Energy Technology Data Exchange (ETDEWEB)
Syugaev, A.V., E-mail: syual@mail.ru; Maratkanova, A.N.
2014-08-15
Highlights: • Plate-like particles modified with surfactant molecules were obtained under high-energy ball milling. • Adsorption layers were studied with polarization-dependent NEXAFS spectroscopy. • For the first time, arrangement of surfactants molecules on the powdered metal surface has been determined. • Tails of surfactant molecules (C-F/C-H) are shown to be oriented perpendicular to the particle surface. • Arrangement of carboxylate groups on the particle surfaces is discussed. - Abstract: In this work we have demonstrated the possibility of using the polarization-dependent NEXAFS spectra to study the structure of organic layers at the surface of powdered materials with plate-like shaped particles. The polarization dependence of the NEXAFS spectra may be easily obtained by just changing the angle between the X-ray beam direction and the substrate onto which the powder particles are set. For the first time, we have carried out a detailed study of the surfactant layers (n-perfluorononanoic and stearic acid), which are formed at the surface of iron plate-like particles under mechanical milling of iron powder with an addition of corresponding surfactants. The surfactant molecules are predominantly oriented perpendicular to the surface of the mechanically milled particles. Such orientation is similar to the arrangement of the molecules in the layers formed under equilibrium conditions, e.g. deposition from solutions. The changes in the chemical environment occurring in the molecule tails (defluorination or dehydrogenation) under mechanochemical treatment, do not result in a significant change in the molecular orientation and disordering of the adsorbed layer.
Dependency injection with AngularJS
Knol, Alex
2013-01-01
This book is a practical, hands-on approach to using dependency injection and implementing test-driven development using AngularJS. Dependency Injection with AngularJS is aimed at developers who are aware of AngularJS but need to get started with using it in real life applications. Also, developers who want to get into test-driven development with AngularJS can use this book as practical guide. Even if you know about dependency injection, it can serve as a good reference on how it is used within AngularJS. Readers are expected to have some experience with JavaScript.
Probabilistic calculation for angular dependence collision
International Nuclear Information System (INIS)
This collision probabilistic method is broadly used in cylindrical geometry (in one- or two-dimensions). It constitutes a powerful tool for the heterogeneous Response Method where, the coupling current is of the cosine type, that is, without angular dependence at azimuthal angle θ and proportional to μ (cosine of the θ polar angle). (Author)
Time-dependent angularly averaged inverse transport
Bal, Guillaume; Jollivet, Alexandre
2009-01-01
This paper concerns the reconstruction of the absorption and scattering parameters in a time-dependent linear transport equation from knowledge of angularly averaged measurements performed at the boundary of a domain of interest. We show that the absorption coefficient and the spatial component of the scattering coefficient are uniquely determined by such measurements. We obtain stability results on the reconstruction of the absorption and scattering parameters with respect to the measured al...
Time-dependent angularly averaged inverse transport
International Nuclear Information System (INIS)
This paper concerns the reconstruction of the absorption and scattering parameters in a time-dependent linear transport equation from knowledge of angularly averaged measurements performed at the boundary of a domain of interest. Such measurement settings find applications in medical and geophysical imaging. We show that the absorption coefficient and the spatial component of the scattering coefficient are uniquely determined by such measurements. We obtain stability results on the reconstruction of the absorption and scattering parameters with respect to the measured albedo operator. The stability results are obtained by a precise decomposition of the measurements into components with different singular behavior in the time domain
Time-dependent angularly averaged inverse transport
Bal, Guillaume
2009-01-01
This paper concerns the reconstruction of the absorption and scattering parameters in a time-dependent linear transport equation from knowledge of angularly averaged measurements performed at the boundary of a domain of interest. We show that the absorption coefficient and the spatial component of the scattering coefficient are uniquely determined by such measurements. We obtain stability results on the reconstruction of the absorption and scattering parameters with respect to the measured albedo operator. The stability results are obtained by a precise decomposition of the measurements into components with different singular behavior in the time domain.
Orbital angular momentum is dependent on polarization
Li, Chun-Fang
2009-01-01
It is shown that the momentum density of free electromagnetic field splits into two parts. One has no contribution to the net momentum due to the transversality condition. The other yields all the momentum. The angular momentum that originates from the former part is spin, and the angular momentum that originates from the latter part is orbital angular momentum. Expressions for the spin and orbital angular momentum are given in terms of the electric vector in reciprocal space. The spin and or...
Angular dependent light emission from planar waveguides
Energy Technology Data Exchange (ETDEWEB)
Peter, Jaison, E-mail: jaison.peter@gmail.com [International School of Photonics, Cochin University of Science and Technology, Cochin 682022 (India); CRE" +E, IDEAS Research Institute, Robert Gordon University, Aberdeen AB10 7GJ (United Kingdom); Prabhu, Radhakrishna [CRE" +E, IDEAS Research Institute, Robert Gordon University, Aberdeen AB10 7GJ (United Kingdom); Radhakrishnan, P.; Vallabhan, C. P. G.; Nampoori, V. P. N.; Kailasnath, M. [International School of Photonics, Cochin University of Science and Technology, Cochin 682022 (India)
2015-01-07
We have investigated the angular dependence of amplified spontaneous emission (ASE) and laser emission from an asymmetric and free-standing polymer thin films doped with rhodamine 6G, which is transversely pumped by a pulsed Nd:YAG laser. A semi-leaky waveguide or quasi-waveguide structure has been developed by spin coating technique. In these waveguides, the light was confined by the film/air-film/glass substrate interfaces. At the film/substrate interface, a portion of light will reflect back into the film (guided mode) and the remaining refracted to the substrate resulting in cutoff modes. A blue-shift in ASE has been observed when the pump power was increased from 8 to 20 mW allowing a limited range of tuning of emission wavelength. To study the directionality of the ASE from the waveguide, we have measured the output intensity and FWHM of emission spectra as a function of viewing angle (θ) from the plane parallel to film. From the detailed examination of the output emission spectra, as +θ increases from 0° there has been an initial decrease in output intensity, but at a particular angle ≈10° an increase in output intensity was observed. This additional peak in output intensity as +θ is a clear indication of coexistence of the cutoff mode. We also present a compact solid-state laser based on leaky mode propagation from the dye-doped polymer free-standing film (∼50 μm thickness) waveguide. The partial reflections from the broad lateral surfaces of the free-standing films provided the optical feedback for the laser emission with high directionality. For a pump power of 22 mW, an intense line with FWHM <0.2 nm was observed at 578 nm.
Relativistic calculations of angular dependent photoemission time delay
Kheifets, A S; Deshmukh, P C; Dolmatov, V K; Manson, S T
2016-01-01
Angular dependence of photoemission time delay for the valence $np_{3/2}$ and $np_{1/2}$ subshells of Ar, Kr and Xe is studied in the dipole relativistic random phase approximation. Strong angular anisotropy of the time delay is reproduced near respective Cooper minima while the spin-orbit splitting affects the time delay near threshold.
Asymmetric angular dependence of domain wall motion in magnetic nanowires.
Nam, Chunghee
2013-03-01
An angular dependence of domain wall (DW) motion is studied in a magnetic wire consisting of a giant-magnetoresistance spin-valve. A DW pinning site is formed by a single notch, where a conventional linear one and a specially designed tilted one are compared. The asymmetric angular dependence was found in the DW depinning behavior with the tilted notch. The geometry control of the pinning site can be useful for DW diode devices using a rotating magnetic field. PMID:23755619
Angular dependence of anisotropic magnetoresistance in magnetic systems
Zhang, Steven S.-L.; Zhang, Shufeng
2014-05-01
Anisotropic magnetoresistance (AMR), whose physical origin is attributed to the combination of spin dependent scattering and spin orbital coupling (SOC), usually displays simple angular dependence for polycrystalline ferromagnetic metals. By including generic spin dependent scattering and spin Hall (SH) terms in the Ohm's law, we explicitly show that various magneto-transport phenomena such as anomalous Hall (AH), SH, planar Hall (PH) and AMR could be quantitatively related for bulk polycrystalline ferromagnetic metals. We also discuss how AMR angular dependence is affected by the presence of interfacial SOC in magnetic layered structure.
Angular dependence of spin-orbit spin-transfer torques
Lee, Ki-Seung
2015-04-06
In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi sea contribution. The angular dependence is consistent with experimental observations and can be important to understand magnetization dynamics induced by spin-orbit spin-transfer torques.
Angular-dependent magnetization reversal processes in artificial spin ice
Burn, D. M.; Chadha, M.; Branford, W. R.
2015-12-01
The angular dependence of the magnetization reversal in interconnected kagome artificial spin ice structures has been studied through experimental MOKE measurements and micromagnetic simulations. This reversal is mediated by the propagation of magnetic domain walls along the interconnecting bars, which either nucleate at the vertex or arrive following an interaction in a neighboring vertex. The physical differences in these processes show a distinct angular dependence allowing the different contributions to be identified. The configuration of the initial magnetization state, either locally or on a full sublattice of the system, controls the reversal characteristics of the array within a certain field window. This shows how the available magnetization reversal routes can be manipulated and the system can be trained.
Time and "angular" dependent backgrounds from stationary axisymmetric solutions
Obregón, O; Ryan, M P; Obregon, Octavio; Quevedo, Hernando; Ryan, Michael P.
2004-01-01
Backgrounds depending on time and on "angular" variable, namely polarized and unpolarized $S^1 \\times S^2$ Gowdy models, are generated as the sector inside the horizons of the manifold corresponding to axisymmetric solutions. As is known, an analytical continuation of ordinary $D$-branes, $iD$-branes allows one to find $S$-brane solutions. Simple models have been constructed by means of analytic continuation of the Schwarzchild and the Kerr metrics. The possibility of studying the $i$-Gowdy models obtained here is outlined with an eye toward seeing if they could represent some kind of generalized $S$-branes depending not only on time but also on an ``angular'' variable.
Temperature dependence of angular momentum transport across interfaces
Chen, Kai; Lin, Weiwei; Chien, C. L.; Zhang, Shufeng
2016-08-01
Angular momentum transport in magnetic multilayered structures plays a central role in spintronic physics and devices. The angular momentum currents or spin currents are carried by either quasiparticles such as electrons and magnons, or by macroscopic order parameters such as local magnetization of ferromagnets. Based on the generic interface exchange interaction, we develop a microscopic theory that describes interfacial spin conductance for various interfaces among nonmagnetic metals, ferromagnetic insulators, and antiferromagnetic insulators. Spin conductance and its temperature dependence are obtained for different spin batteries including spin pumping, temperature gradient, and spin Hall effect. As an application of our theory, we calculate the spin current in a trilayer made of a ferromagnetic insulator, an antiferromagnetic insulator, and a nonmagnetic heavy metal. The calculated results on the temperature dependence of spin conductance quantitatively agree with the existing experiments.
Angular dependence of primordial trispectra and CMB spectral distortions
Shiraishi, Maresuke; Bartolo, Nicola; Liguori, Michele
2016-10-01
Under the presence of anisotropic sources in the inflationary era, the trispectrum of the primordial curvature perturbation has a very specific angular dependence between each wavevector that is distinguishable from the one encountered when only scalar fields are present, characterized by an angular dependence described by Legendre polynomials. We examine the imprints left by curvature trispectra on the TTμ bispectrum, generated by the correlation between temperature anisotropies (T) and chemical potential spectral distortions (μ) of the Cosmic Microwave Background (CMB). Due to the angular dependence of the primordial signal, the corresponding TTμ bispectrum strongly differs in shape from TTμ sourced by the usual gNL or τNL local trispectra, enabling us to obtain an unbiased estimation. From a Fisher matrix analysis, we find that, in a cosmic-variance-limited (CVL) survey of TTμ, a minimum detectable value of the quadrupolar Legendre coefficient is d2 ~ 0.01, which is 4 orders of magnitude better than the best value attainable from the TTTT CMB trispectrum. In the case of an anisotropic inflationary model with a f(phi)F2 interaction (coupling the inflaton field phi with a vector kinetic term F2), the size of the curvature trispectrum is related to that of quadrupolar power spectrum asymmetry, g*. In this case, a CVL measurement of TTμ makes it possible to measure g* down to 10‑3.
Angular momentum of non-paraxial light beam: Dependence of orbital angular momentum on polarization
Li, Chun-Fang
2009-01-01
It is shown that the momentum density of free electromagnetic field splits into two parts. One has no contribution to the net momentum due to the transversality condition. The other yields all the momentum. The angular momentum that is associated with the former part is spin, and the angular momentum that is associated with the latter part is orbital angular momentum. Expressions for the spin and orbital angular momentum are given in terms of the electric vector in reciprocal space. The spin ...
Angular dependence of primordial trispectra and CMB spectral distortions
Shiraishi, Maresuke; Liguori, Michele
2016-01-01
Under the presence of anisotropic sources in the inflationary era, the trispectrum of the primordial curvature perturbation is sensitive to the angles between each wave vector. We examine the imprints left by curvature trispectra, in which the angular dependence is described by Legendre polynomials, on the $TT\\mu$ bispectrum, generated by the correlation between temperature anisotropies (T) and chemical potential spectral distortions ($\\mu$) of the Cosmic Microwave Background (CMB). Due to the angular dependence of the primordial signal, the corresponding $TT\\mu$ bispectrum strongly differs in shape from $TT\\mu$ sourced by the usual $g_{\\rm NL}$ or $\\tau_{\\rm NL}$ local trispectra, enabling us to obtain an unbiased estimation. From a Fisher matrix analysis, we find that, in a cosmic-variance-limited (CVL) survey of $TT\\mu$, a minimum detectable value of the quadrupolar Legendre coefficient is $d_2 \\sim 0.01$, which is 4 orders of magnitude better than the best value attainable from the $TTTT$ CMB trispectrum....
Angular dependence of interactions in polycrystalline Co nanowire arrays
International Nuclear Information System (INIS)
Ordered Co nanowire arrays with a constant geometry (∼40 nm diameter, ∼10 μm length and ∼100 nm interwire distance) were ac pulse electrodeposited into anodic aluminum oxide template under different deposition current densities (5.31, 7.08 and 8.85 mA/cm2). Microstructure and magnetic properties of the samples were studied using X-ray diffraction (XRD) pattern, selected area diffraction (SAED) pattern and first-order reversal curve (FORC) diagrams. SAED patterns showed inhomogeneous polycrystalline structure along the length of a nanowire. FORC diagrams revealed two-phase magnetic behavior in which soft and hard magnetic phases related to triplet cobalt crystalline directions. Despite the fact that angular dependence of hysteresis loops provides information about magnetization reversal, angular FORC offers additional information on the magnetostatic and interphase interactions depending on angle between the field and nanowires axis (α). Different magnetic behaviors were seen by change in α; interacting two-phase behavior in α = 0° which reduced to a non-interacting behavior for α > 60° may be attributed to reduce delay in magnetization reversal of two phases. Increasing the reversible portion of the major hysteresis loop in α = 90° is a possible source of difference between the hard to soft ratio obtained from FORC diagrams and XRD patterns. - Highlights: • Increasing α cause to reduce demagnetizing interaction and remove additional feature in 90°. • Magnetic behavior of Co-hcp(002) change from hard to soft phase as α increased from 0 to 90°. • Increasing reversible portion in 90° is source of different hard-soft ratio obtained from FORC and XRD
Effects of angular dependent terms in the interatomic potential on defect properties in TiAl
Energy Technology Data Exchange (ETDEWEB)
Panova, J.; Farkas, D. [Virginia Polytechnic Inst., Blacksburg, VA (United States). Dept. of Materials Science and Engineering
1995-08-01
Interatomic potentials of the Embedded Atom and Embedded Defect types were used to study the effect of the angular dependent term in the Embedded Defect potential on the properties of defects in TiAl. The defect properties were computed with interatomic potentials developed with and without angular dependent terms. It was found that the inclusion of the angular dependent terms tends to increase the energies of the APB`s and lower the energies of stacking faults. The effects of the angular term on the relaxation around vacancies and antisites in TiAl was also studied, as well as the core structure of several dislocations in this compound.
Angular dependence to the threshold intensity of scattered radiation for passing ionic-sound waves
International Nuclear Information System (INIS)
Present article is devoted to angular dependence to the threshold intensity of scattered radiation for passing ionic-sound waves. The angular dependence of intensity of scattered radiation in two-dimensional field of localization of a wave of a rating of passing ionic-sound waves at any scattering angles was considered. (author)
NEXAFS imaging of synthetic organic materials
Ben Watts; Harald Ade
2012-01-01
The utilization of near edge x-ray absorption fine structure spectroscopy (NEXAFS) in achieving strong, novel contrast for soft x-ray microscopy and scattering methods has been afforded significant success in elucidating outstanding issues in organic materials systems due to the unique combination of high sensitivity to chemical functionality and thus composition, moderately high spatial resolution and moderate radiation damage. We illustrate the basic operating principles of NEXAFS spectrosc...
Depth and latitude dependence of the solar internal angular velocity
Energy Technology Data Exchange (ETDEWEB)
Rhodes, E.J. Jr.; Cacciani, A.; Korzennik, S.; Tomczyk, S.; Ulrich, R.K.; Woodard, M.F. (Southern California Univ., Los Angeles, CA (USA) JPL, Pasadena, CA (USA) Roma I Universita (Italy) California Univ., Los Angeles (USA))
1990-03-01
One of the design goals for the dedicated helioseismology observing state located at Mount Wilson Observatory was the measurement of the internal solar rotation using solar p-mode oscillations. In this paper, the first p-mode splittings obtained from Mount Wilson are reported and compared with those from several previously published studies. It is demonstrated that the present splittings agree quite well with composite frequency splittings obtained from the comparisons. The splittings suggest that the angular velocity in the solar equatorial plane is a function of depth below the photosphere. The latitudinal differential rotation pattern visible at the surface appears to persist at least throughout the solar convection zone. 43 refs.
Depth and latitude dependence of the solar internal angular velocity
Rhodes, Edward J., Jr.; Cacciani, Alessandro; Korzennik, Sylvain; Tomczyk, Steven; Ulrich, Roger K.; Woodard, Martin F.
1990-01-01
One of the design goals for the dedicated helioseismology observing state located at Mount Wilson Observatory was the measurement of the internal solar rotation using solar p-mode oscillations. In this paper, the first p-mode splittings obtained from Mount Wilson are reported and compared with those from several previously published studies. It is demonstrated that the present splittings agree quite well with composite frequency splittings obtained from the comparisons. The splittings suggest that the angular velocity in the solar equatorial plane is a function of depth below the photosphere. The latitudinal differential rotation pattern visible at the surface appears to persist at least throughout the solar convection zone.
Institute of Scientific and Technical Information of China (English)
WANG Buhong; WANG Yongliang; CHEN Hui; GUO Ying
2004-01-01
Array calibration with angularly dependent gain and phase uncertainties has long been a difficult problem. Although many array calibration methods have been reported extensively in the literature, they almost all assumed an angularly independent model for array uncertainties. Few calibration methods have been developed for the angularly dependent array uncertainties. A novel and efficient auto-calibration method for angularly dependent gain and phase uncertainties is proposed in this paper, which is called ISM (Instrumental Sensors Method). With the help of a few well-calibrated instrumental sensors, the ISM is able to achieve favorable and unambiguous direction-of-arrivals (DOAs) estimate and the corresponding angularly dependent gain and phase estimate simultaneously, even in the case of multiple non-disjoint sources. Since the mutual coupling and sensor position errors can all be described as angularly dependent gain/phase uncertainties, the ISM proposed still works in the presence of a combination of all these array perturbations. The ISM can be applied to arbitrary array geometries including linear arrays. The ISM is computationally efficient and requires only one-dimensional search, with no high-dimensional nonlinear search and convergence burden involved. Besides, no small error assumption is made, which is always an essential prerequisite for many existing array calibration techniques. The estimation performance of the ISM is analyzed theoretically and simulation results are provided to demonstrate the effectiveness and behavior of the proposed ISM.
Sensitivity in frequency dependent angular rotation of optical vortices.
Rumala, Yisa S
2016-03-10
This paper presents robust strategies to enhance the rotation sensitivity (and resolution) of a coherent superposition of optical vortices emerging from a single spiral phase plate (SPP) device when light's optical frequency (or wavelength) going into the SPP device is varied. The paper discusses the generation and measurement of ultrasmall rotation. Factors that affect the ability to perform precision rotation measurements include the linewidth and stability of the input light source, the number of photon counts making position rotation measurements on the CCD detector, SPP reflectivity, the length of SPP device, and the angular modulation frequency of the intensity pattern due to a coherent superposition of optical vortices in a single SPP device. This paper also discusses parameters to obtain a high-sensitivity single shot measurement and multiple measurements. Furthermore, it presents what I believe is a new scaling showing the enhancement in sensitivity (and resolution) in the standard quantum limit and Heisenberg limit. With experimentally realizable parameters, there is an enhancement of rotation sensitivity by at least one order of magnitude compared to previous rotation measurements with optical vortices. Understanding robust strategies to enhance the rotation sensitivity in an SPP device is important to metrology in general and for building compact SPP sensors such as gyroscopes, molecular sensors, and thermal sensors. PMID:26974798
ANGULAR VELOCITY AND CORIOLIS EFFECT IN TIME-DEPENDENT QUANTUM MECHANICAL SU2 ROTATION
Institute of Scientific and Technical Information of China (English)
FAN HONG-YI; SUN MING-ZHAI
2001-01-01
Starting from a time-dependent rotation U (t) in SU2 group element space, we derive its corresponding quantum mechanical dynamic Coriolis term and the relationship between U (t) and rotational angular velocity. Throughout our discussion, the technique of integration within an ordered product of operators is fully used, which has the advantage that the correspondence between the classical rotation and the quantum rotation is in a transparent fashion. A new angular-velocity formula is also derived.
Angular dependence of surfactant-mediated forces between carbon nanotubes.
Müter, Dirk; Angelikopoulos, Panagiotis; Bock, Henry
2012-12-27
We employ dissipative particle dynamics to examine surfactant-mediated forces between two carbon nanotubes. Calculations are performed varying both the distance and the angle between the nanotubes. For small distances, a repulsive region is observed, followed by an overall attractive interval with strong oscillations in the force. Decreasing the angle between the tubes leads to a steady increase in the force, but the relative dependence on the separation distance is preserved. We find that the force scales linearly with the size of the overlap area between the tubes. This allows us to express the angle dependence by a simple equation, whereas the distance dependence is represented by a master curve. For the parallel case, the behavior is significantly different. PMID:23116052
Angular dependences in electroweak semi-inclusive leptoproduction
Boer, D; Jakob, R; Mulders, PJ
2000-01-01
We present the leading order unpolarized and polarized cross sections in electroweak semi-inclusive deep inelastic leptoproduction, The azimuthal dependences in the cross section differential in the transverse momentum of the vector boson arise due to intrinsic transverse momenta of the quarks. Howe
Angular dependent transport properties of MgB2 films with columnar grains
International Nuclear Information System (INIS)
We studied the angular dependence of the transport properties of MgB2 films with columnar grains grown by hybrid physical chemical vapor deposition method, one sample with unreacted boron in the volume and the other sample with no traceable impurity phase. The angular dependence of resistivity and critical current density in applied magnetic fields for both samples showed a flux pinning effect by the grain boundaries between columnar grains. The temperature dependence of the upper critical fields was analyzed by using the dirty-limit two-gap model. We found that the unreacted boron in the body of the film had negative effect on flux pinning and intraband electron diffusivities
Inversed linear dichroism in F K-edge NEXAFS spectra of fluorinated planar aromatic molecules
DEFF Research Database (Denmark)
de Oteyza, D. G.; Sakko, A.; El-Sayed, A.;
2012-01-01
orbitals with significant density of states on the fluorine atoms show different symmetry from those mainly located on C and N atoms. As a result, the angle-dependent linear dichroism in NEXAFS F K-edge spectra is inversed with respect to that in the C and N K-edges. In addition, the significant overlap...... in energy of π* and σ* orbitals throughout the F K-edge spectrum hampers its use for analysis of molecular orientations from angle-dependent NEXAFS measurements....
A study of angular dependence in the ablation rate of polymers by nanosecond pulses
Pedder, James E. A.; Holmes, Andrew S.
2006-02-01
Measurements of ablation rate have traditionally been carried out only at normal incidence. However, in real-world applications ablation is often carried out at oblique angles, and it is useful to have prior knowledge of the ablation rate in this case. Detailed information about the angular dependence is also important for the development of ablation simulation tools, and can provide additional insight into the ablation mechanism. Previously we have reported on the angular dependence of direct-write ablation at 266 nm wavelength in solgel and polymer materials. In this paper we present a systematic study of angular dependence for excimer laser ablation of two polymer materials of interest for microfabrication: polycarbonate and SU8 photoresist. The results are used to improve simulation models to aid in mask design.
Density functional theory study of NEXAFS spectra of 4-methylbenzenethiol molecule
Song, Xiuneng; Wang, Guangwei; Ma, Yong; Jiang, Shouzhen; Yue, Weiwei; Xu, Shicai; Wang, Chuankui
2016-02-01
We have employed density functional theory (DFT) to calculate the carbon K-edge NEXAFS spectroscopy of 4-methylbenzenethiol (4-MBT) on gold surface. Polarization-dependent NEXAFS spectra of 4-MBT at different orientation angles are systematically analyzed. The π* resonance at 285 eV, which is the result of the transitions from 1s orbitals of carbon atoms in benzene ring to the lowest unoccupied molecular orbital (LUMO), is selected to study the orientation of 4-MBT molecule on the gold surface. In comparison with the experimental results, it is found that the benzene ring of 4-MBT is tilted by 33° with respect to the gold surface.
Temperature and angular momentum dependence of the quadrupole deformation in sd-shell
Indian Academy of Sciences (India)
P A Ganai; J A Sheikh; I Maqbool; R P Singh
2009-11-01
Temperature and angular momentum dependence of the quadrupole deformation is studied in the middle of the sd-shell for 28Si and 27Si isotopes using the spherical shell model approach. The shell model calculations have been performed using the standard universal sd-shell (USD) interaction and the canonical partition function constructed from the calculated eigensolutions. It is shown that the extracted average quadrupole moments show a transitional behaviour as a function of temperature and the infered transitional temperature is shown to vary with angular momentum. The quadrupole deformation of the individual eigenstate is also analysed.
Temperature and angular momentum dependence of the quadrupole deformation in sd-shell
Ganai, P A; Maqbool, I; Singh, R P
2009-01-01
Temperature and angular momentum dependence of the quadrupole deformation is studied in the middle of the sd-shell for 28Si and 27Si isotopes using the spherical shell model approach. The shell model calculations have been performed using the standard USD interaction and the canonical partition function constructed from the calculated eigen-solutions. It is shown that the extracted average quadrupole moments show a transitional behavior as a function of temperature and the inferred transitional temperature is shown to vary with angular-momentum. The quadrupole deformation of the individual eigen-states is also analyzed.
NEXAFS imaging of synthetic organic materials
Directory of Open Access Journals (Sweden)
Ben Watts
2012-04-01
Full Text Available The utilization of near edge x-ray absorption fine structure spectroscopy (NEXAFS in achieving strong, novel contrast for soft x-ray microscopy and scattering methods has been afforded significant success in elucidating outstanding issues in organic materials systems due to the unique combination of high sensitivity to chemical functionality and thus composition, moderately high spatial resolution and moderate radiation damage. We illustrate the basic operating principles of NEXAFS spectroscopy, scanning transmission x-ray microscopy, and resonant soft x-ray scattering, and exemplify the impact by discussing a few recent applications. The focus of this perspective will be the characterization of synthetic organic materials, with a further emphasis on applications involving semi-conducting polymers. We also provide a brief perspective of future instrument and method developments.
Angular dependence of coercivity with temperature in Co-based nanowires
Energy Technology Data Exchange (ETDEWEB)
Bran, C., E-mail: cristina.bran@icmm.csic.es [Institute of Materials Science of Madrid, CSIC, 28049 Madrid (Spain); Espejo, A.P. [Departamento de Física, Universidad de Santiago de Chile (USACH) and Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avenida Ecuador 3493, 9170124 Santiago (Chile); Palmero, E.M. [Institute of Materials Science of Madrid, CSIC, 28049 Madrid (Spain); Escrig, J. [Departamento de Física, Universidad de Santiago de Chile (USACH) and Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avenida Ecuador 3493, 9170124 Santiago (Chile); Vázquez, M. [Institute of Materials Science of Madrid, CSIC, 28049 Madrid (Spain)
2015-12-15
The magnetic behavior of arrays of Co and CoFe nanowire arrays has been measured in the temperature range between 100 and 300 K. We have paid particular attention to the angular dependence of magnetic properties on the applied magnetic field orientation. The experimental angular dependence of coercivity has been modeled according to micromagnetic analytical calculations, and we found that the propagation of a transversal domain wall mode gives the best fitting with experimental observations. That reversal mode holds in the whole measuring temperature range, for nanowires with different diameters and crystalline structure. Moreover, the quantitative strength of the magnetocrystalline anisotropy and its magnetization easy axis are determined to depend on the crystalline structure and nanowires diameter. The evolution of the magnetocrystalline anisotropy with temperature for nanowires with different composition gives rise to an opposite evolution of coercivity with increasing temperature: it decreases for CoFe while it increases for Co nanowire arrays.
Angular-dependent Raman study of a- and s-plane InN
Energy Technology Data Exchange (ETDEWEB)
Filintoglou, K.; Katsikini, M., E-mail: katsiki@auth.gr; Arvanitidis, J.; Lotsari, A.; Dimitrakopulos, G. P.; Vouroutzis, N.; Ves, S. [School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Christofilos, D.; Kourouklis, G. A. [Chemical Engineering Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Ajagunna, A. O.; Georgakilas, A. [Microelectronics Research Group, Department of Physics, University of Crete, P.O. Box 2208, GR 71003 Heraklion, Greece and IESL, FORTH, P.O. Box 1385, GR 71110 Heraklion (Greece); Zoumakis, N. [Department of Food Technology, Technological Educational Institute of Thessaloniki, 57400 Sindos (Greece)
2015-02-21
Angular-dependent polarized Raman spectroscopy was utilized to study nonpolar a-plane (11{sup ¯}20) and semipolar s-plane (101{sup ¯}1) InN epilayers. The intensity dependence of the Raman peaks assigned to the vibrational modes A{sub 1}(TO), E{sub 1}(TO), and E{sub 2}{sup h} on the angle ψ that corresponds to rotation around the growth axis, is very well reproduced by using expressions taking into account the corresponding Raman tensors and the experimental geometry, providing thus a reliable technique towards assessing the sample quality. The s- and a-plane InN epilayers grown on nitridated r-plane sapphire (Al{sub 2}O{sub 3}) exhibit good crystalline quality as deduced from the excellent fitting of the experimental angle-dependent peak intensities to the theoretical expressions as well as from the small width of the Raman peaks. On the contrary, in the case of the s-plane epilayer grown on non-nitridated r-plane sapphire, fitting of the angular dependence is much worse and can be modeled only by considering the presence of two structural modifications, rotated so as their c-axes are almost perpendicular to each other. Although the presence of the second variant is verified by transmission electron and atomic force microscopies, angular dependent Raman spectroscopy offers a non-destructive and quick way for its quantification. Rapid thermal annealing of this sample did not affect the angular dependence of the peak intensities. The shift of the E{sub 1}(TO) and E{sub 2}{sup h} Raman peaks was used for the estimation of the strain state of the samples.
Oliveira, A. B.; Rodriguez-Suarez, R. L.; Michea, S.; Vega, H.; Azevedo, A.; Rezende, S. M.; Aliaga, C.; Denardin, J.
2014-07-01
The angular dependence of the hysteresis shift has been investigated in ferromagnetic/antiferromagnetic (NiFe/IrMn) bilayers grown by oblique deposition under the influence of a static magnetic field applied perpendicular to the uniaxial anisotropy direction induced during the growth process. It was found that at low oblique deposition angles, the unidirectional anisotropy field is much greater than the uniaxial anisotropy field and the corresponding anisotropies directions are noncollinear. In these conditions, the angular dependence of the hysteresis loop shift exhibits the well know cosine like shape but demanding a phase shift. Contrary to this, at high oblique deposition angle (70°), the uniaxial anisotropy plays the fundamental role and the anisotropies directions are collinear. In this case, the exchange bias displays a jump phenomenon. The numerical calculations are consistent with the experimental data obtained from magneto-optical Kerr effect and ferromagnetic resonance.
An Extended Greuling-Goertzel Approximation with a Pn-Approximation in the Angular Dependence
International Nuclear Information System (INIS)
The slowing-down spectrum has been calculated for different media. It is given in slab geometry as a function of space at the beginning of the epithermal region (10 eV). The angular dependence is also shown. The basic method is that given by E. Greuling, F. Clark and G. Goertzel in a NDA report, but in this report it is permissible to include more terms in the legendre expansion
WIND TURBINE SIMULATION FOR TIME-DEPENDENT ANGULAR VELOCITY, TORQUE, AND POWER
YONGHO LEE
2013-01-01
Albeit the prediction of time-dependent properties of wind turbines is not required for common applications, such time-varying properties may play an important role during transient operations occurring due to various reasons. Unlike the conventional numerical simulations of wind turbine rotations that fix the angular velocity to an assumed value, the present work numerically simulates the time-varying turbine rotation in both unsteady and quasi-steady operation regimes, without specifying th...
Liu, Hongxue; Lu, Jiwei; Wolf, Stuart; Hodgson, Jim; Rutgers, Maarten
2013-01-01
We demonstrate a versatile variable field module (VFM) with capability of both field and angular dependent measurements up to 1800 Oe for scanning probe system. The magnetic field strength is changed by adjusting the distance between a rare earth magnet and the probe tip and is monitored in-situ by a built-in Hall sensor. Rotating the magnet allows the field vector to change from the horizontal to vertical direction and makes it possible to do angular dependent measurements. The capability of the VFM system is demonstrated by degaussing a floppy disk media with increasing magnetic field. Angular dependent measurements clearly show the evolution of magnetic domain structures, with a completely reversible magnetic force microscopy phase contrast observed when the magnetic field is rotated by 180{\\deg}. A further demonstration of out-of-plane and in-plane magnetic switching of CoFe2O4 pillars in CoFe2O4-BiFeO3 nanocomposites was presented and discussed.
NEXAFS characterization of DNA components and molecular-orientation of surface-bound DNA oligomers
Energy Technology Data Exchange (ETDEWEB)
Samuel, Newton T. [National ESCA and Surface Analysis Center for Biomedical Problems, Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA 98195 (United States); Lee, C.-Y. [National ESCA and Surface Analysis Center for Biomedical Problems, Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA 98195 (United States); Gamble, Lara J. [National ESCA and Surface Analysis Center for Biomedical Problems, Department of Bioengineering, University of Washington, Box 351750, Seattle, WA 98195 (United States); Fischer, Daniel A. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Castner, David G. [National ESCA and Surface Analysis Center for Biomedical Problems, Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA 98195 (United States) and National ESCA and Surface Analysis Center for Biomedical Problems, Department of Bioengineering, University of Washington, Box 351750, Seattle, WA 98195 (United States)]. E-mail: castner@nb.engr.washington.edu
2006-07-15
Single stranded DNA oligomers (ssDNA) immobilized onto solid surfaces forms the basis for several biotechnological applications such as DNA microarrays, affinity separations, and biosensors. Surface structure of Surface-bound oligomers is expected to significantly influence their biological activity and interactions with the environment. In this study near-edge X-ray absorption fine structure spectroscopy (NEXAFS) is used to characterize the components of DNA (nucleobases, nucleotides and nucleosides) and the orientation information of surface-bound ssDNA. The K-edges of carbon, nitrogen and oxygen have spectra with features that are characteristic of the different chemical species present in the nucleobases of DNA. The effect of addition of the DNA sugar and phosphate components on the NEXAFS K-edge spectra was also investigated. The polarization-dependent nitrogen K-edge NEXAFS data show significant changes for different orientations of surface bound ssDNA. These results establish NEXAFS as a powerful technique for chemical and structural characterization of surface-bound DNA oligomers.
WIND TURBINE SIMULATION FOR TIME-DEPENDENT ANGULAR VELOCITY, TORQUE, AND POWER
Directory of Open Access Journals (Sweden)
YONGHO LEE
2013-02-01
Full Text Available Albeit the prediction of time-dependent properties of wind turbines is not required for common applications, such time-varying properties may play an important role during transient operations occurring due to various reasons. Unlike the conventional numerical simulations of wind turbine rotations that fix the angular velocity to an assumed value, the present work numerically simulates the time-varying turbine rotation in both unsteady and quasi-steady operation regimes, without specifying the angular velocity of the turbine a priori, but by calculating the actual time-dependent angular velocity and aerodynamic torque along with other properties in the course of simulation. In the present work, successful results obtained by an efficient computational fluid dynamics technique are shown, as a demonstration, for a vertical-axis wind turbine with a two-dimensionalSavonius rotor, and the cycle-averaged output powers are compared with experimental power curves and a theory developed on the basis of experimental observations.
Study of angular dependences of ion component parameters in CO2-laser-produced plasma
International Nuclear Information System (INIS)
CO2-laser-produced plasma ion component parameters were studied for aluminium and lead targets at laser intensity of P = 4x1013 W cm-2 and pulse duration of τ = 15 ns experimentally and numerically. Angular dependences of ion number density for different charge states, average velocity and its spread were measured by time-of-flight method. Ion charge state distribution shows high-charge and low-charge state groups at normal expansion direction. Ions in these groups have different average expansion velocity and longitudinal velocity spread. Angular distribution of high-charge states is narrower than that of the low-charge state ion group, maximum yield of low-charge states occur at some angle from normal. For Al target results show similar trends as for Pb target, but simulations have indicated that the effect of laser ponderomotive force is more pronounced in this case
ENERGY AND ANGULAR DEPENDENCE OF RADIOPHOTOLUMINESCENT GLASS DOSEMETERS FOR EYE LENS DOSIMETRY.
Silva, E H; Knežević, Ž; Struelens, L; Covens, P; Ueno, S; Vanhavere, F; Buls, N
2016-09-01
Recent studies demonstrated that lens opacities can occur at lower radiation doses than previously accepted. In view of these studies, the International Commission of Radiological Protection recommended in 2011 to reduce the eye lens dose limit from 150 mSv/y to 20 mSv/y. This implies in the need of monitoring doses received by the eye lenses. In this study, small rod radiophotoluminescent glass dosemeters (GD-300 series; AGC, Japan) were characterized in terms of their energy (ISO 4037 X-rays narrow spectrum series, S-Cs and S-Co) and angular dependence (0 up to 90 degrees, with 2 ISO energies: N-60 and S-Cs). All acquisitions were performed at SCK•CEN-Belgium, using the ORAMED proposed cylindrical phantom. For selected energies (N-60, N-80, N-100, N-120 and N-250), the response of dosemeters irradiated on the ISO water slab phantom, at the Ruđer Bošković Institute-Croatia, was compared to those irradiated on the cylindrical phantom. GD-300 series showed good energy dependence, relative to S-Cs, on the cylindrical phantom. From 0 up to 45 degrees, the dosemeters showed no significant angular dependence, regardless whether they were tested when placed vertically or horizontally on the cylindrical phantom. However, at higher angles, some angular dependence was observed, mainly when the dosemeters were irradiated with low-energy photons (N-60). Results showed that GD-300 series have good properties related to Hp(3), although some improvements may be necessary.
On the angular dependence of the photoemission time delay in helium
Ivanov, I A; Lindroth, E; Kheifets, A S
2016-01-01
We investigate an angular dependence of the photoemission time delay in helium as measured by the RABBITT (Reconstruction of Attosecond Beating By Interference of Two-photon Transitions) technique. The measured time delay $ \\tau_a=\\tau_W+\\tau_{cc} $ contains two distinct components: the Wigner time delay $\\tau_W$ and the continuum-continuum CC) correction $\\tau_{cc}$. In the case of helium with only one $1s\\to Ep$ photoemission channel, the Wigner time delay $\\tau_W$ does not depend on the photoelectron detection angle relative to the polarization vector. However, the CC correction $\\tau_{cc}$ shows a noticeable angular dependence. We illustrate these findings by performing two sets of calculations. In the first set, we solve the time-dependent Schr\\"odinger equation for the helium atom ionized by an attosecond pulse train and probed by an IR pulse. In the second approach, we employ the lowest order perturbation theory which describes absorption of the XUV and IR photons. Both calculations produce close resul...
Measuring the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator
Energy Technology Data Exchange (ETDEWEB)
Albert, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pollock, B. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shaw, J. L. [Univ. of California, Los Angeles, CA (United States); Marsh, K. A. [Univ. of California, Los Angeles, CA (United States); Ralph, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chen, Y. -H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Alessi, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pak, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Clayton, C. E. [Univ. of California, Los Angeles, CA (United States); Glenzer, S. H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Joshi, C. [Univ. of California, Los Angeles, CA (United States)
2014-07-22
This paper presents a new technique to measure the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator. Measurements are performed with a stacked image plates spectrometer, capable of detecting broadband x-ray radiation up to 1 MeV. It can provide measurements of the betatron x-ray spectrum at any angle of observation (within a 40 mrad cone) and of the beam profile. A detailed description of our data analysis is given, along with comparison for several shots. As a result, these measurements provide useful information on the dynamics of the electrons are they are accelerated and wiggled by the wakefield.
Effect of Angular Velocity on Sensors Based on Morphology Dependent Resonances
Directory of Open Access Journals (Sweden)
Amir R. Ali
2014-04-01
Full Text Available We carried out an analysis to investigate the morphology dependent optical resonances shift (MDR of a rotating spherical resonator. The spinning resonator experiences an elastic deformation due to the centrifugal force acting on it, leading to a shift in its MDR. Experiments are also carried out to demonstrate the MDR shifts of a spinning polydimethylsiloxane (PDMS microsphere. The experimental results agree well with the analytical prediction. These studies demonstrated that spinning sensor based on MDR may experience sufficient shift in the optical resonances, therefore interfering with its desirable operational sensor design. Also the results show that angular velocity sensors could be designed using this principle.
Effect of angular velocity on sensors based on morphology dependent resonances.
Ali, Amir R; Ioppolo, Tindaro
2014-01-01
We carried out an analysis to investigate the morphology dependent optical resonances shift (MDR) of a rotating spherical resonator. The spinning resonator experiences an elastic deformation due to the centrifugal force acting on it, leading to a shift in its MDR. Experiments are also carried out to demonstrate the MDR shifts of a spinning polydimethylsiloxane (PDMS) microsphere. The experimental results agree well with the analytical prediction. These studies demonstrated that spinning sensor based on MDR may experience sufficient shift in the optical resonances, therefore interfering with its desirable operational sensor design. Also the results show that angular velocity sensors could be designed using this principle. PMID:24759108
Angular dependence of the spin textures in two-dimensional chiral magnets
Energy Technology Data Exchange (ETDEWEB)
Tang, Dan [Institute of Materials Physics and Chemistry, Northeastern University, Shenyang 110004 (China); Institute of Applied Physics and Technology, Liaoning Technical University, Huludao 125105 (China); Qi, Yang, E-mail: qiyang@imp.neu.edu.cn [Institute of Materials Physics and Chemistry, Northeastern University, Shenyang 110004 (China)
2015-05-28
The angular dependence of spin textures in thin helimagnetic films is investigated by a Monte Carlo simulation. When an external field is applied at an angle relative to the film normal, we find that the skyrmion states with broken axis-symmetric structure are able to persist over a wide range of angles by changing the spin orientation. In addition, the uniaxial anisotropy is able to stabilize the distorted skyrmions. This behavior reflects the robust topological stability of skyrmion states in helimagnets and favors their application in spintronic devices.
Angular dependence of the coercivity and remanence of ordered arrays of Co nanowires
Energy Technology Data Exchange (ETDEWEB)
Lavin, R. [Departamento de Fisica, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); Facultad de Ingenieria, Universidad Diego Portales, UDP, Ejercito 441, Santiago (Chile); Gallardo, C.; Palma, J.L. [Departamento de Fisica, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); Escrig, J. [Departamento de Fisica, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Av. Ecuador 3493, Santiago (Chile); Denardin, J.C., E-mail: jcdenardin@gmail.com [Departamento de Fisica, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Av. Ecuador 3493, Santiago (Chile)
2012-08-15
The angular dependence of the coercivity and remanence of ordered hexagonal arrays of Co nanowires prepared using anodic aluminum oxide templates was investigated. The experimental evolution of coercivity as a function of the angle, in which the external field is applied, is interpreted considering micromagnetic simulations. Depending on the angle between the axis of the wire and the applied magnetic field direction our results show that the magnetization reversal mode changes from vortex to a transverse domain wall. Besides, we observed that the dipolar interactions cause a reduction in coercive fields, mainly in the direction of easy magnetization of the nanowires. Good agreement between numerical and experimental data is obtained. - Highlights: Black-Right-Pointing-Pointer Angular dependence of the coercivity and remanence of Co nanowire arrays. Black-Right-Pointing-Pointer Results show that the magnetization reversal mode changes from vortex to a transverse domain wall. Black-Right-Pointing-Pointer Dipolar interactions cause a reduction in coercive fields, which is the strongest in the direction of easy magnetization of the nanowire.
Equivalence between deep energy-dependent and shallow angular momentum dependent potentials
International Nuclear Information System (INIS)
Recently Baye showed that supersymmetry can be applied to determine a shallow l-dependent potential phase equivalent to a deep potential, assumed to be energy-independent and have Panli forbidden states (PFS), for α-α scattering. The PFS are eliminated by this procedure. Such deep potentials are generated as equivalent local potentials (ELP) to the Resonating Group Model (RGM) and are generally energy-dependent. To eliminate this E-dependence as required for the application of Baye's method, l-dependent, but E-independent, deep local potentials were generated by the exact inversion method of Marchenko. Subsequently, the supersymmetric method was used to eliminate the PFS, ensuring that the generalized Levinson theorem is satisfied. As an example, the method was applied to the simple model of two dineutrons scattering in the RGM, where the deep ELP of Horiuchi has a substantial energy-dependence and one PFS only for l=O. 16 refs., 5 figs
Angular dependence of the FMR linewidth and the anisotropy of the relaxation time in iron garnets
Kobelev, A. V.; Shvachko, Yu. N.; Ustinov, V. V.
2016-01-01
This work is devoted to the problem of extracting the contribution of the anisotropy of relaxation to the angular dependence of the FMR linewidth and to the opportunity of determining the values of the parameters of relaxation. The results of the FMR study of films based on the yttrium iron garnet prepared by the method of liquid-phase epitaxy are given. The orientational dependence of the linewidth has been calculated using the traditional method of measuring an FMR spectrum and a method based on scanning at an angle to the resonance field for obtaining the minimum linewidth. A model for calculating the linewidth has been proposed that takes into account the anisotropy of the relaxation term in the equation of motion of the magnetic moment. The model leads to a dependence that agrees well with the experimental data, which makes it possible to state that the anisotropy of relaxation most likely takes place in the samples under consideration at the temperatures employed.
Energy Technology Data Exchange (ETDEWEB)
Dong, Kyung-Rae [Department of Radiological Technology, Gwangju Health College University (Korea, Republic of); Department of Nuclear Engineering, Chosun University (Korea, Republic of); Kweon, Dae Cheol [Department of Radiologic Science, Shin Heung College University (Korea, Republic of); Chung, Woon-Kwan, E-mail: wkchung@chosun.ac.kr [Department of Nuclear Engineering, Chosun University (Korea, Republic of); Goo, Eun-Hoe [Department of Diagnostic Radiology, Seoul National University Hospital (Korea, Republic of); Department of Physics, Soonchunhyang University (Korea, Republic of); Dieter, Kevin [Department of Physical Therapy, Gwangju Health College University (Korea, Republic of); Choe, Chong-Hwan [Department of White Memorial Medical Center (United States)
2011-02-15
Radiation management departments place more emphasis on the accuracy of measurements than on the increase in the average dose and personal exposure dose from the use of radiation equipment and radioactive isotopes. Although current measurements are taken using devices, such as film badge dosimeters, pocket dosimeters and thermoluminescent dosimeters (TLDs), this study compared the angular dependence between the widely used TLDs and photoluminescent dosimeter (PLDs) in order to present primary data and evaluate the utility of PLD as a new dosimeter device. For X-ray fluoroscopy, a whole body phantom was placed on a table with a setting for the G-I technical factors fixed at a range of approximately 40 cm with a range of {+-}90{sup o} at an interval scale of 15{sup o} from the center location of an average radiological worker for PLDs (GD-450) and TLDs (Carot). This process was repeated 10 times, and at each time, the cumulative dosage was interpreted from 130 dosimeters using TLDs (UD-710R, Panasonic) and PLDs (FGD-650). The TLD and PLD showed a 52% and 23% decrease in the depth dosage from 0{sup o} to -90{sup o}, respectively. Therefore, PLDs have a lower angular dependence than TLDs.
Matsuura, Yutaka; Kitai, Nobuyuki; Hosokawa, Seiichi; Hoshijima, Jun
2016-08-01
The relation of the coercive force decrease ratio (CFDR) and the angular dependence of the coercive force (ADCF) of ferrite magnets and their temperature properties were investigated. When we compared that against the angle of the magnetization reverse area obtained from these calculation results, which was obtained from the Gaussian distribution of the grain alignment and the postulation that every grain follows the Kondorskii law or the 1/cos θ law, and against the angle of the reverse magnetization area calculated from the experiment CFDR data of these magnets, it was found that this latter expanded at room temperature, to 36° from the calculated angle, for magnet with α=0.96. It was also found that, as temperature increased from room temperature to 413 K, the angle of the reverse magnetization area of ferrite magnets obtained from the experiment data expanded from 36° to 41°. When we apply these results to the temperature properties of ADCF, it seems that the calculated ADCF could qualitatively and reasonably explain these temperature properties, even though the difference between the calculated angular dependence and the experimental data still exists in the high angle range. These results strongly suggest that the coercive force of these magnets is determined by the magnetic domain wall motion. The magnetic domain walls are strongly pinned at tilted grains, and when the domain walls are de-pinned from their pinning sites, the coercive force is determined.
Ranjbaran, Mina; Galiana, Henrietta L
2013-11-01
Studies of the vestibulo-ocular reflex (VOR) have revealed that this type of involuntary eye movement is influenced by viewing distance. This paper presents a bilateral model for the horizontal angular VOR in the dark based on realistic physiological mechanisms. It is shown that by assigning proper nonlinear neural computations at the premotor level, the model is capable of replicating target-distance-dependent VOR responses that are in agreement with geometrical requirements. Central premotor responses in the model are also shown to be consistent with experimental observations. Moreover, the model performance after simulated unilateral canal plugging also reproduces experimental observations, an emerging property. Such local nonlinear computations could similarly generate context-dependent behaviors in other more complex motor systems.
Hršak, Hrvoje; Majer, Marija; Grego, Timor; Bibić, Juraj; Heinrich, Zdravko
2014-12-01
Dosimetry for Gamma-Knife requires detectors with high spatial resolution and minimal angular dependence of response. Angular dependence and end effect time for p-type silicon detectors (PTW Diode P and Diode E) and PTW PinPoint ionization chamber were measured with Gamma-Knife beams. Weighted angular dependence correction factors were calculated for each detector. The Gamma-Knife output factors were corrected for angular dependence and end effect time. For Gamma-Knife beams angle range of 84°-54°. Diode P shows considerable angular dependence of 9% and 8% for the 18 mm and 14, 8, 4 mm collimator, respectively. For Diode E this dependence is about 4% for all collimators. PinPoint ionization chamber shows angular dependence of less than 3% for 18, 14 and 8 mm helmet and 10% for 4 mm collimator due to volumetric averaging effect in a small photon beam. Corrected output factors for 14 mm helmet are in very good agreement (within ±0.3%) with published data and values recommended by vendor (Elekta AB, Stockholm, Sweden). For the 8 mm collimator diodes are still in good agreement with recommended values (within ±0.6%), while PinPoint gives 3% less value. For the 4 mm helmet Diodes P and E show over-response of 2.8% and 1.8%, respectively. For PinPoint chamber output factor of 4 mm collimator is 25% lower than Elekta value which is generally not consequence of angular dependence, but of volumetric averaging effect and lack of lateral electronic equilibrium. Diodes P and E represent good choice for Gamma-Knife dosimetry.
Okudaira, K K; Hasegawa, S; Ishii, H; Azuma, Y; Imamura, M; Shimada, H; Seki, K; Ueno, N
2001-01-01
The molecular orientation at the surfaces of poly(9-vinylcarbazole) (PvCz) thin films was studied by angle-resolved ultraviolet photoelectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The observed take-off angle (theta) dependence of photoelectron intensities from top pi band peaks clearly at larger theta than the calculated one for the three-dimensional isotropic random orientation model. The results indicate that there are more pendant groups with large tilt angles than the three-dimensional isotropic random orientation model, which is in good agreement with the result obtained from NEXAFS spectroscopy. The surface electronic states of PvCz may be rather dominated by sigma(C-H) states at the pendant carbazole group than pi states
NEXAFS Chemical State and Bond Lengths of p-Aminobenzoic Acid in Solution and Solid State
Stevens, J. S.; Gainar, A.; Suljoti, E.; Xiao, J.; Golnak, R.; Aziz, E. F.; Schroeder, S. L. M.
2016-05-01
Solid-state and solution pH-dependent NEXAFS studies allow direct observation of the electronic state of para-aminobenzoic acid (PABA) as a function of its chemical environment, revealing the chemical state and bonding of the chemical species. Variations in the ionization potential (IP) and 1s→π* resonances unequivocally identify the chemical species (neutral, cationic, or anionic) present and the varying local environment. Shifts in σ* shape resonances relative to the IP in the NEXAFS spectra vary with C-N bond length, and the important effect of minor alterations in bond length is confirmed with nitrogen FEFF calculations, leading to the possibility of bond length determination in solution.
Paris-Mandoki, Asaf; Tresp, Christoph; Mirgorodskiy, Ivan; Hofferberth, Sebastian
2016-01-01
F\\"orster resonances provide a highly flexible tool to tune both the strength and the angular shape of interactions between two Rydberg atoms. We give a detailed explanation about how F\\"orster resonances can be found by searching through a large range of possible quantum number combinations. We apply our search method to $SS$, $SD$ and $DD$ pair states of $^{87}$Rb with principal quantum numbers from 30 to 100, taking into account the fine structure splitting of the Rydberg states. We find various strong resonances between atoms with a large difference in principal quantum numbers. We quantify the strength of these resonances by introducing a figure of merit $\\tilde C_3$ which is independent of the magnetic quantum number and geometry to classify the resonances by interaction strength. We further predict to what extent interaction exchange is possible on different resonances and point out limitations of the coherent hopping process. Finally, we discuss the angular dependence of the dipole-dipole interaction ...
Paris-Mandoki, Asaf; Gorniaczyk, Hannes; Tresp, Christoph; Mirgorodskiy, Ivan; Hofferberth, Sebastian
2016-08-01
Förster resonances provide a highly flexible tool to tune both the strength and the angular shape of interactions between two Rydberg atoms. We give a detailed explanation about how Förster resonances can be found by searching through a large range of possible quantum number combinations. We apply our search method to SS, SD and DD pair states of 87Rb with principal quantum numbers from 30 to 100, taking into account the fine structure splitting of the Rydberg states. We find various strong resonances between atoms with a large difference in principal quantum numbers. We quantify the strength of these resonances by introducing a figure of merit {\\tilde{C}}3 which is independent of the magnetic quantum numbers and geometry to classify the resonances by interaction strength. We further predict to what extent excitation exchange is possible on different resonances and point out limitations of the coherent hopping process. Finally, we discuss the angular dependence of the dipole–dipole interaction and its tunability near resonances.
Dependence of the roll angular vestibuloocular reflex (aVOR) on gravity.
Yakushin, Sergei B; Xiang, Yongqing; Cohen, Bernard; Raphan, Theodore
2009-11-01
Little is known about the dependence of the roll angular vestibuloocular reflex (aVOR) on gravity or its gravity-dependent adaptive properties. To study gravity-dependent characteristics of the roll aVOR, monkeys were oscillated about a naso-occipital axis in darkness while upright or tilted. Roll aVOR gains were largest in the upright position and decreased by 7-15% as animals were tilted from the upright. Thus the unadapted roll aVOR gain has substantial gravitational dependence. Roll gains were also decreased or increased by 0.25 Hz, in- or out-of-phase rotation of the head and the visual surround while animals were prone, supine, upright, or in side-down positions. Gain changes, determined as a function of head tilt, were fit with a sinusoid; the amplitudes represented the amount of the gravity-dependent gain change, and the bias, the gravity-independent gain change. Gravity-dependent gain changes were absent or substantially smaller in roll (approximately 5%) than in yaw (25%) or pitch (17%), whereas gravity-independent gain changes were similar for roll, pitch, and yaw (approximately 20%). Thus the high-frequency roll aVOR gain has an inherent dependence on head orientation re gravity in the unadapted state, which is different from the yaw/pitch aVORs. This inherent gravitational dependence may explain why the adaptive circuits are not active when the head is tilted re gravity during roll aVOR adaptation. These behavioral differences support the idea that there is a fundamental difference in the central organization of canal-otolith convergence of the roll and yaw/pitch aVORs.
Secondary-electron-emission spectroscopy of tungsten: Angular dependence and phenomenology
DEFF Research Database (Denmark)
Willis, Roy F.; Christensen, Niels Egede
1978-01-01
-vacuum interface. In addition, transmission-induced spectral features are observed (transmission resonances), which are not related to the density-of-states fine structure, but are due to a quantum-mechanical enhancement in the escape probability arising from wave-function matching at the emitter-vacuum interface....... Bulk and surface band-structure effects are concurrently manifest in the SEE spectra via the wave-matching conditions imposed at the solid-vacuum interface. The results are discussed within the general conceptual framework provided by "the (time-reversed) incoming final-state wave-function" approach......Angle-resolved energy-distribution measurements of secondary-electron emission (SEE) from metals reveal spectral fine structure that relates directly to the density distribution of the one-electron states throughout E-K→ space located above the vacuum level Ev. The angular dependence of the SEE...
Light scattering by fractal dust aggregates: I. Angular dependence of scattering
Tazaki, Ryo; Okuzumi, Satoshi; Kataoka, Akimasa; Nomura, Hideko
2016-01-01
In protoplanetary disks, micron-sized dust grains coagulate to form highly porous dust aggregates. Because the optical properties of these aggregates are not completely understood, it is important to investigate how porous dust aggregates scatter light. In this study, the light scattering properties of porous dust aggregates were calculated using a rigorous method, the T-matrix method, and the results were then compared with those obtained using the Rayleigh-Gans-Debye (RGD) theory and Mie theory with the effective medium approximation (EMT). The RGD theory is applicable to moderately large aggregates made of nearly transparent monomers. This study considered two types of porous dust aggregates, ballistic cluster-cluster agglomerates (BCCAs) and ballistic particle-cluster agglomerates (BPCAs). First, the angular dependence of the scattered intensity was shown to reflect the hierarchical structure of dust aggregates; the large-scale structure of the aggregates is responsible for the intensity at small scatteri...
Energy Technology Data Exchange (ETDEWEB)
Jing, Longfei; Yang, Dong; Li, Hang; Zhang, Lu; Lin, Zhiwei; Li, Liling; Kuang, Longyu [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Jiang, Shaoen, E-mail: jiangshn@vip.sina.com; Ding, Yongkun [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Huang, Yunbao, E-mail: huangyblhy@gmail.com [Mechatronics School of Guangdong University of Technology, Guangzhou 510080 (China)
2015-02-15
The x-ray drive on a capsule in an inertial confinement fusion setup is crucial for ignition. Unfortunately, a direct measurement has not been possible so far. We propose an angular radiation temperature simulation to predict the time-dependent drive on the capsule. A simple model, based on the view-factor method for the simulation of the radiation temperature, is presented and compared with the experimental data obtained using the OMEGA laser facility and the simulation results acquired with VISRAD code. We found a good agreement between the time-dependent measurements and the simulation results obtained using this model. The validated model was then used to analyze the experimental results from the Shenguang-III prototype laser facility. More specifically, the variations of the peak radiation temperatures at different view angles with the albedo of the hohlraum, the motion of the laser spots, the closure of the laser entrance holes, and the deviation of the laser power were investigated. Furthermore, the time-dependent radiation temperature at different orientations and the drive history on the capsule were calculated. The results indicate that the radiation temperature from “U20W112” (named according to the diagnostic hole ID on the target chamber) can be used to approximately predict the drive temperature on the capsule. In addition, the influence of the capsule on the peak radiation temperature is also presented.
Silva, Jonas O; Linda V E, Caldas
2012-10-01
A new double faced ionization chamber was constructed at the Calibration Laboratory of IPEN. It has different collecting electrode materials: aluminum and graphite. It was irradiated in standard radiotherapy beams ((60)Co and X-rays). The response variation with distance and the angular dependence of this ionization chamber were evaluated. It was verified that the chamber response follows the inverse square law within a maximum variation of 11.2% in relation to the reference value. For the angular dependence it showed good agreement with international standards.
International Nuclear Information System (INIS)
The results of the experiment on measuring the energy dependence of fission fragment angular anisotropy in resonance neutron induced fission of 235U aligned target in energy region up to 42 eV are presented. The agreement with the data of Pattenden and Postma in resonances is good enough, while the theoretical curve, calculated using the R-matrix multilevel two fission channel approach, does not seem to describe the energy dependence of fission fragment angular anisotropy property. The necessity of taking into account the interference between levels with different spins is discussed. 11 refs., 2 figs
Hori, Masahiro; Aoki, Teruo; Tanikawa, Tomonori; Hachikubo, Akihiro; Sugiura, Konosuke; Kuchiki, Katsuyuki; Niwano, Masashi
2013-10-20
A model of angular-dependent emissivity spectra of snow and ice in the 8-14 μm atmospheric window is constructed. Past field research revealed that snow emissivity varies depending on snow grain size and the exitance angle. Thermography images acquired in this study further revealed that not only welded snow particles such as sun crust, but also disaggregated particles such as granular snow and dendrite crystals exhibit high reflectivity on their crystal facets, even when the bulk snow surface exhibits blackbody-like behavior as a whole. The observed thermal emissive behaviors of snow particles suggest that emissivity of the bulk snow surface can be expressed by a weighted sum of two emissivity components: those of the specular and blackbody surfaces. Based on this assumption, a semi-empirical emissivity model was constructed; it is expressed by a linear combination of specular and blackbody surfaces' emissivities with a weighting parameter characterizing the specularity of the bulk surface. Emissivity spectra calculated using the model succeeded in reproducing the past in situ measured directional spectra of various snow types by employing a specific weighting parameter for each snow type.
Hori, Masahiro; Aoki, Teruo; Tanikawa, Tomonori; Hachikubo, Akihiro; Sugiura, Konosuke; Kuchiki, Katsuyuki; Niwano, Masashi
2013-10-20
A model of angular-dependent emissivity spectra of snow and ice in the 8-14 μm atmospheric window is constructed. Past field research revealed that snow emissivity varies depending on snow grain size and the exitance angle. Thermography images acquired in this study further revealed that not only welded snow particles such as sun crust, but also disaggregated particles such as granular snow and dendrite crystals exhibit high reflectivity on their crystal facets, even when the bulk snow surface exhibits blackbody-like behavior as a whole. The observed thermal emissive behaviors of snow particles suggest that emissivity of the bulk snow surface can be expressed by a weighted sum of two emissivity components: those of the specular and blackbody surfaces. Based on this assumption, a semi-empirical emissivity model was constructed; it is expressed by a linear combination of specular and blackbody surfaces' emissivities with a weighting parameter characterizing the specularity of the bulk surface. Emissivity spectra calculated using the model succeeded in reproducing the past in situ measured directional spectra of various snow types by employing a specific weighting parameter for each snow type. PMID:24216578
Energy Technology Data Exchange (ETDEWEB)
Jursinic, Paul A., E-mail: pjursinic@wmcc.org [West Michigan Cancer Center, 200 North Park Street, Kalamazoo, Michigan 49007 (United States)
2015-10-15
Purpose: A type of in vivo dosimeter, an optically stimulated luminescent dosimeter, OSLD, may have dose sensitivity that depends on the angle of incidence of radiation. This work measures how angular dependence of a nanoDot changes with the geometry of the phantom in which irradiation occurs and with the intrinsic structure of the nanoDot. Methods: The OSLDs used in this work were nanoDot dosimeters (Landauer, Inc., Glenwood, IL), which were read with a MicroStar reader (Landauer, Inc., Glenwood, IL). Dose to the OSLDs was delivered by 6 MV x-rays. NanoDots with various intrinsic sensitivities were irradiated in numerous phantoms that had geometric shapes of cylinders, rectangles, and a cube. Results: No angular dependence was seen in cylindrical phantoms, cubic phantoms, or rectangular phantoms with a thickness to width ratio of 0.3 or 1.5. An angular dependence of 1% was observed in rectangular phantoms with a thickness to width of 0.433–0.633. A group of nanoDots had sensitive layers with mass density of 2.42–2.58 g/cm{sup 3} and relative sensitivity of 0.92–1.09 and no difference in their angular dependence. Within experimental uncertainty, nanoDot measurements agree with a parallel-plate ion chamber at a depth of maximum dose. Conclusions: When irradiated in cylindrical, rectangular, and cubic phantoms, nanoDots show a maximum angular dependence of 1% or less at an incidence angle of 90°. For a sample of 78 new nanoDots, the range of their relative intrinsic sensitivity is 0.92–1.09. For a sample of ten nanoDots, on average, the mass in the sensitive layer is 73.1% Al{sub 2}O{sub 3}:C and 26.9% polyester. The mass density of the sensitive layer of a nanoDot disc is between 2.42 and 2.58 g/cm{sup 3}. The angular dependence is not related to Al{sub 2}O{sub 3}:C loading of the nanoDot disc. The nanoDot at the depth of maximum dose has no more angular dependence than a parallel-plate ion chamber.
Juang, Fuh-Shyang; Laih, Li-Hong; Lin, Chia-Ju; Hsu, Yu-Jen
2002-04-01
An optical microcavity structure was used in organic light emitting diodes. We succeeded in fabricating a device with sharply directed emission vertical to an emission surface. The device shows green emission (bright green) at normal position which turns red (bright red) at the 30° position. The angular dependences of the electroluminescence and the emission patterns versus viewing angle in the microcavity OLED were studied. The resonance wavelength λ decreases with viewing angle. The emission peak at 490 nm is directed vertically to the device surface more sharply than that at 632 nm. The microcavity structure shows non-Lambertian emission. The spectra appear more blue off-axis and the intensity of the green-like emission decreases rapidly with increasing viewing angle. A significantly narrow linewidth of 7.4 nm in the 0° direction for the 490 nm peak was observed. The full-widths at half maximum (FWHM) of the green-like spectra are much smaller than those of the red-like ones, indicating better cavity quality.
Institute of Scientific and Technical Information of China (English)
H. M. Al-Khateeb; M. K. Alqadi; F. Y. Alzoubi; N. Y. Ayoub
2007-01-01
The dipole-dipole interaction model is used to calculate the angular dependence of lateral and levitation forces on a small permanent magnet and a cylindrical superconductor in the Meissner state lying laterally offthe symmetric axis of the cylinder. Under the assumption that the lateral displacement of the magnet is small compared with the physical dimensions of the system, we obtain analytical expressions for the lateral and levitation forces as functions of geometrical parameters of the superconductor as well as the height, the lateral displacement and the orientation of magnetic moment of the magnet. The effect of thickness and radius of the superconductor on the levitation force is similar to that for a symmetric magnet/superconducting cylinder system, but within the range of lateral displacement. The splitting in the levitation force increases with the increasing angle of orientation of the magnetic moment of the magnet. For a given lateral displacement of the magnet, the lateral force vanishes when the magnetic moment is perpendicular to the surface of the superconductor and has a maximum value when the moment is parallel to the surface. For a given orientation of the magnetic moment, the lateral force has a linear relationship with the lateral displacement. The stability of the magnet above the superconducting cylinder is discussed in detail.
Tomographic imaging of the angular-dependent coherent-scatter cross section.
Westmore, M S; Fenster, A; Cunningham, I A
1997-01-01
A new special-purpose computed tomographic (CT) imaging system is described which produces images based on measurements of the low-angle (0-10 degrees) x-ray diffraction properties of an object. Low-angle scatter in the diagnostic x-ray energy range is dominated by coherent scatter, and the system uses first-generation CT geometry to acquire a diffraction pattern for each pencil beam. The patterns are used to reconstruct a series of images which represent the coherent-scatter intensity at a series of scatter angles. To demonstrate the potential of coherent-scatter CT (CSCT), the scanner has been built and used to image a phantom consisting of a water-filled Lucite cylinder containing rods of polyethylene, Lucite, polycarbonate, and nylon. In this paper, the system is described and a sequence of CSCT images of this phantom is shown. Coherent-scatter cross sections of these materials are generated for each pixel from this sequence of images and compared with cross sections measured separately. The resulting excellent agreement shows that the angular-dependent coherent-scatter cross section can be accurately imaged in a tomographic slice through an object. These cross sections give material-specific information about the object. The long-term goal of this research is to make measurements of bone-mineral content for every pixel in a tomographic slice. PMID:9029536
Angular Dependence of the Facular-Sunspot Coverage Relation as Derived by MDI Magnetograms
Criscuoli, S.
2016-07-01
Previous studies have shown that the variation over the solar magnetic activity cycle of the area of facular/network features identified from broad-band and narrow-band imagery is positively correlated with the sunspot area and number, the relation being described as either linear or quadratic. On the other hand, the temporal variation of the spatial distributions of faculae, network and sunspots follows patterns that are less obviously correlated, so that we expect the relation that describes variation of the area coverage of different types of magnetic features to vary with the position over the disk. In this work we employ Michelson Doppler Interferometer (MDI) full-disk magnetograms acquired during solar cycle 23 and at the beginning of cycle 24 to investigate the relation between the coverage of magnetic elements characterized by different amounts of magnetic flux and located at different angular distances from disk center with the sunspot number. In agreement with some previous studies we find that daily data are best described by a quadratic function while data averaged over six months are best described by a linear function. In both cases the coefficients of the fits show large dependence on the position over the disk and the magnetic flux. We also find that toward disk center six-month averaged data show asymmetries between the ascending and the descending phases. The implications for solar irradiance modeling are discussed.
Improved angular momentum evolution model for solar-like stars II. Exploring the mass dependence
Gallet, Florian
2015-01-01
We developed angular momentum evolution models for 0.5 and 0.8 $M_{\\odot}$ stars. The parametric models include a new wind braking law based on recent numerical simulations of magnetised stellar winds, specific dynamo and mass-loss rate prescriptions, as well as core/envelope decoupling. We compare model predictions to the distributions of rotational periods measured for low mass stars belonging to star forming regions and young open clusters. Furthermore, we explore the mass dependence of model parameters by comparing these new models to the solar-mass models we developed earlier. Rotational evolution models are computed for slow, median, and fast rotators at each stellar mass. The models reproduce reasonably well the rotational behaviour of low-mass stars between 1~Myr and 8-10~Gyr, including pre-main sequence to zero-age main sequence spin up, prompt zero-age main sequence spin down, and early-main sequence convergence of the surface rotation rates. Fast rotators are found to have systematically shorter di...
Angular Dependence of the Facular-Sunspot Coverage Relation as Derived by MDI Magnetograms
Criscuoli, S.
2016-08-01
Previous studies have shown that the variation over the solar magnetic activity cycle of the area of facular/network features identified from broad-band and narrow-band imagery is positively correlated with the sunspot area and number, the relation being described as either linear or quadratic. On the other hand, the temporal variation of the spatial distributions of faculae, network and sunspots follows patterns that are less obviously correlated, so that we expect the relation that describes variation of the area coverage of different types of magnetic features to vary with the position over the disk. In this work we employ Michelson Doppler Interferometer (MDI) full-disk magnetograms acquired during solar cycle 23 and at the beginning of cycle 24 to investigate the relation between the coverage of magnetic elements characterized by different amounts of magnetic flux and located at different angular distances from disk center with the sunspot number. In agreement with some previous studies we find that daily data are best described by a quadratic function while data averaged over six months are best described by a linear function. In both cases the coefficients of the fits show large dependence on the position over the disk and the magnetic flux. We also find that toward disk center six-month averaged data show asymmetries between the ascending and the descending phases. The implications for solar irradiance modeling are discussed.
Light Scattering by Fractal Dust Aggregates. I. Angular Dependence of Scattering
Tazaki, Ryo; Tanaka, Hidekazu; Okuzumi, Satoshi; Kataoka, Akimasa; Nomura, Hideko
2016-06-01
In protoplanetary disks, micron-sized dust grains coagulate to form highly porous dust aggregates. Because the optical properties of these aggregates are not completely understood, it is important to investigate how porous dust aggregates scatter light. In this study, the light scattering properties of porous dust aggregates were calculated using a rigorous method, the T-matrix method, and the results were then compared with those obtained using the Rayleigh–Gans–Debye (RGD) theory and Mie theory with the effective medium approximation (EMT). The RGD theory is applicable to moderately large aggregates made of nearly transparent monomers. This study considered two types of porous dust aggregates—ballistic cluster–cluster agglomerates (BCCAs) and ballistic particle–cluster agglomerates. First, the angular dependence of the scattered intensity was shown to reflect the hierarchical structure of dust aggregates; the large-scale structure of the aggregates is responsible for the intensity at small scattering angles, and their small-scale structure determines the intensity at large scattering angles. Second, it was determined that the EMT underestimates the backward scattering intensity by multiple orders of magnitude, especially in BCCAs, because the EMT averages the structure within the size of the aggregates. It was concluded that the RGD theory is a very useful method for calculating the optical properties of BCCAs.
Impact of surface-polish on the angular and wavelength dependence of fiber focal ratio degradation
Eigenbrot, Arthur D; Wood, Corey M
2012-01-01
We present measurements of how multimode fiber focal-ratio degradation (FRD) and throughput vary with levels of fiber surface polish from 60 to 0.5 micron grit. Measurements used full-beam and laser injection methods at wavelengths between 0.4 and 0.8 microns on 17 meter lengths of Polymicro FBP 300 and 400 micron core fiber. Full-beam injection probed input focal-ratios between f/3 and f/13.5, while laser injection allowed us to isolate FRD at discrete injection angles up to 17 degrees (f/1.6 marginal ray). We find (1) FRD effects decrease as grit size decreases, with the largest gains in beam quality occurring at grit sizes above 5 microns; (2) total throughput increases as grit size decreases, reaching 90% at 790 nm with the finest polishing levels; (3) total throughput is higher at redder wavelengths for coarser polishing grit, indicating surface-scattering as the primary source of loss. We also quantify the angular dependence of FRD as a function of polishing level. Our results indicate that a commonly a...
Ranjbaran, Mina; Galiana, Henrietta L
2012-01-01
A bilateral model for the horizontal angular vestibulo-ocular reflex (AVOR) is presented in this paper. It is shown that by assigning proper non-linear neural computations at the premotor level, the model is capable of replicating target-distance dependent VOR responses. Moreover, the model behavior in case of sensory plugging is also consistent with reported experimental observations.
Spectral dependence of angular distribution halfwidths of Vavilov-Cherenkov radiation
International Nuclear Information System (INIS)
Angular distributions of Vavilov-Cherenkov radiation have been measured. This radiaiton is excited during 210 keV electron propagation in a mica 2.5 mm thick target in a spectral range from 2500 up to 5000 A. A formula for diffraction halfwidth of angular distribution has been derived, its applicability limits are pointed out. Experimental halfwidth agrees with the calculated ones. The deviation of angular distribution maximum from Vavilov-Cherenkov radiation angle is analyzed. This deviation is due to radiator boundaries and multiple scattering of electrons
NEXAFS Study of Air Oxidation for Mg Nanoparticle Thin Film
Ogawa, S.; Murakami, S.; Shirai, K.; Nakanishi, K.; Ohta, T.; Yagi, S.
2013-03-01
The air oxidation reaction of Mg nanoparticle thin film has been investigated by Mg K-edge NEXAFS technique. It is revealed that MgO is formed on the Mg nanoparticle surfaces at the early stage of the air oxidation for Mg nanoparticle thin film. The simulation of NEXAFS spectrum using standard spectra indicates the existence of complex magnesium carbonates (x(MgCO3).yMg(OH2).z(H2O)) in addition to MgO at the early stage of the air oxidation.
Energy Technology Data Exchange (ETDEWEB)
Brady, J.W. Jr.; Doll, J.D.; Thompson, D.L.
1978-10-15
The angular and velocity distributions for gas/solid-surface collisions are examined. It is shown that the envelope of the scattered phase-space distribution is quite sensitive to the gas/surface interaction potential.
Qin, S; Chen, T; Wang, L; Tu, Y; Yue, N; Zhou, J
2014-08-01
The focus of this study is the angular dependence of two types of Metal Oxide Semiconductor Field Effect Transistor (MOSFET) dosimeters (MOSFET20 and OneDose/OneDosePlus) when used for surface dose measurements. External beam radiationat different gantry angles were delivered to a cubic solid water phantom with a MOSFET placed on the top surface at CAX. The long axis of the MOSFET was oriented along the gantry axis of rotation, with the dosimeter (bubble side) facing the radiation source. MOSFET-measured surface doses were compared against calibrated radiochromic film readings. It was found that both types of MOSFET dosimeters exhibited larger than previously reported angular dependence when measuring surface dose in beams at large oblique angles. For the MOSFET20 dosimeter the measured surface dose deviation against film readings was as high as 17% when the incident angle was 72 degrees to the norm of the phantom surface. It is concluded that some MOSFET dosimeters may have a strong angular dependence when placed on the surface of water-equivalent material, even though they may have an isotropic angular response when surrounded by uniform medium. Extra on-surface calibration maybe necessary before using MOSFET dosimeters for skin dose measurement in tangential fields. PMID:24206205
Angular Dependence of the Nuclear Enhancement of Drell-Yan Pairs
Fries, R J; Schäfer, A; Stein, E
1999-01-01
We calculate the nuclear enhancement in the angular distribution of Drell-Yan pairs produced in proton-nucleus reactions. Nuclear effects are encoded in universal twist-4 parton correlation functions. We find that the Lam-Tung relation for the angular coefficients of the lepton-pair distribution holds for the double-hard, but not for the soft-hard contribution. We also predict that nuclear enhancement effects at RHIC energies can be large.
An Analysis of the NEXAFS Spectra of a molecular crystal: alpha-Glycine
Energy Technology Data Exchange (ETDEWEB)
Schwartz, Craig P.; Saykally, Richard J.; Prendergast, David
2010-06-18
The nitrogen K-edge Near Edge X-ray Absorption Fine Structure (NEXAFS) spectrum of alpha-crystalline glycine has been calculated for temperatures ranging from 0 K to 450 K. Significant temperature dependent spectral changes are predicted. The calculated room temperature spectrum is in good agreement with experiment. At high temperatures, molecular motions strongly influence the spectrum, as any unique spectrum from an individual instantaneous configuration does not resemble the experimental result or the average calculated spectrum; complex coupled motions in this prototypical molecular crystal underlie the observed spectral changes.
Directory of Open Access Journals (Sweden)
Andreas Burkart
2015-01-01
Full Text Available In this study we present a hyperspectral flying goniometer system, based on a rotary-wing unmanned aerial vehicle (UAV equipped with a spectrometer mounted on an active gimbal. We show that this approach may be used to collect multiangular hyperspectral data over vegetated environments. The pointing and positioning accuracy are assessed using structure from motion and vary from σ = 1° to 8° in pointing and σ = 0.7 to 0.8 m in positioning. We use a wheat dataset to investigate the influence of angular effects on the NDVI, TCARI and REIP vegetation indices. Angular effects caused significant variations on the indices: NDVI = 0.83–0.95; TCARI = 0.04–0.116; REIP = 729–735 nm. Our analysis highlights the necessity to consider angular effects in optical sensors when observing vegetation. We compare the measurements of the UAV goniometer to the angular modules of the SCOPE radiative transfer model. Model and measurements are in high accordance (r2 = 0.88 in the infrared region at angles close to nadir; in contrast the comparison show discrepancies at low tilt angles (r2 = 0.25. This study demonstrates that the UAV goniometer is a promising approach for the fast and flexible assessment of angular effects.
Hu, T.; Xiao, H; Sayles, T. A.; M.B. Maple; Maki, Kazumi; Dora, B.; Almasan, C. C.
2006-01-01
In-plane angular dependent resistivity ADR was measured in the non-Fermi liquid regime of CeCoIn$_5$ single crystals at temperatures $T \\le 20$ K and in magnetic fields $H$ up to 14 T. Two scaling behaviors were identified in low field region where resistivity shows T-linear dependence, separated by a critical angle $\\theta_{c}$ which is determined by the anisotropy of CeCoIn$_5$; i.e., ADR depends only on the perpendicular (parallel) field component below (above) $\\theta_c$. These scaling be...
Energy Technology Data Exchange (ETDEWEB)
Perini, Ana P.; Neves, Lucio P.; Xavier, Marcos; Caldas, Linda V.E., E-mail: mxavier@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Khoury, Helen J., E-mail: khoury@ufpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear
2011-07-01
In this paper a pencil-type ionization chamber designed and manufactured at Instituto de Pesquisas Energeticas e Nucleares was evaluated for dosimetric applications in computed tomography beams. To evaluate the performance of this chamber two tests were undertaken: linearity of response and angular dependence. The results obtained in these tests showed good results, within the international recommendations. Moreover, this homemade ionization chamber is easy to manufacture, of low cost and efficient. (author)
Dasgupta, Basudeb; Sen, Manibrata
2016-01-01
It has been recently pointed out that neutrino fluxes from a supernova can show substantial flavor conversions almost immediately above the core. Using linear stability analyses and numerical solutions of the fully nonlinear equations of motion, we perform a detailed study of these fast conversions, focussing on the region just above the supernova core. We carefully specify the instabilities for evolution in space or time, and find that neutrinos travelling towards the core make fast conversions more generic, i.e., possible for a wider range of flux ratios and angular asymmetries. Using fluxes and angular distributions predicted by supernova simulations, we find that fast conversions can occur within tens of nanoseconds, only a few meters away from the putative neutrinospheres. If these fast flavor conversions indeed take place, they would have important implications for the supernova explosion mechanism and nucleosynthesis.
Energy Technology Data Exchange (ETDEWEB)
Seregin, A.A.
1976-03-01
In framework of a phenomenological collective nuclear theory the dependence of the moment of inertia on the angular velocity squared is studied. It is shown that this theory may explain the S shape of dependence of J on ..omega../sup 2/ if the collective motion potential V(..beta..) has two points of inflection. Anomalies in the low-lying part of the energy spectrum of the nuclei /sup 184/Hg and /sup 186/Hg are related to inflection points of the potential.
Energy Technology Data Exchange (ETDEWEB)
Geerkens, A.; Frenck, H.J.; Ewert, S. [Technical Univ. of Cottbus (Germany)] [and others
1994-12-31
The angular dependence of the critical current density and the magnetoresistance of high-T{sub c}-films in high and low magnetic fields and for different temperatures were measured to investigate the flux pinning and the superconducting properties. A comparison of the results for the different superconductors shows their increasing dependence on the angle {Theta} between the magnetic field and the c-axis of the film due to the anisotropy of the chosen superconductor. Furthermore the influence of the current direction to the {Theta}-rotation plane is discussed.
International Nuclear Information System (INIS)
An additive angular-dependent re-balance (AADR) factor acceleration method is described to accelerate the source iteration of discrete ordinates transport calculation. The formulation of the AADR method follows that of the angular-dependent re-balance (ADR) method in that the re-balance factor is defined only on the cell interface and in that the low-order equation is derived by integrating the transport equation (high-order equation) over angular subspaces. But, the re-balance factor is applied additively. While the AADR method is similar to the boundary projection acceleration and the alpha-weighted linear acceleration, it is more general and does have distinct features. The method is easily extendible to DPN and low-order SN re-balancing, and it does not require consistent discretizations between the high- and low-order equations as in diffusion synthetic acceleration. We find by Fourier analysis and numerical results that the AADR method with a chosen form of weighting functions is unconditionally stable and very effective. There also exists an optimal weighting parameter that leads to the smallest spectral radius. The AADR acceleration method described in this paper is simple to implement, unconditionally stable, and very effective. It uses a physically based weighting function with an optimal parameter, leading to the best spectral radius of ρ<0.1865, compared to ρ<0.2247 of DSA. The application of the AADR acceleration method with the LMB scheme on a test problem shows encouraging results
Energy Technology Data Exchange (ETDEWEB)
Batchelor, D.; Schmidt, T.; Schoell, A [Universitaet Wuerzburg, Experimentelle Physik II, Wuerzburg (Germany); Follath, R.; Jung, C. [BESSY GmbH, Berlin (Germany); Fink, R. [Physikalische Chemie II, Universitaet Erlangen-Nuernberg (Germany); Knupfer, M.; Buechner, B. [IFW Dresden (Germany); Umbach, E. [Universitaet Wuerzburg, Experimentelle Physik II, Wuerzburg (Germany); Forschungszentrum, Karlsruhe (Germany)
2008-07-01
We have recently published a design for a dedicated Soft X-Ray dispersive beamline (NIMA 575 (2007) 470-475) using photoelectron spectroscopy. The new dispersive technique allows not only NEXAFS without the time-consuming scanning of the photon energy but also high resolution CFS/CIS spectroscopic studies such as Auger/autoionization spectroscopy. The technique provides data with much more accuracy and detail hitherto achieved by simply stepping the photon energy. The method was originally tested using a ''Pilot'' setup which exploited extending the depth of focus of the monochromator by limiting the beamline angular aperture. Although very successful the decrease in angular beamline aperture obviously had drawbacks in terms of signal and also mode of operation of the monochromator (low Cff values). We present commissioning results from the upgraded monochromator demonstrating that the new design overcomes most of these difficulties.
Structure of tetracene films on hydrogen-passivated Si(001) studied via STM, AFM, and NEXAFS
International Nuclear Information System (INIS)
Scanning tunneling microscopy (STM), atomic force microscopy (AFM), and near-edge x-ray absorption fine structure (NEXAFS) have been used to study the structure of tetracene films on hydrogen-passivated Si(001). STM imaging of the films with nominal thickness of three monolayers (3 ML) exhibits the characteristic 'herringbone' molecular packing known from the bulk crystalline tetracene, showing standing molecules on the ab plane. The dimensions and orientation of the herringbone lattice indicate a commensurate structural relationship between the lattice and the crystalline substrate. The corresponding AFM images illustrate that at and above the third layer of the films, the islands are anisotropic, in contrast with the submonolayer fractals, with two preferred growth directions appearing orthogonal to each other. The polarization dependent NEXAFS measurements indicate that the average molecular tilting angle with respect to the surface first increases with the film thickness up to 3 ML, then stabilizes at a value close to the bulk tetracene case afterwards. The combined results indicate a distinct growth morphological change that occurs around a few monolayers of thickness
XPS and NEXAFS study of tyrosine-terminated propanethiol assembled on gold
Petoral, R M
2003-01-01
Tyrosine-terminated propanethiol (TPT), tyrosine linked to 3-mercaptopropionic acid through an amide bond, is adsorbed to gold surfaces. The adsorbates are characterized by means of X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). XPS is used to investigate the chemical binding and electronic structure of the monolayer. Strong molecular binding of the tyrosine derivative on the gold surface through the sulfur atom is attained. Angle-dependent XPS results shows that TPT molecules are oriented with the sulfur atoms molecularly oriented close to the gold surface and that the phenol moiety is oriented away from the gold surface. Average orientation of the adsorbate on gold is deduced using the NEXAFS results. It shows that the main molecular axis is tilted approximately 38 deg. relative to the Au surface normal. The ring plane of the phenol moiety exhibits a preferential orientation with an average tilt angle of the normal of the ring plane from the surfa...
Spin and temperature dependence of nuclear deformation using alpha-gamma angular correlations
International Nuclear Information System (INIS)
Alpha-particle angular distributions with respect to the spin direction of residual nuclei have been measured in heavy-ion fusion reactions. The spin direction was determined by measuring the γ-ray angular distributions, for each event, using the spin spectrometer. α-particle anisotropies have been extracted for the compound nuclear systems: 110Sn*(94 MeV), 114Sn*(80 MeV), 138Nd*(82 MeV), 164Yb*(67 MeV) and 170Yb*(135 MeV) as a function of the α-particle energy and γ-ray multiplicity. The results are compared with statistical model calculations using transmission coefficients from a spherically symmetric optical model potential. The trend of the anisotropy coefficients below the evaporation Coulomb barrier is consistent with spherical emitting shapes in the case of the Sn* isotopes. Small deformation effects are suggested by the 138Nd* and 164Yb* data. The 170Yb* data indicate a large deformation which increases considerably with increasing spin. These results are in agreement with findings for similar systems in which the decay of the giant resonances built on excited states have been studied. 16 refs., 5 figs
Training Effect and Hysteretic Behaviour of Angular Dependence of Exchange Bias in Co/IrMn Bilayers
Institute of Scientific and Technical Information of China (English)
ZHANG Jing; DU Jun; BAI Xiao-Jun; YOU Biao; ZHANG Wei; HU An
2009-01-01
@@ The training effect and the hysteresis behaviour of the angular dependence of exchange bias are extensively investigated upon the variation of the IrMn layer thickness tIrMn in a series of Co/IrMn bilayers. When tIrMn is very small, both of them are negligible. Then they increase very sharply with increasing tIrMn and then reach maxima at almost the same value of tIrMn. Finally they both decrease when tIrMn is further increased. The similar variation trends suggest that these phenomena arise from irreversible change of antiferromagnet spin orientations, according to the thermal activation model.
Institute of Scientific and Technical Information of China (English)
ZHANG Jie; ZHANG Jing-Tao; SUN Zhen-Rong; XU Zhi-Zhan
2004-01-01
@@ Using a nonperturbative scattering theory, we study the photoelectron angular distributions (PADs) of Kr atoms irradiated by an infinite sequence of intense single-cycle pulses of circular polarization. We demonstrate the inversion asymmetry of PADs and the dependence of PADs on the carrier-envelop phase of the single-cycle pulses. The inversion asymmetry is caused by the interference between transition channels where the different channels are characterized by different combinations of absorbed-photon numbers in the ionization process. Our results provide a possible method to determine the value of carrier-envelop phase by the detected PADs.
Study on Angular Dependence in Micro-cavity OLED%微腔OLED的视角特性研究
Institute of Scientific and Technical Information of China (English)
袁桃利; 张方辉; 牟强; 马颖; 张思璐
2012-01-01
The angular dependence of QLED is studied and it showed that the brightness and current efficiency gradually decreased with increased view angle, the intensity and current efficiency at 50 degrees dropped to 1/3 and 40% respectively with respect to the normal direction. And Color coordinates produce drift at a certain extent with increased view angle, but spectral peak and FWHM didn＇t change depend on the angle. Reasons for the occurrence of angular dependence were discussed.%文章研究了微腔OLED的视角特性,结果表明,亮度和发光效率随着视角的增加逐渐减小,当视角增加到50°时,其亮度降为正面输出的1/3;发光效率下降了约40%左右;色坐标随着视角的增加产生漂移,而光谱峰值和半高宽基本不随视角的变化而变化。同时分析并讨论了视角特性产生的原因。
Angular dependent torque measurements on CaFe0.88Co0.12AsF
Xiao, H.; Gao, B.; Ma, Y. H.; Li, X. J.; Mu, G.; Hu, T.
2016-08-01
Out-of-plane angular dependent torque measurements were performed on CaFe0.88Co0.12AsF (Ca1 1 1 1) single crystals. In the normal state, the torque data shows \\sin 2θ angular dependence and H 2 magnetic field dependence, as a result of paramagnetism. In the mixed state, the torque signal is a combination of the vortex torque and paramagnetic torque, and the former allows the determination of the anisotropy parameter γ. At T = 11.5 K, γ (11.5 K ≃ 0.5 T c) = 19.1, which is similar to the result of SmFeAsO0.8F0.2, γ ≃ 23 at T≃ 0.4{{T}\\text{c}} . So the 11 1 1 is more anisotropic compared to 11 and 122 families of iron-based superconductors. This may suggest that the electronic coupling between layers in 1 1 1 1 is less effective than in 11 and 122 families.
Adams, J; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Bezverkhny, B I; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, C O; Blyth, S L; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca-Sanchez, M; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Choi, H A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Daugherity, M; De Moura, M M; Dedovich, T G; De Phillips, M; Derevshchikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Dutta-Majumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Yu; Fu, J; Gagliardi, C A; Gaillard, L; Gans, J; Ganti, M S; Ghazikhanian, V; Ghosh, P; González, J E; Gorbunov, Y G; Gos, H; Grebenyuk, O; Grosnick, D P; Guertin, S M; Guimaraes, K S F F; Guo, Y; Gupta, N; Gutíerrez, T D; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Jacobs, P; Jacobs, W W; Jakl, P; Jia, F; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Krämer, M; Kravtsov, P; Kravtsov, V I; Krüger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; La Pointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C H; Lehocka, S; Le Vine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; López-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Melnik, Yu M; Meschanin, A; Miller, M L; Minaev, N G; Mioduszewski, S; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnár, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, Grazyna Janina; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pachr, M; Pal, S K; Panebratsev, Yu A; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevozchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Poljak, N; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M V; Potrebenikova, E V; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ray, R L; Razin, S V; Reinnarth, J; Relyea, D; Retière, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimansky, S S; ESichtermann; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sørensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M N; Stringfellow, B C; Suaide, A A P; Sugarbaker, E R; Sumbera, M; Sun, Z; Surrow, B; Swanger, M; Symons, T J M; Szanto, A; de Toledo; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T J; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; Van der Kolk, N; Van Leeuwen, M; Van der Molen, A M; Varma, R; Vasilevski, I M; Vasilev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I K; Yurevich, V I; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X
2006-01-01
We present the first study of the energy dependence of $p_t$ angular correlations inferred from event-wise mean transverse momentum $$ fluctuations in heavy ion collisions. We compare our large-acceptance measurements at CM energies $\\sqrt{s_{NN}} =$ 19.6, 62.4, 130 and 200 GeV to SPS measurements at 12.3 and 17.3 GeV. $p_t$ angular correlation structure suggests that the principal source of $p_t$ correlations and fluctuations is minijets (minimum-bias parton fragments). We observe a dramatic increase in correlations and fluctuations from SPS to RHIC energies, increasing linearly with $\\ln \\sqrt{s_{NN}}$ from the onset of observable jet-related $$ fluctuations near 10 GeV.
Angular dependence of electron emission induced by grazing-ion surface collisions
Gravielle, M. S.; Miraglia, J. E.; Otero, G. G.; Sánchez, E. A.; Grizzi, O.
2004-04-01
In this work, electron emission spectra produced by impact of fast protons on Al(111) surfaces are theoretically and experimentally studied. Contributions coming from the different electronic sources of the metal—atomic inner shells and valence band—are analyzed as a function of the angle of electron emission. In the forward direction, the inner-shell ionization process is the dominant mechanism. The valence emission, instead, becomes important when the ejection angle is separated from the specular-reflection direction. In both angular regions, theoretical and experimental values are in reasonable agreement. The energy shift and broadening of the convoy electron peak at glancing observation angles are well described by the present model, which takes into account the influence of the induced surface field on the ionized electron.
Angular dependence of the facular-sunspot coverage relation as derived by MDI magnetograms
Criscuoli, Serena
2016-01-01
Previous studies have shown that the variation over the solar magnetic activity cycle of the area of facular/network features identified on broad band and narrow band imagery is positively correlated with the sunspot area and number, the relation between the area coverages being described as either linear or quadratic. On the other hand, the temporal variation of the spatial distributions of faculae, network and sunspots follows patterns that are less obviously correlated, so that we expect the relation that describes variation of the area coverage of different types of magnetic features to vary with the position over the disk. In this work we employ MDI full-disk magnetograms acquired during Cycle 23 and at the beginning of Cycle 24 to investigate the relation between the coverage of magnetic elements characterized by different amounts of magnetic flux and located at different angular distances from disk center with the sunspot number. In agreement with some previous studies we find that daily data are best ...
On solving the orientation gradient dependency of high angular resolution EBSD
Energy Technology Data Exchange (ETDEWEB)
Maurice, Claire, E-mail: maurice@emse.fr [Ecole des Mines de Saint-Etienne, UMR CNRS 5146 LCG, 158 cours Fauriel, F-42023 Saint-Etienne (France); Driver, Julian H. [Ecole des Mines de Saint-Etienne, UMR CNRS 5146 LCG, 158 cours Fauriel, F-42023 Saint-Etienne (France); Fortunier, Roland [Universite de Lyon, ENISE, UMR CNRS 5513 LTDS, 58 rue Jean Parot, F-42100 Saint-Etienne (France)
2012-02-15
Current high angular resolution electron backscatter diffraction (HR-EBSD) methods are successful at measuring pure elastic strains but have difficulties with plastically deformed metals containing orientation gradients. The strong influences of these rotations have been systematically studied using simulated patterns based on the many-beam dynamic theory of EBSP formation; a rotation of only 1 Degree-Sign can lead to apparent elastic strains of several hundred microstrains. A new method is proposed to correct for orientation gradient effects using a two-step procedure integrating finite strain theory: (i) reference pattern rotation and (ii) cross-correlation; it reduces the strain errors on the simulated patterns to tens of microstrains. An application to plastically deformed ferritic steel to generates elastic strain maps with significantly reduced values of both strains and residual errors in regions of rotations exceeding 1 Degree-Sign . -- Highlights: Black-Right-Pointing-Pointer Many-beam theory simulations show that HR-EBSD is sensitive to orientation gradients. Black-Right-Pointing-Pointer Finite strain theory and rotation processing the reference EBSP solves the problem. Black-Right-Pointing-Pointer New method succesfully applied to plastically strained IF steel.
Energy Technology Data Exchange (ETDEWEB)
Mateos, J. C.; Luis, F. J.; Sanchez, G.; Herrados, M.
2011-07-01
The objective of this work consists in determining the correction for the angular dependence of the detector-Evolution Matrix x matrix (IBA, Germany), when used in the multi cube dummy (IBA, Germany), verification of treatment VMAT IMRT, using the software OP'IMRT (IBA, Germany).
Aging induced changes on NEXAFS fingerprints in individual combustion particles
Directory of Open Access Journals (Sweden)
V. Zelenay
2011-11-01
Full Text Available Soot particles can significantly influence the Earth's climate by absorbing and scattering solar radiation as well as by acting as cloud condensation nuclei. However, despite their environmental (as well as economic and political importance, the way these properties are affected by atmospheric processing of the combustion exhaust gases is still a subject of discussion. In this work, individual soot particles emitted from two different vehicles, a EURO 2 transporter, a EURO 3 passenger car, and a wood stove were investigated on a single-particle basis. The emitted exhaust, including the particulate and the gas phase, was processed in a smog chamber with artificial solar radiation. Single particle specimens of both unprocessed and aged soot were characterized using near edge X-ray absorption fine structure spectroscopy (NEXAFS and scanning electron microscopy. Comparison of NEXAFS spectra from the unprocessed particles and those resulting from exhaust photooxidation in the chamber revealed changes in the carbon functional group content. For the wood stove emissions, these changes were minor, related to the relatively mild oxidation conditions. For the EURO 2 transporter emissions, the most apparent change was that of carboxylic carbon from oxidized organic compounds condensing on the primary soot particles. For the EURO 3 car emissions oxidation of primary soot particles upon photochemical aging has likely contributed as well. Overall, the changes in the NEXAFS fingerprints were in qualitative agreement with data from an aerosol mass spectrometer. Furthermore, by taking full advantage of our in situ microreactor concept, we show that the soot particles from all three combustion sources changed their ability to take up water under humid conditions upon photochemical aging of the exhaust. Due to the selectivity and sensitivity of the NEXAFS technique for the water mass, also small amounts of water taken up into the internal voids of agglomerated
Angular dependence of the redeposition rates during SiO2 etching in a CF4 plasma
International Nuclear Information System (INIS)
The angular dependence of the redeposition rates during SiO2 etching in a CF4 plasma was studied using three types of Faraday cages located in a transformer coupled plasma etcher. The SiO2 substrates were fixed on sample holder slopes that have different angles to the cathode. The substrate was subjected to one of three processes depending on the design of the Faraday cage, i.e., redeposition of sputtered particles from the SiO2 bottom surface (case I), substrate etching by incident ions (case II), or simultaneous etching and redeposition (case III). Both the redeposition and the etch rates were measured by changing the substrate-surface angle and the self-bias voltage in the range of -100 to -800 V. The redeposition-only rates (case I) at -450 and -800 V closely followed the quadratic curve of the angle whereas the rates at -100 V followed the cubic curve, indicating different mechanisms of the bottom SiO2 etching depending on the energy regimes. The steep increase of the redeposition rate with the angle was attributed to three factors: the substrate-bottom distance, the angular distribution of emitted particles from the bottom surface, and the particle incident angle on the substrate surface. The etch-only rate curves (case II) closely followed the cosine of the surface angle. The etch-rate curve changed into a reverse-S shape when the substrate was subjected to simultaneous etching and redeposition (case III). The net etch rate for case III decreased drastically above 60 deg. , showing a negative value, i.e., a net redeposition, beyond 75 deg. . The drastic decrease in the net etch rate coincided with the steep increase in the redeposition rate, implying the significant effect of redeposition
Gmitra, M.; Barnas, J.
2009-01-01
Angular variation of giant magnetoresistance and spin-transfer torque in metallic spin-valve heterostructures is analyzed theoretically in the limit of diffusive transport. It is shown that the spin-transfer torque in asymmetric spin valves can vanish in non-collinear magnetic configurations, and such a non-standard behavior of the torque is generally associated with a non-monotonic angular dependence of the giant magnetoresistance, with a global minimum at a non-collinear magnetic configurat...
Mirzanian, S. M.; Shokri, A. A.; Mikaili Agah, K.; Elahi, S. M.
2015-09-01
We investigate theoretically the effects of Dresselhaus spin-orbit coupling (DSOC) on the spin-dependent current and shot noise through II-VI diluted magnetic semiconductor/nonmagnetic semiconductor (DMS/NMS) barrier structures. The calculation of transmission probability is based on an effective mass quantum-mechanical approach in the presence of an external magnetic field applied along the growth direction of the junction and also applied voltage. We also study the dependence of spin-dependent properties on external magnetic field and relative angle between the magnetizations of two DMS layers in CdTe/CdMnTe heterostructures by including the DSOC effect. The results show that the DSOC has great different influence on transport properties of electrons with spin up and spin down in the considered system and this aspect may be utilized in designing new spintronics devices.
International Nuclear Information System (INIS)
Energy-dependent photoelectron angular distributions from two-color two-photon above threshold ionizations are investigated to determine the partial-wave characteristics of free-free electronic transitions in helium. Sideband photoelectron energies ranging from 0.18 to 13.0 eV are measured with different wavelengths of the perturbative infrared dressing field as well as different individually selected high-order harmonics. Using the experimentally measured cross-section ratios and anisotropy parameters together with analytical expressions derived from second-order perturbation theory, the partial-wave branching fractions going to the S and D waves in the positive and negative sidebands are determined as a function of photoelectron kinetic energy. The results provide a sensitive test for theoretical models of two-color two-photon above threshold ionization in atoms and molecules.
Angular dependence of L X-rays emission for Ag by 10 keV electron-impact
Wang, Xing; Xu, Zhongfeng; Zhang, Ying; Ma, Chao; Zhu, Chengwei
2016-08-01
The characteristic X-ray intensities of Ag-Lα, Lβ1, Lβ2 and Lγ1 are measured in electron-impact ionization at energy of 10 keV. The emission angle in this work ranges from 0° to 20° at interval of 5°. The angular dependence of L X-ray intensity ratios has been investigated for Lα / Lβ1, Lβ2 / Lβ1 and Lγ1 / Lβ1. It is found from the experimental results that the emissions of Lβ1, Lβ2 and Lγ1 X-rays are spatially isotropic, while the Lα X-rays exhibit anisotropic emission. Consequently, the alignment behavior of vacancy states is discussed with thorough analysis of vacancy transfer process.
First principles NEXAFS simulations of N-donor Uranyl complexes
Pemmaraju, C. D.; Duan, R.; Copping, R.; Jeon, B.; Teat, S. J.; Janousch, M.; Tyliszczak, T.; Canning, A.; Grønbech-Jensen, N.; Shuh, D. K.; Prendergast, D.
2013-03-01
The synthesis and study of soft-donor uranyl complexes can provide new insights into the coordination chemistry of non-aqueous [UO]2+ Recently, the tunable N-donor ligand 2,6-Bis(2-benzimidazyl)pyridine (BBP) was employed to produce novel uranyl complexes in which the [UO]2+ cation is ligated by anionic and covalent groups with discrete chemical differences. In this work we investigate the electronic structure of the three such uranyl-BBP complexes via near-edge X-ray absorption fine structure (NEXAFS) experiments and simulations using the eXcited electron and Core-Hole (XCH) approach. The evolution of the structural as well as electronic properties across the three complexes is studied systematically. Computed N K-edge and O K-edge NEXAFS spectra are compared with experiment and spectral features assigned to specific electronic transitions in these complexes. Studying the variations in spectral features arising from N K-edge absorption provides a clear picture of ligand-uranyl bonding in these systems.
Effect of Angular Velocity on Sensors Based on Morphology Dependent Resonances
Ali, Amir R.; Tindaro Ioppolo
2014-01-01
We carried out an analysis to investigate the morphology dependent optical resonances shift (MDR) of a rotating spherical resonator. The spinning resonator experiences an elastic deformation due to the centrifugal force acting on it, leading to a shift in its MDR. Experiments are also carried out to demonstrate the MDR shifts of a spinning polydimethylsiloxane (PDMS) microsphere. The experimental results agree well with the analytical prediction. These studies demonstrated that spinning senso...
Masir, M. Ramezani; Vasilopoulos, P.; Matulis, A.; Peeters, F. M.
2010-01-01
We evaluate the transmission through magnetic barriers in graphene-based nanostructures. Several particular cases are considered: a magnetic step, single and double barriers, δ -function barriers as well as barrier structures with inhomogeneous magnetic field profiles but with average magnetic field equal to zero. The transmission exhibits a strong dependence on the direction of the incident wave vector. In general the resonant structure of the transmission is significantly more pronounced for (Dirac) electrons with linear spectrum compared to that for electrons with a parabolic one.
Angular dependence and symmetry of Rashba spin torque in ferromagnetic heterostructures
Ortiz Pauyac, Christian
2013-06-26
In a ferromagnetic heterostructure, the interplay between Rashba spin-orbit coupling and exchange splitting gives rise to a current-driven spin torque. In a realistic device setup, we investigate the Rashba spin torque in the diffusive regime and report two major findings: (i) a nonvanishing torque exists at the edges of the device even when the magnetization and effective Rashba field are aligned; (ii) anisotropic spin relaxation rates driven by the Rashba spin-orbit coupling assign the spin torque a general expression T = T y (θ) m × (y × m) + T y (θ) y × m + T z (θ) m × (z × m) + T z (θ) z × m, where the coefficients T, y, z depend on the magnetization direction. Our results agree with recent experiments. © 2013 AIP Publishing LLC.
Simulations of the angular dependence of the dipole–dipole interaction among Rydberg atoms
Bigelow, Jacob L.; Paul, Jacob T.; Peleg, Matan; Sanford, Veronica L.; Carroll, Thomas J.; Noel, Michael W.
2016-08-01
The dipole–dipole interaction between two Rydberg atoms depends on the relative orientation of the atoms and on the change in the magnetic quantum number. We simulate the effect of this anisotropy on the energy transport in an amorphous many atom system subject to a homogeneous applied electric field. We consider two experimentally feasible geometries and find that the effects should be measurable in current generation imaging experiments. In both geometries atoms of p character are localized to a small region of space which is immersed in a larger region that is filled with atoms of s character. Energy transfer due to the dipole–dipole interaction can lead to a spread of p character into the region initially occupied by s atoms. Over long timescales the energy transport is confined to the volume near the border of the p region which suggests Anderson localization. We calculate a correlation length of 6.3 μm for one particular geometry.
Angular and Frequency-Dependent Wave Velocity and Attenuation in Fractured Porous Media
Carcione, José M.; Gurevich, Boris; Santos, Juan E.; Picotti, Stefano
2013-11-01
Wave-induced fluid flow generates a dominant attenuation mechanism in porous media. It consists of energy loss due to P-wave conversion to Biot (diffusive) modes at mesoscopic-scale inhomogeneities. Fractured poroelastic media show significant attenuation and velocity dispersion due to this mechanism. The theory has first been developed for the symmetry axis of the equivalent transversely isotropic (TI) medium corresponding to a poroelastic medium containing planar fractures. In this work, we consider the theory for all propagation angles by obtaining the five complex and frequency-dependent stiffnesses of the equivalent TI medium as a function of frequency. We assume that the flow direction is perpendicular to the layering plane and is independent of the loading direction. As a consequence, the behaviour of the medium can be described by a single relaxation function. We first consider the limiting case of an open (highly permeable) fracture of negligible thickness. We then compute the associated wave velocities and quality factors as a function of the propagation direction (phase and ray angles) and frequency. The location of the relaxation peak depends on the distance between fractures (the mesoscopic distance), viscosity, permeability and fractures compliances. The flow induced by wave propagation affects the quasi-shear (qS) wave with levels of attenuation similar to those of the quasi-compressional (qP) wave. On the other hand, a general fracture can be modeled as a sequence of poroelastic layers, where one of the layers is very thin. Modeling fractures of different thickness filled with CO2 embedded in a background medium saturated with a stiffer fluid also shows considerable attenuation and velocity dispersion. If the fracture and background frames are the same, the equivalent medium is isotropic, but strong wave anisotropy occurs in the case of a frameless and highly permeable fracture material, for instance a suspension of solid particles in the fluid.
Directory of Open Access Journals (Sweden)
YouLiang Jing
2016-04-01
Full Text Available We report the dependence of the near-field optical modes in metal-insulator-metal quantum well infrared photodetector (MIM-QWIP on the incident angles. Three optical modes are observed and attributed to the 2nd- and the 3rd-order surface plasmon polariton (SPP modes and the localized surface polariton (LSP mode. In addition to the observation of a responsivity enhancement of 14 times by the LSP mode, the varying pattern of the three modes against the incident angle are revealed, in which the LSP mode is fixed while the 2nd SPP mode splits into two branches and the 3rd SPP mode red-shifts. The detailed mechanisms are analyzed and numerically simulated. The results fit the experiments very well, demonstrating the wavevector coupling effect between the incident light and the metal gratings on the SPP modes. Our work will pave the way to fully understanding the influence of incident angles on a detector’s response for applying the MIM-QWIP to focal plane arrays.
Takahashi, Kayori; Kato, Haruhisa; Kinugasa, Shinichi
2011-01-01
A standard method for nanoparticle sizing based on the angular dependence of dynamic light scattering was developed. The dependences of the diffusion coefficients for aqueous suspensions of polystyrene latex on the concentration and scattering angle were accurately measured by using a high-resolution dynamic light-scattering instrument. Precise measurements of the short-time correlation function at seven scattering angles and five concentrations were made for suspensions of polystyrene latex particles with diameters from 30 to 100 nm. The apparent diffusion coefficients obtained at various angles and concentrations showed properties characteristic of polystyrene latex particles with electrostatic interactions. A simulation was used to calculate a dynamic structure factor representing the long-range interactions between particles. Extrapolations to infinite dilution and to low angles gave accurate particle sizes by eliminating the effects of long-range interactions. The resulting particle sizes were consistent with those measured by using a differential mobility analyzer and those obtained by pulsed-field gradient nuclear magnetic resonance measurements. PMID:21747185
Yakushin, Sergei B
2012-06-01
The gain of the vertical angular vestibulo-ocular reflex (aVOR) was adaptively increased and decreased in a side-down head orientation for 4 h in two cynomolgus monkeys. Adaptation was performed at 0.25, 1, 2, or 4 Hz. The gravity-dependent and -independent gain changes were determined over a range of head orientations from left-side-down to right-side-down at frequencies from 0.25 to 10 Hz, before and after adaptation. Gain changes vs. frequency data were fit with a Gaussian to determine the frequency at which the peak gain change occurred, as well as the tuning width. The frequency at which the peak gravity-dependent gain change occurred was approximately equal to the frequency of adaptation, and the width increased monotonically with increases in the frequency of adaptation. The gravity-independent component was tuned to the adaptive frequency of 0.25 Hz but was uniformly distributed over all frequencies when the adaptation frequency was 1-4 Hz. The amplitude of the gravity-independent gain changes was larger after the aVOR gain decrease than after the gain increase across all tested frequencies. For the aVOR gain decrease, the phase lagged about 4° for frequencies below the adaptation frequency and led for frequencies above the adaptation frequency. For gain increases, the phase relationship as a function of frequency was inverted. This study demonstrates that the previously described dependence of aVOR gain adaptation on frequency is a property of the gravity-dependent component of the aVOR only. The gravity-independent component of the aVOR had a substantial tuning curve only at an adaptation frequency of 0.25 Hz.
Energy Technology Data Exchange (ETDEWEB)
Collins, Brian A. [Department of Physics, NCSU, Raleigh, NC 27695-8202 (United States); Ade, Harald, E-mail: harald_ade@ncsu.edu [Department of Physics, NCSU, Raleigh, NC 27695-8202 (United States)
2012-08-15
Highlights: Black-Right-Pointing-Pointer Common sources of error in transmission NEXAFS spectra in a STXM identified and shown to be significant. Black-Right-Pointing-Pointer Three facile methods to characterize and eliminate or limit errors are detailed. Black-Right-Pointing-Pointer Appropriate spectra processing methods are discussed and demonstrated. Black-Right-Pointing-Pointer Quantitative compositional analysis of organic thin films is conducted and shown to be robust. -- Abstract: Near edge X-ray absorption fine structure (NEXAFS) spectroscopy is well suited for the quantitative determination of the composition of soft matter thin films. Combined with the high spatial resolution of a scanning transmission X-ray microscope, compositional maps of submicron morphologies can be derived and have been used successfully to characterize a number of materials systems. However, multiple sources of known systematic errors limit the accuracy and are frequently not taken into account. We show that these errors can be significant (more than 10%) and demonstrate simple methods to eliminate them. With suitable precautions, a compositional measurement can be made on a thin film sample in a matter of minutes with sub-micron spatial resolution and sub-percent compositional precision. NEXAFS measurements are furthermore known to be sensitive to anisotropic molecular orientation and a strategy to account for that and extract preferential molecular orientation relative to a reference is presented. The spatial resolution of the measurement can be increased to below 100 nm at the expense of compositional precision, depending on the point spread function of the zone plate focusing optics of the microscope.
Yasuzuka, Syuma; Uji, Shinya; Konoike, Takako; Terashima, Taichi; Graf, David; Choi, Eun Sang; Brooks, James S.; Yamamoto, Hiroshi M.; Kato, Reizo
2016-08-01
This paper reports the experimental results of the Shubnikov-de Haas (SdH) effect and angular-dependent magnetoresistance oscillation (AMRO) for the organic conductor β''-(ET)(TCNQ). We observed several two dimensional (2D) SdH frequencies, whose cross-sectional areas of the Fermi surfaces (FSs) correspond to only a few percent of the first Brillouin zone. Such small 2D FSs are not predicted by band-structure calculations, suggesting that these FS pockets are created by an imperfect nesting of FSs at low temperatures. It is found that the AMRO consists of a long-period oscillation and a short-period one. The long-period oscillation is associated with the Yamaji oscillation corresponding to the α orbit, whose shape and area are consistent with previous magneto-optical measurement. The short-period oscillation is not caused by peaks instead but dips. The dip structure is discussed in terms of the AMRO of a quasi-2D electron system with a periodic potential caused by the possible density-wave related to the ET layers or the 4kF charge-density-wave associated with the TCNQ layers.
Angular dependence of ferromagnetic resonance in Tb-doped Ni{sub 80}Fe{sub 20} thin films
Energy Technology Data Exchange (ETDEWEB)
Luo, Chen [Physics Department, Southeast University, Nanjing 211189 (China); Zhang, Dong [Physics Department, Southeast University, Nanjing 211189 (China); School of Physics Science and Information Engineering, Liaocheng University, Liaocheng 252059 (China); Wang, Yukun [Physics Department, Southeast University, Nanjing 211189 (China); Huang, Haibo [College of Material Science and Engineering, Southeast University, Nanjing 211189 (China); Zhai, Ya, E-mail: yazhai@seu.edu.cn [Physics Department, Southeast University, Nanjing 211189 (China); Zhai, Hongru [National Laboratory of Solid Microstructures, Nanjing University, Nanjing 210093 (China)
2014-06-15
Highlights: • The soft magnetic properties of Ni{sub 80}Fe{sub 20} films with Tb dopants up to 8.4% are kept. • The different mechanisms of FMR linewidth are separated and studied. • Magnetic anisotropy constants, Lande g factor, etc. are discussed quantitatively. • The Gilbert damping is increased by more than 50 times with 8.4% of Tb dopants. - Abstract: The mechanisms of angular dependence of ferromagnetic resonance (FMR) linewidth of dilute Tb doping in Ni{sub 80}Fe{sub 20} thin films are investigated by experimental approach and the theoretical fitting by considering the contributions from intrinsic spin–orbit coupling, two-magnon scattering and inhomogeneous broadening. It is shown that the damping coefficient α, by intrinsic contribution extracted from FMR linewidth, is increased by more than 50 times as the Tb concentration increases to 8.4%, indicating that the spin–orbit coupling of this system increases with the introduction of Tb impurities. The magnetic anisotropy constants K{sub 1} and K{sub 2} are obtained and show an increasing trend from negative to positive, which implies that the Tb dopants could enhance the perpendicular anisotropy.
Energy Technology Data Exchange (ETDEWEB)
Schmitt, R.P.
1978-05-01
The dependence of deep-inelastic processes on entrance channel asymmetry and on excitation energy was investigated. Thin targets of /sup nat/At, /sup 159/Tb, /sup 181/Ta and /sup 197/Au were bombarded with 620 MeV /sup 86/Kr ions. Additional measurements were performed on the reactions /sup nat/Ag + /sup 86/Kr and /sup 197/Au + /sup 86/Kr at 506 and 732 MeV incident energy. The energy spectra, the charge distributions and the angular distributions of these fragments were measured. At 620 MeV the energy spectra show that the distinction between quasi-elastic and deep-inelastic processes diminishes as the target mass is increased. The charge distributions, which are peaked at symmetry for /sup nat/Ag, tend to become increasingly asymmetric for the heavier systems. Likewise, the angular distributions exhibit a strong dependence on the entrance channel asymmetry. For the lightest system, /sup nat/Ag + /sup 86/Kr, the angular distributions are essentially forward peaked, aside from a separable quasi-elastic component. For the heaviest system, /sup 197/Au + /sup 86/Kr, the angular distributions are side-peaked. The transition between these two regimes occurs smoothly with increasing target mass. The results at 506 and 732 MeV show that the widths of the charge distributions are strongly dependent on the excitation energy. The angular distributions for the reaction /sup nat/Ag + /sup 86/Kr become increasingly more forward peaked at higher bombarding energies. The angular distributions for /sup 197/Au + /sup 86/Kr, which are strongly focused at 506 MeV, also tend to be more forward peaked at the highest incident energy. The results are interpreted by assuming that the projectile and target form an intermediate complex and that they exchange mass via a diffusion process. Because of the systematic nature of this study, the data should serve as a guide in the development of models of deep-inelastic processes.
Time-Dependent and Time-Integrated Angular Analysis of B -> phi Ks pi0 and B -> phi K+ pi-
Energy Technology Data Exchange (ETDEWEB)
Aubert, B; Bona, M; Karyotakis, Y; Lees, J P; Poireau, V
2008-08-04
We perform a time-dependent and time-integrated angular analysis of the B{sup 0} {yields} {psi}K*(892){sup 0}, {psi}K*{sub 2}(1430{sup 0}), and {psi}(K{pi}){sub S-wave}{sup 0} decays with the final sample of about 465 million B{bar B} pairs recorded with the BABAR detector. Overall, twelve parameters are measured for the vector-vector decay, nine parameters for the vector-tensor decay, and three parameters for the vector-scalar decay, including the branching fractions, CP-violation parameters, and parameters sensitive to final state interaction. We use the dependence on the K{pi} invariant mass of the interference between the scalar and vector or tensor components to resolve discrete ambiguities of the strong and weak phases. We use the time-evolution of the B {yields} {psi}K{sub S}{sup 0}{pi}{sup 0} channel to extract the CP-violation phase difference {Delta}{phi}{sub 00} = 0.28 {+-} 0.42 {+-} 0.04 between the B and {bar B} decay amplitudes. When the B {yields} {psi}K{sup {+-}}{pi}{sup {-+}} channel is included, the fractions of longitudinal polarization f{sub L} of the vector-vector and vector-tensor decay modes are measured to be 0.494 {+-} 0.034 {+-} 0.013 and 0.901{sub -0.058}{sup +0.046} {+-} 0.037, respectively. This polarization pattern requires the presence of a helicity-plus amplitude in the vector-vector decay from a presently unknown source.
Jeon, Jong Ho; Nakajima, Kazuhisa; Kim, Hyung Taek; Rhee, Yong Joo; Pathak, Vishwa Bandhu; Cho, Myung Hoon; Shin, Jung Hun; Yoo, Byung Ju; Jo, Sung Ha; Shin, Kang Woo; Hojbota, Calin; Bae, Lee Jin; Jung, Jaehyung; Cho, Min Sang; Sung, Jae Hee; Lee, Seong Ku; Cho, Byoung Ick; Choi, Il Woo; Nam, Chang Hee
2016-07-01
Measurement of angularly dependent spectra of betatron gamma-rays radiated by GeV electron beams from laser wakefield accelerators (LWFAs) are presented. The angle-resolved spectrum of betatron radiation was deconvolved from the position dependent data measured for a single laser shot with a broadband gamma-ray spectrometer comprising four-quadrant sectored range filters and an unfolding algorithm, based on the Monte Carlo code GEANT4. The unfolded gamma-ray spectra in the photon energy range of 0.1-10 MeV revealed an approximately isotropic angular dependence of the peak photon energy and photon energy-integrated fluence. As expected by the analysis of betatron radiation from LWFAs, the results indicate that unpolarized gamma-rays are emitted by electrons undergoing betatron motion in isotropically distributed orbit planes.
Koivisto, Juha; Kiljunen, Timo; Wolff, Jan; Kortesniemi, Mika
2013-09-01
When performing dose measurements on an X-ray device with multiple angles of irradiation, it is necessary to take the angular dependence of metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters into account. The objective of this study was to investigate the angular sensitivity dependence of MOSFET dosimeters in three rotational axes measured free-in-air and in soft-tissue equivalent material using dental photon energy. Free-in-air dose measurements were performed with three MOSFET dosimeters attached to a carbon fibre holder. Soft tissue measurements were performed with three MOSFET dosimeters placed in a polymethylmethacrylate (PMMA) phantom. All measurements were made in the isocenter of a dental cone-beam computed tomography (CBCT) scanner using 5º angular increments in the three rotational axes: axial, normal-to-axial and tangent-to-axial. The measurements were referenced to a RADCAL 1015 dosimeter. The angular sensitivity free-in-air (1 SD) was 3.7 ± 0.5 mV/mGy for axial, 3.8 ± 0.6 mV/mGy for normal-to-axial and 3.6 ± 0.6 mV/mGy for tangent-to-axial rotation. The angular sensitivity in the PMMA phantom was 3.1 ± 0.1 mV/mGy for axial, 3.3 ± 0.2 mV/mGy for normal-to-axial and 3.4 ± 0.2 mV/mGy for tangent-to-axial rotation. The angular sensitivity variations are considerably smaller in PMMA due to the smoothing effect of the scattered radiation. The largest decreases from the isotropic response were observed free-in-air at 90° (distal tip) and 270° (wire base) in the normal-to-axial and tangent-to-axial rotations, respectively. MOSFET dosimeters provide us with a versatile dosimetric method for dental radiology. However, due to the observed variation in angular sensitivity, MOSFET dosimeters should always be calibrated in the actual clinical settings for the beam geometry and angular range of the CBCT exposure. PMID:23520268
Garraffo, Cecilia; Cohen, Ofer
2015-01-01
Rotation evolution of late-type stars is dominated by magnetic braking and the underlying factors that control this angular momentum loss are important for the study of stellar spin-down. In this work, we study angular momentum loss as a function of two different aspects of magnetic activity using a calibrated Alfv\\'en wave-driven magnetohydrodynamic wind model: the strengths of magnetic spots and their distribution in latitude. By driving the model using solar and modified solar surface magnetograms, we show that the topology of the field arising from the net interaction of both small-scale and large-scale field is important for spin-down rates and that angular momentum loss is not a simple function of large scale magnetic field strength. We find that changing the latitude of magnetic spots can modify mass and angular momentum loss rates by a factor of two. The general effect that causes these differences is the closing down of large-scale open field at mid- and high-latitudes by the addition of the small-sc...
Energy Technology Data Exchange (ETDEWEB)
Okabayashi, J. [Research Center for Spectrochemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Koo, J. W.; Mitani, S. [National Institute for Materials Science (NIMS), Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8577 (Japan); Sukegawa, H. [National Institute for Materials Science (NIMS), Tsukuba 305-0047 (Japan); Takagi, Y.; Yokoyama, T. [Institute of Molecular Science, Okazaki, Aichi 444-8585 (Japan)
2014-09-22
Interface perpendicular magnetic anisotropy (PMA) in ultrathin Fe/MgO (001) has been investigated using angular-dependent x-ray magnetic circular dichroism (XMCD). We found that anisotropic orbital magnetic moments deduced from the analysis of XMCD contribute to the large PMA energies, whose values depend on the annealing temperature. The large PMA energies determined from magnetization measurements are related to those estimated from the XMCD and the anisotropic orbital magnetic moments through the spin-orbit interaction. The enhancement of anisotropic orbital magnetic moments can be explained mainly by the hybridization between the Fe 3d{sub z}{sup 2} and O 2p{sub z} states.
Energy Technology Data Exchange (ETDEWEB)
Gibson, S T; Cavanagh, S J; Lewis, B R [Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Gascooke, J R [School of Chemistry, Physics and Earth Sciences, Flinders University, SA 5001 (Australia); Mabbs, R [Department of Chemistry, Washington University, St Louis MO 63930-4899 (United States); Sanov, A, E-mail: Stephen.Gibson@anu.edu.a, E-mail: Steven.Cavanagh@anu.edu.a [Department of Chemistry, University of Arizona, Tucson AZ 85721-0041 (United States)
2009-11-01
The photodetachment spectrum of O{sub 2}{sup -} has been measured at a number of wavelengths using velocity-map imaging. The electron kinetic-energy resolution (< 5 meV) is sufficient to resolve the anion fine-structure splitting, vibrational and electronic structure. The electron angular distribution varies with the electron kinetic-energy, with a different behaviour for each vibronic band.
Energy Technology Data Exchange (ETDEWEB)
Lee,C.; Gong, P.; Harbers, G.; Grainger, D.; Castner, D.; Gamble, L.
2006-01-01
Self-assembly of thiol-terminated single-stranded DNA (HS-ssDNA) on gold has served as an important model system for DNA immobilization at surfaces. Here, we report a detailed study of the surface composition and structure of mixed self-assembled DNA monolayers containing a short alkylthiol surface diluent [11-mercapto-1-undecanol (MCU)] on gold supports. These mixed DNA monolayers were studied with X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and fluorescence intensity measurements. XPS results on sequentially adsorbed DNA/MCU monolayers on gold indicated that adsorbed MCU molecules first incorporate into the HS-ssDNA monolayer and, upon longer MCU exposures, displace adsorbed HS-ssDNA molecules from the surface. Thus, HS-ssDNA surface coverage steadily decreased with MCU exposure time. Polarization-dependent NEXAFS and fluorescence results both show changes in signals consistent with changes in DNA orientation after only 30 min of MCU exposure. NEXAFS polarization dependence (followed by monitoring the N 1s{yields}{pi}* transition) of the mixed DNA monolayers indicated that the DNA nucleotide base ring structures are oriented more parallel to the gold surface compared to DNA bases in pure HS-ssDNA monolayers. This indicates that HS-ssDNA oligomers reorient toward a more-upright position upon MCU incorporation. Fluorescence intensity results using end-labeled DNA probes on gold show little observable fluorescence on pure HS-ssDNA monolayers, likely due to substrate quenching effects between the fluorophore and the gold. MCU diluent incorporation into HS-ssDNA monolayers initially increases DNA fluorescence signal by densifying the chemisorbed monolayer, prompting an upright orientation of the DNA, and moving the terminal fluorophore away from the substrate. Immobilized DNA probe density and DNA target hybridization in these mixed DNA monolayers, as well as effects of MCU diluent on DNA hybridization in
Lee, Chi-Ying; Gong, Ping; Harbers, Gregory M; Grainger, David W; Castner, David G; Gamble, Lara J
2006-05-15
Self-assembly of thiol-terminated single-stranded DNA (HS-ssDNA) on gold has served as an important model system for DNA immobilization at surfaces. Here, we report a detailed study of the surface composition and structure of mixed self-assembled DNA monolayers containing a short alkylthiol surface diluent [11-mercapto-1-undecanol (MCU)] on gold supports. These mixed DNA monolayers were studied with X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and fluorescence intensity measurements. XPS results on sequentially adsorbed DNA/MCU monolayers on gold indicated that adsorbed MCU molecules first incorporate into the HS-ssDNA monolayer and, upon longer MCU exposures, displace adsorbed HS-ssDNA molecules from the surface. Thus, HS-ssDNA surface coverage steadily decreased with MCU exposure time. Polarization-dependent NEXAFS and fluorescence results both show changes in signals consistent with changes in DNA orientation after only 30 min of MCU exposure. NEXAFS polarization dependence (followed by monitoring the N 1s --> pi* transition) of the mixed DNA monolayers indicated that the DNA nucleotide base ring structures are oriented more parallel to the gold surface compared to DNA bases in pure HS-ssDNA monolayers. This indicates that HS-ssDNA oligomers reorient toward a more-upright position upon MCU incorporation. Fluorescence intensity results using end-labeled DNA probes on gold show little observable fluorescence on pure HS-ssDNA monolayers, likely due to substrate quenching effects between the fluorophore and the gold. MCU diluent incorporation into HS-ssDNA monolayers initially increases DNA fluorescence signal by densifying the chemisorbed monolayer, prompting an upright orientation of the DNA, and moving the terminal fluorophore away from the substrate. Immobilized DNA probe density and DNA target hybridization in these mixed DNA monolayers, as well as effects of MCU diluent on DNA hybridization in complex
Loiko, V. A.; Krakhalev, M. N.; Konkolovich, A. V.; Prishchepa, O. O.; Miskevich, A. A.; Zyryanov, V. Ya.
2016-07-01
Light scattering by a monolayer of bipolar nematic droplets encapsulated in polymer film is examined both experimentally and theoretically. A method for the simulation of the angular distribution of scattered light is based on the anomalous diffraction and interference approximations taking into account the director configuration within liquid crystal droplets and their bipolar axes orientation. The director configuration in nematic droplets is calculated using the relaxation method of the free energy minimization. The characteristics of the sample, including distribution of droplet sizes and shape anisometry, are measured in details. The experimental results and theoretical data agree closely with each other.
Rahmanseresht, Sheema; Gamari, Ben D; Goldner, Lori S
2014-01-01
We report on the observation of a change in the bend angle of an RNA kissing complex upon Rop binding using single-molecular-pair FRET. The angular relationship between the dyes, rather than the distance between them, is shown to be responsible for the observed change in energy transfer. It has long been thought that Rop increases the bend angle of the R1inv-R2inv complex upon binding, but this has never been directly observed. In contrast, we find an increase in FRET upon the addition of Rop that is shown via modeling to be consistent with a decrease in the bend angle of the complex of $-15^{\\circ}\\pm7^{\\circ}$. The model predicts FRET from dye trajectories generated using molecular dynamics simulations of Cy3 and Cy5 attached to $5'$ terminal cytosine or guanosine on RNA. While FRET is commonly used to observe global changes in molecular structure attributed to changes in the distance between dyes, it is rarely, if ever, used to elucidate angular changes. Subtle global changes in molecular structure upon bi...
Processing of atmospheric particles caught in the act via STXM/NEXAFS
Steimer, S.; Lampimäki, M.; Grzinic, G.; Coz, E.; Watts, B.; Raabe, J.; Ammann, M.
2012-12-01
Atmospheric aerosols are an important focus of environmental research due to their effect on climate and human health. Among their main constituents are mineral dust and organic particles. Both types of particles directly and indirectly affect our climate through scattering and absorption of radiation and through acting as cloud condensation nuclei respectively. Organic particles are also of significant concern with respect to their health effects. Mineral dust particles in addition serve as a primary external iron source to the open ocean and the bioavailability of iron from these particles is highly dependent on the oxidation state of the metal. The environmental impact of atmospheric particles depends on their physical and chemical properties, which might change upon chemical ageing. In this study we therefore investigated the changes in chemical composition and morphology of mineral dust and organic particle proxies (Arizona test dust and shikimic acid, respectively) upon in situ exposure to ozone or nitrogen oxides in presence of humidity. This was achieved by monitoring changes at the C and O K-edges as well as the metal L-edges via scanning transmission X-ray microscopy (STXM) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Measurements were conducted at the PolLux beamline at Swiss Light Source. All experiments were conducted in an environmental micro reactor, designed specifically for the end station, to enable the investigation in situ. We observed oxidation of shikimic acid particles in situ during exposure to ozone at different humidities, whereby humidity was found to be a critical factor controlling the rate of the reaction. We also obtained well resolved iron distribution maps from the individual submicrometer size mineral dust particles before and after exposure to nitrogen oxides.
... A This image displays a frequent location for candida infection (angular cheilitis), the corners of the mouth. Overview ... infection, those affected may also have thrush (oral candidiasis). The areas are generally slightly painful. The condition ...
Zhang, Jingchuan; Lörscher, Christopher; Gu, Qiang; Klemm, Richard A.
2014-01-01
We calculate the temperature $T$ and angular $(\\theta,\\phi)$ dependence of the upper critical induction $B_{c2}(\\theta,\\phi,T)$ for parallel-spin superconductors with an axially symmetric $p$-wave pairing interaction pinned to the lattice and a dominant ellipsoidal Fermi surface (FS). For all FS anisotropies, the chiral Scharnberg-Klemm state $B_{c2}(\\theta,\\phi,T)$ exceeds that of the chiral Anderson-Brinkman-Morel state, and exhibits a kink at $\\theta=\\theta^{*}(T,\\phi)$, indicative of a fi...
Jakoubek, Tomas; The ATLAS collaboration
2015-01-01
We present a flavour tagged time dependent angular analysis of the $B_s \\rightarrow J/\\psi\\phi$ decay, using 4.9 fb$^{−1}$ of integrated luminosity collected by the ATLAS detector from 7 TeV proton-proton collisions recorded in 2011. CP violation in this channel is described by a weak phase $\\phi_s$, which is sensitive to new physics contributions. The measured value is $\\phi_s$ = 0.12 $\\pm$ 0.25 (stat.) $\\pm$ 0.05 (syst.) rad, which is in good agreement with Standard Model expectations. Also other measured parameters are consistent with the world average.
Adsorption structure of trithiophene-thiols self-assembled on Au(111) studied by NEXAFS and STM
International Nuclear Information System (INIS)
Full text: The structure of aromatic thiols adsorbed on Au(111) is derived from a delicate balance involving π-interaction of aromatic with metal d band and a π- π interaction among aromatic rings. In the present study, we combine C K-edge NEXAFS and in-air STM to investigate the orientation and adsorption structure of two trithiophene derivatives, 2,2':5',2'-terthiophene- 5-thiol (5tTP) and 2,2':5',2'-terthiophene-5-methanethiol (5mTP), adsorbed respectively on Au(111) at sub-monolayer and full monolayer coverages. The 5mTP molecule has one methylene unit inserted between the trithiophene and thiol functional group, which provides flexibility in packing adsorbate molecules as well as strengthens metal-thiolate bond. XPS results indicate that both 5tTP and 5mTP adsorb on Au(111) via a cleavage of the SH bond to form thiolate. The surface coverage of the 5tTP is judged to be 30% less than that of the 5mTP based on XPS and XAS data. The orientation of the aromatic plane of the thiophene with respect to Au surface is obtained by analyzing polarization-dependent C K-edge NEXAFS data. Result suggests that the 5mTP adsorbs in a more upright configuration than the 5tTP does. The tilt angle for aromatic plane of the 5tTP is estimated to be 30 deg away from Au surface normal, whereas aromatic plane for the 5mTP is tilted even closer to the surface normal. The sequential development of adsorption structures will be presented and discussed in conjunction with atomically-resolved STM data
Energy Technology Data Exchange (ETDEWEB)
Scholz, Markus
2013-06-27
In the context of this thesis, the novel method soft X-ray energy-dispersive NEXAFS spectroscopy was explored and utilized to investigate intermolecular coupling and post-growth processes with a temporal resolution of seconds. 1,4,5,8- naphthalene tetracarboxylic acid dianhydride (NTCDA)multilayer films were the chosen model system for these investigations. The core hole-electron correlation in coherently coupled molecules was studied by means of energy-dispersive near-edge X-ray absorption fine-structure spectroscopy. A transient phase was found which exists during the transition between a disordered condensed phase and the bulk structure. This phase is characterized by distinct changes in the spectral line shape and energetic position of the X-ray absorption signal at the C K-edge. The findings were explained with the help of theoretical models based on the coupling of transition dipole moments, which are well established for optically excited systems. In consequence, the experimental results provides evidence for a core hole-electron pair delocalized over several molecules. Furthermore, the structure formation of NTCDA multilayer films on Ag(111) surfaces was investigated. With time-resolved and energy-dispersive NEXAFS experiments the intensity evolution in s- and p-polarization showed a very characteristic behavior. By combining these findings with the results of time-dependent photoemission measurements, several sub-processes were identified in the post- growth behavior. Upon annealing, the amorphous but preferentially flat-lying molecules flip into an upright orientation. After that follows a phase characterized by strong intermolecular coupling. Finally, three-dimensional islands are established. Employing the Kolmogorov-Johnson-Mehl-Avrami model, the activation energies of the sub-processes were determined.
Overview of nanoscale NEXAFS performed with soft X-ray microscopes
Directory of Open Access Journals (Sweden)
Peter Guttmann
2015-02-01
Full Text Available Today, in material science nanoscale structures are becoming more and more important. Not only for the further miniaturization of semiconductor devices like carbon nanotube based transistors, but also for newly developed efficient energy storage devices, gas sensors or catalytic systems nanoscale and functionalized materials have to be analysed. Therefore, analytical tools like near-edge X-ray absorption fine structure (NEXAFS spectroscopy has to be applied on single nanostructures. Scanning transmission X-ray microscopes (STXM as well as full-field transmission X-ray microscopes (TXM allow the required spatial resolution to study individual nanostructures. In the soft X-ray energy range only STXM was used so far for NEXAFS studies. Due to its unique setup, the TXM operated by the Helmholtz-Zentrum Berlin (HZB at the electron storage ring BESSY II is the first one in the soft X-ray range which can be used for NEXAFS spectroscopy studies which will be shown in this review. Here we will give an overview of the different microscopes used for NEXAFS studies and describe their advantages and disadvantages for different samples.
Overview of nanoscale NEXAFS performed with soft X-ray microscopes.
Guttmann, Peter; Bittencourt, Carla
2015-01-01
Today, in material science nanoscale structures are becoming more and more important. Not only for the further miniaturization of semiconductor devices like carbon nanotube based transistors, but also for newly developed efficient energy storage devices, gas sensors or catalytic systems nanoscale and functionalized materials have to be analysed. Therefore, analytical tools like near-edge X-ray absorption fine structure (NEXAFS) spectroscopy has to be applied on single nanostructures. Scanning transmission X-ray microscopes (STXM) as well as full-field transmission X-ray microscopes (TXM) allow the required spatial resolution to study individual nanostructures. In the soft X-ray energy range only STXM was used so far for NEXAFS studies. Due to its unique setup, the TXM operated by the Helmholtz-Zentrum Berlin (HZB) at the electron storage ring BESSY II is the first one in the soft X-ray range which can be used for NEXAFS spectroscopy studies which will be shown in this review. Here we will give an overview of the different microscopes used for NEXAFS studies and describe their advantages and disadvantages for different samples.
Shakur, Asif; Sinatra, Taylor
2013-01-01
The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…
Wickramarachchi, S. J.; Ikeda, T.; Dassanayake, B. S.; Keerthisinghe, D.; Tanis, J. A.
2016-08-01
An experimental study of 500- and 1000-eV incident electrons transmitted through a micrometer-sized funnel-shaped (tapered) glass capillary with inlet diameter 0.80 mm, outlet diameter 0.10 mm, and a length of 35 mm is reported. The properties of the electron beam transmitted were measured as a function of the emerging angle and the incident energy dependence. The angular profiles were found to be comprised of up to three peaks for both 500 and 1000 eV showing evidence for transmission going straight through the capillary without interacting with the walls (direct), as well as transmission resulting from Coulomb deflection of the electrons from a negative charge patch or by scattering from nuclei close to the surface of the capillary (indirect). The energy spectra show that elastically transmitted electrons dominate at 500 eV for increasing sample tilt angles up to ˜5.0°, while inelastic processes dominate for 1000 eV already at tilt angles of ˜1.0°. The angular width of the emitted electrons was found to constitute a narrow beam for direct (˜0.4°) and indirect (<0.6° for 500 eV and <1.0° for 1000 eV) transmission for both energies with the widths decreasing for the largest tilt angles measured and approaching the inherent resolution (˜0.3°) of the electron analyzer.
International Nuclear Information System (INIS)
Purpose: To evaluate the angular dependence correction for Matrix Evolution 2D array detector in quality assurance of volumetric modulated arc therapy(VMAT). Methods: Total ten patients comprising of different sites were planned for VMAT and taken for the study. Each plan was exposed on Matrix Evolution 2D array detector with Omnipro IMRT software based on the following three different methods using 6MV photon beams from Elekta Synergy linear accelerator. First method, VMAT plan was delivered on Matrix Evolution detector as it gantry mounted with dedicated holder with build-up of 2.3cm. Second, the VMAT plan was delivered with the static gantry angle on to the table mounted setup. Third, the VMAT plan was delivered with actual gantry angle on Matrix Evolution detector fixed in Multicube phantom with gantry angle sensor and angular dependence correction were applied to quantify the plan quality. For all these methods, the corresponding QA plans were generated in TPS and the dose verification was done for both point and 2D fluence analysis with pass criteria of 3% dose difference and 3mm distance to agreement. Results: The measured point dose variation for the first method was observed as 1.58±0.6% of mean and SD with TPS calculated. For second and third method, the mean and standard deviation(SD) was observed as 1.67±0.7% and 1.85±0.8% respectively. The 2D fluence analysis of measured and TPS calculated has the mean and SD of 97.9±1.1%, 97.88±1.2% and 97.55±1.3% for first, second and third methods respectively. The calculated two-tailed Pvalue for point dose and 2D fluence analysis shows the insignificance with values of 0.9316 and 0.9015 respectively, among the different methods of QA. Conclusion: The qualitative evaluation of angular dependence correction for Matrix Evolution 2D array detector shows its competency in accuracy of quality assurance measurement of composite dose distribution of volumetric modulated arc therapy
Energy Technology Data Exchange (ETDEWEB)
Stueber, P; Wissel, T; Wagner, B [Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck (Germany); Graduate School for Computing in Life Science, University of Luebeck, Luebeck (Germany); Bruder, R; Schweikard, A; Ernst, F [Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck (Germany)
2014-06-01
Purpose: Recent research has shown that optical features significantly improve marker-less optical head-tracking for cranial radiotherapy. Simulations, however, showed that these optical features, which are used to derive tissue thickness, depend on the incident angle of the IR scanning laser beam and the perspective of the camera analyzing the reflective patterns. We present an experimental analysis determining which is the most robust optical setup concerning angular influences. Methods: In three consecutive experiments, the incident angle of the laser (1), the perspective of the camera (2) or both simultaneously (3, ‘inBeam’-perspective) were changed with respect to the target. We analyzed how this affects feature intensity. These intensities were determined from seven concentric regions of interest (ROIs) around the laser spot. Two targets were used: a tissue-like silicone phantom and a human's forehead. Results: For each experiment, the feature intensity generally decreases with increasing angle. We found that the optical properties of the silicone phantom do not fit the properties of human skin. Furthermore, the angular influence of the laser on the features is significantly higher than the perspective of the camera. With the ‘inBeam’- perspective, the smoothest decays of feature intensity were found. We suppose that this is because of a fixed relationship between both devices. This smoothness, suggesting a predictable functional relationship, may simplify angle compensation for machine learning algorithms. This is particularly prominent for the medial ROIs. The inner ROIs highly depend on the angle and power of the laser. The outer ROIs show less angular dependency but the signal strength is critically low and prone to artifacts. Therefore and because of the smooth decays, medial ROIs are a suitable tradeoff between susceptibility, signal-noise-ratio and distance to the center of the laser spot. Conclusion: For tissue thickness correlated
On the relation between angular momentum and angular velocity
Silva, J. P.; Tavares, J. M.
2007-01-01
Students of mechanics usually have difficulties when they learn about the rotation of a rigid body. These difficulties are rooted in the relation between angular momentum and angular velocity, because these vectors are not parallel, and we need in general to utilize a rotating frame of reference or a time dependent inertia tensor. We discuss a series of problems that introduce both difficulties.
DEFF Research Database (Denmark)
Rasmussen, Mads Olander; Pinheiro, AC; Proud, Simon Richard;
2010-01-01
Satellite-based estimates of land surface temperature (LST) are widely applied as an input to models. A model output is often very sensitive to error in the input data, and high-quality inputs are therefore essential. One of the main sources of errors in LST estimates is the dependence on vegetat...
International Nuclear Information System (INIS)
We calculate the temperature T and angular (θ, ϕ) dependencies of the upper critical induction Bc2(θ, ϕ, T) for parallel-spin superconductors with an axially symmetric p-wave pairing interaction pinned to the lattice and a dominant ellipsoidal Fermi surface (FS). For all FS anisotropies, the chiral Scharnberg–Klemm (SK) state Bc2(θ, ϕ, T) exceeds that of the chiral Anderson–Brinkman–Morel (ABM) state and exhibits a kink at θ = θ*(T, ϕ), indicative of a first-order transition from its chiral, nodal-direction behavior to its non-chiral, antinodal-direction behavior. Applicabilities to Sr2RuO4, UCoGe and the candidate topological superconductor CuxBi2Se3 are discussed. (fast track communication)
Okabayashi, Jun; Sukegawa, Hiroaki; Wen, Zhenchao; Inomata, Koichiro; Mitani, Seiji
2013-09-01
Perpendicular magnetic anisotropy (PMA) in Heusler alloy Co2FeAl thin films sharing an interface with a MgO layer is investigated by angular-dependent x-ray magnetic circular dichroism. Orbital and spin magnetic moments are deduced separately for Fe and Co 3d electrons. In addition, the PMA energies are estimated using the orbital magnetic moments parallel and perpendicular to the film surfaces. We found that PMA in Co2FeAl is determined mainly by the contribution of Fe atoms with large orbital magnetic moments, which are enhanced at the interface between Co2FeAl and MgO. Furthermore, element specific magnetization curves of Fe and Co are found to be similar, suggesting the existence of ferromagnetic coupling between Fe and Co PMA directions.
International Nuclear Information System (INIS)
The angular dependences of proton photoproduction on the C12, Cu63 and Pb208 nuclei by bremsstrahlung γ-quanta with the maximum energy 4.5 GeV both in cumulattive region (i.e. in kinematical region in which the production of protons at collision of γ-quanta of the given energy with the quasi-free nuclear nucleon is forbidden) and in non-cumulative region are investigated. Invariant cross sections on the photonuclear reactions are presented. The obtained experimental data are compared with the results of theoretical calculations of cumulative proton photoproduction according to the following models: quasi-two-body scaling model, low-nucleon correlation model fluctuon model and cluster model. The best agreement has been obtained for the cluster model
NEXAFS microscopy studies of the association of hydrocarbon thin films with fine clay particles
Energy Technology Data Exchange (ETDEWEB)
Covelli, Danielle [Department of Chemistry, University of Saskatchewan, Saskatoon, SK, S7N 5C9 (Canada); Hernandez-Cruz, Daniel [Brockhouse Institute for Material Research, McMaster University, Hamilton, ON, L8S 4M1 (Canada); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Haines, Brian M. [Department of Chemistry, University of Saskatchewan, Saskatoon, SK, S7N 5C9 (Canada); Munoz, Vincente; Omotoso, Oladipo; Mikula, Randy [CANMET Energy Technology Centre Natural Resources Canada, Devon, AB, T9G 1A8 (Canada); Urquhart, Stephen [Department of Chemistry, University of Saskatchewan, Saskatoon, SK, S7N 5C9 (Canada)], E-mail: stephen.urquhart@usask.ca
2009-06-15
The nature of organic species associated with clay minerals plays a significant role in several processes, from hydrocarbon recovery in oil sands to contaminated soil remediation and water treatment. In this work, we address the use of scanning transmission X-ray microscopy (STXM) in conjunction with near edge X-ray absorption fine structure (NEXAFS) spectroscopy to study the microstructure and chemistry of organic-clay associations in situ. A model system based on methylene blue and illite is used to explore the sensitivity of NEXAFS microscopy to these interactions, and to identify and resolve experimental challenges in these measurements. We find that sample contamination from X-ray induced photodeposition is a significant problem in STXM microscopy, but also that this problem can be substantially reduced with a liquid nitrogen cooled anticontaminator. With appropriate sample preparation and experimental procedures, we find that STXM microscopy is sensitive to thin carbon adsorbates on clay surfaces.
Greisukh, G. I.; Danilov, V. A.; Ezhov, E. G.; Stepanov, S. A.; Usievich, B. A.
2015-06-01
The efficiency of diffractive lenses with two-layer single-relief and three-layer double-relief microstructures is studied. Studies are carried out using the scalar and electromagnetic diffraction theories. Depending on the requirements for the diffractive lens, the theories permit one to justifiably choose the configuration, optical materials, and constructive parameters of the microstructure, as well as to determine the real maximum allowable angle of radiation incidence on the diffractive lens with the microstructure of a particular type.
Overview of nanoscale NEXAFS performed with soft X-ray microscopes
Peter Guttmann; Carla Bittencourt
2015-01-01
Today, in material science nanoscale structures are becoming more and more important. Not only for the further miniaturization of semiconductor devices like carbon nanotube based transistors, but also for newly developed efficient energy storage devices, gas sensors or catalytic systems nanoscale and functionalized materials have to be analysed. Therefore, analytical tools like near-edge X-ray absorption fine structure (NEXAFS) spectroscopy has to be applied on single nanostructures. Scanning...
Bonding and charge transfer in nitrogen-donor uranyl complexes: insights from NEXAFS spectra.
Pemmaraju, C D; Copping, Roy; Wang, Shuao; Janousch, Markus; Teat, Simon J; Tyliszcak, Tolek; Canning, Andrew; Shuh, David K; Prendergast, David
2014-11-01
We investigate the electronic structure of three newly synthesized nitrogen-donor uranyl complexes [(UO2)(H2bbp)Cl2], [(UO)2(Hbbp)(Py)Cl], and [(UO2)(bbp)(Py)2] using a combination of near-edge X-ray absorption fine structure (NEXAFS) spectroscopy experiments and simulations. The complexes studied feature derivatives of the tunable tridentate N-donor ligand 2,6-bis(2-benzimidazyl)pyridine (bbp) and exhibit discrete chemical differences in uranyl coordination. The sensitivity of the N K-edge X-ray absorption spectrum to local bonding and charge transfer is exploited to systematically investigate the evolution of structural as well as electronic properties across the three complexes. A thorough interpretation of the measured experimental spectra is achieved via ab initio NEXAFS simulations based on the eXcited electron and Core-Hole (XCH) approach and enables the assignment of spectral features to electronic transitions on specific absorbing sites. We find that ligand-uranyl bonding leads to a signature blue shift in the N K-edge absorption onset, resulting from charge displacement toward the uranyl, while changes in the equatorial coordination shell of the uranyl lead to more subtle modulations in the spectral features. Theoretical simulations show that the flexible local chemistry at the nonbinding imidazole-N sites of the bbp ligand is also reflected in the NEXAFS spectra and highlights potential synthesis strategies to improve selectivity. In particular, we find that interactions of the bbp ligand with solvent molecules can lead to changes in ligand-uranyl binding geometry while also modulating the K-edge absorption. Our results suggest that NEXAFS spectroscopy combined with first-principles interpretation can offer insights into the coordination chemistry of analogous functionalized conjugated ligands. PMID:25330350
Gainar, Adrian; Stevens, Joanna S; Jaye, Cherno; Fischer, Daniel A; Schroeder, Sven L M
2015-11-12
Detailed analysis of the C K near-edge X-ray absorption fine structure (NEXAFS) spectra of a series of saccharides (fructose, xylose, glucose, galactose, maltose monohydrate, α-lactose monohydrate, anhydrous β-lactose, cellulose) indicates that the precise determination of IPs and σ* shape resonance energies is sensitive enough to distinguish different crystalline saccharides through the variations in their average C-OH bond lengths. Experimental data as well as FEFF8 calculations confirm that bond length variations in the organic solid state of 10(-2) Å can be experimentally detected, opening up the possibility to use NEXAFS for obtaining incisive structural information for molecular materials, including noncrystalline systems without long-range order such as dissolved species in solutions, colloids, melts, and similar amorphous phases. The observed bond length sensitivity is as good as that originally reported for gas-phase and adsorbed molecular species. NEXAFS-derived molecular structure data for the condensed phase may therefore be used to guide molecular modeling as well as to validate computationally derived structure models for such systems. Some results indicate further analytical value in that the σ* shape resonance analysis may distinguish hemiketals from hemiacetals (i.e., derived from ketoses and aldoses) as well as α from β forms of otherwise identical saccharides. PMID:26459024
Differences in NEXAFS of odd/even long chain n-alkane crystals
Energy Technology Data Exchange (ETDEWEB)
Swaraj, Sufal, E-mail: sufal.swaraj@synchrotron-soleil.fr [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin – BP 48, F-91192 Gif-sur-Yvette Cedex (France); Ade, Harald [North Carolina State University, Raleigh, NC (United States)
2013-12-15
Highlights: •Number and parity of Carbon backbone influences the NEXAFS spectra of n-alkane crystals. •Odd/even effect observed is attributed to the geometrical consequence of a zig–zag chain structure. •NEXAFS spectra are influenced by Interaction of molecular orbitals with periodic lattice. -- Abstract: We present the near edge X-ray absorption fine structure (NEXAFS) spectra of several long chain n-alkanes crystallites formed on Silicon nitride (Si{sub 3}N{sub 4}) windows. Dichroic signature was investigated with the C-C backbone aligned perpendicular to the substrate. Significant changes in the dichroic signature of spectral intensities at energies below the ionization edge (287.5 and 288.1 eV) have been observed. While the dichroic ratio corresponding to the spectral feature at 287.5 eV remains relatively unaffected by the overall length of C-C backbone, it is noticeably affected by the parity (odd or even) of the number of Carbon atoms in the n-alkane backbone. Data obtained provide evidence of the influence of interaction of molecular orbitals with periodic lattice structure.
Sano, T; Turner, N J; Stone, J M; Sano, Takayoshi; Inutsuka, Shu-ichiro; Turner, Neal J.; Stone, James M.
2004-01-01
The saturation level of the magnetorotational instability (MRI) is investigated using three-dimensional MHD simulations. The shearing box approximation is adopted and the vertical component of gravity is ignored, so that the evolution of the MRI is followed in a small local part of the disk. We focus on the dependence of the saturation level of the stress on the gas pressure, which is a key assumption in the standard alpha disk model. From our numerical experiments it is found that there is a weak power-law relation between the saturation level of the Maxwell stress and the gas pressure in the nonlinear regime; the higher the gas pressure, the larger the stress. Although the power-law index depends slightly on the initial field geometry, the relationship between stress and gas pressure is independent of the initial field strength, and is unaffected by Ohmic dissipation if the magnetic Reynolds number is at least 10. The relationship is the same in adiabatic calculations, where pressure increases over time, an...
Baiardi, Alberto; Mendolicchio, Marco; Barone, Vincenzo; Fronzoni, Giovanna; Cardenas Jimenez, Gustavo Adolfo; Stener, Mauro; Grazioli, Cesare; de Simone, Monica; Coreno, Marcello
2015-11-01
In the present work, the near edge X-ray absorption spectroscopy (NEXAFS) spectra at both C and N K-edges of pyridine, 2-fluoropyridine, and 2,6-difluoropyridine have been studied both experimentally and theoretically. From an electronic point of view, both transition potential density functional theory and time-dependent density functional theory approaches lead to reliable results provided that suitable basis sets and density functionals are employed. In this connection, the global hybrid B3LYP functional in conjunction with the EPR-III basis set appears particularly suitable after constant scaling of the band positions. For the N K-edge, vertical energies obtained at these levels and broadened by symmetric Gaussian distributions provide spectra in reasonable agreement with the experiment. Vibronic contributions further modulate the band-shapes leading to a better agreement with the experimental results, but are not strictly necessary for semi-quantitative investigations. On the other hand, vibronic contributions are responsible for strong intensity redistribution in the NEXAFS C K-edge spectra, and their inclusion is thus mandatory for a proper description of experiments. In this connection, the simple vertical gradient model is particularly appealing in view of its sufficient reliability and low computational cost. For more quantitative results, the more refined vertical Hessian approach can be employed, and its effectiveness has been improved thanks to a new least-squares fitting approach.
International Nuclear Information System (INIS)
In the present work, the near edge X-ray absorption spectroscopy (NEXAFS) spectra at both C and N K-edges of pyridine, 2-fluoropyridine, and 2,6-difluoropyridine have been studied both experimentally and theoretically. From an electronic point of view, both transition potential density functional theory and time-dependent density functional theory approaches lead to reliable results provided that suitable basis sets and density functionals are employed. In this connection, the global hybrid B3LYP functional in conjunction with the EPR-III basis set appears particularly suitable after constant scaling of the band positions. For the N K-edge, vertical energies obtained at these levels and broadened by symmetric Gaussian distributions provide spectra in reasonable agreement with the experiment. Vibronic contributions further modulate the band-shapes leading to a better agreement with the experimental results, but are not strictly necessary for semi-quantitative investigations. On the other hand, vibronic contributions are responsible for strong intensity redistribution in the NEXAFS C K-edge spectra, and their inclusion is thus mandatory for a proper description of experiments. In this connection, the simple vertical gradient model is particularly appealing in view of its sufficient reliability and low computational cost. For more quantitative results, the more refined vertical Hessian approach can be employed, and its effectiveness has been improved thanks to a new least-squares fitting approach
Energy Technology Data Exchange (ETDEWEB)
Baiardi, Alberto; Mendolicchio, Marco; Barone, Vincenzo, E-mail: vincenzo.barone@sns.it [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56125 Pisa (Italy); Fronzoni, Giovanna; Cardenas Jimenez, Gustavo Adolfo; Stener, Mauro; Grazioli, Cesare [Dipartimento di Scienze Chimiche e Farmaceutiche, Universita’ di Trieste, Via Giorgieri 1, 34127 Trieste (Italy); Simone, Monica de [CNR-IOM, Laboratorio TASC, Area Science Park Basovizza, 34149 Trieste (Italy); Coreno, Marcello [CNR-ISM, UOS Trieste, Area Science Park Basovizza, 34149 Trieste (Italy)
2015-11-28
In the present work, the near edge X-ray absorption spectroscopy (NEXAFS) spectra at both C and N K-edges of pyridine, 2-fluoropyridine, and 2,6-difluoropyridine have been studied both experimentally and theoretically. From an electronic point of view, both transition potential density functional theory and time-dependent density functional theory approaches lead to reliable results provided that suitable basis sets and density functionals are employed. In this connection, the global hybrid B3LYP functional in conjunction with the EPR-III basis set appears particularly suitable after constant scaling of the band positions. For the N K-edge, vertical energies obtained at these levels and broadened by symmetric Gaussian distributions provide spectra in reasonable agreement with the experiment. Vibronic contributions further modulate the band-shapes leading to a better agreement with the experimental results, but are not strictly necessary for semi-quantitative investigations. On the other hand, vibronic contributions are responsible for strong intensity redistribution in the NEXAFS C K-edge spectra, and their inclusion is thus mandatory for a proper description of experiments. In this connection, the simple vertical gradient model is particularly appealing in view of its sufficient reliability and low computational cost. For more quantitative results, the more refined vertical Hessian approach can be employed, and its effectiveness has been improved thanks to a new least-squares fitting approach.
Baiardi, Alberto; Mendolicchio, Marco; Barone, Vincenzo; Fronzoni, Giovanna; Cardenas Jimenez, Gustavo Adolfo; Stener, Mauro; Grazioli, Cesare; de Simone, Monica; Coreno, Marcello
2015-11-28
In the present work, the near edge X-ray absorption spectroscopy (NEXAFS) spectra at both C and N K-edges of pyridine, 2-fluoropyridine, and 2,6-difluoropyridine have been studied both experimentally and theoretically. From an electronic point of view, both transition potential density functional theory and time-dependent density functional theory approaches lead to reliable results provided that suitable basis sets and density functionals are employed. In this connection, the global hybrid B3LYP functional in conjunction with the EPR-III basis set appears particularly suitable after constant scaling of the band positions. For the N K-edge, vertical energies obtained at these levels and broadened by symmetric Gaussian distributions provide spectra in reasonable agreement with the experiment. Vibronic contributions further modulate the band-shapes leading to a better agreement with the experimental results, but are not strictly necessary for semi-quantitative investigations. On the other hand, vibronic contributions are responsible for strong intensity redistribution in the NEXAFS C K-edge spectra, and their inclusion is thus mandatory for a proper description of experiments. In this connection, the simple vertical gradient model is particularly appealing in view of its sufficient reliability and low computational cost. For more quantitative results, the more refined vertical Hessian approach can be employed, and its effectiveness has been improved thanks to a new least-squares fitting approach. PMID:26627945
Connolly, Peter W. R.; Kaplan, Andrey
2016-10-01
This paper describes the design of a simple and compact optical system capable of examining fundamental properties of light coupling to surface plasmon resonance (SPR) on a thin gold film. The setup, involving a rotatable Attenuated Total Reflection device, from which the reflected light is focused by means of a parabolic mirror, allows for the investigation of the dependence of the reflected intensity on the angle of incidence without moving the detector. It additionally makes provision for a convenient exchange of light sources or the possibility to incorporate a broadband source suitable to investigate SPR at different wavelengths. Theoretical simulation of the experimental data is provided, as well as straightforward calculations for exploring the physics of light excited waves propagating on a surface.
Energy Technology Data Exchange (ETDEWEB)
Jansen, A; Schoenfeld, A; Poppinga, D; Chofor, N; Poppe, B [University of Oldenburg, Oldenburg (Germany); Pius Hospital Oldenburg, Oldenburg (Germany)
2014-06-01
Purpose: The quantification of the relative surface dose enhancement in dependence on the angle of incidence and the atomic number Z of the surface material. Methods: Experiments were performed with slabs made of aluminum, titanium, copper, silver, dental gold and lead. The metal slabs with equal sizes of 1.0×8.0×8.8mm{sup 3} were embedded in an Octavius 4D phantom (PTW Freiburg, Germany). Radiochromic EBT3 films were used to measure the surface dose for angles of incidence ranging from 0° to 90°. The setup with the metals slabs at the isocenter was irradiated with acceleration voltages of 6MV and 10MV. Water reference measurements were taken under equal conditions. Results: The surface dose enhancement is highest for angles of incidence below 30° and drops significantly for higher. The surface dose enhancement produced by lead and dental gold at 6MV showed a peak of 65%. At 90°, the surface dose enhancement dropped to 15% for both materials. The surface dose enhancements for silver, copper, titanium and aluminum were 45%, 32%, 22% and 12% at 0°, respectively. At an angle of incidence of 80°, the values dropped to 22%, 18%, 12% und 6%. The values for 10MV were very similar. Lead and dental gold showed peaks of 65% und 60%. Their values dropped to 18% at an angle of 90°. The surface dose enhancements for silver, copper, titanium and aluminum were 45%, 30%, 20% and 8% at 0°. At 80° the values dropped to 30%, 20%, 12% and 5%. A dependence of the magnitude of the surface dose enhancement on the atomic number of the surface material can be seen, which is in consistence with literature. Conclusion: The results show that the surface dose enhancements near implant materials with high Z-values should be taken into consideration in radio therapy, even when the angle of incidence is flat.
International Nuclear Information System (INIS)
Purpose: The quantification of the relative surface dose enhancement in dependence on the angle of incidence and the atomic number Z of the surface material. Methods: Experiments were performed with slabs made of aluminum, titanium, copper, silver, dental gold and lead. The metal slabs with equal sizes of 1.0×8.0×8.8mm3 were embedded in an Octavius 4D phantom (PTW Freiburg, Germany). Radiochromic EBT3 films were used to measure the surface dose for angles of incidence ranging from 0° to 90°. The setup with the metals slabs at the isocenter was irradiated with acceleration voltages of 6MV and 10MV. Water reference measurements were taken under equal conditions. Results: The surface dose enhancement is highest for angles of incidence below 30° and drops significantly for higher. The surface dose enhancement produced by lead and dental gold at 6MV showed a peak of 65%. At 90°, the surface dose enhancement dropped to 15% for both materials. The surface dose enhancements for silver, copper, titanium and aluminum were 45%, 32%, 22% and 12% at 0°, respectively. At an angle of incidence of 80°, the values dropped to 22%, 18%, 12% und 6%. The values for 10MV were very similar. Lead and dental gold showed peaks of 65% und 60%. Their values dropped to 18% at an angle of 90°. The surface dose enhancements for silver, copper, titanium and aluminum were 45%, 30%, 20% and 8% at 0°. At 80° the values dropped to 30%, 20%, 12% and 5%. A dependence of the magnitude of the surface dose enhancement on the atomic number of the surface material can be seen, which is in consistence with literature. Conclusion: The results show that the surface dose enhancements near implant materials with high Z-values should be taken into consideration in radio therapy, even when the angle of incidence is flat
LHCb: Tagged time-dependent angular analysis of $B^0_s \\to J/\\psi K^+ K^-$ at LHCb
Syropoulos, V
2013-01-01
The time-dependent CP-violating asymmetry in $B^0_s\\to J/\\psi K^{+}K^{-}$ decays is measured using $1.0^{-1}$ of $pp$ of collisions at $\\sqrt{s}=7$ TeV collected with the LHCb detector. The decay time distribution of $B^0_s\\to J/\\psi K^{+}K^{-}$ is characterized by the decay widths $\\Gamma_{\\mathrm{H}}$ and $\\Gamma_{\\mathrm{L}}$ of the heavy and light mass eigenstates of the $B^0_s - \\bar{B^0_s}$ system and by a CP-violating phase $\\phi_s$. In a sample of approximately 27600 $B^0_s\\to J/\\psi K^{+}K^{-}$ events we measure $\\phi_s \\: = \\: 0.068 \\: \\pm \\: 0.091 \\: \\text{(stat)} \\: \\pm \\: 0.011 \\: \\text{(syst)} \\: \\text{rad}$. We also find an average $B^0_s$ decay width $\\Gamma_s \\equiv (\\Gamma_{\\mathrm{L}}+\\Gamma_{\\mathrm{H}})/2 \\: = \\: 0.671 \\: \\pm \\: 0.005 \\: \\text{(stat)} \\: \\pm \\: 0.006 \\: \\text{(syst)} \\: ps^{-1}$ and a decay width difference $\\Delta \\Gamma_s \\equiv \\Gamma_{\\mathrm{L}} - \\Gamma_{\\mathrm{H}} \\: = \\: 0.100 \\: \\pm \\: 0.016 \\: \\text{(stat)} \\: \\pm \\: 0.003 \\: \\text{(syst)} \\: ps^...
Energy Technology Data Exchange (ETDEWEB)
Faye, M; Wane, S T, E-mail: mamadou.faye@ucad.edu.sn [Departement de Physique, Faculte des Sciences et Techniques, Universite Cheikh Anta Diop, Boulevard Martin Luther King, (Corniche Ouest) BP 5005-Dakar Fann (Senegal)
2011-03-14
We study the ellipticity and the dependence on the phase lag (lead) (between the semimajor and the semiminor axes of the field components) of the photoelectron angular distribution (PAD) in the non-resonant two-photon ionization of atomic hydrogen. We establish exact analytical expressions for azimuthal PAD for 3s, 3p and 3d excited initial states, marked by the occurrence of an asymmetric term. This term gives rise to elliptic dichroism (ED), which can be obtained in two ways: either with the left (versus right) ellipticity, or with the phase lag (versus lead); for 3s and 3p initial states, it is shown that the quantum phase of continua is directly related to the phase lag, one-photon below-threshold ionization, and indirectly one photon above. Another important result is that the magnetic sublevels, m = 0, for 3p and m = {+-}1, for 3d, do not contribute to the azimuthal PAD. Our numerical results show, for 3s and 3d, and near-threshold ionization, that the PAD has maxima either along the semimajor or the semiminor axis, while for above-threshold ionization, they are always shifted from these axes. However, the maxima of the corresponding ED coincide with the PAD maxima, while for 3p, they are shifted from the PAD minima. A strong dependence of the ED sign is noted, regardless of the state or the process. However, strong ED signals are obtained for the 3s initial state and below-threshold ionization.
Energy Technology Data Exchange (ETDEWEB)
T' Jampens, Stephane; /Orsay
2006-09-18
This thesis presents the full-angular time-dependent analysis of the vector-vector channel B{sub d}{sup 0} {yields} J/{psi}(K{sub S}{sup 0}{pi}{sup 0})*{sup 0}. After a review of the CP violation in the B meson system, the phenomenology of the charmonium-K*(892) channels is exposed. The method for the measurement of the transversity amplitudes of the B {yields} J/{psi}K*(892), based on a pseudo-likelihood method, is then exposed. The results from a 81.9 fb{sup -1} of collected data by the BABAR detector at the {Upsilon}(4S) resonance peak are |A{sub 0}|{sup 2} = 0.565 {+-} 0.011 {+-} 0.004, |A{sub {parallel}}|{sup 2} = 0.206 {+-} 0.016 {+-} 0.007, |A{sub {perpendicular}}|{sup 2} = 0.228 {+-} 0.016 {+-} 0.007, {delta}{sub {parallel}} = -2.766 {+-} 0.105 {+-} 0.040 and {delta}{sub {perpendicular}} = 2.935 {+-} 0.067 {+-} 0.040. Note that ({delta}{sub {parallel}}, {delta}{sub {perpendicular}}) {yields} (-{delta}{sub {parallel}}, {pi} - {delta}{sub {perpendicular}}) is also a solution. The strong phases {delta}{sub {parallel}} and {delta}{sub {perpendicular}} are at {approx}> 3{sigma} from {+-}{pi}, signing the presence of final state interactions and the breakdown of the factorization hypothesis. The forward-backward analysis of the K{pi} mass spectrum revealed the presence of a coherent S-wave interfering with the K*(892). It is the first evidence of this wave in the K{pi} system coming from a B meson. The particularity of the B{sub d}{sup 0} {yields} J/{psi}(K{sub S}{sup 0}{pi}{sup 0})*{sup 0} channel is to have a time-dependent but also an angular distribution which allows to measure sin 2{beta} but also cos2{beta}. The results from an unbinned maximum likelihood fit are sin 2{beta} = -0.10 {+-} 0.57 {+-} 0.14 and cos 2{beta} = 3.32{sub -0.96}{sup +0.76} {+-} 0.27 with the transversity amplitudes fixed to the values given above. The other solution for the strong phases flips the sign of cos 2{beta}. Theoretical considerations based on the s-quark helicity
Aubert, B; Boutigny, D; Couderc, F; Gaillard, J M; Hicheur, A; Karyotakis, Yu; Lees, J P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, Michael T; Shelkov, V G; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Wilson, F F; Çuhadar-Dönszelmann, T; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Thiessen, D; Khan, A; Kyberd, P; Teodorescu, L; Blinov, A E; Blinov, V E; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Foulkes, S D; Gary, J W; Shen, B C; Wang, K; Del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Heusch, C A; Lockman, W S; Nesom, G; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S M; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Smith, J G; Zhang, J; Zhang, L; Chen, A; Harton, J L; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q L; Altenburg, D; Brandt, T; Brose, J; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Petzold, A; Schubert, J; Schubert, Klaus R; Schwierz, R; Spaan, B; Sundermann, J E; Bernard, D; Bonneaud, G R; Brochard, F; Grenier, P; Schrenk, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Lavin, D; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Patteri, P; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Nikolich, M B; Taylor, G P; Charles, M J; Grenier, G J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F R; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Chavez, C A; Coleman, J P; Forster, I J; Fry, J R; Gabathuler, Erwin; Gamet, R; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Mohanty, G B; Cowan, G; Flack, R L; Flächer, H U; Green, M G; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hodgkinson, M C; Lafferty, G D; Lyon, A J; Williams, J C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Stängle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L M; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Nicholson, H; Fabozzi, F; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Wilden, L; Jessop, C P; LoSecco, J M; Gabriel, T A; Allmendinger, T; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonian, R; Wong, Q K; Brau, J E; Frey, R; Igonkina, O; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; La Vaissière, C de; Del Buono, L; Hamon, O; John, M J J; Leruste, P; Malcles, J; Ocariz, J; Pivk, M; Roos, L; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Anulli, F; Biasini, M; Peruzzi, I M; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martínez-Vidal, F; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lau, Y P; Lü, C; Miftakov, V; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai-Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B J; Geddes, N I; Gopal, G P; Olaiya, E O; Aleksan, Roy; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel de Monchenault, G; Kozanecki, Witold; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yéche, C; Zito, M; Purohit, M V; Weidemann, A W; Wilson, J R; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmüller, O L; Claus, R; Convery, M R; Cristinziani, M; De Nardo, Gallieno; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W M; Elsen, E E; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Lüth, V; Lynch, H L; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Vavra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Young, C C; Burchat, Patricia R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bóna, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R V; Roney, J M; Sobie, R J; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Graham, M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mihályi, A; Mohapatra, A K; Pan, Y; Prepost, R; Rubin, A E; Sekula, S J; Tan, P; Von Wimmersperg-Töller, J H; Wu, J; Wu, S L; Yu, Z; Greene, M G; Neal, H
2004-01-01
We present results on $B\\to J/\\psi\\xspace K\\pi$ decays using $e^+e^-$ annihilation data collected with the BABAR detector at the $\\Upsilon(4S)$ resonance. The detector is located at the PEP-II asymmetric-energy storage ring facility at the Stanford Linear Accelerator Center. Using approximately 88 million $B\\bar{B}$ pairs, we measure the decay amplitudes for the flavor eigenmodes and observe strong-phase differences indicative of final-state interactions with a significance of 7.6 standard deviations. We use the interference between the $K\\pi$ $S$-wave and $P$-wave amplitudes in the region of the $K^*(892)$ to resolve the ambiguity in the determination of these strong phases. We then perform an ambiguity-free measurement of $\\cos2\\beta$ using the angular and time-dependent asymmetry in $B\\to J/\\psi\\xspace K^{*0}(K_S^0\\pi^0$) dec With $\\sin 2 \\beta$ fixed at its measured value and $\\cos 2 \\beta$ treated as an in we find $\\cos 2\\beta=2.72_{-0.79}^{+0.50}\\mathrm{(stat)} \\pm 0.27\\mathrm{(syst)}$, de sign of $\\cos...
Klimov, Vasily V; Ducloy, Martial; Leite, Jose Roberto Rios
2012-01-01
We show that propagating optical fields bearing an axial symmetry are not truly hollow in spite of a null electric field on-axis. The result, obtained by general arguments based upon the vectorial nature of electromagnetic fields, is of particular significance in the situation of an extreme focusing, when the paraxial approximation no longer holds. The rapid spatial variations of fields with a "complicated" spatial structure are extensively analyzed in the general case and for a Laguerre-Gauss beam 2 as well, notably for beams bearing a |l| = 2 orbital angular momentum for which a magnetic field and a gradient of the electric field are present on-axis. We thus analyze the behavior of a atomic size light-detector, sensitive as well to quadrupole electric transitions and to magnetic dipole transitions, and apply it to the case of Laguerre-Gauss beam. We detail how the mapping of such a beam depends on the nature and on the specific orientation of the detector. We show also that the interplay of mixing of polari...
An energy-dispersive VUV beamline for NEXAFS and other CFS/CIS studies
Energy Technology Data Exchange (ETDEWEB)
Batchelor, D.R. [Universitaet Wuerzburg, Experimentelle Physik II, Am Hubland, D-97074 Wuerzburg (Germany)]. E-mail: David.Batchelor@physik.uni-wuerzburg.de; Schmidt, Th. [Universitaet Wuerzburg, Experimentelle Physik II, Am Hubland, D-97074 Wuerzburg (Germany); Follath, R. [BESSY GmbH, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Jung, C. [BESSY GmbH, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Fink, R. [Physikalische Chemie II, Universitaet Erlangen-Nuernberg, Egerlandstrasse 3, D-91058 Erlangen (Germany); Knupfer, M. [IFW Dresden, D-01171 Dresden (Germany); Schoell, A. [Universitaet Wuerzburg, Experimentelle Physik II, Am Hubland, D-97074 Wuerzburg (Germany); Noll, T. [BESSY GmbH, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Siewert, F. [BESSY GmbH, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Buechner, B. [IFW Dresden, D-01171 Dresden (Germany); Umbach, E. [Universitaet Wuerzburg, Experimentelle Physik II, Am Hubland, D-97074 Wuerzburg (Germany)
2007-06-01
By combining the photon energy dispersion of a plane-grating XUV monochromator with the imaging properties of a hemispherical electron energy analyzer, energy-dispersive electron spectroscopy is possible. This multiplex technique allows the utilization of various electron spectroscopies, such as near-edge X-ray absorption (NEXAFS), photoemission (XPS) and Auger/autoionization spectroscopy, without time-consuming scanning of the photon energy. Thus, changes on short time scales may be monitored with full spectroscopic information. We present the design for an upgrade of the existing BESSY UE52-PGM beamline and the results of a pilot energy-dispersive experiment on condensed C{sub 60} molecules.
Angular momentum in subbarrier fusion
International Nuclear Information System (INIS)
We have measured the ratio of the isomer to ground-state yields of 137Ce produced in the fusion reactions 128Te(12C,3n), 133Cs(7Li,3n), 136Ba(3He,2n), 136Ba(4He,3n), and 137Ba(3He,3n), from energies above the Coulomb barrier to energies typically 20--30% below the barrier by observing the delayed x- and γ-ray emission. We deduce the average angular momentum, , from the measured isomer ratios with a statistical model. In the first three reactions we observe that the values of exhibit the behavior predicted for low energies and the expected variation with the reduced mass of the entrance channel. We analyze these data and the associated cross sections with a barrier penetration model that includes the coupling of inelastic channels. Measurements of average angular momenta and cross sections made on other systems using the γ-multiplicity and fission-fragment angular correlation techniques are then analyzed in a similar way with this model. The discrepancies with theory for the γ-multiplicity data show correlations in cross section and angular momentum that suggest a valid model can be found. The measurements of angular momentum using the fission fragment angular correlation technique, however, do not appear reconcilable with the energy dependence of the cross sections. This systematic overview suggests, in particular, that our current understanding of the relationship of angular momentum and anisotropy in fission fragment angular correlations is incomplete. 26 refs
Energy Technology Data Exchange (ETDEWEB)
L Baugh; T Weidner; J Baio; P Nguyen; L Gamble; P Stayton; D Castner
2011-12-31
The ability to orient active proteins on surfaces is a critical aspect of many medical technologies. An important related challenge is characterizing protein orientation in these surface films. This study uses a combination of time-of-flight secondary ion mass spectrometry (ToF-SIMS), sum frequency generation (SFG) vibrational spectroscopy, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy to characterize the orientation of surface-immobilized Protein G B1, a rigid 6 kDa domain that binds the Fc fragment of IgG. Two Protein G B1 variants with a single cysteine introduced at either end were immobilized via the cysteine thiol onto maleimide-oligo(ethylene glycol)-functionalized gold and bare gold substrates. X-ray photoelectron spectroscopy was used to measure the amount of immobilized protein, and ToF-SIMS was used to measure the amino acid composition of the exposed surface of the protein films and to confirm covalent attachment of protein thiol to the substrate maleimide groups. SFG and NEXAFS were used to characterize the ordering and orientation of peptide or side chain bonds. On both substrates and for both cysteine positions, ToF-SIMS data showed enrichment of mass peaks from amino acids located at the end of the protein opposite to the cysteine surface position as compared with nonspecifically immobilized protein, indicating end-on protein orientations. Orientation on the maleimide substrate was enhanced by increasing pH (7.0-9.5) and salt concentration (0-1.5 M NaCl). SFG spectral peaks characteristic of ordered {alpha}-helix and {beta}-sheet elements were observed for both variants but not for cysteine-free wild type protein on the maleimide surface. The phase of the {alpha}-helix and {beta}-sheet peaks indicated a predominantly upright orientation for both variants, consistent with an end-on protein binding configuration. Polarization dependence of the NEXAFS signal from the N 1s to {pi}* transition of {beta}-sheet peptide bonds also
Vibrationally resolved high-resolution NEXAFS and XPS spectra of phenanthrene and coronene
Energy Technology Data Exchange (ETDEWEB)
Fronzoni, Giovanna; Baseggio, Oscar; Stener, Mauro, E-mail: stener@univ.trieste.it [Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, I-34127 Trieste (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Unita’ di Trieste, I-34127 Trieste (Italy); Hua, Weijie; Tian, Guangjun [Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm (Sweden); Luo, Yi [Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm (Sweden); National Synchrotron Radiation Laboratory and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Apicella, Barbara; Alfé, Michela [Istituto di Ricerche sulla Combustione, IRC-CNR, P.le Tecchio, 80, 80125 Napoli (Italy); Simone, Monica de; Kivimäki, Antti [CNR-IOM, Laboratorio TASC, 34149 Trieste (Italy); Coreno, Marcello [CNR-IMIP, 00016 Montelibretti (Italy)
2014-07-28
We performed a combined experimental and theoretical study of the C1s Near-Edge X-ray Absorption Fine-Structure (NEXAFS) spectroscopy and X-ray Photoelectron Spectroscopy in the gas phase of two polycyclic aromatic hydrocarbons (phenanthrene and coronene), typically formed in combustion reactions. In the NEXAFS of both molecules, a double-peak structure appears in the C1s → LUMO region, which differ by less than 1 eV in transition energies. The vibronic coupling is found to play an important role in such systems. It leads to weakening of the lower-energy peak and strengthening of the higher-energy one because the 0 − n (n > 0) vibrational progressions of the lower-energy peak appear in nearly the same region of the higher-energy peak. Vibrationally resolved theoretical spectra computed within the Frank-Condon (FC) approximation and linear coupling model agree well with the high-resolution experimental results. We find that FC-active normal modes all correspond to in-plane vibrations.
Evaluation of the fluorinated antisticking layer by using photoemission and NEXAFS spectroscopies
Energy Technology Data Exchange (ETDEWEB)
Haruyama, Yuichi; Nakai, Yasuki; Matsui, Shinji [University of Hyogo, Graduate School of Science, Laboratory of Advanced Science and Technology for Industry, Ako, Hyogo (Japan)
2015-11-15
The electronic structures of four kinds of fluorinated self-assembled monolayers (F-SAMs) with different chain length, which were used for an antisticking layer, were investigated by the photoemission and the near-edge X-ray absorption fine structure (NEXAFS) spectroscopies. From the photoemission spectra in the wide and in the C 1s core-level regions, chemical compositions and components of the F-SAMs with different chain length were evaluated. By using the curve fitting analysis of the photoemission spectra in C 1s core-level region, it was found that the CF{sub 3} site is located at the top of the surface in the C sites of the F-SAM. From the C K-edge NEXAFS spectra of the F-SAMs as a function of the incidence angle of the excitation photon, it was shown that the σ*(C-F) and σ*(C-C) orbitals in the F-SAMs are parallel and perpendicular to the surface, respectively. This indicates that the C-C chain in (CF{sub 2}){sub n} part of the F-SAMs is perpendicular to the surface. Based on these results, the electronic structures of the F-SAMs are discussed. (orig.)
Adsorption of bay-substituted perylene bisimide dyes on Ag(111) investigated by PES and NEXAFS
Energy Technology Data Exchange (ETDEWEB)
Scholz, Markus; Krause, Stefan; Haeming, Marc; Schoell, Achim [Universitaet Wuerzburg (Germany). Experimentelle Physik II; Schmidt, Ruediger; Wuerthner, Frank [Universitaet Wuerzburg (Germany). Institut fuer Organische Chemie; Reinert, Friedrich [Universitaet Wuerzburg (Germany). Experimentelle Physik II; Gemeinschaftslabor fuer Nanoanalytik, Forschungszentrum Karlsruhe (Germany)
2009-07-01
Perylene tetracarboxylic acid bisimides (PBI) are among the best available n-conducting organic materials. Halogen substituents attached to the perylene bay positions change the molecular structure by introducing a twist angle into the usually planar perylene backbone. This influences the optical properties, the stacking of the molecules, as well as the electronic properties. Moreover, the molecular conformation is also expected to effect the interaction with metal contacts, an aspect of crucial importance for electronic devices. We report on a high resolution photoemission (PES) and x-ray absorption (NEXAFS) study of the electronic structure and the molecular orientation of ultra-thin films of the planer PBI-H{sub 4}, and the core twisted PBI-Cl{sub 4} on Ag(111) substrates. In the monolayer regime, substantial changes in the UPS and XPS data with respect to the bulk samples clearly indicate a covalent interaction at the interface. In the valence regime charge transfer induced occupied states are observed at the Fermi-level. This is corroborated by the NEXAFS results, which allow probing a possible change of the molecular conformation due to the interfacial interaction.
Angular momentum projected semiclassics
Hasse, Rainer W.
1987-06-01
By using angular momentum projected plane waves as wave functions, we derive semiclassical expressions for the single-particle propagator, the partition function, the nonlocal density matrix, the single-particle density and the one particle-one hole level density for fixed angular momentum and fixed z-component or summed over the z-components. Other quantities can be deduced from the propagator. In coordinate space ( r, r') the relevant quantities depend on |r-r'| instead of | r- r'| and in Wigner space ( R, P) they become proportional to the angular momentum constraints δ(| R × P|/ h̵-l) and δ( R × P) z/ h̵-m) . As applications we calculate the single-particle and one-particle-one hole level densities for harmonic oscillator and Hill-Wheeler box potentials and the imaginary part of the optical potential and its volume integral with an underlying harmonic oscillator potential and a zero range two-body interaction.
Spectral studies on sulfur poisoning of Pd/Mg6Ni by NEXAFS and XPS
International Nuclear Information System (INIS)
We have studied on the hydrogen storage materials based on Mg–Ni alloy and fabricated the sample constructed with the Pd thin layer (TL) on Mg6Ni alloy substrate. The adsorption behavior of the dimethyl disulfide (DMS) molecules on the sample has been measured to reveal the sulfur poisoning of the Pd TL/Mg6Ni by means of XPS and Sulfur K-edge NEXAFS techniques. The chemisorbed DMS, methanethiolate (MT) and atomic S have been observed on the surface. Especially, it is clear that some atomic S has been oxidized by air and detected the adsorbate of the SO32− and SO42− species. During exposure to the atmosphere, most of the adsorbed DMS and MT adsorbates desorb from the Pd TL surface. We thus conclude the Pd TL might be able to prevent the hydrogen storage materials from the sulfur poisoning.
Institute of Scientific and Technical Information of China (English)
Zhiteng Zhang; Lisa Pfefferle; Gary L. Haller
2014-01-01
Since the discovery of carbon nanotubes (CNT), this material has been recognized as an attractive catalyst support. CNT must be functionalized before use as a catalyst support and typically this involves oxidation. However, the functional group distribution on the CNT is very complex mixture of groups and varies with oxidation agent used. Here a simple acid-base titration is introduced to characterize the oxygen functionalized CNT. By comparing characterization with near-edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) for both at the C and O K-edges, it can be demonstrated that potentiometric proton titration can be a fast and quan-titative analysis for Brönsted acid functional groups on CNT.
Orbital angular momentum and the parton model
Energy Technology Data Exchange (ETDEWEB)
Ratcliffe, P.G.
1987-06-25
The role of orbital angular momentum is discussed within the framework of the parton model. It is shown that a consistent interpretation of the Altarelli-Parisi equations governing the Q/sup 2/-evolution of helicity-weighted parton distributions necessitates the assumption that partons carry a large orbital angular momentum, contrary to popular belief. In developing the arguments presented, the Altarelli-Parisi formalism is extended to include orbital angular momentum dependence.
Energy Technology Data Exchange (ETDEWEB)
Ye, Zhenyu
2007-02-15
In this thesis we report on the rst results on the transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton. It is shown that this asymmetry can provide one of the rare possibilities to access the Generalized Parton Distribution (GPD) E of the nucleon, and thus, through models for E, also to the total angular momentum of u and d quarks in the nucleon. The measurement was performed using the 27.6 GeV positron beam of the HERA storage ring and the transversely polarized hydrogen target of the HERMES experiment at DESY. The two leading azimuthal amplitudes of the asymmetry are extracted from the HERMES 2002-2004 data, corresponding to an integrated luminosity of 65.3 pb.1. By comparing the results obtained at HERMES and theoretical predictions based on a phenomenological model of GPDs, we obtain a model-dependent constraint on the total angular momentum of quarks in the nucleon. (orig.)
Directory of Open Access Journals (Sweden)
Arnaldo da C. Faro Jr
2010-01-01
Full Text Available Bulk and supported molybdenum based catalysts, modified by nickel, phosphorous or tungsten were studied by NEXAFS spectroscopy at the Mo L III and L II edges. The techniques of principal component analysis (PCA together with a linear combination analysis (LCA allowed the detection and quantification of molybdenum atoms in two different coordination states in the oxide form of the catalysts, namely tetrahedral and octahedral coordination.
Mayer, Ralf Wilfried
2010-01-01
In this thesis, the ammonia oxidation over copper model catalysts was investigated by means of in situ near edge X-ray absorption fine structure (NEXAFS) spectroscopy in the soft X-ray range. This technique allows one to record the NEXAFS spectra while the reaction occurs in the mbar pressure range in a flowing gas reactor. With an additional mass spectrometer, the conversion of the feed gas as well as the products can be traced and detected simultaneously. An assignment ...
Angular Momentum Distribution in the Transverse Plane
Adhikari, Lekha
2016-01-01
Several possibilities to relate the $t$-dependence of Generalized Parton Distributions (GPDs) to the distribution of angular momentum in the transverse plane are discussed. Using a simple spectator model we demonstrate that non of them correctly describes the orbital angular momentum distribution that for a longitudinally polarized nucleon obtained directly from light-front wavefunctions.
Energy Technology Data Exchange (ETDEWEB)
Schwartz, Craig P.; Uejio, Janel S.; Saykally, Richard J.; Prendergast, David
2009-02-26
We report the effects of sampling nuclear quantum motion with path integral molecular dynamics (PIMD) on calculations of the nitrogen K-edge spectra of two isolated organic molecules. S-triazine, a prototypical aromatic molecule occupying primarily its vibrational ground state at room temperature, exhibits substantially improved spectral agreement when nuclear quantum effects are included via PIMD, as compared to the spectra obtained from either a single fixed-nuclei based calculation or from a series of configurations extracted from a classical molecular dynamics trajectory. Nuclear quantum dynamics can accurately explain the intrinsic broadening of certain features. Glycine, the simplest amino acid, is problematic due to large spectral variations associated with multiple energetically accessible conformations at the experimental temperature. This work highlights the sensitivity of NEXAFS to quantum nuclear motions in molecules, and the necessity of accurately sampling such quantum motion when simulating their NEXAFS spectra.
Energy Technology Data Exchange (ETDEWEB)
Cheng,F.; Gamble, L.; Castner, D.
2008-01-01
For immobilization of proteins onto surfaces in a specific and controlled manner, it is important to start with a well-defined surface that contains specific binding sites surrounded by a nonfouling background. For immobilizing histidine-tagged (his-tagged) proteins, surfaces containing nitrilotriacetic acid (NTA) headgroups and oligo(ethylene glycol) (OEG) moieties are a widely used model system. The surface composition, structure, and reactivity of mixed NTA/OEG self-assembled monolayers (SAMs) on Au substrates were characterized in detail using X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), and surface plasmon resonance (SPR) biosensoring. XPS results for sequential adsorption of NTA thiols followed by OEG thiols showed that OEG molecules were incorporated into an incompletely formed NTA monolayer until a complete mixed SAM was formed. The surface concentration of NTA headgroups was estimated to be 0.9-1.3 molecule/nm2 in the mixed NTA/OEG monolayers, compared to 1.9 molecule/nm2 in pure NTA monolayers. Angle-dependent XPS indicated NTA headgroups were slightly reoriented toward an upright position after OEG incorporation, and polarization-dependent NEXAFS results indicated increased ordering of the alkane chains of the molecules. Nitrogen-containing and OEG-related secondary ion fragments from the TOF-SIMS experiments confirmed the presence of NTA headgroups and OEG moieties in the monolayers. A multivariate peak intensity ratio was developed for estimating the relative NTA concentration in the outermost (10 Angstroms ) of the monolayers. SPR measurements of a his-tagged, humanized anti-lysozyme variable fragment (HuLys Fv) immobilized onto Ni(II)-treated mixed NTA/OEG and pure NTA monolayers demonstrated the reversible, site-specific immobilization of his-tagged HuLys Fv (108-205 ng/cm2) with dissociation rates (koff) between 1.0 x 10-4 and 2
International Nuclear Information System (INIS)
Inclusive energy spectra and angular distributions have been measured for light charged particles with Z=1-4 emitted in the interaction of 22Ne ions with a 181Ta target. The reaction products were analysed and detected by means of a system of ΔE-E telescopes placed in the focal plane of a magnetic spectrometer. Energy spectra of light particles (p, d, t and He, Li, Be isotopes) correspond to the calculated kinematic limits taking into account the rotational energy of the residual nucleus. The angular distributions of the high-energy particles are strongly forward directed. The data obtained are analysed on the basis of the moving source, rotating hot spot, massive transfer and breakup-fusion models. The relative yields of the different isotopes and their most probable energies are described by the massive transfer model. The qualitative behaviour of the spectra in the vicinity of the kinematic limits can be explained in terms of the breakup-fusion model
Karpov, Valeri
2015-01-01
A comprehensive guide to AngularJS, Google's open-source client-side framework for app development. Most of the existing guides to AngularJS struggle to provide simple and understandable explanations for more advanced concepts. As a result, some developers who understand all the basic concepts of AngularJS struggle when it comes to building more complex real-world applications. Professional AngularJS provides a thorough understanding of AngularJS, covering everything from basic concepts, such as directives and data binding, to more advanced concepts like transclusion, build systems, and auto
Janković, Marija R
2016-01-01
We use 57 recently found topological satellites of Broucke-Hadjidemetriou-Henon's periodic orbits with values of the topological exponent $k$ ranging from $k$ = 3 to $k$ = 58 to plot the angular momentum $L$ as a function of the period $T$, with both $L$ and $T$ rescaled to energy $E=-\\frac12$. Upon plotting $L(T/k)$ we find that all our solutions fall on a curve that is virtually indiscernible by naked eye from the $L(T)$ curve for non-satellite solutions. The standard deviation of the satellite data from the sixth-order polynomial fit to the progenitor data is $\\sigma = 0.13$. This regularity supports Henon's 1976 conjecture that the linearly stable Broucke-Hadjidemetriou-Henon orbits are also perpetually, or Kolmogorov-Arnold-Moser stable.
Janković, Marija R.; Dmitrašinović, V.
2016-02-01
We use 57 recently found topological satellites of Broucke-Hadjidemetriou-Hénon's periodic orbits with values of the topological exponent k ranging from k =3 to k =58 to plot the angular momentum L as a function of the period T , with both L and T rescaled to energy E =-0.5 . Upon plotting L (T /k ) we find that all our solutions fall on a curve that is virtually indiscernible by the naked eye from the L (T ) curve for nonsatellite solutions. The standard deviation of the satellite data from the sixth-order polynomial fit to the progenitor data is σ =0.13 . This regularity supports Hénon's 1976 conjecture that the linearly stable Broucke-Hadjidemetriou-Hénon orbits are also perpetually, or Kol'mogorov-Arnol'd-Moser, stable.
Schwinger, J.
1952-01-26
The commutation relations of an arbitrary angular momentum vector can be reduced to those of the harmonic oscillator. This provides a powerful method for constructing and developing the properties of angular momentum eigenvectors. In this paper many known theorems are derived in this way, and some new results obtained. Among the topics treated are the properties of the rotation matrices; the addition of two, three, and four angular momenta; and the theory of tensor operators.
Partonic orbital angular momentum
Arash, Firooz; Taghavi-Shahri, Fatemeh; Shahveh, Abolfazl
2013-04-01
Ji's decomposition of nucleon spin is used and the orbital angular momentum of quarks and gluon are calculated. We have utilized the so called valon model description of the nucleon in the next to leading order. It is found that the average orbital angular momentum of quarks is positive, but small, whereas that of gluon is negative and large. Individual quark flavor contributions are also calculated. Some regularities on the total angular momentum of the quarks and gluon are observed.
Quark Orbital Angular Momentum
Burkardt Matthias
2015-01-01
Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asy...
International Nuclear Information System (INIS)
Poly(9,9-dioctylfluorene) (PFO) polymer films were deposited by matrix-assisted pulsed laser evaporation (MAPLE) technique. The polymer was diluted (0.5 wt%) in tetrahydrofuran and, once cooled to liquid nitrogen temperature, it was irradiated with a KrF excimer laser. 10,000 laser pulses were used to deposit PFO films on Si substrates at different temperatures (-16, 30, 50 and 70 deg. C). One PFO film was deposited with 16,000 laser pulses at a substrate temperature of 50 deg. C. The morphology, optical and structural properties of the films were investigated by SEM, AFM, PL and FTIR spectroscopy. SEM inspection showed different characteristic features on the film surface, like deflated balloons, droplets and entangled polymer filaments. The roughness of the films was, at least partially, controlled by substrate heating, which however had the effect to reduce the deposition rate. The increase of the laser pulse number modified the target composition and increased the surface roughness. The angular distribution of the material ejected from the target confirmed the forward ejection of the target material. PFO films presented negligible modification of the chemical structure respect to the bulk material.
Trainor, Thomas A.; Prindle, Duncan J.
2016-01-01
An established phenomenology and theoretical interpretation of p -p collision data at lower collision energies should provide a reference for p -p and other collision systems at higher energies, against which claims of novel physics may be tested. The description of p -p collisions at the relativistic heavy ion collider has remained incomplete even as claims for collectivity and other novelties in data from smaller systems at the large hadron collider have emerged recently. In this study we report the charge-multiplicity dependence of two-dimensional angular correlations and of single-particle (SP) densities on transverse rapidity yt and pseudorapidity η from 200 GeV p -p collisions. We define a comprehensive and self-consistent two-component (soft+hard ) model for hadron production and report a significant p -p nonjet quadrupole component as a third (angular-correlation) component. Our results have implications for p -p centrality, the underlying event, collectivity in small systems and the existence of flows in high-energy nuclear collisions.
Trainor, Thomas A
2015-01-01
An established phenomenology and theoretical interpretation of $p$-$p$ collision data at lower collision energies should provide a reference for $p$-$p$ and other collision systems at higher energies, against which claims of novel physics may be tested. The description of $p$-$p$ collisions at the relativistic heavy ion collider (RHIC) has remained incomplete even as claims for collectivity and other novelties in data from smaller systems at the large hadron collider (LHC) have emerged recently. In this study we report the charge-multiplicity dependence of two-dimensional (2D) angular correlations and of single-particle (SP) densities on transverse rapidity $y_t$ and pseudorapidity $\\eta$ from 200 GeV $p$-$p$ collisions. We define a comprehensive and self-consistent two-component (soft + hard) model (TCM) for hadron production and report a significant $p$-$p$ nonjet (NJ) quadrupole component as a third (angular-correlation) component. Our results have implications for $p$-$p$ centrality, the underlying event ...
Energy Technology Data Exchange (ETDEWEB)
Grachev, V., E-mail: grachev@physics.montana.edu; Malovichko, G. [Physics Department, Montana State University, Bozeman, Montana 59717 (United States); Munro, M. [Quantel Laser, Bozeman, Montana 59715 (United States); Kokanyan, E. [Institute of Physical Researches, Ashtarak (Armenia)
2015-07-28
Two procedures for facilitation of line tracing and deciphering of complicated spectra of electron paramagnetic resonance (EPR) were developed: a correction of microwave frequencies for every orientation of external magnetic field on the base of known values of g-tensor components for a reference paramagnetic center and followed rectification of measured angular dependences using plots of effective deviation of g{sup 2}-factors of observed lines from effective g{sup 2}-factors of the reference center versus angles or squared cosines of angles describing magnetic field orientations. Their application to EPR spectra of nearly stoichiometric lithium niobate crystals doped with neodymium allowed identifying two axial and six different low-symmetry Nd{sup 3+} centers, to determine all components of their g-tensors, and to propose common divacancy models for a whole family of Nd{sup 3+} centers.
Energy Technology Data Exchange (ETDEWEB)
Grandum, Oddbjoern
1997-12-31
In optimizing solar systems, it is necessary to know the spectral and angular dependence of the radiation. The general nonlinear character of most solar energy systems accentuates this. This thesis describes a spectroradiometer that will measure both the direct component of the solar radiation and the angular dependence of the diffuse component. Radiation from a selected part of the sky is transported through a movable set of tube sections on to a stationary set of three monochromators with detectors. The beam transport system may effectively be looked upon as a single long tube aimed at a particular spot in the sky. The half value of the effective opening angle is 1.3{sup o} for diffuse radiation and 2.8{sup o} for direct radiation. The whole measurement process is controlled and operated by a PC and normally runs without manual attention. The instrument is built into a caravan. The thesis describes in detail the experimental apparatus, calibration and measurement accuracies. To map the diffuse radiation, one divides the sky into 26 sectors of equal solid angle. A complete measurement cycle is then made at a random point within each sector. These measurements are modelled by fitting to spherical harmonics, enforcing symmetry around the solar direction and the horizontal plane. The direct radiation is measured separately. Also the circumsolar sector is given special treatment. The measurements are routinely checked against global radiation measured in parallel by a standard pyranometer, and direct solar radiation by a pyrheliometer. An extensive improvement programme is being planned for the instrument, including the use of a photomultiplier tube to measure the UV part of the spectrum, a diode array for the 400-1100 nm range, and use of a Ge diode for the 1000-1900 nm range. 78 refs., 90 figs., 31 tabs.
Pretzelosity TMD and Quark Orbital Angular Momentum
Lorce, Cédric; Pasquini, B.
2015-01-01
We study the connection between the quark orbital angular momentum and the pretzelosity transverse-momentum dependent parton distribution function. We discuss the origin of this relation in quark models, identifying as key ingredient for its validity the assumption of spherical symmetry for the nucleon in its rest frame. Finally we show that the individual quark contributions to the orbital angular momentum obtained from this relation can not be interpreted as the intrinsic contributions, but...
Liebe, Wolfgang
1944-01-01
In many studies, especially of nonstationary flight motion, it is necessary to determine the angular velocities at which the airplane rotates about its various axes. The three-component recorder is designed to serve this purpose. If the angular velocity for one flight attitude is known, other important quantities can be derived from its time rate of change, such as the angular acceleration by differentiations, or - by integration - the angles of position of the airplane - that is, the angles formed by the airplane axes with the axis direction presented at the instant of the beginning of the motion that is to be investigated.
Quark Orbital Angular Momentum
Directory of Open Access Journals (Sweden)
Burkardt Matthias
2015-01-01
Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.
Distribution and Speciation of Cu in the Root Border Cells of Rice by STXM Combined with NEXAFS.
Peng, Cheng; Wang, Yi; Sun, Lijuan; Xu, Chen; Zhang, Lijuan; Shi, Jiyan
2016-03-01
Root border cells (RBCs) serve plants in their initial line of defense against stress from the presence of heavy metals in the soil. In this research, light microscopy and synchrotron-based scanning transmission X-ray microscopy (STXM) combined with near edge X-ray absorption fine structure spectroscopy (NEXAFS) with a nanoscale spatial resolution were used to investigate the effects of copper (Cu) upon the RBCs, as well as its distribution and speciation within the RBCs of rice (Oryza sativa L.) under aeroponic culture. The results indicated that with increasing exposure time and concentration, the attached RBCs were surrounded by a thick mucilage layer which changed in form from an ellipse into a strip in response to Cu ion stress. Copper was present as Cu(II), which accumulated not only in the cell wall but also in the cytoplasm. To our knowledge, this is the first time that STXM has been used in combination with NEXAFS to provide new insight into the distribution and speciation of metal elements in isolated plant cells.
Mn$_3$O$_4$(001) film growth on Ag(001) - a systematic study using NEXAFS, STM, and LEED
Gillmeister, Konrad; Shantyr, Roman; Trautmann, Martin; Meinel, Klaus; Chassé, Angelika; Schindler, Karl-Michael; Neddermeyer, Henning; Widdra, Wolf
2015-01-01
The film growth of Mn$_3$O$_4$(001) films on Ag(001) up to film thicknesses of almost seven unit cells of Mn$_3$O$_4$ has been monitored using a complementary combination of near-edge X-ray absorption fine structure spectroscopy (NEXAFS), scanning tunneling microscopy (STM), and low-energy electron diffraction (LEED). The oxide films have been prepared by molecular beam epitaxy. Using NEXAFS, the identity of the Mn oxide has clearly been determined as Mn$_3$O$_4$. For the initial stages of growth, oxide islands with p(2$\\times$1) and p(2$\\times$2) structures are formed, which are embedded into the substrate. For Mn$_3$O$_4$ coverages up to 1.5 unit cells a p(2$\\times$1) structure of the films is visible in STM and LEED. Further increase of the thickness leads to a phase transition of the oxide films resulting in an additional c(2$\\times$2) structure with a 45$^\\circ$ rotated atomic pattern. The emerging film structures are discussed on the basis of a sublayer model of the Mn$_3$O$_4$ spinel unit cell. While t...
Energy Technology Data Exchange (ETDEWEB)
Garofalo, Lauren A.; Smith, Mica C. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Dagdigian, Paul J., E-mail: pjdagdigian@jhu.edu [Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218-2685 (United States); Kłos, Jacek [Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2021 (United States); Alexander, Millard H., E-mail: mha@umd.edu [Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2021 (United States); Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742-2021 (United States); Boering, Kristie A., E-mail: boering@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Department of Earth and Planetary Science, University of California, Berkeley, California 94720 (United States); Lin, Jim Jr-Min, E-mail: jimlin@gate.sinica.edu.tw [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (China); Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan (China)
2015-08-07
The dynamics of the O({sup 1}D) + Xe electronic quenching reaction was investigated in a crossed beam experiment at four collision energies. Marked large-scale oscillations in the differential cross sections were observed for the inelastic scattering products, O({sup 3}P) and Xe. The shape and relative phases of the oscillatory structure depend strongly on collision energy. Comparison of the experimental results with time-independent scattering calculations shows qualitatively that this behavior is caused by Stueckelberg interferences, for which the quantum phases of the multiple reaction pathways accessible during electronic quenching constructively and destructively interfere.
International Nuclear Information System (INIS)
For many years the Institute of Physics has published books on hot topics based on a collection of reprints from different journals, including some remarks by the editors of each volume. The book on Optical Angular Momentum, edited by L Allen, S M Barnett and M J Padgett, is a recent addition to the series. It reproduces forty four papers originally published in different journals and in a few cases it provides direct access to works not easily accessible to a web navigator. The collection covers nearly a hundred years of progress in physics, starting from an historic 1909 paper by Poynting, and ending with a 2002 paper by Padgett, Barnett and coworkers on the measurement of the orbital angular momentum of a single photon. The field of optical angular momentum has expanded greatly, creating an interdisciplinary attraction for researchers operating in quantum optics, atomic physics, solid state physics, biophysics and quantum information theory. The development of laser optics, especially the control of single mode sources, has made possible the specific design of optical radiation modes with a high degree of control on the light angular momentum. The editors of this book are important figures in the field of angular momentum, having contributed to key progress in the area. L Allen published an historical paper in 1999, he and M J Padgett (together with M Babiker) produced few years ago a long review article which is today still the most complete basic introduction to the angular momentum of light, while S M Barnett has contributed several high quality papers to the progress of this area of physics. The editors' choice provides an excellent overview to all readers, with papers classified into eight different topics, covering the basic principles of the light and spin and orbital angular momentum, the laboratory tools for creating laser beams carrying orbital angular momentum, the optical forces and torques created by laser beams carrying angular momentum on
Van Essen, H.
2004-01-01
This paper addresses the problem of the separation of rotational and internal motion. It introduces the concept of average angular velocity as the moment of inertia weighted average of particle angular velocities. It extends and elucidates the concept of Jellinek and Li (1989) of separation of the energy of overall rotation in an arbitrary (non-linear) $N$-particle system. It generalizes the so called Koenig's theorem on the two parts of the kinetic energy (center of mass plus internal) to th...
Angular velocity discrimination
Kaiser, Mary K.
1990-01-01
Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.
International Nuclear Information System (INIS)
Highlights: •BZO/YBCO multilayered films were irradiated using 200 MeV Xe ions along c-axis. •Size and spatial distribution of particles were tuned by the growth temperature. •The difference in growth temperatures stand out on the Jc(θ), especially for high B. •A shoulder behaviour occurs on the Jc(θ) in the multilayered films with CDs. •The inverse correlation between Jc and n-value emerges around B||c at high T. -- Abstract: BaZrO3/YBa2Cu3Oy quasi-multilayered films, in which the size and the spatial distribution of BaZrO3 nano-particles were controlled, were irradiated using 200 MeV Xe ions along the c-axis direction. When the BaZrO3 nano-particles were larger in size, the flux lines not captured by CDs, such as interstitial flux lines between CDs and double kinks of flux lines, can be pinned more effectively by the BaZrO3 nano-particles, so that the Jc enhances for high magnetic fields and high temperature. In addition, the inverse correlation between Jc and n-value appears at high temperature in increasing magnetic field for the film with correlated rows of the nano-particles which might be curved off the c-axis. These suggest that the hybrid flux pinning depends not only on the combination of one-dimensional (1D) and three-dimensional pinning centers (3D-PCs) but also on the size and the spatial distribution of the 3D-PCs
Metamaterial Broadband Angular Selectivity
Shen, Yichen; Wang, Zhiyu; Wang, Li; Celanovic, Ivan; Ran, Lixin; Joannopoulos, John D; Soljacic, Marin
2014-01-01
We demonstrate how broadband angular selectivity can be achieved with stacks of one-dimensionally periodic photonic crystals, each consisting of alternating isotropic layers and effective anisotropic layers, where each effective anisotropic layer is constructed from a multilayered metamaterial. We show that by simply changing the structure of the metamaterials, the selective angle can be tuned to a broad range of angles; and, by increasing the number of stacks, the angular transmission window can be made as narrow as desired. As a proof of principle, we realize the idea experimentally in the microwave regime. The angular selectivity and tunability we report here can have various applications such as in directional control of electromagnetic emitters and detectors.
Fluidic angular velocity sensor
Berdahl, C. M. (Inventor)
1986-01-01
A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.
Energy Technology Data Exchange (ETDEWEB)
Jankowiak, Martin; Larkoski, Andrew J.; /SLAC
2012-02-17
We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.
Essén, H
2003-01-01
This paper addresses the problem of the separation of rotational and internal motion. It introduces the concept of average angular velocity as the moment of inertia weighted average of particle angular velocities. It extends and elucidates the concept of Jellinek and Li (1989) of separation of the energy of overall rotation in an arbitrary (non-linear) $N$-particle system. It generalizes the so called Koenig's theorem on the two parts of the kinetic energy (center of mass plus internal) to three parts: center of mass, rotational, plus the remaining internal energy relative to an optimally translating and rotating frame.
Dirac Green function for angular projection potentials
Zeller, Rudolf
2015-11-01
The aim of this paper is twofold: first, it is shown that the angular dependence of the Dirac Green function can be described analytically for potentials with non-local dependence on the angular variables if they are chosen as projection potentials in angular momentum space. Because the local dependence on the radial variable can be treated to any precision with present computing capabilities, this means that the Green function can be calculated practically exactly. Second, it is shown that a result of this kind not only holds for a single angular projection potential but also more generally, for instance if space is divided into non-overlapping cells and a separate angular projection potential is used in each cell. This opens the way for relativistic density-functional calculations within a different perspective than the conventional one. Instead of trying to obtain the density for a given potential approximately as well as possible, the density is determined exactly for non-local potentials which can approximate arbitrary local potentials as well as desired.
Energy Technology Data Exchange (ETDEWEB)
Haeming, M.; Schoell, A.; Reinert, F. [Universitaet Wuerzburg, Experimentelle Physik VII, D-97074 Wuerzburg (Germany); Umbach, E. [Karlsruhe Institut fuer Technologie (KIT) D-76021 Karlsruhe (Germany)
2011-07-01
Electronic many-body and correlation effects have been studied intensively at transition metal compounds with localized d/f electrons. They are related to interesting material properties, e.g. Mott metal-insulator transitions, charge transfer satellites and superconductivity. Recent investigations of graphene,{sup 1} C{sub 60},{sup 2} and TTF-TCNQ{sup 3} showed that many-body effects can also be important for organic thin films. We have investigated several organic thin films (PTCDA, PTCDI, BTCDA, BTCDI, SnPc) deposited on a Ag(111) surfaces with photoelectron spectroscopy, NEXAFS and resonant Auger Raman spectroscopy. Our data provide significant indications for electronic many-body effects involving substrate-adsorbate charge transfer, which can be understood by concepts developed for charge transfer compounds. These results give insight into new, interesting aspects of physics at metal-organic interfaces. {sup 1} I.
Joining NanoSIMS and STXM/NEXAFS to visualize soil biotic and abiotic processes at the nano-scale
Pett-Ridge, J.; Keiluweit, M.; Bougoure, J.; Weber, P. K.; Kleber, M.; Nico, P.
2012-04-01
Understanding the fate and residence time of organic matter in soils is important to natural resource management, including strategies to mitigate climate change. The time scales of carbon cycling, the relative importance of biotic and abiotic processes in organic matter stabilization in soils, and spatial factors in these processes are all critical characteristics that currently cannot be addressed by any single analytical approach. Here we demonstrate how many of these concerns can be approached by a combination of high-resolution secondary ion mass spectroscopy (NanoSIMS) and Scanning Transmission X-ray Microscopy (STXM) coupled with Near Edge X-ray Absorption Fine Structure spectroscopy (NEXAFS). When used in concert, these analytical techniques have the capacity to yield quantitative, in situ information on the source, molecular class, and elemental quantity of organic matter. We: (i) discuss the rationale for the joined application of the two procedures, (ii) provide examples for the their combined application, (iii) point out some of the methodological caveats that warrant consideration, and (iv) provide some directions for future developmental efforts. To illustrate the synergies of this combined approach, we examined organic-mineral associations in samples from both an artificial well-defined mixture and an unconstrained natural soil decomposition experiment. Case 1 demonstrates how the joined techniques help to determine modes of interaction between 13C- and 15N-labeled microorganisms and a defined mineral phase;, in case 2 we examine the incorporation of a 15N label into mineral organic associations 12 years after application to a forest soil. This unique analytical combination, the simultaneous application of STXM/NEXAFS and NanoSIMS imaging, has the potential to contribute a mechanistic understanding of sorption, occlusion, and decomposition processes that operate at fine spatial scales in natural environments.
Parker, G. W.
1978-01-01
Discusses, classically and quantum mechanically, the angular momentum induced in the bound motion of an electron by an external magnetic field. Calculates the current density and its magnetic moment, and then uses two methods to solve the first-order perturbation theory equation for the required eigenfunction. (Author/GA)
Wigner Functions and Quark Orbital Angular Momentum
Directory of Open Access Journals (Sweden)
Mukherjee Asmita
2015-01-01
Full Text Available Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs and transverse momentum dependent parton distributions (TMDs. We report on a recent model calculation of the Wigner distributions for the quark and their relation to the orbital angular momentum.
Wigner Functions and Quark Orbital Angular Momentum
Mukherjee Asmita; Nair Sreeraj; Ojha Vikash Kumar
2014-01-01
Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs) and transverse momentum dependent parton distributions (TMDs). We report on a recent model calculation of the Wigner distributions for the quark and their relation to the orbital angular momentum.
Quantum Heuristics of Angular Momentum
Levy-Leblond, Jean-Marc
1976-01-01
Discusses the quantization of angular momentum components, Heisenberg-type inequalities for their spectral dispersions, and the quantization of the angular momentum modulus, without using operators or commutation relations. (MLH)
On angular momentum transport in convection-dominated accretion flows
Igumenshchev, I V
2002-01-01
Convection-dominated accretion flow (CDAF) is a promising model to explain underluminous accreting black holes in X-ray binaries and galactic nuclei. I discuss effects of angular momentum transport in viscous hydrodynamical and MHD CDAFs. In hydrodynamical CDAFs, convection transports angular momentum inward, and this together with outward convection transport of thermal energy determine the radial structure of the flow. In MHD CDAFs, convection can transport angular momentum either inward or outward, depending on properties of turbulence in rotating magnetized plasma, which are not fully understood yet. Direction of convection angular momentum transport can affect the law of rotation of MHD CDAFs.
Evolution equations for higher moments of angular momentum distributions
Hägler, P
1998-01-01
Based on a sumrule for the nucleon spin we expand quark and gluon orbital angular momentum operators and derive an evolution matrix for higher moments of the corresponding distributions. In combination with the spin-dependent DGLAP-matrix we find a complete set of spin and orbital angular momentum evolution equations.
Creating high-harmonic beams with controlled orbital angular momentum.
Gariepy, Genevieve; Leach, Jonathan; Kim, Kyung Taec; Hammond, T J; Frumker, E; Boyd, Robert W; Corkum, P B
2014-10-10
A beam with an angular-dependant phase Φ = ℓϕ about the beam axis carries an orbital angular momentum of ℓℏ per photon. Such beams are exploited to provide superresolution in microscopy. Creating extreme ultraviolet or soft-x-ray beams with controllable orbital angular momentum is a critical step towards extending superresolution to much higher spatial resolution. We show that orbital angular momentum is conserved during high-harmonic generation. Experimentally, we use a fundamental beam with |ℓ| = 1 and interferometrically determine that the harmonics each have orbital angular momentum equal to their harmonic number. Theoretically, we show how any small value of orbital angular momentum can be coupled to any harmonic in a controlled manner. Our results open a route to microscopy on the molecular, or even submolecular, scale.
Angular Distribution and Angular Dispersion in Collision of 19F+27A1 at 114 MeV
Institute of Scientific and Technical Information of China (English)
WANG Qi; Li Zhi-Chang; LU Xiu-Qin; ZHAO Kui; LIU Jian-Cheng; SERGEY Yu-Kun; DONG Yu-Chuan; LI Song-Lin; DUAN Li-Min; XU Hu-Shan; XU Hua-Gen; CHEN Ruo-Fu; WU He-Yu; HAN Jian-Long
2004-01-01
Angular distributions of fragments B, C, N, O, F, Ne, Na, Mg and Al induced by the collision of 19F+27 A1 at 114MeV have been measured. Angular dispersion parameters are extracted from the experimental data and compared with the theoretical ones. The dynamic dispersions for dissipative products depend strongly on the charge number Z of the fragments.
Liu, Lingyun; Zhang, Wenhua; Guo, Panpan; Wang, Kai; Wang, Jiaou; Qian, Haijie; Kurash, Ibrahim; Wang, Chia-Hsin; Yang, Yaw-Wen; Xu, Faqiang
2015-02-01
Molecule-substrate interaction plays a vital role in determining the electronic structures and charge transfer properties in organic-transition metal oxides (TMOs) hybridized devices. In this work, the interactions at the FePc/MoO3 interface has been investigated in detail by using synchrotron radiation photoemission spectroscopy (SRPES) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Compared with the annealing of the bare MoO3 film, the FePc adsorption is found to promote the thermal reduction of the underlying MoO3 film. XPS and NEXAFS experimental results unanimously demonstrate a strong electronic coupling between FePc molecules and the MoOx (x surfaces with potential applications in nanoscience, molecular electronics and photonics.
An orbital angular momentum spectrometer for electrons
Harvey, Tyler; Grillo, Vincenzo; McMorran, Benjamin
2016-05-01
With the advent of techniques for preparation of free-electron and neutron orbital angular momentum (OAM) states, a basic follow-up question emerges: how do we measure the orbital angular momentum state distribution in matter waves? Control of both the energy and helicity of light has produced a range of spectroscopic applications, including molecular fingerprinting and magnetization mapping. Realization of an analogous dual energy-OAM spectroscopy with matter waves demands control of both initial and final energy and orbital angular momentum states: unlike for photons, final state post-selection is necessary for particles that cannot be annihilated. We propose a magnetic field-based mechanism for quantum non-demolition measurement of electron OAM. We show that OAM-dependent lensing is produced by an operator of form U =exp iLzρ2/ℏb2 where ρ =√{x2 +y2 } is the radial position operator, Lz is the orbital angular momentum operator along z, and b is the OAM dispersion length. We can physically realize this operator as a term in the time evolution of an electron in magnetic round lens. We discuss prospects and practical challenges for implementation of a lensing orbital angular momentum measurement. This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under the Early Career Research Program Award # DE-SC0010466.
International Nuclear Information System (INIS)
Highlights: • Structural modifications in sulfur containing biomolecules were investigated. • Significant modifications were observed in insulin irradiated NEXAFS spectra. • Degradation of insulin can be observed even at low temperature. • Alterations in insulin spectrum were characterized according to the state of sulfur. - Abstract: We have performed a NEXAFS (S 1s) and mass spectrometry study of solid samples of cysteine, cystine and insulin irradiated with 0.8 keV electrons. The measured mass spectra point out to processes of desulfurization, deamination, decarbonylation and decarboxylation in the irradiated biomolecules. Electron beam irradiation was also conducted at low temperatures in order to evaluate the possible contribution from thermal degradation processes. The NEXAFS spectra of irradiated cysteine and cystine did not show substantial changes when compared to the same spectra obtained using non-irradiated samples. The sulfur K-edge photoabsorption spectrum of irradiated insulin, however, showed clear modifications when compared to the spectrum of the non-irradiated protein, even when the irradiation was conducted at low temperature. Using an empirical combination of the photoabsorption spectra of cysteine and cystine (which are associated respectively with reduced and oxidized forms of sulfur) we have been able to reproduce the absorption spectrum of irradiated insulin
Sun, Shiyong; Yao, Yanchen; Zou, Xiang; Fan, Shenglan; Zhou, Qing; Dai, Qunwei; Dong, Faqin; Liu, Mingxue; Nie, Xiaoqin; Tan, Daoyong; Li, Shuai
2014-01-01
Calcified coccolithophores generate calcium carbonate scales around their cell surface. In light of predicted climate change and the global carbon cycle, the biomineralization ability of coccoliths has received growing interest. However, the underlying biomineralization mechanism is not yet well understood; the lack of non-invasive characterizing tools to obtain molecular level information involving biogenic processes and biomineral components remain significant challenges. In the present study, synchrotron-based Nano-computed Tomography (Nano-CT) and Scanning Transmission X-ray Microscopy-Near-edge X-ray Absorption Fine Structure Spectromicroscopy (STXM-NEXAFS) techniques were employed to identify Ca spatial distribution and investigate the compositional chemistry and distinctive features of the association between biomacromolecules and mineral components of calcite present in coccoliths. The Nano-CT results show that the coccolith scale vesicle is similar as a continuous single channel. The mature coccoliths were intracellularly distributed and immediately ejected and located at the exterior surface to form a coccoshpere. The NEXAFS spectromicroscopy results of the Ca L edge clearly demonstrate the existence of two levels of gradients spatially, indicating two distinctive forms of Ca in coccoliths: a crystalline-poor layer surrounded by a relatively crystalline-rich layer. The results show that Sr is absorbed by the coccoliths and that Sr/Ca substitution is rather homogeneous within the coccoliths. Our findings indicate that synchrotron-based STXM-NEXAFS and Nano-CT are excellent tools for the study of biominerals and provide information to clarify biomineralization mechanism.
Directory of Open Access Journals (Sweden)
Shiyong Sun
2014-12-01
Full Text Available Calcified coccolithophores generate calcium carbonate scales around their cell surface. In light of predicted climate change and the global carbon cycle, the biomineralization ability of coccoliths has received growing interest. However, the underlying biomineralization mechanism is not yet well understood; the lack of non-invasive characterizing tools to obtain molecular level information involving biogenic processes and biomineral components remain significant challenges. In the present study, synchrotron-based Nano-computed Tomography (Nano-CT and Scanning Transmission X-ray Microscopy-Near-edge X-ray Absorption Fine Structure Spectromicroscopy (STXM-NEXAFS techniques were employed to identify Ca spatial distribution and investigate the compositional chemistry and distinctive features of the association between biomacromolecules and mineral components of calcite present in coccoliths. The Nano-CT results show that the coccolith scale vesicle is similar as a continuous single channel. The mature coccoliths were intracellularly distributed and immediately ejected and located at the exterior surface to form a coccoshpere. The NEXAFS spectromicroscopy results of the Ca L edge clearly demonstrate the existence of two levels of gradients spatially, indicating two distinctive forms of Ca in coccoliths: a crystalline-poor layer surrounded by a relatively crystalline-rich layer. The results show that Sr is absorbed by the coccoliths and that Sr/Ca substitution is rather homogeneous within the coccoliths. Our findings indicate that synchrotron-based STXM-NEXAFS and Nano-CT are excellent tools for the study of biominerals and provide information to clarify biomineralization mechanism.
Energy Technology Data Exchange (ETDEWEB)
Simões, G., E-mail: simoes.grazieli@gmail.com [Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, 21941-909 Rio de Janeiro (Brazil); Rodrigues, F.N. [Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, 21941-909 Rio de Janeiro (Brazil); Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Maracanã, 20270-021 Rio de Janeiro (Brazil); Bernini, R.B. [Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, 21941-909 Rio de Janeiro (Brazil); Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Duque de Caxias, 25050-100 Rio de Janeiro (Brazil); Castro, C.S.C. [Instituto Nacional de Metrologia, Qualidade e Tecnologia – Inmetro, 25250-020 Rio de Janeiro (Brazil); Souza, G.G.B. de, E-mail: gerson@iq.ufrj.br [Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, 21941-909 Rio de Janeiro (Brazil)
2014-03-01
Highlights: • Structural modifications in sulfur containing biomolecules were investigated. • Significant modifications were observed in insulin irradiated NEXAFS spectra. • Degradation of insulin can be observed even at low temperature. • Alterations in insulin spectrum were characterized according to the state of sulfur. - Abstract: We have performed a NEXAFS (S 1s) and mass spectrometry study of solid samples of cysteine, cystine and insulin irradiated with 0.8 keV electrons. The measured mass spectra point out to processes of desulfurization, deamination, decarbonylation and decarboxylation in the irradiated biomolecules. Electron beam irradiation was also conducted at low temperatures in order to evaluate the possible contribution from thermal degradation processes. The NEXAFS spectra of irradiated cysteine and cystine did not show substantial changes when compared to the same spectra obtained using non-irradiated samples. The sulfur K-edge photoabsorption spectrum of irradiated insulin, however, showed clear modifications when compared to the spectrum of the non-irradiated protein, even when the irradiation was conducted at low temperature. Using an empirical combination of the photoabsorption spectra of cysteine and cystine (which are associated respectively with reduced and oxidized forms of sulfur) we have been able to reproduce the absorption spectrum of irradiated insulin.
Quark Orbital Angular Momentum
Burkardt, Matthias
2016-06-01
Generalized parton distributions provide information on the distribution of quarks in impact parameter space. For transversely polarized nucleons, these impact parameter distributions are transversely distorted and this deviation from axial symmetry leads on average to a net transverse force from the spectators on the active quark in a DIS experiment. This force when acting along the whole trajectory of the active quark leads to transverse single-spin asymmetries. For a longitudinally polarized nucleon target, the transverse force implies a torque acting on the quark orbital angular momentum (OAM). The resulting change in OAM as the quark leaves the target equals the difference between the Jaffe-Manohar and Ji OAMs.
Vanston, Alex
2013-01-01
This book uses a practical, step-by-step approach, starting with how to build directives from the ground up before moving on to creating web applications comprised of multiple modules all working together to provide the best user experience possible.This book is intended for intermediate JavaScript developers who are looking to enhance their understanding of single-page web application development with a focus on AngularJS and the JavaScript MVC frameworks.It is expected that readers will understand basic JavaScript patterns and idioms and can recognize JSON formatted data.
Asymmetry in the angular distributions of spectator-nucleons
International Nuclear Information System (INIS)
The asymmetry in the angular distributions of spectator-nucleons has been studied in dp interactions, and it has been found that the sign of the asymmetry depends on the reaction channel. It is shown that in the momentum interval 0-200 MeV/c of spectators basic features of the angular distributions can be reproduced in the framework of the spectator model taking into account the energy dependence of the NN cross section and the flux-factor
Orbital angular momentum microlaser
Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M.; Feng, Liang
2016-07-01
Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes.
Orbital angular momentum microlaser.
Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M; Feng, Liang
2016-07-29
Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes. PMID:27471299
Angular Momentum Sharing in Dissipative Collisions
Casini, G.; Poggi, G.; Bini, M.; Calamai, S.; Maurenzig, P. R.; Olmi, A.; Pasquali, G.; Stefanini, A. A.; Taccetti, N.; Steckmeyer, J. C.; Laforest, R.; Saint-Laurent, F.
1999-09-01
Light charged particles emitted by the projectilelike fragment were measured in the direct and reverse collision of 93Nb and 116Sn at 25A MeV. The experimental multiplicities of hydrogen and helium particles as a function of the primary mass of the emitting fragment show evidence for a correlation with net mass transfer. The ratio of hydrogen and helium multiplicities points to a dependence of the angular momentum sharing on the net mass transfer.
Angular momentum sharing in dissipative collisions
Casini, G; Bini, M; Calamai, S; Maurenzig, P R; Olmi, A; Pasquali, G; Stefanini, A A; Taccetti, N; Steckmeyer, J C; Laforest, R; Saint-Laurent, F
1999-01-01
Light charged particles emitted by the projectile-like fragment were measured in the direct and reverse collision of $^{93}$Nb and $^{116}$Sn at 25 AMeV. The experimental multiplicities of Hydrogen and Helium particles as a function of the primary mass of the emitting fragment show evidence for a correlation with net mass transfer. The ratio of Hydrogen and Helium multiplicities points to a dependence of the angular momentum sharing on the net mass transfer.
Wigner distributions and quark orbital angular momentum
Cedric LorceOrsay, IPN and Orsay, LPT; Barbara Pasquini(Pavia U. and INFN, Pavia)
2015-01-01
We discuss the quark phase-space or Wigner distributions of the nucleon which combine in a single picture all the information contained in the generalized parton distributions and the transverse-momentum dependent parton distributions. In particular, we present results for the distribution of unpolarized quarks in a longitudinally polarized nucleon obtained in a light-front constituent quark model. We show how the quark orbital angular momentum can be extracted from the Wigner distributions a...
Angular Diameter Distances in Clumpy Friedmann Universes
Tomita, Kenji
1998-01-01
Solving null-geodesic equations, behavior of angular diameter distances is studied in inhomogeneous cosmological models, which are given by performing N-body simulations with the CDM spectrum. The distances depend on the separation angle of ray pairs, the mass and the radius of particles cosisting of galaxies and dark matter balls, and cosmological model parameters. The calculated distances are compared with the Dyer- Roeder distance, and after many ray-shooting, the average, dispersion and d...
Nuclear Level Density with Non-zero Angular Momentum
Institute of Scientific and Technical Information of China (English)
A.N. Behkami; M. Gholami; M. Kildir; M. Soltani
2006-01-01
The statistical properties of interacting fermions have been studied for various angular momentum with the inclusion of pairing interaction. The dependence of the critical temperature on angular momentum for several nuclei,have been studied. The yrast energy as a function of angular momentum for 28 Si and 24Mg nuclei have been calculated up to 60.0 MeV of excitation energy. The computed limiting angular momenta are compared with the experimental results for 26Al produced by 12C + 14N reaction. The relevant nuclear level densities for non-zero angular momentum have been computed for 44Ti and l36Ba nuclei. The results are compared with their corresponding values obtained from the approximateformulas.
Novel Method to Evaluate Angular Stiffness of Prosthetic Feet From Linear Compression Tests
Adamczyk, Peter G.; Roland, Michelle; Hahn, Michael E.
2013-01-01
Lower limb amputee gait during stance phase is related to the angular stiffness of the prosthetic foot, which describes the dependence of ankle torque on angular progression of the shank. However, there is little data on angular stiffness of prosthetic feet, and no method to directly measure it has been described. The objective of this study was to derive and evaluate a method to estimate the angular stiffness of prosthetic feet using a simple linear compression test. Linear vertical compress...
Intrinsic Angular Momentum of Light.
Santarelli, Vincent
1979-01-01
Derives a familiar torque-angular momentum theorem for the electromagnetic field, and includes the intrinsic torques exerted by the fields on the polarized medium. This inclusion leads to the expressions for the intrinsic angular momentum carried by the radiation traveling through a charge-free medium. (Author/MA)
Li, Panyun; Zhang, Kai; Bao, Yuan; Ren, Yuqi; Ju, Zaiqiang; Wang, Yan; He, Qili; Zhu, Zhongzhu; Huang, Wanxia; Yuan, Qingxi; Zhu, Peiping
2016-03-21
Microscopy techniques using visible photons, x-rays, neutrons, and electrons have made remarkable impact in many scientific disciplines. The microscopic data can often be expressed as the convolution of the spatial distribution of certain properties of the specimens and the inherent response function of the imaging system. The x-ray grating interferometer (XGI), which is sensitive to the deviation angle of the incoming x-rays, has attracted significant attention in the past years due to its capability in achieving x-ray phase contrast imaging with low brilliance source. However, the comprehensive and analytical theoretical framework is yet to be presented. Herein, we propose a theoretical framework termed angular signal radiography (ASR) to describe the imaging process of the XGI system in a classical, comprehensive and analytical manner. We demonstrated, by means of theoretical deduction and synchrotron based experiments, that the spatial distribution of specimens' physical properties, including absorption, refraction and scattering, can be extracted by ASR in XGI. Implementation of ASR in XGI offers advantages such as simplified phase retrieval algorithm, reduced overall radiation dose, and improved image acquisition speed. These advantages, as well as the limitations of the proposed method, are systematically investigated in this paper. PMID:27136780
Structural elucidation of active layers in organic electronic devices via NEXAFS
Energy Technology Data Exchange (ETDEWEB)
Loo, Y-L, E-mail: lloo@princeton.edu [Chemical and Biological Engineering Department, Princeton University, Princeton NJ 08544-5263 (United States)
2010-11-15
The electrically-active thin films within organic electronic devices are structurally complex; the details of which depend strongly on both inherent materials properties as well as processing history. Given structural heterogeneities within such electrically-active thin films can influence device characteristics dramatically, understanding - and ultimately, controlling - structural development is a necessary precursor to producing reliable and high-performance electronic devices. Highlighted herein are several examples from our laboratories in which synchrotron soft x-rays based near-edge x-ray absorption fine structure spectroscopy is used to elucidate (i) ensemble-average molecular orientation (ii) relative surface coverage and (iii) vertical compositional profile in such electrically-active thin films.
Yancey Piens, D.; Kelly, S. T.; OBrien, R. E.; Wang, B.; Petters, M. D.; Laskin, A.; Gilles, M. K.
2014-12-01
The hygroscopic behavior of atmospheric aerosols influences their optical and cloud-nucleation properties, and therefore affects climate. Although changes in particle size as a function of relative humidity have often been used to quantify the hygroscopic behavior of submicron aerosol particles, it has been noted that calculations of hygroscopicity based on size contain error due to particle porosity, non-ideal volume additivity and changes in surface tension. We will present a method to quantify the hygroscopic behavior of submicron aerosol particles based on changes in mass, rather than size, as a function of relative humidity. This method results from a novel experimental approach combining scanning transmission x-ray microscopy with near-edge x-ray absorption fine spectroscopy (STXM/NEXAFS), as well as scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM/EDX) on the same individual particles. First, using STXM/NEXAFS, our methods are applied to aerosol particles of known composition ‒ for instance ammonium sulfate, sodium bromide and levoglucosan ‒ and validated by theory. Then, using STXM/NEXAFS and SEM/EDX, these methods are extended to mixed atmospheric aerosol particles collected in the field at the DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility at the Southern Great Planes sampling site in Oklahoma, USA. We have observed and quantified a range of hygroscopic behaviors which are correlated to the composition and morphology of individual aerosol particles. These methods will have implications for parameterizing aerosol mixing state and cloud-nucleation activity in atmospheric models.
Control of Angular Intervals for Angle-Multiplexed Holographic Memory
Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Shimidzu, Naoki
2009-03-01
In angle-multiplexed holographic memory, the full width at half maximum of the Bragg selectivity curves is dependent on the angle formed between the medium and incident laser beams. This indicates the possibility of high density and high multiplexing number by varying the angular intervals between adjacent holograms. We propose an angular interval scheduling for closely stacking holograms into medium even when the angle range is limited. We obtained bit error rates of the order of 10-4 under the following conditions: medium thickness of 1 mm, laser beam wavelength of 532 nm, and angular multiplexing number of 300.
The pretzelosity TMD and quark orbital angular momentum
Energy Technology Data Exchange (ETDEWEB)
Lorce, C. [IPNO, Universite Paris-Sud, CNRS/IN2P3, 91406 Orsay (France); LPT, Universite Paris-Sud, CNRS, 91406 Orsay (France); Pasquini, B., E-mail: pasquini@pv.infn.it [Dipartimento di Fisica, Universita degli Studi di Pavia, Pavia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia (Italy)
2012-04-12
We study the connection between the quark orbital angular momentum and the pretzelosity transverse-momentum dependent parton distribution function. We discuss the origin of this relation in quark models, identifying as key ingredient for its validity the assumption of spherical symmetry for the nucleon in its rest frame. Finally we show that the individual quark contributions to the orbital angular momentum obtained from this relation cannot be interpreted as the intrinsic contributions, but include the contribution from the transverse centre of momentum which cancels out only in the total orbital angular momentum.
Comparative study of the structure of a-CN x and a-CN x:H films using NEXAFS, XPS and FT-IR analysis
International Nuclear Information System (INIS)
Amorphous carbon nitride thin films have become a matter of great attention due to their remarkable electronic and mechanical properties. It has been shown that hydrogen and nitrogen incorporation deeply modifies the properties of carbon films. Therefore, the optimization of their properties requires a deep knowledge of various kind of chemical bonds composing in the film matrix. The topic of this presentation is to get more insight into the different local environment of the C and N atoms for hydrogenated and hydrogen-free amorphous carbon nitrides films. H-incorporation has been varied using different deposition technique from plasma-enhanced chemical vapor deposition (PECVD) leading to highly hydrogenated films up to 40 at.% to radio-frequency (RF) magnetron sputtering providing nearly hydrogen-free films. The study of the local structure is done using the combination of Fourier transform infrared (FT-IR), X-ray photo-emission spectroscopy (XPS) and high resolution near edge X-ray absorption fine structure (NEXAFS) analysis. FT-IR spectroscopy is widely used to probe the bonding configurations in the carbonaceous materials, especially the C≡N, C-H and N-H bonds in a-CN x:H. In addition, XPS and NEXAFS provide surface information on the environment around C and N atoms and on the chemical composition. NEXAFS gives a better description of the π* states inside the films, due to its remarkable energy resolution. The combination of both characterizations FT-IR and NEXAFS may leave the controversy about the interpretation of the XPS spectra, and allows a fine analysis of the evolution of the local structure as a function of nitrogen incorporation, according to the hydrogen concentration into the films. Fundamental differences can be revealed between hydrogenated and hydrogen-free carbon nitride: in the former, hydrogen promotes double bonds C=N-H, whereas in the latter nitrogen atoms prefer to substitute to carbon or interconnect aromatic rings through single bonds
Effect of angular momentum conservation on hydrodynamic simulations of colloids.
Yang, Mingcheng; Theers, Mario; Hu, Jinglei; Gompper, Gerhard; Winkler, Roland G; Ripoll, Marisol
2015-07-01
In contrast to most real fluids, angular momentum is not a locally conserved quantity in some mesoscopic simulation methods. Here we quantify the importance of this conservation in the flow fields associated with different colloidal systems. The flow field is analytically calculated with and without angular momentum conservation for the multiparticle collision dynamics (MPC) method, and simulations are performed to verify the predictions. The flow field generated around a colloidal particle moving under an external force with slip boundary conditions depends on the conservation of angular momentum, and the amplitude of the friction force is substantially affected. Interestingly, no dependence on the angular momentum conservation is found for the flow fields generated around colloids under the influence of phoretic forces. Moreover, circular Couette flow between a no-slip and a slip cylinder is investigated, which allows us to validate one of the two existing expressions for the MPC stress tensor.
Angular momentum evolution for galaxies
Pedrosa, Susana
2015-01-01
Using cosmological hydrodynamics simulations we study the angular momentum content of the simulated galaxies in relation with their morphological type. We found that not only the angular momentum of the disk component follow the expected theoretical relation, Mo, Mao & Whiye (1998), but also the spheroidal one, with a gap due to its lost of angular momentum, in agreement with Fall & Romanowsky (2013),. We also found that the galaxy size can plot in one general relation, despite the morphological type, as found by Kravtsov (2013).
Bailey, Simon
2015-01-01
This book is intended for developers who have an understanding of the basic principles behind both AngularJS and test-driven development. You, as a developer, are interested in eliminating the fear related to either introducing tests to an existing codebase or starting out testing on a fresh AngularJS application. If you're a team leader or part of a QA team with the responsibility of ensuring full test coverage of an application, then this book is ideal for you to comprehend the full testing scope required by your developers. Whether you're new to or are well versed with AngularJS, this book
The integration of angular velocity
Boyle, Michael
2016-01-01
A common problem in physics and engineering is determination of the orientation of an object given its angular velocity. When the direction of the angular velocity changes in time, this is a nontrivial problem involving coupled differential equations. Several possible approaches are examined, along with various improvements over previous efforts. These are then evaluated numerically by comparison to a complicated but analytically known rotation that is motivated by the important astrophysical...
Achromatic orbital angular momentum generator
Bouchard, Frédéric; Mand, Harjaspreet; Mirhosseini, Mohammad; Karimi, Ebrahim; Boyd, Robert W
2014-01-01
We describe a novel approach for generating light beams that carry orbital angular momentum (OAM) by means of total internal reflection in an isotropic medium. A continuous space-varying cylindrically symmetric reflector, in the form of \\textit{two glued hollow axicons}, is used to introduce a nonuniform rotation of polarisation into a linearly polarised input beam. This device acts as a full spin-to-orbital angular momentum convertor. It functions by switching the helicity of the incoming be...
Chernenkaya, A.; Morherr, A.; Backes, S.; Popp, W.; Witt, S.; Kozina, X.; Nepijko, S. A.; Bolte, M.; Medjanik, K.; Öhrwall, G.; Krellner, C.; Baumgarten, M.; Elmers, H. J.; Schönhense, G.; Jeschke, H. O.; Valentí, R.
2016-07-01
We have investigated the charge transfer mechanism in single crystals of DTBDT-TCNQ and DTBDT-F4TCNQ (where DTBDT is dithieno[2,3-d;2',3'-d'] benzo[1,2-b;4,5-b']dithiophene) using a combination of near-edge X-ray absorption spectroscopy (NEXAFS) and density functional theory calculations (DFT) including final state effects beyond the sudden state approximation. In particular, we find that a description that considers the partial screening of the electron-hole Coulomb correlation on a static level as well as the rearrangement of electronic density shows excellent agreement with experiment and allows to uncover the details of the charge transfer mechanism in DTBDT-TCNQ and DTBDT-F4 TCNQ, as well as a reinterpretation of previous NEXAFS data on pure TCNQ. Finally, we further show that almost the same quality of agreement between theoretical results and experiment is obtained by the much faster Z+1/2 approximation, where the core hole effects are simulated by replacing N or F with atomic number Z with the neighboring atom with atomic number Z+1/2.
Energy Technology Data Exchange (ETDEWEB)
Brumboiu, Iulia Emilia, E-mail: iulia.brumboiu@physics.uu.se; Eriksson, Olle; Brena, Barbara [Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala (Sweden); Ericsson, Leif; Hansson, Rickard; Moons, Ellen [Department of Engineering and Physics, Karlstad University, SE-65188 Karlstad (Sweden)
2015-02-07
Fullerenes have been a main focus of scientific research since their discovery due to the interesting possible applications in various fields like organic photovoltaics (OPVs). In particular, the derivative [6,6]-phenyl-C{sub 60}-butyric acid methyl ester (PCBM) is currently one of the most popular choices due to its higher solubility in organic solvents compared to unsubstituted C{sub 60}. One of the central issues in the field of OPVs is device stability, since modules undergo deterioration (losses in efficiency, open circuit voltage, and short circuit current) during operation. In the case of fullerenes, several possibilities have been proposed, including dimerization, oxidation, and impurity related deterioration. We have studied by means of density functional theory the possibility of oxygen adsorption on the C{sub 60} molecular moiety of PCBM. The aim is to provide guidelines for near edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) measurements which can probe the presence of atomic or molecular oxygen on the fullerene cage. By analysing several configurations of PCBM with one or more adsorbed oxygen atoms, we show that a joint core level XPS and O1s NEXAFS investigation could be effectively used not only to confirm oxygen adsorption but also to pinpoint the bonding configuration and the nature of the adsorbate.
Chernenkaya, A; Morherr, A; Backes, S; Popp, W; Witt, S; Kozina, X; Nepijko, S A; Bolte, M; Medjanik, K; Öhrwall, G; Krellner, C; Baumgarten, M; Elmers, H J; Schönhense, G; Jeschke, H O; Valentí, R
2016-07-21
We have investigated the charge transfer mechanism in single crystals of DTBDT-TCNQ and DTBDT-F4TCNQ (where DTBDT is dithieno[2,3-d;2',3'-d'] benzo[1,2-b;4,5-b']dithiophene) using a combination of near-edge X-ray absorption spectroscopy (NEXAFS) and density functional theory calculations (DFT) including final state effects beyond the sudden state approximation. In particular, we find that a description that considers the partial screening of the electron-hole Coulomb correlation on a static level as well as the rearrangement of electronic density shows excellent agreement with experiment and allows to uncover the details of the charge transfer mechanism in DTBDT-TCNQ and DTBDT-F4 TCNQ, as well as a reinterpretation of previous NEXAFS data on pure TCNQ. Finally, we further show that almost the same quality of agreement between theoretical results and experiment is obtained by the much faster Z+1/2 approximation, where the core hole effects are simulated by replacing N or F with atomic number Z with the neighboring atom with atomic number Z+1/2.
Orbital angular momentum of the laser beam and the second order intensity moments
Institute of Scientific and Technical Information of China (English)
高春清[1; 魏光辉[2; HorstWeber[3
2000-01-01
From the wave equation of a generalized beam the orbital angular momentum is studied. It is shown that the orbital angular momentum exists not only in the Laguerre-Gaussian beam, but in any beam with an angular-dependent structure. By calculating the second order intensity moments of the beam the relation between the orbital angular momentum and the second order moments 〈xθy〉, 〈yθx〉 is given. As an example the orbital angular momentum of the general astigmatic Gaussian beam is studied.
Orbital angular momentum of the laser beam and the second order intensity moments
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
From the wave equation of a generalized beam the orbital angular momentum is studied. It is shown that the orbital angular momentum exists not only in the Laguerre_Gaussian beam,but in any beam with an angular_dependent structure. By calculating the second order intensity moments of the beam the relation between the orbital angular momentum and the second order moments 〈xθy〉, 〈yθx〉 is given. As an example the orbital angular momentum of the general astigmatic Gaussian beam is studied.
Stellar Diameters and Temperatures IV. Predicting Stellar Angular Diameters
Boyajian, Tabetha; von Braun, Kaspar
2013-01-01
The number of stellar angular diameter measurements has greatly increased over the past few years due to innovations and developments in the field of long baseline optical interferometry (LBOI). We use a collection of high-precision angular diameter measurements for nearby, main-sequence stars to develop empirical relations that allow the prediction of stellar angular sizes as a function of observed photometric color. These relations are presented for a combination of 48 broad-band color indices. We empirically show for the first time a dependence on metallicity to these relations using Johnson $(B-V)$ and Sloan $(g-r)$ colors. Our relations are capable of predicting diameters with a random error of less than 5% and represent the most robust and empirical determinations to stellar angular sizes to date.
Quantum optimal control of photoelectron spectra and angular distributions
Goetz, R Esteban; Santra, Robin; Koch, Christiane P
2016-01-01
Photoelectron spectra and photoelectron angular distributions obtained in photoionization reveal important information on e.g. charge transfer or hole coherence in the parent ion. Here we show that optimal control of the underlying quantum dynamics can be used to enhance desired features in the photoelectron spectra and angular distributions. To this end, we combine Krotov's method for optimal control theory with the time-dependent configuration interaction singles formalism and a splitting approach to calculate photoelectron spectra and angular distributions. The optimization target can account for specific desired properties in the photoelectron angular distribution alone, in the photoelectron spectrum, or in both. We demonstrate the method for hydrogen and then apply it to argon under strong XUV radiation, maximizing the difference of emission into the upper and lower hemispheres, in order to realize directed electron emission in the XUV regime.
Quantum optimal control of photoelectron spectra and angular distributions
Goetz, R. Esteban; Karamatskou, Antonia; Santra, Robin; Koch, Christiane P.
2016-01-01
Photoelectron spectra and photoelectron angular distributions obtained in photoionization reveal important information on, e.g., charge transfer or hole coherence in the parent ion. Here we show that optimal control of the underlying quantum dynamics can be used to enhance desired features in the photoelectron spectra and angular distributions. To this end, we combine Krotov's method for optimal control theory with the time-dependent configuration interaction singles formalism and a splitting approach to calculate photoelectron spectra and angular distributions. The optimization target can account for specific desired properties in the photoelectron angular distribution alone, in the photoelectron spectrum, or in both. We demonstrate the method for hydrogen and then apply it to argon under strong XUV radiation, maximizing the difference of emission into the upper and lower hemispheres, in order to realize directed electron emission in the XUV regime.
All joint moments significantly contribute to trunk angular acceleration.
Nott, Cameron R; Zajac, Felix E; Neptune, Richard R; Kautz, Steven A
2010-09-17
Computationally advanced biomechanical analyses of gait demonstrate the often counter-intuitive roles of joint moments on various aspects of gait such as propulsion, swing initiation, and balance. Each joint moment can produce linear and angular acceleration of all body segments (including those on which the moment does not directly act) due to the dynamic coupling inherent in the interconnected musculoskeletal system. This study presents quantitative relationships between individual joint moments and trunk control with respect to balance during gait to show that the ankle, knee, and hip joint moments all affect the angular acceleration of the trunk. We show that trunk angular acceleration is affected by all joints in the leg with varying degrees of dependence during the gait cycle. Furthermore, it is shown that inter-planar coupling exists and a two-dimensional analysis of trunk balance neglects important out-of-plane joint moments that affect trunk angular acceleration.
Angular Distributions of Discrete Mesoscale Mapping Functions
Directory of Open Access Journals (Sweden)
Kroszczyński Krzysztof
2015-08-01
Full Text Available The paper presents the results of analyses of numerical experiments concerning GPS signal propagation delays in the atmosphere and the discrete mapping functions defined on their basis. The delays were determined using data from the mesoscale non-hydrostatic weather model operated in the Centre of Applied Geomatics, Military University of Technology. A special attention was paid to investigating angular characteristics of GPS slant delays for low angles of elevation. The investigation proved that the temporal and spatial variability of the slant delays depends to a large extent on current weather conditions
Angular Diameter Distances in Clumpy Friedmann Universes
Tomita, K
1998-01-01
Solving null-geodesic equations, behavior of angular diameter distances is studied in inhomogeneous cosmological models, which are given by performing N-body simulations with the CDM spectrum. The distances depend on the separation angle of ray pairs, the mass and the radius of particles cosisting of galaxies and dark matter balls, and cosmological model parameters. The calculated distances are compared with the Dyer- Roeder distance, and after many ray-shooting, the average, dispersion and distribution of the clumpiness parameter are derived.
Factors influencing perceived angular velocity
Kaiser, Mary K.; Calderone, Jack B.
1991-01-01
Angular velocity perception is examined for rotations both in depth and in the image plane and the influence of several object properties on this motion parameter is explored. Two major object properties are considered, namely, texture density which determines the rate of edge transitions for rotations in depth, i.e., the number of texture elements that pass an object's boundary per unit of time, and object size which determines the tangential linear velocities and 2D image velocities of texture elements for a given angular velocity. Results of experiments show that edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities had an impact on perceived angular velocity; this bias was associated with 2D image velocity rather than 3D tangential velocity. Despite these biases judgements were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter appeared to be good for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).
Achromatic orbital angular momentum generator
Bouchard, Frédéric; Mirhosseini, Mohammad; Karimi, Ebrahim; Boyd, Robert W
2014-01-01
We describe a novel approach for generating light beams that carry orbital angular momentum (OAM) by means of total internal reflection in an isotropic medium. A continuous space-varying cylindrically symmetric reflector, in the form of \\textit{two glued hollow axicons}, is used to introduce a nonuniform rotation of polarisation into a linearly polarised input beam. This device acts as a full spin-to-orbital angular momentum convertor. It functions by switching the helicity of the incoming beam's polarisation, and by conservation of total angular momentum thereby generates a well-defined value of OAM. Our device is broadband, since the phase shift due to total internal reflection is nearly independent of wavelength. We verify the broad-band behaviour by measuring the conversion efficiency of the device for three different wavelengths corresponding to the RGB colours, red, green and blue. An average conversion efficiency of $95\\%$ for these three different wavelengths is observed. %, which confirms its wavelen...
A Stern-Gerlach-like approach to electron orbital angular momentum measurement
Harvey, Tyler R
2016-01-01
Many methods now exist to prepare free electrons into orbital angular momentum states, and the predicted applications of these electron states as probes of materials and scattering processes are numerous. The development of electron orbital angular momentum measurement techniques has lagged behind. We show that coupling between electron orbital angular momentum and a spatially varying magnetic field produces an angular momentum-dependent focusing effect. We propose a design for an orbital angular momentum measurement device built on this principle. As the method of measurement is non-interferometric, the device works equally well for mixed, superposed and pure final orbital angular momentum states. The energy and orbital angular momentum distributions of inelastically scattered electrons may be simultaneously measurable with this technique.
Angular momentum in human walking.
Herr, Hugh; Popovic, Marko
2008-02-01
Angular momentum is a conserved physical quantity for isolated systems where no external moments act about a body's center of mass (CM). However, in the case of legged locomotion, where the body interacts with the environment (ground reaction forces), there is no a priori reason for this relationship to hold. A key hypothesis in this paper is that angular momentum is highly regulated throughout the walking cycle about all three spatial directions [|Lt| approximately 0], and therefore horizontal ground reaction forces and the center of pressure trajectory can be explained predominantly through an analysis that assumes zero net moment about the body's CM. Using a 16-segment human model and gait data for 10 study participants, we found that calculated zero-moment forces closely match experimental values (Rx2=0.91; Ry2=0.90). Additionally, the centroidal moment pivot (point where a line parallel to the ground reaction force, passing through the CM, intersects the ground) never leaves the ground support base, highlighting how closely the body regulates angular momentum. Principal component analysis was used to examine segmental contributions to whole-body angular momentum. We found that whole-body angular momentum is small, despite substantial segmental momenta, indicating large segment-to-segment cancellations ( approximately 95% medio-lateral, approximately 70% anterior-posterior and approximately 80% vertical). Specifically, we show that adjacent leg-segment momenta are balanced in the medio-lateral direction (left foot momentum cancels right foot momentum, etc.). Further, pelvis and abdomen momenta are balanced by leg, chest and head momenta in the anterior-posterior direction, and leg momentum is balanced by upper-body momentum in the vertical direction. Finally, we discuss the determinants of gait in the context of these segment-to-segment cancellations of angular momentum.
Solomon, Dawit; Lehmann, Johannes; Wang, Jian; Kinyangi, James; Heymann, Karen; Lu, Yingshen; Wirick, Sue; Jacobsen, Chris
2012-11-01
Black C is an essential component of the terrestrial C pool and its formation is often credited as a CO(2) sink by transferring the fast-cycling C from the atmosphere-biosphere system into slower cycling C in the geosphere. This study is the first multi-element K- (C, N, Ca, Fe, Al and Si) soft-X-ray STXM-NEXAFS investigation conducted at a submicron-scale spatial resolution specifically targeting black C and its interaction with the mineral and non-black C organic matter in the organomineral assemblage. The STXM-NEXAFS micrographs and spectra demonstrated that pyrogenic C was dominated by quinoide, aromatic, phenol, ketone, alcohol, carboxylic and hydroxylated- and ether-linked C species. There was also evidence for the presence of pyridinic, pyridonic, pyrrolic, amine and nitril N functionalities. The non-black C organic matter contained amino acids, amino sugars, nucleic acids and polysaccharides known to exhibit negatively charged carboxylic, phenolic, enolic, thiolate and phosphate functionalities highly reactive towards metal ions and black C. The metal-rich mineral matrix was composed of phyllosilicate clay minerals, Fe and Al hydroxypolycations, oxides, hydroxides and oxyhydroxide that can attract and bind organic biopolymers. STXM-NEXAFS provided evidence for interactive association between pyrogenic C, non-black C organic matter and the mineral oxide and oxyhydroxide communities in the organomineral interface. These intimate associations occurred through a "two-way" direct linkage between black C and the mineral or non-black C organic matter or via a "three-way" indirect association where non-black C organic matter could serve as a molecular cross-linking agent binding black C with the mineral matrix or vice versa where inorganic oxides, hydroxides and polycations could act as a bridge to bind black C with non-black C organic matter. The binding and sequestration of black C in the investigated micro- and nano-C repository environments seem to be the
Non-Colinearity of Angular Velocity and Angular Momentum
Burr, A. F.
1974-01-01
Discusses the principles, construction, and operation of an apparatus which serves to demonstrate the non-colinearity of the angular velocity and momentum vectors as well as the inertial tensors. Applications of the apparatus to teaching of advanced undergraduate mechanics courses are recommended. (CC)
Schmidt, Norman; Fink, Rainer; Hieringer, Wolfgang
2010-08-01
The C 1s and N 1s near-edge x-ray absorption fine structure (NEXAFS) spectra of three prototype tetraphenyl porphyrin (TPP) molecules are discussed in the framework of a combined experimental and theoretical study. We employ time-dependent density-functional theory (TDDFT) to compute the NEXAFS spectra of the open- and closed-shell metalloporphyrins CoTPP and ZnTPP as well as the free-base 2HTPP in realistic nonplanar conformations. Using Becke's well-known half-and-half hybrid functional, the computed core excitation spectra are mostly in good agreement with the experimental data in the low-energy region below the appropriate ionization threshold. To make these calculations feasible, we apply a new, simple scheme based on TDDFT using a modified single-particle input spectrum. This scheme is very easy to implement in standard codes and allows one to compute core excitation spectra at a similar cost as ordinary UV/vis spectra even for larger molecules. We employ these calculations for a detailed assignment of the NEXAFS spectra including subtle shifts in certain peaks of the N 1s spectra, which depend on the central coordination of the TPP ligand. We furthermore assign the observed NEXAFS resonances to the individual molecular subunits of the investigated TPP molecules.
Olympic Wrestling and Angular Momentum.
Carle, Mark
1988-01-01
Reported is the use of a wrestling photograph in a noncalculus introductory physics course. The photograph presents a maneuver that could serve as an example for a discussion on equilibrium, forces, torque, and angular motion. Provided are some qualitative thoughts as well as quantitative calculations. (YP)
Turbodrill rod angular velocity indicator
Energy Technology Data Exchange (ETDEWEB)
Rogachev, O.K.; Belozerova, L.P.; Konenkov, A.K.
1984-01-01
This paper outlines shortcomings of existing types of telemetry systems which resulted in production of the IChT-1 unit. Unit is intended for control of angular velocity of serially produced turbodrill rods, during drilling of wells up to 5000 m deep, and bottomhole temperatures to 100C. The paper provides a detailed description and diagrams for installing this unit.
Angular trapping of anisometric nano-objects in a fluid.
Celebrano, Michele; Rosman, Christina; Sönnichsen, Carsten; Krishnan, Madhavi
2012-11-14
We demonstrate the ability to trap, levitate, and orient single anisometric nanoscale objects with high angular precision in a fluid. An electrostatic fluidic trap confines a spherical object at a spatial location defined by the minimum of the electrostatic system free energy. For an anisometric object and a potential well lacking angular symmetry, the system free energy can further strongly depend on the object's orientation in the trap. Engineering the morphology of the trap thus enables precise spatial and angular confinement of a single levitating nano-object, and the process can be massively parallelized. Since the physics of the trap depends strongly on the surface charge of the object, the method is insensitive to the object's dielectric function. Furthermore, levitation of the assembled objects renders them amenable to individual manipulation using externally applied optical, electrical, or hydrodynamic fields, raising prospects for reconfigurable chip-based nano-object assemblies. PMID:23016893
Angular distributions for two-photon double ionization of lithium
Armstrong, G. S. J.; Colgan, J.
2012-08-01
We present angular distributions for two-photon double ionization of lithium at photon energies of 50 eV (λ = 25 nm) and 59 eV (λ = 21 nm). The results are obtained from full-dimensional solution of the two-active-electron time-dependent Schrödinger equation using the time-dependent close-coupling method. We investigate two different double ionization mechanisms. First, we consider direct double ionization of the Li ground state following the absorption of two photons. Secondly, we consider an initial photoexcitation of the 1s2s2p doubly excited state, followed by photoionization of the 2s and 2p electrons. We find significant differences between the angular distributions obtained for these two distinct processes. We also compare the characteristics of the angular distributions for Li with those of other two-electron atoms.
International Nuclear Information System (INIS)
We performed the simulation of near edge X-ray absorption fine structure (NEXAFS) spectra of a photo-reactive copolymer with considerably large monomer units by ab initio molecular orbital calculation, in order to explain the spectral change induced by irradiation of the linearly polarized near ultra-violet (LPNUV) light. The 'building block approach' is applied for the theoretical calculation to calculate the core-excited states of the polymer with such large monomer units; the monomer unit is divided into subunits, whose core-excited states are calculated individually, and the results are summed up to simulate the spectra of the polymer. With the result of the simulation, the peaks in the observed spectra were assigned. The spectral change after the LPNUV-irradiation is attributed to the change in the electronic structure caused by the breakdown of the π-conjugation system of chalconyl group after photo-dimerization
Gautam, Subodh K; Das, Arkaprava; Ojha, S; Shukla, D K; Phase, D M; Singh, Fouran
2016-02-01
The electronic structure and tuning of work function (WF) by electronic excitations (EEs) induced by swift heavy ions (SHIs) in anatase niobium-doped titanium dioxide (NTO) thin films is reported. The densities of EEs were varied using 80 MeV O, 130 MeV Ni and 120 MeV Ag ions for irradiation. The EE-induced modifications in electronic structure were studied by O K-edge and Ti L3,2 edge absorption spectra using near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The reduction of hybridized O 2p and Ti 3d unoccupied states in the conduction band with a decrease in energy of the crystal field strength of ∼ 480 meV and the correlated effect on the decrease in the WF value of ∼ 520 meV upon increasing the total energy deposition in the lattice are evident from the study of NEXAFS and scanning Kelvin probe microscopy (SKPM), respectively. The observed stiffening in the low frequency Raman mode (LFRM) of ∼ 9 cm(-1) further validates the electronic structure modification under the influence of EE-induced strain in TiO6 octahedra. The reduction of hybridized valence states, stiffening behavior of LFRM and decrease in WF by nano-crystallization followed by amorphization and defects in NTO lattice are explained in terms of continuous, discontinuous amorphous ion tracks containing intestinally created defects and non-stoichiometry in the lattice. These studies are very appropriate for better insights of electronic structure modification during phase transformation and controlled Fermi level shifting, which plays a crucial role in controlling the charge carrier injection efficiency in opto-electronic applications and also provides a deeper understanding of the involved physical processes. PMID:26752253
Angular Momentum Transfer in Catastrophic Asteroid Impacts
Love, S. G.; Ahrens, T. J.
1996-09-01
Incomplete knowledge of angular momentum transfer in asteroid impacts has hampered efforts to deduce asteroid collisional histories from their rotation rates. This problem traditionally has been investigated using impact experiments on cm-scale, strength-dominated targets. Recent evidence, however, indicates that impacts on asteroids of km size and larger may be controlled by gravity rather than strength, and that the analogy to laboratory impacts may not hold. Accordingly, we have modelled catastrophic impacts on gravitating asteroids to better understand angular momentum transfer in such events. We employ a 3--D, strengthless, gravitating SPH computer code. Target bodies are 10 to 1000 km in diameter and do not initially rotate. Impact speeds are 3--7 km/s; impact angles are 15--75(deg) . Each target is composed of 1791 mass elements: spatial resolution is coarse but acceptable for large scale energy transfer. We simulate the hydrodynamic phase of each impact, after which particle motions are ballistic and treated analytically. Escaping particles have kinetic energy greater than the gravitational energy binding them to the rest of the system; the others reaccrete to form a ``rubble pile'' which is assumed spherical. The rubble pile's size, mass, and angular momentum define its rotation rate. Spin rates for ejected fragments cannot be determined. The target's final spin period depends on the impact angle and the fraction of target mass ejected, but not on impact speed or target size in the ranges tested. The lack of size dependence cannot explain the observed excess of slowly rotating asteroids of ~ 100 km diameter. The fraction of projectile angular momentum retained by the target varies dramatically with impact speed and angle and with target size and fraction of mass removed, complicating its use in models where collision geometry varies. The final spin period of an asteroid losing 50% of its mass is 6--10 hours, comparable to the asteroidal mean of 8 hours
Plate tectonics conserves angular momentum
Directory of Open Access Journals (Sweden)
C. Bowin
2009-03-01
Full Text Available A new combined understanding of plate tectonics, Earth internal structure, and the role of impulse in deformation of the Earth's crust is presented. Plate accelerations and decelerations have been revealed by iterative filtering of the quaternion history for the Euler poles that define absolute plate motion history for the past 68 million years, and provide an unprecedented precision for plate angular rotation variations with time at 2-million year intervals. Stage poles represent the angular rotation of a plate's motion between adjacent Euler poles, and from which the maximum velocity vector for a plate can be determined. The consistent maximum velocity variations, in turn, yield consistent estimates of plate accelerations and decelerations. The fact that the Pacific plate was shown to accelerate and decelerate, implied that conservation of plate tectonic angular momentum must be globally conserved, and that is confirmed by the results shown here (total angular momentum ~1.4 E+27 kgm^{2}s^{−1}. Accordingly, if a plate decelerates, other plates must increase their angular momentums to compensate. In addition, the azimuth of the maximum velocity vectors yields clues as to why the "bend" in the Emperor-Hawaiian seamount trend occurred near 46 Myr. This report summarizes processing results for 12 of the 14 major tectonic plates of the Earth (except for the Juan de Fuca and Philippine plates. Plate accelerations support the contention that plate tectonics is a product of torques that most likely are sustained by the sinking of positive density anomalies due to phase changes in subducted gabbroic lithosphere at depth in the upper lower mantle (above 1200 km depth. The tectonic plates are pulled along by the sinking of these positive mass anomalies, rather than moving at near constant velocity on the crests of convection cells driven by rising heat. These results imply that spreading centers are primarily passive reactive
AngularJS test-driven development
Chaplin, Tim
2015-01-01
This book is for developers who want to learn about AngularJS development by applying testing techniques. You are assumed to have a basic knowledge and understanding of HTML, JavaScript, and AngularJS.
Orbital angular momentum in phase space
Rigas, I.; Sanchez-Soto, L. L.; Klimov, A. B.; Rehacek, J.; Hradil, Z.
2010-01-01
A comprehensive theory of the Weyl-Wigner formalism for the canonical pair angle-angular momentum is presented. Special attention is paid to the problems linked to rotational periodicity and angular-momentum discreteness.
Phonons with orbital angular momentum
Energy Technology Data Exchange (ETDEWEB)
Ayub, M. K. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Ali, S. [National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Mendonca, J. T. [IPFN, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)
2011-10-15
Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.
On Dunkl angular momenta algebra
Feigin, Misha; Hakobyan, Tigran
2015-11-01
We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl( N ) version of the subalge-bra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.
Angular momentum in QGP holography
Directory of Open Access Journals (Sweden)
Brett McInnes
2014-10-01
Full Text Available The quark chemical potential is one of the fundamental parameters describing the quark–gluon plasma produced by sufficiently energetic heavy-ion collisions. It is not large at the extremely high temperatures probed by the LHC, but it plays a key role in discussions of the beam energy scan programmes at the RHIC and other facilities. On the other hand, collisions at such energies typically (that is, in peripheral collisions give rise to very high values of the angular momentum density. Here we explain that holographic estimates of the quark chemical potential of a rotating sample of plasma can be very considerably improved by taking the angular momentum into account.
The integration of angular velocity
Boyle, Michael
2016-01-01
A common problem in physics and engineering is determination of the orientation of an object given its angular velocity. When the direction of the angular velocity changes in time, this is a nontrivial problem involving coupled differential equations. Several possible approaches are examined, along with various improvements over previous efforts. These are then evaluated numerically by comparison to a complicated but analytically known rotation that is motivated by the important astrophysical problem of precessing black-hole binaries. It is shown that a straightforward solution directly using quaternions is most efficient and accurate, and that the norm of the quaternion is irrelevant. Integration of the generator of the rotation can also be made roughly as efficient as integration of the rotation. Both methods will typically be twice as efficient naive vector- or matrix-based methods. Implementation by means of standard general-purpose numerical integrators is stable and efficient, so that such problems can ...
Integrating rotation from angular velocity
Zupan, Eva; Saje, Miran
2011-01-01
Abstract The integration of the rotation from a given angular velocity is often required in practice. The present paper explores how the choice of the parametrization of rotation, when employed in conjuction with different numerical time-integration schemes, effects the accuracy and the computational efficiency. Three rotation parametrizations – the rotational vector, the Argyris tangential vector and the rotational quaternion – are combined with three different numerical time-integration ...
Understanding GRETINA using angular correlation method
Austin, Madeline
2015-10-01
The ability to trace the path of gamma rays through germanium is not only necessary for taking full advantage of GRETINA but also a promising possibility for homeland security defense against nuclear threats. This research tested the current tracking algorithm using the angular correlation method by comparing results from raw and tracked data to the theoretical model for Co-60. It was found that the current tracking method is unsuccessful in reproducing angular correlation. Variations to the tracking algorithm were made in the FM value, tracking angle, number of angles of separation observed, and window of coincidence in attempt to improve correlation results. From these variations it was observed that having a larger FM improved results, reducing the number of observational angles worsened correlation, and that overall larger tracking angles improved with larger windows of coincidence and vice-verse. Future research would be to refine the angle of measurement for raw data and to explore the possibility of an energy dependence by testing other elements. This work is supported by the United States Department of Energy, Office of Science, under Contract Number DE-AC02-06CH11357
Achromatic orbital angular momentum generator
International Nuclear Information System (INIS)
We describe a novel approach for generating light beams that carry orbital angular momentum (OAM) by means of total internal reflection in an isotropic medium. A continuous space-varying cylindrically symmetric reflector, in the form of two glued hollow axicons, is used to introduce a nonuniform rotation of polarization into a linearly polarized input beam. This device acts as a full spin-to-orbital angular momentum convertor. It functions by switching the helicity of the incoming beam's polarization, and by conservation of total angular momentum thereby generates a well-defined value of OAM. Our device is broadband, since the phase shift due to total internal reflection is nearly independent of wavelength. We verify the broad-band behaviour by measuring the conversion efficiency of the device for three different wavelengths corresponding to the RGB colours, red, green and blue. An average conversion efficiency of 95% for these three different wavelengths is observed. This device may find applications in imaging from micro- to astronomical systems where a white vortex beam is needed. (paper)
ANGULAR MOMENTUM AND GALAXY FORMATION REVISITED
Energy Technology Data Exchange (ETDEWEB)
Romanowsky, Aaron J. [University of California Observatories, 1156 High Street, Santa Cruz, CA 95064 (United States); Fall, S. Michael [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)
2012-12-15
Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j{sub *} and mass M{sub *} (thus extending earlier work by Fall). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as 10 effective radii, and find that data at two effective radii are generally sufficient to estimate total j{sub *} reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j{sub *} in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of {approx}100 nearby bright galaxies of all types, placing them on a diagram of j{sub *} versus M{sub *}. The ellipticals and spirals form two parallel j{sub *}-M{sub *} tracks, with log-slopes of {approx}0.6, which for the spirals are closely related to the Tully-Fisher relation, but for the ellipticals derives from a remarkable conspiracy between masses, sizes, and rotation velocities. The ellipticals contain less angular momentum on average than spirals of equal mass, with the quantitative disparity depending on the adopted K-band stellar mass-to-light ratios of the galaxies: it is a factor of {approx}3-4 if mass-to-light ratio variations are neglected for simplicity, and {approx}7 if they are included. We decompose the spirals into disks and bulges and find that these subcomponents follow j{sub *}-M{sub *} trends similar to the overall ones for spirals and ellipticals. The lenticulars have an intermediate trend, and we propose that the morphological types of galaxies reflect disk and bulge subcomponents that follow
Cox, J.A.M.; Groot, S.R. de; Hartogh, Chr.D.
1953-01-01
In this note the theoretical results for the angular distribution of γ-radiation emitted by oriented radioactive nuclei are applied to the case of 58Co nuclei. The angular distribution function of the γ-radiation has been calculated for an arbitrary degree of nuclear orientation and in dependence of
Smakman, J.G.J.; Hateren, J.H. van; Stavenga, D.G.
1984-01-01
The angular sensitivity of blowfly photoreceptors was measured in detail at wavelengths λ = 355, 494 and 588 nm. The measured curves often showed numerous sidebands, indicating the importance of diffraction by the facet lens. The shape of the angular sensitivity profile is dependent on wavelength. T
AngularJS web application development
Darwin, Peter Bacon
2013-01-01
The book will be a step-by-step guide showing the readers how to build a complete web app with AngularJSJavaScript developers who want to learn AngularJS for developing web apps. Knowledge of JavaScript and HTML is expected. No knowledge of AngularJS is required.
Angular Spacing Control for Segmented Data Pages in Angle-Multiplexed Holographic Memory
Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Kikuchi, Hiroshi; Shimidzu, Naoki; Ando, Toshio; Masaki, Kazuyoshi; Shimizu, Takehiro
2011-09-01
To improve the recording density of angle-multiplexed holographic memory, it is effective to increase the numerical aperture of the lens and to shorten the wavelength of the laser source as well as to increase the multiplexing number. The angular selectivity of a hologram, which determines the multiplexing number, is dependent on the incident angle of not only the reference beam but also the signal beam to the holographic recording medium. The actual signal beam, which is a convergent or divergent beam, is regarded as the sum of plane waves that have different propagation directions, angular selectivities, and optimal angular spacings. In this paper, focusing on the differences in the optimal angular spacing, we proposed a method to control the angular spacing for each segmented data page. We investigated the angular selectivity of a hologram and crosstalk for segmented data pages using numerical simulation. The experimental results showed a practical bit-error rate on the order of 10-3.
Valley-contrasting orbital angular momentum in photonic valley crystals
Chen, Xiaodong; Dong, Jianwen
2016-01-01
Valley, as a degree of freedom, has been exploited to realize valley-selective Hall transport and circular dichroism in two-dimensional layered materials. On the other hand, orbital angular momentum of light with helical phase distribution has attracted great attention for its unprecedented opportunity to optical communicagtions, atom trapping, and even nontrivial topology engineering. Here, we reveal valley-contrasting orbital angular momentum in all-dielectric photonic valley crystals. Selective excitation of valley chiral bulk states is realized by sources carrying orbital angular momentum with proper chirality. Valley dependent edge states, predictable by nonzero valley Chern number, enable to suppress the inter-valley scattering along zigzag boundary, leading to broadband robust transmission in Z-shape bend without corner morphological optimization. Our work may open up a new door towards the discovery of novel quantum states and the manipulation of spin-orbit interaction of light in nanophotonics.
Matter waves with angular momentum
Bracher, C; Kleber, M; Bracher, Christian; Kramer, Tobias; Kleber, Manfred
2003-01-01
An alternative description of quantum scattering processes rests on inhomogeneous terms amended to the Schr\\"odinger equation. We detail the structure of sources that give rise to multipole scattering waves of definite angular momentum, and introduce pointlike multipole sources as their limiting case. Partial wave theory is recovered for freely propagating particles. We obtain novel results for ballistic scattering in an external uniform force field, where we provide analytical solutions for both the scattering waves and the integrated particle flux. As an illustration of the theory, we predict some properties of vortex-bearing atom laser beams outcoupled from a rotating Bose--Einstein condensate under the influence of gravity.
Energy Technology Data Exchange (ETDEWEB)
Weidner, T.; Apte, J; Gamble, L; Castner, D
2010-01-01
The structure and orientation of amphiphilic {alpha}-helix and {beta}-strand model peptide films on self-assembled monolayers (SAMs) have been studied with sum frequency generation (SFG) vibrational spectroscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The {alpha}-helix peptide is a 14-mer, and the {beta}-strand is a 15-mer of hydrophilic lysine and hydrophobic leucine residues with hydrophobic periodicities of 3.5 and 2, respectively. These periodicities result in the leucine side chains located on one side of the peptides and the lysine side chains on the other side. The SAMs were prepared from the assembly of either carboxylic acid- or methyl-terminated alkyl thiols onto gold surfaces. For SFG studies, the deuterated analog of the methyl SAM was used. SFG vibrational spectra in the C-H region of air-dried peptides films on both SAMs exhibit strong peaks near 2965, 2940, and 2875 cm{sup -1} related to ordered leucine side chains. The orientation of the leucine side chains was determined from the phase of these features relative to the nonresonant gold background. The relative phase for both the {alpha}-helix and {beta}-strand peptides showed that the leucine side chains were oriented away from the carboxylic acid SAM surface and oriented toward the methyl SAM surface. Amide I peaks observed near 1656 cm{sup -1} for the {alpha}-helix peptide confirm that the secondary structure is preserved on both SAMs. Strong linear dichroism related to the amide {pi}* orbital at 400.8 eV was observed in the nitrogen K-edge NEXAFS spectra for the adsorbed {beta}-strand peptides, suggesting that the peptide backbones are oriented parallel to the SAM surface with the side chains pointing toward or away from the interface. For the {alpha}-helix the dichroism of the amide {pi}* is significantly weaker, probably because of the broad distribution of amide bond orientations in the {alpha}-helix secondary structure.
Controlling neutron orbital angular momentum.
Clark, Charles W; Barankov, Roman; Huber, Michael G; Arif, Muhammad; Cory, David G; Pushin, Dmitry A
2015-09-24
The quantized orbital angular momentum (OAM) of photons offers an additional degree of freedom and topological protection from noise. Photonic OAM states have therefore been exploited in various applications ranging from studies of quantum entanglement and quantum information science to imaging. The OAM states of electron beams have been shown to be similarly useful, for example in rotating nanoparticles and determining the chirality of crystals. However, although neutrons--as massive, penetrating and neutral particles--are important in materials characterization, quantum information and studies of the foundations of quantum mechanics, OAM control of neutrons has yet to be achieved. Here, we demonstrate OAM control of neutrons using macroscopic spiral phase plates that apply a 'twist' to an input neutron beam. The twisted neutron beams are analysed with neutron interferometry. Our techniques, applied to spatially incoherent beams, demonstrate both the addition of quantum angular momenta along the direction of propagation, effected by multiple spiral phase plates, and the conservation of topological charge with respect to uniform phase fluctuations. Neutron-based studies of quantum information science, the foundations of quantum mechanics, and scattering and imaging of magnetic, superconducting and chiral materials have until now been limited to three degrees of freedom: spin, path and energy. The optimization of OAM control, leading to well defined values of OAM, would provide an additional quantized degree of freedom for such studies. PMID:26399831
Role of electron-molecule angular scattering in shaping the electron-velocity distribution
Energy Technology Data Exchange (ETDEWEB)
Kunhardt, E.E.; Tzeng, Y.
1986-09-01
Five models has been studied to elucidate the role of electron-molecule angular scattering in shaping the velocity distribution for electrons in nitrogen at E/N values of 300 and 1500 Td. The angular dependence of the differential scattering cross sections for elastic and inelastic collisions has been observed to have significant effects on the shape of the velocity distribution, the rate coefficients, and the transport parameters. The velocity distribution is most sensitive to the angular dependence of elastic scattering. Moreover, for a given elastic differential scattering cross section, variations in the angular dependence of inelastic scattering cause significant changes in the distribution. The magnitude of these changes depends on the relative action of the inelastic collisions with respect to the elastic collisions for a given energy interval, i.e., whether the scattering by the inelastic collisions is isotropic, forward, or backward in a given energy interval.
Angular distribution of sputtered atoms induced by low-energy heavy ion bombardment
Institute of Scientific and Technical Information of China (English)
ZHANG Lai; ZHANG Zhu-Lin
2004-01-01
The sputtering yield angular distributions have been calculated based on the ion energy dependence of total sputtering yields for Ni and Motargets bombarded by low-energy Hg+ ion. The calculated curves show excellent agreement with the corresponding Wehner's experimental results of sputtering yield angular distribution. The fact clearly demonstrated the intrinsic relation between the ion energy dependence of total sputtering yields and the sputtering yield angular distribution. This intrinsic relation had been ignored in Yamamura's papers (1981,1982) due to some obvious mistakes.
Angular distributions for the electron-impact single ionization of sodium and magnesium
Armstrong, G. S. J.; Colgan, J.; Pindzola, M. S.
2013-10-01
We present angular distributions for the electron-impact single ionization of sodium and magnesium at intermediate incident electron energies. The results are obtained from a full-dimensionality solution of the two-active-electron time-dependent Schrödinger equation using the time-dependent close-coupling method. We compare calculated angular distributions with existing measurements. We find good overall agreement with measurements over a range of incident electron energies in both cases. We also calculate angular distributions for ejection configurations in which no measurements are currently available.
The difficulty of measuring orbital angular momentum
Preece, D; Nieminen, T. A.; Asavei, T.; Heckenberg, N. R.; Rubinsztein-Dunlop, H.
2011-01-01
Light can carry angular momentum as well as energy and momentum; the transfer of this angular momentum to an object results in an optical torque. The development of a rotational analogue to the force measurement capability of optical tweezers is hampered by the difficulty of optical measurement of orbital angular momentum. We present an experiment with encouraging results, but emphasise the difficulty of the task.
The difficulty of measuring orbital angular momentum
Directory of Open Access Journals (Sweden)
D. Preece
2011-09-01
Full Text Available Light can carry angular momentum as well as energy and momentum; the transfer of this angular momentum to an object results in an optical torque. The development of a rotational analogue to the force measurement capability of optical tweezers is hampered by the difficulty of optical measurement of orbital angular momentum. We present an experiment with encouraging results, but emphasise the difficulty of the task.
Photoionization with Orbital Angular Momentum Beams
Picón, A.; Mompart, J.; de Aldana, J. R. Vázquez; Plaja, L.; Calvo, G. F.; Roso, L.
2010-01-01
Intense laser ionization expands Einstein's photoelectric effect rules giving a wealth of phenomena widely studied over the last decades. In all cases, so far, photons were assumed to carry one unit of angular momentum. However it is now clear that photons can possess extra angular momentum, the orbital angular momentum (OAM), related to their spatial profile. We show a complete description of photoionization by OAM photons, including new selection rules involving more than one unit of angula...
Quantum formulation of fractional orbital angular momentum
Götte, Jörg B; Franke-Arnold, Sonja; Zambrini, Roberta; Barnett, Stephen M.
2007-01-01
The quantum theory of rotation angles (S. M. Barnett and D. T. Pegg, Phys. Rev. A, 41, 3427-3425 (1990)) is generalised to non-integer values of the orbital angular momentum. This requires the introduction of an additional parameter, the orientation of a phase discontinuity associated with fractional values of the orbital angular momentum. We apply our formalism to the propagation of light modes with fractional orbital angular momentum in the paraxial and non-paraxial regime.
Orbital angular momentum induced beam shifts
Hermosa N.; Merano M.; Aiello A.; Woerdman J.P.
2011-01-01
We present experiments on Orbital Angular Momentum (OAM) induced beam shifts in optical reflection. Specifically, we observe the spatial Goos-H\\"anchen shift in which the beam is displaced parallel to the plane of incidence and the angular Imbert-Fedorov shift which is a transverse angular deviation from the geometric optics prediction. Experimental results agree well with our theoretical predictions. Both beam shifts increase with the OAM of the beam; we have measured these for OAM indices u...
Oral candidiasis and angular cheilitis.
Sharon, Victoria; Fazel, Nasim
2010-01-01
Candidiasis, an often encountered oral disease, has been increasing in frequency. Most commonly caused by the overgrowth of Candida albicans, oral candidiasis can be divided into several categories including acute and chronic forms, and angular cheilitis. Risk factors for the development of oral candidiasis include immunosuppression, wearing of dentures, pharmacotherapeutics, smoking, infancy and old age, endocrine dysfunction, and decreased salivation. Oral candidiasis may be asymptomatic. More frequently, however, it is physically uncomfortable, and the patient may complain of burning mouth, dysgeusia, dysphagia, anorexia, and weight loss, leading to nutritional deficiency and impaired quality of life. A plethora of antifungal treatments are available. The overall prognosis of oral candidiasis is good, and rarely is the condition life threatening with invasive or recalcitrant disease.
Magnetic Modulation of Stellar Angular Momentum Loss
Garraffo, Cecilia; Cohen, Ofer
2014-01-01
Angular Momentum Loss is important for understanding astrophysical phenomena such as stellar rotation, magnetic activity, close binaries, and cataclysmic variables. Magnetic breaking is the dominant mechanism in the spin down of young late-type stars. We have studied angular momentum loss as a function of stellar magnetic activity. We argue that the complexity of the field and its latitudinal distribution are crucial for angular momentum loss rates. In this work we discuss how angular momentum is modulated by magnetic cycles, and how stellar spin down is not just a simple function of large scale magnetic field strength.
The Angular Momentum of the Solar System
Cang, Rongquin; Guo, Jianpo; Hu, Juanxiu; He, Chaoquiong
2016-05-01
The angular momentum of the Solar System is a very important physical quantity to the formation and evolution of the Solar System. Previously, the spin angular momentum of the Sun and the orbital angular momentum of the Eight Giant Planets were only taken into consideration, when researchers calculated the angular momentum of the Solar System. Nowadays, it seems narrow and conservative. Using Eggleton's code, we calculate the rotational inertia of the Sun. Furthermore, we obtain that the spin angular momentum of the Sun is 1.8838 x 10^41 kg m^2 s^-1. Besides the spin angular momentum of the Sun and the orbital angular momentum of the Eight Giant Planets, we also account for the orbital angular momentum of the Asteroid Belt, the Kuiper Belt, the Oort Cloud, the Ninth Giant Planet and the Solar Companion. We obtain that the angular momentum of the whole Solar System is 3.3212 x 10^45 kg m^2 s^-1.
The role of angular momentum conservation law in statistical mechanics
Directory of Open Access Journals (Sweden)
I.M. Dubrovskii
2008-12-01
Full Text Available Within the limits of Khinchin ideas [A.Y. Khinchin, Mathematical Foundation of Statistical Mechanics. NY, Ed. Dover, 1949] the importance of momentum and angular momentum conservation laws was analyzed for two cases: for uniform magnetic field and when magnetic field is absent. The law of momentum conservation does not change the density of probability distribution in both cases, just as it is assumed in the conventional theory. It is shown that in systems where the kinetic energy depends only on particle momenta canonically conjugated with Cartesian coordinates being their diagonal quadric form,the angular momentum conservation law changes the density of distribution of the system only in case the full angular momentum of a system is not equal to zero. In the gas of charged particles in a uniform magnetic field the density of distribution also varies if the angular momentum is zero [see Dubrovskii I.M., Condensed Matter Physics, 2206, 9, 23]. Two-dimensional gas of charged particles located within a section of an endless strip filled with gas in magnetic field is considered. Under such conditions the angular momentum is not conserved. Directional particle flows take place close to the strip boundaries, and, as a consequence, the phase trajectory of the considered set of particles does not remain within the limited volume of the phase space. In order to apply a statistical thermodynamics method, it was suggested to consider near-boundary trajectories relative to a reference system that moves uniformly. It was shown that if the diameter of an orbit having average thermal energy is much smaller than a strip width, the corrections to thermodynamic functions are small depending on magnetic field. Only the average velocity of near-boundary particles that form near-boundary electric currents creating the paramagnetic moment turn out to be essential.
Semiclassical model for attosecond angular streaking.
Smolarski, M; Eckle, P; Keller, U; Dörner, R
2010-08-16
Attosecond angular streaking is a new technique to achieve unsurpassed time accuracy of only a few attoseconds. Recently this has been successfully used to set an upper limit on the electron tunneling delay time in strong laser field ionization. The measurement technique can be modeled with either the time-dependent Schrödinger equation (TDSE) or a more simple semiclassical approach that describes the process in two steps in analogy to the three-step model in high harmonic generation (HHG): step one is the tunnel ionization and step two is the classical motion in the strong laser field. Here we describe in detail a semiclassical model which is based on the ADK theory for the tunneling step, with subsequent classical propagation of the electron in the laser field. We take into account different ellipticities of the laser field and a possible wavelength-dependent ellipticity that is typically observed for pulses in the two-optical-cycle regime. This semiclassical model shows excellent agreement with the experimental result. PMID:20721150
The role of angular momentum conservation law in statistical mechanics
I.M. Dubrovskii
2008-01-01
Within the limits of Khinchin ideas [A.Y. Khinchin, Mathematical Foundation of Statistical Mechanics. NY, Ed. Dover, 1949] the importance of momentum and angular momentum conservation laws was analyzed for two cases: for uniform magnetic field and when magnetic field is absent. The law of momentum conservation does not change the density of probability distribution in both cases, just as it is assumed in the conventional theory. It is shown that in systems where the kinetic energy depends onl...
Parton Transverse Momentum and Orbital Angular Momentum Distributions
Rajan, Abha; Courtoy, Aurore; Engelhardt, Michael; Liuti, Simonetta
2016-01-01
The quark orbital angular momentum component of proton spin, $L_q$, can be defined in QCD as the integral of a Wigner phase space distribution weighting the cross product of the quark's transverse position and momentum. It can also be independently defined from the operator product expansion for the off-forward Compton amplitude in terms of a twist-three generalized parton distribution. We provide an explicit link between the two definitions, connecting them through their dependence on parton...
The orbital angular momentum of down-converted photons
Energy Technology Data Exchange (ETDEWEB)
Ren Xifeng; Guo Guoping; Yu Bo; Li Jian; Guo Guangcan [Key Laboratory of Quantum Information, University of Science and Technology of China, CAS, Hefei 230026 (China)
2004-04-01
We calculate the relative amplitude of the orbital angular momentum (OAM) of entangled photon pairs from the spontaneous parametric down-conversion of a thin quadratic nonlinear crystal. The results show that the amplitude depends on both of the two Laguerre indices l, p. We also discuss the influences of the commonly used holograms and mono-mode fibres for mode analysis. We conclude that only a few dimensions can be explored from the infinite OAM modes of down-converted photon pairs.
Transverse and longitudinal angular momenta of light
International Nuclear Information System (INIS)
We review basic physics and novel types of optical angular momentum. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields, and discuss methods for their experimental measurements. In particular, we describe the well-known longitudinal (i.e., aligned with the mean momentum) spin and orbital angular momenta in polarized vortex beams. Then, we focus on the transverse (i.e., orthogonal to the mean momentum) spin and orbital angular momenta, which were recently actively discussed in theory and observed in experiments. First, the recently-discovered transverse spin angular momenta appear in various structured fields: evanescent waves, interference fields, and focused beams. We show that there are several kinds of transverse spin angular momentum, which differ strongly in their origins and physical properties. We describe extraordinary features of the transverse optical spins and overview recent experiments. In particular, the helicity-independent transverse spin inherent in edge evanescent waves offers robust spin–direction coupling at optical interfaces (the quantum spin Hall effect of light). Second, we overview the transverse orbital angular momenta of light, which can be both extrinsic and intrinsic. These two types of the transverse orbital angular momentum are produced by spatial shifts of the optical beams (e.g., in the spin Hall effect of light) and their Lorentz boosts, respectively. Our review is underpinned by a unified theory of the angular momentum of light based on the canonical momentum and spin densities, which avoids complications associated with the separation of spin and orbital angular momenta in the Poynting picture. It allows us to construct a comprehensive classification of all known optical angular momenta based on their key parameters and main physical properties
Angular-Rate Estimation using Star Tracker Measurements
Azor, R.; Bar-Itzhack, Itzhack Y.; Deutschmann, Julie K.; Harman, Richard R.
1999-01-01
This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared, one that uses differentiated quaternion measurements to yield coarse rate measurements which are then fed into two different estimators. In the other approach the raw quaternion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear rate dependent part of the rotational dynamics equation of a rigid body into a product of an angular-rate dependent matrix and the angular-rate vector itself. This decomposition, which is not unique, enables the treatment of the nonlinear spacecraft dynamics model as a linear one and, consequently, the application of a Pseudo-Linear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the Kalman gain matrix and thus eliminates the need to propagate and update the filter covariance matrix. The replacement of the elaborate rotational dynamics by a simple first order Markov model is also examined. In this paper a special consideration is given to the problem of delayed quaternion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results of these tests are presented.
Angular dependence of coercivity of grains in nanocrystalline permanent magnets
Institute of Scientific and Technical Information of China (English)
Gong Yi-Min; Jin Han-Min; Wen Ge-Hui; Lan Zhi-Huan; Yan Yu; Du Xiao-Bo; Wang Wen-Quan; Wang Xue-Feng; Su Feng; Lu Lei; Zhang Zhi-Sheng
2008-01-01
In this paper magnetization remanence curves were studied for nanocrystalline Pr8Fe87B5, Pr12Fe82B6 and Pr15Fe77B8.Initially the sample was at remanence following saturation along z-axis.After rotating the magnet by 5n degrees (n=0,1, ..., 18) a field H was applied along z-axis and then decreased to zero, and the remanence Jnγ was measured as a function of H. The curves were compared with those calculated based on the nucleation of reverse domain model and domain wall pinning model. The latter model succeeds in simulation much better than the former,and it is concluded that the magnetization reversal is dominated by domain wall pinning for all the samples.The nucleation mechanism contribution, while remains small, increases with the increase of Pr content.
Angular dependences in inclusive two-hadron production at BELLE
Boer, Daniel
2009-01-01
A collection of results is presented relevant for the analysis of azimuthal asymmetries in inclusive two-hadron production at BELLE. The aim of this overview is to provide theoretical ingredients necessary to extract the Collins effect fragmentation function. The latter arises within the Collins-Sop
Radiofrequency encoded angular-resolved light scattering
DEFF Research Database (Denmark)
Buckley, Brandon W.; Akbari, Najva; Diebold, Eric D.;
2015-01-01
Encoded Angular-resolved Light Scattering (REALS), this technique multiplexes angular light scattering in the radiofrequency domain, such that a single photodetector captures the entire scattering spectrum from a particle over approximately 100 discrete incident angles on a single shot basis. As a proof...
Angular-Rate Estimation Using Quaternion Measurements
Azor, Ruth; Bar-Itzhack, Y.; Deutschmann, Julie K.; Harman, Richard R.
1998-01-01
In most spacecraft (SC) there is a need to know the SC angular rate. Precise angular rate is required for attitude determination, and a coarse rate is needed for attitude control damping. Classically, angular rate information is obtained from gyro measurements. These days, there is a tendency to build smaller, lighter and cheaper SC, therefore the inclination now is to do away with gyros and use other means and methods to determine the angular rate. The latter is also needed even in gyro equipped satellites when performing high rate maneuvers whose angular-rate is out of range of the on board gyros or in case of gyro failure. There are several ways to obtain the angular rate in a gyro-less SC. When the attitude is known, one can differentiate the attitude in whatever parameters it is given and use the kinematics equation that connects the derivative of the attitude with the satellite angular-rate and compute the latter. Since SC usually utilize vector measurements for attitude determination, the differentiation of the attitude introduces a considerable noise component in the computed angular-rate vector.
Exposing Library Services with AngularJS
Jakob Voß; Moritz Horn
2014-01-01
This article provides an introduction to the JavaScript framework AngularJS and specific AngularJS modules for accessing library services. It shows how information such as search suggestions, additional links, and availability can be embedded in any website. The ease of reuse may encourage more libraries to expose their services via standard APIs to allow usage in different contexts.
Concepts of radial and angular kinetic energies
DEFF Research Database (Denmark)
Dahl, Jens Peder; Schleich, W.P.
2002-01-01
We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantities...
Angular Momentum Eigenstates for Equivalent Electrons.
Tuttle, E. R.; Calvert, J. B.
1981-01-01
Simple and efficient methods for adding angular momenta and for finding angular momentum eigenstates for systems of equivalent electrons are developed. Several different common representations are used in specific examples. The material is suitable for a graduate course in quantum mechanics. (SK)
Orbital Angular Momentum in the Nucleon
Garvey, Gerald T.
2010-01-01
Analysis of the measured value of the integrated \\bar{d}-\\bar{u} asymmetry (Ifas = 0.147+-0.027) in the nucleon show it to arise from nucleon fluctuations into baryon plus pion. Requiring angular momentum conservation in these fluctuations shows the associated orbital angular momentum is equal to the value of the flavor asymmetry.
Detecting orbital angular momentum in radio signals
Then, H.; Thidé, B.; Mendonça, J T; Carozzi, T.D.; Bergman, J.; Baan, W. A.; Mohammadi, S. (Siawoosh); Eliasson, B.
2008-01-01
Electromagnetic waves with an azimuthal phase shift are known to have a well defined orbital angular momentum. Different methods that allow for the detection of the angular momentum are proposed. For some, we discuss the required experimental setup and explore the range of applicability.
Responsive web design with AngularJS
Patel, Sandeep Kumar
2014-01-01
If you are an AngularJS developer who wants to learn about responsive web application development, this book is ideal for you. Responsive Web Design with AngularJS is intended for web developers or designers with a basic knowledge of HTML, CSS, and JavaScript.
Angular momentum decomposition of Richardson's pairs
International Nuclear Information System (INIS)
The angular momentum decomposition of pairs obtained using Richardson's exact solution of the pairing Hamiltonian for the deformed 174Yb nucleus are displayed. The probabilities for low angular momenta of the collective pairs are strikingly different from the ones obtained in the BCS ground state
Does high harmonic generation conserve angular momentum?
Fleischer, Avner; Diskin, Tzvi; Sidorenko, Pavel; Cohen, Oren
2013-01-01
High harmonic generation (HHG) is a unique and useful process in which infrared or visible radiation is frequency up converted into the extreme ultraviolet and x ray spectral regions. As a parametric process, high harmonic generation should conserve the radiation energy, momentum and angular momentum. Indeed, conservation of energy and momentum have been demonstrated. Angular momentum of optical beams can be divided into two components: orbital and spin (polarization). Orbital angular momentum is assumed to be conserved and recently observed deviations were attributed to propagation effects. On the other hand, conservation of spin angular momentum has thus far never been studied, neither experimentally nor theoretically. Here, we present the first study on the role of spin angular momentum in extreme nonlinear optics by experimentally generating high harmonics of bi chromatic elliptically polarized pump beams that interact with isotropic media. While observing that the selection rules qualitatively correspond...
Physical Angular Momentum Separation for QED
Sun, Weimin
2016-01-01
We study the non-uniqueness problem of the gauge-invariant angular momentum separation for the case of QED, which stems from the recent controversy concerning the proper definitions of the orbital angular momentum and spin operator of the individual parts of a gauge field system. For the free quantum electrodynamics without matter, we show that the basic requirement of Euclidean symmetry selects a unique physical angular momentum separation scheme from the multitude of the possible angular momentum separation schemes constructed using the various Gauge Invariant Extentions. Based on these results, we propose a set of natural angular momentum separation schemes for the case of interacting QED by invoking the formalism of asymptotic fields. Some perspectives on such a problem for the case of QCD are briefly discussed.
Quark angular momentum in a spectator model
International Nuclear Information System (INIS)
We investigate the quark angular momentum in a model with the nucleon being a quark and a spectator. Both scalar and axial-vector spectators are included. We perform the calculations in the light-cone formalism where the parton concept is well defined. We calculate the quark helicity and canonical orbital angular momentum. Then we calculate the gravitational form factors which are often related to the kinetic angular momentums, and find that even in a no gauge field model we cannot identify the canonical angular momentums with half the sum of gravitational form factors. In addition, we examine the model relation between the orbital angular momentum and pretzelosity, and find it is violated in the axial-vector case
Power calculation of linear and angular incremental encoders
Prokofev, Aleksandr V.; Timofeev, Aleksandr N.; Mednikov, Sergey V.; Sycheva, Elena A.
2016-04-01
Automation technology is constantly expanding its role in improving the efficiency of manufacturing and testing processes in all branches of industry. More than ever before, the mechanical movements of linear slides, rotary tables, robot arms, actuators, etc. are numerically controlled. Linear and angular incremental photoelectric encoders measure mechanical motion and transmit the measured values back to the control unit. The capabilities of these systems are undergoing continual development in terms of their resolution, accuracy and reliability, their measuring ranges, and maximum speeds. This article discusses the method of power calculation of linear and angular incremental photoelectric encoders, to find the optimum parameters for its components, such as light emitters, photo-detectors, linear and angular scales, optical components etc. It analyzes methods and devices that permit high resolutions in the order of 0.001 mm or 0.001°, as well as large measuring lengths of over 100 mm. In linear and angular incremental photoelectric encoders optical beam is usually formulated by a condenser lens passes through the measuring unit changes its value depending on the movement of a scanning head or measuring raster. Past light beam is converting into an electrical signal by the photo-detecter's block for processing in the electrical block. Therefore, for calculating the energy source is a value of the desired value of the optical signal at the input of the photo-detecter's block, which reliably recorded and processed in the electronic unit of linear and angular incremental optoelectronic encoders. Automation technology is constantly expanding its role in improving the efficiency of manufacturing and testing processes in all branches of industry. More than ever before, the mechanical movements of linear slides, rotary tables, robot arms, actuators, etc. are numerically controlled. Linear and angular incremental photoelectric encoders measure mechanical motion and
汽车尾气颗粒物的STXM和NEXAFS研究%Research on automobile exhaust particles by STXM and NEXAFS
Institute of Scientific and Technical Information of China (English)
杨传俊; 郭智; 张祥志; 邰仁忠; 包良满; 李晓林; 张桂林; 李燕
2010-01-01
为了研究汽车尾气颗粒物的结构和氮的种态,使用扫描透射X射线显微成像(STXM)技术研究了桑塔纳3000和高尔汽车尾气颗粒物.STXM表明单颗粒物的粒径为500 nm,颗粒物质量分布不均匀,有中间空洞.比较汽车尾气颗粒物和(NH4)2SO4和NaNO3中N的1s X射线近边吸收精细结构谱(NEXAFS),铵盐在406 eV有显著的σ*吸收峰,有肩部结构;汽车尾气颗粒物和NaNO3中N的近边吸收谱在412 eV和418.5 eV有明显的σ吸收峰;(NH4)2SO4中N的近边吸收谱在413.5 eV和421.8 eV更宽的σ吸收峰.硝酸盐是汽车尾气颗粒物中的N化学种态的主要存在形式.在395-418 eV能量范围内对桑塔纳3000汽车尾气颗粒物进行堆栈扫描,经过主成分分析和聚类分析,发现其表层主要为硝酸盐,内部有少量铵盐.
Theoretical Manifestation of the Broadening Effect on Photoelectron Angular Distributions
Institute of Scientific and Technical Information of China (English)
ZHANG Jing-Tao(张敬涛); ZHOU Lan(周岚); ZHANG Wen-Qi(张文琦); XU Zhi-Zhan(徐至展); GUO Dong-Sheng(郭东升); R.R.Freeman
2003-01-01
The broadening effect in photoelectron angular distributions (PADs) observed by Freeman et al. Is studied theoretically. Using a nonperturbative scattering theory developed for multiphoton ionization with the inclusion of spontaneous emission, we calculate the PADs for above-threshold ionization (ATI) peaks. The numerical calculations from our theory reproduce the kinetic-energy dependence and the laser-intensity dependence of PADs of ATI peaks observed by Freeman et al., [Phys. Rev. Lett. 57 (1986) 3156] and provide an evidence for the existence of the ponderomotive momentum of intense laser fields.
Angular-Rate Estimation Using Delayed Quaternion Measurements
Azor, R.; Bar-Itzhack, I. Y.; Harman, R. R.
1999-01-01
This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared one that uses differentiated quaternion measurements to yield coarse rate measurements, which are then fed into two different estimators. In the other approach the raw quaternion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear part of the rotas rotational dynamics equation of a body into a product of an angular-rate dependent matrix and the angular-rate vector itself. This non unique decomposition, enables the treatment of the nonlinear spacecraft (SC) dynamics model as a linear one and, thus, the application of a PseudoLinear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the gain matrix and thus eliminates the need to compute recursively the filter covariance matrix. The replacement of the rotational dynamics by a simple Markov model is also examined. In this paper special consideration is given to the problem of delayed quaternion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results are presented.
Parton transverse momentum and orbital angular momentum distributions
Rajan, Abha; Courtoy, Aurore; Engelhardt, Michael; Liuti, Simonetta
2016-08-01
The quark orbital angular momentum component of proton spin, Lq, can be defined in QCD as the integral of a Wigner phase space distribution weighting the cross product of the quark's transverse position and momentum. It can also be independently defined from the operator product expansion for the off-forward Compton amplitude in terms of a twist-three generalized parton distribution. We provide an explicit link between the two definitions, connecting them through their dependence on partonic intrinsic transverse momentum. Connecting the definitions provides the key for correlating direct experimental determinations of Lq and evaluations through lattice QCD calculations. The direct observation of quark orbital angular momentum does not require transverse spin polarization but can occur using longitudinally polarized targets.
Resolving enantiomers using the optical angular momentum of twisted light.
Brullot, Ward; Vanbel, Maarten K; Swusten, Tom; Verbiest, Thierry
2016-03-01
Circular dichroism and optical rotation are crucial for the characterization of chiral molecules and are of importance to the study of pharmaceutical drugs, proteins, DNA, and many others. These techniques are based on the different interactions of enantiomers with circularly polarized components of plane wave light that carries spin angular momentum (SAM). For light carrying orbital angular momentum (OAM), for example, twisted or helical light, the consensus is that it cannot engage with the chirality of a molecular system as previous studies failed to demonstrate an interaction between optical OAM and chiral molecules. Using unique nanoparticle aggregates, we prove that optical OAM can engage with materials' chirality and discriminate between enantiomers. Further, theoretical results show that compared to circular dichroism, mainly based on magnetic dipole contributions, the OAM analog helical dichroism (HD) is critically dependent on fundamentally different chiral electric quadrupole contributions. Our work opens new venues to study chirality and can find application in sensing and chiral spectroscopy.
Parton Transverse Momentum and Orbital Angular Momentum Distributions
Rajan, Abha; Engelhardt, Michael; Liuti, Simonetta
2016-01-01
The quark orbital angular momentum component of proton spin, $L_q$, can be defined in QCD as the integral of a Wigner phase space distribution weighting the cross product of the quark's transverse position and momentum. It can also be independently defined from the operator product expansion for the off-forward Compton amplitude in terms of a twist-three generalized parton distribution. We provide an explicit link between the two definitions, connecting them through their dependence on partonic intrinsic transverse momentum. Connecting the definitions provides the key for correlating direct experimental determinations of $L_q$, and evaluations through Lattice QCD calculations. The direct observation of quark orbital angular momentum does not require transverse spin polarization, but can occur using longitudinally polarized targets.
Observation of Interaction of Spin and Intrinsic Orbital Angular Momentum of Light
Vitullo, Dashiell L P; Gregg, Patrick; Smith, Roger A; Reddy, Dileep V; Ramachandran, Siddharth; Raymer, Michael G
2016-01-01
Spin and intrinsic orbital angular momentum interaction of light is observed, as evidenced by length-dependent rotations of both spatial patterns and optical polarization in an isotropic optical fiber. The distinction between intrinsic and extrinsic orbital angular momentum (as seen in helically coiled fiber) is made clear by controllable excitation of a small number of optical modes in a straight, few-mode fiber.
Angular velocity of gravitational radiation from precessing binaries and the corotating frame
Boyle, Michael
2013-01-01
This paper defines an angular velocity for time-dependent functions on the sphere, and applies it to gravitational waveforms from compact binaries. Because it is geometrically meaningful and has a clear physical motivation, the angular velocity is uniquely useful in helping to solve an important---and largely ignored---problem in models of compact binaries: the inverse problem of deducing the physical parameters of a system from the gravitational waves alone. It is also used to define the cor...
Wiltshire, R. J.
2003-01-01
Einstein's equations for a Robertson-Walker fluid source endowed with rotation Einstein's equations for a Robertson-Walker fluid source endowed with rotation are presented upto and including quadratic terms in angular velocity parameter. A family of analytic solutions are obtained for the case in which the source angular velocity is purely time-dependent. A subclass of solutions is presented which merge smoothly to homogeneous rotating and non-rotating central sources. The particular solution...
Form features provide a cue to the angular velocity of rotating objects
Blair, Christopher David; Goold, Jessica; Killebrew, Kyle; Caplovitz, Gideon Paul
2013-01-01
As an object rotates, each location on the object moves with an instantaneous linear velocity dependent upon its distance from the center of rotation, while the object as a whole rotates with a fixed angular velocity. Does the perceived rotational speed of an object correspond to its angular velocity, linear velocities, or some combination of the two? We had observers perform relative speed judgments of different sized objects, as changing the size of an object changes the l...
Angular momentum conservation for dynamical black holes
Hayward, Sean A.
2006-01-01
Angular momentum can be defined by rearranging the Komar surface integral in terms of a twist form, encoding the twisting around of space-time due to a rotating mass, and an axial vector. If the axial vector is a coordinate vector and has vanishing transverse divergence, it can be uniquely specified under certain generic conditions. Along a trapping horizon, a conservation law expresses the rate of change of angular momentum of a general black hole in terms of angular momentum densities of ma...
Quartz angular rate sensor for automotive navigation
Energy Technology Data Exchange (ETDEWEB)
Nozoe, Toshiyuki; Ichinose, Toshihiko; Kawasaki, Syusaku; Hatanaka, Masakazu; Kuroda, Keisuke [Matsushita Electronic Components Co. Ltd. (Japan); Yamamoto, Kohji; Ogata, Motoki; Takeno, Shoichi [Fukui Matsushita Electric Co. Ltd. (Japan); Ishihara, Minoru; Ishii, Tadashi; Umeki, Mitoshi [Nihonn Denpa Kogyo Co. Ltd. (Japan)
1999-07-01
Many of the recent automotive navigation systems are introducing an angular rate sensor that detect vehicle yaw in their system due to the advantage of higher accuracy, in addition to a conventional GPS (Global Positioning System) and vehicle speed signals. Though there are a couple of other methods to get a vehicle direction information, the angular rate sensor is the most suitable device as a gyro in accuracy and reliability point of view. Matsushita developed a new compact angular rate sensor using quartz crystal for automotive navigation systems. The sensor's operation is based upon Coriolis force imposed on a vibrating quartz tuning fork. (orig.)
Angular velocity: a new dimension in nuclei
Energy Technology Data Exchange (ETDEWEB)
Diamond, R.M.; Stephens, F.S.
1984-08-09
Nuclei can be studied from their ground states (approx.O(h/2..pi..)) up to angular momenta of order 100 (h/2..pi..), where they are literally pulled apart by centrifugal effects. This range of angular momenta can be viewed as resulting from cranking the nucleus around a rotation axis, where the critical variable is the cranking velocity. The calculated response of nuclei to such an imposed angular velocity corresponds well with recent observations, and includes a rich and varied interplay of collective and single-particle phenomena.
Polarization resolved angular optical scattering of aerosol particles
Redding, B.; Pan, Y.; Wang, C.; Videen, G.; Cao, Hui
2014-05-01
Real-time detection and identification of bio-aerosol particles are crucial for the protection against chemical and biological agents. The strong elastic light scattering properties of airborne particles provides a natural means for rapid, non-invasive aerosol characterization. Recent theoretical predictions suggested that variations in the polarization dependent angular scattering cross section could provide an efficient means of classifying different airborne particles. In particular, the polarization dependent scattering cross section of aggregate particles is expected to depend on the shape of the primary particles. In order to experimentally validate this prediction, we built a high throughput, sampling system, capable of measuring the polarization resolved angular scattering cross section of individual aerosol particles flowing through an interrogating volume with a single shot of laser pulse. We calibrated the system by comparing the polarization dependent scattering cross section of individual polystyrene spheres with that predicted by Mie theory. We then used the system to study different particles types: Polystyrene aggregates composed 500 nm spheres and Bacillus subtilis (BG, Anthrax simulant) spores composed of elongated 500 nm × 1000 nm cylinder-line particles. We found that the polarization resolved scattering cross section depends on the shape of the constituent elements of the aggregates. This work indicates that the polarization resolved scattering cross section could be used for rapid discrimination between different bio-aerosol particles.
Bouchard, Frédéric; Schulz, Sebastian A; Upham, Jeremy; Karimi, Ebrahim; Boyd, Robert W
2014-01-01
Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded \\qo{space} for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of OAM $\\ell$. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge $q$. When a circularly polarised light beam traverse...
Angular Momentum Acquisition in Galaxy Halos
Stewart, Kyle R; Bullock, James S; Maller, Ariyeh H; Diemand, Juerg; Wadsley, James; Moustakas, Leonidas A
2013-01-01
We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky Way sized galaxies. We find that cold mode accreted gas enters a galaxy halo with ~70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by \\lambda~0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms "cold flow disks". We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.
Gravitational waves carrying orbital angular momentum
Bialynicki-Birula, Iwo
2015-01-01
Spinorial formalism is used to map every electromagnetic wave into the gravitational wave (within the linearized gravity). In this way we can obtain the gravitational counterparts of Bessel, Laguerre-Gauss, and other light beams carrying orbital angular momentum.
The physics of angular momentum radio
Thidé, B; Then, H; Someda, C G; Ravanelli, R A
2014-01-01
Wireless communications, radio astronomy and other radio science applications are mainly implemented with techniques built on top of the electromagnetic linear momentum (Poynting vector) physical layer. As a supplement and/or alternative to this conventional approach, techniques rooted in the electromagnetic angular momentum physical layer have been advocated, and promising results from proof-of-concept radio communication experiments using angular momentum were recently published. This sparingly exploited physical observable describes the rotational (spinning and orbiting) physical properties of the electromagnetic fields and the rotational dynamics of the pertinent charge and current densities. In order to facilitate the exploitation of angular momentum techniques in real-world implementations, we present a systematic, comprehensive theoretical review of the fundamental physical properties of electromagnetic angular momentum observable. Starting from an overview that puts it into its physical context among ...
Gravitational waves carrying orbital angular momentum
Bialynicki-Birula, Iwo; Bialynicka-Birula, Zofia
2016-02-01
Spinorial formalism is used to map every electromagnetic wave into the gravitational wave (within the linearized gravity). In this way we can obtain the gravitational counterparts of Bessel, Laguerre-Gauss, and other light beams carrying orbital angular momentum.
Topological Orbital Angular Momentum Hall Current
Hu, Jiangping
2005-01-01
We show that there is a fundamental difference between spin Hall current and orbital angular momentum Hall current in Rashba- Dresselhaus spin orbit coupling systems. The orbital angular momentum Hall current has a pure topological contribution which is originated from the existence of magnetic flux in momentum space while there is no such topological nature for the spin Hall current. Moreover, we show that the orbital Hall conductance is always larger than the spin Hall conductance in the pr...
ZKDR Distance, Angular Size and Phantom Cosmology
R.C. Santos; Lima, J. A. S.
2006-01-01
The influence of mass inhomogeneities on the angular size-redshift test is investigated for a large class of flat cosmological models driven by dark energy plus a cold dark matter component. The results are presented in two steps. First, the mass inhomogeneities are modeled by a generalized Zeldovich-Kantowski-Dyer-Roeder (ZKDR) distance which is characterized by a smoothness parameter $\\alpha(z)$ and a power index $\\gamma$, and, second, we provide a statistical analysis to angular size data ...
Generalized Uncertainty Principle and Angular Momentum
Bosso, Pasquale
2016-01-01
Various models of quantum gravity suggest a modification of the Heisenberg's Uncertainty Principle, to the so-called Generalized Uncertainty Principle, between position and momentum. In this work we show how this modification influences the theory of angular momentum in Quantum Mechanics. In particular, we compute Planck scale corrections to angular momentum eigenvalues, the Hydrogen atom spectrum, the Stern-Gerlach experiment and the Clebsch-Gordan coefficients. We also examine effects of the Generalized Uncertainty Principle on multi-particle systems.
Integrating rotation and angular velocity from curvature
Saje, Miran; Treven, Anita
2016-01-01
The problem of integrating the rotational vector from a given angular velocity vector is met in such diverse fields as the navigation, robotics, computer graphics, optical tracking and non-linear dynamics of flexible beams. For example, if the numerical formulation of non-linear dynamics of flexible beams is based on the interpolation of curvature, one needs to derive the rotation from the assumed curvature field. The relation between the angular velocity and the rotation is described by the ...
Angular velocity nonlinear observer from vector measurements
Magnis, Lionel; Petit, Nicolas
2015-01-01
The paper proposes a technique to estimate the angular velocity of a rigid body from vector measurements. Compared to the approaches presented in the literature, it does not use attitude information nor rate gyros as inputs. Instead, vector measurements are directly filtered through a nonlinear observer estimating the angular velocity. Convergence is established using a detailed analysis of the linear-time varying dynamics appearing in the estimation error equation. This equation stems from t...
Multipolar expansion of orbital angular momentum modes
Molina-Terriza, Gabriel
2008-01-01
In this letter a general method for expanding paraxial beams into multipolar electromagnetic fields is presented. This method is applied to the expansion of paraxial modes with orbital angular momentum (OAM), showing how the paraxial OAM is related to the general angular momentum of an electromagnetic wave. This method can be extended to quasi-paraxial beams, i.e. highly focused laser beams. Some applications to the control of electronic transitions in atoms are discussed.
Orbital angular momentum in the nucleons
Lorcé, Cédric
2014-01-01
In the last decade, it has been realized that the orbital angular momentum of partons inside the nucleon plays a major role. It contributes significantly to nucleon properties and is at the origin of many asymmetries observed in spin physics. It is therefore of paramount importance to determine this quantity if we want to understand the nucleon internal structure and experimental observables. This triggered numerous discussions and controversies about the proper definition of orbital angular ...
Orbital angular momentum of partially coherent beams
Serna Galán, Julio; Movilla Serrano, Jesús María
2001-01-01
The definition of the orbital angular momentum established for coherent beams is extended to partially coherent beams, expressed in terms of two elements of the beam matrix. This extension is justified by use of the Mercer expansion of partially coherent fields. General Gauss-Schell-model fields are considered, and the relation between the twist; parameter and the orbital angular momentum is analyzed. © 2001 Optical Society of America.
Entanglement of Polarization and Orbital Angular Momentum
Bhatti, Daniel; von Zanthier, Joachim; Agarwal, Girish S.
2015-01-01
We investigate two-photon entangled states using two important degrees of freedom of the electromagnetic field, namely orbital angular momentum (OAM) and spin angular momentum. For photons propagating in the same direction we apply the idea of $\\textit{entanglement duality}$ and develop schemes to do $\\textit{entanglement sorting}$ based either on OAM or polarization. In each case the entanglement is tested using appropriate witnesses. We finally present generalizations of these ideas to thre...
Radio beam vorticity and orbital angular momentum
Thidé, Bo; Tamburini, Fabrizio; Mari, Elettra; Romanato, Filippo; Barbieri, Cesare
2011-01-01
It has been known for a century that electromagnetic fields can transport not only energy and linear momentum but also angular momentum. However, it was not until twenty years ago, with the discovery in laser optics of experimental techniques for the generation, detection and manipulation of photons in well-defined, pure orbital angular momentum (OAM) states, that twisted light and its pertinent optical vorticity and phase singularities began to come into widespread use in science and technol...
Mastering AngularJD for .NET developers
Majid, Mohammad Wadood
2015-01-01
This book is envisioned for traditional developers and programmers who want to develop client-side applications using the AngularJS framework and ASP.NET Web API 2 with Visual Studio. .NET developers who have already built web applications or web services and who have a fundamental knowledge of HTML, JavaScript, and CSS and want to explore single-page applications will also find this guide useful. Basic knowledge of AngularJS would be helpful.
Stiffness and Angular Deflection analysis of Revolute Manipulator
Directory of Open Access Journals (Sweden)
Pundru Srinivasa Rao
2014-03-01
Full Text Available This paper proposed to determine the Cartesian stiffness matrix and angular deflection analysis of revolute manipulator. The selected manipulator has rigid fixed link, two movable links and two rotary joints with joint stiffness coefficients are taken into account. The kinematic model of revolute joint manipulator has considered as a planar kinematic chain, which is composed by rigid fixed link and two revolute joints with clearance and deformable elements. The calculation of stiffness matrix depends on Jacobian matrix and change of configuration. The rotational joints are modeled as torsion springs with the same stiffness constant. The relative angular deflections are proportional to the actuated torques taken into account. The subject of this paper has to describe a method for stiffness analysis of serial manipulator. In the present work is to derive the stiffness matrix and angular deflection equations in the Robotic manipulator under the consideration of two-link optimum geometry model for rotary joint manipulator. The stiffness values are measured by displacements of its revolute links loaded by force.
Angular profile of Particle Emission from a Higher-dimensional Black Hole: Analytic Results
Kanti, Panagiota
2012-01-01
During the spin-down phase of the life of a higher-dimensional black hole, the emission of particles on the brane exhibits a strong angular variation with respect to the rotation axis of the black hole. It has been suggested that this angular variation is the observable that could disentangle the dependence of the radiation spectra on the number of extra dimensions and angular momentum of the black hole. Working in the low-energy regime, we have employed analytical formulae for the greybody factors, angular eigenvalues and eigenfunctions of fermions and gauge bosons, and studied the characteristics of the corresponding angular profiles of emission spectra in terms of only a few dominant partial modes. We have confirmed that, in the low-energy channel, the emitted gauge bosons become aligned to the rotation axis of the produced black hole while fermions form an angle with the rotation axis whose exact value depends on the angular-momentum of the black hole. In the case of scalar fields, we demonstrated the exi...
Institute of Scientific and Technical Information of China (English)
Ren Xiang-He; Wu Yan; Zhang Jing-Tao; Ma Hui; Xu Yu-Long
2013-01-01
We theoretically investigate the strong-field ionization of H2+ molecules in four different electronic states by calculating photoelectron angular distributions in circularly polarized fields.We find that the structure of photoelectron angular distribution depends on the molecular orbital as well as the energy of the photoelectron.The location of main lobes changes with the symmetric property of the molecular orbital.Generally,for molecules with bonding electronic states,the photoelectron's angular distribution shows a rotation of π/2 with respect to the molecular axis,while for molecules with antibonding electronic states,no rotation occurs.We use an interference scenario to interpret these phenomena.We also find that,due to the interference effect,a new pair of jets appears in the waist of the main lobes,and the main lobes or jets of the photoelectron's angular distribution are split into two parts if the photoelectron energy is sufficiently high.
Angular momentum transport efficiency in post-main sequence low-mass stars
Spada, F; Arlt, R; Deheuvels, S
2016-01-01
Context. Using asteroseismic techniques, it has recently become possible to probe the internal rotation profile of low-mass (~1.1-1.5 Msun) subgiant and red giant stars. Under the assumption of local angular momentum conservation, the core contraction and envelope expansion occurring at the end of the main sequence would result in a much larger internal differential rotation than observed. This suggests that angular momentum redistribution must be taking place in the interior of these stars. Aims. We investigate the physical nature of the angular momentum redistribution mechanisms operating in stellar interiors by constraining the efficiency of post-main sequence rotational coupling. Methods. We model the rotational evolution of a 1.25 Msun star using the Yale Rotational stellar Evolution Code. Our models take into account the magnetic wind braking occurring at the surface of the star and the angular momentum transport in the interior, with an efficiency dependent on the degree of internal differential rotati...
Balint-Kurti, Gabriel G; Vasyutinskii, Oleg S
2009-12-31
A general reactive collision of the type A + B --> C + D is considered where both the collision partners (A and B) or the products (C and D) may possess internal, i.e., spin, orbital or rotational, angular momenta. Compact expressions are derived using a rigorous quantum mechanical analysis for the angular momentum anisotropy of either of the products (C or D) arising from an initially polarized distribution of the reactant angular momentum. The angular momentum distribution of the product is expressed in terms of canonical spherical tensors multiplied by anisotropy-transforming coefficients c(K(i)q(k))(K)(K(r),L). These coefficients act as transformation coefficients between the angular momentum anisotropy of the reactants and that of the product. They are independent of scattering angle but depend on the details of the scattering dynamics. The relationship between the coefficients c(K(i)q(k))(K)(K(r),L) and the body-fixed scattering S matrix is given and the methodology for the quantum mechanical calculation of the anisotropy-transforming coefficients is clearly laid out. The anisotropy-transforming coefficients are amenable to direct experimental measurement in a similar manner to vector correlation and alignment parameters in photodissociation processes. A key aspect of the theory is the use of projections of both reactant and product angular momenta onto the product recoil vector direction. An important new conservation rule is revealed through the analysis, namely that if the state multipole for reactant angular momentum distribution has a projection q(k) onto the product recoil vector the state multipoles for the product angular momentum distribution all have this same projection. Expressions are also presented for the distribution of the product angular momentum when its components are evaluated relative to the space-fixed Z-axis. Notes with detailed derivations of all the formulas are available as Supporting Information. PMID:19642631
Balint-Kurti, Gabriel G; Vasyutinskii, Oleg S
2009-12-31
A general reactive collision of the type A + B --> C + D is considered where both the collision partners (A and B) or the products (C and D) may possess internal, i.e., spin, orbital or rotational, angular momenta. Compact expressions are derived using a rigorous quantum mechanical analysis for the angular momentum anisotropy of either of the products (C or D) arising from an initially polarized distribution of the reactant angular momentum. The angular momentum distribution of the product is expressed in terms of canonical spherical tensors multiplied by anisotropy-transforming coefficients c(K(i)q(k))(K)(K(r),L). These coefficients act as transformation coefficients between the angular momentum anisotropy of the reactants and that of the product. They are independent of scattering angle but depend on the details of the scattering dynamics. The relationship between the coefficients c(K(i)q(k))(K)(K(r),L) and the body-fixed scattering S matrix is given and the methodology for the quantum mechanical calculation of the anisotropy-transforming coefficients is clearly laid out. The anisotropy-transforming coefficients are amenable to direct experimental measurement in a similar manner to vector correlation and alignment parameters in photodissociation processes. A key aspect of the theory is the use of projections of both reactant and product angular momenta onto the product recoil vector direction. An important new conservation rule is revealed through the analysis, namely that if the state multipole for reactant angular momentum distribution has a projection q(k) onto the product recoil vector the state multipoles for the product angular momentum distribution all have this same projection. Expressions are also presented for the distribution of the product angular momentum when its components are evaluated relative to the space-fixed Z-axis. Notes with detailed derivations of all the formulas are available as Supporting Information.
Measurements of electron density profiles using an angular filter refractometer
Energy Technology Data Exchange (ETDEWEB)
Haberberger, D., E-mail: dhab@lle.rochester.edu; Ivancic, S.; Hu, S. X.; Boni, R.; Barczys, M.; Craxton, R. S.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14636 (United States)
2014-05-15
A novel diagnostic technique, angular filter refractometry (AFR), has been developed to characterize high-density, long-scale-length plasmas relevant to high-energy-density physics experiments. AFR measures plasma densities up to 10{sup 21} cm{sup −3} with a 263-nm probe laser and is used to study the plasma expansion from CH foil and spherical targets that are irradiated with ∼9 kJ of ultraviolet (351-nm) laser energy in a 2-ns pulse. The data elucidate the temporal evolution of the plasma profile for the CH planar targets and the dependence of the plasma profile on target radius for CH spheres.
Supermode fiber for orbital angular momentum (OAM) transmission.
Li, Shuhui; Wang, Jian
2015-07-13
We present a multi-orbital-angular-momentum (OAM) multi-core supermode fiber (MOMCSF) to transmit OAM modes. The MOMCSF consists of equally-spaced and circularly-arranged multiple cores, in which the core pitch is small enough to support strong coupling OAM supermodes. The characteristics of OAM modes in MOMCSFs with different core pitches and core numbers are analyzed. The performances of mode coupling and nonlinearity are optimized by designing multiple degrees of freedom of the supermode fiber. The obtained results show that the designed MOMCSF can transmit multiple OAM modes with favorable performance of low mode coupling, low nonlinearity, and low modal dependent loss.
Accessing the quark orbital angular momentum with Wigner distributions
Cedric LorceIPNO and LPT, Orsay; Barbara Pasquini(Pavia U. and INFN, Pavia)
2015-01-01
The quark orbital angular momentum (OAM) has been recognized as an important piece of the proton spin puzzle. A lot of effort has been invested in trying to extract it quantitatively from the generalized parton distributions (GPDs) and the transverse-momentum dependent parton distributions (TMDs), which are accessed in high-energy processes and provide three-dimensional pictures of the nucleon. Recently, we have shown that it is more natural to access the quark OAM from the phase-space or Wig...
Ultrafast angular momentum transfer in multisublattice ferrimagnets.
Bergeard, N; López-Flores, V; Halté, V; Hehn, M; Stamm, C; Pontius, N; Beaurepaire, E; Boeglin, C
2014-03-11
Femtosecond laser pulses can be used to induce ultrafast changes of the magnetization in magnetic materials. However, one of the unsolved questions is that of conservation of the total angular momentum during the ultrafast demagnetization. Here we report the ultrafast transfer of angular momentum during the first hundred femtoseconds in ferrimagnetic Co0.8Gd0.2 and Co0.74Tb0.26 films. Using time-resolved X-ray magnetic circular dichroism allowed for time-resolved determination of spin and orbital momenta for each element. We report an ultrafast quenching of the magnetocrystalline anisotropy and show that at early times the demagnetization in ferrimagnetic alloys is driven by the local transfer of angular momenta between the two exchange-coupled sublattices while the total angular momentum stays constant. In Co0.74Tb0.26 we have observed a transfer of the total angular momentum to an external bath, which is delayed by ~150 fs.
Angular distribution of oriented nucleus fission neutrons
International Nuclear Information System (INIS)
Calculations of anisotropy of angular distribution of oriented 235U nuclei thermal fission neutrons have been carried out. the neutrons were assumed to evaporate isotropically by completely accelerated fragements in the fragment system with only its small part, i. e. fission-producing neutrons, emitted at the moment of neck break. It has been found out that at low energies of neutrons Esub(n)=1-2 MeV the sensitivity of the angular distribution anisotropy to variations of spectrum of neutron evaporation from fragments and the magnitude of a share of fission-producing neutrons reaches approximately 100%, which at high energies, Esub(n) > 5 MeV it does not exceed approximately 20%. Therefore the angular distribution of fast neutrons to a greater degree of confidence may be used for restoring the angular distribution anisotropy of fragments while the angular distribution of low energy neutrons may be used for deriving information on the fission process, but only in case 6f the experiment accuracy is better than approximately 3%
Data-oriented development with AngularJS
Waikar, Manoj
2015-01-01
This book helps beginner-level AngularJS developers organize AngularJS applications by discussing important AngularJS concepts and best practices. If you are an experienced AngularJS developer but haven't written directives or haven't created custom HTML controls before, then this book is ideal for you.
Variation in Angular Velocity and Angular Acceleration of a Particle in Rectilinear Motion
Mashood, K. K.; Singh, V. A.
2012-01-01
We discuss the angular velocity ([image omitted]) and angular acceleration ([image omitted]) associated with a particle in rectilinear motion with constant acceleration. The discussion was motivated by an observation that students and even teachers have difficulty in ascribing rotational motion concepts to a particle when the trajectory is a…
Physics from Angular Projection of Rectangular Grids
Singh, Ashmeet
2015-01-01
In this paper, we present a mathematical model for the angular projection of a rectangular arrangement of points in a grid. This simple, yet interesting problem, has both a scholarly value and applications for data extraction techniques to study the physics of various systems. Our work can interest undergraduate students to understand subtle points in the angular projection of a grid and describes various quantities of interest in the projection with completeness and sufficient rigour. We show that for certain angular ranges, the projection has non-distinctness, and calculate the details of such angles, and correspondingly, the number of distinct points and the total projected length. We focus on interesting trends obtained for the projected length of the grid elements and present a simple application of the model to determine the geometry of an unknown grid whose spatial extensions are known, using measurement of the grid projection at two angles only. Towards the end, our model is shown to have potential ap...
Chirality and angular momentum in optical radiation
Coles, Matt M
2012-01-01
This paper develops, in precise quantum electrodynamic terms, photonic attributes of the "optical chirality density", one of several measures long known to be conserved quantities for a vacuum electromagnetic field. The analysis lends insights into some recent interpretations of chiroptical experiments, in which this measure, and an associated chirality flux, have been treated as representing physically distinctive "superchiral" phenomena. In the fully quantized formalism the chirality density is promoted to operator status, whose exploration with reference to an arbitrary polarization basis reveals relationships to optical angular momentum and helicity operators. Analyzing multi-mode beams with complex wave-front structures, notably Laguerre-Gaussian modes, affords a deeper understanding of the interplay between optical chirality and optical angular momentum. By developing theory with due cognizance of the photonic character of light, it emerges that only the spin angular momentum of light is engaged in such...
Angular momentum transfer in incomplete fusion
Indian Academy of Sciences (India)
B S Tomar; K Surendra Babu; K Sudarshan; R Tripathi; A Goswami
2005-02-01
Isomeric cross-section ratios of evaporation residues formed in 12C+93Nb and 16O + 89Y reactions were measured by recoil catcher technique followed by off-line -ray spectrometry in the beam energy range of 55.7-77.5 MeV for 12C and 68-81 MeV for 16O. The isomeric cross-section ratios were resolved into that for complete and incomplete fusion reactions. The angular momentum of the intermediate nucleus formed in incomplete fusion was deduced from the isomeric cross-section ratio by considering the statistical de-excitation of the incompletely fused composite nucleus. The data show that incomplete fusion is associated with angular momenta slightly smaller than critical angular momentum for complete fusion, indicating the deeper interpenetration of projectile and target nuclei than that in peripheral collisions.
Radio beam vorticity and orbital angular momentum
Thidé, Bo; Mari, Elettra; Romanato, Filippo; Barbieri, Cesare
2011-01-01
It has been known for a century that electromagnetic fields can transport not only energy and linear momentum but also angular momentum. However, it was not until twenty years ago, with the discovery in laser optics of experimental techniques for the generation, detection and manipulation of photons in well-defined, pure orbital angular momentum (OAM) states, that twisted light and its pertinent optical vorticity and phase singularities began to come into widespread use in science and technology. We have now shown experimentally how OAM and vorticity can be readily imparted onto radio beams. Our results extend those of earlier experiments on angular momentum and vorticity in radio in that we used a single antenna and reflector to directly generate twisted radio beams and verified that their topological properties agree with theoretical predictions. This opens the possibility to work with photon OAM at frequencies low enough to allow the use of antennas and digital signal processing, thus enabling software con...
Surface angular momentum of light beams.
Ornigotti, Marco; Aiello, Andrea
2014-03-24
Traditionally, the angular momentum of light is calculated for "bullet-like" electromagnetic wave packets, although in actual optical experiments "pencil-like" beams of light are more commonly used. The fact that a wave packet is bounded transversely and longitudinally while a beam has, in principle, an infinite extent along the direction of propagation, renders incomplete the textbook calculation of the spin/orbital separation of the angular momentum of a light beam. In this work we demonstrate that a novel, extra surface part must be added in order to preserve the gauge invariance of the optical angular momentum per unit length. The impact of this extra term is quantified by means of two examples: a Laguerre-Gaussian and a Bessel beam, both circularly polarized.
Quark orbital angular momentum from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Mathur, N.; Dong, S. J.; Liu, K. F.; Mankiewicz, L.; Mukhopadhyay, N. C.
2000-12-01
We calculate the quark orbital angular momentum of the nucleon from the quark energy-momentum tensor form factors on the lattice with the quenched approximation. The disconnected insertion is estimated stochastically which employs the Z{sub 2} noise with an unbiased subtraction. This reduced the error by a factor of 3--4 with negligible overhead. The total quark contribution to the proton spin is found to be 0.30{+-}0.07. From this and the quark spin content we deduce the quark orbital angular momentum to be 0.17{+-}0.06 which is {approx}34% of the proton spin. We further predict that the gluon angular momentum is 0.20{+-}0.07; i.e., {approx}40% of the proton spin is due to the glue.
Quark orbital angular momentum from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Liu, K.F.
2000-01-10
The authors calculate the quark orbital angular momentum of the nucleon from the quark energy-momentum tensor form factors on the lattice. The disconnected insertion is estimated stochastically which employs the Z{sub 2} noise with an unbiased subtraction. This reduced the error by a factor of 4 with negligible overhead. The total quark contribution to the proton spin is found to be 0.30{+-}0.07. From this and the quark spin content the authors deduce the quark orbital angular momentum to be 0.17{+-}0.06 which is {approximately} 34% of the proton spin. The authors further predict that the gluon angular momentum to be 0.20{+-}0.07, i. e. {approximately} 40% of the proton spin is due to the glue.
Ghost Imaging Using Orbital Angular Momentum
Institute of Scientific and Technical Information of China (English)
赵生妹; 丁建; 董小亮; 郑宝玉
2011-01-01
We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum. In the signal arm, object spatial information is encoded as a phase matrix. For an N-grey-scale object, different phase matrices, varying from 0 to K with increment n/N, are used for different greyscales, and then they are modulated to a signal beam by a spatial light modulator. According to the conservation of the orbital angular momentum in the ghost imaging system, these changes will give different coincidence rates in measurement, and hence the object information can be extracted in the idler arm. By simulations and experiments, the results show that our scheme can improve the resolution of the image effectively. Compared with another encoding method using orbital angular momentum, our scheme has a better performance for both characters and the image object.%We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum.In the signal arm,object spatial information is encoded as a phase matrix.For an N-grey-scale object,different phase matrices,varying from 0 to π with increment π/N,are used for different greyscales,and then they are modulated to a signal beam by a spatial light modulator.According to the conservation of the orbital angular momentum in the ghost imaging system,these changes will give different coincidence rates in measurement,and hence the object information can be extracted in the idler arm.By simulations and experiments,the results show that our scheme can improve the resolution of the image effectively.Compared with another encoding method using orbital angular momentum,our scheme has a better performance for both characters and the image object.
Angular momentum and the electromagnetic top
Indian Academy of Sciences (India)
GIANFRANCO SPAVIERI; GEORGE T GILLIES
2016-08-01
The electric charge–magnetic dipole interaction is considered. If $\\Gamma_{\\rm em}$ is the electromagnetic and $\\Gamma_{\\rm mech}$ the mechanical angular momentum, the conservation law for the total angular momentum $\\Gamma_{\\rm tot}$ holds: $\\Gamma_{\\rm tot}$ =$\\Gamma_{\\rm em}$ + $\\Gamma_{\\rm mech}$ = ${\\rm const.}$, but when the dipole moment varies with time, $\\Gamma_{\\rm mech}$ is not conserved. We show that the non-conserved $\\Gamma_{\\rm mech}$ of such a macroscopic isolated system might be experimentally observable. With advanced technology, the strength of the interaction hints to the possibility of novel applications for gyroscopes, such as the electromagnetic top.
Time-resolved orbital angular momentum spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Noyan, Mehmet A.; Kikkawa, James M. [Department of Physics and Astronomy, The University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)
2015-07-20
We introduce pump-probe magneto-orbital spectroscopy, wherein Laguerre-Gauss optical pump pulses impart orbital angular momentum to the electronic states of a material and subsequent dynamics are studied with 100 fs time resolution. The excitation uses vortex modes that distribute angular momentum over a macroscopic area determined by the spot size, and the optical probe studies the chiral imbalance of vortex modes reflected off the sample. First observations in bulk GaAs yield transients that evolve on time scales distinctly different from population and spin relaxation, as expected, but with surprisingly large lifetimes.
Time-resolved orbital angular momentum spectroscopy
International Nuclear Information System (INIS)
We introduce pump-probe magneto-orbital spectroscopy, wherein Laguerre-Gauss optical pump pulses impart orbital angular momentum to the electronic states of a material and subsequent dynamics are studied with 100 fs time resolution. The excitation uses vortex modes that distribute angular momentum over a macroscopic area determined by the spot size, and the optical probe studies the chiral imbalance of vortex modes reflected off the sample. First observations in bulk GaAs yield transients that evolve on time scales distinctly different from population and spin relaxation, as expected, but with surprisingly large lifetimes
Wilson lines and orbital angular momentum
International Nuclear Information System (INIS)
We present an explicit realization of the Chen et al. approach to the proton spin decomposition in terms of Wilson lines, generalizing the light-front gauge-invariant extensions discussed recently by Hatta. Particular attention is drawn to the residual gauge freedom by further separating the pure-gauge term into contour and residual terms. We show that the kinetic orbital angular momentum operator can be expressed in terms of the Wigner operator only when the momentum variable is integrated over. Finally, we confirm from twist-2 arguments that the advanced, retarded and antisymmetric light-front canonical orbital angular momenta are the same
Quark Orbital Angular Momentum from Lattice QCD
N. Mathur; Dong, S. J.; Liu, K. F.; Mankiewicz, L.; Mukhopadhyay, N. C.
1999-01-01
We calculate the quark orbital angular momentum of the nucleon from the quark energy-momentum tensor form factors on the lattice. The disconnected insertion is estimated stochastically which employs the $Z_2$ noise with an unbiased subtraction. This reduced the error by a factor of 4 with negligible overhead. The total quark contribution to the proton spin is found to be $0.30 \\pm 0.07$. From this and the quark spin content we deduce the quark orbital angular momentum to be $0.17 \\pm 0.06$ wh...
Wilson lines and orbital angular momentum
Energy Technology Data Exchange (ETDEWEB)
Lorcé, Cédric, E-mail: cedric.lorce@googlemail.com [IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay (France); LPT, Université Paris-Sud, CNRS, 91406 Orsay (France)
2013-02-12
We present an explicit realization of the Chen et al. approach to the proton spin decomposition in terms of Wilson lines, generalizing the light-front gauge-invariant extensions discussed recently by Hatta. Particular attention is drawn to the residual gauge freedom by further separating the pure-gauge term into contour and residual terms. We show that the kinetic orbital angular momentum operator can be expressed in terms of the Wigner operator only when the momentum variable is integrated over. Finally, we confirm from twist-2 arguments that the advanced, retarded and antisymmetric light-front canonical orbital angular momenta are the same.
On the vector model of angular momentum
Saari, Peeter
2016-09-01
Instead of (or in addition to) the common vector diagram with cones, we propose to visualize the peculiarities of quantum mechanical angular momentum by a completely quantized 3D model. It spotlights the discrete eigenvalues and noncommutativity of components of angular momentum and corresponds to outcomes of measurements—real or computer-simulated. The latter can be easily realized by an interactive worksheet of a suitable program package of algebraic calculations. The proposed complementary method of visualization helps undergraduate students to better understand the counterintuitive properties of this quantum mechanical observable.
Yang, W M
2008-01-01
The purpose of this work was to obtain diffusion coefficient for the magnetic angular momentum transport and material transport in a rotating solar model. We assumed that the transport of both angular momentum and chemical elements caused by magnetic fields could be treated as a diffusion process. The diffusion coefficient depends on the stellar radius, angular velocity, and the configuration of magnetic fields. By using of this coefficient, it is found that our model becomes more consistent with the helioseismic results of total angular momentum, angular momentum density, and the rotation rate in a radiative region than the one without magnetic fields. Not only can the magnetic fields redistribute angular momentum efficiently, but they can also strengthen the coupling between the radiative and convective zones. As a result, the sharp gradient of the rotation rate is reduced at the bottom of the convective zone. The thickness of the layer of sharp radial change in the rotation rate is about 0.036 $R_{\\odot}$ ...
Large-Angular Scales CMB Anisotropy from Excited Initial Mode
Sojasi, A; Yusofi, E
2015-01-01
According to the inflationary cosmology, the CMB anisotropy gives an opportunity to test predictions of the new physics hypothesis. Initial state of quantum fluctuations is one of the important options at high energy scale, which can affect on the observables such as CMB power spectrum. In this study a quasi-de Sitter inflationary background with approximate de Sitter mode function built over the Bunch-Davies mode is applied to investigate the scale-dependency of the CMB anisotropy. Indeed, considering the recent Planck constraint on spectral index, motivated us to examine the effect of new excited mode function (instead of pure de Sitter mode) on the CMB anisotropy in large-angular scales. In so doing, it was revealed that the angular scale-invariance in the CMB temperature fluctuations is broken and in the limit $ \\ell<200 $ the tiny deviation is appeared. Also, it was shown that the power spectrum of CMB anisotropy is dependent on the slow-roll parameter $\\epsilon $.
Drell-Yan Lepton Angular Distribution at Small Transverse Momentum
Boer, D; Boer, Daniel; Vogelsang, Werner
2006-01-01
We investigate the dependence of the Drell-Yan cross section on lepton polar and azimuthal angles, as generated by the lowest-order QCD annihilation and Compton processes. We focus in particular on the azimuthal-angular distributions, which are of the form cos(phi) and cos(2phi). At small transverse momentum q_T of the lepton pair, q_T << Q, with Q the pair mass, these terms are known to be suppressed relative to the phi-independent part of the Drell-Yan cross section by one or two powers of the transverse momentum. Nonetheless, as we show, like the phi-independent part they are subject to large logarithmic corrections, whose precise form however depends on the reference frame chosen. These logarithmic contributions ultimately require resummation to all orders in the strong coupling. We discuss the potential effects of resummation on the various angular terms in the cross section and on the Lam-Tung relation.
Angular-momentum-bearing modes in fission
International Nuclear Information System (INIS)
The angular-momentum-bearing degrees of freedom involved in the fission process are identified and their influence on experimental observables is discussed. The excitation of these modes is treated in the ''thermal'' limit, and the resulting distributions of observables are calculated. Experiments demonstrating the role of these modes are presented and discussed. 61 refs., 12 figs
Angular Momentum Transport in Accretion Disks
DEFF Research Database (Denmark)
E. Pessah, Martin; Chan, Chi-kwan; Psaltis, Dimitrios;
2007-01-01
if the resolution were set equal to the natural dissipation scale in astrophysical disks. We conclude that, in order for MRI-driven turbulent angular momentum transport to be able to account for the large value of the effective alpha viscosity inferred observationally, the disk must be threaded by a significant...
On the quantisation of the angular momentum
Ho, V B
1994-01-01
When a hydrogen-like atom is treated as a two dimensional system whose configuration space is multiply connected, then in order to obtain the same energy spectrum as in the Bohr model the angular momentum must be half-integral.
Angular and linear momentum of excited ferromagnets
Yan, P.; Kamra, A.; Cao, Y.; Bauer, G.E.W.
2013-01-01
The angular momentum vector of a Heisenberg ferromagnet with isotropic exchange interaction is conserved, while under uniaxial crystalline anisotropy the projection of the total spin along the easy axis is a constant of motion. Using Noether's theorem, we prove that these conservation laws persist i
Critical gravitational collapse with angular momentum
Gundlach, Carsten
2016-01-01
We derive a theoretical model of mass and angular momentum scaling in type-II critical collapse with rotation. We focus on the case where the critical solution has precisely one, spherically symmetric, unstable mode. We demonstrate excellent agreement with numerical results for critical collapse of a rotating radiation fluid, which falls into this case.
Optical angular momentum conversion in a nanoslit
Chimento, P.F.; Alkemade, P.F.A.; T Hooft, G.W.; Eliel, E.R.
2012-01-01
We demonstrate partial conversion of circularly polarized light into orbital angular momentum-carrying vortex light with opposite-handed circular polarization. This conversion is accomplished in a novel manner using the birefringent properties of a circular subwavelength slit in a thin metal film. O
A new method for angular displacement measurement
Institute of Scientific and Technical Information of China (English)
Caini Zhang(张彩妮); Xiangzhao Wang(王向朝)
2003-01-01
We describe a new method for angular displacement measurements that is based on a Fabry-Perot inter-ferometer. A measurement accuracy of 10-s rad is obtained by use of the sinusoidal phase modulatinginterferometry. Another Fabry-Perot interferometer is used to obtain the key initial angle of incidence.
Quantum Entanglement of High Angular Momenta
International Nuclear Information System (INIS)
Full text: Orbital angular momentum (OAM) of single photons represents a relatively novel optical degree of freedom for the entanglement of photons. One physical realization of OAM carrying light beams are the so called Laguerre-Gaussian modes which have the required helical phase structure. One big advantage over the well-known polarization degree of freedom is the possibility of realizing entanglement between two photons with very high quantum numbers and momenta respectively. However, the creation of photonic OAM entanglement by the widely used spontaneous parametric down conversion (SPDC) process is limited by the strongly reduced efficiency for higher momenta. We have realized a novel method to create entanglement between two photons which is not constrained by the SPDC efficiency or conservation law for the OAM degree of freedom. We created and measured the entanglement of two photons with up to 600ħ difference in their angular momentum by transferring the polarization entanglement to the orbital angular momentum degree of freedom within an interferometric scheme. Additionally, we used hybrid entangled biphoton states between polarization and OAM to show the angular resolution enhancement in possible remote sensing applications. (author)
Photon Orbital Angular Momentum in Astrophysics
Harwit, Martin
2003-01-01
Astronomical observations of the orbital angular momentum of photons, a property of electromagnetic radiation that has come to the fore in recent years, have apparently never been attempted. Here, I show that measurements of this property of photons have a number of astrophysical applications.
Polarization of molecular angular momentum in the chemical reactions Li + HF and F + HD.
Krasilnikov, Mikhail B; Popov, Ruslan S; Roncero, Octavio; De Fazio, Dario; Cavalli, Simonetta; Aquilanti, Vincenzo; Vasyutinskii, Oleg S
2013-06-28
The quantum mechanical approach to vector correlation of angular momentum orientation and alignment in chemical reactions [G. Balint-Kurti and O. S. Vasyutinskii, J. Phys. Chem. A 113, 14281 (2009)] is applied to the molecular reagents and products of the Li + HF [L. Gonzalez-Sanchez, O. S. Vasyutinskii, A. Zanchet, C. Sanz-Sanz, and O. Roncero, Phys. Chem. Chem. Phys. 13, 13656 (2011)] and F + HD [D. De Fazio, J. Lucas, V. Aquilanti, and S. Cavalli, Phys. Chem. Chem. Phys. 13, 8571 (2011)] reactions for which accurate scattering information has become recently available through time-dependent and time-independent approaches. Application of the theory to two important particular cases of the reactive collisions has been considered: (i) the influence of the angular momentum polarization of reactants in the entrance channel on the spatial distribution of the products in the exit channel and (ii) angular momentum polarization of the products of the reaction between unpolarized reactants. In the former case, the role of the angular momentum alignment of the reactants is shown to be large, particularly when the angular momentum is perpendicular to the reaction scattering plane. In the latter case, the orientation and alignment of the product angular momentum was found to be significant and strongly dependent on the scattering angle. The calculation also reveals significant differences between the vector correlation properties of the two reactions under study which are due to difference in the reaction mechanisms. In the case of F + HD reaction, the branching ratio between HF and DF production points out interest in the insight gained into the detailed dynamics, when information is available either from exact quantum mechanical calculations or from especially designed experiments. Also, the geometrical arrangement for the experimental determination of the product angular momentum orientation and alignment based on a compact and convenient spherical tensor expression for
Energy Technology Data Exchange (ETDEWEB)
Bouchard, Frédéric; De Leon, Israel; Schulz, Sebastian A.; Upham, Jeremy; Karimi, Ebrahim, E-mail: ekarimi@uottawa.ca [Department of Physics, University of Ottawa, 25 Templeton, Ottawa, Ontario K1N 6N5 Canada (Canada); Boyd, Robert W. [Department of Physics, University of Ottawa, 25 Templeton, Ottawa, Ontario K1N 6N5 Canada (Canada); Institute of Optics, University of Rochester, Rochester, New York 14627 (United States)
2014-09-08
Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ=±2qℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.
International Nuclear Information System (INIS)
Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ=±2qℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.
Wu, H W; Wang, F; Dong, Y Q; Shu, F Z; Zhang, K; Peng, R W; Xiong, X; Wang, Mu
2015-12-14
In this work, we theoretically study the cavity modes with transverse orbital angular momentum in metamaterial ring based on transformation optics. The metamaterial ring is designed to transform the straight trajectory of light into the circulating one by enlarging the azimuthal angle, effectively presenting the modes with transverse orbital angular momentum. The simulation results confirm the theoretical predictions, which state that the transverse orbital angular momentum of the mode not only depends on the frequency of the incident light, but also depends on the transformation scale of the azimuthal angle. Because energy dissipation inevitably reduces the field amplitude of the modes, the confined electromagnetic energy and the quality factor of the modes inside the ring are also studied in order to evaluate the stability of those cavity modes. The results show that the metamaterial ring can effectively confine light with a high quality factor and maintain steady modes with the orbital angular momentum, even if the dimension of the ring is much smaller than the wavelength of the incident light. This technique for exploiting the modes with optical transverse orbital angular momentum may provides a unique platform for applications related to micromanipulation.
Combined calculi for photon orbital and spin angular momenta
Elias, N. M.
2014-08-01
Context. Wavelength, photon spin angular momentum (PSAM), and photon orbital angular momentum (POAM), completely describe the state of a photon or an electric field (an ensemble of photons). Wavelength relates directly to energy and linear momentum, the corresponding kinetic quantities. PSAM and POAM, themselves kinetic quantities, are colloquially known as polarization and optical vortices, respectively. Astrophysical sources emit photons that carry this information. Aims: PSAM characteristics of an electric field (intensity) are compactly described by the Jones (Stokes/Mueller) calculus. Similarly, I created calculi to represent POAM characteristics of electric fields and intensities in an astrophysical context. Adding wavelength dependence to all of these calculi is trivial. The next logical steps are to 1) form photon total angular momentum (PTAM = POAM + PSAM) calculi; 2) prove their validity using operators and expectation values; and 3) show that instrumental PSAM can affect measured POAM values for certain types of electric fields. Methods: I derive the PTAM calculi of electric fields and intensities by combining the POAM and PSAM calculi. I show how these quantities propagate from celestial sphere to image plane. I also form the PTAM operator (the sum of the POAM and PSAM operators), with and without instrumental PSAM, and calculate the corresponding expectation values. Results: Apart from the vector, matrix, dot product, and direct product symbols, the PTAM and POAM calculi appear superficially identical. I provide tables with all possible forms of PTAM calculi. I prove that PTAM expectation values are correct for instruments with and without instrumental PSAM. I also show that POAM measurements of "unfactored" PTAM electric fields passing through non-zero instrumental circular PSAM can be biased. Conclusions: The combined PTAM calculi provide insight into mathematically modeling PTAM sources and calibrating POAM- and PSAM-induced measurement errors.
Angular correlations in double ionization of Helium by high-energy Compton scattering
Energy Technology Data Exchange (ETDEWEB)
Kaliman, Z. [Department of Physics, Faculty of Arts and Sciences, Omladinska 14, Rijeka (Croatia)], E-mail: kaliman@ffri.hr; Pisk, K.; Suric, T. [Rudjer Boskovic Institute, P.O. Box 180, Zagreb (Croatia)
2007-09-21
We present theoretical results for double differential cross section d{sup 2}{sigma}/d{omega}{sub 1}d{omega}{sub 2} in the process of double ionization of Helium by high-energy Compton scattering. We discuss the energy and angular dependence of the cross section, as well as the relative importance of shake and final state interaction mechanisms.
DEFF Research Database (Denmark)
Hansen, Jonas Lerche; Stapelfeldt, Henrik; Dimitrovski, Darko;
2011-01-01
A nanosecond laser pulse confines the spatial orientation of naphthalene in 1D or 3D while a femtosecond kick pulse initiates rotation of the molecular plane around the fixed long axis. Time-dependent photoelectron angular distributions (PADs), resulting from ionization by an intense femtosecond...
Quark orbital angular momentum: can we learn about it from GPDs and TMDs?
Energy Technology Data Exchange (ETDEWEB)
H.Avakian, A.V.Efremov, P.Schweitzer, O.V.Teryaev, P.Zavada
2011-05-01
It is known how to access information on quark orbital angular momentum from generalized parton distribution functions, in a certain specified framework. It is intuitively expected, that such information can be accessed also through transverse momentum dependent distribution functions, but not known how. Now quark models provide promising hints. Recent results are reviewed.
Quark orbital angular momentum: can we learn about it from GPDs and TMDs?
Avakian, H; Schweitzer, P; Teryaev, O V; Zavada, P
2010-01-01
It is known how to access information on quark orbital angular momentum from generalized parton distribution functions, in a certain specified framework. It is intuitively expected, that such information can be accessed also through transverse momentum dependent distribution functions, but not known how. Now quark models provide promising hints. Recent results are reviewed.
Zhang, Zijing; Qiao, Tianyuan; Ma, Kun; Cen, Longzhu; Zhang, Jiandong; Wang, Feng; Zhao, Yuan
2016-08-15
Photon orbital angular momentum has led to many novel insights and applications in quantum measurement. Photon orbital angular momentum can increase the resolution and sensitivity of angular rotation measurement. However, quantum measurement strategy can further surpass this limit and improve the resolution of angular rotation measurement. This Letter proposes and demonstrates a parity measurement method in angular rotation measurement scheme for the first time. Parity measurement can make the resolution superior to the limit of the existing method. The sensitivity can be improved with higher orbital angular momentum photons. Moreover, this Letter gives a detailed discussion of the change of resolution and sensitivity in the presence of photon loss.
Zhang, Zijing; Qiao, Tianyuan; Ma, Kun; Cen, Longzhu; Zhang, Jiandong; Wang, Feng; Zhao, Yuan
2016-08-15
Photon orbital angular momentum has led to many novel insights and applications in quantum measurement. Photon orbital angular momentum can increase the resolution and sensitivity of angular rotation measurement. However, quantum measurement strategy can further surpass this limit and improve the resolution of angular rotation measurement. This Letter proposes and demonstrates a parity measurement method in angular rotation measurement scheme for the first time. Parity measurement can make the resolution superior to the limit of the existing method. The sensitivity can be improved with higher orbital angular momentum photons. Moreover, this Letter gives a detailed discussion of the change of resolution and sensitivity in the presence of photon loss. PMID:27519107
On a relation of the angular frequency to the Aharonov-Casher geometric phase in a quantum dot
Barboza, P. M. T.; Bakke, K.
2016-09-01
By analysing the behaviour of a neutral particle with permanent magnetic dipole moment confined to a quantum dot in the presence of a radial electric field, Coulomb-type and linear confining potentials, then, an Aharonov-Bohm-type effect for bound states and a dependence of the angular frequency of the system on the Aharonov-Casher geometric phase and the quantum numbers associated with the radial modes, the angular momentum and the spin are obtained. In particular, the possible values of the angular frequency and the persistent spin currents associated with the ground state are investigated in two different cases. article>
Efficient separation of light's orbital angular momentum
Mirhosseini, Mohammad; Shi, Zhimin; Boyd, Robert W
2013-01-01
The orbital angular momentum (OAM) of light is an attractive degree of freedom for fundamentals studies in quantum mechanics. In addition, the discrete unbounded state-space provided by OAM has been used to enhance classical and quantum communications. The ability to unambiguously measure the OAM of single photons is a key part of all such experiments. However, state-of-the-art methods for sorting OAM modes are limited to a separation efficiency of about 80 percent. Here we demonstrate a method which uses a series of complex optical transformations to enable the measurement of light's OAM with a separation efficiency of more than 92 percent. Further, we demonstrate the separation of modes in the angular position basis, which is mutually unbiased with respect to the OAM basis. The high degree of certainty makes our approach particularly attractive for quantum key distribution systems employing spatial encoding.
Mass and Angular Momentum in General Relativity
Jaramillo, J L
2010-01-01
We present an introduction to mass and angular momentum in General Relativity. After briefly reviewing energy-momentum for matter fields, first in the flat Minkowski case (Special Relativity) and then in curved spacetimes with or without symmetries, we focus on the discussion of energy-momentum for the gravitational field. We illustrate the difficulties rooted in the Equivalence Principle for defining a local energy-momentum density for the gravitational field. This leads to the understanding of gravitational energy-momentum and angular momentum as non-local observables that make sense, at best, for extended domains of spacetime. After introducing Komar quantities associated with spacetime symmetries, it is shown how total energy-momentum can be unambiguously defined for isolated systems, providing fundamental tests for the internal consistency of General Relativity as well as setting the conceptual basis for the understanding of energy loss by gravitational radiation. Finally, several attempts to formulate q...
Phenomenological determination of the orbital angular momentum.
Energy Technology Data Exchange (ETDEWEB)
Ramsey, G. P.; High Energy Physics; Loyola Univ.
2009-01-01
Measurements involving the gluon spin, {Delta}G(x, t) and the corresponding asymmetry, A(x,t) = {Delta}G(x,t)/G(x,t) play an important role in quantitative understanding of proton structure. We have modeled the asymmetry perturbatively and calculated model corrections to obtain information about non-perturbative spin-orbit effects. These models are consistent with existing COMPASS and HERMES data on the gluon asymmetry. The J{sub z} = 1/2 sum rule is used to generate values of orbital angular momentum at LO and NLO. For models consistent with data, the orbital angular momentum is small. Our studies specify accuracy that future measurements should achieve to constrain theoretical models for nucleon structure.
The Cosmology Large Angular Scale Surveyor
Marriage, Tobias; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Eimer, J.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Mehrle, N.; Miller, A. D.; Miller, N.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.
2014-01-01
Some of the most compelling inflation models predict a background of primordial gravitational waves (PGW) detectable by their imprint of a curl-like "B-mode" pattern in the polarization of the Cosmic Microwave Background (CMB). The Cosmology Large Angular Scale Surveyor (CLASS) is a novel array of telescopes to measure the B-mode signature of the PGW. By targeting the largest angular scales (>2°) with a multifrequency array, novel polarization modulation and detectors optimized for both control of systematics and sensitivity, CLASS sets itself apart in the field of CMB polarization surveys and opens an exciting new discovery space for the PGW and inflation. This poster presents an overview of the CLASS project.
Clustering, Angular Size and Dark Energy
R.C. Santos; Lima, J. A. S.
2008-01-01
The influence of dark matter inhomogeneities on the angular size-redshift test is investigated for a large class of flat cosmological models driven by dark energy plus a cold dark matter component (XCDM model). The results are presented in two steps. First, the mass inhomogeneities are modeled by a generalized Zeldovich-Kantowski-Dyer-Roeder (ZKDR) distance which is characterized by a smoothness parameter $\\alpha(z)$ and a power index $\\gamma$, and, second, we provide a statistical analysis t...
Angular Momentum in Loop Quantum Gravity
Bojowald, Martin
2000-01-01
An angular momentum operator in loop quantum gravity is defined using spherically symmetric states as a non-rotating reference system. It can be diagonalized simultaneously with the area operator and has the familiar spectrum. The operator indicates how the quantum geometry of non-rotating isolated horizons can be generalized to rotating ones and how the recent computations of black hole entropy can be extended to rotating black holes.
Angular resolution of stacked resistive plate chambers
Samuel, Deepak; Murgod, Lakshmi P
2016-01-01
We present here detailed derivations of mathematical expressions for the angular resolution of a set of stacked resistive plate chambers (RPCs). The expressions are validated against experimental results using data collected from the prototype detectors (without magnet) of the upcoming India-based Neutrino Observatory (INO). In principle, these expressions can be used for any other detector with an architecture similar to that of RPCs.
Angular Momentum of Dark Matter Black Holes
Frampton, Paul H.
2016-01-01
The putative black holes which may constitute all the dark matter are described by a Kerr metric with only two parameters, mass M and angular momentum J. There has been little discussion of J since it plays no role in the upcoming attempt at detection by microlensing. Nevertheless J does play a central role in understanding the previous lack of detection, especially of CMB distortion. We explain why bounds previously derived from lack of CMB distortion are too strong for primordial black hole...
Arbitrary orbital angular momentum of photons
Pan, Yue; Gao, Xu-Zhen; Ren, Zhi-Cheng; Wang, Xi-Lin; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian
2015-01-01
Orbital angular momentum (OAM) of photons, as a new fundamental degree of freedom, has excited a great diversity of interest, because of a variety of emerging applications. Arbitrarily tunable OAM has gained much attention, but its creation remains still a tremendous challenge. We demonstrate the realization of well-controlled arbitrary OAM in both theory and experiment. We present the concept of general OAM, which extends the OAM carried by the scalar vortex field to the OAM carried by the a...
Quark Orbital Angular Momentum in the Baryon
Song, Xiaotong
2000-01-01
Analytical and numerical results, for the orbital and spin content carried by different quark flavors in the baryons, are given in the chiral quark model with symmetry breaking. The reduction of the quark spin, due to the spin dilution in the chiral splitting processes, is transferred into the orbital motion of quarks and antiquarks. The orbital angular momentum for each quark flavor in the proton as a function of the partition factor $\\kappa$ and the chiral splitting probability $a$ is shown...
Wilson lines and orbital angular momentum
Lorce, Cédric
2013-01-01
We present an explicit realization of the Chen et al. approach to the proton spin decomposition in terms of Wilson lines, generalizing the light-front gauge-invariant extensions discussed recently by Hatta. Particular attention is drawn to the residual gauge freedom by further separating the pure-gauge term into contour and residual terms. We show that the kinetic orbital angular momentum operator can be expressed in terms of the Wigner operator only when the momentum variable is integrated o...
Orbital angular momentum photonic quantum interface
Zhou, Zhi-Yuan; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can
2014-01-01
Light carrying orbital angular momentum (OAM) has great potential in enhancing the information channel capacity in both classical and quantum optical communications. Long distance optical communication requires the wavelengths of light are situated in the low-loss communication windows, but most quantum memories currently being developed for use in a quantum repeater work at different wavelengths, so a quantum interface to bridge the wavelength gap is necessary. So far, such an interface for ...
Orbital angular momentum-entanglement frequency transducer
Zhou, Zhi-Yuan; Liu, Shi-Long; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Dong, Ming-xin; Shi, Bao-Sen; Guo, Guang-Can
2016-01-01
Entanglement is a vital resource for realizing many tasks such as teleportation, secure key distribution, metrology and quantum computations. To effectively build entanglement between different quantum systems and share information between them, a frequency transducer to convert between quantum states of different wavelengths while retaining its quantum features is indispensable. Information encoded in the photons orbital angular momentum OAM degrees of freedom is preferred in harnessing the ...
Orbital angular momentum entanglement in turbulence
Ibrahim, Alpha Hamadou; Roux, Filippus S.; McLaren, Melanie; Konrad, Thomas; Forbes, Andrew
2013-01-01
The turbulence induced decay of orbital angular momentum (OAM) entanglement between two photons is investigated numerically and experimentally. To compare our results with previous work, we simulate the turbulent atmosphere with a single phase screen based on the Kolmogorov theory of turbulence. We consider two different scenarios: in the first only one of the two photons propagates through turbulence, and in the second both photons propagate through uncorrelated turbulence. Comparing the ent...
Four-photon orbital angular momentum entanglement
Hiesmayr, B. C.; De Dood, M.J.A.; Löffler, W.
2015-01-01
Quantum entanglement shared between more than two particles is essential to foundational questions in quantum mechanics, and upcoming quantum information technologies. So far, up to 14 two-dimensional qubits have been entangled, and an open question remains if one can also demonstrate entanglement of higher-dimensional discrete properties of more than two particles. A promising route is the use of the photon orbital angular momentum (OAM), which enables implementation of novel quantum informa...
Coherent Control of Photoelectron Wavepacket Angular Interferograms
Hockett, Paul; Wollenhaupt, Matthias; Baumert, Thomas,
2015-01-01
Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the cohere...
Angular quadratures for improved transport computations
Energy Technology Data Exchange (ETDEWEB)
Abu-Shumays, I.K.
1999-07-22
This paper introduces new octant-range, composite-type Gauss and mid-point rule angular quadrature formulas for neutron and photon transport computations. A generalization to octant-range quadratures is also introduced in order to allow for discontinuities at material interfaces for two- and three-dimensional transport problems which can be modeled with 60-degree triangular or hexagonal mesh subdivisions in the x-y plane.
Colliding particles carrying non-zero orbital angular momentum
Ivanov, I P
2011-01-01
Photons carrying non-zero orbital angular momentum (twisted photons) are well-known in optics. Recently, it was suggested to use Compton backscattering to boost optical twisted photons to high energies. Twisted electrons in the intermediate energy range have also been produced recently. Thus, collisions involving energetic twisted particles seem to be feasible and represent a new tool in high-energy physics. Here we discuss some features of a generic scattering process in which one (single-twisted case) or both (double-twisted case) initial particles carry orbital angular momentum. We show that the single-twisted cross section allows one to perform a Fourier analysis of the plane wave cross section with respect to the azimuthal angle of the initial particle. For the double-twisted cross section we find an expression that depends not only on the plane wave cross section, but also on the autocorrelation function of the plane wave amplitude. We discuss prospects for experimental study of these effects in the nea...
Extraordinary Light-Induced Local Angular Momentum near Metallic Nanoparticles.
Alabastri, Alessandro; Yang, Xiao; Manjavacas, Alejandro; Everitt, Henry O; Nordlander, Peter
2016-04-26
The intense local field induced near metallic nanostructures provides strong enhancements for surface-enhanced spectroscopies, a major focus of plasmonics research over the past decade. Here we consider that plasmonic nanoparticles can also induce remarkably large electromagnetic field gradients near their surfaces. Sizeable field gradients can excite dipole-forbidden transitions in nearby atoms or molecules and provide unique spectroscopic fingerprinting for chemical and bimolecular sensing. Specifically, we investigate how the local field gradients near metallic nanostructures depend on geometry, polarization, and wavelength. We introduce the concept of the local angular momentum (LAM) vector as a useful figure of merit for the design of nanostructures that provide large field gradients. This quantity, based on integrated fields rather than field gradients, is particularly well-suited for optimization using numerical grid-based full wave electromagnetic simulations. The LAM vector has a more compact structure than the gradient matrix and can be straightforwardly associated with the angular momentum of the electromagnetic field incident on the plasmonic structures.
Angular distribution in the neutron-induced fission of actinides
Directory of Open Access Journals (Sweden)
Leong L.S.
2013-12-01
Full Text Available Above 1 MeV of incident neutron energy the fission fragment angular distribution (FFAD has generally a strong anisotropic behavior due to the combination of the incident orbital momentum and the intrinsic spin of the fissioning nucleus. This effect has to be taken into account for the efficiency estimation of devices used for fission cross section measurements. In addition it bears information on the spin deposition mechanism and on the structure of transitional states. We designed and constructed a detection device, based on Parallel Plate Avalanche Counters (PPAC, for measuring the fission fragment angular distributions of several isotopes, in particular 232Th. The measurement has been performed at n_TOF at CERN taking advantage of the very broad energy spectrum of the neutron beam. Fission events were recognized by back to back detection in coincidence in two position-sensitive detectors surrounding the targets. The detection efficiency, depending mostly on the stopping of fission fragments in backings and electrodes, has been computed with a Geant4 simulation and validated by the comparison to the measured case of 235U below 3 keV where the emission is isotropic. In the case of 232Th, the result is in good agreement with previous data below 10 MeV, with a good reproduction of the structures associated to vibrational states and the opening of second chance fission. In the 14 MeV region our data are much more accurate than previous ones which are broadly scattered.
Localization of angular momentum in optical waves propagating through turbulence.
Sanchez, Darryl J; Oesch, Denis W
2011-12-01
This is the first in a series of papers demonstrating that photons with orbital angular momentum can be created in optical waves propagating through distributed turbulence. The scope of this first paper is much narrower. Here, we demonstrate that atmospheric turbulence can impart non-trivial angular momentum to beams and that this non-trivial angular momentum is highly localized. Furthermore, creation of this angular momentum is a normal part of propagation through atmospheric turbulence.
Angular momentum of a brane-world model
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
In this paper we discuss the properties of the general covariant angular momentum of a fivedimensional brane-world model. Through calculating the total angular momentum of this model, we are able to analyze the properties of the total angular momentum in the inflationary RS model. We show that the space-like components of the total angular momentum of the inflationary RS model are all zero while the others are non-zero, which agrees with the results from ordinary RS model.
Study of the Angular Distribution of Scintillation Photons
Fornaro, Giulia Alice; Ghezzi, Alessio; Knapitsch, Arno; Modrzynski, Pawel; Pizzichemi, Marco; Lecoq, Paul; Auffray, Etiennette
2014-01-01
This paper presents a characterization method to experimentally determine the angular distribution of scintillation light. By exciting LYSO crystals with a radioactive source, we measured the light angular profiles obtained with samples of different geometries in different conditions of wrapping. We also measured the angular distribution of light emitting in glue and compared it with the one emitting in air. Angular distribution of light output of photonic crystals is also provided. Consistency of the measurements is verified with conventional light output measurements.
Contactless Measurement of Angular Velocity using Circularly Polarized Antennas
Sipal, Vit; Narbudowicz, Adam; Ammann, Max
2014-01-01
An innovative method to measure the angular velocity using circularly polarized antennas is proposed. Due to the properties of circular polarization, the angular velocity is frequency modulated (FM) on a wireless carrier. This enables a low-cost precise continuous measurement of angular velocity using a standard FM demodulator. The hardware can be easily adapted for both high and low angular velocity values. The precise alignment angle between the antennas can be determined if the initial ant...
Quark Orbital-Angular-Momentum Distribution in the Nucleon
Hoodbhoy, Pervez; Ji, Xiangdong; Lu, Wei
1998-01-01
We introduce gauge-invariant quark and gluon angular momentum distributions after making a generalization of the angular momentum density operators. From the quark angular momentum distribution, we define the gauge-invariant and leading-twist quark {\\it orbital} angular momentum distribution $L_q(x)$. The latter can be extracted from data on the polarized and unpolarized quark distributions and the off-forward distribution $E(x)$ in the forward limit. We comment upon the evolution equations o...
Angular Momentum of a Brane-world Model
Jia, Bei; Zhang, Peng-Ming
2008-01-01
In this paper we discuss the properties of the general covariant angular momentum of a five-dimensional brane-world model. Through calculating the total angular momentum of this model, we are able to analyze the properties of the total angular momentum in the inflationary RS model. We show that the space-like components of the total angular momentum of are all zero while the others are non-zero, which agrees with the results from ordinary RS model.
A neural circuit for angular velocity computation
Directory of Open Access Journals (Sweden)
Samuel B Snider
2010-12-01
Full Text Available In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly-tunable wing-steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuro-mechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob.
The Cosmology Large Angular Scale Surveyor (CLASS)
Harrington, Kathleen; Marriange, Tobias; Aamir, Ali; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; Denis, Kevin; Moseley, Samuel H.; Rostem, Karwan; Wollack, Edward
2016-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).
The Cosmology Large Angular Scale Surveyor
Harrington, Kathleen; Ali, Aamir; Appel, John W; Bennett, Charles L; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T; Colazo, Felipe; Dahal, Sumit; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Fluxa, Pedro; Halpern, Mark; Hilton, Gene; Hinshaw, Gary F; Hubmayr, Johannes; Iuliano, Jeffery; Karakla, John; McMahon, Jeff; Miller, Nathan T; Moseley, Samuel H; Palma, Gonzalo; Parker, Lucas; Petroff, Matthew; Pradenas, Bastián; Rostem, Karwan; Sagliocca, Marco; Valle, Deniz; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen
2016-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70\\% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad f...
A neural circuit for angular velocity computation.
Snider, Samuel B; Yuste, Rafael; Packer, Adam M
2010-01-01
In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly tunable wing steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuromechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob. PMID:21228902
Creating optical near-field orbital angular momentum in a gold metasurface.
Chen, Ching-Fu; Ku, Chen-Ta; Tai, Yi-Hsin; Wei, Pei-Kuen; Lin, Heh-Nan; Huang, Chen-Bin
2015-04-01
Nanocavities inscribed in a gold thin film are optimized and designed to form a metasurface. We demonstrate both numerically and experimentally the creation of surface plasmon (SP) vortex carrying orbital angular momentum in the metasurface under linearly polarized optical excitation that carries no optical angular momentum. Moreover, depending on the orientation of the exciting linearly polarized light, we show that the metasurface is capable of providing dynamic switching between SP vortex formation or SP subwavelength focusing. The resulting SP intensities are experimentally measured using a near-field scanning optical microscope and are found in excellent quantitative agreements as compared to the numerical results. PMID:25798810
Angular momentum fluxes caused by Lambda-effect and meridional circulation structure of the Sun
Pipin, V V
2016-01-01
Using mean-field hydrodynamic models of the solar angular momentum balance we show that the non-monotonic latitudinal dependence of the radial angular momentum fluxes caused by Lambda-effect can affect the number of the meridional circulation cells stacking in radial direction in the solar convection zone. In particular, our results show the possibility of a complicated triple-cell meridional circulation structure. This pattern consists of two large counterclockwise circulation cells (the N-hemisphere) and a smaller clockwise cell located at low latitudes at the bottom of the convection zone.
Effects of transverse electron beam size on transition radiation angular distribution
Energy Technology Data Exchange (ETDEWEB)
Chiadroni, E., E-mail: enrica.chiadroni@lnf.infn.it [Laboratori Nazionali di Frascati-INFN, via E. Fermi, 40, 00044 Frascati (Italy); Castellano, M. [Laboratori Nazionali di Frascati-INFN, via E. Fermi, 40, 00044 Frascati (Italy); Cianchi, A. [University of Rome ' Tor Vergata' and INFN-Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Honkavaara, K.; Kube, G. [Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg (Germany)
2012-05-01
In this paper we consider the effect of the transverse electron beam size on the Optical Transition Radiation (OTR) angular distribution in case of both incoherent and coherent emission. Our results confute the theoretical argumentations presented first in Optics Communications 211, 109 (2002), which predicts a dependence of the incoherent OTR angular distribution on the beam size and emission wavelength. We present here theoretical and experimental data not only to validate the well-established Ginzburg-Frank theory, but also to show the impact of the transverse beam size in case of coherent emission.
Angular correlations in t-channel single top production at the LHC
Motylinski, Patrick
2009-01-01
When a top quark decays there is a large amount of angular correlation, in its rest frame, between its spin orientation and the direction of flight of the charged lepton from its decay. In this letter we investigate the prospects of measuring this angular correlation using the MC@NLO framework. The strength of the correlation is investigated for different spin bases. The robustness against variations of PDF sets and uncertainties, factorization scale dependence, center-of-mass energy, and the jet R-parameter, is also examined.
Angular momentum, accretion and radial flows in chemodynamical models of spiral galaxies
Pezzulli, Gabriele
2016-01-01
Gas accretion and radial flows are key ingredients of the chemical evolution of spiral galaxies. They are also tightly linked to each other (accretion drives radial flows, due to angular momentum conservation) and should therefore be modelled simultaneously. We summarise an algorithm that can be used to consistently compute accretion profiles, radial flows and abundance gradients under quite general conditions and we describe illustrative applications to the Milky Way. We find that gas-phase abundance gradients strongly depend on the angular momentum of the accreting material and, in the outer regions, they are significantly affected by the choice of boundary conditions.
Creating optical near-field orbital angular momentum in a gold metasurface.
Chen, Ching-Fu; Ku, Chen-Ta; Tai, Yi-Hsin; Wei, Pei-Kuen; Lin, Heh-Nan; Huang, Chen-Bin
2015-04-01
Nanocavities inscribed in a gold thin film are optimized and designed to form a metasurface. We demonstrate both numerically and experimentally the creation of surface plasmon (SP) vortex carrying orbital angular momentum in the metasurface under linearly polarized optical excitation that carries no optical angular momentum. Moreover, depending on the orientation of the exciting linearly polarized light, we show that the metasurface is capable of providing dynamic switching between SP vortex formation or SP subwavelength focusing. The resulting SP intensities are experimentally measured using a near-field scanning optical microscope and are found in excellent quantitative agreements as compared to the numerical results.
The concept of mass angular scattering power and its relation to the diffusion constant
Sandison, G A
1998-01-01
An understanding of the scattering of high energy charged particle beams by tissue is required in radiotherapy since the particle trajectories determine the pattern of radiation dose deposition in patients. Numerical calculations of radiation dose often utilize energy dependent values of the angular scattering power. However, the physics literature is replete with confused interpretations of the concept of angular scattering power and its relation to the single scattering cross section for the medium or the diffusion constant in the diffusional limit. The purpose of this article is to clarify these notions.
Calculation of the angular distribution of delay times in neutron scattering on 58Ni nuclei
International Nuclear Information System (INIS)
Angular distributions of average delay times and time variances are calculated for resonance-neutron scattering on 58Ni nuclei at neutron energies in the range E = 600−700 keV. The effect of the energy spectrum and polarization of the beam on the scattering-process time is discussed. The angular dependence of the time law is also considered for the decay of an intermediate compound nuclear system. It is shown that the results of stationary and nonstationary calculations are in good agreement.
Calculation of the angular distribution of delay times in neutron scattering on {sup 58}Ni nuclei
Energy Technology Data Exchange (ETDEWEB)
Prokopets, G. A., E-mail: gaprok@uos.net.ua [National University of Kyiv-Mohyla Academy (Ukraine)
2011-05-15
Angular distributions of average delay times and time variances are calculated for resonance-neutron scattering on {sup 58}Ni nuclei at neutron energies in the range E = 600-700 keV. The effect of the energy spectrum and polarization of the beam on the scattering-process time is discussed. The angular dependence of the time law is also considered for the decay of an intermediate compound nuclear system. It is shown that the results of stationary and nonstationary calculations are in good agreement.
Mcginn, Christopher
2015-01-01
The flow of the quenched energy in imbalanced dijet events has been previously studied by transverse vector sum of charged particles with the CMS detector, namely the missing $p_{\\rm T}$ measurement. The results have led to new theoretical insights to order to explain the wide angle radiation. The missing $p_{\\rm T}$ technique has been improved so that it allows the study of angular distribution of the energy flow with respect to the dijet axis. The measurements are performed using different distance parameters $R$ with the anti-$k_{\\rm T}$ clustering algorithm, which provide information about how the angular distribution of the quenched energy depends on the jet width.
Angular distribution of light emission from compound-eye cornea with conformal fluorescent coating
Martín-Palma, Raúl J.; Miller, Amy E.; Pulsifer, Drew P.; Lakhtakia, Akhlesh
2014-09-01
The complex morphology of the apposition compound eyes of insects of many species provides them a wide angular field of view. This characteristic makes these eyes attractive for bioreplication as artificial sources of light. The cornea of a blowfly eye was conformally coated with a fluorescent thin film with the aim of achieving wide field-of-view emission. On illumination by shortwave-ultraviolet light, the conformally coated eye emitted visible light whose intensity showed a weaker angular dependence than a fluorescent thin film deposited on a flat surface.
Measurement of orbital angular momentum with an off-axis superposition of vector modes
International Nuclear Information System (INIS)
We propose an off-axis superposition of vector modes with orthogonal polarizations, constructed from a general scalar helical vortex mode with unknown topological charge m, as a method to measure its orbital angular momentum. We derived analytic expressions for sets of solutions to find lines of linear polarization (L lines) within the composite polarization field. We found that the solutions corresponding to the angular component of the composite field depend only on the displacement of the beams and the topological charge m, and they are invariant under propagation and changes in the relative amplitude and phase between the beams. (paper)
Institute of Scientific and Technical Information of China (English)
Shen Tian-Ming; Chen Chong-Yang; Wang Yan-Sen
2007-01-01
In this paper a systematic study is carried out on the angular distribution and polarization of photons emitted following radiative recombination of H-like ions by a non-relativistic dipole approximation. In order to incorporate the screening effect due to inner-shell electrons, a distorted wave approach is used. The dependences of the calculated angular distribution and polarization on the reduced energy and nuclear charge are fitted by the corresponding empirical formulas respectively.
Barbosa, Marcelo
A review about the nuclear properties, namely the nuclear moments (magnetic dipole moment and electric quadrupole moment) and their interaction with electromagnetic fields external to the nucleus (hyperfine interactions), as well as the angular distribution of radiation produced by $\\gamma$-decay, is presented. A detailed description about the theory of Perturbed Angular Correlations was done, including the comparison between $\\gamma-\\gamma$- correlations and $e^{-}- \\gamma$ correlations. For dynamic nuclear interactions, an introduction to the theory of stochastic states in PAC was performed. We focused on ab-initio implementation of observables for analyzing fluctuating quadrupole hyperfine interactions on time dependent perturbed angular correlations experiments. The development of computacional codes solving the full problem, adapted to fit data obtained on single crystals or polycrystals for two-state transient fields with any axial symmetry and orientation was the main purpose of this work. The final pa...
Newman, Brett; Yu, Si-bok; Rhew, Ray D. (Technical Monitor)
2003-01-01
Modern experimental and test activities demand innovative and adaptable procedures to maximize data content and quality while working within severely constrained budgetary and facility resource environments. This report describes development of a high accuracy angular measurement capability for NASA Langley Research Center hypersonic wind tunnel facilities to overcome these deficiencies. Specifically, utilization of micro-electro-mechanical sensors including accelerometers and gyros, coupled with software driven data acquisition hardware, integrated within a prototype measurement system, is considered. Development methodology addresses basic design requirements formulated from wind tunnel facility constraints and current operating procedures, as well as engineering and scientific test objectives. Description of the analytical framework governing relationships between time dependent multi-axis acceleration and angular rate sensor data and the desired three dimensional Eulerian angular state of the test model is given. Calibration procedures for identifying and estimating critical parameters in the sensor hardware is also addressed.
Abdikamalov, Ernazar; DeMaio, Alexandra M; Ott, Christian D
2013-01-01
The late collapse, core bounce, and the early postbounce phase of rotating core collapse leads to a characteristic gravitational wave (GW) signal. The precise shape of the signal is governed by the interplay of gravity, rotation, nuclear equation of state (EOS), and electron capture during collapse. We explore the dependence of the signal on total angular momentum and its distribution in the progenitor core by means of a large set of axisymmetric general-relativistic core collapse simulations in which we vary the initial angular momentum distribution in the core. Our simulations include a microphysical finite-temperature EOS, an approximate electron capture treatment during collapse, and a neutrino leakage scheme for the postbounce evolution. We find that the precise distribution of angular momentum is relevant only for very rapidly rotating cores with T/|W|>~8% at bounce. We construct a numerical template bank from our baseline set of simulations, and carry out additional simulations to generate trial wavefo...
Device for measuring the ion angular distribution of 2XIIB plasma
Energy Technology Data Exchange (ETDEWEB)
Smith, B.
1977-04-06
A device that measures charge-exchange flux to determine the angular distribution of the 2XIIB plasma is described. Charge-exchange products heat circular nickel foils (placed at 15/sup 0/ intervals in theta and at constant radius on an arc parallel to the z-axis) and the voltage drop across the foils (produced by constant-current sources) provides a measure of the changes in resistivity. The charge-exchange flux at each foil is proportional to the plasma distribution at that angle. Use of this technique is limited by the resistivity and heat resistance of the circular nickel foils, but could conceivably be extended to other shapes and materials. The Hall-Simonen and ''time-average'' measurement of angular distribution are compared and the characteristic times of loss (gain) are calculated from theory. The g(..mu..) detector may be used to experimentally verify these times of loss (gain) and also to analyze plasma pressure stability. Current microwave measurements show that plasma has an exponential density dependence in z and assumes a flux tube rather than a p(B) density dependence. A distinct angular distribution (determinable by the detector) is associated with each of these dependencies. The codes to simulate injection and resulting angular distribution, charge-exchange capture, and heating and signal of the detectors are also described.
A critique of the angular momentum sum rules and a new angular momentum sum rule
Bakker, B L G; Trueman, T L
2004-01-01
We show that the expressions in the literature for the tensorial structure of the hadronic matrix elements of the angular momentum operators J are incorrect. Given this disagreement with the published results, we have taken pains to derive the correct expressions in three different ways, two involving explicit physical wave packets and the third, totally independent, based upon the rotational properties of the state vectors. Surprisingly it turns out that the results are very sensitive to the type of relativistic spin state used to describe the motion of the particle i.e. whether a canonical (i.e. boost) state or a helicity state is utilized. We present results for the matrix elements of the angular momentum operators, valid in an arbitrary Lorentz frame, both for helicity states and canonical states. These results are relevant for the construction of angular momentum sum rules, relating the angular momentum of a nucleon to the spin and orbital angular momentum of its constituents. Moreover, we show that it i...
Improving the H.E.S.S. angular resolution using the Disp method
Lu, C -C
2013-01-01
The angular resolution of imaging atmospheric Cherenkov telescopes depends on the employed event reconstruction methods. By taking the weighted average of intersections of shower axes, the H.E.S.S. experiment achieves a 0.08 degree angular resolution at 20 degree zenith angle with an image size cut of 160 p.e. for sources with a spectral index of 2. However, the angular resolution degrades to 0.14 degree at 60 degree zenith angle, due to the larger fraction of nearly parallel images. The Disp method reduces the impact of parallel images by including an estimation of the image displacement (disp), inferred from the Hillas parameters, in the reconstruction procedure. By using this technique, the angular resolution at large zenith angles can be improved by 50%. An additional cut on the estimated direction uncertainty can further improve the angular resolution to around 0.05 degrees at the expense of a loss of 50% of effective area. The performance of this reconstruction method on simulated gamma-ray events and r...
Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects.
Zhang, Likun; Marston, Philip L
2011-12-01
An acoustic vortex in an inviscid fluid and its radiation torque on an axisymmetric absorbing object are analyzed beyond the paraxial approximation to clarify an analogy with an optical vortex. The angular momentum flux density tensor from the conservation of angular momentum is used as an efficient description of the transport of angular momentum. Analysis of a monochromatic nonparaxial acoustic vortex beam indicates that the local ratio of the axial (or radial) flux density of axial angular momentum to the axial (or radial) flux density of energy is exactly equal to the ratio of the beam's topological charge l to the acoustic frequency ω. The axial radiation torque exerted by the beam on an axisymmetric object centered on the beam's axis due to the transfer of angular momentum is proportional to the power absorbed by the object with a factor l/ω, which can be understood as a result of phonon absorption from the beam. Depending on the vortex's helicity, the torque is parallel or antiparallel to the beam's axis.
Angular Rate Optimal Design for the Rotary Strapdown Inertial Navigation System
Directory of Open Access Journals (Sweden)
Fei Yu
2014-04-01
Full Text Available Due to the characteristics of high precision for a long duration, the rotary strapdown inertial navigation system (RSINS has been widely used in submarines and surface ships. Nowadays, the core technology, the rotating scheme, has been studied by numerous researchers. It is well known that as one of the key technologies, the rotating angular rate seriously influences the effectiveness of the error modulating. In order to design the optimal rotating angular rate of the RSINS, the relationship between the rotating angular rate and the velocity error of the RSINS was analyzed in detail based on the Laplace transform and the inverse Laplace transform in this paper. The analysis results showed that the velocity error of the RSINS depends on not only the sensor error, but also the rotating angular rate. In order to minimize the velocity error, the rotating angular rate of the RSINS should match the sensor error. One optimal design method for the rotating rate of the RSINS was also proposed in this paper. Simulation and experimental results verified the validity and superiority of this optimal design method for the rotating rate of the RSINS.
Zhang, H.; Yang, D.; Song, P.; Zou, S.; Zhao, Y.; Li, S.; Li, Z.; Guo, L.; Wang, F.; Zheng, W.; Gu, P.; Pei, W.; Zhu, S.; Jiang, S.; Ding, Y.
2016-08-01
The symmetric radiation drive is essential to the capsule implosion in the indirect drive fusion but is hard to achieve due to the non-uniform radiation distribution inside the hohlraum. In this work, the non-uniform radiation properties of both vacuum and gas-filled hohlraums are studied by investigating the angular distribution of the radiation temperature experimentally and numerically. It is found that the non-uniform radiation distribution inside the hohlraum induces the variation of the radiation temperature between different view angles. The simulations show that both the angular distribution of the radiation temperature and the hohlraum radiation distribution can be affected by the electron heat flux. The measured angular distribution of the radiation temperature is more consistent with the simulations when the electron heat flux limiter f e = 0.1 . Comparisons between the experiments and simulations further indicate that the x-ray emission of the blow-off plasma is overestimated in the simulations when it stagnates around the hohlraum axis. The axial position of the laser spot can also be estimated by the angular distribution of the radiation temperature due to their sensitive dependence. The inferred laser spot moves closer to the laser entrance hole in the gas-filled hohlraum than that in the vacuum hohlraum, consisting with the x-ray images taken from the framing camera. The angular distribution of the radiation temperature provides an effective way to investigate the hohlraum radiation properties and introduces more constraint to the numerical modeling of the hohlraum experiments.
Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency
Energy Technology Data Exchange (ETDEWEB)
Taminiau, T H; Stefani, F D; Van Hulst, N F [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona (Spain)], E-mail: tim.taminiau@icfo.es
2008-10-15
We study the angular emission of a single emitter near a metallic nanoparticle by experiments and numerical calculations. In the experiments, a single fluorescent molecule is controllably scanned near an optical monopole antenna. Large changes in the angular emission of the molecule occur due to the coupling to the particle. Both the polarization and intensity of the angular emission show a distinct dependence on the particle plasmon resonance and on the relative positions and orientations of the emitter and particle. These changes strongly modify the collection efficiency, particularly for objectives of limited numerical aperture; it is important to take the collection system into account fully in the interpretation of enhanced fluorescence and when comparing measurements on ensembles to reference situations. Unlike for ensembles, by addressing a single emitter of well-defined orientation the angular emission is naturally separated from absolute intensities. By dynamically controlling the emitter position a clean reference is then established. This allows all results to be interpreted directly as the coupling of an emitter dipole moment to the dipolar plasmon mode of the antenna. The emitter couples to the antenna mode, which in turn couples to the radiation field, thus determining the angular emission.
Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency
International Nuclear Information System (INIS)
We study the angular emission of a single emitter near a metallic nanoparticle by experiments and numerical calculations. In the experiments, a single fluorescent molecule is controllably scanned near an optical monopole antenna. Large changes in the angular emission of the molecule occur due to the coupling to the particle. Both the polarization and intensity of the angular emission show a distinct dependence on the particle plasmon resonance and on the relative positions and orientations of the emitter and particle. These changes strongly modify the collection efficiency, particularly for objectives of limited numerical aperture; it is important to take the collection system into account fully in the interpretation of enhanced fluorescence and when comparing measurements on ensembles to reference situations. Unlike for ensembles, by addressing a single emitter of well-defined orientation the angular emission is naturally separated from absolute intensities. By dynamically controlling the emitter position a clean reference is then established. This allows all results to be interpreted directly as the coupling of an emitter dipole moment to the dipolar plasmon mode of the antenna. The emitter couples to the antenna mode, which in turn couples to the radiation field, thus determining the angular emission.
Angular resolved photoionization of C60 by femtosecond laser pulses
Li, Hui; Wang, Zhenhua; Suessmann, Frederik; Zherebtsov, Sergey; Skruszewicz, Slawomir; Tiggesbaeumker, Josef; Fennel, Thomas; Meiwes-Broer, Karl-Heinz; Cocke, C.; Kling, Matthias; JRM laboratory, Kansas State University Team; University of Rostock Collaboration; Max-Planck InstitutQuantumoptik Collaboration
2013-03-01
Neutral C60 molecules are ionized by intense femtosecond laser pulses around the wavelength of 800 nm with pulse durations 4 fs and 30 fs. We measure photoelectrons utilizing velocity-map imaging (VMI) and analyze the photoelectron angular distributions. For particular photoelectron energies, these distributions might reflect the excitation and ionization of superatomic molecular orbitals (SAMOs) which have been theoretically predicted and only recently experimentally observed. SAMOs arise from the hollow core spherical structures of the C60 molecules and differ from Rydberg states of C60 by their potential to exhibit electron density within the C60 cage. We have recorded the carrier envelope phase (CEP) dependence of the electron emission for 4 fs pulses using single shot CEP-tagging. The CEP-dependent asymmetry in the electron emission is observed to strongly depend on the laser polarization. Furthermore, the amplitudes and phases of the CEP-dependent electron emission are analyzed and show that thermal electron emission can be avoided enabling a more direct comparison to theory.
Angular Dispersion and Deflection Function for Heavy Ion Elastic Scattering
Institute of Scientific and Technical Information of China (English)
BAI Zhen; MAO Rui-Shi; YUAN Xiao-Hua; Xu Zhi-Guo; ZHANG Hong-Bin; XU Hua-Gen; QI Hui-Rong; WANG Yue; JIA Fei; WU Li-Jie; DING Xian-Li; WANG Qi; GAO Qi; GAO Hui; LI Song-Lin; LI Jun-Qing; ZHANG Ya-Peng; XIAO Guo-Qing; JIN Gen-Ming; REN Zhong-Zhou; ZHOU Shan-Gui; XU Wang; HAN Jian-Long; Fan Gong-Tao; ZHANG Shuang-Quan; PANG Dan-Yang; SERGEY Yu-Kun; XIAO Zhi-Gang; XU Hu-Shan; SUN Zhi-Yu; HU Zheng-Guo; ZHANG Xue-Ying; WANG Hong-Wei
2007-01-01
The differential cross sections for elastic scattering products of17 F on 208 Pb have been measured.The angular dispersion plots of In(dσ/dθ)versus θ2 are obtained from the angular distribution of the elastic scattering differential cross sections.Systematical analysis on the angular dispersion for the available experimental data indicates that there is an angular dispersion turning angle at forward angular range within the grazing angle.This turning angle can be clarified as nuclear rainbow in classical deflection function.The exotic behaviour of the nuclear rainbow angle offers a new probe to investigate the halo and skin phenomena.
Analysis of orbital angular momentum of a misaligned optical beam
Energy Technology Data Exchange (ETDEWEB)
Vasnetsov, M V [Optics Group, Department of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom); Pas' ko, V A [Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauki 46, Kiev 03028 (Ukraine); Soskin, M S [Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauki 46, Kiev 03028 (Ukraine)
2005-02-01
We report an analysis of the orbital angular momentum of an optical beam misaligned with respect to a reference axis. Both laterally displaced and angularly deflected Laguerre-Gaussian beams are represented in terms of the superposition of azimuthal harmonics with well-defined orbital angular momentum. Simultaneous parallel displacement and angular tilt cause the coupling between azimuthal harmonics and therefore change the projection of the orbital angular momentum on the reference axis. Rotation of beams around the reference axis was simulated by attributing corresponding rotational frequency shifts to the components.
Angular momentum and orientation effects in excitation-ionization collisions
Harris, A. L.; Esposito, T. P.
2016-08-01
We present theoretical fully differential cross sections (FDCS) for electron-impact excitation-ionization of helium in which the final state He+ ion is oriented in a particular direction. Specifically, we study the process for He+ ions in the 2p0 state. Using our 4-body distorted wave model, we show a strong dependence of the FDCS on the ion’s orientation and trace some unexpected structures in the FDCS to the L = 2 term in the partial wave expansion for the ionized electron. A comparison is drawn to the ionization of oriented Mg (3p0) atoms, and unlike that process, we find that for excitation-ionization angular momentum must be transferred from either the projectile or the target atom.
Tighter spots of light with superposed orbital angular momentum beams
Woźniak, Paweł; Bouchard, Frédéric; Karimi, Ebrahim; Leuchs, Gerd; Boyd, Robert W
2016-01-01
The possibility of focusing light to an ever tighter spot has important implications for many applications and fields of optics research, such as nano-optics and plasmonics, laser-scanning microscopy, optical data storage and many more. The size of lateral features of the field at the focus depends on several parameters, including the numerical aperture of the focusing system, but also the wavelength and polarization, phase and intensity distribution of the input beam. Here, we study the smallest achievable focal feature sizes of coherent superpositions of two co-propagating beams carrying opposite orbital angular momentum. We investigate the feature sizes for this class of beams not only in the scalar limit, but also use a fully vectorial treatment to discuss the case of tight focusing. Both our numerical simulations and our experimental results confirm that lateral feature sizes considerably smaller than those of a tightly focused Gaussian light beam can be observed. These findings may pave the way for impr...
Nucleon form factors, generalized parton distributions and quark angular momentum
Energy Technology Data Exchange (ETDEWEB)
Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kroll, Peter [Bergische Univ., Wuppertal (Germany). Fachbereich Physik; Regensburg Univ. (Germany). Institut fuer Theoretische Physik
2013-02-15
We extract the individual contributions from u and d quarks to the Dirac and Pauli form factors of the proton, after a critical examination of the available measurements of electromagnetic nucleon form factors. From this data we determine generalized parton distributions for valence quarks, assuming a particular form for their functional dependence. The result allows us to study various aspects of nucleon structure in the valence region. In particular, we evaluate Ji's sum rule and estimate the total angular momentum carried by valence quarks at the scale {mu}=2 GeV to be J{sup u}{sub v}=0.230{sup +0.009}{sub -0.024} and J{sup d}{sub v}=-0.004{sup +0.010}{sub -0.016}.
Creating High-Harmonic Beams with Controlled Orbital Angular Momentum
Boyd, Robert W.
A beam of light with an angle-dependent phase Φ = lϕ , where ϕ is the azimuthal coordinate, about the beam axis carries an orbital angular momentum (OAM) of lℏ per photon. Such beams have been exploited to provide superresolution in visible-light microscopy. The ability to create extreme ultraviolet or soft-x-ray beams with controllable OAM would be a critical step towards extending superresolution methods to extremely small feature size. Here we show that OAM is conserved during the process of high-harmonic generation (HHG). Experimentally, we use a fundamental beam with l = 1 and interferometrically determine that the q-th harmonic has an OAM quantum number l equal to its harmonic order q. We also show theoretically how to couple an arbitrary low value of the OAM quantum number l to any harmonic order q in a controlled manner. Our results open a route to microscopy on the molecular, or even submolecular, scale.
Accessing the quark orbital angular momentum with Wigner distributions
Energy Technology Data Exchange (ETDEWEB)
Lorce, Cedric [IPNO, Universite Paris-Sud, CNRS/IN2P3, 91406 Orsay, France and LPT, Universite Paris-Sud, CNRS, 91406 Orsay (France); Pasquini, Barbara [Dipartimento di Fisica, Universita degli Studi di Pavia, Pavia, Italy and Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia (Italy)
2013-04-15
The quark orbital angular momentum (OAM) has been recognized as an important piece of the proton spin puzzle. A lot of effort has been invested in trying to extract it quantitatively from the generalized parton distributions (GPDs) and the transverse-momentum dependent parton distributions (TMDs), which are accessed in high-energy processes and provide three-dimensional pictures of the nucleon. Recently, we have shown that it is more natural to access the quark OAM from the phase-space or Wigner distributions. We discuss the concept of Wigner distributions in the context of quantum field theory and show how they are related to the GPDs and the TMDs. We summarize the different definitions discussed in the literature for the quark OAM and show how they can in principle be extracted from the Wigner distributions.
Whole-body angular momentum during stair ascent and descent.
Silverman, Anne K; Neptune, Richard R; Sinitski, Emily H; Wilken, Jason M
2014-04-01
The generation of whole-body angular momentum is essential in many locomotor tasks and must be regulated in order to maintain dynamic balance. However, angular momentum has not been investigated during stair walking, which is an activity that presents a biomechanical challenge for balance-impaired populations. We investigated three-dimensional whole-body angular momentum during stair ascent and descent and compared it to level walking. Three-dimensional body-segment kinematic and ground reaction force (GRF) data were collected from 30 healthy subjects. Angular momentum was calculated using a 13-segment whole-body model. GRFs, external moment arms and net joint moments were used to interpret the angular momentum results. The range of frontal plane angular momentum was greater for stair ascent relative to level walking. In the transverse and sagittal planes, the range of angular momentum was smaller in stair ascent and descent relative to level walking. Significant differences were also found in the ground reaction forces, external moment arms and net joint moments. The sagittal plane angular momentum results suggest that individuals alter angular momentum to effectively counteract potential trips during stair ascent, and reduce the range of angular momentum to avoid falling forward during stair descent. Further, significant differences in joint moments suggest potential neuromuscular mechanisms that account for the differences in angular momentum between walking conditions. These results provide a baseline for comparison to impaired populations that have difficulty maintaining dynamic balance, particularly during stair ascent and descent.
Angular Momentum Sensitive Two-Center Interference
Ilchen, M.; Glaser, L.; Scholz, F.; Walter, P.; Deinert, S.; Rothkirch, A.; Seltmann, J.; Viefhaus, J.; Decleva, P.; Langer, B.; Knie, A.; Ehresmann, A.; Al-Dossary, O. M.; Braune, M.; Hartmann, G.; Meissner, A.; Tribedi, L. C.; AlKhaldi, M.; Becker, U.
2014-01-01
In quantum mechanics the Young-type double-slit experiment can be performed with electrons either traveling through a double slit or being coherently emitted from two inversion symmetric molecular sites. In the latter one the valence photoionization cross sections of homonuclear diatomic molecules were predicted to oscillate over kinetic energy almost 50 years ago. Beyond the direct proof of the oscillatory behavior of these photoionization cross sections σ, we show that the angular distribution of the emitted electrons reveals hitherto unexplored information on the relative phase shift between the corresponding partial waves through two-center interference patterns.
Statistical analysis of angular correlation measurements
International Nuclear Information System (INIS)
Obtaining the multipole mixing ratio, δ, of γ transitions in angular correlation measurements is a statistical problem characterized by the small number of angles in which the observation is made and by the limited statistic of counting, α. The inexistence of a sufficient statistics for the estimator of δ, is shown. Three different estimators for δ were constructed and their properties of consistency, bias and efficiency were tested. Tests were also performed in experimental results obtained in γ-γ directional correlation measurements. (Author)
Linear Upconversion of Orbit Angular Momentum
Ding, Dong-Sheng; Shi, Bao-Sen; Zou, Xu-Bo; Guo, Guang-Can
2012-01-01
We experimentally demonstrate that an infrared light imprinted the orbit angular momentum is linearly converted into a visible light using Four-wave mixing (FWM) via a Ladder-type configuration in Rb85 atoms. Simultaneously, we theoretically simulate this linear conversion process, and theoretical analysis is in reasonable agreement with the experimental result. A large single-photon detuning is used to reduce the absorption of the atoms to the up-converted light and to avoid the pattern formation in FWM process. The multi-mode image linear conversion is important for applications in image communications, astrophysics and quantum information so on.
Angular Momentum of Dark Matter Black Holes
Frampton, Paul H
2016-01-01
The putative black holes which may constitute all the dark matter are described by a Kerr metric with only two parameters, mass M and angular momentum J. There has been little discussion of J since it plays no role in the upcoming attempt at detection by microlensing. Nevertheless J does play a central role in understanding the previous lack of detection, especially of CMB distortion. We explain why bounds previously derived from lack of CMB distortion are too strong for primordial black holes with J non-vanishing. Almost none of the dark matter black holes can be from stellar collapse, and nearly all are primordial, to avoid excessive CMB distortion.
Angular momentum evolution of galaxies in EAGLE
Lagos, Claudia del P; Stevens, Adam R H; Cortese, Luca; Padilla, Nelson D; Davis, Timothy A; Contreras, Sergio; Croton, Darren
2016-01-01
We use EAGLE to study the specific angular momentum of galaxies, j, at z1.2, and then increase as lstars~a. Galaxy mergers reduce lstars by a factor of 2-3. These tracks are driven by both the evolution of the total jstars but also its radial distribution. Regardless of the aperture used to measure j, two distinct channels leading to low jstars in galaxies at z=0 are identified: (i) galaxy mergers, and (ii) early formation of most of the stars.
Angular correlation studies in noble gases
Coleman, P. G.
1990-01-01
There has been a recent revival of interest in the measurement of angular correlation of annihilation photons from the decay of positrons and positronium in gases. This revival has been stimulated by the possibility offered by the technique to shed new light on the apparently low positronium formation fraction in the heavier noble gases and to provide information on positronium quenching processes in gases such as oxygen. There is also the potential for learning about positronium slowing down in gases. This review focuses on experimental noble gas work and considers what new information has been, and may be, gained from these studies.
All-fiber sensor of angular velocity
Energy Technology Data Exchange (ETDEWEB)
Andreev, A.TS.; Vlasenko, O.A.; Dianov, E.M.; Diankov, G.L.; Zafirova, B.S.
1989-06-01
The paper reports the construction of an all-fiber optical sensor of angular velocity whose operation is based on the Sagnac effect in a fiber ring interferometer. An all-fiber system does not require the use of external discrete optical elements; division, polarization, and modulation functions are performed by the fiber waveguide itself. The fiber elements and sensor are constructed on the basis of slightly anisotropic fiber waveguides. The sensitivity of the device was 0.0077 deg/sq rt hr, while the zero drift was 0.5 deg/hr. 6 refs.
The Cosmology Large Angular Scale Surveyor (CLASS)
Eimer, Joseph; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Marriage, T.; Mehrle, N.; Miller, A. D.; Miller, N.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.
2014-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is an array of telescopes designed to search for the signature of inflation in the polarization of the Cosmic Microwave Background (CMB). By combining the strategy of targeting large scales (>2 deg) with novel front-end polarization modulation and novel detectors at multiple frequencies, CLASS will pioneer a new frontier in ground-based CMB polarization surveys. In this talk, I give an overview of the CLASS instrument, survey, and outlook on setting important new limits on the energy scale of inflation.
Angular momentum exchange in white dwarf binaries accreting through direct impact
International Nuclear Information System (INIS)
We examine the exchange of angular momentum between the component spins and the orbit in semi-detached double white dwarf binaries undergoing mass transfer through direct impact of the transfer stream. We approximate the stream as a series of discrete massive particles ejected in the ballistic limit at the inner Lagrangian point of the donor toward the accretor. This work improves upon similar earlier studies in a number of ways. First, we self-consistently calculate the total angular momentum of the orbit at all times. This includes changes in the orbital angular momentum during the ballistic trajectory of the ejected mass, as well as changes during the ejection/accretion due to the radial component of the particle's velocity. Second, we calculate the particle's ballistic trajectory for each system, which allows us to determine the precise position and velocity of the particle upon accretion. We can then include specific information about the radius of the accretor as well as the angle of impact. Finally, we ensure that the total angular momentum is conserved, which requires the donor star spin to vary self-consistently. With these improvements, we calculate the angular momentum change of the orbit and each binary component across the entire parameter space of direct impact double white dwarf binary systems. We find a significant decrease in the amount of angular momentum removed from the orbit during mass transfer, as well as cases where this process increases the angular momentum of the orbit at the expense of the spin angular momentum of the donor. We conclude that, unlike earlier claims in the literature, mass transfer through direct impact need not destabilize the binary and that the quantity and sign of the orbital angular momentum transfer depends on the binary properties, particularly the masses of the double white dwarf binary component stars. This stabilization may significantly impact the population synthesis calculations of the expected
Angular distributions of photoelectrons and non-thermal photoions from atoms and molecules. [Review
Energy Technology Data Exchange (ETDEWEB)
Dehmer, Joseph L.
1977-01-01
During the last ten years, photoelectron angular distributions have been used extensively to study the dynamics of the photoionization process in atoms and molecules. Some major advances in this body of work are reviewed with special emphasis on results emerging since the last Conference on VUV Radiation Physics three years ago. By far the greatest progress has occurred for atoms, where interest is focussed on improving zero-order (Hartree-Slater, Cooper-Zare) understanding of the asymmetry parameter β(ϵ), by considering electron correlations, relativistic effects, and anisotropic final-state interactions. The study of the rare gases has benefitted from extensive coordination between experiment and theory, whereas work on nonspherical atoms has been mainly theoretical, with the only measurements being performed very recently on atomic oxygen. Angular distribution studies on molecules are in a much earlier stage of development. Progress has been impeded by the lack of practical, realistic theoretical methods and wavelength-dependent measurements, both of which are becoming available only now. This recent work, together with selected topics from earlier resonance-line work on molecules will be reviewed. In addition, a new class of angular-dependent studies of molecules will be discussed--the angular distribution of nonthermal ions formed by dissociative photoionization--which provides information complementary to the related measurements on photoelectrons.
Angular dispersion and energy loss of H+ and He+ in metals
International Nuclear Information System (INIS)
In this master thesis the effects produced when a light ion beam traverses a thin metallic film were studied.In particular, the interactions of low energy (E ≤ 10 keV) light ions (H+,H2+, D+, He+) with monocrystalline and also polycrystalline gold samples were investigated.In first place, the dependence of the stopping power with projectiles' velocity was studied, analyzing the threshold effect in the excitation of the 5d electrons in the channelling regime for energies between 0,4 and 9 keV.Next, the angular dispersion of ions in polycrystalline and monocrystalline films was measured and analyzed.Comparisons for different energies and projectiles were done, studying molecular and isotopic effects.Using Lindhard's channeling theory, a scale law for the angular dispersion of angles greater than the critical angle was found.Additionally, the angular dependence of the energy loss and the energy loss straggling of protons transmitted through monocrystals were measured.To explain the angular variations of these magnitudes a theoretical model based on the electronic density fluctuations inside the channel was developed
Form features provide a cue to the angular velocity of rotating objects.
Blair, Christopher David; Goold, Jessica; Killebrew, Kyle; Caplovitz, Gideon Paul
2014-02-01
As an object rotates, each location on the object moves with an instantaneous linear velocity, dependent upon its distance from the center of rotation, whereas the object as a whole rotates with a fixed angular velocity. Does the perceived rotational speed of an object correspond to its angular velocity, linear velocities, or some combination of the two? We had observers perform relative speed judgments of different-sized objects, as changing the size of an object changes the linear velocity of each location on the object's surface, while maintaining the object's angular velocity. We found that the larger a given object is, the faster it is perceived to rotate. However, the observed relationships between size and perceived speed cannot be accounted for simply by size-related changes in linear velocity. Further, the degree to which size influences perceived rotational speed depends on the shape of the object. Specifically, perceived rotational speeds of objects with corners or regions of high-contour curvature were less affected by size. The results suggest distinct contour features, such as corners or regions of high or discontinuous contour curvature, provide cues to the angular velocity of a rotating object. PMID:23750970
Angular anisotropy representation by probability tables
International Nuclear Information System (INIS)
In this paper, we improve point-wise or group-wise angular anisotropy representation by using probability tables. The starting point of this study was to give more flexibility (sensitivity analysis) and more accuracy (ray effect) to group-wise anisotropy representation by Dirac functions, independently introduced at CEA (Mao, 1998) and at IRSN (Le Cocq, 1998) ten years ago. Basing ourselves on our experience of cross-section description, acquired in CALENDF (Sublet et al., 2006), we introduce two kinds of moment based probability tables, Dirac (DPT) and Step-wise (SPT) Probability Tables where the angular probability distribution is respectively represented by Dirac functions or by a step-wise function. First, we show how we can improve equi-probable cosine representation of point-wise anisotropy by using step-wise probability tables. Then we show, by Monte Carlo techniques, how we can obtain a more accurate description of group-wise anisotropy than the one usually given by a finite expansion on a Legendre polynomial basis (that can induce negative values) and finally, we describe it by Dirac probability tables. This study is carried out in the framework of GALILEE project R and D activities (Coste-Delclaux, 2008). (authors)
Detection and recognition of angular frequency patterns.
Wilson, Hugh R; Propp, Roni
2015-05-01
Previous research has extensively explored visual encoding of smoothly curved, closed contours described by sinusoidal variation of pattern radius as a function of polar angle (RF patterns). Although the contours of many biologically significant objects are curved, we also confront shapes with a more jagged and angular appearance. To study these, we introduce here a novel class of visual stimuli that deform smoothly from a circle to an equilateral polygon with N sides (AF patterns). Threshold measurements reveal that both AF and RF patterns can be discriminated from circles at the same deformation amplitude, approximately 18.0arcsec, which is in the hyperacuity range. Thresholds were slightly higher for patterns with 3.0 cycles than for those with 5.0 cycles. Discrimination between AF and RF patterns was 75% correct at an amplitude that was approximately 3.0 times the threshold amplitude, which implies that AF and RF patterns activate different neural populations. Experiments with jittered patterns in which the contour was broken into several pieces and shifted inward or outward had much less effect on AF patterns than on RF patterns. Similarly, thresholds for single angles of AF patterns showed no significant difference from thresholds for the entire AF pattern. Taken together, these results imply that the visual system incorporates angles explicitly in the representation of closed object contours, but it suggests that angular contours are represented more locally than are curved contours.
High-angular Resolution Laser Threat Warner
Directory of Open Access Journals (Sweden)
Sushil Kumar
2007-07-01
Full Text Available In this paper, the design and development aspects of a high-angular resolution laser-threat Warner developed at the Laser Science & Technology Centre (LASTEC, Delhi are presented. It describes a high-angular resolution laser-threat warner capable of giving warning with a resolution of i 3" when it is exposed to laser radiation from visible and near-IR pulsed solid-state laser source. It has a field of view of 90' in the azimuth direction, whereas the elevation coverage is between -5" and + 25". It is capable of handling multiple types of laser threats covering wavelength from 400 nm to 1100 nm and has an operational range of 4 km for a Q-switched laser source energy (10 ns of 10 mJ/pulse and output beam divergence of 1 mrad. The paper also describes its simulated evaluation process and field-testing which it has undergone. The result of field-testing confirms that it meets all its performance specifications mentioned above.
Supramolecular architectures constructed using angular bipyridyl ligands
Barnett, S A
2003-01-01
This work details the synthesis and characterization of a series of coordination frameworks that are formed using bidentate angular N-donor ligands. Pyrimidine was reacted with metal(ll) nitrate salts. Reactions using Cd(NO sub 3) sub 2 receive particular focus and the analogous reactions using the linear ligand, pyrazine, were studied for comparison. In all cases, two-dimensional coordination networks were prepared. Structural diversity is observed for the Cd(ll) centres including metal-nitrate bridging. In contrast, first row transition metal nitrates form isostructural one-dimensional chains with only the bridging N-donor ligands generating polymeric propagation. The angular ligand, 2,4-bis(4-pyridyl)-1,3,5-triazine (dpt), was reacted with Cd(NO sub 3) sub 2 and Zn(NO sub 3) sub 2. Whereas Zn(NO sub 3) sub 2 compounds exhibit solvent mediated polymorphism, a range of structures were obtained for the reactions with Cd(NO sub 3) sub 2 , including the first example of a doubly parallel interpenetrated 4.8 sup...
The SKA as a Doorway to Angular Momentum
Obreschkow, D; Popping, A; Power, C; Quinn, P; Staveley-Smith, L
2015-01-01
Angular momentum is one of the most fundamental physical quantities governing galactic evolution. Differences in the colours, morphologies, star formation rates and gas fractions amongst galaxies of equal stellar/baryon mass M are potentially widely explained by variations in their specific stellar/baryon angular momentum j. The enormous potential of angular momentum science is only just being realised, thanks to the emergence of the first simulations of galaxies with converged spins, paralleled by a dramatic increase in kinematic observations. Such observations are still challenged by the fact that most of the stellar/baryon angular momentum resides at large radii. In fact, the radius that maximally contributes to the angular momentum of an exponential disk (3Re-4Re) is twice as large as the radius that maximally contributes to the disk mass; thus converged measurements of angular momentum require either extremely deep IFS data or, alternatively, kinematic measurements of neutral atomic hydrogen (HI), which ...
Motion fading is driven by perceived, not actual angular velocity.
Kohler, P J; Caplovitz, G P; Hsieh, P-J; Sun, J; Tse, P U
2010-06-01
After prolonged viewing of a slowly drifting or rotating pattern under strict fixation, the pattern appears to slow down and then momentarily stop. Here we examine the relationship between such 'motion fading' and perceived angular velocity. Using several different dot patterns that generate emergent virtual contours, we demonstrate that whenever there is a difference in the perceived angular velocity of two patterns of dots that are in fact rotating at the same angular velocity, there is also a difference in the time to undergo motion fading for those two patterns. Conversely, whenever two patterns show no difference in perceived angular velocity, even if in fact rotating at different angular velocities, we find no difference in the time to undergo motion fading. Thus, motion fading is driven by the perceived rather than actual angular velocity of a rotating stimulus. PMID:20371254
Angular momentum in quantum mechanics as a group study topic
International Nuclear Information System (INIS)
A largely practical approach to the teaching of angular momentum in quantum mechanics at the undergraduate level is described. In an intensive seven week period towards the end of their final year, undergraduates working in pairs perform experiments in nuclear physics which demonstrate some of the important properties of angular momentum. Three experiments are selected and discussed in this article to illustrate the teaching method. The existence of intrinsic spin and parity is investigated by measuring the polarisation of annihilation radiation; the conservation of angular momentum is demonstrated by a measurement of orbital angular momentum in a nucleon transfer reaction and the coupling of angular momenta is illustrated by the method of angular correlation. (author)
Coherent detection of orbital angular momentum in radio
Daldorff, L. K. S.; S. M. Mohammadi; Bergman, J. E. S.; Isham, B.; Al-Nuaimi, M. K. T.; Forozesh, K.; Carozzi, T.D.
2015-01-01
The angular momentum propagated by a beam of radiation has two contributions: spin angular momentum (SAM) and orbital angular momentum (OAM). SAM corresponds to wave polarisation, while OAM-carrying beams are characterized by a phase which is a function of azimuth. We demonstrate experimentally that radio beams propagating OAM can be generated and coherently detected using ordinary electric dipole antennas. The results presented here could pave the way for novel radio OAM applications in tech...
Angular momentum evolution in laser-plasma accelerators
Thaury, Cédric; E. Guillaume; Corde, Sébastien; Lehe, R.; Le Bouteiller, M.; Ta Phuoc, K.; X. Davoine; Rax, Jean-Marcel; Rax, J. M.; Rousse, Antoine; Malka, Victor
2013-01-01
The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extend in the phase space and the angular momentum which allows for non-planar electron trajectories. Whereas the emittance of electron beams produced in laser- plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in laser-plasma accelerator carry some angular momentum, bu...
Angular momentum and conservation laws for dynamical black holes
Hayward, Sean A.
2006-01-01
Black holes can be practically located (e.g. in numerical simulations) by trapping horizons, hypersurfaces foliated by marginal surfaces, and one desires physically sound measures of their mass and angular momentum. A generically unique angular momentum can be obtained from the Komar integral by demanding that it satisfy a simple conservation law. With the irreducible (Hawking) mass as the measure of energy, the conservation laws of energy and angular momentum take a similar form, expressing ...
Angular velocity gradients in the solar convection zone
Energy Technology Data Exchange (ETDEWEB)
Gilman, P.A.; Foukal, P.V.
1979-05-01
We test the hypothesis that the weak influence of rotation upon solar supergranulation, resulting in fluid particles conserving their angular momentum while moving radially, is responsible for the outward decrease in angular velocity inferred from the difference between photospheric plasma and sunspot rotation rates. This test is performed using numerical integrations of a Boussinesq spherical convection model for a thin shell at small Taylor number (implying weak influence of rotation). We find that the convection does maintain an outward decrease in angular velocity, which approaches the limit implied by angular momentum conservation as the Rayleigh number or driving for convection is increased.By examining the energetics of the motion, we verify that the dominant process maintaining the calculated angular velocity profile against viscous diffusion is the inward transport of angular momentum by the convection. Axisymmetric meridional circulation plays virtually no role in this process. We further find there is no tendency for convection weakly influenced by rotation to form an equatorial acceleration. We argue from these and earlier calculations that the origin of the Sun's latitudinal gradient of angular velocity is deep in the convection zone. At these depths there may be a strong tendency for angular velocity to be constant on cylinders, implying a positive radial gradient of angular velocity. The latitude gradient is transmitted to the photosphere by supergranulation which locally produces the negative radial gradient in the top layers. We suggest from the rotation of various magnetic features that the transition from negative to positive radial angular velocity gradient occurs near the bottom of the supergranule layer. We argue that angular momentum conservation in radially moving fluid particles should produce a similar angular velocity profile in compressible convecting fluid layers.
Orbital angular momentum in /sup 3/He-A-italic
Energy Technology Data Exchange (ETDEWEB)
Balatskii-breve, A.V.; Mineev, V.P.
1985-12-01
The intrinsic angular momentum in the A-italic phase of superfluid /sup 3/He is found in terms of the response to the angular velocity of rotation. It is shown that in the weak-coupling approximation at an arbitrary temperature and with allowance for the Fermi-liquid renormalization the intrinsic angular momentum is small in accordance with the smallness of the asymmetry in the distribution of particles and holes.
Quantum orbital angular momentum of elliptically-symmetric light
Plick, William N.; Krenn, Mario; Fickler, Robert; Ramelow, Sven; Zeilinger, Anton
2012-01-01
We present a quantum mechanical analysis of the orbital angular momentum of a class of recently discovered elliptically-symmetric stable light fields --- the so-called Ince-Gauss modes. We study, in a fully quantum formalism, how the orbital angular momentum of these beams varies with their ellipticity and discover several compelling features, including: non-monotonic behavior, stable beams with real continuous (non-integer) orbital angular momenta, and orthogonal modes with the same orbital ...