aligned {sup 20}Na(I{sup {pi}} = 2{sup +}, T{sub 1/2} = 449.7 ms) has been measured for the first time. A large enhancement of the time component d in the main axial vector current was preliminarily obtained and the higher order matrices j{sub 2} and j{sub 3} were also evaluated. In order to extract very small G-parity violating induced tensor term, the alignment correlation term of the mirror partner {sup 20}F have to be measured.

  3. Bidirectional optical scattering facility

    Data.gov (United States)

    Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI)The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from a...

  4. Bidirectional optical scattering facility

    Data.gov (United States)

    Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI) The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from...

  5. Angular Distribution of Element Contents in Tree Rings and the Environmental Information

    Institute of Scientific and Technical Information of China (English)

    KESHANZHE; QIANJUNLONG; 等

    1999-01-01

    Element contents of tree rings and soils near tree roots collected from Deodar cedar (Cedrus deodara (Roxb.) G.Don) and Masson pine(Pinus massoniana lamb).were determined to study the relationship between the angular distribution of element contents in tree rings and the environmental information.The chemical composition and properties of soil are very much cmoplicated,which leads to the non-uniform distribution of the element contents in tree rings.The statistical multi-varialbe regression method was used to get the information of the tree-centered distribution of element contents in the environment(soil),(C'),C'(Z,θj),from the distribtuion of element contents in tree rings(C),C(Z,θi),which depends on the plane azimuth angle(θi),i.e.,C=C(Z,θi),where Z is the atomic number of the element,with a satisfactory result though this study is only a primary one.

  6. Calculation of three-body nuclear reactions with angular-momentum and parity-dependent optical potentials

    CERN Document Server

    Deltuva, A

    2016-01-01

    Angular-momentum or parity-dependent nonlocal optical potentials for nucleon-${}^{16}\\mathrm{O}$ scattering able to fit differential cross section data over the whole angular regime are developed and applied to the description of deuteron-${}^{16}\\mathrm{O}$ scattering in the framework of three-body Faddeev-type equations for transition operators. Differential cross sections and deuteron analyzing powers for elastic scattering and ${}^{16}\\mathrm{O}(d,p){}^{17}\\mathrm{O}$ transfer reactions are calculated using a number of local and nonlocal optical potentials and compared with experimental data. Angular-momentum or parity-dependence of the optical potential turns out to be quite irrelevant in the considered three-body reactions while nonlocality is essential for a successful description of the differential cross section data, especially in transfer reactions.

  7. Tissue optics, light distribution, and spectroscopy

    Science.gov (United States)

    Tuchin, Valery V.; Utz, Sergei R.; Yaroslavsky, Ilya V.

    1994-10-01

    A model of multilayered tissue is considered. The Monte Carlo simulation technique is used to study laser beam transport through tissues with varying optical properties for each layer (absorption, scattering, scattering anisotropy factor, and refractive index). Calculations are performed for some models of the human skin and adjacent tissues for visible and UV wavelength ranges. New technology for human epidermis optical parameters determination is presented. This technology includes epidermis upper layers glue stripping; in vitro measurements of total transmission, diffuse reflection, and angular scattering of stripping samples; and using an inverse calculation technique based on four-flux approximation of radiation transport theory. The technology was successfully used for depth dependence monitoring of epidermis optical parameters. An inverse Monte Carlo technique for determining the optical properties of tissues based on spectrophotometric measurements is developed. This technique takes into accounts the 2-D geometry of the experiment, finite sizes of incident beam and integrating sphere ports, boundary conditions, and sideways losses of light.

  8. A classical to quantum optical network link for orbital angular momentum carrying light

    CERN Document Server

    Zhou, Zhi-Yuan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2015-01-01

    Light with orbital angular momentum (OAM) has great potentials in both classical and quantum optical communications such as enhancing the transmission capacity of a single communication channel because of its unlimited dimensions. Based on OAM conservation in second order nonlinear interaction processes, we create a classical to quantum optical network link in OAM degree of freedoms of light via sum frequency generation (SFG) following by a spontaneous parametric down conversion (SPDC). A coherent OAM-carrying beams at telecom wavelength 1550nm is up-converted to 525.5nm OAM-carrying beams in the first crystal, then up-converted OAM-carrying beam is used to pump a second crystal to generate non-degenerate OAM entangled photon pairs at 795nm and 1550nm. By switching the OAM carries by the classical party, the OAM correlation in the quantum party is shifted. High OAM entanglements in two dimensional subspaces are verified. This primary study enables to build a hybrid optical communication network contains both ...

  9. The Rotation Period Distributions of 4-10 Myr T Tauri Stars in Orion OB1: New Constraints on Pre-main-sequence Angular Momentum Evolution

    Science.gov (United States)

    Karim, Md Tanveer; Stassun, Keivan G.; Briceño, César; Vivas, A. Katherina; Raetz, Stefanie; Mateu, Cecilia; José Downes, Juan; Calvet, Nuria; Hernández, Jesús; Neuhäuser, Ralph; Mugrauer, Markus; Takahashi, Hidenori; Tachihara, Kengo; Chini, Rolf; Cruz-Dias, Gustavo A.; Aarnio, Alicia; James, David J.; Hackstein, Moritz

    2016-12-01

    Most existing studies of the angular momentum evolution of young stellar populations have focused on the youngest (≲1-3 Myr) T Tauri stars. In contrast, the angular momentum distributions of older T Tauri stars (˜4-10 Myr) have been less studied, even though they hold key insights to understanding stellar angular momentum evolution at a time when protoplanetary disks have largely dissipated and when models therefore predict changes in the rotational evolution that can in principle be tested. We present a study of photometric variability among 1974 confirmed T Tauri members of various subregions of the Orion OB1 association, and with ages spanning 4-10 Myr, using optical time series from three different surveys. For 564 of the stars (˜32% of the weak-lined T Tauri stars and ˜13% of the classical T Tauri stars in our sample) we detect statistically significant periodic variations, which we attribute to the stellar rotation periods, making this one of the largest samples of T Tauri star rotation periods yet published. We observe a clear change in the overall rotation period distributions over the age range 4-10 Myr, with the progressively older subpopulations exhibiting systematically faster rotation. This result is consistent with angular momentum evolution model predictions of an important qualitative change in the stellar rotation periods starting at ˜5 Myr, an age range for which very few observational constraints were previously available.

  10. Giant dipole resonance in 88Mo from phonon damping model strength functions averaged over temperature and angular momentum distributions

    Science.gov (United States)

    Dinh Dang, N.; Ciemala, M.; Kmiecik, M.; Maj, A.

    2013-05-01

    The line shapes of giant dipole resonance (GDR) in the decay of the compound nucleus 88Mo, which is formed after the fusion-evaporation reaction 48Ti + 40Ca at various excitation energies E* from 58 to 308 MeV, are generated by averaging the GDR strength functions predicted within the phonon damping model (PDM) using the empirical probabilities for temperature and angular momentum. The average strength functions are compared with the PDM strength functions calculated at the mean temperature and mean angular momentum, which are obtained by averaging the values of temperature and angular momentum using the same temperature and angular momentum probability distributions, respectively. It is seen that these two ways of generating the GDR linear line shape yield very similar results. It is also shown that the GDR width approaches a saturation at angular momentum J≥ 50 ℏ at T=4 MeV and at J≥ 70 ℏ at any T.

  11. Giant dipole resonance in $^{88}$Mo from phonon damping model's strength functions averaged over temperature and angular momentum distributions

    CERN Document Server

    Dang, N Dinh; Kmiecik, M; Maj, A

    2013-01-01

    The line shapes of giant dipole resonance (GDR) in the decay of the compound nucleus $^{88}$Mo, which is formed after the fusion-evaporation reaction $^{48}$Ti + $^{40}$Ca at various excitation energies $E^{*}$ from 58 to 308 MeV, are generated by averaging the GDR strength functions predicted within the phonon damping model (PDM) using the empirical probabilities for temperature and angular momentum. The average strength functions are compared with the PDM strength functions calculated at the mean temperature and mean angular momentum, which are obtained by averaging the values of temperature and angular momentum using the same temperature and angular-momentum probability distributions, respectively. It is seen that these two ways of generating the GDR linear line shape yield very similar results. It is also shown that the GDR width approaches a saturation at angular momentum $J\\geq$ 50$\\hbar$ at $T=$ 4 MeV and at $J\\geq$ 70$\\hbar$ at any $T$.

  12. Aerosol size distribution and refractive index from bistatic lidar angular scattering measurements in the surface layer

    Energy Technology Data Exchange (ETDEWEB)

    Pandithurai, G.; Devara, P.C.S.; Raj, P.E.; Sharma, S. [Indian Inst. of Tropical Meteorology, Pune (India)

    1996-05-01

    The results of an inversion method by iteration for determining the aerosol size distribution and the refractive index of atmospheric aerosols in the surface layer from bistatic lidar angular scattering measurements, followed by a brief description of the experimental and data retrieval techniques are presented. The continuous wave, bistatic Argon ion lidar at the Indian Institute of Tropical Meteorology (IITM), Pune (18{degree}31{prime}N, 73{degree}51{prime}E, 559 m AMSL), India has been used for the measurements. Results of the analysis of 420 samples collected over a 7 years` period indicate mean value of size and refractive indices of 4.0 and 1.6, respectively, with greater fraction of larger particles during premonsoon while smaller particles during post-monsoon months at the lidar site. The retrieved aerosol parameters are compared with those determined from spectroradiometer observations at the same site. The results are found well in agreement with those obtained previously by the authors using the library search method. The above observations of angular distribution of scattered intensity are used with an aerosol model to infer the dominant type of aerosols present in the environment in and around the experimental station.

  13. W production at LHC: lepton angular distributions and reference frames for probing hard QCD

    Science.gov (United States)

    Richter-Was, E.; Was, Z.

    2017-02-01

    Precision tests of the Standard Model in the Strong and Electroweak sectors play a crucial role, among the physics program of LHC experiments. Because of the nature of proton-proton processes, observables based on the measurement of the direction and energy of final state leptons provide the most precise probes of such processes. In the present paper, we concentrate on the angular distribution of leptons from W → ℓ ν decays in the lepton-pair rest-frame. The vector nature of the intermediate state imposes that distributions are to a good precision described by spherical harmonics of at most second order. We argue, that contrary to general belief often expressed in the literature, the full set of angular coefficients can be measured experimentally, despite the presence of escaping detection neutrino in the final state. There is thus no principle difference with respect to the phenomenology of the Z/γ → ℓ ^+ ℓ ^- Drell-Yan process. We show also, that with the proper choice of the reference frames, only one coefficient in this polynomial decomposition remains sizable, even in the presence of one or more high p_T jets. The necessary stochastic choice of the frames relies on probabilities independent from any coupling constants. In this way, electroweak effects (dominated by the V-A nature of W couplings to fermions), can be better separated from the ones of strong interactions. The separation is convenient for the measurements interpretation.

  14. W production at LHC: lepton angular distributions and reference frames for probing hard QCD

    CERN Document Server

    Richter-Was, E

    2016-01-01

    Precision tests of the Standard Model in the Strong and Electroweak sectors play an important role, among the physics goals of LHC experiments. Because of the nature of proton-proton processes, observables based on the measurement of the direction and energy of leptons provide the most precise signatures. In the present paper, we concentrate on the angular distribution of leptons from W to l nu decays in the lepton-pair rest-frame. The vector nature of the intermediate state imposes that distributions are to a good precision described by spherical polynomials of at most second order. We argue, that contrary to general belief often expressed in the literature, the full set of angular coefficients can be measured experimentally, despite the presence in the final state of neutrino escaping detection. There is thus no principle difference with respect to the phenomenology of the Z/gamma to l^+ l^- Drell-Yan process. We show also, that with the proper choice of the coordinate frames, only one coefficient in this p...

  15. A Correction of Random Incidence Absorption Coefficients for the Angular Distribution of Acoustic Energy under Measurement Conditions

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2009-01-01

    tracing method for various room shapes and source positions. The averaged angular distribution is found to be similar to a Gaussian distribution. As a result, an angle-weighted absorption coefficient was proposed by considering the angular energy distribution to improve the agreement between...... the theoretical absorption coefficient and the reverberation room measurement. The angle-weighted absorption coefficient, together with the size correction, agrees satisfactorily with the measured absorption data by the reverberation chamber method. At high frequencies and for large samples, the averaged...... weighting corresponds well with the measurement, whereas at low frequencies and for small panels, the relatively flat distribution agrees better....

  16. Geant4 Simulation Study of Deep Underground Muons: Vertical Intensity and Angular Distribution

    Directory of Open Access Journals (Sweden)

    Halil Arslan

    2013-01-01

    Full Text Available Underground muon intensities up to 10000 m.w.e. and angular distribution up to 6500 m.w.e. in standard rock have been investigated using Geant4 simulation package. Muons with energies above 100 GeV were distributed from the ground level taking into account the muon charge ratio of ~1.3 at sea level. The simulated differential muon intensities are in good agreement with the intensities given in the literature. Furthermore, the simulation results for the integrated intensities are consistent with the experimental data, particularly at depths above 4000 m.w.e., where the simulation gives slightly smaller intensities than the experimental ones. In addition, the simulated exponent n at different underground depths agrees well with the experimental points, especially above ~2000 m.w.e.

  17. Search for Z'--> e^+e^- Using Dielectron Mass and Angular Distribution

    CERN Document Server

    Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bölla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, Yu A; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cresciolo, F; Cruz, A; Cuenca-Almenar, C; Cuevas-Maestro, J; Culbertson, R; Cyr, D; Da Ronco, S; D'Auria, S; D'Onofrio, M; Dagenhart, D; De Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, Mauro; Delli Paoli, F; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Di Turo, P; Dorr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernández, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; García, J E; García-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giokaris, N; Giolo, K; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D A; Gold, M; Goldschmidt, N; Goldstein, J; Gómez, G; Gómez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Yu; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimarães da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Heijboer, A; Heinemann, B; Heinrich, J; Herndon, M; Hidas, D; Hill, C S; Hirschbuehl, D; Höcker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S C; Huffman, B T; Hughes, R E; Huston, J; Incandela, J R; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A C; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P F; Lu, R S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Mäki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Mitra, A; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla-Fernández, P A; Mülmenstädt, J; Mukherjee, A; Müller, T; Mumford, R; Murat, P; Nachtman, J; Naganoma, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Österberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, Aldo L; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitine, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; Van Remortel, N; Renton, P B; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Saltzberg, D; Sánchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T G; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakian, A; Sjölin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Söderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spezziga, M; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Saint-Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Tonnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vaiciulis, A W; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobuev, I P; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S

    2006-01-01

    We search for Z' bosons in dielectron events produced in ppbar collisions at sqrt{s}=1.96 TeV, using a 0.45 fb^(-1) dataset accumulated with the CDF II detector at the Fermilab Tevatron. To identify the Z' --> e^+e^- signal, both the dielectron invariant mass distribution and the angular distribution of the electron pair are used. No evidence of a signal is found, and 95% confidence level lower limits are set on the Z' mass for several models. Limits are also placed on the mass and gauge coupling of a generic Z', as well as on the contact interaction mass scales for different helicity structure scenarios.

  18. Search for Z' --> e+ e- using dielectron mass and angular distribution.

    Science.gov (United States)

    Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cresciolo, F; Cruz, A; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cyr, D; DaRonco, S; D'Auria, S; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Delli Paoli, F; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garcia Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giokaris, N; Giolo, K; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Heijboer, A; Heinemann, B; Heinrich, J; Herndon, M; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Mitra, A; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Naganoma, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitin, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; van Remortel, N; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spezziga, M; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vaiciulis, A; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S

    2006-06-02

    We search for Z' bosons in dielectron events produced in pp collisions at square root of s = 1.96 TeV, using 0.45 fb(-1) of data accumulated with the Collider Detector at Fermilab II detector at the Fermilab Tevatron. To identify the Z' --> e+ e- signal, both the dielectron invariant mass distribution and the angular distribution of the electron pair are used. No evidence of a signal is found, and 95% confidence level lower limits are set on the Z' mass for several models. Limits are also placed on the mass and gauge coupling of a generic Z', as well as on the contact-interaction mass scales for different helicity structure scenarios.

  19. Angular distributions of photon stimulated desorption in a vacuum duct observed by using a unidirectional detector

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, M.; Matumoto, M.; Ueda, S.

    1987-07-01

    Pressures in the vacuum duct of the electron storage rings depend on photodesorption. A multicapillary-type mass spectrometer was applied to observe local outgassing rates in the duct, in which the duct surfaces were irradiated by directly incident photons and/or by scattered photons. Local outgassing rates were nonuniform along the periphery of the duct. The desorption rates at the directly incident point were higher than at the other surfaces when photon dose was less than 200 mA h. At over 9000 mA h the rates at that point decreased more, while the desorption rates at the other surfaces decreased less. Angular distributions of photocurrent were also measured. The distributions were almost uniform except near the directly incident point.

  20. Effect of transverse vibrations of fissile nuclei on the angular and spin distributions of low-energy fission fragments

    Science.gov (United States)

    Bunakov, V. E.; Kadmensky, S. G.; Lyubashevsky, D. E.

    2016-05-01

    It is shown that A. Bohr's classic theory of angular distributions of fragments originating from low-energy fission should be supplemented with quantum corrections based on the involvement of a superposition of a very large number of angular momenta L m in the description of the relative motion of fragments flying apart along the straight line coincidentwith the symmetry axis. It is revealed that quantum zero-point wriggling-type vibrations of the fissile system in the vicinity of its scission point are a source of these angular momenta and of high fragment spins observed experimentally.

  1. The Effect of Angular Momentum Distribution and Equation of State on the Stability of Rotating Stars and Disks

    Science.gov (United States)

    Pickett, B. K.; Durisen, R. H.; Davis, G. A.

    1993-05-01

    Nonaxisymmetric instabilities driven by self-gravity and rapid rotation may play a critical role during the collapse and accretion phases of star formation. To date, except for studies of tori, most work on global dynamic instabilities of rotating, self-gravitating equilibrium states has focused on only moderately compressible equations of state and on two extreme cases of the specific angular momentum distribution. In the most commonly considered case, uniform initial cloud conditions yield an angular momentum distribution equivalent to that of the Maclaurin spheroids. Rapidly rotating starlike objects with this angular momentum distribution are subject to barlike instabilities. Hydrodynamic simulations have demonstrated that these instabilities generally result in spiral arm ejection of mass and angular momentum, producing a ring of material about a central, tumbling bar (Williams and Tohline 1988 Astrophys. J. 315, 594). Strongly centrally condensed initial cloud conditions yield the other extreme. A star/disk protostellar system forms which is subject to multiple spiral instabilities. Previous work (Yang, Durisen, Cohl, Imamura, and Toman 1991 BAAS 22, 1257) has suggested that these systems display complex behavior, with many tightly wrapped spiral modes present and growing simultaneously. We have recently begun a survey of dynamic instabilities for a wider range of equations of state and of specific angular momentum distributions. The evolution of our equilibrium objects is followed using a second-order 3D hydrodynamics code. We present results for simulations of isentropic, n=3/2 and 5/2 polytropic stars with angular momentum distributions intermediate between the two extremes. In general, only modest shifts away from the Maclaurin spheroid angular momentum distribution lead to behavior resembling that of star/disk systems. This work is supported by NASA Grant NAGW-3399.

  2. 850-nm hybrid fiber/free-space optical communications using orbital angular momentum modes.

    Science.gov (United States)

    Jurado-Navas, Antonio; Tatarczak, Anna; Lu, Xiaofeng; Olmos, Juan José Vegas; Garrido-Balsells, José María; Monroy, Idelfonso Tafur

    2015-12-28

    Light beams can carry orbital angular momentum (OAM) associated to the helicity of their phasefronts. These OAM modes can be employed to encode information onto a laser beam for transmitting not only in a fiber link but also in a free-space optical (FSO) one. Regarding this latter scenario, FSO communications are considered as an alternative and promising mean complementing the traditional optical communications in many applications where the use of fiber cable is not justified. This next generation FSO communication systems have attracted much interest recently, and the inclusion of beams carrying OAM modes can be seen as an efficient solution to increase the capacity and the security in the link. In this paper, we discuss an experimental demonstration of a proposal for next generation FSO communication system where a light beam carrying different OAM modes and affected by ℳ turbulence is coupled to the multimode fiber link. In addition, we report a better and more robust behavior of higher order OAM modes when the intermodal dispersion is dominant in the fiber after exceeding its maximum range of operation.

  3. Angular momentum distributions of Rydberg state electrons of Be-like sulfur produced through foil penetration

    CERN Document Server

    Imai, M; Kitazawa, S; Komaki, K; Kawatsura, K; Shibata, H; Tawara, H; Azuma, T; Kanai, Y; Yamazaki, Y

    2002-01-01

    Spectra for Coster-Kronig (C-K) transition 1s sup 2 2p( sup 2 P sub 3 sub / sub 2)9l->1s sup 2 2s( sup 2 S sub 1 sub / sub 2)epsilon l sup ' of Be-like S sup 1 sup 2 sup + ions produced following penetration of 2.5 MeV/u S sup q sup + ions (q=7, 10, 12, 13) through C-foil targets of various thickness (1-6.9 mu g/cm sup 2) have been probed using zero-degree electron spectroscopy. It has been found that in collisions for S sup q sup + (q=7, 10) ion incidence, in which the C-K electrons originate from the projectile bound electrons, a fraction of the angular momentum l=1 of the Rydberg state decreases, and fractions of higher (l>=2) angular momenta increase, while the total intensity of the C-K electrons grows, as target foil thickness increases. The electron spectra for S sup q sup + (q=13) incident ions, in which the autoionizing Be-like state is preferably formed by electron capture from the target continuum upon or near the exiting surface, do not change in l-distribution or intensity. The shift to higher l ...

  4. Ion angular distribution in plasma of vacuum arc ion source with composite cathode and elevated gas pressure.

    Science.gov (United States)

    Nikolaev, A G; Savkin, K P; Yushkov, G Yu; Oks, E M

    2014-02-01

    The Metal Vapor Vacuum Arc (MEVVA) ion sources are capable of generating ion beams of almost all metals of the periodic table. For this kind of ion source, a combination of gas feeding with magnetic field allows the simultaneous generation of both metal and gaseous ions. That makes the MEVVA ion source an excellent instrument for science and application. This work presents results of investigation for ion angular distributions in vacuum arc plasma of Mevva-V.Ru ion source for composite cathodes and for elevated gas pressure. It was shown that for all the cathode materials, singly charged ions have wider angular distribution than multiply charged ions. Increasing the working gas pressure leads to a significant change in the angular distribution of gaseous ions, while with the distribution of metal ions gas remains practically unchanged. The reasons for such different influences are discussed.

  5. Distributed optical fiber surface plasmon resonance sensors

    Institute of Scientific and Technical Information of China (English)

    Zhenxin Cao; Lenan Wu; Dayong Li

    2006-01-01

    @@ The relationships of the resonant wavelength of optical fiber surface plasmon resonance (SPR) sensors to the modulation layer refractive index, thickness and the refractive index of the bulk medium are obtained by using theoretical calculation model of optical fiber SPR sensors under certain conditions, which indicates that resonant wavelength of the sensors is approximately linear with modulation layer thickness. Based on the linear relationship, multiple SPR sensors with different resonant wavelengths can be fabricated in a single optical fiber named as distributed optical fiber surface plasmon resonance sensors (DOFSPRSs).Experimental results are presented, showing that it is practical to fabricate more than one SPR sensors in a single optical fiber.

  6. Superposition of two optical vortices with opposite integer or non-integer orbital angular momentum

    Directory of Open Access Journals (Sweden)

    Carlos Fernando Díaz Meza

    2016-04-01

    Full Text Available This work develops a brief proposal to achieve the superposition of two opposite vortex beams, both with integer or non-integer mean value of the orbital angular momentum. The first part is about the generation of this kind of spatial light distributions through a modified Brown and Lohmann’s hologram. The inclusion of a simple mathematical expression into the pixelated grid’s transmittance function, based in Fourier domain properties, shifts the diffraction orders counterclockwise and clockwise to the same point and allows the addition of different modes. The strategy is theoretically and experimentally validated for the case of two opposite rotation helical wavefronts.

  7. Ion beam sputtering of Ag – Angular and energetic distributions of sputtered and scattered particles

    Energy Technology Data Exchange (ETDEWEB)

    Feder, René, E-mail: rene.feder@iom-leipzig.de; Bundesmann, Carsten; Neumann, Horst; Rauschenbach, Bernd

    2013-12-01

    Ion beam sputter deposition (IBD) provides intrinsic features which influence the properties of the growing film, because ion properties and geometrical process conditions generate different energy and spatial distribution of the sputtered and scattered particles. A vacuum deposition chamber is set up to measure the energy and spatial distribution of secondary particles produced by ion beam sputtering of different target materials under variation of geometrical parameters (incidence angle of primary ions and emission angle of secondary particles) and of primary ion beam parameters (ion species and energies). A representative set of Ag thin films is deposited arranged on a substrate holder equatorial to the Ag target in steps of 10° and characterized concerning their film thickness by profilometry to determine the angular distribution of the sputtered particles. The film thickness distributions show a tilted, cosine-like shape and a shifting of the maximum position depending on the primary particle energy and incidence angle of the primary ions. The energy distributions of sputtered and scattered ions and of sputtered neutrals are measured with an energy-selective mass spectrometer. The average energy of the sputtered ions increases with increasing emission angle and also increases with increasing incidence angle of the primary ions. In contrast, the average energy of the sputtered ions is nearly unaffected by the primary particle energy and particle species. The energy distribution of the scattered Ar ions reveals high energetic maxima which shift with increasing emission angle to higher energies. These maxima are not observed for Xe bombardment. The total energies of sputtered and scattered ions show significant differences between the two bombarding species. The maximum of the energy distribution of sputtered Ag neutrals is used to conclude on the surface binding energy of Ag (2.72 eV). All experimental data are compared with Monte Carlo simulations done with

  8. On the angular distribution of cosmic rays from an individual source in a turbulent magnetic field

    CERN Document Server

    Harari, Diego; Roulet, Esteban

    2015-01-01

    We obtain the angular distribution of the cosmic rays reaching an observer from an individual source and after propagation through a turbulent magnetic field, for different ratios between the source distance and the diffusion length. We study both the high-energy quasi-rectilinear regime as well as the transition towards the diffusive regime at lower energies where the deflections become large. We consider the impact of energy losses, showing that they tend to enhance the anisotropy of the source at a given energy. We also discuss lensing effects, in particular those that could result from the regular galactic magnetic field component, and show that the effect of the turbulent extragalactic magnetic fields can smooth out the divergent magnification peaks that would result for point-like sources in the limit of no turbulent deflections.

  9. Two-pathway interferences in photoelectron angular distributions induced by circularly polarized femtosecond pulses.

    Science.gov (United States)

    Douguet, Nicolas; Venzke, Joel; Bartschat, Klaus; Grum-Grzhimailo, Alexei N.; Gryzlova, Elena; Staroselskaya, Ekaterina

    2016-05-01

    Following up on earlier work using linearly polarized radiation, we analyze the characteristics of atomic ionization produced by circularly polarized two-color femtosecond pulses. Two-pathway interferences between nonresonant one-photon and resonant two-photon ionization in the vicinity of an intermediate resonance are considered in detail for atomic hydrogen. Using circularly polarized radiation significantly increases the complexity of the problem, while opening up a rich field of possible further investigations. The principal properties of the photoelectron angular distribution (PAD) are obtained by solving the time-dependent Schrödinger equation and employing a second-order nonstationary perturbative approach. The dependence of the PAD on the intensities, helicities of the harmonics, pulse lengths, and carrier envelope phases is considered in detail. Supported by the NSF under PHY-1430245 and XSEDE PHY-090031.

  10. Time-resolved angular distributions of plume ions from silver at low and medium laser fluence

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen

    in a vacuum chamber (~ 10-7 mbar) with a Nd:YAG laser at a wavelength of 355 nm and made detailed measurements of the time-resolved angular distribution. The ion flow in different directions has been measured with a hemispherical array of Langmuir probes, by which the time-of-flight spectra, as well...... 70 eV up to 145 eV in a direction normal to the target surface with increasing fluence. With increasing observation angle the time-of-flight spectra exhibit a peak at longer flight times, i.e. at a lower kinetic energy. At the highest fluence the ionized fraction of the ablated particles exceeds 0.5....

  11. Calculation of photodetachment cross sections and photoelectron angular distributions of negative ions using density functional theory

    Science.gov (United States)

    Liu, Yuan; Ning, Chuangang

    2015-10-01

    Recently, the development of photoelectron velocity map imaging makes it much easier to obtain the photoelectron angular distributions (PADs) experimentally. However, explanations of PADs are only qualitative in most cases, and very limited works have been reported on how to calculate PAD of anions. In the present work, we report a method using the density-functional-theory Kohn-Sham orbitals to calculate the photodetachment cross sections and the anisotropy parameter β. The spherical average over all random molecular orientation is calculated analytically. A program which can handle both the Gaussian type orbital and the Slater type orbital has been coded. The testing calculations on Li-, C-, O-, F-, CH-, OH-, NH2-, O2-, and S2- show that our method is an efficient way to calculate the photodetachment cross section and anisotropy parameter β for anions, thus promising for large systems.

  12. A Scaling Law of Photoelectron Angular Distributions in One-Cycle Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    BAI Li-Hua; ZHANG Jing-Tao; XU Zhi-Zhan

    2005-01-01

    @@ The photoelectron angular distributions (PADs) from above-threshold ionization of atoms irradiated by one-cycle laser pulses satisfy a scaling law.The scaling law denotes that the main features of the PADs are determined by four dimensionless parameters: (1) the ponderomotive number up = Up/hω, the ponderomotive energy Up in units of laser photon energy; (2) the binding number εb = Eb/hω, the atomic binding energy Eb in units of laser photon energy; (3) the number of absorbed photons q; (4) the carrier-envelope phase Φ0, the phase of the carrier wave with respect to the envelope.We verify the scaling law by theoretical analysis and numerical calculation,compared to that in long-pulse case.A possible experimental test to verify the scaling law is suggested.

  13. Charmed meson production by e/sup +/e- annihilation. [Branching ratios, angular distributions

    Energy Technology Data Exchange (ETDEWEB)

    Wiss, J.E.

    1977-08-01

    Compelling evidence is presented for the production of the lying (D/sup 0/, D/sup +/) isodoublet of charmed mesons by e/sup +/e/sup -/ annihilation. A study of the recoil mass spectra against these mesons reveals the presence of more massive charmed states, the D*/sup 0/ and D*/sup +/, produced in association with the D isodoublet. Mass values and upper limits on the width of the D and D* are established, and the branching fractions for several D* decay modes are obtained. An analysis of the production and decay angular distributions shows that the D is probably a pseudoscalar state and the D* is probably a vector. Finally, upper limits are obtained for D/sup 0/-antiD/sup 0/ mixing.

  14. Photoelectron angular distributions from strong-field ionization of oriented molecules

    CERN Document Server

    Holmegaard, Lotte; Kalhøj, Line; Kragh, Sofie Louise; Stapelfeldt, Henrik; Filsinger, Frank; Küpper, Jochen; Meijer, Gerard; Dimitrovski, Darko; Abu-samha, Mahmoud; Martiny, Christian P J; Madsen, Lars Bojer

    2010-01-01

    The combination of photoelectron spectroscopy and ultrafast light sources is on track to set new standards for detailed interrogation of dynamics and reactivity of molecules. A crucial prerequisite for further progress is the ability to not only detect the electron kinetic energy, as done in traditional photoelectron spectroscopy, but also the photoelectron angular distributions (PADs) in the molecular frame. Here carbonylsulfide (OCS) and benzonitrile molecules, fixed in space by combined laser and electrostatic fields, are ionized with intense, circularly polarized, 30 femtosecond laser pulses. For 1-dimensionally oriented OCS the molecular frame PADs exhibit pronounced anisotropies, perpendicular to the fixed permanent dipole moment, that are absent in PADs from randomly oriented molecules. For 3-dimensionally oriented benzonitrile additional striking structures appear due to suppression of electron emission in nodal planes of the fixed electronic orbitals. Our theoretical analysis, relying on tunneling io...

  15. Manipulation of the coherent spatial and angular shifts of Goos-Hänchen effect to realize the digital optical switch in silicon-on-insulator waveguide corner

    Science.gov (United States)

    Sun, DeGui

    2016-11-01

    In this work, based on the quantum process of the Goos-Hänchen (GH) spatial shift, a quantum process of the GH angular shift is also theoretically investigated. Then, the coherence between spatial and angular shifts in the GH effect is discovered and developed to manipulate the final total displacement for a digital optical switch. It is found that a waveguide corner structure always makes the reflected guide-mode have a GH angular shift in the minus direction when the incident beam is in the Brewster angle vicinity, while it always makes the spatial shift in the plus direction. Meanwhile, the coherence of these two GH shifts has an interesting distribution with the incident angle, and only in the common linear response area to the incident angle, the two GH shifts are mutually enhancing, and then a mini refractive index modulation of the guided-mode at the reflecting interface can create a great stable jump of reflected beam displacement at an eigenstate under the GH effect. As a result, on the 220 nm CMOS-compatible silicon-on-insulator waveguide platform, with a tapered multimode interference (MMI) waveguide, a 5 × 1018cm-3 concentration variation of free carriers can create an absolute digital total displacement of 8-25 μm of the reflected beam on the MMI waveguide output end, leading to a 1 × 5 scale digital optical switching function.

  16. Single decay-lepton angular distributions in polarized +- → $t\\overline{t}$ and simple angular asymmetries as a measure of CP-violating top dipole couplings

    Indian Academy of Sciences (India)

    Saurabh D Rindani

    2003-07-01

    In the presence of an electric dipole coupling of $t\\overline{t}$ to a photon, and an analogous `weak’ dipole coupling to the , CP violation in the process +- → $t\\overline{t}$ results in modified polarization of the top and the anti-top. This polarization can be analyzed by studying the angular distributions of decay charged leptons when the top or anti-top decays leptonically. Analytic expressions are presented for these distributions when either or $\\overline{t}$ decays leptonically, including $\\mathscr{O}(_{s})$ QCD corrections in the soft-gluon approximation. The angular distributions are insensitive to anomalous interactions in top decay. Two types of simple CP-violating polar-angle asymmetries and two azimuthal asymmetries, which do not need the full reconstruction of the or $\\overline{t}$, are studied. Independent 90% CL limits that may be obtained on the real and imaginary parts of the electric and weak dipole couplings at a linear collider operating at $\\sqrt{s}=500$ GeV with integrated luminosity 500 fb-1 and also at $\\sqrt{s} = 1000$ GeV with integrated luminosity 1000 fb-1 have been evaluated. The effect of longitudinal electron and/or positron beam polarizations has been included.

  17. Simultaneous two-color, two-dimensional angular optical scattering patterns from airborne particulates: Scattering results and exploratory analysis

    Science.gov (United States)

    Holler, Stephen; Fuerstenau, Stephen D.; Skelsey, Charles R.

    2016-07-01

    Light scattering from non-spherical particles and aggregates exhibits complex structure that is revealed only when observed in two angular dimensions (θ, ϕ). However, due to variations in shape, packing, and orientation of such aerosols, the structure of two-dimensional angular optical scattering (TAOS) patterns varies among particles. The spectral dependence of scattering contributes further to the observed complexity, but offers another facet to consider. By leveraging multispectral TAOS data from flowing aerosols, we have identified novel morphological descriptors that may be employed in multivariate statistical algorithms for "unknown" particle classification.

  18. Angular distribution of polarized light and its effect on light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes.

    Science.gov (United States)

    Chen, Xinjuan; Ji, Cheng; Xiang, Yong; Kang, Xiangning; Shen, Bo; Yu, Tongjun

    2016-05-16

    Angular distribution of polarized light and its effect on light extraction efficiency (LEE) in AlGaN deep-ultraviolet (DUV) light-emitting diodes (LEDs) are investigated in this paper. A united picture is presented to describe polarized light's emission and propagation processes. It is found that the electron-hole recombinations in AlGaN multiple quantum wells produce three kinds of angularly distributed polarized emissions and propagation process can change their intensity distributions. By investigation the change of angular distributions in 277nm and 215nm LEDs, this work reveals that LEE can be significantly enhanced by modulating the angular distributions of polarized light of DUV LEDs.

  19. Contrast and resolution analysis of angular domain imaging for iterative optical projection tomography reconstruction

    Science.gov (United States)

    Ng, Eldon; Vasefi, Fartash; Kaminska, Bozena; Chapman, Glenn H.; Carson, Jeffrey J. L.

    2010-02-01

    Angular domain imaging (ADI) generates a projection image of an attenuating target within a turbid medium by employing a silicon micro-tunnel array to reject photons that have deviated from the initial propagation direction. In this imaging method, image contrast and resolution are position dependent. The objective of this work was to first characterize the contrast and resolution of the ADI system at a multitude of locations within the imaging plane. The second objective was to compare the reconstructions of different targets using filtered back projection and iterative reconstruction algorithms. The ADI system consisted of a diode laser laser (808nm, CW, ThorLabs) with a beam expander for illumination of the sample cuvette. At the opposite side of the cuvette, an Angular Filter Array (AFA) of 80 μm x 80 μm square-shaped tunnels 1 cm in length was used to reject the transmitted scattered light. Image-forming light exiting the AFA was detected by a linear CCD (16-bit, Mightex). Our approach was to translate two point attenuators (0.5 mm graphite rod, 0.368 mm drill bit) submerged in a 0.6% IntralipidTM dilution using a SCARA robot (Epson E2S351S) to cover a 37x37 and 45x45 matrix of grid points in the imaging plane within the 1 cm path length sample cuvette. At each grid point, a one-dimensional point-spread distribution was collected and system contrast and resolution were measured. Then, the robot was used to rotate the target to collect projection images at several projection angles of various objects, and reconstructed with a filtered back projection and an iterative reconstruction algorithm.

  20. Developments in distributed optical fiber detection technology

    Science.gov (United States)

    Ye, Wei; Zhu, Qianxia; You, Tianrong

    2014-12-01

    The distributed optical fiber detection technology plays an important role in many fields, such as key regional security monitoring, pipeline maintenance and communication cable protection. It is superior to the traditional detector, and has a good prospect. This paper presents an overview of various distributed optical fiber sensors. At first, some related technologies of the optical fiber detection schemes are introduced in respect of sensing distance, real-time ability, signal strength, and system complexity; and the advantages and limitations of fiber gratings sensors, reflection-based optical fiber sensors, and interference- based optical fiber sensors are discussed. Then some advanced distributed optical fiber detection systems are mentioned. And the double-loop Sagnac distributed system is improved by adding photoelectric modulators and depolarizers. In order to denoise and enhance the original signal, a spectral subtraction-likelihood ratio method is improved. The experiment results show the spatial resolution is +/-15m per kilometer. Finally, based on the development trends of optical fiber detection technology at home and abroad, development tendency and application fields are predicted.

  1. Top-of-Atmosphere Albedo Estimation from Angular Distribution Models using Scene Identification from Satellite Cloud Property Retrievals

    Science.gov (United States)

    Loeb, N. G.; Parol, F.; Buriez, J.-C.; Vanbauce, C.

    2000-01-01

    The next generation of Earth radiation budget satellite instruments will routinely merge estimates of global top-of-atmosphere radiative fluxes with cloud properties. This information will offer many new opportunities for validating radiative transfer models and cloud parameterizations in climate models. In this study, five months of POLarization and Directionality of the Earth's Reflectances (POLDER) 670 nm radiance measurements are considered in order to examine how satellite cloud property retrievals can be used to define empirical Angular Distribution Models (ADMs) for estimating top-of-atmosphere (TOA) albedo. ADMs are defined for 19 scene types defined by satellite retrievals of cloud fraction and cloud optical depth. Two approaches are used to define the ADM scene types: The first assumes there are no biases in the retrieved cloud properties and defines ADMs for fixed discrete intervals of cloud fraction and cloud optical depth (fixed-tau approach). The second approach involves the same cloud fraction intervals, but uses percentile intervals of cloud optical depth instead (percentile-tau approach). Albedos generated using these methods are compared with albedos inferred directly from the mean observed reflectance field. Albedos based on ADMs that assume cloud properties are unbiased (fixed-tau approach) show a strong systematic dependence on viewing geometry. This dependence becomes more pronounced with increasing solar zenith angle, reaching approximately equals 12% (relative) between near-nadir and oblique viewing zenith angles for solar zenith angles between 60 deg and 70 deg. The cause for this bias is shown to be due to biases in the cloud optical depth retrievals. In contrast, albedos based on ADMs built using percentile intervals of cloud optical depth (percentile-tau approach) show very little viewing zenith angle dependence and are in good agreement with albedos obtained by direct integration of the mean observed reflectance field (less than 1

  2. The transition radiation. I: numerical study of the angular and spectral distributions; Le rayonnement de transition optique. I: etude numerique des distributions angulaires et spectrales

    Energy Technology Data Exchange (ETDEWEB)

    Couillaud, Ch.; Haouat, G

    1999-07-01

    The optical transition radiation (OTR) is extensively used since many years as a beam visualisation tool on electron accelerators and serves to monitor the beam during its transport adjustment. Its spatial and temporal characteristics make it very attractive as a diagnostic tool and allow measurements of the beam energy and transverse and longitudinal emittances. We present a numerical study of the transition radiation process in the optical region of the radiated spectrum (OTR) and in the higher part (XTR). Spatial and spectral properties are described. They are used to describe experimental observations performed on the ELSA electron-beam facility. An analytical description of the angular distributions of visible radiation emitted by birefringent targets, used as OTR sources, is also proposed. We also analyze interference phenomena between two OTR sources and show the advantage of using this interferometer as a diagnostic tool for tenth MeV electron accelerators. At last, we present an analytical model allowing to design a soft X-ray source to be installed on the ELSA facility and using either a multi-foil stack or a multilayer of two materials of different permittivities. (authors)

  3. Orbital Angular Momentum-based Space Division Multiplexing for High-capacity Underwater Optical Communications

    Science.gov (United States)

    Ren, Yongxiong; Li, Long; Wang, Zhe; Kamali, Seyedeh Mahsa; Arbabi, Ehsan; Arbabi, Amir; Zhao, Zhe; Xie, Guodong; Cao, Yinwen; Ahmed, Nisar; Yan, Yan; Liu, Cong; Willner, Asher J.; Ashrafi, Solyman; Tur, Moshe; Faraon, Andrei; Willner, Alan E.

    2016-09-01

    To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we show up to a 40-Gbit/s link by multiplexing and transmitting four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for 1-Gbit/s/beam; we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the 40-Gbit/s link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the 4-Gbit/s link, a green laser diode is directly modulated. Finally, we show that inter-channel crosstalk induced by thermal gradients can be mitigated using multi-channel equalisation processing.

  4. The Cosmology Large Angular Scale Surveyor (CLASS): 40 GHz Optical Design

    Science.gov (United States)

    Eimer, Joseph R.; Bennett, Charles L.; Chuss, David T.; Marriage, Tobias; Wollack, Edward J.; Zeng, Lingzhen

    2012-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) instrument will measure the polarization of the cosmic microwave background at 40, 90, and 150 GHz from Cerro Toco in the Atacama desert of northern Chile. In this paper, we describe the optical design of the 40 GHz telescope system. The telescope is a diffraction limited catadioptric design consisting of a front-end Variable-delay Polarization Modulator (VPM), two ambient temperature mirrors, two cryogenic dielectric lenses, thermal blocking filters, and an array of 36 smooth-wall scalar feedhorn antennas. The feed horns guide the signal to antenna-coupled transition-edge sensor (TES) bolometers. Polarization diplexing and bandpass definition are handled on the same microchip as the TES. The feed horn beams are truncated with 10 dB edge taper by a 4 K Lyot-stop to limit detector loading from stray light and control the edge illumination of the front-end VPM. The field-of-view is 19 deg x 14 deg with a resolution for each beam on the sky of 1.5 deg. FWHM.

  5. Deep learning as a tool to distinguish between high orbital angular momentum optical modes

    Science.gov (United States)

    Knutson, E. M.; Lohani, Sanjaya; Danaci, Onur; Huver, Sean D.; Glasser, Ryan T.

    2016-09-01

    The generation of light containing large degrees of orbital angular momentum (OAM) has recently been demon- strated in both the classical and quantum regimes. Since there is no fundamental limit to how many quanta of OAM a single photon can carry, optical states with an arbitrarily high difference in this quantum number may, in principle, be entangled. This opens the door to investigations into high-dimensional entanglement shared between states in superpositions of nonzero OAM. Additionally, making use of non-zero OAM states can allow for a dramatic increase in the amount of information carried by a single photon, thus increasing the information capacity of a communication channel. In practice, however, it is difficult to differentiate between states with high OAM numbers with high precision. Here we investigate the ability of deep neural networks to differentiate between states that contain large values of OAM. We show that such networks may be used to differentiate be- tween nearby OAM states that contain realistic amounts of noise, with OAM values of up to 100. Additionally, we examine how the classification accuracy scales with the signal-to-noise ratio of images that are used to train the network, as well as those being tested. Finally, we demonstrate the simultaneous classification of < 100 OAM states with greater than 70 % accuracy. We intend to verify our system with experimentally-produced classi- cal OAM states, as well as investigate possibilities that would allow this technique to work in the few-photon quantum regime.

  6. Three-Dimensional Simultaneous Arbitrary-Way Orbital Angular Momentum Generator Based on Transformation Optics

    Science.gov (United States)

    Zhang, Chen; Deng, Li; Hong, Wei Jun; Jiang, Wei Xiang; Zhu, Jian Feng; Zhou, Mi; Wang, Ling; Li, Shu Fang; Peng, Biao

    2016-12-01

    In wireless communications, people utilize the technology of diversity against multipath fading, so as to improve the reliability of communication equipment. One of the long-standing problems in diversity antennas is the limited number of diversity in a certain space. In this paper, we provide a solution to this issue by a three-dimensional (3D) simultaneous arbitrary-way orbital angular momentum (OAM) generator (3D SAWOG) based on transformation optics. The proposed 3D SAWOG consists of a metamaterial block and a group of transformation cylinders, by which arbitrary-way planar wavefronts can be converted to helical wavefronts with various topological charges simultaneously. The 2D four-way OAM generator and the 3D SAWOG are analyzed, designed, and simulated. The simulation results validate the performance of a 3D SAWOG successfully, indicating that the proposed model possess a high mode purity and expansibility. The SAWOG can be used as a novel diversity antenna array due to the orthogonal property among different modes, which could provide more degrees of freedom than traditional dual-polarization antennas, further improving the reliability of the communication systems.

  7. Orbital Angular Momentum-based Space Division Multiplexing for High-capacity Underwater Optical Communications

    CERN Document Server

    Ren, Yongxiong; Wang, Zhe; Kamali, Seyedeh Mahsa; Arbabi, Ehsan; Arbabi, Amir; Zhao, Zhe; Xie, Guodong; Cao, Yinwen; Ahmed, Nisar; Yan, Yan; Liu, Cong; Willner, Asher J; Ashrafi, Solyman; Tur, Moshe; Faraon, Andrei; Willner, Alan E

    2016-01-01

    To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we multiplex and transmit four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for 1-Gbit/s/beam, we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the higher-rate link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the lower rates, a green laser diode is directly modulated. Finally, we s...

  8. Orbital Angular Momentum-based Space Division Multiplexing for High-capacity Underwater Optical Communications

    Science.gov (United States)

    Ren, Yongxiong; Li, Long; Wang, Zhe; Kamali, Seyedeh Mahsa; Arbabi, Ehsan; Arbabi, Amir; Zhao, Zhe; Xie, Guodong; Cao, Yinwen; Ahmed, Nisar; Yan, Yan; Liu, Cong; Willner, Asher J.; Ashrafi, Solyman; Tur, Moshe; Faraon, Andrei; Willner, Alan E.

    2016-01-01

    To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we show up to a 40-Gbit/s link by multiplexing and transmitting four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for 1-Gbit/s/beam; we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the 40-Gbit/s link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the 4-Gbit/s link, a green laser diode is directly modulated. Finally, we show that inter-channel crosstalk induced by thermal gradients can be mitigated using multi-channel equalisation processing. PMID:27615808

  9. The Cosmology Large Angular Scale Surveyor (CLASS): 40 GHz optical design

    CERN Document Server

    Eimer, Joseph R; Chuss, David T; Marriage, Tobias A; Wollack, Edward J; Zeng, Lingzhen; 10.1117/12.925464

    2012-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) instrument will measure the polarization of the cosmic microwave background at 40, 90, and 150 GHz from Cerro Toco in the Atacama desert of northern Chile. In this paper, we describe the optical design of the 40 GHz telescope system. The telescope is a diffraction limited catadioptric design consisting of a front-end Variable-delay Polarization Modulator (VPM), two ambient temperature mirrors, two cryogenic dielectric lenses, thermal blocking filters, and an array of 36 smooth-wall scalar feedhorn antennas. The feed horns guide the signal to antenna-coupled transition-edge sensor (TES) bolometers. Polarization diplexing and bandpass definition are handled on the same microchip as the TES. The feed horn beams are truncated with 10 dB edge taper by a 4 K Lyot-stop to limit detector loading from stray light and control the edge illumination of the front-end VPM. The field-of-view is 19deg x 14deg with a resolution for each beam on the sky of 1.5deg FWHM.

  10. Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation.

    Science.gov (United States)

    Djordjevic, Ivan B

    2011-07-18

    In order to achieve multi-gigabit transmission (projected for 2020) for the use in interplanetary communications, the usage of large number of time slots in pulse-position modulation (PPM), typically used in deep-space applications, is needed, which imposes stringent requirements on system design and implementation. As an alternative satisfying high-bandwidth demands of future interplanetary communications, while keeping the system cost and power consumption reasonably low, in this paper, we describe the use of orbital angular momentum (OAM) as an additional degree of freedom. The OAM is associated with azimuthal phase of the complex electric field. Because OAM eigenstates are orthogonal the can be used as basis functions for N-dimensional signaling. The OAM modulation and multiplexing can, therefore, be used, in combination with other degrees of freedom, to solve the high-bandwidth requirements of future deep-space and near-Earth optical communications. The main challenge for OAM deep-space communication represents the link between a spacecraft probe and the Earth station because in the presence of atmospheric turbulence the orthogonality between OAM states is no longer preserved. We will show that in combination with LDPC codes, the OAM-based modulation schemes can operate even under strong atmospheric turbulence regime. In addition, the spectral efficiency of proposed scheme is N2/log2N times better than that of PPM.

  11. The cosmology large angular scale surveyor (CLASS): 40 GHz optical design

    Science.gov (United States)

    Eimer, Joseph R.; Bennett, Charles L.; Chuss, David T.; Marriage, Tobias; Wollack, Edward J.; Zeng, Lingzhen

    2012-09-01

    The Cosmology Large Angular Scale Surveyor (CLASS) instrument will measure the polarization of the cosmic microwave background at 40, 90, and 150 GHz from Cerro Toco in the Atacama desert of northern Chile. In this paper, we describe the optical design of the 40 GHz telescope system. The telescope is a diffraction limited catadioptric design consisting of a front-end Variable-delay Polarization Modulator (VPM), two ambient temperature mirrors, two cryogenic dielectric lenses, thermal blocking filters, and an array of 36 smooth-wall scalar feedhorn antennas. The feed horns guide the signal to antenna-coupled transition-edge sensor (TES) bolometers. Polarization diplexing and bandpass definition are handled on the same microchip as the TES. The feed horn beams are truncated with 10 dB edge taper by a 4 K Lyot-stop to limit detector loading from stray light and control the edge illumination of the front-end VPM. The field-of-view is 19° x 14° with a resolution for each beam on the sky of 1.5° FWHM.

  12. Variable Mixed Orbital Character in the Photoelectron Angular Distribution of NO_{2}

    Science.gov (United States)

    Laws, Benjamin A.; Cavanagh, Steven J.; Lewis, Brenton R.; Gibson, Stephen T.

    2017-06-01

    NO_{2} a key component of photochemical smog and an important species in the Earth's atmosphere, is an example of a molecule which exhibits significant mixed orbital character in the HOMO. In photoelectron experiments the geometric properties of the parent anion orbital are reflected in the photoelectron angular distribution (PAD), an area of research that has benefited largely from the ability of velocity-map imaging (VMI) to simultaneously record both the energetic and angular information, with 100% collection efficiency. Photoelectron spectra of NO_{2}^{-}, taken over a range of wavelengths (355nm-520nm) with the ANU's VMI spectrometer, reveal an anomalous jump in the anisotropy parameter near threshold. Consequently, the orbital behavior of NO_{2}^{-} appears to be quite different near threshold compared to detachment at higher photon energies. This surprising effect is due to the Wigner Threshold law, which causes p orbital character to dominate the photodetachment cross-section near threshold, before the mixed s/d orbital character becomes significant at higher electron kinetic energies. By extending recent work on binary character models to form a more general expression, the variable mixed orbital character of NO_{2}^{-} is able to be described. This study provides the first multi-wavelength NO_{2} anisotropy data, which is shown to be in decent agreement with much earlier zero-core model predictions of the anisotropy parameter. K. J. Reed, A. H. Zimmerman, H. C. Andersen, and J. I. Brauman, J. Chem. Phys. 64, 1368, (1976). doi:10.1063/1.432404 D. Khuseynov, C. C. Blackstone, L. M. Culberson, and A. Sanov, J. Chem. Phys. 141, 124312, (2014). doi:10.1063/1.4896241 W. B. Clodius, R. M. Stehman, and S. B. Woo, Phys. Rev. A. 28, 760, (1983). doi:10.1103/PhysRevA.28.760 Research supported by the Australian Research Council Discovery Project Grant DP160102585

  13. Quantum beats in the 3{gamma} annihilation decay of Positronium observed by perturbed angular distribution

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Eugeniu [National Institute for Nuclear Physics and Engineering - Horia Hulubei, Bucharest - Magurele, CP MG 06, Atomistilor Street 407 (Romania); Center for Advanced Studies in Physics of the Roumanian Academy, Casa Academiei Romane, Calea 13 Septembrie No: 13, Bucharest (Romania); Vata, Ion [National Institute for Nuclear Physics and Engineering - Horia Hulubei, Bucharest - Magurele, CP MG 06, Atomistilor Street 407 (Romania)], E-mail: vata@ifin.nipne.ro; Dudu, Dorin; Rusen, Ion; Stefan, Nitisor [National Institute for Nuclear Physics and Engineering - Horia Hulubei, Bucharest - Magurele, CP MG 06, Atomistilor Street 407 (Romania)

    2008-10-31

    We have applied conventional Time Differential Perturbed Angular Correlation (TDPAC) method to observe the anisotropy oscillations in the 3{gamma} annihilation decay of polarized Positronium in a weak magnetic field. The effect, as predicted theoretically and experimentally demonstrated by Barishevsky et al. [V.G. Barishevsky, O.N. Metelitsa, V.V. Tikhomirov, Oscillations of the positronium decay {gamma}-quantum angular distribution in a magnetic field, J. Phys. B: At. Mol. Opt. Phys.22 (1989) 2835], is induced by the coherent admixture of the m = 0 states of ortho-Positronium (o-Ps) and para-Positronium (p-Ps) in interaction with the magnetic field. The following experimental characteristics are to be considered: (i)the oscillation frequency corresponds to the difference in energy of the Ps atom levels in magnetic field and is proportional with H{sup 2}; (ii)in a fixed geometry the modulation depth (oscillations amplitude) depends on the mean positron polarization; (iii)privileged angles of the polarization vector, magnetic field and detectors are required for optimizing the observed oscillations amplitude. The normalized difference spectrum function (R(t)) obtained from time spectra measured in vacuum and in different gaseous atmospheres (Ar, H{sub 2}, N{sub 2}) have the oscillations amplitude constant and we conclude that the Ps atoms are not fully thermalized over a time interval of about 400 ns. The R(t) functions obtained for o-Ps annihilation decays, in dry air or Ar-O mixture, have the oscillations amplitude time dependent due, probably, to the paramagnetism of the Oxygen molecules.

  14. Optical angular constancy is maintained as a navigational control strategy when pursuing robots moving along complex pathways.

    Science.gov (United States)

    Wang, Wei; McBeath, Michael K; Sugar, Thomas G

    2015-03-24

    The optical navigational control strategy used to intercept moving targets was explored using a real-world object that travels along complex, evasive pathways. Fielders ran across a gymnasium attempting to catch a moving robot that varied in speed and direction, while ongoing position was measured using an infrared motion-capture system. Fielder running paths were compared with the predictions of three lateral control models, each based on maintaining a particular optical angle relative to the robotic target: (a) constant alignment angle (CAA), (b) constant eccentricity angle (CEA), and (c) linear optical trajectory (LOT). Findings reveal that running pathways were most consistent with maintenance of LOT and least consistent with CEA. This supports that fielders use the same optical control strategy of maintaining angular constancy using a LOT when navigating toward targets moving along complex pathways as when intercepting simple ballistic trajectories. In those cases in which a target dramatically deviates from its optical path, fielders appear to simply reset LOT parameters using a new constant angle value. Maintenance of such optical angular constancy has now been shown to work well with ballistic, complex, and evasive moving targets, confirming the LOT strategy as a robust, general-purpose optical control mechanism for navigating to intercept catchable targets, both airborne and ground based.

  15. The Angular Distribution of Neutrons Scattered from Deuterium below 2 MeV

    Science.gov (United States)

    Nankov, N.; Plompen, A. J. M.; Kopecky, S.; Kozier, K. S.; Roubtsov, D.; Rao, R.; Beyer, R.; Grosse, E.; Hannaske, R.; Junghans, A. R.; Massarczyk, R.; Schwengner, R.; Yakorev, D.; Wagner, A.; Stanoiu, M.; Canton, L.; Nolte, R.; Röttger, S.; Beyer, J.; Svenne, J.

    2014-05-01

    Neutron elastic scattering measurements were carried out at the nELBE neutron time-of-flight facility at a 6 m flight path. Energies below 2 MeV were studied using a setup consisting of eight 6Li-glass detectors placed at nominal angles of 15∘ and 165∘ with respect to the incident neutron beam. A deuterated polyethylene sample with 99.999% enrichment in deuterium was used. These angles were chosen since an earlier study showed that the ratio of the differential cross section at these angles is the most sensitive to differences in evaluated files and model calculations. Accurate 165∘/15∘ angle ratios were obtained. Above 1 MeV these are somewhat larger than given by ENDF/B-VII. Simultaneously the early day experiments using a proportional counter to infer angular distributions from deuterium recoil pulse height distributions are being studied through a new experiment with such a device at the Physikalisch-Technische Bundesanstalt (PTB). At 500 keV this experiment favors ENDF/B-VII over JENDL-4.0, while at lower energies agreement with the data is similar.

  16. On the angular distribution of IceCube high-energy events

    CERN Document Server

    Marcos, R de la Fuente

    2015-01-01

    The detection of high-energy astrophysical neutrinos of extraterrestrial origin by the IceCube neutrino observatory in Antarctica has opened a unique window to the cosmos that may help to probe both the distant Universe and our cosmic backyard. The arrival directions of these high-energy events have been interpreted as uniformly distributed on the celestial sphere. Here, we revisit the topic of the putative isotropic angular distribution of these events applying Monte Carlo techniques to investigate a possible anisotropy. A modest evidence for anisotropy is found. An excess of events appears projected towards a section of the Local Void, where the density of galaxies with radial velocities below 3000 km/s is rather low, suggesting that this particular group of somewhat clustered sources are located either very close to the Milky Way or perhaps beyond 40 Mpc. The results of further analyses of the subsample of southern hemisphere events favour an origin at cosmological distances with the arrival directions of ...

  17. Poynting vector, orbital and spin momentum and angular momentum versus optical force and torque on arbitrary particle in generic optical fields

    CERN Document Server

    Jiang, Yikun; Chen, Jun; Ng, Jack; Lin, Zhifang

    2015-01-01

    We study optical force and torque on a general particle immersed in generic monochromatic free-space optical field. It is rigorously proved that the optical force can be written as a difference between the surface integrals of the orbital momentum density of light in the presence and in the absence of the particle, while the optical torque is described by the surface integral of total angular momentum (AM) density, viz the sum of the orbital and spin AM densities. It is therefore physically understood that only the orbital part of the optical momentum is responsible for the optical force, whereas the optical torque originates from both the orbital and the spin AM, clarifying in generic case the long-standing controversy about whether the orbital AM can induce a spinning torque.

  18. A remodelling metric for angular fibre distributions and its application to diseased carotid bifurcations.

    LENUS (Irish Health Repository)

    Creane, Arthur

    2012-07-01

    Many soft biological tissues contain collagen fibres, which act as major load bearing constituents. The orientation and the dispersion of these fibres influence the macroscopic mechanical properties of the tissue and are therefore of importance in several areas of research including constitutive model development, tissue engineering and mechanobiology. Qualitative comparisons between these fibre architectures can be made using vector plots of mean orientations and contour plots of fibre dispersion but quantitative comparison cannot be achieved using these methods. We propose a \\'remodelling metric\\' between two angular fibre distributions, which represents the mean rotational effort required to transform one into the other. It is an adaptation of the earth mover\\'s distance, a similarity measure between two histograms\\/signatures used in image analysis, which represents the minimal cost of transforming one distribution into the other by moving distribution mass around. In this paper, its utility is demonstrated by considering the change in fibre architecture during a period of plaque growth in finite element models of the carotid bifurcation. The fibre architecture is predicted using a strain-based remodelling algorithm. We investigate the remodelling metric\\'s potential as a clinical indicator of plaque vulnerability by comparing results between symptomatic and asymptomatic carotid bifurcations. Fibre remodelling was found to occur at regions of plaque burden. As plaque thickness increased, so did the remodelling metric. A measure of the total predicted fibre remodelling during plaque growth, TRM, was found to be higher in the symptomatic group than in the asymptomatic group. Furthermore, a measure of the total fibre remodelling per plaque size, TRM\\/TPB, was found to be significantly higher in the symptomatic vessels. The remodelling metric may prove to be a useful tool in other soft tissues and engineered scaffolds where fibre adaptation is also present.

  19. SPIN POLARIZATION AND MAGNETIC DICHROISM IN PHOTOEMISSION FROM CORE AND VALENCE STATES IN LOCALIZED MAGNETIC SYSTEMS .3. ANGULAR-DISTRIBUTIONS

    NARCIS (Netherlands)

    THOLE, BT; VANDERLAAN, G

    1994-01-01

    A general analysis is presented for angle-dependent photoemission from magnetic and oriented atoms using linearly and circularly polarized x-rays. The anisotropy in the angular distribution in a localized material is due to the polarization of the photon, the polarization of the shell from which the

  20. Compensating for the influence of the angular detuning of signal and reference beams on photocurrent in optical heterodyning

    Energy Technology Data Exchange (ETDEWEB)

    Abramian, A.S.; Kazarian, R.A.

    1980-01-01

    The fundamental possibility of compensating for the influence on photocurrent of the angular detuning between the plane fronts of signal and reference beams during optical mixing on the surface of a planar photodetector is demonstrated. Compensation is provided by rotating the plane of the detector relative to the incident emission; this rotation occurs in the plane of incidence of both beams, while the beams themselves remain stationary (detuned).

  1. Femtosecond Timing Distribution Using Optical Pulses

    CERN Document Server

    Winter, A; Winter, A

    2005-01-01

    Fourth-generation light sources, such as the European X-ray Free Electron Laser (XFEL) require timing signals distributed over distances of several kilometers with a stability in the order of femtoseconds. A promising approach is the use of a mode-locked laser that generates sub-picosecond pulses which are distributed in timing stabilized optical fiber links. A good candidate for a laser master oscillator (LMO) is a mode-locked Erbium-doped fiber laser, featuring extremely low phase noise far from the carrier. Results on the development of the LMO locked to an external reference microwave oscillator to suppress low frequency jitter, the distribution via timing stabilized optical fiber links and the reconversion of the optical pulses to a low phase noise microwave RF signals with overall femtosecond stability are presented.

  2. Efficient computation of the angularly resolved chord length distributions and lineal path functions in large microstructure datasets

    Science.gov (United States)

    Turner, David M.; Niezgoda, Stephen R.; Kalidindi, Surya R.

    2016-10-01

    Chord length distributions (CLDs) and lineal path functions (LPFs) have been successfully utilized in prior literature as measures of the size and shape distributions of the important microscale constituents in the material system. Typically, these functions are parameterized only by line lengths, and thus calculated and derived independent of the angular orientation of the chord or line segment. We describe in this paper computationally efficient methods for estimating chord length distributions and lineal path functions for 2D (two dimensional) and 3D microstructure images defined on any number of arbitrary chord orientations. These so called fully angularly resolved distributions can be computed for over 1000 orientations on large microstructure images (5003 voxels) in minutes on modest hardware. We present these methods as new tools for characterizing microstructures in a statistically meaningful way.

  3. Random walk with nonuniform angular distribution biased by an external periodic pulse

    Science.gov (United States)

    Acharyya, Aranyak

    2016-11-01

    We studied the motion of a random walker in two dimensions with nonuniform angular distribution biased by an external periodic pulse. Here, we analytically calculated the mean square displacement (end-to-end distance of a walk after n time steps), without bias and with bias. We determined the average x-component of the final displacement of the walker. Interestingly, we noted that for a particular periodicity of the bias, this average x-component of the final displacement becomes approximately zero. The average y-component of the final displacement is found to be zero for any perodicity of the bias, and its reason can be attributed to the nature of the probability density function of the angle (subtended by the displacement vector with the x-axis). These analytical results are also supported by computer simulations. The present study may be thought of as a model for arresting the bacterial motion (along a preferred direction) by an external periodic bias. This article will be useful for undergraduate students of physics, statistics and biology as an example of an interdisciplinary approach to understand a way to control bacterial motion.

  4. Calculation of photodetachment cross sections and photoelectron angular distributions of negative ions using density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuan [Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Ning, Chuangang, E-mail: ningcg@tsinghua.edu.cn [Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2015-10-14

    Recently, the development of photoelectron velocity map imaging makes it much easier to obtain the photoelectron angular distributions (PADs) experimentally. However, explanations of PADs are only qualitative in most cases, and very limited works have been reported on how to calculate PAD of anions. In the present work, we report a method using the density-functional-theory Kohn-Sham orbitals to calculate the photodetachment cross sections and the anisotropy parameter β. The spherical average over all random molecular orientation is calculated analytically. A program which can handle both the Gaussian type orbital and the Slater type orbital has been coded. The testing calculations on Li{sup −}, C{sup −}, O{sup −}, F{sup −}, CH{sup −}, OH{sup −}, NH{sub 2}{sup −}, O{sub 2}{sup −}, and S{sub 2}{sup −} show that our method is an efficient way to calculate the photodetachment cross section and anisotropy parameter β for anions, thus promising for large systems.

  5. Energy and angular distributions of electron emission from diatomic molecules by bare ion impact

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, A.; Mandal, C.R.; Purkait, M., E-mail: mpurkait_2007@rediffmail.com

    2015-06-15

    The three-Coulomb wave model has been used extensively to study the energy and angular distributions of double-differential cross sections (DDCS) of electron emissions from hydrogen and nitrogen molecules by bare ion impact at intermediate and high energies. In the present model, we have expressed the molecular triple differential cross section in terms of the corresponding atomic triple differential cross section multiplied by the occupation number and the average Rayleigh interference factor, which accounts for the two-center interference effect. Here we have used an active electron approximation of the molecule as a whole in the initial channel. To account for the effect of passive electrons, we have constructed a model potential that satisfies the initial conditions and the corresponding wavefunction has been calculated from the model Hamiltonian of the active electron in the target. In the final channel, we have used a hydrogenic model with an effective nuclear charge that is calculated from its binding energy. In this model, the correlated motion of the particles in the exit channel of the reaction is considered by an adequate product of three-Coulomb functions. The emitted electron, the incident projectile ion and the residual ion are considered to be in same plane. The obtained results are compared with other recent theoretical and experimental findings. There is an overall agreement of the calculations with the experimental data for electron emission cross sections.

  6. Near threshold angular distributions of the $^2$H$(\\gamma,\\Lambda)$X reaction

    CERN Document Server

    Beckford, B; Chiba, A; Doi, D; Fujii, T; Fujii, Y; Futatsukawa, K; Gogami, T; Hashimoto, O; Honda, R; Hosomi, K; Kanda, H; Kaneta, M; Kaneko, Y; Kato, S; Kawama, D; Kimura, C; Kiyokawa, S; Koike, T; Maeda, K; Makabe, K; Matsubara, M; Miwa, K; Nagao, S; Nakamura, S N; Okuyama, A; Shirotori, K; Sugihara, K; Tamura, H; Tsukada, K; Yagi, K; Yamamoto, F; Yamamoto, T O; Han, Y C; Hirose, K; Ishikawa, T; Suzuki, K; Tamae, T; Yamazaki, H

    2013-01-01

    A study of the $^2$H$({\\gamma},{\\Lambda})$X reaction was performed using a tagged photon beam at the Research Center for Electron Photon Science (ELPH), Tohoku University. The photoproduced $\\Lambda$ was measured in the $p{\\pi^{-}}$ decay channel by the upgraded Neutral Kaon Spectrometer (NKS2+). The momentum integrated differential cross section was determined as a function of the scatting angle of ${\\Lambda}$ in the laboratory frame for five energy bins. Our results indicated a peak in the cross section at angles smaller than cos$\\theta^{LAB}_{\\Lambda}$ = 0.95. The experimentally obtained angular distributions were compared to isobar models, Kaon-Maid (KM) and Saclay-Lyon A (SLA), in addition to the composite Regge-plus-resonance (RPR) model. Both SLA(r$K_{1}K_{\\gamma}$ = -1.4) and RPR describe the tendency of the data quite well in contrast to the KM model that substantially under predicted the cross section. With the anticipated forthcoming data on ${\\Lambda}$ integrated and momentum dependent differentia...

  7. SiON metrology using angular and energy distributions of photoelectrons

    Science.gov (United States)

    Tasneem, G.; Tomastik, C.; Mroczyński, R.; Werner, W. S. M.

    2013-06-01

    Angle-resolved X-ray photoelectron spectroscopy (ARXPS) is a useful tool for non-destructive in-depth analysis of near surface regions. However, the reconstruction of depth profile from ARXPS data is an ill-posed mathematical problem. Thus, the main goal of this work was to develop a new, iterative algorithm based on the least square fitting which allows to solve this problem. The depth profiles were restored by dividing sample in thin virtual box shaped layers each with a different concentration. To extract information on the depth distribution, this algorithm is based on the analysis of the angular peak intensities along with the inelastic background. In addition, the physically trivial constraint of atomic fractions adding up to unity was imposed. The model takes into account the effect of elastic scattering and anisotropy of the photoelectric cross section. To test the algorithm, experimental spectrum for SiON samples on Si substrate were measured with a Thermo Theta Probe electron spectrometer for off-normal emission angles in the range between 25° and 75°. A very good agreement was found between the measured spectra and obtained spectra from the algorithm.

  8. Isomer production ratios and the angular momentum distribution of fission fragments

    Science.gov (United States)

    Stetcu, I.; Talou, P.; Kawano, T.; Jandel, M.

    2013-10-01

    Latest generation fission experiments provide an excellent testing ground for theoretical models. In this contribution we compare the measurements for 235U(nth,f), obtained with the Detector for Advanced Neutron Capture Experiments (DANCE) calorimeter at Los Alamos Neutron Science Center (LANSCE), with our full-scale simulation of the primary fragment de-excitation, using the recently developed cgmf code, based on a Monte Carlo implementation of the Hauser-Feshbach theoretical model. We compute the isomer ratios as a function of the initial angular momentum of the fission fragments, for which no direct information exists. Comparison with the available experimental data allows us to determine the initial spin distribution. We also study the dependence of the isomer ratio on the knowledge of the low-lying discrete spectrum input for nuclear fission reactions, finding a high degree of sensitivity. Finally, in the same Hauser-Feshbach approach, we calculate the isomer production ratio for thermal neutron capture on stable isotopes, where the initial conditions (spin, excitation energy, etc.) are well understood. We find that with the current parameters involved in Hauser-Feshbach calculations, we obtain up to a factor of 2 deviation from the measured isomer ratios.

  9. {sup 10}Be({alpha},n){sup 13}C angular distribution measurements

    Energy Technology Data Exchange (ETDEWEB)

    Guillemette, J.; Massey, T.N.; O`Donnell, J.E.; Saito, E.F.; Lane, R.O. [Ohio Univ., Athens, OH (United States)

    1993-10-01

    As a continuation of our investigation of the {sup 14}C system, {sup 10}Be targets have been bombarded with a pulsed beam of alpha particles from the Ohio University Tandem Accelerator. The {sup 10}Be target is in the form of {sup 10}BeO (92 {mu}g/cm{sup 2}) deposited on a platinum foil. Neutron time-of-flight spectra were produced with the Beam Swinger facility and a 4.88 in flight path. Fifty-four neutron angular distributions for the {sup 10}Be({alpha},n{sub {circ}}){sup 13}C and {sup 10}Be({alpha},n{sub 1}){sup 13}C reactions were obtained at angles 0{degrees} to 160{degrees} for 3.675 MeV {le} E{sub {alpha}} {le} 6.325 MeV. A zero-degree excitation function for alpha particles between 3.5 MeV and 8.5 MeV in 75 keV steps was also produced. A preliminary analysis of the ground state transition shows only a narrow peak of approximately 200 keV FWHM and a broad peak of approximately 1.0 MeV FWHM at E{sub {alpha}} = 4.0 MeV and E{sub {alpha}} = 5.6 MeV, respectively. Details and results of this investigation as well as preliminary R-Matrix calculations will be discussed.

  10. Dissociative electron attachment to halogen molecules: Angular distributions and nonlocal effects

    Science.gov (United States)

    Fabrikant, I. I.

    2016-11-01

    We study dissociative electron attachment (DEA) to the ClF and F2 molecules. We formulate a method for calculation of partial resonance widths and calculate the angular distributions of the products in the ClF case using the local and nonlocal versions of the complex potential theory of DEA. They show the dominance of the p wave except in a narrow energy region close to zero energy. Comparison of the local and nonlocal DEA cross sections show that the former are smaller than the latter by a factor of 2 in the energy region important for calculation of thermal rate coefficients. This result is confirmed by comparison of the local and nonlocal calculations for F2. Only at low energies below 30 meV the local cross sections exceed nonlocal due to the 1 /E divergence of the local results. On the other hand, the thermal rate coefficients generated from the local cross sections agree better with experiment than those calculated from the nonlocal cross sections. The most likely reason for this disagreement is the overestimated resonance width in the region of internuclear distances close to the point of crossing between the neutral and anion potential-energy curves.

  11. A Remarkable Angular Distribution of the Intermediate Subclass of $\\gamma$-Ray Bursts

    CERN Document Server

    Mészáros, A; Horváth, I L; Balázs, L; Vavrek, R; Meszaros, Attila; Bagoly, Zsolt; Horvath, Istvan; Balazs, Lajos G.

    2000-01-01

    In the article a test is developed, which allows to test the null-hypothesis of the intrinsic randomness in the angular distribution of gamma-ray bursts collected at the Current BATSE Catalog. The method is a modified version of the well-known counts-in-cells test, and fully eliminates the non-uniform sky-exposure function of BATSE instrument. Applying this method to the case of all gamma-ray bursts no intrinsic non-randomness was found. The test also did not find intrinsic non-randomnesses for the short and long gamma-ray bursts, respectively. On the other hand, using the method to the new intermediate subclass of gamma-ray bursts, the null-hypothesis of the intrinsic randomness for 181 intermediate gamma-ray bursts is rejected on the 96.4% confidence level. Taking 92 dimmer bursts from this subclass itself, we obtain the surprising result: This "dim" subclass of the intermediate subclass has an intrinsic non-randomness on the 99.3% confidence level. On the other hand, the 89 "bright" GRBs show no intrinsic ...

  12. Angular distribution of cosmological parameters as a probe of inhomogeneities: a kinematic parametrisation

    CERN Document Server

    Carvalho, C Sofia

    2016-01-01

    We use a kinematic parametrisation of the luminosity distance to measure the angular distribution on the sky of time derivatives of the scale factor, in particular the Hubble parameter H_0, the deceleration parameter q_0 and the jerk parameter j_0. We apply the method introduced in Carvalho & Marques (2015) to complement probing the inhomogeneity of the large-scale structure by means of the inhomogeneity in the cosmic expansion. This parametrisation is independent of the cosmological equation of state, which renderes it adequate to test interpretations of the cosmic acceleration alternative to the cosmological constant. We also measure the anisotropy of the parameters by computing the power spectrum of the corresponding parameters' maps up to ell=3. Finally for an analytical toy model of an inhomogeneous ensemble of homogenous pixels, we derive the backreaction term in j_0 due to the fluctuations of {H_0,q_0} and measure it to be of order 0.01 the corresponding average over the pixels in the absence of ba...

  13. Role of screening and angular distributions in resonant soft-x-ray emission of CO

    Energy Technology Data Exchange (ETDEWEB)

    Skytt, P.; Glans, P.; Gunnelin, K. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    In the present work the authors focus on two particular properties of resonant X-ray emission, namely core hole screening of the excited electron, and anisotropy caused by the polarization of the exciting synchrotron radiation. The screening of the core hole by the excited electron causes energy shifts and intensity variations in resonant spectra compared to the non-resonant case. The linear polarization of the synchrotron radiation and the dipole nature of the absorption process create a preferential alignment selection of the randomly oriented molecules in the case of resonant excitation, producing an anisotropy in the angular distribution of the emitted X-rays. The authors have chosen CO for this study because this molecule has previously served as a showcase for non-resonant X-ray emission, mapping the valence electronic structure differently according to the local selection rules. With the present work they take interest in how this characteristic feature of the spectroscopy is represented in the resonant case.

  14. Fission Fragment Angular Distribution of 232Th(n,f) at the CERN n_TOF Facility

    CERN Document Server

    Tarrío, D; Audouin, L; Duran, I.; Paradela, C.; Tassan-Got, L; Altstadt, S; Andrzejewski, J; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Tagliente, G; Tain, J L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T J; Žugec, P

    2014-01-01

    The angular distribution of fragments emitted in neutron-induced fission of Th-232 was measured in the white spectrum neutron beam at the n\\_TOF facility at CERN. A reaction chamber based on Parallel Plate Avalanche Counters (PPAC) was used, where the detectors and the targets have been tilted 45 degrees with respect to the neutron beam direction in order to cover the full angular range of the fission fragments. A GEANT4 simulation has been developed to study the setup efficiency. The data analysis and the preliminary results obtained for the Th-232(n,f) between fission threshold and 100 MeV are presented here.

  15. Measurement of the angular distributions of high-order harmonic generations from aligned CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H; Zhao, S T; Zhang, Z X; Liu, P; Zeng, Z N; Li, R X; Xu, Z Z, E-mail: peng@siom.ac.cn, E-mail: ruxinli@mail.shcnc.ac.cn [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, No. 390, Qinghe Road, Jiading District, Shanghai 201800 (China)

    2011-02-01

    In this study, the angular distributions of harmonics emission from aligned CO{sub 2} are explored experimentally and theoretically, and the validity of Strong Field Approximation (SFA) model in the molecular high harmonic generation is therefore studied. The study shows that for describing the angle distribution of high harmonic generation from molecules, SFA is roughly consistent with the qualitative analysis, while the quantitative analysis is different.

  16. Laser-induced radial birefringence and spin-to-orbital optical angular momentum conversion in silver-doped glasses

    CERN Document Server

    Amjad, Jafar Mostafavi; Slussarenko, Sergei; Karimi, Ebrahim; Marrucci, Lorenzo; Santamato, Enrico; 10.1063/1.3610474

    2012-01-01

    Samples of Ag$^+$/Na$^{+}$ ion-exchanged glass that have been subject to intense laser irradiation may develop novel optical properties, as a consequence of the formation of patterns of silver nanoparticles and other structures. Here, we report the observation of a laser-induced permanent transverse birefringence, with the optical axis forming a radial pattern, as revealed by the spin-to-orbital angular momentum conversion occurring in a probe light beam. The birefringence pattern can be modeled well as resulting from thermally-induced stresses arising in the silver-doped glass during laser exposure, although the actual mechanism leading to the permanent anisotropy is probably more complex.

  17. Laser-induced radial birefringence and spin-to-orbital optical angular momentum conversion in silver-doped glasses

    Science.gov (United States)

    Amjad, Jafar Mostafavi; Khalesifard, Hamid Reza; Slussarenko, Sergei; Karimi, Ebrahim; Marrucci, Lorenzo; Santamato, Enrico

    2011-07-01

    Samples of Ag+/Na+ ion-exchanged glass that have been subject to intense laser irradiation may develop novel optical properties, as a consequence of the formation of patterns of silver nanoparticles and other structures. Here, we report the observation of a laser-induced permanent transverse birefringence, with the optical axis forming a radial pattern, as revealed by the spin-to-orbital angular momentum conversion occurring in a probe light beam. The birefringence pattern can be modeled well as resulting from thermally-induced stresses arising in the silver-doped glass during laser exposure, although the actual mechanism leading to the permanent anisotropy is probably more complex.

  18. Improving Recording Density of All-Optical Magnetic Storage by Using High-Pass Angular Spectrum Filters

    Institute of Scientific and Technical Information of China (English)

    ZHUANG You-Yi; ZHANG Yao-Ju

    2009-01-01

    A new design is presented to improve the magnetic recording density in all-optical magnetic storage.By using the high numerical lens with a high-pass angular spectrum filter, circularly polarized laser pulses are focused into the magneto-optic film with the perpendicular anisotropy.Magnetization of the film is induced by the inverse Faraday effect.As the obstructed angle of the filter increases the magnetic recording density increases evidently.The magnetization intensity and the sidelobe effect are also discussed.

  19. The rotation period distributions of 4--10 Myr T Tauri stars in Orion OB1: New constraints on pre-main-sequence angular momentum evolution

    CERN Document Server

    Karim, Md Tanveer; Briceno, Cesar; Vivas, A Katherina; Raetz, Stefanie; Mateu, Cecilia; Downes, Juan Jose; Calvet, Nuria; Hernandez, Jesus; Neuhauser, Ralph; Mugrauer, Markus; Takahashi, Hidenori; Tachihara, Kengo; Chini, Rolf; Cruz-Dias, Gustavo A; Aarnio, Alicia; James, David J; Hackstein, Moritz

    2016-01-01

    Most existing studies of the angular momentum evolution of young stellar populations have focused on the youngest (1-3 Myr) T Tauri stars. In contrast, the angular momentum distributions of older T Tauri stars (4-10 Myr) have been less studied, even though they hold key insight to understanding stellar angular momentum evolution at a time when protoplanetary disks have largely dissipated and when models therefore predict changes in the rotational evolution that can in principle be tested. We present a study of photometric variability among 1,974 confirmed T Tauri members of various sub-regions of the Orion OB1 association, and with ages spanning 4-10 Myr, using optical time-series from three different surveys. For 564 of the stars (~32% of the weak-lined T Tauri stars and ~13% of the classical T Tauri stars in our sample) we detect statistically significant periodic variations which we attribute to the stellar rotation periods, making this one of the largest samples of T Tauri star rotation periods yet publis...

  20. Molecular beam studies of unimolecular reactions: Cl, F + C/sub 2/H/sub 3/Br. [Angular and velocity distributions, mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Buss, R.J.; Coggiola, M.J.; Lee, Y.T.

    1978-12-01

    Several methods currently used to study unimolecular decomposition in molecular beams are discussed. Experimental product angular and velocity distributions obtained for the reaction of F, Cl with C/sub 2/H/sub 3/Br are presented. The mechanism by which conservation of angular momemtum can cause coupling of the product angular and velocity distributions in dissociation of long-lived complexes is introduced. 14 references.

  1. Determining the dominant partial wave contributions from angular distributions of single- and double-polarization observables in pseudoscalar meson photoproduction

    CERN Document Server

    Wunderlich, Y; Thiel, A; Beck, R

    2016-01-01

    This work presents a simple method to determine the significant partial wave contributions to experimentally determined observables in pseudoscalar meson photoproduction. First, fits to angular distributions are presented and the maximum orbital angular momentum $\\text{L}_{\\mathrm{max}}$ needed to achieve a good fit is determined. Then, recent polarization measurements for $\\gamma p \\rightarrow \\pi^{0} p$ from ELSA, GRAAL, JLab and MAMI are investigated according to the proposed method. This method allows us to project high-spin partial wave contributions to any observable as long as the measurement has the necessary statistical accuracy. We show, that high precision and large angular coverage in the polarization data are needed in order to be sensitive to high-spin resonance-states and thereby also for the finding of small resonance contributions. This task can be achieved via interference of these resonances with the well-known states. For the channel $\\gamma p \\rightarrow \\pi^{0} p$, those are the $N(1680)...

  2. Simulation of angular and energy distributions for heavy evaporation residues using statistical model approximations and TRIM code

    Energy Technology Data Exchange (ETDEWEB)

    Sagaidak, R.N., E-mail: sagaidak@nrmail.jinr.ru [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna 141980, Moscow Region (Russian Federation); Utyonkov, V.K., E-mail: utyonkov@sungns.jinr.ru [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna 141980, Moscow Region (Russian Federation); Scarlassara, F., E-mail: scarlassara@pd.infn.it [INFN Sezione di Padova and Universitá di Padova, Dipartimento di Fisica “Galileo Galilei”, 35131 Padova (Italy)

    2013-02-01

    A Monte Carlo approach has been developed for simulations of the angular and energy distributions for heavy evaporation residues (ER) produced in heavy ion fusion-evaporation reactions. The approach uses statistical model approximations of the HIVAP code for the calculations of initial angular and energy distributions inside a target, which are determined by neutron evaporation from an excited compound nucleus. Further step in the simulation of transmission of ER heavy atoms through a target layer is performed with the TRIM code that gives final angle and energy distributions at the exit from the target. Both the simulations (neutron evaporation and transmission through solid media) have been separately considered and good agreement has been obtained between the results of simulations and available experimental data. Some applications of the approach have been also considered.

  3. Angular and Linear Velocity Estimation for a Re-Entry Vehicle Using Six Distributed Accelerometers: Theory, Simulation and Feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G

    2003-04-28

    This report describes a feasibility study. We are interested in calculating the angular and linear velocities of a re-entry vehicle using six acceleration signals from a distributed accelerometer inertial measurement unit (DAIMU). Earlier work showed that angular and linear velocity calculation using classic nonlinear ordinary differential equation (ODE) solvers is not practically feasible, due to mathematical and numerical difficulties. This report demonstrates the theoretical feasibility of using model-based nonlinear state estimation techniques to obtain the angular and linear velocities in this problem. Practical numerical and calibration issues require additional work to resolve. We show that the six accelerometers in the DAIMU are not sufficient to provide observability, so additional measurements of the system states are required (e.g. from a Global Positioning System (GPS) unit). Given the constraint that our system cannot use GPS, we propose using the existing on-board 3-axis magnetometer to measure angular velocity. We further show that the six nonlinear ODE's for the vehicle kinematics can be decoupled into three ODE's in the angular velocity and three ODE's in the linear velocity. This allows us to formulate a three-state Gauss-Markov system model for the angular velocities, using the magnetometer signals in the measurement model. This re-formulated model is observable, allowing us to build an Extended Kalman Filter (EKF) for estimating the angular velocities. Given the angular velocity estimates from the EKF, the three ODE's for the linear velocity become algebraic, and the linear velocity can be calculated by numerical integration. Thus, we do not need direct measurements of the linear velocity to provide observability, and the technique is mathematically feasible. Using a simulation example, we show that the estimator adds value over the numerical ODE solver in the presence of measurement noise. Calculating the velocities in the

  4. Simultaneous measurement of angular distribution of elastic scattering for {sup 6}Li, {sup 7}Be, and {sup 8}B in {sup 58}Ni; Medida simultanea de Distribuciones Angulares de Dispersion Elastica para {sup 6}Li, {sup 7}Be, y {sup 8}B en {sup 58}Ni

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz S, A. [Facultad de Ciencias, UAEM, Toluca, Estado de Mexico (Mexico); Martinez Q, E.; Aguilera R, E.F.; Murillo O, G.; Lizcano C, D.; Gomez C, A. [Departamento de Aceleradores, ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2007-07-01

    The experimental angular distributions of elastic scattering for the projectiles {sup 6}Li, {sup 7}Be, {sup 8}B in {sup 58}Ni were obtained. Using the Optical model with a Woods-Saxon potential form, as much for the real part as for the imaginary one, an adjustment to the experimental data varying only the depth of the imaginary part of the potential is made. A comparison of the results obtained for each projectile is made. (Author)

  5. Wave optics approach for incoherent imaging simulation through distributed turbulence

    Science.gov (United States)

    Underwood, Thomas A.; Voelz, David G.

    2013-09-01

    An approach is presented for numerically simulating incoherent imaging using coherent wave optics propagation methods. The approach employs averaging of irradiance from uncorrelated coherent waves to produce incoherent results. Novel aspects of the method include 1) the exploitation of a spatial windowing feature in the wave optics numerical propagator to limit the angular spread of the light and 2) a simple propagation scaling concept to avoid aliased field components after the focusing element. Classical linear systems theory is commonly used to simulate incoherent imaging when it is possible to incorporate aberrations and/or propagation medium characteristics into an optical transfer function (OTF). However, the technique presented here is useful for investigating situations such as "instantaneous" short-exposure imaging through distributed turbulence and phenomena like anisoplanatism that are not easily modeled with the typical linear systems theory. The relationships between simulation variables such as spatial sampling, source and aperture support, and intermediate focal plane are discussed and the requirement or benefits of choosing these in certain ways are demonstrated.

  6. Angular Gamma Dose Rate Distribution at the Surface of Injected Ducted Concrete Shield

    Science.gov (United States)

    Sayed Ahmed, Fikria M.; Abboud, Aida

    The shielding problems that arise due to the irregular penetrations such as neutral beam injection ducts should be treated carefully to aid in the shield design. The present work was undertaken to describe the effects arising due to radiation streaming through the neutral beam injector ducts (NBID) on the angular distribution of the total gamma ray doses at the outer surface of illmenite concrete shield ( = 4.6g/cm3). The shield is pierced with NBID of different diameters and lengths.The measurements were performed using a collimated beam of both gamma rays and neutrons emitted from one of the horizontal channels of the ET-RR-1 reactor. The measurements were carried out using 7LiF teflon thermoliminescent dosimeters. Generally the obtained data reveal that the presence of the total dose increase at the centerline of NBID and which in turn tends to decrease with the increase of scattered angle. An empirical formula describing the differential dose rate ratio is predicted. The experimental data obtained reveal good agreement with the calculated ones.Translated AbstractDie radiale Verteilung der -Dosisrate auf der Oberfläuche einer durchlöcherten BetonabschirmungAbschirmprobleme, die ihren Ursprung in irregulärem Durchlaßvermögen haben, sollten sorgfältig untersucht werden, um die Konstruktion von Abschirmungen zu unterstützen. In der vorliegenden Arbeit wird versucht, den Effekt von ausgetretener Strahlung (nach dem Mechanismus der neutralen Strahlinjektordurchführung NBID) auf die radiale Verteilung der totalen y- Strahlendosis auf der äußeren Oberfläche einer Illmenitbetonabschirmung ( = 4,6 g/cm3) aufzuzeigen. Der Schild ist mit NBID's verschiedener Längen und Durchmesser versehen. Die experimentellen Werte stimmen gut mit berechneten überein. Eine empirische Formel für die radiale Verteilung wird angegeben.

  7. Angular Distributions of High-Mass Dilepton Production in Hadron Collisions

    Energy Technology Data Exchange (ETDEWEB)

    McClellan, Randall Evan [Illinois U., Urbana

    2016-01-01

    λ has been performed, and the remaining difficulties in extracting ν have been evaluated. Although the results are not yet publishable, significant progress has been made in developing this very challenging angular distributions analysis. A simple scheme for correcting for the angular acceptances of the spectrometer, trigger, and reconstruction has been developed and demonstrated. A generally applicable correction for the kinematically-dependent, rate-dependent reconstruction efficiency has been developed and applied to all current analyses on SeaQuest data. This rate-dependence correction was the first major hurdle in the path to publication of many preliminary SeaQuest results. The last remaining major correction for all analyses, but especially important for the angular parameter extraction, is the full characterization, rate-dependence correction, and subtraction of the combinatoric background contribution to the reconstructed dimuon sample. Independently, an intuitive, kinematic derivation of the single-event definitions of the Drell-Yan angular parameters has been developed under the assumption of unpolarized annihilating quarks within unpolarized nuclei. At O(αs), where the quarks remain co-planar with the hadrons in the photon rest frame, this kinematic method reproduces the Lam-Tung relation and derives an additional equality for µ2, which is only interpretable for single-event parameters. This method has been extended to the case of quark non- coplanarity, and the coplanar equalities become inequalities. A new equality was discovered, which should be obeyed by single-event parameters even in the case of a non-coplanar quark axis. The non-coplanar parameter relations have been used to derive constraints on the experimentally accessible values of λ and ν. These constraints are compared with existing data and have been found consistent, except in the cases where significant contributions from non-zero Boer-Mulders functions are expected. Finally, the

  8. Angular Distributions of High-Mass Dilepton Production in Hadron Collisions

    Energy Technology Data Exchange (ETDEWEB)

    McClellan, Randall Evan [Illinois U., Urbana

    2016-01-01

    λ has been performed, and the remaining difficulties in extracting ν have been evaluated. Although the results are not yet publishable, significant progress has been made in developing this very challenging angular distributions analysis. A simple scheme for correcting for the angular acceptances of the spectrometer, trigger, and reconstruction has been developed and demonstrated. A generally applicable correction for the kinematically-dependent, rate-dependent reconstruction efficiency has been developed and applied to all current analyses on SeaQuest data. This rate-dependence correction was the first major hurdle in the path to publication of many preliminary SeaQuest results. The last remaining major correction for all analyses, but especially important for the angular parameter extraction, is the full characterization, rate-dependence correction, and subtraction of the combinatoric background contribution to the reconstructed dimuon sample. Independently, an intuitive, kinematic derivation of the single-event definitions of the Drell-Yan angular parameters has been developed under the assumption of unpolarized annihilating quarks within unpolarized nuclei. At O(αs), where the quarks remain co-planar with the hadrons in the photon rest frame, this kinematic method reproduces the Lam-Tung relation and derives an additional equality for µ2, which is only interpretable for single-event parameters. This method has been extended to the case of quark non- coplanarity, and the coplanar equalities become inequalities. A new equality was discovered, which should be obeyed by single-event parameters even in the case of a non-coplanar quark axis. The non-coplanar parameter relations have been used to derive constraints on the experimentally accessible values of λ and ν. These constraints are compared with existing data and have been found consistent, except in the cases where significant contributions from non-zero Boer-Mulders functions are expected. Finally, the

  9. Angular distribution and recoil effect for 1 MeV Au+ ions through a Si3N4 thin foil

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Ke [University of Tennessee, Knoxville (UTK); Zhu, Zihua [Pacific Northwest National Laboratory (PNNL); Manandhar, Sandeep [Pacific Northwest National Laboratory (PNNL); Liu, Jia [Pacific Northwest National Laboratory (PNNL); Chen, Chien-Hung [University of Tennessee, Knoxville (UTK); Shutthanandan, Vaithiyalingam [Pacific Northwest National Laboratory (PNNL); Thevuthasan, Suntharampillai [Pacific Northwest National Laboratory (PNNL); Weber, William J [ORNL; Zhang, Yanwen [ORNL

    2014-01-01

    The Stopping and Range of Ions in Matter (SRIM) code has been widely used to predict nuclear stopping power and angular distribution of ion-solid collisions. However, experimental validation of the predictions is insufficient for slow heavy ions in nonmetallic compounds. In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) is applied to determine the angular distribution of 1 MeV Au ions after penetrating a Si3N4 foil with a thickness of ~100 nm. The exiting Au ions are collected by a Si wafer located ~14 mm behind the Si3N4 foil, and the resulting 2-dimensional distribution of Au ions on the Si wafer is measured by ToF-SIMS. The SRIM-predicted angular distribution of Au ions through the Si3N4 thin foil is compared with the measured results, indicating that SRIM slightly overestimates the nuclear stopping power by up to 10%. In addition, thickness reduction of the suspended Si3N4 foils induced by 1 MeV Au ion irradiation is observed with an average loss rate of ~107 atom/ion.

  10. Optic-electronic systems for measurement the three-dimension angular deformation of axles at the millimeter wave range radiotelescope

    Science.gov (United States)

    Konyakhin, Igor A.; Kopylova, Tatyana V.; Konyakhin, Alexsey I.; Smekhov, Andrey A.

    2013-01-01

    Researches in the millimetre wave range require the high accuracy for position of the mirror components of the radiotelescope. A mirror weight is the cause of the three-dimension angular deformation of the elevation axle and azimuth axle relatively bearings. At result the elevation angle and azimuth angle of a parabolic mirror axis orientation is not equal to the set values. For the measuring roll, pitch and yaw angular deformations the autocollimation system with new type of the reflector are used. Reflector for autocollimation measurements as compositions of the anamorphic prism and special tetrahedral reflector is described. New methods for roll, pitch, yaw angles measuring are discussed. Optical scheme for the measurement system, structure the anamorphic prism and tetrahedral reflector are proposed. Equations for the static characteristic of the measuring system are shown.

  11. Angular-dependent photodetection enhancement by a metallic circular disk optical antenna

    Directory of Open Access Journals (Sweden)

    Thitikorn Kemsri

    2017-02-01

    Full Text Available In this paper, we analyze the plasmonic resonance excited by linearly polarized longwave infrared (LWIR plane waves in a metallic circular disk optical antenna (MCDA. The surface current distributions are simulated at different wavelengths, incident angles, and polarizations. The excited surface plasmonic resonance waves (SPRs are different from the Bessel-type of SPR modes and closely resemble those in a monopole antenna. An MCDA coupled LWIR quantum dot infrared photodetector (QDIP was fabricated and measured at different LWIR plane wave wavelengths and incident angles. A linear correlation between the enhancement ratio and the integrated square of the current is obtained, indicating the monopole antenna effect is a dominating factor for the plasmonic enhancement.

  12. Angular dependence of dose sensitivity of nanoDot optically stimulated luminescent dosimeters in different radiation geometries

    Energy Technology Data Exchange (ETDEWEB)

    Jursinic, Paul A., E-mail: pjursinic@wmcc.org [West Michigan Cancer Center, 200 North Park Street, Kalamazoo, Michigan 49007 (United States)

    2015-10-15

    Purpose: A type of in vivo dosimeter, an optically stimulated luminescent dosimeter, OSLD, may have dose sensitivity that depends on the angle of incidence of radiation. This work measures how angular dependence of a nanoDot changes with the geometry of the phantom in which irradiation occurs and with the intrinsic structure of the nanoDot. Methods: The OSLDs used in this work were nanoDot dosimeters (Landauer, Inc., Glenwood, IL), which were read with a MicroStar reader (Landauer, Inc., Glenwood, IL). Dose to the OSLDs was delivered by 6 MV x-rays. NanoDots with various intrinsic sensitivities were irradiated in numerous phantoms that had geometric shapes of cylinders, rectangles, and a cube. Results: No angular dependence was seen in cylindrical phantoms, cubic phantoms, or rectangular phantoms with a thickness to width ratio of 0.3 or 1.5. An angular dependence of 1% was observed in rectangular phantoms with a thickness to width of 0.433–0.633. A group of nanoDots had sensitive layers with mass density of 2.42–2.58 g/cm{sup 3} and relative sensitivity of 0.92–1.09 and no difference in their angular dependence. Within experimental uncertainty, nanoDot measurements agree with a parallel-plate ion chamber at a depth of maximum dose. Conclusions: When irradiated in cylindrical, rectangular, and cubic phantoms, nanoDots show a maximum angular dependence of 1% or less at an incidence angle of 90°. For a sample of 78 new nanoDots, the range of their relative intrinsic sensitivity is 0.92–1.09. For a sample of ten nanoDots, on average, the mass in the sensitive layer is 73.1% Al{sub 2}O{sub 3}:C and 26.9% polyester. The mass density of the sensitive layer of a nanoDot disc is between 2.42 and 2.58 g/cm{sup 3}. The angular dependence is not related to Al{sub 2}O{sub 3}:C loading of the nanoDot disc. The nanoDot at the depth of maximum dose has no more angular dependence than a parallel-plate ion chamber.

  13. Neutron angular distribution in (γ, n) reactions with linearly polarized γ-ray beam generated by laser Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Horikawa, K.; Miyamoto, S.; Mochizuki, T.; Amano, S. [University of Hyogo, Hyogo 678-1205 (Japan); Li, D.; Imasaki, K.; Izawa, Y. [Institute for Laser Technology, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Ogata, K. [Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Chiba, S. [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Japan Atomic Energy Agency, Shirakata-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hayakawa, T., E-mail: hayakawa.takehito@jaea.go.jp [Japan Atomic Energy Agency, Shirakata-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan)

    2014-10-07

    In 1957, Agodi predicted that the neutron angular distribution in (γ, n) reactions with a 100% linearly polarized γ-ray beam for dipole excitation should be anisotropic and universally described by the simple function of a+b⋅cos⁡(2ϕ) at the polar angle θ=90°, where ϕ is the azimuthal angle. However, this prediction has not been experimentally confirmed in over half a century. We have verified experimentally this angular distribution in the (γ, n) reaction for {sup 197}Au, {sup 127}I, and natural Cu targets using linearly polarized laser Compton scattering γ-rays. The result suggests that the (γ{sup →}, n) reaction is a novel tool to study nuclear physics in the giant dipole resonance region.

  14. Pion production via proton synchrotron radiation in strong magnetic fields in relativistic field theory: Scaling relations and angular distributions

    Science.gov (United States)

    Maruyama, Tomoyuki; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.

    2016-06-01

    We study pion production by proton synchrotron radiation in the presence of a strong magnetic field when the Landau numbers of the initial and final protons are ni,f ∼104-105. We find in our relativistic field theory calculations that the pion decay width depends only on the field strength parameter which previously was only conjectured based upon semi-classical arguments. Moreover, we also find new results that the decay width satisfies a robust scaling relation, and that the polar angular distribution of emitted pion momenta is very narrow and can be easily obtained. This scaling implies that one can infer the decay width in more realistic magnetic fields of 1015 G, where ni,f ∼1012-1013, from the results for ni,f ∼104-105. The resultant pion intensity and angular distributions for realistic magnetic field strengths are presented and their physical implications discussed.

  15. Search for quark compositeness in dijet angular distributions from pp collisions at sqrt(s) = 7 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, Serguei [Yerevan Physics Inst. (Armenia); et al.

    2012-05-01

    A search for quark compositeness using dijet angular distributions from pp collisions at sqrt(s) = 7 TeV is presented. The search has been carried out using a data sample corresponding to an integrated luminosity of 2.2 inverse femtobarns, recorded by the CMS experiment at the LHC. Normalized dijet angular distributions have been measured for dijet invariant masses from 0.4 TeV to above 3 TeV and compared with a variety of contact interaction models, including those which take into account the effects of next-to-leading-order QCD corrections. The data are found to be in agreement with the predictions of perturbative QCD, and lower limits are obtained on the contact interaction scale, ranging from 7.5 up to 14.5 TeV at 95% confidence level.

  16. Unambiguous observation of F-atom core-hole localization in CF4 through body-frame photoelectron angular distributions

    Science.gov (United States)

    McCurdy, C. W.; Rescigno, T. N.; Trevisan, C. S.; Lucchese, R. R.; Gaire, B.; Menssen, A.; Schöffler, M. S.; Gatton, A.; Neff, J.; Stammer, P. M.; Rist, J.; Eckart, S.; Berry, B.; Severt, T.; Sartor, J.; Moradmand, A.; Jahnke, T.; Landers, A. L.; Williams, J. B.; Ben-Itzhak, I.; Dörner, R.; Belkacem, A.; Weber, Th.

    2017-01-01

    A dramatic symmetry breaking in K -shell photoionization of the CF4 molecule in which a core-hole vacancy is created in one of four equivalent fluorine atoms is displayed in the molecular frame angular distribution of the photoelectrons. Observing the photoejected electron in coincidence with an F+ atomic ion after Auger decay is shown to select the dissociation path where the core hole was localized almost exclusively on that atom. A combination of measurements and ab initio calculations of the photoelectron angular distribution in the frame of the recoiling CF3+ and F+ atoms elucidates the underlying physics that derives from the Ne-like valence structure of the F(1 s-1 ) core-excited atom.

  17. A Correction of Random Incidence Absorption Coefficients for the Angular Distribution of Acoustic Energy under Measurement Conditions

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2009-01-01

    Most acoustic measurements are based on an assumption of ideal conditions. One such ideal condition is a diffuse and reverberant field. In practice, a perfectly diffuse sound field cannot be achieved in a reverberation chamber. Uneven incident energy density under measurement conditions can cause...... discrepancies between the measured value and the theoretical random incidence absorption coefficient. Therefore the angular distribution of the incident acoustic energy onto an absorber sample should be taken into account. The angular distribution of the incident energy density was simulated using the beam...... the theoretical absorption coefficient and the reverberation room measurement. The angle-weighted absorption coefficient, together with the size correction, agrees satisfactorily with the measured absorption data by the reverberation chamber method. At high frequencies and for large samples, the averaged...

  18. Search for quark compositeness in dijet angular distributions from pp collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Hoch, Michael; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Teischinger, Florian; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Sunil; Benucci, Leonardo; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hammad, Gregory Habib; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wickens, John; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Ceard, Ludivine; De Favereau De Jeneret, Jerome; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Grégoire, Ghislain; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Alves, Gilvan; De Jesus Damiao, Dilson; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Da Costa, Eliza Melo; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Soares Jorge, Luana; Sznajder, Andre; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Karadzhinova, Aneliya; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Siguang; Zhu, Bo; Zou, Wei; Cabrera, Andrés; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Hektor, Andi; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Azzolini, Virginia; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Czellar, Sandor; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Sillou, Daniel; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Marionneau, Matthieu; Millischer, Laurent; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dobrzynski, Ludwik; Elgammal, Sherif; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Thiebaux, Christophe; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Greder, Sebastien; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Baty, Clement; Beauceron, Stephanie; Beaupere, Nicolas; Bedjidian, Marc; Bondu, Olivier; Boudoul, Gaelle; Boumediene, Djamel; Brun, Hugues; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Falkiewicz, Anna; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Le Grand, Thomas; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Viret, Sébastien; Lomidze, David; Anagnostou, Georgios; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Erdmann, Martin; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Lingemann, Joschka; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Weber, Martin; Bontenackels, Michael; Cherepanov, Vladimir; Davids, Martina; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Zoeller, Marc Henning; Aldaya Martin, Maria; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Cakir, Altan; Campbell, Alan; Castro, Elena; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Flossdorf, Alexander; Flucke, Gero; Geiser, Achim; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Olzem, Jan; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Rosin, Michele; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Tomaszewska, Justyna; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Blobel, Volker; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Erfle, Joachim; Gebbert, Ulla; Görner, Martin; Hermanns, Thomas; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Nowak, Friederike; Pietsch, Niklas; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schröder, Matthias; Schum, Torben; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Barth, Christian; Berger, Joram; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Feindt, Michael; Gruschke, Jasmin; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Katkov, Igor; Komaragiri, Jyothsna Rani; Kuhr, Thomas; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Renz, Manuel; Röcker, Steffen; Saout, Christophe; Scheurer, Armin; Schieferdecker, Philipp; Schilling, Frank-Peter; Schmanau, Mike; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Wagner-Kuhr, Jeannine; Weiler, Thomas; Zeise, Manuel; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Triantis, Frixos A; Aranyi, Attila; Bencze, Gyorgy; Boldizsar, Laszlo; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Kapusi, Anita; Krajczar, Krisztian; Sikler, Ferenc; Vesztergombi, Gyorgy; Beni, Noemi; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Veszpremi, Viktor; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Anil; Singh, Jasbir; Singh, Supreet Pal; Ahuja, Sudha; Choudhary, Brajesh C; Kumar, Ashok; Kumar, Arun; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Sarkar, Subir; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Ganguly, Sanmay; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Saha, Anirban; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Mondal, Naba Kumar; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Manna, Norman; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Romano, Francesco; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Tupputi, Salvatore; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Dogangun, Oktay; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Mazzucato, Mirco; Meneguzzo, Anna Teresa; Nespolo, Massimo; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Baesso, Paolo; Berzano, Umberto; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Viviani, Claudio; Biasini, Maurizio; Bilei, Gian Mario; Caponeri, Benedetta; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Santocchia, Attilio; Taroni, Silvia; Valdata, Marisa; Azzurri, Paolo; Bagliesi, Giuseppe; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Palmonari, Francesco; Rizzi, Andrea; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Fanelli, Cristiano; Franci, Daniele; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Sigamani, Michael; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Dellacasa, Giulio; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Heo, Seong Gu; Nam, Soon-Kwon; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dong-Chul; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Jo, Hyun Yong; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Seo, Eunsung; Sim, Kwang Souk; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Cho, Yongjin; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Martínez-Ortega, Jorge; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Bell, Alan James; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Brona, Grzegorz; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Bialkowska, Helena; Boimska, Bozena; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Musella, Pasquale; Nayak, Aruna; Pela, Joao; Ribeiro, Pedro Quinaz; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Belotelov, Ivan; Bunin, Pavel; Golutvin, Igor; Gorbunov, Ilya; Karjavin, Vladimir; Konoplyanikov, Viktor; Kozlov, Guennady; Lanev, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Toropin, Alexander; Troitsky, Sergey; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kossov, Mikhail; Krokhotin, Andrey; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Soares, Mara Senghi; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bernet, Colin; Bialas, Wojciech; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Breuker, Horst; Bunkowski, Karol; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; Curé, Benoît; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Gaddi, Andrea; Georgiou, Georgios; Gerwig, Hubert; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Govoni, Pietro; Gowdy, Stephen; Guida, Roberto; Guiducci, Luigi; Hansen, Magnus; Harris, Philip; Hartl, Christian; Harvey, John; Hegner, Benedikt; Hinzmann, Andreas; Hoffmann, Hans Falk; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Kousouris, Konstantinos; Lecoq, Paul; Lenzi, Piergiulio; Lourenco, Carlos; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Mavromanolakis, Georgios; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Spiropulu, Maria; Stoye, Markus; Tsirou, Andromachi; Veres, Gabor Istvan; Vichoudis, Paschalis; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Bäni, Lukas; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Chen, Zhiling; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Dünser, Marc; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Lecomte, Pierre; Lustermann, Werner; Martinez Ruiz del Arbol, Pablo; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Sawley, Marie-Christine; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Hannsjoerg Artur; Wehrli, Lukas; Weng, Joanna; Aguilo, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Snoek, Hella; Verzetti, Mauro; Chang, Yuan-Hann; Chen, Kuan-Hsin; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wan, Xia; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Hos, Ilknur; Kangal, Evrim Ersin; Karapinar, Guler; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Uzun, Dilber; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Ball, Gordon; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Tourneur, Stephane; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Wardrope, David; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Hatakeyama, Kenichi; Liu, Hongxuan; Scarborough, Tara; Henderson, Conor; Avetisyan, Aram; Bose, Tulika; Carrera Jarrin, Edgar; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Bhattacharya, Saptaparna; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Caulfield, Matthew; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Gardner, Michael; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Mall, Orpheus; Miceli, Tia; Nelson, Randy; Pellett, Dave; Robles, Jorge; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Andreev, Valeri; Arisaka, Katsushi; Cline, David; Cousins, Robert; Duris, Joseph; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pi, Haifeng; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sfiligoi, Igor; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; Vlimant, Jean-Roch; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Jun, Soon Yung; Liu, Yueh-Feng; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Dinardo, Mauro Emanuele; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Zang, Shi-Lei; Agostino, Lorenzo; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Puigh, Darren; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Biselli, Angela; Cirino, Guy; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Atac, Muzaffer; Bakken, Jon Alan; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cooper, William; Eartly, David P; Elvira, Victor Daniel; Esen, Selda; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Green, Dan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jensen, Hans; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Miao, Ting; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Pivarski, James; Pordes, Ruth; Prokofyev, Oleg; Schwarz, Thomas; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Goldberg, Sean; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Remington, Ronald; Rinkevicius, Aurelijus; Schmitt, Michael; Scurlock, Bobby; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Wang, Dayong; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Sekmen, Sezen; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kunde, Gerd J; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silkworth, Christopher; Silvestre, Catherine; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Griffiths, Scott; Lae, Chung Khim; McCliment, Edward; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Bonato, Alessio; Eskew, Christopher; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Tran, Nhan Viet; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Stringer, Robert; Tinti, Gemma; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Kolberg, Ted; Lu, Ying; Mignerey, Alice; Peterman, Alison; Rossato, Kenneth; Rumerio, Paolo; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Alver, Burak; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Wyslouch, Bolek; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Haupt, Jason; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rekovic, Vladimir; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Godang, Romulus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Summers, Don; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Jindal, Pratima; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Shipkowski, Simon Peter; Smith, Kenneth; Wan, Zongru; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Brinkerhoff, Andrew; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Rodenburg, Marissa; Vuosalo, Carl; Williams, Grayson; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Laird, Edward; Lopes Pegna, David; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Borrello, Laura; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Gutay, Laszlo; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Boulahouache, Chaouki; Cuplov, Vesna; Ecklund, Karl Matthew; Geurts, Frank JM; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Petrillo, Gianluca; Sakumoto, Willis; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Atramentov, Oleksiy; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Richards, Alan; Rose, Keith; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Bardak, Cemile; Damgov, Jordan; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Mane, Poonam; Roh, Youn; Sill, Alan; Volobouev, Igor; Wigmans, Richard; Appelt, Eric; Brownson, Eric; Engh, Daniel; Florez, Carlos; Gabella, William; Gurrola, Alfredo; Issah, Michael; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Conetti, Sergio; Cox, Bradley; Francis, Brian; Goadhouse, Stephen; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Mattson, Mark; Milstène, Caroline; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Belknap, Donald; Bellinger, James Nugent; Bernardini, Jacopo; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Efron, Jonathan; Friis, Evan; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Pierro, Giuseppe Antonio; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua

    2012-01-01

    A search for quark compositeness using dijet angular distributions from pp collisions at $\\sqrt{s}$ = 7 TeV is presented. The search has been carried out using a data sample corresponding to an integrated luminosity of 2.2 inverse femtobarns, recorded by the CMS experiment at the LHC. Normalized dijet angular distributions have been measured for dijet invariant masses from 0.4 TeV to above 3 TeV and compared with a variety of contact interaction models, including those which take into account the effects of next-to-leading-order QCD corrections. The data are found to be in agreement with the predictions of perturbative QCD, and lower limits are obtained on the contact interaction scale, ranging from 7.5 up to 14.5 TeV at 95% confidence level.

  19. Measurement of the angular distribution of fission fragments using a PPAC assembly at CERN n_TOF

    CERN Document Server

    Tarrío, D; Audouin, L; Duran, I; Paradela, C; Tassan-Got, L; Le Naour, C; Bacri, C O; Petitbon, V; Mottier, J; Caamano, M; Altstadt, S; Andrzejewski, J; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cértes-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Tagliente, G; Tain, J L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T J; Žugec, P

    2014-01-01

    A fission reaction chamber based on Parallel Plate Avalanche Counters (PPACs) was built for measuring angular distributions of fragments emitted in neutron-induced fission of actinides at the neutron beam available at the Neutron Time-Of-Flight (n_TOF) facility at CERN. The detectors and the samples were tilted 45 1 with respect to the neutron beam direction to cover all the possible values of the emission angle of the fission fragments. The main features of this setup are discussed and results on the fission fragment angular distribution are provided for the 232 Th(n,f) reaction around the fission threshold. The results are compared with the available data in the literature, demonstrating the good capabilities of this setup

  20. Fission Fragment Angular Distributions in the $^{234}$U(n,f) and $^{236}$U(n,f) reactions

    CERN Multimedia

    We propose to measure the fission fragment angular distribution (FFAD) of the $^{234}$U(n,f) and $^{236}$U (n,f) reactions with the PPAC detection setup used in previous n_TOF-14 experiment. This experiment would take advantage of the high resolution of the n_TOF facility to investigate the FFAD behaviour in the pronounced vibrational resonances that have been observed between 0.1 and 2 MeV for the thorium cycle isotopes. In addition, the angular distribution of these isotopes will be measured for the first time beyond 14 MeV. Furthermore, the experiment will also provide the fission cross section with reduced statistical uncertainty, extending the $^{236}$U(n,f) data up to 1 GeV

  1. Angular distribution functions in the decays of the 3 D 3 state of charmonium originating from unpolarized overline{p}p collisions

    Science.gov (United States)

    Mok, Alex W. K.; Wong, Cheuk-Ping; Sit, Wai-Yu

    2012-10-01

    Using the helicity formalism, we calculate the combined angular distribution function of the two photons (γ1 and γ2) and electron ( e -) in the cascade process overline{p}pto {}^3{D_3}to {}^3{P_2}+{γ_1}to ( {ψ +{γ_2}} )+{γ_1}to ( {{e+}+{e-}} )+{γ_2}+{γ_1},when overline{p} and p are unpolarized. We also derive six different partially integrated angular distribution functions which give the angular distributions of one or two particles in the final state. Once the angular distributions are measured, our expressions will enable one to determine the relative magnitudes as well as the cosines of the relative phases of all the angular-momentum helicity amplitudes in the radiative decay processes 3 D 3 → 3 P 2 + γ1 and 3 P 2 → ψ + γ2.

  2. Angular distribution measurements in particle-γ coincidences using SONIC and HORUS

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelmy, Julius; Derya, Vera; Hennig, Andreas; Pickstone, Simon G.; Spieker, Mark; Zilges, Andreas [Institute for Nuclear Physics, University of Cologne (Germany)

    2014-07-01

    The combined setup SONIC and HORUS consists of the γ-ray spectrometer HORUS with 14 HPGe detectors and the recently commissioned particle spectrometer SONIC with up to 8 ΔE-E silicon detectors. This setup is used to measure the ejectile of a nuclear reaction (p, d, t, or α) in coincidence with the deexciting γ rays emitted by the recoil nucleus. By requiring a certain ejectile energy (e.g. the excitation of a level), a very clean γ spectrum is obtained, in which only physically related events remain. Measuring the angular correlations between the coincident ejectiles and γ-rays allows spin assignments to excited nuclear levels by comparison to theoretical particle-γ angular correlations. An overview of the experimental setup is given, and preliminary p-γ angular correlations measured in a recent {sup 92}Mo(p,p'γ) experiment are shown.

  3. Angular Distributions for ψ' Sequential Decays into 2(π+π-)p(p-)γ via XcJ

    Institute of Scientific and Technical Information of China (English)

    PING Rong-Gang; YUAN Chang-Zheng

    2005-01-01

    Amplitudes for ψ(2S) sequential decays into 2(π+π-)p(p-)γ via XcJ are constructed in effective coupling scheme. A Mote-Carlo simulation is carried out to study angular distributions of the decayed particles in laboratory system. The results can be taken as a reference for measuring the decay of XcJ into Ξ-Ξ+ at BESII/BEPC in the near future.

  4. Linear and angular momentum of electromagnetic fields generated by an arbitrary distribution of charge and current densities at rest

    CERN Document Server

    Thidé, B; Then, H; Tamburini, F

    2010-01-01

    Starting from Stratton-Panofsky-Phillips-Jefimenko equations for the electric and magnetic fields generated by completely arbitrary charge and current density distributions at rest, we derive far-zone approximations for the fields, containing all components, dominant as well as sub-dominant. Using these approximate formulas, we derive general formulas for the total electromagnetic linear momentum and angular momentum, valid at large distances from arbitrary, non-moving charge and current sources.

  5. CP violation and CKM phases from angular distributions for B$_{s}$ decays into admixtures of CP eigenstates

    CERN Document Server

    Fleischer, Robert; Fleischer, Robert; Dunietz, Isard

    1997-01-01

    We investigate the time-evolutions of angular distributions for B_s decays into final states that are admixtures of CP-even and CP-odd configurations. A sizable lifetime difference between the B_s mass eigenstates allows a probe of CP violation in time-dependent untagged angular distributions. Interference effects between different final state configurations of B_s\\to D^{*+}_s D^{*-}_s, J/\\psi \\phi determine the Wolfenstein parameter \\eta from untagged data samples, or -- if one uses |V_{ub}|/|V_{cb}| as an additional input -- the notoriously difficult to measure CKM angle \\gamma. Another determination of \\gamma is possible by using isospin symmetry of strong interactions to relate untagged data samples of B_s\\to K^{\\ast+} K^{\\ast-} and B_s\\to K^{\\ast0} \\overline{K^{\\ast0}}. We note that the untagged angular distribution for B_s\\to\\rho^0 \\phi provides interesting information about electroweak penguins.

  6. Slumped glass optics with interfacing ribs for high angular resolution x-ray astronomy: a progress report

    Science.gov (United States)

    Civitani, M.; Basso, S.; Brizzolari, C.; Ghigo, M.; Pareschi, G.; Salmaso, B.; Spiga, D.; Vecchi, G.; Breunig, E.; Burwitz, V.; Hartner, G. D.; Menz, B.

    2015-09-01

    The Slumped Glass Optics technology, developed at INAF/OAB since a few years, is becoming a competitive solution for the realization of the future X-ray telescopes with a very large collecting area, as e.g. the proposed Athena, with more than 2 m2 effective area at 1 keV and with a high angular resolution (5'' HEW). The developed technique is based on modular elements, named X-ray Optical Units (XOUs), made of several layers of thin foils of glass, previously formed by direct hot slumping in cylindrical configuration, and then stacked in a Wolter-I configuration, through interfacing ribs. The achievable global angular resolution of the optics relies on the surface shape accuracy of the slumped foils, on the smoothness of the mirror surfaces and on the correct integration and co-alignment of the mirror segments achieved with a dedicated Integration Machine (IMA). In this paper we provide an update of the project development, reporting on the last results achieved. In particular, we will present the results obtained with full illumination X-ray tests for the last developed prototypes.

  7. Phase-matching loci and angular acceptance of non-collinear optical parametric amplification.

    Science.gov (United States)

    Trophème, Benoît; Boulanger, Benoit; Mennerat, Gabriel

    2012-11-19

    A general study of phase-matching loci and associated angular acceptances is performed in the case of non-collinear parametric amplification. Numerical and analytical calculations, as well as measurements, are described for the uniaxial BBO crystal and the biaxial LBO crystal.

  8. Optical phased array radiating optical vortex with manipulated topological charges.

    Science.gov (United States)

    Ma, Xiaoliang; Pu, Mingbo; Li, Xiong; Huang, Cheng; Pan, Wenbo; Zhao, Bo; Cui, Jianhua; Luo, Xiangang

    2015-02-23

    Optical antennas are key elements in quantum optics emitting and sensing, and behave wide range applications in optical domain. However, integration of optical antenna radiating orbital angular momentum is still a challenge in nano-scale. We theoretically demonstrate a sub-wavelength phased optical antenna array, which manipulates the distribution of the orbital angular momentum in the near field. Orbital angular momentum with topological charge of 4 can be obtained by controlling the phase distribution of the fundamental mode orbital angular momentum in each antenna element. Our results indicate this phased array may be utilized in high integrated optical communication systems.

  9. Probing Young-type interference effect on angular distributions of e-DDCS using fast electrons as projectile

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, S; Tribedi, L C [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India); Stia, C R; Fojon, O A; Rivarola, R D, E-mail: lokesh@tifr.res.i [Instituto de Fisica Rosario (CONICET-UNR) and Facultad de Ciencias Exactas, IngenierIa y Agrimensura, Universidad Nacional de Rosario, Av. Pellegrini 250, 2000 Rosario (Argentina)

    2009-11-15

    The energy and angular distributions of electron double differential cross sections (DDCS) of H{sub 2} and He are measured for fast electron collision.The measured data are compared with recently developed theoretical calculations. The observed distributions of H{sub 2} are explained in terms of interference effect by comparing with single center He and atomic hydrogen. We show experimentally by comparing with He, that partial constructive interference exists in soft and binary collision regions of H{sub 2} spectra.

  10. Measurements of Drell­-Yan transverse momentum, lepton azimuthal decorrelation and angular distributions with the ATLAS detector

    CERN Document Server

    Lin, Tai-hua; The ATLAS collaboration

    2015-01-01

    The ATLAS Collaboration has performed precision measurements of the transverse momentum of Z/gamma bosons and their decay lepton angular decorrelation with the phi observable. Measurements have been performed at 7 and 8 TeV in different di­lepton invariant mass and rapidity regions. These measurements are sensitive to soft resummation effects and hard jet emissions for small and large momentum transfers, respectively, probing QCD in a unique way. The ATLAS Collaboration is engaged in precision measurement of fundamental Standard Model parameters, e.g. the weak mixing angle and the complete set of coefficients that describe the angular distributions of Drell­-Yan production. A measurement of the forward-­backward asymmetry for the neutral current Drell-Yan process is presented and the results are then used to extract a measurement of the effective weak mixing angle. This measurement shows significant sensitivity to the uncertainties of the parton density functions of the proton. The angular distributions of...

  11. SU-E-I-44: Some Preliminary Analysis of Angular Distribution of X-Ray Scattered On Soft Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Ganezer, K; Krmar, M; Cvejic, Z; Rakic, S; Pajic, B [University of Novi Sad, Novi Sad Serbia (Serbia)

    2015-06-15

    Purpose: The angular distribution of x-radiation scattered at small angles (up to 16 degrees) from several different animal soft tissue (skin, fat, muscle, retina, etc) were measured using standard equipment devoted to study of crystal structure which provides excellent geometry conditions of measurements. showed measurable differences for different tissues. In the simplest possible case when measured samples do not differ in structure (different concentration solutions) it can be seen that intensity of scattered radiation is decreasing function of the concentration and the peak of the maximum of scattering distribution depends on the concentration as well. Methods: An x-ray scattering profile usually consists of sharp diffraction peak; however some properties of the spatial profiles of scattered radiation as intensity, the peak position, height, area, FWHM, the ratio of peak heights, etc. Results: The data contained measurable differences for different tissues. In the simplest possible case when measured samples do not differ in structure (different concentration solutions) it can be seen that intensity of scattered radiation is decreasing function of the concentration and the peak of the maximum of scattering distribution depends on the concentration as well. Measurements of different samples in the very preliminary phase showed that simple biological material used in study showed slightly different scattering pattern, especially at higher angles (around 10degrees). Intensity of radiation scattered from same tissue type is very dependent on water content and several more parameters. Conclusion: This preliminary study using animal soft tissues on the angular distributions of scattered x-rays suggests that angular distributions of X-rays scattered off of soft tissues might be useful in distinguishing healthy tissue from malignant soft tissue.

  12. Interplay between theory and experiment for fission-fragment angular distributions from nuclei near the limits of stability

    Science.gov (United States)

    Freifelder, R.; Prakash, M.; Alexander, John M.

    1986-02-01

    We examine the application of transition-state theory for fission-fragment angular distributions to composite nuclei near the limits of stability. The possible roles of saddle-point and scission-point configurations are explored. For many heavy-ion reactions that involve large angular momenta, the observed anisotropies are between the predictions of the saddle-point and scisson-point models. Empirical correlations are shown between the effective moments of inertia and the spin and {Z 2}/{A} of the compound nucleus. These correlations provide evidence for a class of transition-state nuclei intermediate between saddle- and scission-point configurations. An important indication of these patterns is that the speed of collective deformation toward fission may well be slow enough to allow for statistical equilibrium in the tilting mode even for configurations well beyond the saddle point.

  13. Interacting resonances in the F+H2 reaction revisited: complex terms, Riemann surfaces, and angular distributions.

    Science.gov (United States)

    Sokolovski, D; Sen, S K; Aquilanti, V; Cavalli, S; De Fazio, D

    2007-02-28

    We study the effect of overlapping resonances on the angular distributions of the reaction F+H2(v=0,j=0)-->HF(v=2,j=0)+H in the collision energy range from 5 to 65 meV, i.e., under the reaction barrier. Reactive scattering calculations were performed using the hyperquantization algorithm on the potential energy surface of Stark and Werner [J. Chem. Phys. 104, 6515 (1996)]. The positions of the Regge and complex energy poles are obtained by Pade reconstruction of the scattering matrix element. The Sturmian theory is invoked to relate the Regge and complex energy terms. For two interacting resonances, a two-sheet Riemann surface is contracted and inverted. The semiclassical complex angular momentum analysis is used to decompose the scattering amplitude into the direct and resonance contributions.

  14. State-selective influence of the Breit interaction on the angular distribution of emitted photons following dielectronic recombination

    Science.gov (United States)

    Amaro, Pedro; Shah, Chintan; Steinbrügge, Rene; Beilmann, Christian; Bernitt, Sven; López-Urrutia, José R. Crespo; Tashenov, Stanislav

    2017-02-01

    We report a measurement of K L L dielectronic recombination in charge states from Kr+34 through Kr+28 in order to investigate the contribution of the Breit interaction for a wide range of resonant states. Highly charged Kr ions were produced in an electron-beam ion trap, while the electron-ion collision energy was scanned over a range of dielectronic recombination resonances. The subsequent K α x rays were recorded both along and perpendicular to the electron-beam axis, which allowed the observation of the influence of the Breit interaction on the angular distribution of the x rays. Experimental results are in good agreement with distorted-wave calculations. We demonstrate, both theoretically and experimentally, that there is a strong state-selective influence of the Breit interaction that can be traced back to the angular and radial properties of the wave functions in the dielectronic capture.

  15. Time-resolved and integrated angular distributions of plume ions from silver at low and medium laser fluence

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen

    2013-01-01

    Laser impact on metals in the UV regime results in a significant number of ablated plume ions even at moderate fluence (0.7–2.4 J/cm2). The ablated particles are largely neutrals at the lowest fluence, but the fraction of ions increases strongly with fluence. The ion flow in different directions...... from a silver target irradiated by a laser beam at a wavelength of 355 nm in vacuum was measured with a hemispherical array of Langmuir probes. The time-of-flight spectra in all directions, as well as the total angular yield were determined. The angular distribution peaks strongly in forward direction...... flight times, i.e., at a lower kinetic energy. At the highest fluence, the ionized fraction of the ablated particles in the plume increases up to 0.5....

  16. Creation of p-wave Feshbach molecules in the selected angular momentum states using an optical lattice

    CERN Document Server

    Waseem, Muhammad; Yoshida, Jun; Hattori, Keita; Saito, Taketo; Mukaiyama, Takashi

    2016-01-01

    We selectively create p-wave Feshbach molecules in the $m_{l}=\\pm 1$ orbital angular momentum projection state of $^{6}$Li. We use an optical lattice potential to restrict the relative momentum of the atoms such that only the $m_{l}=\\pm 1$ molecular state couples to the atoms at the Feshbach resonance. We observe the hollow-centered dissociation profile, which is a clear indication of the selective creation of p-wave molecules in the $m_{l}=\\pm1$ states. We also measure the dissociation energy of the p-wave molecules created in the optical lattice and develop a theoretical formulation to explain the dissociation energy as a function of the magnetic field ramp rate for dissociation. The capability of selecting one of the two closely-residing p-wave Feshbach resonances is useful for the precise characterization of the p-wave Feshbach resonances.

  17. Orbital angular moment of a partially coherent beam propagating through an astigmatic ABCD optical system with loss or gain.

    Science.gov (United States)

    Cai, Yangjian; Zhu, Shijun

    2014-04-01

    We derive the general expression for the orbital angular momentum (OAM) flux of an astigmatic partially coherent beam carrying twist phase [i.e., twisted anisotropic Gaussian-Schell model (TAGSM) beam] propagating through an astigmatic ABCD optical system with loss or gain. The evolution properties of the OAM flux of a TAGSM beam in a Gaussian cavity or propagating through a cylindrical thin lens are illustrated numerically with the help of the derived formula. It is found that we can modulate the OAM of a partially coherent beam by varying the parameters of the cavity or the orientation angle of the cylindrical thin lens, which will be useful in some applications, such as free-space optical communications and particle trapping.

  18. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing

    Science.gov (United States)

    Willner, Alan E.; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Li, Long; Zhao, Zhe; Wang, Jian; Tur, Moshe; Molisch, Andreas F.; Ashrafi, Solyman

    2017-02-01

    There is a continuing growth in the demand for data bandwidth, and the multiplexing of multiple independent data streams has the potential to provide the needed data capacity. One technique uses the spatial domain of an electromagnetic (EM) wave, and space division multiplexing (SDM) has become increasingly important for increased transmission capacity and spectral efficiency of a communication system. A subset of SDM is mode division multiplexing (MDM), in which multiple orthogonal beams each on a different mode can be multiplexed. A potential modal basis set to achieve MDM is to use orbital angular momentum (OAM) of EM waves. In such a system, multiple OAM beams each carrying an independent data stream are multiplexed at the transmitter, propagate through a common medium and are demultiplexed at the receiver. As a result, the total capacity and spectral efficiency of the communication system can be multiplied by a factor equal to the number of transmitted OAM modes. Over the past few years, progress has been made in understanding the advantages and limitations of using multiplexed OAM beams for communication systems. In this review paper, we highlight recent advances in the use of OAM multiplexing for high-capacity free-space optical and millimetre-wave communications. We discuss different technical challenges (e.g. atmospheric turbulence and crosstalk) as well as potential techniques to mitigate such degrading effects. This article is part of the themed issue 'Optical orbital angular momentum'.

  19. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing.

    Science.gov (United States)

    Willner, Alan E; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Li, Long; Zhao, Zhe; Wang, Jian; Tur, Moshe; Molisch, Andreas F; Ashrafi, Solyman

    2017-02-28

    There is a continuing growth in the demand for data bandwidth, and the multiplexing of multiple independent data streams has the potential to provide the needed data capacity. One technique uses the spatial domain of an electromagnetic (EM) wave, and space division multiplexing (SDM) has become increasingly important for increased transmission capacity and spectral efficiency of a communication system. A subset of SDM is mode division multiplexing (MDM), in which multiple orthogonal beams each on a different mode can be multiplexed. A potential modal basis set to achieve MDM is to use orbital angular momentum (OAM) of EM waves. In such a system, multiple OAM beams each carrying an independent data stream are multiplexed at the transmitter, propagate through a common medium and are demultiplexed at the receiver. As a result, the total capacity and spectral efficiency of the communication system can be multiplied by a factor equal to the number of transmitted OAM modes. Over the past few years, progress has been made in understanding the advantages and limitations of using multiplexed OAM beams for communication systems. In this review paper, we highlight recent advances in the use of OAM multiplexing for high-capacity free-space optical and millimetre-wave communications. We discuss different technical challenges (e.g. atmospheric turbulence and crosstalk) as well as potential techniques to mitigate such degrading effects.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  20. Distribution of angular momentum transfers from (p , d) and (p , t) reactions in the high excitation energy continuum region of gadolinium nuclei

    Science.gov (United States)

    Tarlow, Thomas; Beausang, Cornelius; Hughes, Richard; Ross, Timothy; Gell, Kristen; Vyas, Gargi

    2013-10-01

    The structure of even and odd Gd nuclei at low/moderate spins and up to high excitation energies in the vicinity of the N = 90 shape change region have been probed using the (p,t) and (p,d) reactions on even-even targets. The proton beam, at a beam energy of 25 MeV, was provided by the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. Outgoing charged particles, between ~30 and 60 degrees, were detected by the STARS silicon telescope while coincident gamma-rays were detected with the clover Ge detectors of the Liberace Array. The measured angular distributions for outgoing deuterons and tritons are well reproduced by DWBA calculations for discrete low-lying states, whereas at higher excitations of (2 - 9) MeV the angular momentum distribution of the continuum region should be represented by a distribution of L-transfer values. The angular distribution of the continuum region has been investigated in the present work . Weighted linear combinations of calculated (DWBA) angular distributions for L-transfer values of ΔL = 0 to 6 ℏ are compared to the experimental angular distribution in a chi-square minimization technique to find the best fitting distribution of angular momentum transfers in gadolinium nuclei. Preliminary results will be presented.

  1. Angular distributions in the radiative decays of the $^3D_3$ state of charmonium originating from polarized $\\bar{p}p$ collisions

    CERN Document Server

    Wong, Cheuk-Ping; Sit, Wai-Yu

    2014-01-01

    Using the helicity formalism, we calculate the combined angular distribution function of the two gamma photons ($\\gamma_1$ and $\\gamma_2$) and the electron ($e^-$) in the triple cascade process $\\bar{p}p\\rightarrow{}^3D_3\\rightarrow{}^3P_2+\\gamma_1\\rightarrow(\\psi+\\gamma_2) +\\gamma_1 \\rightarrow (e^- + e^+) +\\gamma_2 +\\gamma_1$, when $\\bar{p}$ and $p$ are arbitrarily polarized. We also derive six different partially integrated angular distribution functions which give the angular distributions of one or two particles in the final state. Our results show that by measuring the two-particle angular distribution of $\\gamma_1$ and $\\gamma_2$ and that of $\\gamma_2$ and $e^-$, one can determine the relative magnitudes as well as the relative phases of all the helicity amplitudes in the two charmonium radiative transitions ${}^3D_3\\rightarrow{}^3P_2+\\gamma_1$ and $^3P_2\\rightarrow \\psi+\\gamma_2$.

  2. Estimation of the angular coordinates of an object in optical radar systems

    Science.gov (United States)

    Nedelin, V. E.; Stepin, A. P.; Borisov, E. V.

    1983-11-01

    A technique based on the optimal nonlinear filteringn of Poisson processes is used to synthesize optimal and quasi-optimal algorithms for estimating the angular coordinates of an objgct in conical-scanning lidar systems. The convergence of the filter realizing the quasi-optimal algorithm is analyzed. It is shown that the proposed quasi-optimal algorithm for processing signals at the output of the photodetector of the lidar system makes possible a significant reduction in the volume of computations without leading to an appreciable deterioration in estimation accuracy.

  3. Many-body Systems Interacting via a Two-body Random Ensemble; 1, Angular Momentum distribution in the ground states

    CERN Document Server

    Zhao, Y M; Yoshinaga, N

    2002-01-01

    In this paper, we discuss the angular momentum distribution in the ground states of many-body systems interacting via a two-body random ensemble. Beginning with a few simple examples, a simple approach to predict P(I)'s, angular momenta I ground state (g.s.) probabilities, of a few solvable cases, such as fermions in a small single-j shell and d boson systems, is given. This method is generalized to predict P(I)'s of more complicated cases, such as even or odd number of fermions in a large single-j shell or a many-j shell, d-boson, sd-boson or sdg-boson systems, etc. By this method we are able to tell which interactions are essential to produce a sizable P(I) in a many-body system. The g.s. probability of maximum angular momentum $I_{max}$ is discussed. An argument on the microscopic foundation of our approach, and certain matrix elements which are useful to understand the observed regularities, are also given or addressed in detail. The low seniority chain of 0 g.s. by using the same set of two-body interact...

  4. Magnetization curves and probability angular distribution of the magnetization vector in Er2Fe14Si3

    Science.gov (United States)

    Sobh, Hala A.; Aly, Samy H.; Shabara, Reham M.; Yehia, Sherif

    2016-01-01

    Specific magnetic and magneto-thermal properties of Er2Fe14Si3, in the temperature range of 80-300 K, have been investigated using basic laws of classical statistical mechanics in a simple model. In this model, the constructed partition function was used to derive, and therefore calculate the temperature and/or field dependence of a host of physical properties. Examples of these properties are: the magnetization, magnetic heat capacity, magnetic susceptibility, probability angular distribution of the magnetization vector, and the associated angular dependence of energy. We highlight a correlation between the energy of the system, its magnetization behavior and the angular location of the magnetization vector. Our results show that Er2Fe14Si3 is an easy-axis system in the temperature range 80-114 K, but switches to an easy-plane system at T≥114 K. This transition is also supported by both of the temperature dependence of the magnetic heat capacity, which develops a peak at a temperature ~114 K, and the probability landscape which shows, in zero magnetic field, a prominent peak in the basal plane at T=113.5 K.

  5. Parallel Distribution of Asynchronous Optical Signals

    CERN Document Server

    White, R J; Bradbury, S M; Marshall, P

    2007-01-01

    An eleven channel digital asynchronous transceiver (DAT) employing parallel optical link technology has been developed for trigger signal distribution across the Very Energetic Radiation Imaging Telescope Array System (VERITAS). Combinatorial logic functions are implemented in Xilinx Spartan 3 FPGAs, providing a versatile solution adaptable for use in future atmospheric Cerenkov detectors and other high-energy astroparticle experiments. The device is dead-time free and introduces a minimal skew of 1.6 ns between channels. The jitter on each DAT channel is less than 0.8 ns 95% of the time, allowing communication between telescopes and a central trigger system separated by hundreds of meters, without limiting array performance.

  6. Correlation of angular and lateral distributions of electrons in extensive air showers

    Science.gov (United States)

    Giller, Maria; Śmiałkowski, Andrzej; Legumina, Remigiusz

    2016-08-01

    The aim of this paper is to explain the weak correlation of the angular and lateral deflections of electrons in extensive air showers in the primary energy range 1016-1019 eV, when compared with that in some models of electron propagation. We derive analytical formulae for the correlation coefficient in the multiple scattering model with energy losses and show a strong role of the ionisation in diminishing the correlation. By considering a Heitler-like model of an electromagnetic cascade we show also that the presence of photons, parent to electrons, causes a decrease of the correlation, roughly explaining quantitatively the small correlation in air showers.

  7. Study of the $^{234}$U(n,f) fission fragment angular distribution at the CERN n_TOF facility

    CERN Document Server

    Cidoncha-Leal, E; Paradela, C; Tarrío, D; Leong, L S; Audouin, L; Tassan-Got, L; Altstadt, S; Andrzejewski, J; Barbagallo, M; Bécares, V; Becvár, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Hernández-Prieto, A; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Krticka, M; Kroll, J; Lampoudis, C; Langer, C; Lederer, C; Leeb, H; Losito, R; Mallick, A; Manousos, A; Marganiec, J; Martínez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Robles, M S; Roman, F; Rubbia, C; Sabaté-Gilarte, M; Sarmento, R; Saxena, A; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T; Zugec, P

    2014-01-01

    The angular distribution of the f ssion fragments (FFAD) produced in neutron- induced reactions of actinides have been measured with a f ssion detection setup based on parallel-plate avalanche counters (PPACs) at the Neutron Time- Of-Flight (n_TOF) facility at CERN. The main features of the setup and pre- liminary results are reported here forthe 234 U(n,f)reaction measurement show- ing a high concordance with previous data, while providing new results up to 100 MeV.

  8. Measurement of the fission fragment angular distribution for 232Th(n,f) at the CERN n-TOF facility

    CERN Document Server

    Tarrío, D; Audouin, L; Duran, I; Leong, L S; Paradela, C; Altstadt, S; Andrzejewski, J; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; Garcìa, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Losito, R; Manousos, A; Marganiec, J; Martìnez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Tagliente, G; Tain, J L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T J; Žugec, P

    2012-01-01

    A fission reaction chamber was designed to measure the angular distribution of the fragments emitted in neutron-induced fission reactions at n_TOF. Up to ten Parallel Plate Avalanche Counters can be included and kept at controlled low-pressure gas. Counters are tilted 45º with respect to the neutron beam direction and up to nine targets can be interleaved in between. A first measurement of the 232Th(n,f) was recently done and preliminary experimental results demonstrating the suitability of the setup are presented here.

  9. Measurement of Angular Distributions and $R = \\sigma_{L}/\\sigma_{T}$ in Diffractive Electroproduction of $\\rho^{0}$ Mesons

    CERN Document Server

    Ackerstaff, K; Akopov, N Z; Amarian, M; Aschenauer, E C; Avakian, H; Avakian, R; Avetisian, A; Bains, B; Beckmann, M; Belostotskii, S; Belz, J E; Benisch, T; Bernreuther, S; Bianchi, N; Blanchard, S; Blouw, J; Böttcher, Helmut B; Borisov, A; Brack, J; Braun, B; Bray, B; Brückner, W; Brüll, A; Bruins, E E W; Bulten, H J; Capitani, G P; Carter, P; Cisbani, E; Court, G R; Delheij, P P J; De Sanctis, E; De Schepper, D; Devitsin, E G; De Witt-Huberts, P K A; Düren, M; Dvoredsky, A P; Elbakian, G M; Emerson, J; Fantoni, A; Feshchenko, A; Ferstl, M; Fiedler, K; Filippone, B W; Fischer, H; Fox, B; Franz, J; Frullani, S; Funk, M A; Gärber, Y; Gagunashvili, N D; Galumian, P I; Gao, H; Garibaldi, F; Gavrilov, G E; Geiger, P; Karibian, V; Golendukhin, A; Graw, G; Grebenyuk, O; Green, P W; Greeniaus, L G; Grosshauser, C; Gute, A; Gyurjyan, V; Haas, J P; Haeberli, W; Häusser, O; Hansen, J O; Hasch, D; Henderson, R; Henkes, T; Hertenberger, R; Holler, Y; Holt, R J; Ihssen, H; Iodice, M; Izotov, A A; Jackson, H E; Jgoun, A; Jones, C; Kaiser, R; Kinney, E R; Kirsch, M; Kiselev, A; Kitching, P; Königsmann, K C; Kolstein, M; Kolster, H; Korsch, W; Kozlov, V; Kramer, L H; Krause, B; Krivokhizhin, V G; Kückes, M; Kyle, G S; Lachnit, W A; Lorenzon, W; Lung, A; Makins, N C R; Manaenkov, S I; Martens, F K; Martin, J W; Mateos, A; McIlhany, K; McKeown, R D; Meissner, F; Menden, F; Mercer, D; Metz, A; Meyners, N; Miklukho, O; Miller, C A; Miller, M A; Milner, R; Mitsyn, V; Most, A; Mozzetti, R; Muccifora, V; Nagaitsev, A P; Naryshkin, Yu; Nathan, A M; Neunreither, F; Niczyporuk, J M; Nowak, Wolf-Dieter; Nupieri, M; Oelwein, P; Ogami, H; O'Neill, T G; Openshaw, R; Ouyang, J; Pate, S F; Pitt, M L; Poolman, H R; Potashov, S Yu; Potterveld, D H; Rakness, G; Redwine, R P; Reolon, A R; Ristinen, R; Rith, K; Roper, G; Roloff, H O; Rossi, P; Ruh, M; Ryckbosch, D; Sakemi, Y; Savin, I A; Schüler, K P; Schwind, A; Shibata, T A; Shin, T; Simon, A; Sinram, K; Smythe, W R; Sowinski, J; Spengos, M; Steffens, E; Stenger, J; Stewart, J; Stock, F; Stösslein, U; Sutter, M F; Tallini, H A; Taroian, S P; Terkulov, A R; Thiessen, D M; Tipton, B; Trudel, A; Tytgat, M; Urciuoli, G M; Van den Brand, J F J; van der Steenhoven, G; Van de Vyver, R; Vetterli, Martin C; Vincter, M G; Volk, E; Wander, W; Welch, T P; Williamson, S E; Wise, T; Zapfe, K; Zohrabyan, H G

    2000-01-01

    Production and decay angular distributions were extracted from measurementsof exclusive electroproduction of the rho^0(770) meson over a range in thevirtual photon negative four-momentum squared 0.5 pi+ pi- decay yieldedmeasurements of eight elements of the spin-density matrix, including one thathad not been measured before. The results are consistent with the dominance ofhelicity-conserving amplitudes and natural parity exchange. The improvedprecision achieved at 47 GeV,reveals evidence for an energy dependence in the ratio R of the longitudinal totransverse cross sections at constant Q^2.

  10. Complete Angular Distribution Measurements of Two-Body Deuteron Photodisintegration between 0.5 and 3 GeV

    CERN Document Server

    Mirazita, M; Rossi, P; De Sanctis, E; Adams, G; Ambrozewicz, P; Anciant, E; Anghinolfi, M; Asavapibhop, B; Audit, G; Avakian, H; Bagdasaryan, H; Ball, J P; Barrow, S; Battaglieri, M; Beard, K; Bektasoglu, M; Bellis, M; Benmouna, N; Berman, B L; Bertozzi, W; Bianchi, N; Biselli, A S; Boiarinov, S; Bonner, B E; Bouchigny, S; Bradford, R; Branford, D; Briscoe, W J; Brooks, W K; Burkert, V D; Butuceanu, C; Calarco, J R; Carman, D S; Carnahan, B; Chen, S; Cole, P L; Cords, D; Corvisiero, P; Crabb, D; Crannell, H; Cummings, J P; De Vita, R; Degtyarenko, P V; Denizli, H; Dennis, L; Deppman, A; Dharmawardane, K V; Dhuga, K S; Djalali, C; Dodge, G E; Doughty, D C; Dragovitsch, P; Dugger, M; Dytman, S; Dzyubak, O P; Egiyan, H; Egiyan, K S; Elouadrhiri, L; Empl, A; Eugenio, P; Fatemi, R; Feuerbach, R J; Ficenec, J; Forest, T A; Funsten, H; Gai, M; Gavalian, G; Gilad, S; Gilfoyle, G P; Giovanetti, K L; Gordon, C I O; Griffioen, K; Guidal, M; Guillo, M R; Guo, L; Gyurjyan, V; Hadjidakis, C; Hakobyan, R S; Hardie, J; Heddle, D; Hersman, F W; Hicks, K; Hicks, R S; Holtrop, M; Hu, J; Hyde-Wright, C E; Ilieva, Y; Ito, M M; Jenkins, D; Joo, K; Kellie, J D; Khandaker, M; Kim, K Y; Kim, K; Kim, W; Klein, A; Klein, F J; Klimenko, A V; Klusman, M; Kossov, M; Kramer, L H; Kühn, J; Kuhn, S E; Lachniet, J; Laget, J M; Lawrence, D; Ji Li; Lima, A C S; Livingston, K; Lukashin, K; Manak, J J; Marchand, C; McAleer, S; McCarthy, J; McNabb, J W C; Mecking, B A; Mehrabyan, S S; Melone, J J; Mestayer, M D; Meyer, C A; Mikhailov, K; Miskimen, R; Mokeev, V; Morand, L; Morrow, S A; Muccifora, V; Müller, J; Mutchler, G S; Napolitano, J; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niyazov, R A; Nozar, M; O'Brien, J T; O'Rielly, G V; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E A; Peterson, G; Philips, S A; Pivnyuk, N; Pocanic, D; Pogorelko, O I; Polli, E; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Qin, L M; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Rosner, G; Rowntree, D; Rubin, P D; Sabatie, F; Salgado, C; Santoro, J P; Sapunenko, V; Schumacher, R A; Serov, V S; Sharabyan, Yu G; Shaw, J; Simionatto, S; Skabelin, A V; Smith, E S; Smith, L C; Sober, D I; Spraker, M; Stavinsky, A V; Stepanyan, S; Stokes, B; Stoler, P; Strakovsky, I I; Strauch, S; Taiuti, M; Taylor, S; Tedeschi, D J; Thoma, U; Thompson, R; Tkabladze, A; Todor, L; Tur, C; Ungaro, M; Vineyard, M F; Vlassov, A V; Wang, K; Weinstein, L B; Weller, H; Weygand, D P; Whisnant, C S; Wolin, E; Wood, M H; Yegneswaran, A; Yun, J; Zhang, B; Zhou, Z

    2004-01-01

    Nearly complete angular distributions of the two-body deuteron photodisintegration differential cross section have been measured using the CLAS detector and the tagged photon beam at JLab. The data cover photon energies between 0.5 and 3.0 GeV and center-of-mass proton scattering angles 10-160 degrees. The data show a persistent forward-backward angle asymmetry over the explored energy range, and are well-described by the non-perturbative Quark Gluon String Model.

  11. Complete angular distribution measurements of two-body deuteron photodisintegration between 0.5 and 3 GeV

    Science.gov (United States)

    Mirazita, M.; Ronchetti, F.; Rossi, P.; de Sanctis, E.; Adams, G.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Ball, J. P.; Barrow, S.; Battaglieri, M.; Beard, K.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Bertozzi, W.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bonner, B. E.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Carman, D. S.; Carnahan, B.; Chen, S.; Cole, P. L.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; de Vita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deppman, A.; Dharmawardane, K. V.; Dhuga, K. S.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Feuerbach, R. J.; Ficenec, J.; Forest, T. A.; Funsten, H.; Gai, M.; Gavalian, G.; Gilad, S.; Gilfoyle, G. P.; Giovanetti, K. L.; Gordon, C. I.; Griffioen, K.; Guidal, M.; Guillo, M.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hicks, R. S.; Holtrop, M.; Hu, J.; Hyde-Wright, C. E.; Ilieva, Y.; Ito, M. M.; Jenkins, D.; Joo, K.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuhn, J.; Kuhn, S. E.; Kuhn, J.; Lachniet, J.; Laget, J. M.; Lawrence, D.; Li, Ji; Lima, A. C.; Livingston, K.; Lukashin, K.; Manak, J. J.; Marchand, C.; McAleer, S.; McCarthy, J.; McNabb, J. W.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Brien, J. T.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A.; Park, K.; Pasyuk, E.; Peterson, G.; Philips, S. A.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Spraker, M.; Stavinsky, A.; Stepanyan, S.; Stokes, B.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tkabladze, A.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weller, H.; Weygand, D. P.; Whisnant, C. S.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zhang, B.; Zhou, Z.

    2004-07-01

    Nearly complete angular distributions of the two-body deuteron photodisintegration differential cross section have been measured using the CEBAF Large Acceptance Spectrometer detector and the tagged photon beam at the Thomas Jefferson National Accelerator Facility. The data cover photon energies between 0.5 and 3.0 GeV and center-of-mass proton scattering angles 10° 160° . The data show a persistent forward-backward angle asymmetry over the explored energy range, and are well described by the nonperturbative quark gluon string model.

  12. Carrier-Envelop Phase-Dependent Effect on Photoelectron Angular Distribution in Single-Cycle Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jie; ZHANG Jing-Tao; SUN Zhen-Rong; XU Zhi-Zhan

    2004-01-01

    @@ Using a nonperturbative scattering theory, we study the photoelectron angular distributions (PADs) of Kr atoms irradiated by an infinite sequence of intense single-cycle pulses of circular polarization. We demonstrate the inversion asymmetry of PADs and the dependence of PADs on the carrier-envelop phase of the single-cycle pulses. The inversion asymmetry is caused by the interference between transition channels where the different channels are characterized by different combinations of absorbed-photon numbers in the ionization process. Our results provide a possible method to determine the value of carrier-envelop phase by the detected PADs.

  13. (p,. cap alpha. ) reaction on /sup 98/Mo and /sup 100/Mo. [12. 3 and 15 Mev, angular distributions

    Energy Technology Data Exchange (ETDEWEB)

    Avrigeanu, V.; Bucurescu, D.; Constantinescu, G.; Ivascu, M.; Popescu, D.; Teodorescu, R.

    1975-01-01

    Levels of /sup 95/Nb and /sup 97/Nb were studied with the /sup 98/Mo(p, ..cap alpha..) reaction at 12.3 MeV and the /sup 100/Mo(p, ..cap alpha..) reaction at 15 MeV incident energy, respectively. Angular distributions were determined for the most prominent levels below 2 MeV, and compared with DWBA calculations based on a triton-cluster form factor. The results are compared with level schemes provided by other nuclear reactions. (auth)

  14. Monitoring pig movement at the slaughterhouse using optical flow and modified angular histograms

    DEFF Research Database (Denmark)

    Gronskyte, Ruta; Clemmensen, Line Katrine Harder; Hviid, Marchen Sonja

    2016-01-01

    use the OF vectors to describe points of movement on all pigs and thereby analyse the herd movement. Subsequently, the OF vectors are used to identify abnormal movements of individual pigs. The OF vectors, obtained from the pigs, point in multiple directions rather than in one movement direction....... To accommodate the multiple directions of the OF vectors, we propose to quantify OF using a summation of the vectors into bins according to their angles, which we call modified angular histograms. Sequential feature selection is used to select angle ranges, which identify pigs that are moving abnormally...... in the herd. The vector lengths from the selected angle ranges are compared to the corresponding median, 25th and 75th percentiles from a training set, which contains only normally moving pigs. We show that the method is capable of locating stationary pigs in the recordings regardless of the number of pigs...

  15. Turbulence Mitigation Scheme for Optical Communications using Orbital Angular Momentum Multiplexing Based on Channel Coding and Wavefront Correction

    CERN Document Server

    Zhao, Shengmei; Zhou, Li; Gong, Longyan; Cheng, Wenwen; Sheng, Yubo; Zheng, Baoyu

    2014-01-01

    The free-space optical (FSO) communication links with orbital angular momentum (OAM) multiplexing have been demonstrated that they can largely enhance the systems' capacity without a corresponding increase in spectral bandwidth, but the performance of the system is unavoidably disturbed by atmospheric turbulence (AT). Different from the existed AT disturbance, the OAM-multiplexed systems will cause both the burst and random errors for a single OAM state carrier and the `crosstalk' interference between the different OAM states carriers. In this paper, we propose a turbulence mitigation method to improve AT tolerance of OAM-multiplexed FSO communication links. In the proposed scheme, we use channel codes to correct the burst and random errors caused by AT for a single OAM state carrier; And we use wavefront correction method to correct the `crosstalk' interference between the different OAM states carriers. The improvements of AT tolerance are discussed by comparing the performance of OAM-multiplexed FSO communi...

  16. Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m.

    Science.gov (United States)

    Ren, Yongxiong; Wang, Zhe; Liao, Peicheng; Li, Long; Xie, Guodong; Huang, Hao; Zhao, Zhe; Yan, Yan; Ahmed, Nisar; Willner, Asher; Lavery, Martin P J; Ashrafi, Nima; Ashrafi, Solyman; Bock, Robert; Tur, Moshe; Djordjevic, Ivan B; Neifeld, Mark A; Willner, Alan E

    2016-02-01

    We experimentally demonstrate and characterize the performance of a 400-Gbit/s orbital angular momentum (OAM) multiplexed free-space optical link over 120 m on the roof of a building. Four OAM beams, each carrying a 100-Gbit/s quadrature-phase-shift-keyed channel are multiplexed and transmitted. We investigate the influence of channel impairments on the received power, intermodal crosstalk among channels, and system power penalties. Without laser tracking and compensation systems, the measured received power and crosstalk among OAM channels fluctuate by 4.5 dB and 5 dB, respectively, over 180 s. For a beam displacement of 2 mm that corresponds to a pointing error less than 16.7 μrad, the link bit error rates are below the forward error correction threshold of 3.8×10(-3) for all channels. Both experimental and simulation results show that power penalties increase rapidly when the displacement increases.

  17. Free-space optical communications using orbital-angular-momentum multiplexing combined with MIMO-based spatial multiplexing.

    Science.gov (United States)

    Ren, Yongxiong; Wang, Zhe; Xie, Guodong; Li, Long; Cao, Yinwen; Liu, Cong; Liao, Peicheng; Yan, Yan; Ahmed, Nisar; Zhao, Zhe; Willner, Asher; Ashrafi, Nima; Ashrafi, Solyman; Linquist, Roger D; Bock, Robert; Tur, Moshe; Molisch, Andreas F; Willner, Alan E

    2015-09-15

    We explore the potential of combining the advantages of multiple-input multiple-output (MIMO)-based spatial multiplexing with those of orbital angular momentum (OAM) multiplexing to increase the capacity of free-space optical (FSO) communications. We experimentally demonstrate an 80 Gbit/s FSO system with a 2×2 aperture architecture, in which each transmitter aperture contains two multiplexed data-carrying OAM modes. Inter-channel crosstalk effects are minimized by the OAM beams' inherent orthogonality and by the use of 4×4 MIMO signal processing. Our experimental results show that the bit-error rates can reach below the forward error correction limit of 3.8×10(-3) and the power penalties are less than 3.6 dB for all channels after MIMO processing. This indicates that OAM and MIMO-based spatial multiplexing could be simultaneously utilized, thereby providing the potential to enhance system performance.

  18. Effect of the third π ∗ resonance on the angular distributions for electron-pyrimidine scattering

    Science.gov (United States)

    Mašín, Zdeněk; Gorfinkiel, Jimena D.

    2016-07-01

    We present a detailed analysis of the effect of the well known third π∗ resonance on the angular behaviour of the elastic cross section in electron scattering from pyrimidine. This resonance, occurring approximately at 4.7 eV, is of mixed shape and core-excited character. Experimental and theoretical results show the presence of a peak/dip behaviour in this energy range, that is absent for other resonances. Our investigations show that the cause of the peak/dip is an interference of background p-wave to p-wave scattering amplitudes with the amplitudes for resonant scattering. The equivalent resonance in pyrazine shows the same behaviour and the effect is therefore likely to appear in other benzene-like molecules. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  19. Molecular Frame X-Ray Photoelectron Angular Distributions and an Attempt to Detect Core Hole Localization

    Science.gov (United States)

    Trevisan, Cynthia; Williams, Joshua; Rescigno, Thomas; McCurdy, C.; Landers, Allen

    2013-05-01

    We present preliminary experimental and theoretical results of the angular dependence of electrons ejected from the core orbitals of ethane (C2H6) as viewed in the frame of the molecule in search for evidence of the localization of core holes on one of two equivalent atoms following X-ray photoionization. While the probability of ionization from equivalent atoms is the same, the fragmentation pattern following ionization can be asymmetric and reveal the creation of a core hole on one atom followed by breakup dynamics that depend on its location. These experiments, together with the theoretical calculations to interpret them, may result in direct observation of the fundamental quantum phenomenon of localized hole dynamics in isolated polyatomic molecules following Auger decay. Our measurements employ the COLTRIMS method and the calculations were performed with the Complex Kohn Variational method.

  20. Angular Distribution of Decay Leptons from $e^{+}e^{-} \\to W^{+}W^{-}$ at Threshold

    CERN Document Server

    Werthenbach, Anja

    1999-01-01

    The reaction $e^+e^- \\to W^+W^-$ produces a $W$-boson pair with a non-trivial spin correlation even at threshold. This correlation leads to a characteristic angular correlation between the leptons produced in $W^{\\pm} \\to \\ell ^{\\pm} d \\cos \\theta_- \\sim (1-\\cos \\theta_+) (1+ \\cos \\theta_-) (1+\\cos \\theta_- \\cos forward-backward asymmetry of 3/8. There is also an interesting correlation between the azimuthal angles of the two leptons. In the case of colliding beams in the helicity state $e^-_{R} e^+_{L}$, the threshold behaviour is determined by the $WW\\gamma$ and $WWZ$ vertices. We examine the effect of anomalous and CP-violating terms in the triple gauge boson vertex.

  1. Photoelectron angular distributions for states of any mixed character: an experiment-friendly model for atomic, molecular, and cluster anions.

    Science.gov (United States)

    Khuseynov, Dmitry; Blackstone, Christopher C; Culberson, Lori M; Sanov, Andrei

    2014-09-28

    We present a model for laboratory-frame photoelectron angular distributions in direct photodetachment from (in principle) any molecular orbital using linearly polarized light. A transparent mathematical approach is used to generalize the Cooper-Zare central-potential model to anionic states of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type functions, the model yields the previously obtained s-p mixing formula. The formalism is further advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave cross-sections is assumed to follow the Wigner threshold law. The resulting model describes the energy dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually without requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we apply the p-d variant of the model to the experimental results for NO(-) photodetachment and show that the observed anisotropy trend is described well using physically meaningful values of the model parameters. Overall, the presented formalism delivers insight into the photodetachment process and affords a new quantitative strategy for analyzing the photoelectron angular distributions and characterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative ions.

  2. Charge state, angular distribution, and kinetic energy of ions from multicomponent-cathodes in vacuum arc devices

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, A. G., E-mail: nik@opee.hcei.tsc.ru; Savkin, K. P.; Yushkov, G. Yu.; Frolova, V. P. [Institute of High Current Electronics SB RAS, 2/3 Akademichesky Ave., Tomsk 634055 (Russian Federation); Oks, E. M. [Institute of High Current Electronics SB RAS, 2/3 Akademichesky Ave., Tomsk 634055 (Russian Federation); Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Barengolts, S. A. [Prokhorov General Physics Institute RAS, 38 Vavilov St., Moscow 119991 (Russian Federation)

    2014-12-07

    We present research results on vacuum arc plasma produced with multicomponent cathode made of several different elements. The ion mass-to-charge-state spectra of the plasmas were studied by time-of-flight spectrometry. The angular distributions of different ion species were measured, and the kinetic energy of their directed (streaming) motion was determined. It is shown that the fractional composition of ions of different cathode components in the plasma flow from the cathode spot closely matches the fractional content of these components in the composite cathode. The charge states of ions of the various cathode components are determined by the average electron temperature in the cathode spot plasma. The angular distribution of lower mass ions in the plasma from a multicomponent cathode is less isotropic and broader than for the plasma from a single-component cathode of the same light element. The directed kinetic energies of the ions of the different components for plasma from a multicomponent cathode are lower for lighter elements and greater for heavier elements compared to the ion directed energy for plasmas from single-component cathodes made of the same materials. The physical processes responsible for these changes in the ion charge states in multicomponent-cathode vacuum arc plasma are discussed.

  3. Resonance and non-resonance effect of continuum states of 6Li on elastic scattering angular distributions

    Science.gov (United States)

    Gómez Camacho, A.

    2016-07-01

    CDCC calculations of elastic scattering angular distributions for reactions of the weakly bound projectile 6Li with targets 28Si and 58Ni at energies around the Coulomb barrier are presented. Special emphasis is given to account for the effect of couplings from 6Li resonance states l = 2, J π = 3+, 2+, 1+. Similarly, the effect produced by non-resonant state couplings is studied. The convergent calculations are carried out with global α-target and d-target interactions. The calculated elastic scattering angular distributions are in general in good agreement with the measurements for the systems considered in this work. It is found that the calculations with only resonance states are very similar to that with all couplings (resonance+non-resonance). So, the absence of these states have a strong effect on elastic scattering (non-resonance states calculation). It is shown that the effects increase as the collision energy increases. An interpretation of the strength of the different effects is given in terms of the polarization potentials that emerge from the different couplings.

  4. Radiation distribution sensing with normal optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kawarabayashi, Jun; Mizuno, Ryoji; Naka, Ryotaro; Uritani, Akira; Watanabe, Ken-ichi; Iguchi, Tetsuo [Nagoya Univ., Dept. of Nuclear Engineering, Nagoya, Aichi (Japan); Tsujimura, Norio [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan)

    2002-12-01

    The purpose of this study is to develop a radiation distribution monitor using a normal plastic optical fiber. The monitor has a long operating length (10m-100m) and can obtain continuous radiation distributions. A principle of the position sensing is based on a time-of-flight technique. The characteristics of this monitor to beta particles, gamma rays and fast neutrons were obtained. The spatial resolutions for beta particles ({sup 90}Sr{sup -90}Y), gamma rays ({sup 137}Cs) and D-T neutrons were 30 cm, 37 cm and 13 cm, respectively. The detection efficiencies for the beta rays, the gamma rays and D-T neutrons were 0.11%, 1.6x10{sup -5}% and 5.4x10{sup -4}%, respectively. The effective attenuation length of the detection efficiency was 18m. New principle of the position sensing based on spectroscopic analysis was also proposed. A preliminary test showed that the spectrum observed at the end of the fiber depended on the position of the irradiated point. This fact shows that the radiation distributions were calculated from the spectrum by mathematical deconvolution technique. (author)

  5. Ion beam sputtering of Ti: Influence of process parameters on angular and energy distribution of sputtered and backscattered particles

    Science.gov (United States)

    Lautenschläger, T.; Feder, R.; Neumann, H.; Rice, C.; Schubert, M.; Bundesmann, C.

    2016-10-01

    In the present study, the influence of ion energy and geometrical parameters onto the angular and energy distribution of secondary particles for sputtering a Ti target with Ar ions is investigated. The angular distribution of the particle flux of the sputtered Ti atoms was determined by the collection method, i.e. by growing Ti films and measuring their thickness. The formal description of the particle flux can be realized by dividing it into an isotropic and an anisotropic part. The experimental data show that increasing the ion energy or decreasing the ion incidence angle lead to an increase of the isotropic part, which is in good agreement with basic sputtering theory. The energy distribution of the secondary ions was measured using an energy-selective mass spectrometer. The energy distribution of the sputtered target ions shows a maximum at an energy between 10 eV and 20 eV followed by a decay proportional to E-n, which is in principle in accordance with Thompson's theory, followed by a high energetic tail. When the sum of incidence angle and emission angle is increased, the high-energetic tail expands to higher energies and an additional peak due to direct sputtering events may occur. In the case of backscattered primary Ar ions, a maximum at an energy between 5 eV and 10 eV appears and, depending on the scattering geometry, an additional broad peak at a higher energy due to direct scattering events is observed. The center energy of the additional structure shifts systematically to higher energies with decreasing scattering angle or increasing ion energy. The experimental results are compared to calculations based on simple elastic two-particle-interaction theory and to simulations done with the Monte Carlo code SDTrimSP. Both confirm in principle the experimental findings.

  6. 850-nm hybrid fiber/free-space optical communications using orbital angular momentum modes

    DEFF Research Database (Denmark)

    Jurado-Navas, Antonio; Tatarczak, Anna; Lu, Xiaofeng;

    2015-01-01

    communications are considered as an alternative and promising mean complementing the traditional optical communications in many applications where the use of fiber cable is not justified. This next generation FSO communication systems have attracted much interest recently, and the inclusion of beams carrying OAM...

  7. Optical method to differentiate tequilas based on angular modulation surface plasmon resonance

    Science.gov (United States)

    Martínez-López, G.; Luna-Moreno, D.; Monzón-Hernández, D.; Valdivia-Hernández, R.

    2011-06-01

    We report the use of the prism-based surface plasmon resonance (SPR) technique to differentiate between three types of tequilas white or silver, aged, and extra-aged. We used the angular interrogation method in which the structure is based on prism fabricated with BK7 glass coated with a gold layer as the SPR active layer. Our study was centered in the analysis of the resonant angle of the SPR generated by the three types of tequilas produced by the three major tequila-producing firms. We observed that each tequila sample produced a well-differentiated SPR curve. We found that resonant angle of the SPR curve produced by silver tequilas is larger than that produced by the aged and extra-aged tequilas of the same producer firm. We found that the position of the SPR curve is not exclusively determined by the alcohol contents; we believe that there are other parameters derived from the aging process that should be considered. The refractive index of the tequilas used in this study was estimated using the measured resonant angle.

  8. Radiation distribution sensing with normal optical fiber

    CERN Document Server

    Kawarabayashi, J; Naka, R; Uritani, A; Watanabe, K I; Iguchi, T; Tsujimura, N

    2002-01-01

    The purpose of this study is to develop a radiation distribution monitor using a normal plastic optical fiber. The monitor has a long operating length (10m-100m) and can obtain continuous radiation distributions. A principle of the position sensing is based on a time-of-flight technique. The characteristics of this monitor to beta particles, gamma rays and fast neutrons were obtained. The spatial resolutions for beta particles ( sup 9 sup 0 Sr sup - sup 9 sup 0 Y), gamma rays ( sup 1 sup 3 sup 7 Cs) and D-T neutrons were 30 cm, 37 cm and 13 cm, respectively. The detection efficiencies for the beta rays, the gamma rays and D-T neutrons were 0.11%, 1.6x10 sup - sup 5 % and 5.4x10 sup - sup 4 %, respectively. The effective attenuation length of the detection efficiency was 18m. New principle of the position sensing based on spectroscopic analysis was also proposed. A preliminary test showed that the spectrum observed at the end of the fiber depended on the position of the irradiated point. This fact shows that t...

  9. Measurements of Branching Fractions and CP Asymmetries and Studies of Angular Distributions for B to phi phi K Decays

    Energy Technology Data Exchange (ETDEWEB)

    Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Martinelli, M.; /INFN, Bari /Bari U.; Milanes, D.A.; /INFN, Bari; Palano, A.; Pappagallo, M.; /INFN, Bari /Bari U.; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; /UC, Berkeley; Koch, H.; Schroeder, T.; /Ruhr U., Bochum; Asgeirsson, D.J.; Hearty, C.; /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /Indian Inst. Tech., Guwahati /Harvard U. /Harvey Mudd Coll. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Paris U., VI-VII /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas Nuclear Corp., Austin /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

    2011-08-15

    We present branching fraction and CP asymmetry measurements as well as angular studies of B {yields} {phi}{phi}K decays using 464 x 10{sup 6} B{bar B} events collected by the BABAR experiment. The branching fractions are measured in the {phi}{phi} invariant mass range below the {eta}{sub c} resonance (m{sub {phi}{phi}} < 2.85 GeV). We find {Beta}(B{sup +} {yields} {phi}{phi}K{sup +}) = (5.6 {+-} 0.5 {+-} 0.3) x 10{sup -6} and {Beta}(B{sup 0} {yields} {phi}{phi}K{sup 0}) = (4.5 {+-} 0.8 {+-} 0.3) x 10{sup -6}, where the first uncertaintiy is statistical and the second systematic. The measured direct CP asymmetries for the B{sup {+-}} decays are A{sub CP} = -0.10 {+-} 0.08 {+-} 0.02 below the {eta}{sub c} threshold (m{sub {phi}{phi}} < 2.85 GeV) and A{sub CP} = 0.09 {+-} 0.10 {+-} 0.02 in the {eta}{sub c} resonance region (m{sub {phi}{phi}} in [2.94,3.02] GeV). Angular distributions are consistent with J{sub P} = 0{sup -} in the {eta}{sub c} resonance region and favor J{sup P} = 0{sup +} below the {eta}{sub c} resonance.

  10. Cold and Hot Slumped Glass Optics with interfacing ribs for high angular resolution x-ray telescopes

    Science.gov (United States)

    Civitani, M.; Basso, S.; Ghigo, M.; Pareschi, G.; Salmaso, B.; Spiga, D.; Vecchi, G.; Banham, R.; Breuning, E.; Burwitz, V.; Hartner, G.; Menz, B.

    2016-07-01

    The Slumped Glass Optics technology, developed at INAF/OAB since a few years, is becoming a competitive solution for the realization of the future X-ray telescopes with a very large collecting area, e.g. the approved Athena, with more than 2 m2 effective area at 1 keV and with a high angular resolution (5'' HEW). The developed technique is based on modular elements, named X-ray Optical Units (XOUs), made of several layers of thin foils of glass, previously formed by direct hot slumping in cylindrical configuration and then stacked in a Wolter-I configuration, through interfacing ribs. The latest advancements in the production of thin glass substrates may allow a great simplification of this process, avoiding the preforming step via hot slumping. In fact, the strength and the flexibility of glass foils with thickness lower than 0.1 mm allow their bending up to very small radius of curvature without breaking. In this paper we provide an update of the project development, reporting on the last results achieved. In particular, we present the results obtained on several prototypes that have been assembled with different integration approaches.

  11. Elliptic Dichroism in Angular Distributions in Free-Free Transitions in Hydrogen

    CERN Document Server

    Cionga, Aurelia; Zloh, Gabriela

    2013-01-01

    We discuss here the effect of the photon helicity in laser induced and inverse bremstrahlung for {\\it high energy scattering} of electrons by hydrogen atoms. We demonstrate that it is possible to find EDAD for high scattering energies of the electrons if the{\\it \\ dressing of the atomic target} by the laser field is taken into account. We consider higher optical frequencies of the laser field and we restrict ourselves to the use of moderate field intensities.

  12. Optical electric-field sensor based on angular optical bias using single β-BaB2O4 crystal.

    Science.gov (United States)

    Li, Changsheng; Shen, Xiaoli; Zeng, Rong

    2013-11-01

    A novel optical electric-field sensor is proposed and demonstrated in experiment by use of a single beta barium borate (β-BaB2O4, BBO) crystal. The optical sensing unit is only composed of one BBO crystal and two polarizers. An optical phase bias of 0.5π is provided by using natural birefringence in the BBO crystal itself. A small angle (e.g., 0.6°) between the sensing light beam and principal axis of the crystal is required in order to produce the above optical bias. Thus the BBO crystal is used as the electric-field-sensing element and quarter waveplate. The ac electric field in the range of (1.4-703.2) kV/m has been measured with measurement sensitivity of 1.39 mV/(kV/m) and nonlinear error of 0.6%. Compared with lithium niobate crystal used as an electric-field sensor, main advantages of the BBO crystal include higher measurement sensitivity, compact configuration, and no ferroelectric ringing effect.

  13. Free-space optical communication link using perfect vortex beams carrying orbital angular momentum (OAM)

    Science.gov (United States)

    Zhu, Fuquan; Huang, Sujuan; Shao, Wei; Zhang, Jie; Chen, Musheng; Zhang, Weibing; Zeng, Junzhang

    2017-08-01

    We experimentally demonstrate a free-space optical communication link using perfect vortex beams. Perfect vortex beams with different topological charges are generated using a phase-modulation-type spatial light modulator (SLM) loaded with novel phase holograms based on the Bessel function. With the help of a microscope objective and simple lens, perfect vortex beams are transmitted effectively for a certain distance. After completing the demodulation of perfect vortex beams carrying OFDM 16-QAM signals and a series of offline processing on the Gaussian bright spot demodulated from the perfect vortex beams, we also achieve a communication link. The constellations and mean bit error rates (BER) of subcarriers are shown.

  14. Compact optical system for measuring linear and angular displacement of solid structures

    DEFF Research Database (Denmark)

    Jakobsen, M.L.; Larsen, H.E.; Hanson, Steen Grüner

    2004-01-01

    We present a compact, low-cost optical method for detection of in-plane speckle translation, which e.g. could be a measure of in-plane translation or rotation of a solid structure. The speckles are produced by illuminating a non-specular target surface with coherent light. The scattered light...... and rotation of the target. The presented free space propagation design can provide a sensor with no direct sensitivity on the working distance. The electrical signals from the sensor are processed with a digital algorithm, based on zero-crossings detection to provide real-time displacement measurements...

  15. Beyond the diffraction limit of optical/IR interferometers. I. Angular diameter and rotation parameters of Achernar from differential phases

    Science.gov (United States)

    Domiciano de Souza, A.; Hadjara, M.; Vakili, F.; Bendjoya, P.; Millour, F.; Abe, L.; Carciofi, A. C.; Faes, D. M.; Kervella, P.; Lagarde, S.; Marconi, A.; Monin, J.-L.; Niccolini, G.; Petrov, R. G.; Weigelt, G.

    2012-09-01

    Context. Spectrally resolved long-baseline optical/IR interferometry of rotating stars opens perspectives to investigate their fundamental parameters and the physical mechanisms that govern their interior, photosphere, and circumstellar envelope structures. Aims: Based on the signatures of stellar rotation on observed interferometric wavelength-differential phases, we aim to measure angular diameters, rotation velocities, and orientation of stellar rotation axes. Methods: We used the AMBER focal instrument at ESO-VLTI in its high-spectral resolution mode to record interferometric data on the fast rotator Achernar. Differential phases centered on the hydrogen Br γ line (K band) were obtained during four almost consecutive nights with a continuous Earth-rotation synthesis during ~5 h/night, corresponding to ~60° position angle coverage per baseline. These observations were interpreted with our numerical code dedicated to long-baseline interferometry of rotating stars. Results: By fitting our model to Achernar's differential phases from AMBER, we could measure its equatorial radius Req = 11.6 ± 0.3 R⊙, equatorial rotation velocity Veq = 298 ± 9 km s-1, rotation axis inclination angle i = 101.5 ± 5.2°, and rotation axis position angle (from North to East) PArot = 34.9 ± 1.6°. From these parameters and the stellar distance, the equatorial angular diameter ⌀eq of Achernar is found to be 2.45 ± 0.09 mas, which is compatible with previous values derived from the commonly used visibility amplitude. In particular, ⌀eq and PArot measured in this work with VLTI/AMBER are compatible with the values previously obtained with VLTI/VINCI. Conclusions: The present paper, based on real data, demonstrates the super-resolution potential of differential interferometry for measuring sizes, rotation velocities, and orientation of rotating stars in cases where visibility amplitudes are unavailable and/or when the star is partially or poorly resolved. In particular, we showed

  16. Angular dependence of optical modes in metal-insulator-metal coupled quantum well infrared photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Jing, YouLiang; Li, ZhiFeng, E-mail: zfli@mail.sitp.ac.cn; Chen, PingPing; Zhou, XiaoHao; Wang, Han; Li, Ning; Lu, Wei, E-mail: luwei@mail.sitp.ac.cn [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083 (China); Li, Qian [Microsystem & Terahertz Research Center, China Academy of Engineering Physics, No 596, Yinhe Road, Chengdu 610200, Sichuan Province (China)

    2016-04-15

    We report the dependence of the near-field optical modes in metal-insulator-metal quantum well infrared photodetector (MIM-QWIP) on the incident angles. Three optical modes are observed and attributed to the 2nd- and the 3rd-order surface plasmon polariton (SPP) modes and the localized surface polariton (LSP) mode. In addition to the observation of a responsivity enhancement of 14 times by the LSP mode, the varying pattern of the three modes against the incident angle are revealed, in which the LSP mode is fixed while the 2nd SPP mode splits into two branches and the 3rd SPP mode red-shifts. The detailed mechanisms are analyzed and numerically simulated. The results fit the experiments very well, demonstrating the wavevector coupling effect between the incident light and the metal gratings on the SPP modes. Our work will pave the way to fully understanding the influence of incident angles on a detector’s response for applying the MIM-QWIP to focal plane arrays.

  17. Angular dependence of optical modes in metal-insulator-metal coupled quantum well infrared photodetector

    Directory of Open Access Journals (Sweden)

    YouLiang Jing

    2016-04-01

    Full Text Available We report the dependence of the near-field optical modes in metal-insulator-metal quantum well infrared photodetector (MIM-QWIP on the incident angles. Three optical modes are observed and attributed to the 2nd- and the 3rd-order surface plasmon polariton (SPP modes and the localized surface polariton (LSP mode. In addition to the observation of a responsivity enhancement of 14 times by the LSP mode, the varying pattern of the three modes against the incident angle are revealed, in which the LSP mode is fixed while the 2nd SPP mode splits into two branches and the 3rd SPP mode red-shifts. The detailed mechanisms are analyzed and numerically simulated. The results fit the experiments very well, demonstrating the wavevector coupling effect between the incident light and the metal gratings on the SPP modes. Our work will pave the way to fully understanding the influence of incident angles on a detector’s response for applying the MIM-QWIP to focal plane arrays.

  18. Theoretical description of circular dichroism in photoelectron angular distributions of randomly oriented chiral molecules after multi-photon photoionization

    CERN Document Server

    Goetz, R E; Nikoobakht, B; Berger, R; Koch, C P

    2016-01-01

    Photoelectron circular dichroism refers to the forward/backward asymmetry in the photoelectron angular distribution with respect to the propagation axis of circularly polarized light. It has recently been demonstrated in femtosecond multi-photon photoionization experiments with randomly oriented camphor and fenchone molecules [C. Lux et al., Angew. Chem. Int. Ed. 51, 5001 (2012);C. S. Lehmann et al., J. Chem. Phys. 139, 234307 (2013)]. A theoretical framework describing this process as (2+1) resonantly enhanced multi-photon ionization is constructed, which consists of two-photon photoselection from randomly oriented molecules and successive one-photon ionisation of the photoselected molecules. It combines perturbation theory for the light-matter interaction with ab initio calculations for the two-photon absorption and a single-center expansion of the photoelectron wavefunction in terms of hydrogenic continuum functions. It is verified that the model correctly reproduces the basic symmetry behavior expected un...

  19. Diffeomorphic Metric Mapping of High Angular Resolution Diffusion Imaging based on Riemannian Structure of Orientation Distribution Functions

    CERN Document Server

    Du, Jia; Qiu, Anqi

    2011-01-01

    In this paper, we propose a novel large deformation diffeomorphic registration algorithm to align high angular resolution diffusion images (HARDI) characterized by orientation distribution functions (ODFs). Our proposed algorithm seeks an optimal diffeomorphism of large deformation between two ODF fields in a spatial volume domain and at the same time, locally reorients an ODF in a manner such that it remains consistent with the surrounding anatomical structure. To this end, we first review the Riemannian manifold of ODFs. We then define the reorientation of an ODF when an affine transformation is applied and subsequently, define the diffeomorphic group action to be applied on the ODF based on this reorientation. We incorporate the Riemannian metric of ODFs for quantifying the similarity of two HARDI images into a variational problem defined under the large deformation diffeomorphic metric mapping (LDDMM) framework. We finally derive the gradient of the cost function in both Riemannian spaces of diffeomorphis...

  20. Angular distribution of the emission from ultrarelativistic electrons moving near crystallographic axes in diamond and tungsten crystals

    Energy Technology Data Exchange (ETDEWEB)

    Aleinik, A.N.; Vorobev, S.A.; Kalinin, B.N.; Kurkov, A.A.; Potylitsyn, A.P.

    1986-07-01

    Data on the angular distribution of the emission from ultrarelativistic electrons moving near crystallographic axes in diamond and tungsten crystals are reviewed. A graph is presented of the orientational dependence of soft gamma rays measured by a thin-walled ionization chamber sensitive to gamma rays with energies greater than 0.3 MeV and a radiative loss measured by a total-absorption Gauss quantometer with a threshold of about 5 MeV at an angle to the primary electron-beam direction of motion. It is concluded that knowledge of the scattering processes of ultrarelativistic electrons near crytal axes makes it easier to choose the optimum type and thickness of a crystal to achieve the maximum yield of gamma radiation into a given solid angle. 8 references.

  1. Angular distribution of fragments from neutron-induced fission of {sup 238}U in the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Magnus

    2004-06-01

    Areas ranging from nuclear structure models to accelerator-driven systems benefit from improved neutron-induced fission data in the intermediate energy region. In this Master's degree thesis, the fragment angular distribution from fission of {sup 238}U, induced by 21-MeV neutrons, has been analysed from an experiment performed with the Medley/DIFFICILE setup at the The Svedberg Laboratory in Uppsala. The data have been corrected for low energy neutrons in the beam. The results agree with other experiments, as well as with model calculations. The data should be a starting point for further analysis with a goal to deduce the fission cross-section of {sup 238}U.

  2. Next Generation Astronomical X-ray Optics: High Angular Resolution, Light Weight, and Low Production Cost

    Science.gov (United States)

    Zhang. W. W.; Biskach, M. P.; Blake, P. N.; Chan, K. W.; Gaskin, J. A.; Hong, M. L.; Jones, W. D.; Kolos, L. D.; Mazzarella, J. R.; McClelland, R. S.; O'Dell, S. L.; Saha, T. T.; Sharpe, M. V.

    2012-01-01

    X-ray astronomy depends on the availability of telescopes with high resolution and large photon collecting areas. Since x-ray observation can only be carried out above the atmosphere, these telescopes must be necessarily lightweight. Compounding the lightweight requirement is that an x-ray telescope consists of many nested concentric shells, which further require that x-ray mirrors must also be geometrically thin to achieve high packing efficiency. This double lightweight and geometrically thin requirement poses significant technical challenges in fabricating the mirrors and in integrating them into mirror assemblies. This paper reports on the approach, strategy and status of our x-ray optics development program whose objective is to meet these technical challenges at modest cost to enable future x-ray missions, including small Explorer missions in the near term, probe class missions in the medium term, and large flagship missions in the long term.

  3. Energy and angular distributions of excited rhodium atoms ejected from the rhodium (100) surface

    Energy Technology Data Exchange (ETDEWEB)

    El-Maazawi, M.; Maboudian, R.; Postawa, Z.; Winograd, N. (Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 (US))

    1991-05-15

    Multiphoton resonance ionization spectroscopy has been used to determine the polar-angle and the kinetic-energy distribution of Rh atoms desorbed from the ion-bombarded Rh{l brace}100{r brace} surface in the fine-structure components of the {ital a}{sup 4}{ital F}{sub {ital J}} ground-state multiplet ({ital J}=9/2 and 7/2). The overall behavior is found to be very similar to that observed for higher-lying metastable levels. The energy distribution of the metastable level ({sup 4}{ital F}{sub 7/2} with excitation energy of {similar to}0.2 eV) is found to be broader than the ground-state ({sup 4}{ital F}{sub 9/2}) distribution. The energy distribution of the excited ejected atoms is shown to depend mainly on the electron configuration of the excited state. The measured spectra have also been used to investigate the dependence of the excitation probability on the emission velocity. It is shown that the excitation probability depends strongly on this parameter, approaching an exponential dependence on the reciprocal of the normal component of velocity at higher velocities ({gt}5{times}10{sup 5} cm/sec).

  4. Generation of the Stigmatic Beam with Orbital Angular Momentum

    Institute of Scientific and Technical Information of China (English)

    高春清; 魏光辉; Horst WEBER

    2001-01-01

    The stigmatic beam with orbital angular momentum is generated by transforming the Hermite-Gaussian beamof a diode-pumped Nd:YAG laser through a rotated cylindrical optical system. Behind the transformation optics,the output beam has an intensity distribution of ring shape and a twist phase. The beam transformation istheoretically calculated and the result has been confirmed in the experiments.

  5. Angular Distribution and Cross Section Measurement of the 6Li(3He,n8B Reaction at 5.8 MeV

    Directory of Open Access Journals (Sweden)

    Cinausero M.

    2014-03-01

    Full Text Available The reaction 6Li(3He,n8B was studied at Laboratori Nazionali di Legnaro in the framework of the EUROnu Design Study for a Beta Beam facility at CERN. The 8B production cross section was determined through neutron angular distribution by using the time-of-flight technique. Thanks to the high statistics achieved, the neutron angular distribution for the population of the 8B first excited state has been measured for the first time. Discrepancies with other available data sets for 8B ground state population are discussed and interpreted in the framework of DWBA calculations. Further measurements at beam energies above 10 MeV are needed to clarify the behaviour of the angular distribution

  6. Measurements of the angular distributions of muons from Υ decays in pp collisions at sqrt[s] = 1.96  TeV.

    Science.gov (United States)

    Aaltonen, T; Álvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calamba, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chung, W H; Chung, Y S; Ciocci, M A; Clark, A; Clarke, C; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; Dell'Orso, M; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, S; Ershaidat, N; Eusebi, R; Farrington, S; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Klimenko, S; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lin, C-J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Mastrandrea, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Sorin, V; Song, H; Squillacioti, P; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhou, C; Zucchelli, S

    2012-04-13

    The angular distributions of muons from Υ(1S,2S,3S) → μ+ μ- decays are measured using data from pp collisions at sqrt[s] = 1.96  TeV corresponding to an integrated luminosity of 6.7  fb(-1) and collected with the CDF II detector at the Fermilab Tevatron. This analysis is the first to report the full angular distributions as functions of transverse momentum p(T) for Υ mesons in both the Collins-Soper and s-channel helicity frames. This is also the first measurement of the spin alignment of Υ(3S) mesons. Within the kinematic range of Υ rapidity |y|<0.6 and p(T) up to 40  GeV/c, the angular distributions are found to be nearly isotropic.

  7. A new measurement of the H(n,n)H elastic scattering angular distribution at 14.9 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Boukharouba, N. [Guelma Univ., Dept. of Physics (Algeria); Massey, Th.N.; Grimes, St.M.; Brient, Ch. E. [Ohio Univ., Dept. of Physics and Astronomy, Athens, OH (United States); Haight, R.C. [Los Alamos Neutron Science Center, Los Alamos National Lab., NM (United States); Carter, D.E. [Ohio Univ., Institute of Nuclear and Particle Physics, Athens, OH (United States); Carlson, A.D.; Bateman, F.B. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    2008-07-01

    The relative angular distribution of the scattering of neutrons by protons was measured at E{sub n} = 14.9 MeV neutron energy for center-of-mass scattering angles ranging from 60 to 180 degrees. Absolute angular distribution values were obtained by normalizing the measured line shape to the accurately known n-p total cross section. The degree of anisotropy found in the angular distribution was higher than those of the predictions, but with a large related uncertainty due essentially to the 60 degrees data point. Initial assessment indicates a somewhat better agreement of the data with the predictions of Arndt and Nijmegen than with the ENDF/B-7.0 evaluation.

  8. Controllable Optical Solitons in Optical Fiber System with Distributed Coefficients

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-Fei; HE Wan-Quan; ZHANG Pei; ZHANG Peng

    2011-01-01

    We present how to control the dynamics of optical solitons in optical fibers under nonlinearity and dispersion management, together with the fiber loss or gain. We obtain a family of exact solutions for the nonlinear Schr(o)dinger equation, which describes the propagation of optical pulses in optical fibers, and investigate the dynamical features of solitons by analyzing the exact analytical solutions in different physical situations. The results show that under the appropriate condition, not only the group velocity dispersion and the nonlinearity, but also the loss/gain can be used to manipulate the light pulse.

  9. Distributed flow sensing using optical hot -wire grid.

    Science.gov (United States)

    Chen, Tong; Wang, Qingqing; Zhang, Botao; Chen, Rongzhang; Chen, Kevin P

    2012-04-09

    An optical hot-wire flow sensing grid is presented using a single piece of self-heated optical fiber to perform distributed flow measurement. The flow-induced temperature loss profiles along the fiber are interrogated by the in-fiber Rayleigh backscattering, and spatially resolved in millimeter resolution using optical frequency domain reflectometry (OFDR). The flow rate, position, and flow direction are retrieved simultaneously. Both electrical and optical on-fiber heating were demonstrated to suit different flow sensing applications.

  10. Geometrical characterization of micro-optical cylindrical lens arrays using angular resolved diffraction

    DEFF Research Database (Denmark)

    Iversen, Theis Faber Quist; Hanson, Steen Grüner

    2010-01-01

    been shown (Iversen et al 2009 J. Opt. A: Pure Appl. Opt. 11 054014 (6pp), B¨uttner and Zeitner 2002 Appl. Opt. 41 6841 8) that the average radius of curvature of an MLA structure can be extracted by observing the far-field diffraction pattern intensity distribution obtained from illumination...... of the MLA structure with a coherent light source. This method is based on a priori knowledge of the grating period. We here present a method that fully characterizes the geometrical properties, i.e. the grating period and the average radius of curvature of an MLA structure in a single measurement cycle....... By scanning the angle of incidence of the coherent illumination and simultaneously observing the diffracted intensity, information about the grating period and the radius of curvature can be extracted. The method is implemented with emphasis on further development for compact, high-speed dedicated systems. We...

  11. Both channel coding and wavefront correction on the turbulence mitigation of optical communications using orbital angular momentum multiplexing

    Science.gov (United States)

    Zhao, Shengmei; Wang, Le; Zou, Li; Gong, Longyan; Cheng, Weiwen; Zheng, Baoyu; Chen, Hanwu

    2016-10-01

    A free-space optical (FSO) communication link with multiplexed orbital angular momentum (OAM) modes has been demonstrated to largely enhance the system capacity without a corresponding increase in spectral bandwidth, but the performance of the link is unavoidably degraded by atmospheric turbulence (AT). In this paper, we propose a turbulence mitigation scheme to improve AT tolerance of the OAM-multiplexed FSO communication link using both channel coding and wavefront correction. In the scheme, we utilize a wavefront correction method to mitigate the phase distortion first, and then we use a channel code to further correct the errors in each OAM mode. The improvement of AT tolerance is discussed over the performance of the link with or without channel coding/wavefront correction. The results show that the bit error rate performance has been improved greatly. The detrimental effect of AT on the OAM-multiplexed FSO communication link could be removed by the proposed scheme even in the relatively strong turbulence regime, such as Cn2 = 3.6 ×10-14m - 2 / 3.

  12. Angular reflectance of suspended gold, aluminum and silver nanospheres on a gold film: Effects of concentration and size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Aslan, Mustafa M., E-mail: mustafa.aslan@mam.gov.t [TUBITAK Marmara Research Center, Materials Institute (Turkey); Wriedt, Thomas [Institut fuer Werkstofftechnik (Germany)

    2010-10-15

    In this article, we describe a parametric study of the effects of the size distribution (SD) and the concentration of nanospheres in ethanol on the angular reflectance. Calculations are based on an effective medium approach in which the effective dielectric constant of the mixture is obtained using the Maxwell-Garnett formula. The detectable size limits of gold, aluminum, and silver nanospheres on a 50-nm-thick gold film are calculated to investigate the sensitivity of the reflectance to the SD and the concentration of the nanospheres. The following assumptions are made: (1) the total number of particles in the unit volume of suspension is constant, (2) the nanospheres in the suspension on a gold film have a SD with three different concentrations, and (3) there is no agglomeration and the particles have a log-normal SD, where the effective diameter, d{sub eff} and the effective variance, {nu}{sub eff} are given. The dependence of the reflectance on the d{sub eff}, {nu}{sub eff}, and the width of the SD are also investigated numerically. The angular variation of the reflectance as a function of the incident angle shows a strong dependence on the effective size of the metallic nanospheres. The results confirm that the size of the nanospheres (d{sub eff} <100 nm) can be detected by reflected light from the bottom surface of a gold film with a reasonable sensitivity if a proper angle of incidence is chosen based on the type of metallic particles on a gold thin film at {lambda} = 632 nm. We show that the optimum incident angle to characterize the size of nanospheres on a gold film is between 70{sup o} and 75{sup o} for a given concentration with a particular SD.

  13. Molecular Frame Photoelectron Angular Distributions as a Probe of Geometry and Auger Dissociation Dynamics

    Science.gov (United States)

    Trevisan, Cynthia S.; Rescigno, Thomas N.; McCurdy, C. William

    2012-06-01

    Compex Kohn variational calculations of the molecular frame photoelectron distributions (MFPADs) for 1s core ionization of CH4, NH3, and H2O are presented for ejected electron energies below 25 eV. Surprisingly, in these three cases there are energy ranges in which the photoelectron MFPADs effectively form ``images'' of the molecular geometry. Comparison with recent momentum imaging experiments on methane at the Advanced Light Source verify this effect. Simultaneous double Auger decay in these molecules can produce dissociation into three charged fragments, e.g., CH2^+ + 2 H^+, allowing the complete orientation of the molecule and therefore the measurement of 3D MFPADs that test these predictions. In other Auger decay channels the measurement of 3D MFPADs verifies axial recoil (prompt dissociation) or probes its absence in the Auger dissociation dynamics of small molecules.

  14. Separating Electroweak and Strong interactions in Drell-Yan processes at LHC: leptons angular distributions and reference frames

    CERN Document Server

    Richter-Was, E

    2016-01-01

    Among the physics goals of LHC experiments, precision tests of the Standard Model in the Strong and Electroweak sectors play an important role. Because of nature of the proton-proton processes, observables based on the measurement of the direction and energy of leptons provide the most precise signatures. In the present paper, we concentrate on the angular distribution of Drell-Yan process leptons, in the lepton-pair rest-frame. The vector nature of the intermediate state imposes that distributions are to a good precision described by spherical polynomials of at most second order. We show that with the proper choice of the coordinate frames, only one coefficient in this polynomial decomposition remains sizable, even in the presence of one or two high $p_T$ jets. The necessary stochastic choice of the frames relies on probabilities independent from any coupling constants. This remains true when one or two partons accompany the lepton pairs. In this way electroweak effects can be better separated from strong in...

  15. Interaction of positronium atoms, with paramagnetic molecules, measured by perturbed angular distribution in 3{gamma} annihilation decay

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Eugeniu [National Institute for Nuclear Physics and Engineering - Horia Hulubei, Bucharest-Magurele CP MG 06, Atomistilor Street 407 (Romania); Center for Advanced Studies in Physics of the Roumanian Academy, Casa Academiei Romane, Calea 13 Septembrie No: 13, Bucharest (Romania); Vata, Ion [National Institute for Nuclear Physics and Engineering - Horia Hulubei, Bucharest-Magurele CP MG 06, Atomistilor Street 407 (Romania)], E-mail: vata@ifin.nipne.ro; Teodorian, Stefan; Rusen, Ion; Stefan, Nitisor [National Institute for Nuclear Physics and Engineering - Horia Hulubei, Bucharest-Magurele CP MG 06, Atomistilor Street 407 (Romania)

    2009-01-15

    Positronium in the triplet spin state (S = 1) decays by 3{gamma} annihilation having a life time of about 140 ns in vacuum. Positronium annihilation is affected by magnetic fields which mix the M = 0 state of ortho-positronium with the M = 0 state of para-positronium. The mixing fraction depends on the magnetic field intensity and causes quantum beats in the time distribution of {gamma} annihilation decay. This effect was predicted by Barishevsky et al. [V.G. Barishevsky, O.N. Metelitsa, V.V. Tikhomirov, J. Phys. B Atom. Mol. Opt. Phys. 22 (1989) 2835]. The time differential perturbed angular correlation method (TDPAC), combined with long-lived positron life time spectroscopy (PLTS), has been used to observe these quantum beats. It is found that the characteristics of the annihilation time distribution are not influenced by the presence of diamagnetic species such as Ar, N{sub 2} and H{sub 2} but are affected by the presence of the paramagnetic O{sub 2} molecule. Our results are encouraging in developing a new method for investigating magnetic fields on an atomic scale.

  16. Angular distribution of Rh atoms desorbed from ion-bombarded Rh l brace 100 r brace : Effect of local environment

    Energy Technology Data Exchange (ETDEWEB)

    Maboudian, R.; Postawa, Z.; El-Maazawi, M.; Garrison, B.J.; Winograd, N. (Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 (USA))

    1990-10-15

    Energy-resolved angular distributions of Rh atoms desorbed by 5 keV Ar-ion bombardment of the Rh{l brace}100{r brace} surface are measured with use of a multiphoton resonance ionization technique. The results are shown to be in good agreement with molecular-dynamics simulations of the ion-impact event using the same interaction potential optimized previously to describe desorption from Rh{l brace}111{r brace}. In addition, by analyzing contour plots of the surface potential energy, the trend in the experimental results for Rh{l brace}100{r brace} and those previously published for Rh{l brace}111{r brace} are well explained. Based on this analysis, it is concluded that the peak in the polar-angle distribution of neutral particles desorbed from ion-bombarded single crystals is mainly determined by the relative positions of surface atoms which influence the trajectory of an exiting particle via channeling and blocking. Moreover, the anisotropy of the momentum imparted to the surface atoms in the last collision leads to an enhancement of ejection along certain crystallographic directions.

  17. Measurement of $W$ boson angular distributions in events with high transverse momentum jets at $\\sqrt{s}=$ 8 TeV using the ATLAS detector

    CERN Document Server

    Aaboud, Morad; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethani, Agni; Bethke, Siegfried; Bevan, Adrian John; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier

    2016-01-01

    The $W$ boson angular distribution in events with high transverse momentum jets is measured using data collected by the ATLAS experiment from proton--proton collisions at a centre-of-mass energy $\\sqrt{s}=$ 8 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb$^{-1}$. The focus is on the contributions to $W$ + jets processes from real $W$ emission, which is achieved by studying events where a muon is observed close to a high transverse momentum jet. At small angular separations, these contributions are expected to be large. Various theoretical models of this process are compared to the data in terms of the absolute cross-section and the angular distributions of the muon from the leptonic $W$ decay.

  18. Measurement of W boson angular distributions in events with high transverse momentum jets at s=8 TeV using the ATLAS detector

    Directory of Open Access Journals (Sweden)

    M. Aaboud

    2017-02-01

    Full Text Available The W boson angular distribution in events with high transverse momentum jets is measured using data collected by the ATLAS experiment from proton–proton collisions at a centre-of-mass energy s=8 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb−1. The focus is on the contributions to W+jets processes from real W emission, which is achieved by studying events where a muon is observed close to a high transverse momentum jet. At small angular separations, these contributions are expected to be large. Various theoretical models of this process are compared to the data in terms of the absolute cross-section and the angular distributions of the muon from the leptonic W decay.

  19. A statistical analysis of angular distribution of neutrino events observed in Kamiokande II and IMB detectors from supernova SN 1987 A

    Energy Technology Data Exchange (ETDEWEB)

    Krivoruchenko, M.I. (Institut Teoreticheskoj i Ehksperimental' noj Fiziki, Moscow (USSR))

    1989-11-01

    A detailed statistical analysis of angular distribution of neutrino events observed in Kamiokande II and IMB detectors on UT 07:35, 2/23'87 is carried out. Distribution functions of the mean scattering angles in the reaction anti 4u{sub e}p->e{sup +}n and 4ue->4ue are constructed with account taken of the multiple Coulomb scattering and the experimental angular errors. The Smirnov and Wald-Wolfowitz run tests are used to test the hypothesis that the angular distributions of events from the two detectors agree with each other. We test with the use of the Kolmogorov and Mises statistical criterions the hypothesis that the recorded events all represent anti 4u{sub e}p->e{sup +}n inelastic scatterings. Then the Neyman-Pearson test is applied to each event in testing the hypothesis anti 4u{sub e}p->e{sup +}n against the alternative 4ue->4ue. The hypotheses that the number of elastic events equals s=0, 1, 2, ... against the alternatives snot =0, 1, 2, ... are tested on the basis of the generalized likelihood ratio criterion. The confidence intervals for the number of elastic events are also constructed. The current supernova models fail to give a satisfactory account of the angular distribution data. (orig.).

  20. Angular distributions in the radiative decays of the {sup 3}D{sub 3} state of charmonium originating from polarized anti pp collisions

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Cheuk-Ping [Georgia State University, Department of Physics and Astronomy, Atlanta, GA (United States); Mok, Alex W.K.; Sit, Wai-Yu [Hong Kong Baptist University, Department of Physics, Kowloon Tong (China)

    2015-03-01

    Using the helicity formalism, we calculate the combined angular distribution function of the two gamma photons (γ{sub 1} and γ{sub 2}) and the electron (e{sup -}) in the triple cascade process anti pp → {sup 3}D{sub 3} → {sup 3}P{sub 3}+γ{sub 1} → (ψ+γ{sub 2})+γ{sub 1} → (e{sup -} + e{sup +}) + γ{sub 2} + γ{sub 1}, when anti p and p are arbitrarily polarized. We also derive six different partially integrated angular distribution functions which give the angular distributions of one or two particles in the final state. Our results show that by measuring the two-particle angular distribution of γ{sub 1} and γ{sub 2} and that of γ{sub 2} and e{sup -}, one can determine the relative magnitudes as well as the relative phases of all the helicity amplitudes in the two charmonium radiative transitions {sup 3}D{sub 3} → {sup 3}P{sub 3}+γ{sub 1} and {sup 3}P{sub 3} → ψ+γ{sub 2}. (orig.)

  1. Angular distributions in the radiative decays of the {sup 3}D{sub 3} state of charmonium originating from polarized p{sup -bar}p collisions

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Cheuk-Ping, E-mail: cwong14@student.gsu.edu [Department of Physics and Astronomy, Georgia State University, 30303, Atlanta, GA (United States); Mok, Alex W. K., E-mail: wkmok@hkbu.edu.hk; Sit, Wai-Yu, E-mail: 12466654@hkbu.edu.hk [Department of Physics, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2015-03-07

    Using the helicity formalism, we calculate the combined angular distribution function of the two gamma photons (γ{sub 1} and γ{sub 2}) and the electron (e{sup -}) in the triple cascade process p{sup -bar}p→{sup 3}D{sub 3}→{sup 3}P{sub 2}+γ{sub 1}→(ψ+γ{sub 2})+γ{sub 1}→(e{sup -}+e{sup +})+γ{sub 2}+γ{sub 1}, when p{sup -bar} and p are arbitrarily polarized. We also derive six different partially integrated angular distribution functions which give the angular distributions of one or two particles in the final state. Our results show that by measuring the two-particle angular distribution of γ{sub 1} and γ{sub 2} and that of γ{sub 2} and e{sup -}, one can determine the relative magnitudes as well as the relative phases of all the helicity amplitudes in the two charmonium radiative transitions {sup 3}D{sub 3}→{sup 3}P{sub 2}+γ{sub 1} and {sup 3}P{sub 2}→ψ+γ{sub 2}.

  2. Theoretical description of circular dichroism in photoelectron angular distributions of randomly oriented chiral molecules after multi-photon photoionization

    Science.gov (United States)

    Goetz, R. E.; Isaev, T. A.; Nikoobakht, B.; Berger, R.; Koch, C. P.

    2017-01-01

    Photoelectron circular dichroism refers to the forward/backward asymmetry in the photoelectron angular distribution with respect to the propagation axis of circularly polarized light. It has recently been demonstrated in femtosecond multi-photon photoionization experiments with randomly oriented camphor and fenchone molecules [C. Lux et al., Angew. Chem., Int. Ed. 51, 4755 (2012) and C. S. Lehmann et al., J. Chem. Phys. 139, 234307 (2013)]. A theoretical framework describing this process as (2+1) resonantly enhanced multi-photon ionization is constructed, which consists of two-photon photoselection from randomly oriented molecules and successive one-photon ionization of the photoselected molecules. It combines perturbation theory for the light-matter interaction with ab initio calculations for the two-photon absorption and a single-center expansion of the photoelectron wavefunction in terms of hydrogenic continuum functions. It is verified that the model correctly reproduces the basic symmetry behavior expected under exchange of handedness and light helicity. When applied to fenchone and camphor, semi-quantitative agreement with the experimental data is found, for which a sufficient d wave character of the electronically excited intermediate state is crucial.

  3. Parameterization of the Angular Distribution of Gamma Rays Produced by P-P Interaction in Astronomical Environment

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Niklas; /SLAC; Kamae, Tuneyoshi; /SLAC /KIPAC, Menlo Park

    2007-09-24

    We present the angular distribution of gamma rays produced by proton-proton interactions in parameterized formulae to facilitate calculations in astrophysical environments. The parameterization is derived from Monte Carlo simulations of the up-to-date proton-proton interaction model by Kamae et al. (2005) and its extension by Kamae et al. (2006). This model includes the logarithmically rising inelastic cross section, the diffraction dissociation process and Feynman scaling violation. The extension adds two baryon resonance contributions: one representing the {Delta}(1232) and the other representing multiple resonances around 1600 MeV/c{sup 2}. We demonstrate the use of the formulae by calculating the predicted gamma-ray spectrum for two different cases: the first is a pencil beam of protons following a power law and the second is a fanned proton jet with a Gaussian intensity profile impinging on the surrounding material. In both cases we find that the predicted gamma-ray spectrum to be dependent on the viewing angle.

  4. In-Space Distributed Fiber Optic Hydrogen Leak Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Broadband Photonics Inc. proposes development of a patent-pending distributed fiber optic sensor for in-space hydrogen leak detection. Reliable and fast detection of...

  5. In-Space Distributed Fiber Optic Hydrogen Leak Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Broadband Photonics Inc. proposes development of a patent-pending distributed fiber optic sensor for in-space hydrogen leak detection. Reliable and fast detection of...

  6. Distributed Fiber-Optic Sensors for Vibration Detection.

    Science.gov (United States)

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-07-26

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.

  7. Distributed quantum computation via optical fibres

    CERN Document Server

    Serafini, A; Bose, S; Serafini, Alessio; Mancini, Stefano; Bose, Sougato

    2005-01-01

    We investigate the possibility of realising effective quantum gates between two atoms in distant cavities coupled by an optical fibre. We show that highly reliable swap and entangling gates are achievable. We exactly study the stability of these gates in presence of imperfections in coupling strengths and interaction times and prove them to be robust. Moreover, we analyse the effect of spontaneous emission and losses and show that such gates are very promising in view of the high level of coherent control currently achievable in optical cavities.

  8. Network Integration of Distributed Optical Fiber Temperature Sensor

    Institute of Scientific and Technical Information of China (English)

    Gui-Yan Li; Hong-Lin Liu; Zai-Xuan Zhang

    2008-01-01

    The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibility with traditional system and the characteristics of distributed optical fiber temperature sensor is considered before Modbus TCP/IP protocol is chosen. The protocol is implemented with open source component Indy. The Modbus TCP/IP protocol used in the system is proved to be fast and robust.

  9. Optical coherent detection Brillouin distributed optical fiber sensor based on orthogonal polarization diversity reception

    Institute of Scientific and Technical Information of China (English)

    Muping Song; Bin Zhao; Xianmin Zhang

    2005-01-01

    In Brillouin distributed optical fiber sensor, using optical coherent detection to detect Brillouin scattering optical signal is a good method, but there exists the polarization correlated detection problem. A novel detecting scheme is presented and demonstrated experimentally, which adopts orthogonal polarization diversity reception to resolve the polarization correlated detection problem. A laser is used as pump and reference light sources, a microwave electric-optical modulator (EOM) is adopted to produce frequency shift reference light, a polarization controller is used to control the polarization of the reference light which is changed into two orthogonal polarization for two adjacent acquisition periods. The Brillouin scattering light is coherently detected with the reference light, and the Brillouin scattering optical signal is taken out based on Brillouin frequency shift. After electronic processing, better Brillouin distributed sensing signal is obtained. A 25-km Brillouin distributed optical fiber sensor is achieved.

  10. Angular distributions of the polarized photons and electron in the decays of the {sup 3}D{sub 3} state of charmonium

    Energy Technology Data Exchange (ETDEWEB)

    Mok, Alex W.K.; Wong, Cheuk-Ping; Sit, Wai-Yu [Hong Kong Baptist University, Department of Physics, Kowloon Tong, Hong Kong (China)

    2014-02-15

    We calculate the combined angular-distribution functions of the polarized photons (γ{sub 1} and γ{sub 2}) and electron (e{sup -}) produced in the cascade process anti pp → {sup 3}D{sub 3} → {sup 3}P{sub 2} + γ{sub 1} → (ψ + γ{sub 2}) + γ{sub 1} → (e{sup +}e{sup -}) + γ{sub 1} + γ{sub 2}, when the colliding Pp and p are unpolarized. Our results are independent of any dynamical models and are expressed in terms of the spherical harmonics whose coefficients are functions of the angular-momentum helicity amplitudes of the individual processes. Once the joint angular distribution of (γ{sub 1}, γ{sub 2}) and that of (γ{sub 2}, e{sup -}) with the polarization of either one of the two particles are measured, our results will enable one to determine the relative magnitudes as well as the relative phases of all the angular-momentum helicity amplitudes in the radiative decay processes {sup 3}D{sub 3} → {sup 3}P{sub 2} + γ{sub 1} and {sup 3}P{sub 2} → ψ + γ{sub 2}. (orig.)

  11. Inner-shell photoelectron angular distributions from fixed-in-space OCS molecules: comparison between experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Golovin, A V [Photon Factory, Institute of Materials Structure Science, Tsukuba 305-0801 (Japan); Institute of Physics, St Petersburg State University, 198504 St Petersburg (Russian Federation); Adachi, J [Photon Factory, Institute of Materials Structure Science, Tsukuba 305-0801 (Japan); Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Motoki, S [Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, (Japan); Takahashi, M [Institute for Molecular Science, Okazaki 444-8585 (Japan); Yagishita, A [Photon Factory, Institute of Materials Structure Science, Tsukuba 305-0801 (Japan); Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2005-10-28

    Photoelectron angular distributions (PADs) for O 1s, C 1s and S 2p{sub 1/2}, 2p{sub 3/2} ionization of OCS molecules have been measured in shape resonance regions. These PAD results are compared with the results for O 1s and C 1s ionization of CO molecules, and multi-scattering X{alpha} (MSX{alpha}) calculations. The mechanism of the PAD formation both for parallel and perpendicular transitions differs very significantly in these molecules and a step from a two-centre potential (CO) to a three-centre potential (OCS) plays a principal role in electron scattering and the formation of the resulting PAD. For parallel transitions, it is found that for the S 2p and O 1s ionization the photoelectrons are emitted preferentially in a hemisphere directed to the ionized S and O atom, respectively. In OCS O 1s ionization, the S-C fragment plays the role of a strong 'scatterer' for photoelectrons, and in the shape resonance region most intensities of the PADs are concentrated on the region directed to the O atom. The MSX{alpha} calculations for perpendicular transitions reproduce the experimental data, but not so well as in the case of parallel transitions. The results of PAD, calculated with different l{sub max} on different atomic centres, reveal the important role of the d (l = 2) partial wave for the S atom in the partial wave decompositions of photoelectron wavefunctions.

  12. Absorbed Dose Distribution in a Pulse Radiolysis Optical Cell

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    When a liquid solution in an optical cell is irradiated by an intense pulsed electron beam, it may be important in the chemical analysis of the solution to know the distribution of energy deposited throughout the cell. For the present work, absorbed dose distributions were measured by thin...

  13. A distributed fiber optic sensor system for dike monitoring using Brillouin optical frequency domain analysis

    Science.gov (United States)

    Nöther, Nils; Wosniok, Aleksander; Krebber, Katerina; Thiele, Elke

    2008-03-01

    We report on the development of a complete system for spatially resolved detection of critical soil displacement in river embankments. The system uses Brillouin frequency domain analysis (BOFDA) for distributed measurement of strain in silica optical fibers. Our development consists of the measurement unit, an adequate coating for the optical fibers and a technique to integrate the coated optical fibers into geotextiles as they are commonly used in dike construction. We present several laboratory and field tests that prove the capability of the system to detect areas of soil displacement as small as 2 meters. These are the first tests of truly distributed strain measurements on optical fibers embedded into geosynthetics.

  14. Theoretical calculation of the photo electron angular distribution of neon%氖原子光电子角分布的理论计算∗

    Institute of Scientific and Technical Information of China (English)

    马堃; 颉录有; 张登红; 董晨钟; 屈一至

    2016-01-01

    The general formula of the angular distribution of photoelectron is derived by using the density matrix theory and Racah algebra method. For comparing with the experimental data, the general formula in this paper is matched to the parametric formula and the non-dipole parameters of the photoelectron angular distribution associated with the terms of the second order for both unpolarized and polarized incident light are given explicitly. From the formula of these parameters we can see that the contribution to the non-dipole parameter is from the interference between dipole amplitude and multipole amplitude. And then, the relativistic calculation program for photoelectron angular distribution is further developed with the help of the program packages GRASP2K and RATIP which are based on the multi-configuration Dirac-Fock method. By using this program, the dipole and non-dipole angular-distribution parameters for neon 2s and 2p photoelectrons are calculated concretely. The good agreement between the results of this paper and the available theoretical data is obtained in a 50–5000 eV photoelectron-energy range studied. On this basis, the angular photoelectron distributions for neon 2s and 2p are calculated with and without considering the second non-dipole terms at the photoelectron energy E = 600 eV and E = 5000 eV, respectively. Special attention is paid to the effects of the polarization property of incident light and the non-dipole terms of photo-electron interaction on the angular distribution of photoelectrons. The results show that 1) the dipole and non-dipole parameters of the photoelectron angular distribution are sensitive to the ionized electron orbital, it can bring out considerable diversities among the photoelectron angular distributions of the different shells;2) non-dipole effects make the photoelectron forward distribution in the direction of incident light, the polarization property of incident light will strengthen the asymmetric distribution of

  15. Mapping Nanoscale Electromagnetic Near-Field Distributions Using Optical Forces

    CERN Document Server

    Huang, Fei; Mardy, Zahra; Burdett, Jonathan; Wickramasinghe, H Kumar

    2014-01-01

    We demonstrate the application of Atomic Force Microscopy (AFM) based optical force microscopy to map the optical near-fields with nanometer resolution, limited only by the AFM probe geometry. We map the electric field distributions of tightly focused laser beams with different polarizations and show that the experimentally measured data agrees well with the theoretical predictions from a dipole-dipole interaction model, thereby validating our approach. We further validate the proposed technique by evaluating the optical electric field scattered by a spherical nanoparticle by measuring the optical forces between the nanoparticle and gold coated AFM probe. The technique allows for wavelength independent, background free, thermal noise limited mechanical imaging of optical phenomenon with sensitivity limited by AFM performance. Optical forces due to both electric and magnetic dipole-dipole interactions can be measured using this technique.

  16. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias

    2015-01-01

    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  17. Search for Quark Contact Interactions in Dijet Angular Distributions in $pp$ Collisions at $\\sqrt{s}$ = 7 TeV Measured with the ATLAS Detector

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B.S.; Ackers, M.; Adams, D.L.; Addy, T.N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Aleppo, M.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, J.; Alviggi, M.G.; Amako, K.; Amaral, P.; Ambrosio, G.; Amelung, C.; Ammosov, V.V.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Andrieux, M-L.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A.J.; Arms, K.E.; Armstrong, S.R.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Baccaglioni, G.; Bacci, C.; Bach, A.M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D.C.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baker, S; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baroncelli, A.; Barone, M.; Barr, A.J.; Barreiro, F.; Barreiro Guimaraes da Costa, J.; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Beddall, A.J.; Beddall, A.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Belhorma, B.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, G.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Bertolucci, S.; Besana, M.I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Binder, M.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bischof, R.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J-B; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Boaretto, C.; Bobbink, G.J.; Bocci, A.; Bocian, D.; Bock, R.; Boddy, C.R.; Boehler, M.; Boek, J.; Boelaert, N.; Boser, S.; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Boorman, G.; Booth, C.N.; Booth, P.; Booth, J.R.A.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I.R.; Bozhko, N.I.; Bozovic-Jelisavcic, I.; Braccini, S.; Bracinik, J.; Braem, A.; Brambilla, E.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N.D.; Bright-Thomas, P.G.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodbeck, T.J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P.A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.

    2013-07-16

    Dijet angular distributions from the first LHC pp collisions at center-of-mass energy sqrt(s) = 7 TeV have been measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity of 3.1 pb-1. Dijet $\\chi$ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV, and found to be in good agreement with Standard Model predictions. Analysis of the $\\chi$ distributions excludes quark contact interactions with a compositeness scale $\\Lambda$ below 3.4 TeV, at 95% confidence level, significantly exceeding previous limits.

  18. Search for quark contact interactions in dijet angular distributions in pp collisions at √{ s} = 7 TeV measured with the ATLAS detector

    Science.gov (United States)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Ackers, M.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Aktas, A.; Alam, M. S.; Alam, M. A.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Aleppo, M.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, J.; Alviggi, M. G.; Amako, K.; Amaral, P.; Ambrosio, G.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A. J.; Arms, K. E.; Armstrong, S. R.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, M.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, G. A.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Belhorma, B.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, G.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Bertolucci, S.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Binder, M.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bischof, R.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Boaretto, C.; Bobbink, G. J.; Bocci, A.; Bocian, D.; Bock, R.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Booth, P.; Booth, J. R. A.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Braccini, S.; Bracinik, J.; Braem, A.; Brambilla, E.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N. D.; Bright-Thomas, P. G.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Buis, E. J.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S.; Caccia, M.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camard, A.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Cammin, J.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Caprio, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carpentieri, C.; Carrillo Montoya, G. D.; Carron Montero, S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavallari, A.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Cazzato, A.; Ceradini, F.; Cerna, C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervetto, M.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, L.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Cole, B.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Comune, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Correard, S.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cuneo, S.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Rocha Gesualdi Mello, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dahlhoff, A.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Daly, C. H.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dankers, R.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Daum, C.; Dauvergne, J. P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A. R.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Cruz-Burelo, E.; de La Taille, C.; de Lotto, B.; de Mora, L.; de Nooij, L.; de Oliveira Branco, M.; de Pedis, D.; de Saintignon, P.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dean, S.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degenhardt, J.; Dehchar, M.; Deile, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S. P.; Dennis, C.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diaz Gomez, M. M.; Diblen, F.; Diehl, E. B.; Dietl, H.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O. B.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Drohan, J. G.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Efthymiopoulos, I.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Evdokimov, V. N.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fasching, D.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, I.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferguson, D.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Ferro, F.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flammer, J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Fopma, J.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gautard, V.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gieraltowski, G. F.; Gilbert, L. M.; Gilchriese, M.; Gildemeister, O.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Gnanvo, K. G.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N. P.; Golovnia, S. N.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Gonella, L.; Gong, C.; Gonidec, A.; Gonzalez, S.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Pineiro, B.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Gorski, B. T.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Green, B.; Greenfield, D.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Grewal, A.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Groer, L. S.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Gruwe, M.; Grybel, K.; Guarino, V. J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Haboubi, G.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haeberli, C.; Haefner, P.; Härtel, R.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hallewell, G. D.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, C. J.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harper, R.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hart, J. C.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heldmann, M.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R. C. W.; Hendriks, P. J.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernández Jiménez, Y.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hindson, D.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Hollins, T. I.; Holmes, A.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homer, R. J.; Homma, Y.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J.-Y.; Hott, T.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howell, D. F.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, M.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joo, K. K.; Joos, D.; Joram, C.; Jorge, P. M.; Jorgensen, S.; Joseph, J.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kimura, N.; Kind, O.; Kind, P.; King, B. T.; King, M.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kisielewski, B.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Knobloch, J.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; König, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lambacher, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapin, V. V.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Le Vine, M.; Leahu, M.; Lebedev, A.; Lebel, C.; Lechowski, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Legendre, M.; Leger, A.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lehto, M.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Lepidis, J.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Leyton, M.; Li, B.; Li, H.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J. N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Lovas, L.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lu, J.; Lu, L.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lynn, J.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Maaßen, M.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; MacQueen, D.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magnoni, L.; Magradze, E.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Manara, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Mangin-Brinet, M.; Manjavidze, I. D.; Mann, A.; Mann, W. A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchesotti, M.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martyniuk, A. C.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maxfield, S. J.; May, E. N.; Mayer, J. K.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Donald, J.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McGarvie, S.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McMahon, T. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A. M.; Messmer, I.; Metcalfe, J.; Mete, A. S.; Meuser, S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Miele, P.; Migas, S.; Migliaccio, A.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikulec, B.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Mima, S.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitra, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Mladenov, D.; Moa, T.; Moch, M.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Moneta, L.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgan, D.; Morii, M.; Morin, J.; Morita, Y.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Moszczynski, A.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moye, T. H.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muijs, A.; Muir, A.; Munar, A.; Munwes, Y.; Murakami, K.; Murillo Garcia, R.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Naito, D.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nasteva, I.; Nation, N. R.; Nattermann, T.; Naumann, T.; Nauyock, F.; Navarro, G.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neubauer, M. S.; Neukermans, L.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newcomer, F. M.; Nicholson, C.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Norniella Francisco, O.; Norton, P. R.; Notz, D.; Novakova, J.; Nozaki, M.; Nožička, M.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G. A.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohska, T. K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, C.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Orellana, F.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero Y Garzon, G.; P Ottersbach, J.; Ottewell, B.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Øye, O. K.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Palla, J.; Pallin, D.; Palma, A.; Palmer, J. D.; Palmer, M. J.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panin, V. N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Paoloni, A.; Papadopoulou, Th. D.; Paramonov, A.; Park, S. J.; Park, W.; Parker, M. A.; Parker, S. I.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Peak, L. S.; Pecsy, M.; Pedraza Morales, M. I.; Peeters, S. J. M.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Peric, I.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V. D.; Petereit, E.; Peters, O.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Ponsot, P.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popescu, R.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potekhin, M.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Potter, K. P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Prata, M.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Raine, C.; Raith, B.; Rajagopalan, S.; Rajek, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renkel, P.; Rensch, B.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R. A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Roa Romero, D. A.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Sala, P.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandhu, P.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Savva, P.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schaller, M.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmidt, M. P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Scholte, R. C.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schroff, D.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schweiger, D.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shield, P.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soluk, R.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spogli, L.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Stefanidis, E.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stiller, W.; Stockmanns, T.; Stockton, M. C.; Stodulski, M.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D. A.; Su, D.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X. H.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szczygiel, R. R.; Szeless, B.; Szymocha, T.; Sánchez, J.; Ta, D.; Taboada Gameiro, S.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G.; Taylor, G. N.; Taylor, R. P.; Taylor, W.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Tennenbaum-Katan, Y. D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomson, E.; Thomson, M.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tonazzo, A.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Traynor, D.; Trefzger, T.; Treis, J.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tylmad, M.; Tyndel, M.; Typaldos, D.; Tyrvainen, H.; Tzamarioudaki, E.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valderanis, C.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasilyeva, L.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Ventura, S.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vertogardov, L.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villani, E. G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vovenko, A. S.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, J.; Wang, J. C.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Webel, M.; Weber, J.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S. L.; Wu, X.; Wuestenfeld, J.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Xu, N.; Yabsley, B.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, S.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, J.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zalite, Yo. K.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zdrazil, M.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zemla, A.; Zendler, C.; Zenin, A. V.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; Zur Nedden, M.; Zutshi, V.; Atlas Collaboration

    2011-01-01

    Dijet angular distributions from the first LHC pp collisions at center-of-mass energy √{ s} = 7 TeV have been measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity of 3.1 pb-1. Dijet χ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV, and found to be in good agreement with Standard Model predictions. Analysis of the χ distributions excludes quark contact interactions with a compositeness scale Λ below 3.4 TeV, at 95% confidence level, significantly exceeding previous limits.

  19. Transverse angular shift in optical Magnus effect%光学马格努斯效应中的横向角移分析

    Institute of Scientific and Technical Information of China (English)

    张莉; 罗海陆; 文双春

    2011-01-01

    从平面角谱理论出发,建立了光束在空气和玻璃界面折射的传输模型.基于这一模型,揭示了光学马格努斯效应中的横向角移现象.对于特定的线偏振和椭圆偏振光束,其折射场重心出现了横向角移,而当入射光束为圆偏振时,横向角移则会消失.在正负折射率界面,光束的横向角移产生了反转现象,这是由于光束存左手材料中发生 了负衍射.超高折射率可明显地减少横向角移,而超低折射率则可显著地增强横向角移.这些发现将为如何调控和增强光学马格努斯效应提供理论依据.%Starting from the plane angular spectrum theory, we establish a transmission model of beanm refraction at the interface between air and glass. Based on this model, we reveal a transverse angular shift in the optical Magnus effect. For a certain linearly and elliptically polarized light beam, the field centroi& of refraction beam exhibits a transverse angular shift. However, the transverse angular shift would vanish when the incident light beam is circularly polarized. At an interface between positive and negative refractive indexes, the transverse angle shift presents a reversed phenomenon whieh is caused by negative diffraction in the |eft-handed materials. Ultra-high refractive index can significantly reduce the transverse angular shift. On the contrary, the ultra-low refractive index can significantly enhanee the transverse angular shift. These findings provide a new method of how to adjust and enhance the optical Magnus effect.

  20. Measurement of dijet angular distributions at sqrt{s}=1.96TeV and searches for quark compositeness and extra spatial dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration, D0

    2009-06-01

    We present the first measurement of dijet angular distributions in p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron Collider. The measurement is based on a dataset corresponding to an integrated luminosity of 0.7 fb{sup -1} collected with the D0 detector. Dijet angular distributions have been measured over a range of dijet masses, from 0.25 TeV to above 1.1 TeV. The data are in good agreement with the predictions of perturbative QCD and are used to constrain new physics models including quark compositeness, large extra dimensions, and TeV{sup -1} scale extra dimensions. For all models considered, we set the most stringent direct limits to date.

  1. Search for New Phenomena in Dijet Angular Distributions in Proton-Proton Collisions at $\\sqrt{s} = 8$ TeV Measured with the ATLAS Detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Maurice; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Childers, John Taylor; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire, Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saimpert, Matthias; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R.Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simoniello, Rosa; Sinervo, Pekka; Sinev, Nikolai; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spalla, Margherita; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2015-01-01

    A search for new phenomena in LHC proton-proton collisions at a center-of-mass energy of $\\sqrt{s}=8$ TeV was performed with the ATLAS detector using an integrated luminosity of 17.3 fb$^{-1}$. The angular distributions are studied in events with at least two jets; the highest dijet mass observed is 5.5 TeV. All angular distributions are consistent with the predictions of the Standard Model. In a benchmark model of quark contact interactions, a compositeness scale below 8.1 TeV in a destructive interference scenario and 12.0 TeV in a constructive interference scenario is excluded at 95% CL; median expected limits are 8.9 TeV for the destructive interference scenario and 14.1 TeV for the constructive interference scenario.

  2. Measurement of the angular distribution of electrons from W-->eν decays observed in pp¯ collisions at s=1.8 TeV

    Science.gov (United States)

    Abbott, B.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adams, D. L.; Adams, M.; Alves, G. A.; Amos, N.; Anderson, E. W.; Baarmand, M. M.; Babintsev, V. V.; Babukhadia, L.; Baden, A.; Baldin, B.; Balm, P. W.; Banerjee, S.; Bantly, J.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bean, A.; Begel, M.; Belyaev, A.; Beri, S. B.; Bernardi, G.; Bertram, I.; Besson, A.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Blazey, G.; Blessing, S.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Brandt, A.; Breedon, R.; Briskin, G.; Brock, R.; Brooijmans, G.; Bross, A.; Buchholz, D.; Buehler, M.; Buescher, V.; Burtovoi, V. S.; Butler, J. M.; Canelli, F.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chan, K. M.; Chekulaev, S. V.; Cho, D. K.; Choi, S.; Chopra, S.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cochran, J.; Coney, L.; Connolly, B.; Cooper, W. E.; Coppage, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, G. A.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Demina, R.; Demine, P.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Doulas, S.; Draper, P.; Ducros, Y.; Dudko, L. V.; Duensing, S.; Dugad, S. R.; Dyshkant, A.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans, H.; Evdokimov, V. N.; Fahland, T.; Feher, S.; Fein, D.; Ferbel, T.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Fleuret, F.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Gavrilov, V.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gibbard, B.; Gilmartin, R.; Ginther, G.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Graham, G.; Grannis, P. D.; Green, J. A.; Greenlee, H.; Grinstein, S.; Groer, L.; Grudberg, P.; Grünendahl, S.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hays, C.; Hebert, C.; Hedin, D.; Heinson, A. P.; Heintz, U.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hou, S.; Huang, Y.; Ito, A. S.; Jerger, S. A.; Jesik, R.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Juste, A.; Kahn, S.; Kajfasz, E.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kim, S. K.; Klima, B.; Klopfenstein, C.; Knuteson, B.; Ko, W.; Kohli, J. M.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kubantsev, M.; Kuleshov, S.; Kulik, Y.; Kunori, S.; Kuznetsov, V. E.; Landsberg, G.; Leflat, A.; Lehner, F.; Li, J.; Li, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Lucotte, A.; Lueking, L.; Lundstedt, C.; Maciel, A. K.; Madaras, R. J.; Manankov, V.; Mao, H. S.; Marshall, T.; Martin, M. I.; Martin, R. D.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McMahon, T.; Melanson, H. L.; Meng, X. C.; Merkin, M.; Merritt, K. W.; Miao, C.; Miettinen, H.; Mihalcea, D.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Moore, R. W.; Mostafa, M.; da Motta, H.; Nagy, E.; Nang, F.; Narain, M.; Narasimham, V. S.; Neal, H. A.; Negret, J. P.; Negroni, S.; Norman, D.; Oesch, L.; Oguri, V.; Olivier, B.; Oshima, N.; Padley, P.; Pan, L. J.; Para, A.; Parashar, N.; Partridge, R.; Parua, N.; Paterno, M.; Patwa, A.; Pawlik, B.; Perkins, J.; Peters, M.; Peters, O.; Piegaia, R.; Piekarz, H.; Pope, B. G.; Popkov, E.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramberg, E.; Rapidis, P. A.; Reay, N. W.; Reucroft, S.; Rha, J.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Schwartzman, A.; Sculli, J.; Sen, N.; Shabalina, E.; Shankar, H. C.; Shivpuri, R. K.; Shpakov, D.; Shupe, M.; Sidwell, R. A.; Simak, V.; Singh, H.; Singh, J. B.; Sirotenko, V.; Slattery, P.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sorín, V.; Sosebee, M.; Sotnikova, N.; Soustruznik, K.; Souza, M.; Stanton, N. R.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Streets, K.; Strovink, M.; Stutte, L.; Sznajder, A.; Taylor, W.; Tentindo-Repond, S.; Thompson, J.; Toback, D.; Tripathi, S. M.; Trippe, T. G.; Turcot, A. S.; Tuts, P. M.; van Gemmeren, P.; Vaniev, V.; van Kooten, R.; Varelas, N.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, H.; Wang, Z.-M.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Whiteson, D.; Wightman, J. A.; Wijngaarden, D. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Wood, D. R.; Yamada, R.; Yamin, P.; Yasuda, T.; Yip, K.; Youssef, S.; Yu, J.; Yu, Z.; Zanabria, M.; Zheng, H.; Zhou, Z.; Zhu, Z. H.; Zielinski, M.; Zieminska, D.; Zieminski, A.; Zutshi, V.; Zverev, E. G.; Zylberstejn, A.

    2001-04-01

    We present the first measurement of the electron angular distribution parameter α2 in W-->eν events produced in proton-antiproton collisions as a function of the W boson transverse momentum. Our analysis is based on data collected using the DØ detector during the 1994-1995 Fermilab Tevatron run. We compare our results with next-to-leading order perturbative QCD, which predicts an angular distribution of (1+/-α1 cos θ*+α2 cos2 θ*), where θ* is the polar angle of the electron in the Collins-Soper frame. In the presence of QCD corrections, the parameters α1 and α2 become functions of pWT, the W boson transverse momentum. This measurement provides a test of next-to-leading order QCD corrections which are a non-negligible contribution to the W boson mass measurement.

  3. Direct Photon Center-of-Mass Angular Distributions in $p\\bar{p}$ Collisions at $\\sqrt{s}$ =1.8-TeV

    Energy Technology Data Exchange (ETDEWEB)

    Nakae, Leslie F. [Brandeis Univ., Waltham, MA (United States)

    1992-01-01

    The center-of-mass angular distribution of direct photon events, resulting from proton-antiproton collisions at a center-of-mass energy of 1.8 TeV, as measured by the Collider Detector at Fermi lab ( CDF) during the 1988-1089 experimental run, is presented. The direct photon events are identified primarily through the direct photon's characteristic isolation from other particles. The main source of background is from rare fragmentation of QCD partons into single isolated neutral mesons, which decay into two or more photons. The background is removed statistically by exploitation of tile expected difference in the resulting shower profiles. The resulting angular distribution for direct photons, in the transverse momentum range from 22 to 45 Ge V is found to agree favorably with the predictions of Quantum Cbromodynamics (QCD) for an interaction with a fermion (spin 1/2) propagator.

  4. Direct Photon Center-of-Mass Angular Distributions in $p\\bar{p}$ Collisions at $\\sqrt{s}$ =1.8-TeV

    Energy Technology Data Exchange (ETDEWEB)

    Nakae, Leslie F. [Brandeis Univ., Waltham, MA (United States)

    1992-04-01

    The center-of-mass angular distribution of direct photon events, resulting from protonantiproton collisions at a center-of-mass energy of 1.8 TeV, as measured by the Collider Detector at Fermilab ( CDF) during the 1988-1089 experimental run, is presented . The direct photon events are identified primarily through the direct photon's characteristic isolation from other particles. The main source of background is from rare fragmentation of QCD partons into single isolated neutral mesons, which decay into two or more photons. The background is removed statistically by exploitation of tile expected difference in the resulting shower profiles. The resulting angular distribution for direct photons, in the transverse momemtum range from 22 to 45 Ge V is found to agree favorably with the predictions of Quantum Cbromodynamics (QCD) for an interaction with a fermion (spin 1/2) propagator

  5. Angular distributions of low-spin states in {sup 240}Pu by means of the {sup 242}Pu(p,t){sup 240}Pu reaction

    Energy Technology Data Exchange (ETDEWEB)

    Spieker, Mark; Endres, Janis; Pascu, Sorin; Zilges, Andreas [Koeln Univ. (Germany). Inst. fuer Kernphysik; Bucurescu, Dorel; Zamfir, Nicolae-Victor [Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Faestermann, Thomas [Physik Department, Technische Universitaet Muenchen (Germany); Hertenberger, Ralf; Wirth, Hans-Friedrich [Fakultaet fuer Physik, Ludwig-Maximilians-Universitaet Muenchen (Germany)

    2013-07-01

    Since recent experimental and theoretical studies revealed the importance of octupole correlations in the actinide region and especially in {sup 240}Pu, a {sup 242}Pu(p,t){sup 240}Pu experiment has been conducted at the Q3D magnetic spectrograph of the Maier-Leibnitz laboratory in Munich. Excited states in {sup 240}Pu were investigated up to an excitation energy of 3 MeV. Angular distributions have been measured at 9 laboratory angles between 5 {sup circle} and 40 {sup circle}. The comparison of the experimental angular distributions with DWBA calculations allowed the assignment of several low-spin states. Most of them were seen for the first time. The experimental data, especially the data on the 21 J{sup π}= 0{sup +} states, are presented and discussed in the framework of the spdf-version of the Interacting Boson Model.

  6. Measurement of dijet angular distributions at square root(s) = 1.96 TeV and searches for quark compositeness and extra spatial dimensions.

    Science.gov (United States)

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Andeen, T; Anzelc, M S; Aoki, M; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Atramentov, O; Avila, C; BackusMayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calfayan, P; Calpas, B; Calvet, S; Cammin, J; Carrasco-Lizarraga, M A; Carrera, E; Carvalho, W; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Cheu, E; Cho, D K; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cutts, D; Cwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De la Cruz-Burelo, E; DeVaughan, K; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duflot, L; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Escalier, M; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gómez, B; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinson, A P; Heintz, U; Hensel, C; Heredia-De la Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jamin, D; Jesik, R; Johns, K; Johnson, C; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kozelov, A V; Kraus, J; Kuhl, T; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, W M; Leflat, A; Lellouch, J; Li, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Mättig, P; Magaña-Villalba, R; Magerkurth, A; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Maravin, Y; Martin, B; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Mendoza, L; Menezes, D; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Mitrevski, J; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; Obrant, G; Ochando, C; Onoprienko, D; Orduna, J; Oshima, N; Osman, N; Osta, J; Otec, R; Otero y Garzón, G J; Owen, M; Padilla, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Popov, A V; Prado da Silva, W L; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Sumowidagdo, S; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Tiller, B; Titov, M; Tokmenin, V V; Torchiani, I; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vilanova, D; Vint, P; Vokac, P; Voutilainen, M; Wagner, R; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Welty-Rieger, L; Wenger, A; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zeitnitz, C; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zutshi, V; Zverev, E G

    2009-11-06

    We present the first measurement of dijet angular distributions in pp collisions at square root(s) = 1.96 TeV at the Fermilab Tevatron Collider. The measurement is based on a dataset corresponding to an integrated luminosity of 0.7 fb(-1) collected with the D0 detector. Dijet angular distributions have been measured over a range of dijet masses, from 0.25 TeV to above 1.1 TeV. The data are in good agreement with the predictions of perturbative QCD and are used to constrain new physics models including quark compositeness, large extra dimensions, and TeV(-1) scale extra dimensions. For all models considered, we set the most stringent direct limits to date.

  7. Time-differential observation of alpha -particle perturbed angular distribution; g-factor measurements for /sup 217/Ac/sup gs/ and /sup 217/Ac/sup m/

    CERN Document Server

    Maier, K H; Grawe, H; Kluge, H

    1981-01-01

    The g-factor measurements of the ground state and an isomeric level in /sup 217/Ac using the DPAD method with alpha -decay are described. The results of gamma -ray g-factor measurements for the isomer and a tentative decay scheme produced by alpha - gamma and gamma - gamma coincidence experiments are also presented. An analysis of the alpha - particle angular distributions suggests that nuclear deformation affects the observed anisotropy. (13 refs).

  8. Search for new physics in dijet mass and angular distributions in collisions at $\\sqrt{s} = 7$ TeV measured with the ATLAS detector

    Indian Academy of Sciences (India)

    Thorsten Dietzsch; on behalf of the ATLAS Collaboration

    2012-10-01

    We present a search for physics beyond the Standard Model in proton–proton collisions at a centre-of-mass energy of $\\sqrt{s} = 7$ TeV, performed with the ATLAS detector at the Large Hadron Collider (LHC). No evidence for new physics is found in dijet mass and angular distributions and stringent limits are set on a variety of models of new physics, including excited quarks, quark contact interactions, axigluons, and quantum black holes.

  9. Fission fragment angular distributions in proton-induced fission of 209 Bi(p,t and 197 Au(p,f

    Directory of Open Access Journals (Sweden)

    S. S.

    2001-12-01

    Full Text Available   The fission fragment angular distributions have been measured for proton-induced fission of 209Bi and 197Au nuclei using surface barrier detectors at several energies between 25 MeV and 30 MeV. The experimental anisotropies are found to be in agreement with the predictions of the Standard Saddle-Point Statistical Model (SSPSM. The fission cross sections of 209Bi 197Au nuclei were also measured and compared with the previous works.

  10. Searches for New Physics using Dijet Angular Distributions in proton-proton collisions at $\\sqrt{s} = 7 TeV $collected with the ATLAS Detector

    CERN Document Server

    Buckingham, Ryan

    Angular distributions of jet pairs (dijets) produced in proton-proton collisions at a centre-ofmass energy ps = 7 TeV have been studied with the ATLAS detector at the Large Hadron Collider using the full 2011 data set with an integrated luminosity of $4.8 fb^{-1}$, and reaching dijet masses up to 4:5 TeV. All angular distributions are consistent with QCD predictions. Analysis of the dijet angular distribution, using a novel technique simultaneously employing the dijet mass, is employed. This analysis is sensitive to both resonant new physics and phenomena with a slow-onset in mass. Using this technique, new exclusion limits have been set at 95% credibility level for several hypotheses of physics beyond the standard model including: quantum gravity scales, with 6 extra dimensions, below 4.11 TeV, quark contact interactions below a compositeness scale of 7.6 TeV, and excited quarks with a mass below 2.75 TeV. In a large and complex scientic experiment, such as ATLAS, the collection, management and usability of ...

  11. The VMI study on angular distribution of ejected electrons from Eu 4f76p1/26d autoionizing states

    Science.gov (United States)

    Zhang, Kai; Shen, Li; Dong, Cheng; Dai, Chang-Jian

    2015-10-01

    The combination of a velocity mapping imaging technique and mathematical transformation is adopted to study the angular distribution of electrons ejected from the Eu 4f76p1/26d autoionizing states, which are excited with a three-step excitation scheme via different Eu 4f76s6d 8 DJ (J = 5/2, 7/2, and 9/2) intermediate states. In order to determine the energy dependence of angular distribution of the ejected electrons, the anisotropic parameters are measured in the spectral profile of the 6p1/26d autoionizing states by tuning the wavelength of the third-step laser across the ionic resonance lines of the Eu 6s+ → 6p+. The configuration interaction is discussed by comparing the angular distributions of ejected electrons from the different states. The present study reveals the profound variations of anisotropic parameters in the entire region of autoionization resonance, highlighting the complicated nature of the autoionization process for the lowest member of 6p1/26d autoionization series. Project supported by the National Natural Science Foundation of China (Grant No. 11174218).

  12. Studies of beam expansion and distributed Bragg reflector lasers for fiber optics and optical signal processing

    Science.gov (United States)

    Garmire, E. M.

    1981-03-01

    Separate studies were performed on beam expansion and on distributed Bragg Reflector (DBR) lasers preliminary to monolithic integration on GaAs substrates. These components are proposed for use in optical signal processing, for fiber optic sources and for high brightness lasers.

  13. Design challenges and guidelines for free-space optical communication links using orbital-angular-momentum multiplexing of multiple beams

    Science.gov (United States)

    Willner, Alan E.; Xie, Guodong; Li, Long; Ren, Yongxiong; Yan, Yan; Ahmed, Nisar; Zhao, Zhe; Wang, Zhe; Liu, Cong; Willner, Asher J.; Ashrafi, Nima; Ashrafi, Solyman; Tur, Moshe; Molisch, Andreas F.

    2016-07-01

    In this paper, recent studies on the potential challenges for an orbital angular momentum (OAM) multiplexing system were reviewed. The design guideline for a practical OAM multiplexing system were investigated in term of (i) the power loss due to the beam divergence and limited-size receiver, and (ii) the channel crosstalk due to the misalignment between the transmitter and receiver.

  14. Reconfigurable Optical Signal Processing Based on a Distributed Feedback Semiconductor Optical Amplifier.

    Science.gov (United States)

    Li, Ming; Deng, Ye; Tang, Jian; Sun, Shuqian; Yao, Jianping; Azaña, José; Zhu, Ninghua

    2016-01-27

    All-optical signal processing has been considered a solution to overcome the bandwidth and speed limitations imposed by conventional electronic-based systems. Over the last few years, an impressive range of all-optical signal processors have been proposed, but few of them come with reconfigurability, a feature highly needed for practical signal processing applications. Here we propose and experimentally demonstrate an analog optical signal processor based on a phase-shifted distributed feedback semiconductor optical amplifier (DFB-SOA) and an optical filter. The proposed analog optical signal processor can be reconfigured to perform signal processing functions including ordinary differential equation solving and temporal intensity differentiation. The reconfigurability is achieved by controlling the injection currents. Our demonstration provitdes a simple and effective solution for all-optical signal processing and computing.

  15. Reconfigurable Optical Signal Processing Based on a Distributed Feedback Semiconductor Optical Amplifier

    Science.gov (United States)

    Li, Ming; Deng, Ye; Tang, Jian; Sun, Shuqian; Yao, Jianping; Azaña, José; Zhu, Ninghua

    2016-01-01

    All-optical signal processing has been considered a solution to overcome the bandwidth and speed limitations imposed by conventional electronic-based systems. Over the last few years, an impressive range of all-optical signal processors have been proposed, but few of them come with reconfigurability, a feature highly needed for practical signal processing applications. Here we propose and experimentally demonstrate an analog optical signal processor based on a phase-shifted distributed feedback semiconductor optical amplifier (DFB-SOA) and an optical filter. The proposed analog optical signal processor can be reconfigured to perform signal processing functions including ordinary differential equation solving and temporal intensity differentiation. The reconfigurability is achieved by controlling the injection currents. Our demonstration provitdes a simple and effective solution for all-optical signal processing and computing.

  16. Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum

    Science.gov (United States)

    Wang, Le; Zhao, Sheng-Mei; Gong, Long-Yan; Cheng, Wei-Wen

    2015-12-01

    In this paper, we propose a measurement-device-independent quantum-key-distribution (MDI-QKD) protocol using orbital angular momentum (OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol, the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie’s successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover, the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence (AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source. Project supported by the National Natural Science Foundation of China (Grant Nos. 61271238 and 61475075), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123223110003), the Natural Science Research Foundation for Universities of Jiangsu Province of China (Grant No. 11KJA510002), the Open Research Fund of Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, China (Grant No. NYKL2015011), and the

  17. Ultraviolet-visible bulk optical properties of randomly distributed soot.

    Science.gov (United States)

    Renard, J B; Hadamcik, E; Brogniez, C; Berthet, G; Worms, J C; Chartier, M; Pirre, M; Ovarlez, J; Ovarlez, H

    2001-12-20

    The presence of soot in the lower stratosphere was recently established by in situ measurements. To isolate their contribution to optical measurements from that of background aerosol, the soot's bulk optical properties must be determined. Laboratory measurements of extinction and polarization of randomly distributed soot were conducted. For all soot, measurements show a slight reddening extinction between 400 and 700 nm and exhibit a maximum of 100% polarization at a scattering angle of 75 +/- 5 degrees. Such results cannot be reproduced by use of Mie theory assumptions. The different optical properties of soot and background stratospheric aerosol could allow isolation of soot in future analyses of stratospheric measurements.

  18. Distributed optical fiber dynamic magnetic field sensor based on magnetostriction.

    Science.gov (United States)

    Masoudi, Ali; Newson, Trevor P

    2014-05-01

    A distributed optical fiber sensor is introduced which is capable of quantifying multiple magnetic fields along a 1 km sensing fiber with a spatial resolution of 1 m. The operation of the proposed sensor is based on measuring the magnetorestrictive induced strain of a nickel wire attached to an optical fiber. The strain coupled to the optical fiber was detected by measuring the strain-induced phase variation between the backscattered Rayleigh light from two segments of the sensing fiber. A magnetic field intensity resolution of 0.3 G over a bandwidth of 50-5000 Hz was demonstrated.

  19. Experimental characterization of a 400  Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m

    OpenAIRE

    Ren, Yongxiong; WANG Zhe; Liao, Peicheng; Li, Long; Xie, Guodong; Huang, Hao; Zhao, Zhe; Yan, Yan; Ahmed, Nisar; Willner, Asher; Lavery, Martin P. J.; Ashrafi, Nima; Ashrafi, Solyman; Bock, Robert; Tur, Moshe

    2016-01-01

    We experimentally demonstrate and characterize the\\ud performance of a 400-Gbit/s orbital angular momentum\\ud (OAM) multiplexed free-space optical link over 120-\\ud meters on the roof of a building. Four OAM beams, each\\ud carrying a 100-Gbit/s QPSK channel are multiplexed and\\ud transmitted. We investigate the influence of channel\\ud impairments on the received power, inter-modal\\ud crosstalk among channels, and system power penalties.\\ud Without laser tracking and compensation systems, the\\...

  20. Experimental characterization of a 400  Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m

    OpenAIRE

    Ren, Yongxiong; Wang, Zhe; Liao, Peicheng; LI, Long; Xie, Guodong; Huang, Hao; Zhao, Zhe; Yan, Yan; Ahmed, Nisar; Willner, Asher; Lavery, Martin P. J.; Ashrafi, Nima; Ashrafi, Solyman; Bock, Robert; Tur, Moshe

    2016-01-01

    We experimentally demonstrate and characterize the\\ud performance of a 400-Gbit/s orbital angular momentum\\ud (OAM) multiplexed free-space optical link over 120-\\ud meters on the roof of a building. Four OAM beams, each\\ud carrying a 100-Gbit/s QPSK channel are multiplexed and\\ud transmitted. We investigate the influence of channel\\ud impairments on the received power, inter-modal\\ud crosstalk among channels, and system power penalties.\\ud Without laser tracking and compensation systems, the\\...

  1. System for recording bivariate intensity distribution of optical radiation

    Energy Technology Data Exchange (ETDEWEB)

    Vil' danov, R.R.; Deryugin, I.A.; Gladyshev, D.A.; Mirzaeu, A.T.

    1986-02-01

    This paper describes a system for recording the space-energy characteristics of optical radiation based on an MF-6 photodetector matrix and an AI-4096-3M multivariate pulse analyzer. The system can record optical images with from 2 to 64 quantization levels with visual monitoring of input data in the form of a space distribution in axonometric projection. The recording time for a complete image is from 11 to 700 msec. The system has been used to determine and monitor the crosssectional intensity distribution of laser beams as a function of radiation mode.

  2. Evaluation of tissue optical properties from light distribution images

    Science.gov (United States)

    Tsai, Cheng-Lun; Chang, Ming; Hsieh, Jui-Hsiang; Yang, Yi-Fong; Chou, Yi-Sheong

    2000-06-01

    Images of light distribution in biological soft tissue we used to study the optical characteristics of tissue. The light distribution image was taken under a microscope with light injected through a pinhole close to the edge of the top surface. Images taken on skin, fat, and muscle tissues were compared to study the effect of cellular structure and temperature on the light intensity distribution. Monte Carlo simulation with the same conditions was also performed to simulate the light intensity distribution in tissue for comparison. The anisotropy scattering of light in tissue is affected by the tissue microscopic structure, such as the direction of muscle tissue fibers. The change in optical properties of fat and muscle tissue with temperature was observed. The two-dimensional light distribution images offer more information than general reflectance and transmission measurements. By matching the simulated light intensity distribution with the light distribution image, the optical properties of biological tissue could be estimated. This method might be applied in tissue engineering as an economic way for evaluating the microscopic structure of tissue.

  3. Laboratory experiments, high angular-resolution EBSD, and micromechanical modelling reveal residual stresses and their distribution in deformed olivine

    Science.gov (United States)

    Hansen, Lars; Wallis, David; Kempton, Imogen; Lebensohn, Ricardo; Wilkinson, Angus

    2017-04-01

    During high-temperature deformation of rocks, stresses are predicted to be distributed heterogeneously throughout the constituent grains. After unloading, much of this stress is potentially retained in the aggregate as residual stress, a phenomenon that may have large-scale geodynamic implications. After large stress changes in the solid Earth (e.g., glacial unloading or post-seismic relaxation), residual stresses can affect the immediate mechanical response of the rocks. Furthermore, examination of residual stresses in naturally deformed rocks additionally presents an opportunity to learn about ancient deformation events. These residual stresses arise from the anisotropic nature of the mechanical properties of minerals and from the heterogeneous substructures that form within grains (e.g., dislocation arrays and subgrain boundaries). This heterogeneity is therefore related to mechanical interactions on short (e.g., between individual dislocations), intermediate (e.g., between groups of dislocations), and long (e.g., between grains of differing orientation) spatial scales. We examine residual stresses in upper mantle analogues with three different methods. First, stress-dip tests were conducted on olivine single crystals at temperatures greater than 1250°C in a new uniaxial deformation apparatus with a piezoelectric actuator. These experiments reveal that the average residual stresses stored in deformed single crystals can be on the order of 50% of the applied differential stress. However, the magnitude of residual stress is likely a function of crystal orientation during deformation. Second, high angular-resolution electron backscatter diffraction (HR-EBSD) allows the residual stresses in deformed single crystals and polycrystals to be mapped with <1 micron spatial resolution. HR-EBSD mapping reveals stress heterogeneities on the order of differential stresses applied during deformation. Stresses averaged over each map are in reasonable agreement with the outcome

  4. Polarization-dependent angular-optical reflectance in solar-selective SnOx:F/Al2O3/Al reflector surfaces.

    Science.gov (United States)

    Mwamburi, Mghendi; Wäckelgård, Ewa; Roos, Arne; Kivaisi, Rogath

    2002-05-01

    Polarization-dependent angular-optical properties of spectrally selective reflector surfaces of fluorine-doped tin oxide (SnOx:F) deposited pyrolytically on anodized aluminum are reported. The angular-reflectance measurements, for which both s- and p-polarized light are used in the solar wavelength range 0.3-2.5 microm, reveal strong spectral selectivity, and the angular behavior is highly dependent on the polarizing component of the incident beam, the total film thickness, and the individual thickness of the Al2O3 and the SnO2:F layers. The anodic A12O3 layers were produced electrochemically and varied between 100 and 205 nm in thickness. The SnOx:F films were grown pyrolytically at a temperature of 400 degrees C with film thicknesses varying in the range 180-320 nm. The reflectors were aimed at silicon solar cells, and good spectrally selective reflector characteristics were achieved with these thinly preanodized, SnOx:F/Al samples; that is, high cell reflectance was obtained for wavelengths below 1.1 microm and low thermal reflectance for wavelengths above 1.1 microm, with the best samples having values of 0.80 and 0.42, respectively, at near-normal angles of incidence. This corresponds to an anodic layer thickness of 155 nm. Both the angular calculations and the experimental measurements show that the cell reflectance is relatively insensitive to the incidence angle, and a low thermal reflectance is maintained up to an angle of approximately 60 degrees.

  5. SU-E-J-206: A Comparison of Different Hardware Design Approaches for Feature-Supported Optical Head-Tracking with Respect to Angular Dependencies

    Energy Technology Data Exchange (ETDEWEB)

    Stueber, P; Wissel, T; Wagner, B [Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck (Germany); Graduate School for Computing in Life Science, University of Luebeck, Luebeck (Germany); Bruder, R; Schweikard, A; Ernst, F [Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck (Germany)

    2014-06-01

    Purpose: Recent research has shown that optical features significantly improve marker-less optical head-tracking for cranial radiotherapy. Simulations, however, showed that these optical features, which are used to derive tissue thickness, depend on the incident angle of the IR scanning laser beam and the perspective of the camera analyzing the reflective patterns. We present an experimental analysis determining which is the most robust optical setup concerning angular influences. Methods: In three consecutive experiments, the incident angle of the laser (1), the perspective of the camera (2) or both simultaneously (3, ‘inBeam’-perspective) were changed with respect to the target. We analyzed how this affects feature intensity. These intensities were determined from seven concentric regions of interest (ROIs) around the laser spot. Two targets were used: a tissue-like silicone phantom and a human's forehead. Results: For each experiment, the feature intensity generally decreases with increasing angle. We found that the optical properties of the silicone phantom do not fit the properties of human skin. Furthermore, the angular influence of the laser on the features is significantly higher than the perspective of the camera. With the ‘inBeam’- perspective, the smoothest decays of feature intensity were found. We suppose that this is because of a fixed relationship between both devices. This smoothness, suggesting a predictable functional relationship, may simplify angle compensation for machine learning algorithms. This is particularly prominent for the medial ROIs. The inner ROIs highly depend on the angle and power of the laser. The outer ROIs show less angular dependency but the signal strength is critically low and prone to artifacts. Therefore and because of the smooth decays, medial ROIs are a suitable tradeoff between susceptibility, signal-noise-ratio and distance to the center of the laser spot. Conclusion: For tissue thickness correlated

  6. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre.

    Science.gov (United States)

    Huang, Hao; Milione, Giovanni; Lavery, Martin P J; Xie, Guodong; Ren, Yongxiong; Cao, Yinwen; Ahmed, Nisar; An Nguyen, Thien; Nolan, Daniel A; Li, Ming-Jun; Tur, Moshe; Alfano, Robert R; Willner, Alan E

    2015-10-09

    Mode division multiplexing (MDM)- using a multimode optical fiber's N spatial modes as data channels to transmit N independent data streams - has received interest as it can potentially increase optical fiber data transmission capacity N-times with respect to single mode optical fibers. Two challenges of MDM are (1) designing mode (de)multiplexers with high mode selectivity (2) designing mode (de)multiplexers without cascaded beam splitting's 1/N insertion loss. One spatial mode basis that has received interest is that of orbital angular momentum (OAM) modes. In this paper, using a device referred to as an OAM mode sorter, we show that OAM modes can be (de)multiplexed over a multimode optical fiber with higher than -15 dB mode selectivity and without cascaded beam splitting's 1/N insertion loss. As a proof of concept, the OAM modes of the LP11 mode group (OAM-1,0 and OAM+1,0), each carrying 20-Gbit/s polarization division multiplexed and quadrature phase shift keyed data streams, are transmitted 5km over a graded-index, few-mode optical fibre. Channel crosstalk is mitigated using 4 × 4 multiple-input-multiple-output digital-signal-processing with <1.5 dB power penalties at a bit-error-rate of 2 × 10(-3).

  7. Multiplexed optical operation of distributed nanoelectromechanical systems arrays.

    Science.gov (United States)

    Sampathkumar, A; Ekinci, K L; Murray, T W

    2011-03-09

    We report a versatile all optical technique to excite and read-out a distributed nanoelectromechanical systems (NEMS) array. The NEMS array is driven by a distributed, intensity modulated optical pump through the photothermal effect. The ensuing vibrational response of the array is multiplexed onto a single probe beam in the form of a high frequency phase modulation. The phase modulation is optically down converted to a low frequency intensity modulation using an adaptive full-field interferometer, and subsequently detected using a CCD array. Rapid and single step mechanical characterization of ∼44 nominally identical high-frequency resonators is demonstrated. The technique may enable sensitivity improvements over single NEMS resonators by averaging signals coming from a multitude of devices in the array. In addition, the diffraction limited spatial resolution may allow for position-dependent read-out of NEMS sensor chips for sensing multiple analytes or spatially inhomogeneous forces.

  8. Mapping distributed brain function and networks with diffuse optical tomography

    Science.gov (United States)

    Eggebrecht, Adam T.; Ferradal, Silvina L.; Robichaux-Viehoever, Amy; Hassanpour, Mahlega S.; Dehghani, Hamid; Snyder, Abraham Z.; Hershey, Tamara; Culver, Joseph P.

    2014-06-01

    Mapping of human brain function has revolutionized systems neuroscience. However, traditional functional neuroimaging by positron emission tomography or functional magnetic resonance imaging cannot be used when applications require portability, or are contraindicated because of ionizing radiation (positron emission tomography) or implanted metal (functional magnetic resonance imaging). Optical neuroimaging offers a non-invasive alternative that is radiation free and compatible with implanted metal and electronic devices (for example, pacemakers). However, optical imaging technology has heretofore lacked the combination of spatial resolution and wide field of view sufficient to map distributed brain functions. Here, we present a high-density diffuse optical tomography imaging array that can map higher-order, distributed brain function. The system was tested by imaging four hierarchical language tasks and multiple resting-state networks including the dorsal attention and default mode networks. Finally, we imaged brain function in patients with Parkinson's disease and implanted deep brain stimulators that preclude functional magnetic resonance imaging.

  9. Long-distance quantum key distribution in optical fiber

    CERN Document Server

    Hiskett, P A; Lita, A E; Miller, A J; Nam, S; Nordholt, J E; Peterson, C G; Rosenberg, D

    2006-01-01

    Use of low-noise detectors can both increase the secret bit rate of long-distance quantum key distribution (QKD) and dramatically extend the length of a fibre optic link over which secure key can be distributed. Previous work has demonstrated use of ultra-low-noise transition-edge sensors (TESs) in a QKD system with transmission over 50 km. In this work, we demonstrate the potential of the TESs by successfully generating error-corrected, privacy-amplified key over 148.7 km of dark optical fibre at a mean photon number mu = 0.1, or 184.6 km of dark optical fibre at a mean photon number of 0.5. We have also exchanged secret key over 67.5 km that is secure against powerful photon-number-splitting attacks.

  10. Distributed Optical Fiber Sensor for Multi-point Temperature Measurement

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-tian; LIU Zhan-wei; HOU Pei-guo; SHAN Wei

    2004-01-01

    The distributed optical fiber sensing technology is overviewed, which is based on Raman scattering light theory. Basic operation principle, structure, system characteristics and signal processing are discussed. This structure and method of the signal processing possess of certain spatial resolution, hence will ensure the practicability of system.

  11. A simple approach to the angular momentum distribution in the ground states of many-body systems

    CERN Document Server

    Zhao, Y M; Yoshinaga, N

    2002-01-01

    We propose a simple approach to predict the angular momentum I ground state (I g.s.) probabilities of many-body systems that does not require the diagonalization of hamiltonians with random interactions. This method is found to be applicable to {\\bf all} cases that have been discussed: even and odd fermion systems (both in single-j and many-j shells), and boson (both sd and sdg) systems. A simple relation for the highest angular momentum g.s. probability is found. Furthermore, it is suggested for the first time that the 0g.s. dominance in boson systems and in even-fermion systems is given by two-body interactions with specific features.

  12. Aerosol optical depth and fine-mode fraction retrieval over East Asia using multi-angular total and polarized remote sensing

    Science.gov (United States)

    Cheng, T.; Gu, X.; Xie, D.; Li, Z.; Yu, T.; Chen, H.

    2012-03-01

    A new aerosol retrieval algorithm using multi-angular total and polarized measurements is presented. The algorithm retrieves aerosol optical depth (AOD), fine-mode fraction (FMF) for studying the impact of aerosol on climate change. The retrieval algorithm is based on a lookup table (LUT) method, which assumes that one fine and one coarse lognormal aerosol modes can be combined with proper weightings to represent the ambient aerosol properties. To reduce the ambiguity in retrieval algorithm, the key characteristics of aerosol model over East Asia are constrained using the cluster analysis technique based on the AERONET sun-photometer observation over East Asia, and the fine and coarse modes are not fixed but can vary. A mixing model of bare soil and green vegetation spectra and the Nadal and Breon model for the bidirectional polarized reflectance factor (BPDF) were used to simulate total and polarized surface reflectance of East Asia. By applying the present algorithm to POLDER measurements, three different aerosol cases of clear, polluted and dust are analyzed to test the algorithm. The comparison of retrieved aerosol optical depth (AOD) and fine-mode fraction (FMF) with those of AERONET sun-photometer observations show reliable results. Preliminary validation is encouraging. Using the new aerosol retrieval algorithm for multi-angular total and polarized measurements, the spatial and temporal variability of anthropogenic aerosol optical properties over East Asia, which were observed during a heavy polluted event, were analyzed. Exceptionally high values of aerosol optical depth contributed by fine mode of up to 0.5 (at 0.865 μm), and high values of fine-mode fraction of up to 0.9, were observed in this case study.

  13. Aerosol optical depth and fine-mode fraction retrieval over East Asia using multi-angular total and polarized remote sensing

    Directory of Open Access Journals (Sweden)

    T. Cheng

    2012-03-01

    Full Text Available A new aerosol retrieval algorithm using multi-angular total and polarized measurements is presented. The algorithm retrieves aerosol optical depth (AOD, fine-mode fraction (FMF for studying the impact of aerosol on climate change. The retrieval algorithm is based on a lookup table (LUT method, which assumes that one fine and one coarse lognormal aerosol modes can be combined with proper weightings to represe