WorldWideScience

Sample records for angled high frequency

  1. Frequency scaling for angle gathers

    KAUST Repository

    Zuberi, M. A H

    2014-01-01

    Angle gathers provide an extra dimension to analyze the velocity after migration. Space-shift and time shift-imaging conditions are two methods used to obtain angle gathers, but both are reasonably expensive. By scaling the time-lag axis of the time-shifted images, the computational cost of the time shift imaging condition can be considerably reduced. In imaging and more so Full waveform inversion, frequencydomain Helmholtz solvers are used more often to solve for the wavefields than conventional time domain extrapolators. In such cases, we do not need to extend the image, instead we scale the frequency axis of the frequency domain image to obtain the angle gathers more efficiently. Application on synthetic data demonstrate such features.

  2. High frequency of labral pathology in dysplastic hips with a CE angle between 20-25

    DEFF Research Database (Denmark)

    Jakobsen, Stig Storgaard; Hartig-Andreasen, Charlotte; Mikkelsen, Lone Rømer;

    Background: Hip dysplasia becomes symptomatic due to labral pathology and secondary muscular pain. A CE angle < 25 is considered pathologic and defined as dysplasia in PAO centres in Denmark. However, it is debated whether a CE angle between 20 and 25 is borderline. Purpose / Aim of Study: We aimed...... to investigate the degree of labral pathology in symptomatic patients with CE between 20 and 25 compared with patients with CE < 20. Materials and Methods: Ninety-nine patients (104 hips) with a mean age 34.1 years (range 14.5- 58.9 years) consecutively scheduled for PAO due to symptomatic DDH were...... enrolled in the study. Five patients were excluded from the study and four patients failed to show up at follow- up, hence 90 patients were evaluated. Indication for PAO were persisting hip pain, a center-edge angle of Wiberg <25, pelvic bone maturity, internal rotation >15, hip flexion <110 and Tönnis...

  3. Implementation of a Rotational Ultrasound Biomicroscopy System Equipped with a High-Frequency Angled Needle Transducer — Ex Vivo Ultrasound Imaging of Porcine Ocular Posterior Tissues

    Directory of Open Access Journals (Sweden)

    Tae-Hoon Bok

    2014-09-01

    Full Text Available The mechanical scanning of a single element transducer has been mostly utilized for high-frequency ultrasound imaging. However, it requires space for the mechanical motion of the transducer. In this paper, a rotational scanning ultrasound biomicroscopy (UBM system equipped with a high-frequency angled needle transducer is designed and implemented in order to minimize the space required. It was applied to ex vivo ultrasound imaging of porcine posterior ocular tissues through a minimal incision hole of 1 mm in diameter. The retina and sclera for the one eye were visualized in the relative rotating angle range of 270° ~ 330° and at a distance range of 6 ~ 7 mm, whereas the tissues of the other eye were observed in relative angle range of 160° ~ 220° and at a distance range of 7.5 ~ 9 mm. The layer between retina and sclera seemed to be bent because the distance between the transducer tip and the layer was varied while the transducer was rotated. Certin features of the rotation system such as the optimal scanning angle, step angle and data length need to be improved for ensure higher accuracy and precision. Moreover, the focal length should be considered for the image quality. This implementation represents the first report of a rotational scanning UBM system.

  4. Range-Angle-Dependent Beamforming by Frequency Diverse Array Antenna

    OpenAIRE

    Wen-Qin Wang; Huaizong Shao; Jingye Cai

    2012-01-01

    This paper proposes a range-angle-dependent beamforming for frequency diverse array (FDA) antenna systems. Unlike conventional phased-array antenna, the FDA antenna employs a small amount of frequency increment compared to the carrier frequency across the array elements. The use of frequency increment generates an antenna pattern that is a function of range, time and angle. The range-angle-dependent beamforming allows the FDA antenna to transmit energy over a desired range or angle. This prov...

  5. High-frequency link dc/ac converter with suppressed voltage clamp circuits -- Naturally commutated phase angle control with self turn-off devices

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Mikihiko; Nagai, Masaki; Mochizuki, Masayuki; Nabae, Akira [Tokyo Inst. of Polytechnics, Kanagawa (Japan). Dept. of Electronic Engineering

    1996-03-01

    High-frequency (HF) link circuit topology is advantageous in realizing compact and light-weight power converters for UPS systems, new energy systems, etc. Among its several circuit configurations, so called cycloconverter type dc/ac converter has its inherent merit of bidirectional power flow and fewer power conversion stages. But, without additional voltage clamp circuit, voltage surge occurs at the moment of PWM switchings of the cycloconverter due to the stored energy in the leakage inductance at the HF transformer. In this paper, a new approach which adopts only natural-commutation phase angle control for the cycloconverter stage instead of PWM is proposed to remove such voltage clamp circuits. Experimental results of the prototype system which include the application as an ac active filter are also shown.

  6. Low frequency seabed scattering at low grazing angles.

    Science.gov (United States)

    Zhou, Ji-Xun; Zhang, Xue-Zhen

    2012-04-01

    Low-frequency (LF) seabed scattering at low grazing angles (LGA) is almost impossible to directly measure in shallow water (SW), except through inversion from reverberation. The energy flux method for SW reverberation is briefly introduced in this paper. The closed-form expressions of reverberation in an isovelocity waveguide, derived from this method, indicate that in the three-halves law range interval multimode/ray sea bottom scattering with different incident and scattering angles in forming the reverberation may equivalently be represented by the bottom backscattering at a single range-dependent angle. This equivalent relationship is used to derive the bottom backscattering strength (BBS) as a function of angle and frequency. The LF&LGA BBS is derived in a frequency band of 200-2500 Hz and in a grazing angle range of 1.1°-14.0° from reverberation measurements at three sites with sandy bottoms. This is based on three previous works: (1) The closed-form expressions of SW reverberation [Zhou, (Chinese) Acta Acustica 5, 86-99 (1980)]; (2) the effective geo-acoustic model of sandy bottoms that follows the Biot model [Zhou et al., J. Acoust. Soc. Am. 125, 2847-2866 (2009)] and (3) A quality database of wideband reverberation level normalized to source level [Zhou and Zhang, IEEE J. Oceanic Eng. 30, 832-842 (2005)]. PMID:22501042

  7. Microwave Radiometer - high frequency

    Data.gov (United States)

    Oak Ridge National Laboratory — The Microwave Radiometer-High Frequency (MWRHF) provides time-series measurements of brightness temperatures from two channels centered at 90 and 150 GHz. These two...

  8. High frequency beam protection

    International Nuclear Information System (INIS)

    This report describes the design and construction of a high-frequency beam protecting device. This apparatus controls a number of functions in a modulator. Furthermore it drives the phase shifter and the attenuator. (author). 6 figs

  9. High frequency energy measurements

    International Nuclear Information System (INIS)

    High-frequency (> 100 MHz) energy measurements present special problems to the experimenter. Environment or available electronics often limit the applicability of a given detector type. The physical properties of many detectors are frequency dependent and in some cases, the physical effect employed can be frequency dependent. State-of-the-art measurements generally involve a detection scheme in association with high-speed electronics and a method of data recording. Events can be single or repetitive shot requiring real time, sampling, or digitizing data recording. Potential modification of the pulse by the detector and the associated electronics should not be overlooked. This presentation will review typical applications, methods of choosing a detector, and high-speed detectors. Special considerations and limitations of some applications and devices will be described

  10. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  11. High brightness angled cavity quantum cascade lasers

    International Nuclear Information System (INIS)

    A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm−2 sr−1 is obtained, which marks the brightest QCL to date

  12. High brightness angled cavity quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Heydari, D.; Bai, Y.; Bandyopadhyay, N.; Slivken, S.; Razeghi, M., E-mail: razeghi@eecs.northwestern.edu [Center for Quantum Devices, Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208 (United States)

    2015-03-02

    A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm{sup −2 }sr{sup −1} is obtained, which marks the brightest QCL to date.

  13. High-frequency ventilation.

    Science.gov (United States)

    Crawford, M R

    1986-08-01

    Over the last six years high-frequency ventilation has been extensively evaluated both in the clinical and laboratory settings. It is now no longer the great mystery it once was, and it is now no longer believed (as many had hoped), that it will solve all the problems associated with mechanical pulmonary ventilation. Although the technique is safe and appears to cause no harm even in the long term, it has not yet been shown to offer any major advantages over conventional mechanical ventilation. PMID:3530042

  14. High-frequency ECG

    Science.gov (United States)

    Tragardh, Elin; Schlegel, Todd T.

    2006-01-01

    The standard ECG is by convention limited to 0.05-150 Hz, but higher frequencies are also present in the ECG signal. With high-resolution technology, it is possible to record and analyze these higher frequencies. The highest amplitudes of the high-frequency components are found within the QRS complex. In past years, the term "high frequency", "high fidelity", and "wideband electrocardiography" have been used by several investigators to refer to the process of recording ECGs with an extended bandwidth of up to 1000 Hz. Several investigators have tried to analyze HF-QRS with the hope that additional features seen in the QRS complex would provide information enhancing the diagnostic value of the ECG. The development of computerized ECG-recording devices that made it possible to record ECG signals with high resolution in both time and amplitude, as well as better possibilities to store and process the signals digitally, offered new methods for analysis. Different techniques to extract the HF-QRS have been described. Several bandwidths and filter types have been applied for the extraction as well as different signal-averaging techniques for noise reduction. There is no standard method for acquiring and quantifying HF-QRS. The physiological mechanisms underlying HF-QRS are still not fully understood. One theory is that HF-QRS are related to the conduction velocity and the fragmentation of the depolarization wave in the myocardium. In a three-dimensional model of the ventricles with a fractal conduction system it was shown that high numbers of splitting branches are associated with HF-QRS. In this experiment, it was also shown that the changes seen in HF-QRS in patients with myocardial ischemia might be due to the slowing of the conduction velocity in the region of ischemia. This mechanism has been tested by Watanabe et al by infusing sodium channel blockers into the left anterior descending artery in dogs. In their study, 60 unipolar ECGs were recorded from the entire

  15. 腓肠肌羽状角的高频超声测量及其临床意义%Measurement of plume angles of gastrocnemius by high frequency ultrasound and its clinical signiifcance

    Institute of Scientific and Technical Information of China (English)

    叶攀; 胡海涛

    2014-01-01

    Objective To discuss the ultrasonic anatomy of gastrocnemius and its substructures in normal population. Methods Eighty gastrocnemius in 40 volunteers were scanned by real time high frequency ultrasound. Sonograms of medial and lateral heads of gastrocnemius were acquired. Plume angles between medial and lateral heads of gastrocnemius were measured at condition of rest, 5 kg and 10 kg isometric contraction. Both dominant and non-dominant legs were evaluated. Differences of plume angles were compared by ANOVA in different conditions and by t test in different legs. Results At the upper part of the muscle, both medial and lateral heads of gastrocnemius could be divided into muscular compartment, shallow compartment and deep compartment by hyperechoic intra-muscular septa with clear margin. The septa of lateral heads presented as hyperechoic side-lying′T′, while the septa of medial heads presented as hyperechoic side-lying-′T′. Vascular signals could be detected in these hyperechoic septa. The plume angle at the distal part of the lateral head of gastrocnemius was composed of shallow compartment attaching to the Achilles tendon, and that of the medial head was composed of medial muscular compartment attaching to the tendon. At rest, 5 kg and 10 kg isometric contraction, plume angles of lateral heads were (13.36±3.20)°, (13.32±3.30)° and (12.75±3.20)°, and plume angles of medial heads were (8.69±3.30)°, (8.59±2.99)° and (8.65±3.20)°. Under the same condition, plume angles of medial heads were larger than those of lateral heads and the difference was statistically signiifcant (t=9.09, 9.50 and 8.10, all P<0.01). Changes of plume angles between rest and different weight bearing conditions were small, and differences were not statistically signiifcant (F=0.89 and 0.02, P=0.41 and 0.98). Plume angles of medial heads in dominant legs and non-dominant legs were (13.66±3.60)° and (13.30±2.84)°, and those of lateral heads were (8.71±3.48)° and (8.80

  16. Orthogonally Linearly Polarized Dual Frequency Nd:YAG Lasers with Tunable Frequency Difference and Its Application in Precision Angle Measurement

    Institute of Scientific and Technical Information of China (English)

    TAN Yi-Dong; ZHANG Shu-Lian

    2007-01-01

    The orthogonally linearly polarized dual frequency Nd:YAG lasers with two quarter wave plates in laser resonator are proposed. The intra-cavity variable birefringence, which is caused by relative rotation of these two wave plates in laser inner cavity, results in the frequency difference of the dual frequency laser also changeable. The theory model based on the Jones matrix is presented, as well as experimental results. The potential application of this phenomenon in precision roll-angle measurement is also discussed.

  17. Frequency-Dependent Squeeze Amplitude Attenuation and Squeeze Angle Rotation by Electromagnetically Induced Transparency for Gravitational Wave Interferometers

    OpenAIRE

    Mikhailov, Eugeniy E.; Goda, Keisuke; Corbitt, Thomas; Mavalvala, Nergis

    2005-01-01

    We study the effects of frequency-dependent squeeze amplitude attenuation and squeeze angle rotation by electromagnetically induced transparency (EIT) on gravitational wave (GW) interferometers. We propose the use of low-pass, band-pass, and high-pass EIT filters, an S-shaped EIT filter, and an intra-cavity EIT filter to generate frequency-dependent squeezing for injection into the antisymmetric port of GW interferometers. We find that the EIT filters have several advantages over the previous...

  18. Broadband and wide-angle reflective polarization converter based on metasurface at microwave frequencies

    Science.gov (United States)

    Zhang, Linbo; Zhou, Peiheng; Chen, Haiyan; Lu, Haipeng; Xie, Jianliang; Deng, Longjiang

    2015-09-01

    We propose to realize a broadband and wide-angle reflective polarization converter in microwave regions. The proposed converter can convert a linearly polarized (LP) wave to its cross-polarized wave at three resonant frequencies. It can also convert the LP wave to a circularly polarized wave at other two resonant frequencies. Furthermore, the proposed converter can achieve broad bandwidth with incident angle up to 45°. The simulated and measured results are in agreement in the entire frequency regions, and the bandwidth of polarization conversion over 75 % can be obtained from 7.6 to 15.5 GHz under normal incidence and from 7.8 to 13.0 GHz under incident angle of 45°. The surface current distributions of the proposed converter are discussed to analyze the physical mechanism. The converter tolerance to wide angle of incidence and the broad bandwidth could be useful in the range of applications in the microwave regions.

  19. High Frequency Trade Direction Prediction

    OpenAIRE

    Stav, Augustine Dexter

    2015-01-01

    High Frequency Trade Direction PredictionbyAugustine StavAbstract High frequency trading involves large volumes and rapid price changes. The Volume Synchronized Probability of Informed Trading (VPIN) metric characterizes order flow toxicity. This toxicity is the unbalance of order flow between informed traders who possess knowledge of future price directions and market makers who do not have this information. VPIN requires trades to be classified as buys or sells and works with volume as a pr...

  20. Geographies of High Frequency Trading

    DEFF Research Database (Denmark)

    Grindsted, Thomas Skou

    2016-01-01

    This paper investigates the geographies of high frequency trading. Today shares shift hands within micro seconds, giving rise to a form of financial geographies termed algorithmic capitalism. This notion refers to the different spatio-temporalities produced by high frequency trading, under the...... micro seconds or constitutes them. It argues that automated trading will not only contribute to accelerate crises, but also deepen them by the ways in which it differentiates the dynamics between financial, fixed and productive capital....... valuation of time. As high frequency trading accelerates financial markets, the paper examines the spatio-temporalities of automated trading by the ways in which the speed of knowledge exploitation in financial markets is not only of interest, but also the expansion between different temporalities. The...

  1. High-frequency complex pitch

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2012-01-01

    Harmonics in a complex tone are typically considered unresolved when they interact with neighboring harmonics in the cochlea and cannot be heard out separately. Recent studies have suggested that the low pitch evoked by unresolved high-frequency harmonics may be coded via temporal fine-structure ......Harmonics in a complex tone are typically considered unresolved when they interact with neighboring harmonics in the cochlea and cannot be heard out separately. Recent studies have suggested that the low pitch evoked by unresolved high-frequency harmonics may be coded via temporal fine...

  2. Unique determination of the -CN group tilt angle in Langmuir monolayers using sum-frequency polarization null angle and phase

    Energy Technology Data Exchange (ETDEWEB)

    Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2013-10-14

    The relative phase and amplitude ratio between the ssp and ppp polarization combinations of the vibrational sum-frequency generation (SFG) response can be uniquely and accurately determined by the polarization null angle (PNA) method. In this report we show that PNA measurements of the -CN vibration in the 4-n pentyl-4'-cyanoterphenyl (5CT) Langmuir monolayer at the air/water interface yields ssp and ppp response of the same phase, while those in the 4-n-octyl-4'cyanobiphenyl (8CB) Langmuir monolayer have the opposite phase. Accordingly, the -CN group in the 5CT monolayer is tilted around 25+/-2 from the interface normal, while that in the 8CB is tilted around 57+/-2, consistent with the significant differences in the phase diagrams and hydrogen bonding SFG spectra of the two Langmuir monolayers as reported in the literature. These results also demonstrate that in SFG studies the relative phase information of the different polarization combinations, especially for the ssp and ppp, is important in the unique determination of the tilt angle and conformation of a molecular group at the interface.

  3. High frequency carbon nanotube devices

    Science.gov (United States)

    Goffman, M. F.; Chimot, N.; Mile, E.; Monteverde, M. C.; Bourgoin, J.-P.; Derycke, V.

    2008-08-01

    We investigate high frequency electrical and mechanical performances of carbon nanotube based devices. Using configurations with multiple single-wall nanotubes in parallel, we show that HF nanotube transistors with intrinsic cut-off frequencies as high as 30 GHz can be obtained on rigid substrates. Adapting our process to plastic substrates, we also obtained highly flexible HF transistors showing constant transconductances up to at least 6 GHz, as-measured cut-off frequencies as high as 1 GHz (5-8 GHz after de-embedding) and stable DC performances upon bending. We probed electromechanical properties of individual suspended carbon multiwall nanotubes by using a modified AFM. DC deflection measurements on different devices are in agreement with a continuum model prediction and consistent with a Young's modulus of 0.4 TPa. Preliminary HF measurements on a doubly clamped device showed a resonant frequency of 200MHz consistent with a Young's modulus of 0.43 TPa. This implies that built-in mechanical stress in the case of MWNTs is negligeable.

  4. Wide Angle, Single Screen, Gridded Square-Loop Frequency Selective Surface for Diplexing Two Closely Separated Frequency Bands

    Science.gov (United States)

    Wu, Te-Kao (Inventor)

    1996-01-01

    The design and performance of a wide angle, single screen, frequency selective surface (FSS) with gridded square-loop path elements are described for diplexing closely separated signal bands, for example, X- and Ku-band signals in an Orbiting Very Long Baseline Interferometer (OVLBI) earth station reflector antenna system, as well as other applications such as military and commercial communications via satellites. Excellent agreement is obtained between the predicted and measured results of this FSS design using the gridded square-loop patch elements sandwiched between 0.0889 cm thick tetrafluoroethylene fluorocarbon polymer (PTFE) slabs. Resonant frequency drift is reduced by 1 GHz with an incidence angle from 0 deg normal to 40 deg from normal.

  5. Fast frequency-sweep spectroscopic imaging with an ultra-low flip angle.

    Science.gov (United States)

    Guo, Junyu; Patay, Zoltan; Reddick, Wilburn E

    2016-01-01

    Magnetic resonance (MR) spectroscopic imaging has become an important tool in clinical settings for noninvasively obtaining spatial and metabolic information on a molecular scale. Conventional spectroscopic imaging is acquired in the time domain, and its clinical application is limited by the long acquisition time, restricted spatial coverage, and complex suppression and reconstruction procedures. We introduce a fast MR spectroscopic imaging technique in the frequency domain, termed phase-cycled spectroscopic imaging (PCSI). PCSI uses a balanced steady-state free precession (bSSFP) sequence with an ultra-low flip angle to achieve very high acquisition efficiency with a short repetition time. This approach enables faster frequency sweeping by changing the cycled RF phase and using flexible non-uniform sampling, and it greatly reduces the RF energy deposition in tissue. With its intrinsic water and fat suppression, PCSI more closely resembles routine clinical scans because it eliminates the suppression steps. We demonstrate that it is feasible to acquire PCSI spectra in a phantom and in humans and that PCSI provides an efficient spectroscopic imaging method, even for J-coupled metabolites. PCSI may enable spectroscopic imaging to play a larger role in the clinical assessment of the spatial tissue distribution of metabolites. PMID:27440077

  6. Dual-resonant polarization-independent and wide-angle metamaterial absorber in X-band frequency

    Science.gov (United States)

    Ayop, Osman; Rahim, Mohamad Kamal A.; Murad, Noor Asniza; Samsuri, Noor Asmawati

    2016-04-01

    This paper presents the analysis of dual-resonant polarization-independent metamaterial absorber with wide operating angle in X-band frequency. Two circular rings with different radius are used as resonating elements. The resonating elements which are made by copper are printed on two surfaces (top and bottom) of dual-layer FR4 substrate. At the middle layer, a full copper layer is placed. The performance of dual-resonant circular ring metamaterial absorber is observed using CST software. From simulated result, the proposed structure achieves high absorbance, which is 96.41 and 93.61 % at 9 and 11 GHz, respectively, for normal incident wave. For measurement, the resonant frequencies are found at 9.39 and 11.63 GHz with absorbance of 99.07 and 83.70 %, respectively. Then, the structure is also simulated for oblique incident angles. It is observed that the operating angle of the proposed metamaterial absorber is 70° for TE modes and 67° for TM modes. Measurement for oblique incident angle is done to validate the simulated result. Mutual agreement is achieved between simulated and measured result with slight frequency shift and ripples.

  7. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  8. Dynamic High Frequency Trading Models

    OpenAIRE

    Andersen, Espen Teie

    2009-01-01

    This thesis considers constructing high-frequency quantitative trading models. The work is a continuation of my project thesis (spring 2009) and Birgitte Ringstad Vartdal's master thesis (2000). We build our trading model through what we call the Layer Approach. This includes letting different layers take control of the different risk and decision mechanisms of our system. The underlying regression model is the Rydberg-Shephard model, the regression models are fitted to a moving data set to ...

  9. An oblique angle radio frequency sputtering method to fabricate nanoporous hydrophobic TiO2 film

    International Nuclear Information System (INIS)

    In this work, we investigate growth of ordered arrays of amorphous TiO2 nano-columns by using radio frequency sputter deposition technique. The as-prepared thin films were characterized by atomic force microscopy, field emission scanning electron microscopy, X-ray diffraction, and ultraviolet–visible spectroscopy. The nano-columnar films are found to be porous in nature which results from glancing angle sputter deposition. In fact, porosity has a linear relationship with increasing deposition angle. Reflectance of the thin films is also studied as a function of porosity. In addition, contact angle measurements demonstrate the roughness dependent transition from a hydrophilic to a hydrophobic TiO2 surface. - Highlights: • Porous nano-columnar array of TiO2 thin film • Transition of hydrophilic to hydrophobic surface • Correlation of optical property with porosity

  10. High-frequency magnetic components

    CERN Document Server

    Kazimierczuk, Marian K

    2013-01-01

    A unique text on the theory and design fundaments of inductors and transformers, updated with more coverage on the optimization of magnetic devices and many new design examples The first edition is popular among a very broad audience of readers in different areas of engineering and science. This book covers the theory and design techniques of the major types of high-frequency power inductors and transformers for a variety of applications, including switching-mode power supplies (SMPS) and resonant dc-to-ac power inverters and dc-to-dc power converters. It describes eddy-current phenomena (su

  11. On the behaviour of streams in angle and frequency spaces in different potentials

    CERN Document Server

    Buist, Hans J T

    2015-01-01

    We have studied the behaviour of stellar streams in the Aquarius fully cosmological N-body simulations of the formation of Milky Way halos. In particular, we have characterised the streams in angle and frequency spaces derived using an approximate but generally well-fitting spherical potential. We have also run several test-particle simulations to understand and guide our interpretation of the different features we see in the Aquarius streams. Our goal is both to establish which deviations of the expected action-angle behaviour of streams exist because of the approximations made on the potential, but also to derive to what degree we can use these coordinates to model streams reliably. We have found that many of the Aquarius streams wrap in angle space along relatively straight lines, and distribute themselves along linear structures also in frequency space. On the other hand, from our controlled simulations we have been able to establish that deviations from spherical symmetry, the use of incorrect potentials...

  12. Non-linear Flight Dynamics at High Angles of Attack

    DEFF Research Database (Denmark)

    Granasy, P.; Sørensen, C.B.; Mosekilde, Erik; Thomasson, P.G.

    1998-01-01

    The methods of nonlinear dynamics are applied to the longitudinal motion of a vectored thrust aircraft, in particular the behavior at high angles of attack. Our model contains analytic nonlinear aerodynamical coefficients based on NASA windtunnel experiments on the F-18 high-alpha research vehicle...

  13. Non-linear Flight Dynamics at High Angles of Attack

    DEFF Research Database (Denmark)

    Granasy, P.; Sørensen, C.B.; Mosekilde, Erik;

    1998-01-01

    The methods of nonlinear dynamics are applied to the longitudinal motion of a vectored thrust aircraft, in particular the behavior at high angles of attack. Our model contains analytic nonlinear aerodynamical coefficients based on NASA windtunnel experiments on the F-18 high-alpha research vehicl...

  14. High Pressure Angle Gears: Comparison to Typical Gear Designs

    Science.gov (United States)

    Handschuh, Robert F.; Zabrajsek, Andrew J.

    2010-01-01

    A preliminary study has been completed to determine the feasibility of using high-pressure angle gears in aeronautic and space applications. Tests were conducted in the NASA Glenn Research Center (GRC) Spur Gear Test Facility at speeds up to 10,000 rpm and 73 N*m (648 in.*lb) for 3.18, 2.12, and 1.59 module gears (8, 12, and 16 diametral pitch gears), all designed to operate in the same test facility. The 3.18 module (8-diametral pitch), 28 tooth, 20deg pressure angle gears are the GRC baseline test specimen. Also, 2.12 module (12-diametral pitch), 42 tooth, 25deg pressure angle gears were tested. Finally 1.59 module (16-diametral pitch), 56 tooth, 35deg pressure angle gears were tested. The high-pressure angle gears were the most efficient when operated in the high-speed aerospace mode (10,000 rpm, lubricated with a synthetic turbine engine oil), and produced the lowest wear rates when tested with a perfluoroether-based grease. The grease tests were conducted at 150 rpm and 71 N*m (630 in.*lb).

  15. HIGH FREQUENCY INDUCTION WELDING OF HIGH SILICON STEEL TUBES

    Directory of Open Access Journals (Sweden)

    Ricardo Miranda Alé

    2012-06-01

    Full Text Available High-Si steel is a low cost alternative for the fabrication of tubular structures resistant to atmospheric corrosion. However, the literature has often pointed out that steels presenting a higher Si content and/or a lower Mn/Si ratio have higher susceptibility to defects at the weld bond line during HFIW (High Frequency Induction Welding process, which has been widely used for manufacturing small diameter tubes. In this study the effect of the HFIW conditions on the quality of steel tubes with high-Si content and low Mn/Si ratio is investigated. The quality of welded tubes was determined by flare test and the defects in the bond line were identified by SEM. It has been found that higher welding speeds, V-convergence angles and power input should be applied in welding of high-Si steel, when compared to similar strength C-Mn steel.

  16. Frequency characteristics of breakdown vortices over delta wings with small amplitude oscillation at the high angle of attack%大迎角下小振幅振荡三角翼破裂涡的频率特性

    Institute of Scientific and Technical Information of China (English)

    张明禄; 刘绍辉; 吕志咏

    2009-01-01

    Experiments of dynamic unsteady pressure measurement and hot film velocity measurement with the small amplitude oscillation delta wings were carried out in a water channel and a wind tunnel respec-tively in order to investigate the influence of the nondimensional oscillation frequency n on the frequency char-acteristics of leading-edge vortices over delta wings. Power spectral analysis of pressure signal measured in the wind tunnel shows that at n =0.018~0.036, which is close to the oscillation frequency of vortex breakdown point, resonant phenomenon will happen and oscillatory energy will be largely enhanced. Power spectral analy-sis of velocity signal measured in the water channel shows that at n =0. 8~1. 38, which is close to the propa-gation frequency of spiral wave, the vortex breakdown point moves towards trailing edge, and therefore break-down of vortices will be delayed and the dominant frequency will be increased.%在风洞和水洞中分别进行了小振幅振荡三角翼的动态测压和热膜测速实验,目的是研究振荡的无量纲频率n对于三角翼前缘涡的频率特性的影响.对风洞中测得的压力数据进行频谱分析,发现n值在0.018~0.036时,即与三角翼翼面上涡破裂点的振荡频率接近时,会发生耦合现象,使振动能量明显加强;对水洞中测得的速度数据进行频谱分析,则发现n在0.8~1.4的范围内,即与螺旋波的传播频率接近时,三角翼的振荡会使涡破裂点向后缘移动,延缓了涡的破裂,使螺旋波频率增大.

  17. High power, high frequency helix TWT's

    Science.gov (United States)

    Sloley, H. J.; Willard, J.; Paatz, S. R.; Keat, M. J.

    The design and performance characteristics of a 34-GHz pulse tube capable of 75 W peak power output at 30 percent duty cycle and a broadband CW tube are presented. Particular attention is given to the engineering problems encountered during the development of the tubes, including the suppression of backward wave oscillation, the design of electron guns for small-diameter high-current beams, and the thermal capability of small helix structures. The discussion also covers the effects of various design parameters and choice of engineering materials on the ultimate practical limit of power and gain at the operating frequencies. Measurements are presented for advanced experimental tubes.

  18. Econometrics of financial high-frequency data

    CERN Document Server

    Hautsch, Nikolaus

    2011-01-01

    This book covers major approaches in high-frequency econometrics. It discusses implementation details, provides insights into properties of high-frequency data as well as institutional settings and presents applications.

  19. High Resolution Quantitative Angle-Scanning Widefield Surface Plasmon Microscopy

    Science.gov (United States)

    Tan, Han-Min; Pechprasarn, Suejit; Zhang, Jing; Pitter, Mark C.; Somekh, Michael G.

    2016-02-01

    We describe the construction of a prismless widefield surface plasmon microscope; this has been applied to imaging of the interactions of protein and antibodies in aqueous media. The illumination angle of spatially incoherent diffuse laser illumination was controlled with an amplitude spatial light modulator placed in a conjugate back focal plane to allow dynamic control of the illumination angle. Quantitative surface plasmon microscopy images with high spatial resolution were acquired by post-processing a series of images obtained as a function of illumination angle. Experimental results are presented showing spatially and temporally resolved binding of a protein to a ligand. We also show theoretical results calculated by vector diffraction theory that accurately predict the response of the microscope on a spatially varying sample thus allowing proper quantification and interpretation of the experimental results.

  20. High Frequency Electronic Packaging Technology

    Science.gov (United States)

    Herman, M.; Lowry, L.; Lee, K.; Kolawa, E.; Tulintseff, A.; Shalkhauser, K.; Whitaker, J.; Piket-May, M.

    1994-01-01

    Commercial and government communication, radar, and information systems face the challenge of cost and mass reduction via the application of advanced packaging technology. A majority of both government and industry support has been focused on low frequency digital electronics.

  1. An ultra high frequency wideband filter

    OpenAIRE

    Pan, V.M.; Tarasov, V. F.; Futimsky, S. I.

    2008-01-01

    An ultra high frequency wideband filter was developed and fabricated. High-temperature superconductive film, sputtered in a sapphire substrate, was used as a resonator material. Loss in the filter pass band is 0.7 dB, the filter pass band is 165 MHz, its central frequency is 1877 MHz. The filter topology and amplitude-frequency responses are given.

  2. High angle of attack aerodynamics subsonic, transonic, and supersonic flows

    CERN Document Server

    Rom, Josef

    1992-01-01

    The aerodynamics of aircraft at high angles of attack is a subject which is being pursued diligently, because the modern agile fighter aircraft and many of the current generation of missiles must perform well at very high incidence, near and beyond stall. However, a comprehensive presentation of the methods and results applicable to the studies of the complex aerodynamics at high angle of attack has not been covered in monographs or textbooks. This book is not the usual textbook in that it goes beyond just presenting the basic theoretical and experimental know-how, since it contains reference material to practical calculation methods and technical and experimental results which can be useful to the practicing aerospace engineers and scientists. It can certainly be used as a text and reference book for graduate courses on subjects related to high angles of attack aerodynamics and for topics related to three-dimensional separation in viscous flow courses. In addition, the book is addressed to the aerodynamicist...

  3. Angle-dependent vortex structure in a high anisotropy superconductor

    International Nuclear Information System (INIS)

    Angle-dependent muon spin rotation measurements have been made on the organic superconductor κ-(BEDT-TTF)2Cu(SCN)2. Oscillations are observed in the width of the internal field distribution, which are periodic in the perpendicular component of the applied magnetic field, Bz=B cos θ, with a uniform period over a range of angles and fields. These oscillations are superimposed on the standard cos θ scaling expected for the width in a highly anisotropic superconductor. The oscillation period is of order 2 mT and the amplitude is particularly strong at fields comparable with the period. The origin of this novel phenomenon is discussed in terms of the low field instabilities of tilted vortices in this highly anisotropic superconductor

  4. Angle dependence of the frequency correlation in random photonic media: Diffusive regime and its breakdown near localization

    NARCIS (Netherlands)

    Muskens, O.L.; Beek, van der T.; Lagendijk, A.

    2011-01-01

    The frequency correlations of light in complex photonic media are of interest as a tool for characterizing the dynamical aspects of light diffusion. We demonstrate here that the frequency correlation shows a pronounced angle dependence both in transmission and in reflection geometries. Using a broad

  5. Low frequency noise in Co/Al2O3 left angle bracket δ(Fe) right angle bracket /Ni80Fe20 magnetic tunnel junctions

    International Nuclear Information System (INIS)

    The time dependences, up to 200 s, and the noise power spectrum (0.005-10 Hz) in the electron transport response at bias up to 300 mV of Co/Al2O3/Ni80Fe20 magnetic tunnel junctions (MTJs) and of Co/Al2O3 left angle bracket δ(Fe) right angle bracket /Ni80Fe20 (with Fe δ dopants of thickness 1.8 A inside the barrier) were investigated. The magnetic field was changed between +100 and -100 G in steps of 1 G. The measurements were carried out at different temperatures between 77 and 300 K for the samples with large tunnel magnetoresistance (exceeding 14% at 300 K). We found that the magnetization reversal of the Co and permalloy electrodes, as detected from the time response near the coercive field, occurs via relaxation on the timescale of about 102 s with sudden jumps in the resistance (ΔR/R∼10-2-10-3). We link this noise to the depinning of the domain walls. In addition to the magnetic noise, in some of the studied MTJs with Fe δ dopants, we observed a two-level-system telegraph-type noise, which was independent of the magnetic field, indicating its relation to the trapped charges inside the insulating barrier. For MTJs, the noise power spectrum has 1/fα character for a wide frequency range below a few Hz. At low bias and parallel state the exponent α is close to 1-1.5, but at higher bias or in the antiparallel state the exponent increases to 2. We link these effects to non-equilibrium noise in magnetic structure of the electrodes in the antiparallel state and to non-equilibrium transport inside the barrier at high bias. (author)

  6. Polarization and angle insensitive dual-band bandpass frequency selective surface using all-dielectric metamaterials

    Science.gov (United States)

    Yu, Fei; Wang, Jun; Wang, Jiafu; Ma, Hua; Du, Hongliang; Xu, Zhuo; Qu, Shaobo

    2016-04-01

    In this paper, we demonstrate a dual-band bandpass all-dielectric frequency selective surface (FSS), the building elements of which are high-permittivity ceramic particles rather than metallic patterns. With proper structural design and parameter adjustment, the resonant frequency can be tuned at will. Dual-band bandpass response can be realized due to the coupling between electric and magnetic resonances. As an example, a dual-band bandpass FSS is designed in Ku band, which is composed of two-dimensional periodic arrays of complementary quatrefoil structures (CQS) cut from dielectric plates. Moreover, cylindrical dielectric resonators are introduced and placed in the center of each CQS to broaden the bandwidth and to sharpen the cut-off frequency. Theoretical analysis shows that the bandpass response arises from impedance matching caused by electric and magnetic resonances. In addition, effective electromagnetic parameters and dynamic field distributions are presented to explain the mechanism of impedance matching. The proposed FSS has the merits of polarization independence, stable transmission, and sharp roll-off frequency. The method can also be used to design all-dielectric FSSs with continuum structures at other frequencies.

  7. Three dimensional analysis of high frequency induction welding phenomena

    International Nuclear Information System (INIS)

    High frequency induction welding is widely employed for longitudinal seam welding of small scale tubes and pipes because of its relatively high processing speed and efficiency. This research is aimed at understanding the variables that affect the quality of the high frequency induction welding. The welding variables include the welding frequency, weld speed, V-angle and tube thickness. Temperature distribution of the tube is calculated through three dimensional coupled electromagnetic and thermal FE analysis. The skin and proximity effects are considered in the electromagnetic analysis. The influence of the impeder is also analyzed. The effects of the operating welding variables on the temperature distribution are investigated quantitatively by exhibiting the Heat Affected Zone (HAZ). The results explain the mechanism of significant enhancement of welding efficiency when the impeder is used. The proper welding conditions without the overheated edge are obtained through FE analysis

  8. High frequency characterization of graphene nanoribbon interconnects

    International Nuclear Information System (INIS)

    Interconnects and nanoscale transmission lines are critical components in the design of nanoelectronic systems. In this letter, we study the high frequency characteristics of chemical vapor deposition (CVD) graphene nanoribbon (GNR) interconnects and radio frequency propagation in GNRs embedded in a coplanar waveguide structure up to 20 GHz. An equivalent transmission line model is proposed to characterize the GNRs in high frequency regime. The strong agreement between fitting circuit parameters and measured data suggests that our model can be used in the design of nanoscale circuits in which GNRs are used to interconnect elements in the circuits. The fabricated GNRs show fairly constant characteristic impedance at high frequencies which could be useful for radio frequency interconnect applications. Our study provides an insight into microwave behavior of GNRs for developing high speed graphene devices. (paper)

  9. High frequency group pulse electrochemical machining

    Institute of Scientific and Technical Information of China (English)

    WU Gaoyang; ZHANG Zhijing; ZHANG Weimin; TANG Xinglun

    2007-01-01

    In the process of machining ultrathin metal structure parts,the signal composition of high frequency group pulse,the influence of frequency to reverse current,and the design of the cathode in high frequency group pulse electrochemical machining (HGPECM) are discussed.The experiments on process were carried out.Results indicate that HGPECM can greatly improve the characteristics of the inter-electrode gap flow field,reduce electrode passivation,and obtain high machining quality.The machining quality is obviously improved by increasing the main pulse frequency.The dimensional accuracy reaches 30-40 pro and the roughness attained is at 0.30-0.35 μm.High frequency group pulse electrochemical machining can be successfully used in machining micro-parts.

  10. Effect of operating frequency and phase angle on performance of Alpha Stirling cryocooler driven by a novel compact mechanism

    Science.gov (United States)

    Sant, K. D.; Bapat, S. L.

    2015-12-01

    Amongst the mechanical cryocoolers in use, Stirling cycle cryocoolers exhibit the desirable features such as high efficiency, low specific power consumption, small size and mass and large mean time before failure. Stirling cycle cryocooler of Alpha configuration exhibits better theoretical performance as compared to Gamma. However, the theory could not be put into practice due to unavailability of compatible drive mechanism for Alpha cryocooler providing large stroke to diameter ratio. The concept of novel compact drive mechanism can be made functional to operate miniature Alpha Stirling cryocoolers. It allows the use of multicylinder system while converting rotary motion to reciprocating. This permits the drive mechanism to be employed for driving different configurations of Stirling cryocooler simultaneously. This drive is capable of providing large stroke to diameter ratio compared to other drive mechanisms generally in use for the purpose. A stroke to diameter ratio of three is chosen in the present work and the drive dimensions are calculated for four piston-cylinder arrangements with 90° phase difference between adjacent arrangements providing two Alpha Stirling cryocoolers working simultaneously. It has to be noted that the coolers operate at half the frequency of the motor used. As the two coolers operate at phase difference of 180°, during compression stroke of one unit, the suction stroke occurs for the other unit. Due to power output of second unit, the combined peak torque requirement falls by 26.81% below the peak torque needed when one unit is operated separately. This allows for use of a comparatively lower torque motor. The practicability of the drive ensuring smooth operation of the system is decided based on comparison between torque availability from the motor and torque requirement of the complete unit. The second order method of cyclic (or thermodynamic) analysis provides a simple computational procedure useful for the design of Stirling

  11. Ultra-high frequency magnetic resonance imaging

    OpenAIRE

    Magill, Arthur W.

    2007-01-01

    This thesis addresses the problem of radiofrequency probe design for Ultra High Frequency Magnetic Resonance Imaging (7T). The signal-to-noise ratio available in Magnetic Resonance Imaging (MRI) is determined by the static magnetic field strength, causing a continued drive toward higher fields to enable faster image acquisition at finer spatial resolution. The resonant frequency increases linearly with static field strength. At 7T the proton resonant frequency is 300MHz, with a wavelength...

  12. Ultra-High-Frequency Capacitive Displacement Sensor

    Science.gov (United States)

    Vanzandt, Thomas R.; Kenny, Thomas W.; Kaiser, William J.

    1994-01-01

    Improved class of compact, high-resolution capacitive displacement sensors operates at excitation frequency of 915 MHz and measures about 7.5 by 4 by 2 centimeters. Contains commercially available 915-MHz oscillator and transmission-line resonator. Resonator contains stripline inductor in addition to variable capacitor. Ultrahigh excitation frequency offers advantages of resolution and frequency response. Not deleteriously affected by mechanical overdriving, or contact between electrodes.

  13. High frequency pressure oscillator for microcryocoolers

    OpenAIRE

    Vanapalli, S.; Brake, ter, O.; Jansen, H.V.; Zhao, Y.; Holland, H.J.; Burger, J.F.; Elwenspoek, M.C.

    2008-01-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80 K, delivering a cooling power of 10 mW. Piezoelectric actuators operate efficiently at ...

  14. Development of High Frequency Miniature Ultrasound Transducers

    OpenAIRE

    Manh, Tung

    2013-01-01

    Small, high frequency (≥ 10MHz) broadband ultrasound transducers are required in modern medical imaging systems to provide short range, high resolution images for studying of microstructures in soft tissues, such as the composition of small tumors or a vessel wall. The manufacturing of these probes using conventional methods, i.e. lapping and dicing, becomes difficult and expensive for high frequency applications and there is a need to produce small ultrasound transducers with low cost and hi...

  15. High frequency dynamics in centrifugal compressors

    NARCIS (Netherlands)

    Twerda, A.; Meulendijks, D.; Smeulers, J.P.M.; Handel, R. van den; Lier, L.J. van

    2008-01-01

    Problems with centrifugal compressors relating to high frequency, i.e. Blade passing frequency (BPF) are increasing. Pulsations and vibrations generated in centrifugal compressors can lead to nuisance, due to strong tonal noise, and even breakdown. In several cases the root cause of a failure or a n

  16. High Frequency Traders: Angels or Devils?

    OpenAIRE

    Jeffrey MacIntosh

    2013-01-01

    High frequency trading (HFT) is taking world capital markets by storm, notably in the United States and the United Kingdom, where it accounted for about 50 percent of equities trading in 2012, and to a growing extent in other parts of Europe and in Canada. Are high frequency traders angels or devils in terms of the impact on capital markets? Critics claim the latter and charge that they put retail and institutional investors at a disadvantage. Critics also blame high frequency trading for the...

  17. High-pressure magic angle spinning nuclear magnetic resonance.

    Science.gov (United States)

    Hoyt, David W; Turcu, Romulus V F; Sears, Jesse A; Rosso, Kevin M; Burton, Sarah D; Felmy, Andrew R; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. As an application example, in situ(13)C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg(2)SiO(4)) reacted with supercritical CO(2) and H(2)O at 150 bar and 50°C are reported, with relevance to geological sequestration of carbon dioxide. PMID:21862372

  18. High-pressure Magic Angle Spinning Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve to include micro-groves at the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal penetration loss of pressure for 72 hours. As an application example, in situ 13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg2SiO4) reacted with supercritical CO2 and H2O at 150 bar and 50 C are reported, with relevance to geological sequestration of carbon dioxide.

  19. High frequency pressure oscillator for microcryocoolers.

    Science.gov (United States)

    Vanapalli, S; ter Brake, H J M; Jansen, H V; Zhao, Y; Holland, H J; Burger, J F; Elwenspoek, M C

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80 K, delivering a cooling power of 10 mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5 MPa and compression volume of about 22.6 mm(3) when operating the actuator with a peak-to-peak sinusoidal voltage of 100 V at a frequency of 1 kHz. The electrical power input was 2.73 W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers. PMID:18447548

  20. A high performance angle-resolving electron spectrometer

    CERN Document Server

    Rossnagel, K; Skibowski, M; Harm, S

    2001-01-01

    We report on our new versatile photoelectron spectrometer Angular Spectrometer for Photoelectrons with High Energy REsolution (ASPHERE) which is part of beamline W3.2 (photon energies from 5 to 40 eV) but also compatible with beamline BW3 (40-1500 eV) at the Hamburger Synchrotronstrahlungslabor (HASYLAB). ASPHERE is a 180 deg. spherical analyzer (r sub 0 =100 mm) with a four-element input lens and is mounted on a two-axes goniometer with computer-controlled stepper motors which enables sequential angle-scanned measurements. The input lens is equipped with an iris aperture so that the angular resolution can be continuously adjusted from 0.2 deg. to 5 deg. sign . The fringe field of the condenser has been corrected for by tilting the angle of the input lens against the base plane of the hemispheres resulting in an overall energy resolution of 10 meV. To improve the speed of data acquisition three standard channeltron detectors are installed in the image plane of the analyzer which will be replaced by a multidet...

  1. Evaluation of Light Frequency Shift in a Cesium Beam Frequency Standard with Sharp Angle Incident Detecting Laser

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-Hai; WANG Feng-Zhi; WANG Yi-Qiu; YANG Dong-Hai

    2004-01-01

    @@ Light frequency shift measured in a smalloptically pumped caesium beam frequency standard is reported and analysed. Two light sources, the diffused laser light scattered from the caesium beam tube parts and the fluorescence light from the beam atoms excited by the laser light, for the light frequency shift are discussed.

  2. Construction of a High Frequency and High Reflectance Shutter for a Direct Write EUV Lithography System

    Directory of Open Access Journals (Sweden)

    Jyun-Yan Chuang

    2013-05-01

    Full Text Available Extreme ultraviolet lithography (EUVL is widely seen as a key technology for future semiconductor mass production. However, due to the short wavelength material properties of EUV, it is strongly absorbed by most materials. Thus if the shutter for a lithography system operates by means of absorption, one must consider the potential temperature rise due to the high energy radiation absorbed by the structure. In this paper, we propose using a high-reflectance shutter so as to resolve temperature-related precision problems in lithography systems. A single-layer molybdenum film is used to greatly reduce the quantity of absorbed radiation energy by the shutter structure (in line with Fresnel equation by increasing the incidence angle. A green laser is used as the light source to construct an automatic measuring system for reflectance and transmittance to verify the increase of material reflectance by the incidence angle of the photosource. The obtained incidence angle is also be fixed on the multilayered piezoelectric to serve as an actuator, so as to measure the high-frequency echoed signal of the laser photosource. Results show that, when the incidence angle is 83°, the optimum energy reflectance (50% is obtained and the switching frequency reaches a maximum of 19 kHz, verifying the feasibility of using the reflected energy as the photosource switch. Finally, experiments were conducted in Taiwan’s National Synchrotron Radiation Research Center (NSRRC using EUV as the photosource to measure the reflectance curves of single-layer molybdenum and aluminum films with different thicknesses under different incidence angles. Experimental results show that a high degree of reflection can be produced by the proposed single-layer film structure given a large incidence angle. The reflectance also increased significantly at an incidence angle of 60° for molybdenum while 70° for aluminum, and this relatively high reflection by molybdenum with a smaller

  3. High Energy Single Frequency Resonant Amplifier Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...

  4. CFD Analysis on Airfoil at High Angles of Attack

    Directory of Open Access Journals (Sweden)

    Dr.P.PrabhakaraRao, Sri Sampath.V

    2014-07-01

    Full Text Available The present work describes a conceptual study of performance enhancing devices for an airfoil by using Computational Fluid Dynamics. Two simple passive devices are selected and examined for Lift improvement and for decrease in Drag. The motivation behind this project is to study these effective techniques to improve performance with fewer drawbacks then previously existing model. The effective position for the location of Dimples and Cylinder are found out. Among the two selected models, Dimple model shows good results compare to other. The CAD model is prepared in CATIA V5 R19, pre-processing is done in ANSYS ICEM CFD 14.0 and simulations are carried out in ANSYS FLUENT 14.0. The overall aim of the project is to improve airfoil performance at high angle-of-attack. The results justify the optimum position for placing Dimple and cylinder for enhancing airfoil performance.

  5. High frequency conductivity in carbon nanotubes

    Directory of Open Access Journals (Sweden)

    S. S. Abukari

    2012-12-01

    Full Text Available We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ωB for metallic zigzag CNs and ω < ωB for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  6. Primordial high-frequency perturbations in cosmology

    International Nuclear Information System (INIS)

    The purpose of this thesis is to investigate, with the help of the multiple-scale method, approximate solutions of the Einstein equations which are approximately periodic and can be interpreted as containing high-frequency waves. These primordial high-frequency perturbations will have a significant influence on the background metric (back-reaction) and formation of trapped surfaces. Detection and Fourier analysis of primordial gravitational waves could in principle be used to infer the spectrum of inhomogeneities in the very early epoch of the universe. The high-frequency gravitational waves of all modes are investigated on an anisotropic Bianchi IX background. Their frequencies are related to the eigenvalues of the Hamiltonian of the asymmetric rotor. In the context of the exact solitary wave solutions found on the inhomogeneous Einstein-Rosen metric, a numerical solution is presented of the complete set of equations obtained from the non-linear approximation. (Auth.)

  7. Use of high flip angle in T1-prepared FAST sequences for myocardial perfusion quantification

    International Nuclear Information System (INIS)

    This study reports on the first use of high flip angle and radio-frequency (RF) spoiling in T1-prepared fast acquisition in steady state (FAST) sequence for myocardial perfusion in patients. T1 dynamic range was measured in vitro with a FAST, an RF FAST and a snapshot fast low-angle shot (FLASH) sequences with a 90 flip angle. Myocardial perfusion was then measured twice in 6 patients during the same MR session. The RF FAST and FLASH, but not the FAST sequence, demonstrated an extended T1 dynamic range; however, the FLASH images were degraded by artifacts not present on the RF FAST images. The myocardial perfusion indices K1 (first-order transfer constant from the blood to the myocardium for the Gd-DTPA) and Vd (distribution volume of Gd-DTPA in myocardium) did not differ significantly between the two injections. K1 was 0.48±0.12 ml/min g-1 and Vd was 12.5±2.9%. With an extended T1 dynamic range and the sensitivity required for myocardial perfusion quantification, the RF FAST sequence with a 90 flip angle outperformed the snapshot FLASH sequence in terms of image quality and the FAST sequence in terms of contrast dynamic range. (orig.)

  8. Nanofabrication advances for high efficiency critical-angle transmission gratings

    Science.gov (United States)

    Bruccoleri, Alexander R.; Guan, Dong; Heilmann, Ralf K.; Vargo, Steve; DiPiazza, Frank; Schattenburg, Mark L.

    2013-09-01

    We report several break-through nanofabrication developments enabling high efficiency and high resolving power spectrometers in the soft x-ray band. The device is the critical-angle transmission (CAT) grating, which combines the low mass and relaxed alignment tolerances of a transmission grating with the high broad-band efficiency and high diffraction orders of a blazed reflection grating. Past work successfully demonstrated the CAT grating concept; however, the open-area fraction was often less than 20% whilst more than 50% is desired. This presents numerous nanofabrication challenges including a requirement for a freestanding silicon membrane of ultra high-aspect ratio bars at a period of 200 nanometers with minimal cross support blockage. Furthermore, the sidewalls must be smooth to a few nanometers to efficiently reflect soft x-rays. We have developed a complete nanofabrication process for creating freestanding CAT gratings via plasma-etching silicon wafers with a buried layer of SiO2. This removable buried layer enables combining a record-performance plasma etch for the CAT grating with a millimeter-scale honeycomb structural support to create a large-area freestanding membrane. We have also developed a process for polishing sidewalls of plasma-etched ultra-high aspect ratio nanoscale silicon structures via potassium hydroxide (KOH). This process utilizes the anisotropic etch nature of single crystal silicon in KOH. We developed a novel alignment technique to align the CAT grating bars to the {111} planes of silicon within 0.2 degrees, which enables KOH to etch away sidewall roughness without destroying the structure, since the {111} planes etch approximately 100 times slower than the non-{111} planes. Preliminary results of a combined freestanding grating with polishing are presented to enable efficient diffraction of soft x-rays.

  9. Extremely high frequency RF effects on electronics.

    Energy Technology Data Exchange (ETDEWEB)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  10. High Precision Measurements Using High Frequency Signals

    CERN Document Server

    Jin, Aohan; Sakurai, Atsunori; Liu, Liang; Edman, Fredrik; Öwall, Viktor; Pullerits, Tonu; Karki, Khadga J

    2014-01-01

    Generalized lock-in amplifiers use digital cavities with Q-factors as high as 5X10^8. In this letter, we show that generalized lock-in amplifiers can be used to analyze microwave (giga-hertz) signals with a precision of few tens of hertz. We propose that the physical changes in the medium of propagation can be measured precisely by the ultra-high precision measurement of the signal. We provide evidence to our proposition by verifying the Newton's law of cooling by measuring the effect of change in temperature on the phase and amplitude of the signals propagating through two calibrated cables. The technique could be used to precisely measure different physical properties of the propagation medium, for example length, resistance, etc. Real time implementation of the technique can open up new methodologies of in-situ virtual metrology in material design.

  11. The high granularity and large solid angle detection array EXPADES

    International Nuclear Information System (INIS)

    Highlights: • We realized a detection array for Exotic Radioactive Ion Beams. • High granularity (32 × 32 pixels 2 × 2 mm wide for 8 telescopes). • High solid angle (8 telescopes 64 × 64 mm wide in a cylindrical configuration covering up to 2.6 sr). • We tested each component of the array by both alpha particles and in-beam environment. • We measured the angular distribution for 17O elastic scattering on a 58Ni target. -- Abstract: The EXPADES (EXotic PArticle DEtection System) detector array consists of 16 Double Side Silicon Strip Detectors (DSSSD) with active areas of 64 × 64 mm2, arranged in 8 ΔE (40/50 μm)–E (300 μm) telescopes. All detector faces are segmented into 32 × 2-mm wide strips, ensuring a 2 × 2 mm2 pixel configuration. Eight ionization chambers can be alternatively used as ΔE stages or, if needed, as an additional third layer for more complex triple telescopes. The signals from silicon ΔE layers and from ionization chambers are read by standard electronics, while innovative 32-channel ASIC chips are employed for the readout of the E stages. The results of off-line tests with alpha sources and from the first in-beam experiment with a 17O beam are presented

  12. The high granularity and large solid angle detection array EXPADES

    Energy Technology Data Exchange (ETDEWEB)

    Strano, E., E-mail: estrano@pd.infn.it [Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN – Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Anastasio, A. [INFN – Sezione di Napoli, Via Cintia, I-80126 Napoli (Italy); Bettini, M. [INFN – Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Boiano, A. [INFN – Sezione di Napoli, Via Cintia, I-80126 Napoli (Italy); Boiano, C. [INFN – Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Cassese, C. [INFN – Sezione di Napoli, Via Cintia, I-80126 Napoli (Italy); Castellani, L.; Corti, D. [INFN – Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Di Meo, P. [INFN – Sezione di Napoli, Via Cintia, I-80126 Napoli (Italy); Galet, G. [Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Glodariu, T. [NIPNE, Str. Reactorului No. 30, P.O. Box MG-6, Bucharest-Magurele (Romania); Grebosz, J. [IFJ PAN, ul. Radzikowskiego 152, 31-342 Kraków (Poland); Guglielmetti, A. [Dipartimento di Fisica, Università di Milano, Via Celoria 16, I-20133 Milano (Italy); INFN – Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); La Commara, M. [Dipartimento di Scienze Fisiche, Università di Napoli, Via Cintia, I-80126 Napoli (Italy); INFN – Sezione di Napoli, Via Cintia, I-80126 Napoli (Italy); Manea, C. [INFN – Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Mazzocco, M.; Molini, P. [Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN – Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Nicoletto, M. [INFN – Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); and others

    2013-12-15

    Highlights: • We realized a detection array for Exotic Radioactive Ion Beams. • High granularity (32 × 32 pixels 2 × 2 mm wide for 8 telescopes). • High solid angle (8 telescopes 64 × 64 mm wide in a cylindrical configuration covering up to 2.6 sr). • We tested each component of the array by both alpha particles and in-beam environment. • We measured the angular distribution for {sup 17}O elastic scattering on a {sup 58}Ni target. -- Abstract: The EXPADES (EXotic PArticle DEtection System) detector array consists of 16 Double Side Silicon Strip Detectors (DSSSD) with active areas of 64 × 64 mm{sup 2}, arranged in 8 ΔE (40/50 μm)–E (300 μm) telescopes. All detector faces are segmented into 32 × 2-mm wide strips, ensuring a 2 × 2 mm{sup 2} pixel configuration. Eight ionization chambers can be alternatively used as ΔE stages or, if needed, as an additional third layer for more complex triple telescopes. The signals from silicon ΔE layers and from ionization chambers are read by standard electronics, while innovative 32-channel ASIC chips are employed for the readout of the E stages. The results of off-line tests with alpha sources and from the first in-beam experiment with a {sup 17}O beam are presented.

  13. Martian high-altitude photoelectrons independent of solar zenith angle

    Science.gov (United States)

    Xu, Shaosui; Liemohn, Michael; Bougher, Stephen; Mitchell, David

    2016-04-01

    Many aspects of the Martian upper atmosphere are known to vary with solar zenith angle (SZA). One would assume that dayside photoelectron fluxes are also SZA dependent, especially when transport along a semivertical magnetic field line is significant. However, our investigation presented here of the observed Martian high-altitude (˜400 km) photoelectron fluxes by the magnetometer/electron reflectometer (MAG/ER) instruments on board Mars Global Surveyor (MGS) shows that the photoelectron fluxes are better correlated with just the solar irradiance, without SZA factored in, and also that the median photoelectron fluxes are independent of SZA, especially for high energies (above 100 eV). For lower energies (below 70 eV), the observed fluxes tend to vary to some degree with SZA. Such counterintuitive results are due to the existence of a photoelectron exobase, only above which the photoelectrons are able to transport and escape to high altitudes. Two methods are used here to determine the altitude range of this exobase, which varies between 145 km and 165 km depending on the atmosphere and SZA. Through our SuperThermal Electron Transport (STET) model, we found that the integral of the production rate above the photoelectron exobase, and therefore the high-altitude photoelectron fluxes, is rather independent of SZA. Such an independent relationship concerns energy redistribution in the Martian upper atmosphere, using photoelectrons to map magnetic topology and connectivity, as well as ion escape. This finding can also be carefully adapted to other solar bodies with semivertical magnetic fields at ionospheric altitudes, such as Earth, Jupiter, and Saturn.

  14. High frequency homogenisation for elastic lattices

    CERN Document Server

    Colquitt, D J; Makwana, M

    2014-01-01

    A complete methodology, based on a two-scale asymptotic approach, that enables the homogenisation of elastic lattices at non-zero frequencies is developed. Elastic lattices are distinguished from scalar lattices in that two or more types of coupled waves exist, even at low frequencies. Such a theory enables the determination of effective material properties at both low and high frequencies. The theoretical framework is developed for the propagation of waves through lattices of arbitrary geometry and dimension. The asymptotic approach provides a method through which the dispersive properties of lattices at frequencies near standing waves can be described; the theory accurately describes both the dispersion curves and the response of the lattice near the edges of the Brillouin zone. The leading order solution is expressed as a product between the standing wave solution and long-scale envelope functions that are eigensolutions of the homogenised partial differential equation. The general theory is supplemented b...

  15. High frequency and pulse scattering physical acoustics

    CERN Document Server

    Pierce, Allan D

    1992-01-01

    High Frequency and Pulse Scattering investigates high frequency and pulse scattering, with emphasis on the phenomenon of echoes from objects. Geometrical and catastrophe optics methods in scattering are discussed, along with the scattering of sound pulses and the ringing of target resonances. Caustics and associated diffraction catastrophes are also examined.Comprised of two chapters, this volume begins with a detailed account of geometrically based approximation methods in scattering theory, focusing on waves transmitted through fluid and elastic scatterers and glory scattering; surface ray r

  16. Frequency of infection after extraction of involved third molar in mandibular angle fractures treated with rigid fixation

    International Nuclear Information System (INIS)

    Objective: To determine the frequency of post-operative infection in patients with mandibular angle fractures treated with rigid fixation after extraction of involved third molar. Materials and Methods: In a total of 100 patients undergoing open reduction and internal fixation of mandibular angle fractures in which involved third molar will be extracted were included from Department of Oral and Maxillofacial Surgery, Mayo Hospital, Lahore. Procedure was performed by the same consultant and post operatively patients were assessed by two post graduate trainees who were trained previously to check Infection, on 1st, 2nd, 4th and 6th weeks post operatively. All the observations were entered on preformed proforma. Data was entered and analyzed by using SPSS version 10.0 Results: According to this study, the mean age of patients was 33.22 + 9.155 years. Minimum and maxi-mum age of patients was 18 years and 50 years with range of 32 years. There were 83 (83.0%) male patients while only 17 (17%) female patients presented with mandibular angle fractures. The rate of infection at week 1 was higher (9 (9.0%) cases), but gradually decreased in next follow up. 8 (8.0%) at 2nd week, 7 (7.0%) at week 4 and only 6 (6.0%) in last follow up at week 6 after open reduction and internal fixation of mandibular angle fractures with extraction of third molar. Conclusion: The frequency of post-operative infection in patients with mandibular angle fractures treated with rigid fixation after extraction of third molar was 30% at different follow ups in which 9% patients had infection at first week, 8 patients had at 2nd week, 7 patients had at 6th week and 6% patients presented with infection at last follow up. Overall the infection rate is lower in patients with mandibular angle fractures treated with rigid fixation after extraction of third molar. (author)

  17. Fabrication of nanoelectromechanical systems via the integration of high surface area glancing angle deposition thin films

    International Nuclear Information System (INIS)

    Nanoelectromechanical systems (NEMS) coated with a high surface area thin film are fabricated. Glancing angle deposition (GLAD) is used to uniformly deposit high surface area, nanostructured SiO2 films on top of released NEMS. The resonance frequencies and quality factors are measured to assess the potential of the high surface area NEMS for sensing experiments. Resonance frequencies of coated cantilevers, although reduced by mass loading, can be predicted accurately using our derived model. Compressive stress makes the resonance frequencies of coated doubly-clamped beams difficult to predict. The quality factors of the coated NEMS are reduced by one order of magnitude by a quasi-continuous layer at the base of the GLAD film, which also introduces an estimated compressive stress of 5.3–9.3 MPa. The limit of detection is demonstrated to be ∼2 pg cm−2. With this successful proof-of-concept demonstration, we anticipate the future use of these devices as high surface area gravimetric mass sensors for applications such as gas chromatography. (paper)

  18. Launcher of high frequency heating device

    International Nuclear Information System (INIS)

    The present invention concerns a launcher of a high frequency heating device which emits high frequency electromagnetic waves to heat plasmas generated upon nuclear fusion by way of a bundle of waveguides. The rupture of the bundle of the waveguides due to electromagnetic force is prevented by preventing an induced large electric current in the bundle of the waveguides from flowing even if plasma disruption should occur. Namely, the launcher of the high frequency heating device transmits the high frequency electromagnetic waves by way of the bundle of the waveguides which distribute them in plurality and heat plasmas. In this case, a plurality of partitioning plates are disposed in parallel with each other each at an appropriate distance. The bundle of the waveguides is constituted by joining insulation spacers formed or coated with an electrical insulator between the opposing surfaces of the upper and the lower portions of each of the partitioning plate. With such a constitution, even if plasma disruption should occur, no large inducted current is caused in the bundle of the waveguide. In addition, the partitionings can be directly cooled to improve a cooling efficiency. (N.H.)

  19. High Frequency Trading, Information, and Takeovers

    NARCIS (Netherlands)

    Humphery-Jenner, M.

    2011-01-01

    This paper (1) proposes new variables to detect informed high-frequency trading (HFT), (2) shows that HFT can help to predict takeover targets, and (3) shows that HFT in uences target announcement announcement returns. Prior literature suggests that informed trade may occur before takeovers, but has

  20. High Frequency Trading in Financial Markets

    OpenAIRE

    Zhang, Shuo Sarah

    2013-01-01

    Financial markets have undergone tremendous changes in the last decades. Next to the automation of the trading process and the improvement in market quality, High Frequency Trading (HFT) plays a major role in financial markets. This thesis provides a background on the evolution of financial markets and the role of HFT in price discovery and the nature of its interaction with human traders.

  1. High frequency sources of gravitational waves

    OpenAIRE

    Kokkotas, Kostas D.

    2003-01-01

    Sources of high frequency gravitational waves are reviewed. Gravitational collapse, rotational instabilities and oscillations of the remnant compact objects are potentially important sources of gravitational waves. Significant and unique information for the various stages of the collapse, the evolution of protoneutron stars and the details of the equations of state of such objects can be drawn from careful study of the gravitational wave signal.

  2. Ultra-high-frequency ECG Measurement

    Czech Academy of Sciences Publication Activity Database

    Jurák, Pavel; Halámek, Josef; Leinveber, P.; Vondra, Vlastimil; Soukup, L.; Veselý, P.; Šumbera, J.; Zeman, K.; Martináková, L.; Juráková, Tereza; Novák, M.

    Zaragoza: Computing in Cardiology , 2013, s. 783-786. ISSN 2325-8861. [The 40th conference on Computing in Cardiology . Zaragoza (ES), 22.09.2013-25.09.2013] R&D Projects: GA MŠk EE2.4.31.0016 Institutional support: RVO:68081731 Keywords : high frequency ECG * QRS complex * heart muscle pathology Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  3. The high-frequency viscosity of dispersions

    Science.gov (United States)

    de Kruif, C. G.; Woutersen, A. T. J. M.; Mellema, J.

    1992-09-01

    Several theories for the high-frequency viscosity of hard sphere dispersions are discussed and compared with experimental results. The theories based on a virial expansion are known to be valid for low volume fractions only. We show that the most satisfactory description is given by Beenakker's multipole expansion theory.

  4. Experimental Observation of Flow Structure and Resistance over High- and Low-angle Dunes

    Science.gov (United States)

    Kwoll, E.; Venditti, J. G.; Bradley, R. W.; Winter, C.

    2015-12-01

    A prominent control on the flow over dunes in sedimentary environments is the slope of the downstream lee-side. While previous work has focused on steep (~30°), asymmetric dunes with permanent flow separation ('high-angle dunes'), little is known about dunes with lower lee-slope angles for which flow separation is absent or intermittent ('low-angle dunes'). Here, we use laboratory experiments to systematically vary and isolate the effect of the dune lee-slope on the turbulent flow field over dunes. Three sets of fixed dunes with lee-slope angles of 10°, 20° and 30° were separately installed in a 15 m long and 1 m wide flume and subjected to flow 0.20 m deep. At present, no clear hydraulic scaling has been demonstrated for low- and high-angle dunes as both dune configurations occur at the same Froude and Reynolds numbers. However, observations indicate that low-angle dunes are more frequent in environments dominated by suspension of bed material. Therefore, we focus on matching the transport stage between field conditions and our experiments using field observations of bedform morphology and flow stage. Measurements consisted of high-frequency, vertical profiles collected with a Laser Doppler Velocimeter (LDV) along one dune-length and Particle Image Velocimetry (PIV) of the flow field. We show that the temporal and spatial occurrence of flow separation decreases with dune lee-slope and may be fully absent for lee-slopes <<10°, only. Velocity gradients in the dune leeside depict a free shear layer downstream of the 30° dunes and a weaker shear layer closer to the bed for the 20° and 10° dunes. The decrease in velocity gradients leads to lower turbulence production for gentle lee-slopes. Consequently, flow resistance of dunes decreases with lee-slope; the transition being non-linear. Over the 10°, 20° and 30° dunes, shear stress is 8%, 33% and 90 % greater than a flat bed, respectively. Our results demonstrate that dune shape plays an important, but often

  5. Ionospheric modifications in high frequency heating experiments

    International Nuclear Information System (INIS)

    Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena

  6. Ionospheric modifications in high frequency heating experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Spencer P. [Department of Electrical and Computer Engineering, Polytechnic School of Engineering, New York University, 5 MetroTech Center, Brooklyn, New York 11201 (United States)

    2015-01-15

    Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.

  7. The LASI high-frequency ellipticity system

    Energy Technology Data Exchange (ETDEWEB)

    Sternberg, B.K.; Poulton, M.M. [Univ. of Arizona, Tucson, AZ (United States)

    1995-10-01

    A high-frequency, high-resolution, electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (5) rapid neural network interpretation at the field site, and (6) visualization of complex structures during the survey.

  8. Noise temperature in graphene at high frequencies

    Science.gov (United States)

    Rengel, Raúl; Iglesias, José M.; Pascual, Elena; Martín, María J.

    2016-07-01

    A numerical method for obtaining the frequency-dependent noise temperature in monolayer graphene is presented. From the mobility and diffusion coefficient values provided by Monte Carlo simulation, the noise temperature in graphene is studied up to the THz range, considering also the influence of different substrate types. The influence of the applied electric field is investigated: the noise temperature is found to increase with the applied field, dropping down at high frequencies (in the sub-THz range). The results show that the low-frequency value of the noise temperature in graphene on a substrate tends to be reduced as compared to the case of suspended graphene due to the important effect of remote polar phonon interactions, thus indicating a reduced emitted noise power; however, at very high frequencies the influence of the substrate tends to be significantly reduced, and the differences between the suspended and on-substrate cases tend to be minimized. The values obtained are comparable to those observed in GaAs and semiconductor nitrides.

  9. Topology optimization design of a lightweight ultra-broadband wide-angle resistance frequency selective surface absorber

    Science.gov (United States)

    Sui, Sai; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Qu, Shaobo

    2015-06-01

    In this paper, the topology design of a lightweight ultra-broadband polarization-independent frequency selective surface absorber is proposed. The absorption over a wide frequency range of 6.68-26.08 GHz with reflection below -10 dB can be achieved by optimizing the topology and dimensions of the resistive frequency selective surface by virtue of genetic algorithm. This ultra-broadband absorption can be kept when the incident angle is less than 55 degrees and is independent of the incident wave polarization. The experimental results agree well with the numerical simulations. The density of our ultra-broadband absorber is only 0.35 g cm  -  3 and thus may find potential applications in microwave engineering, such as electromagnetic interference and stealth technology.

  10. Topology optimization design of a lightweight ultra-broadband wide-angle resistance frequency selective surface absorber

    International Nuclear Information System (INIS)

    In this paper, the topology design of a lightweight ultra-broadband polarization-independent frequency selective surface absorber is proposed. The absorption over a wide frequency range of 6.68–26.08 GHz with reflection below −10 dB can be achieved by optimizing the topology and dimensions of the resistive frequency selective surface by virtue of genetic algorithm. This ultra-broadband absorption can be kept when the incident angle is less than 55 degrees and is independent of the incident wave polarization. The experimental results agree well with the numerical simulations. The density of our ultra-broadband absorber is only 0.35 g cm  −  3 and thus may find potential applications in microwave engineering, such as electromagnetic interference and stealth technology. (paper)

  11. High-Frequency Rayleigh-Wave Method

    Institute of Scientific and Technical Information of China (English)

    Jianghai Xia; Richard D Millerg; Xu Yixian; Luo Yinhe; Chen Chao; Liu Jiangping; Julian Ivanov; Chong Zeng

    2009-01-01

    High-frequency (≥2 Hz) Rayleigh-wave data acquired with a multichannei recording sys-tem have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave tech-niques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a nou-iuvasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution.

  12. Adjusting Frequency of Pump Blade Angles and Optimal Operation for Large Pumping Station System

    OpenAIRE

    Xiaoli Feng; Baoyun Qiu

    2013-01-01

    For pumping stations installed blade full-adjustable pumps with frequently varying head in a wide range, adjusting pump blade angles is an effective way to realize optimum operation. Optimal mathematical models were established aiming at the least daily operation cost for pumping station system, which includes main pump units, inlet and outlet passages and their accessories, forebay and outlet pond, auxiliary equipment, power transmission and transformation equipment, other electromechanical ...

  13. Early diagnosis and research of high myopia with primary open angle glaucoma

    Directory of Open Access Journals (Sweden)

    Yan Guo

    2014-04-01

    Full Text Available People with high myopia are high risk populations to have primary open angle glaucoma. Clinically, we found that patients with primary open angle glaucoma and high myopia is closely related. So to understand the clinical features of high myopia with primary open angle glaucoma and the importance of early diagnosis, to avoiding missed diagnosis or lower misdiagnosed rate, can help to improve the vigilance and level of early diagnosis of the clinicians. In this paper, high myopia with clinical features of primary open angle glaucoma, and the research progress on the main points of early diagnosis were reviewed.

  14. High Temperature, High Frequency Fuel Metering Valve Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Active Signal Technologies and its subcontractor Moog propose to develop a high-frequency actuator driven valve intended to achieve TRL 6 by the end of Phase II....

  15. High-resolution NMR of anisotropic samples with spinning away from the magic angle

    Energy Technology Data Exchange (ETDEWEB)

    Sakellariou, Dimitris; Meriles, Carlos A.; Martin, Rachel W.; Pines, Alexander

    2003-03-31

    High-resolution NMR of samples in the solid state is typically performed under mechanical sample spinning around an axis that makes an angle, called the magic angle, of 54.7 degrees with the static magnetic field. There are many cases in which geometrical and engineering constraints prevent spinning at this specific angle. Implementations of in-situ and ex-situ magic angle field spinning might be extremely demanding because of the power requirements or an inconvenient sample size or geometry. Here we present a methodology based on switched angle spinning between two angles, none of which is the magic angle, which provide both isotropic and anisotropic information. Using this method, named Projected Magic Angle Spinning, we were able to obtain resolved isotropic chemical shifts in spinning samples where the broadening is mostly inhomogeneous.

  16. High zenith angle observations of PKS 2155-304 with the MAGIC-I telescope

    CERN Document Server

    Aleksić, J; Antoranz, P; Asensio, M; de Almeida, U Barres; Barrio, J A; González, J Becerra; Bednarek, W; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Boller, A; Bonnoli, G; Tridon, D Borla; Bretz, T; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Cossio, L; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; del Pozo, E De Cea; De Lotto, B; Mendez, C Delgado; Ortega, A Diago; Doert, M; Prester, D Dominis; Dorner, D; Doro, M; Eisenacher, D; Elsaesser, D; Ferenc, D; Fonseca, M V; Font, L; Fruck, C; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Giavitto, G; Godinović, N; Muñoz, A González; Gozzini, S R; Hadamek, A; Hadasch, D; Häfner, D; Herrero, A; Hose, J; Hrupec, D; Huber, B; Jankowski, F; Jogler, T; Kadenius, V; Klepser, S; Knoetig, M L; Krähenbühl, T; Krause, J; Kushida, J; La Barbera, A; Lelas, D; Leonardo, E; Lewandowska, N; Lindfors, E; Lombardi, S; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Makariev, M; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Moldón, J; Moralejo, A; Munar-Adrover, P; Niedzwiecki, A; Nieto, D; Nilsson, K; Nowak, N; Orito, R; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Partini, S; Persic, M; Pilia, M; Pochon, J; Prada, F; Moroni, P G Prada; Prandini, E; Puljak, I; Reichardt, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rügamer, S; Saggion, A; Saito, K; Saito, T Y; Salvati, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Spiro, S; Stamatescu, V; Stamerra, A; Steinke, B; Storz, J; Sun, S; Surić, T; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Wagner, R M; Weitzel, Q; Zabalza, V; Zandanel, F; Zanin, R

    2012-01-01

    The high frequency peaked BL Lac PKS 2155-304 with a redshift of z=0.116 was discovered in 1997 in the very high energy (VHE, E >100GeV) gamma-ray range by the University of Durham Mark VI gamma-ray Cherenkov telescope in Australia with a flux corresponding to 20% of the Crab Nebula flux. It was later observed and detected with high significance by the Southern Cherenkov observatory H.E.S.S. Detection from the Northern hemisphere is difficult due to challenging observation conditions under large zenith angles. In July 2006, the H.E.S.S. collaboration reported an extraordinary outburst of VHE gamma-emission. During the outburst, the VHE gamma-ray emission was found to be variable on the time scales of minutes and with a mean flux of ~7 times the flux observed from the Crab Nebula. Follow-up observations with the MAGIC-I standalone Cherenkov telescope were triggered by this extraordinary outburst and PKS 2155-304 was observed between 28 July to 2 August 2006 for 15 hours at large zenith angles. Here we present ...

  17. High Frequency Trading, Information, and Takeovers

    OpenAIRE

    Humphery-Jenner, M.

    2011-01-01

    This paper (1) proposes new variables to detect informed high-frequency trading (HFT), (2) shows that HFT can help to predict takeover targets, and (3) shows that HFT in uences target announcement announcement returns. Prior literature suggests that informed trade may occur before takeovers, but has not examined the role of HFT and has relied on monthly measures of informed trade (such as PIN or the spread components). I propose microstructure-based variables to detect HFT that are derived fr...

  18. Interactions among high-frequency traders

    OpenAIRE

    Benos, Evangelos; Brugler, James; Hjalmarsson, Erik; Zikes, Filip

    2015-01-01

    Using unique transactions data for individual high-frequency trading (HFT) firms in the UK equity market, we examine if the trading activity of individual HFT firms is contemporaneously and dynamically correlated with each other, and what impact this has on price efficiency. We find that HFT order flow exhibits significantly higher commonality than the order flow of a control group of investment banks, both within and across stocks. However, intraday HFT order flow commonality is associated w...

  19. High frequency processes in magnetic materials

    CERN Document Server

    Srinivasan, G

    1995-01-01

    This review volume deals with recent advances in topics of importance to scientists and engineers involved in research and device development utilizing magnetic oxides and multilayers. The subject matter covered includes linear and nonlinear high frequency magnetic excitations and interaction between magnons and photons. In particular, this book contains detailed discussion on the detection of magnons by Brillouin light scattering and photothermal spectroscopy, interaction between spin waves and optical guided modes, microwave solitons, and spin wave instabilities. Recent advances in tradition

  20. High frequency impedances in European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Dohlus, Martin; Zagorodnov, Igor; Zagorodnova, Olga

    2010-06-15

    The method of the optical approximation is used to estimate the high frequency impedances of different vacuum chamber transitions of the European XFEL beam line. The approximations of the longitudinal impedances are obtained in terms of simple one-dimensional integrals. The transverse impedances are written in analytical closed form. The analytical results are compared with the results obtained by numerical solution of Maxwell's equations. (orig.)

  1. Interannual modulation of extratropical high frequency variability

    Directory of Open Access Journals (Sweden)

    R. Caballero

    1997-06-01

    Full Text Available A simple explanation is presented for the observed interannual changes in the dominant space and time scales of Northem Hemisphere winter extratropical high frequency variability. It is found that such changes can suc- cessfully be predicted by linearizing a 2-level quasi-geostrophic mode] in spherical geometry around the ob- served zona] mean states. The mechanisms responsible for the selection of the most unstable normal mode are investigated.

  2. Planck 2013 results. VI. High Frequency Instrument data processing

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bowyer, J.W.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J. -F.; Catalano, A.; Chamballu, A.; Chary, R. -R.; Chen, X.; Chiang, L. -Y; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Désert, F. -X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Girard, D.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herent, O.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Jeune, M. Le; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P.M.; Macías-Pérez, J.F.; MacTavish, C.J.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Nørgaard-Nielsen, H.U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; Orieux, F.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prézeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J.P.; Racine, B.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sanselme, L.; Santos, D.; Sauvé, A.; Savini, G.; Shellard, E.P.S.; Spencer, L.D.; Starck, J. -L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J.A.; Tavagnacco, D.; Techene, S.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (hereafter HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857 GHz with an angular resolution ranging from 9.7 to 4.6 arcmin. The detector noise per (effective) beam solid angle is respectively, 10, 6, 12 and 39 microKelvin in HFI four lowest frequency channel (100--353 GHz) and 13 and 14 kJy/sr for the 545 and 857 GHz channels. Using the 143 GHz channel as a reference, these two high frequency channels are intercalibrated within 5% and the 353 GHz relative calibration is at the percent level. The 100 and 217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50 < l <2500), are intercalibrated at better than 0.2 %.

  3. Performance of annular high frequency thermoacoustic engines

    Science.gov (United States)

    Rodriguez, Ivan A.

    This thesis presents studies of the behavior of miniature annular thermoacoustic prime movers and the imaging of the complex sound fields using PIV inside the small acoustic wave guides when driven by a temperature gradient. Thermoacoustic engines operating in the standing wave mode are limited in their acoustic efficiency by a high degree of irreversibility that is inherent in how they work. Better performance can be achieved by using traveling waves in the thermoacoustic devices. This has led to the development of an annular high frequency thermoacoustic prime mover consisting of a regenerator, which is a random stack in-between a hot and cold heat exchanger, inside an annular waveguide. Miniature devices were developed and studied with operating frequencies in the range of 2-4 kHz. This corresponds to an average ring circumference of 11 cm for the 3 kHz device, the resonator bore being 6 mm. A similar device of 11 mm bore, length of 18 cm was also investigated; its resonant frequency was 2 kHz. Sound intensities as high as 166.8 dB were generated with limited heat input. Sound power was extracted from the annular structure by an impedance-matching side arm. The nature of the acoustic wave generated by heat was investigated using a high speed PIV instrument. Although the acoustic device appears symmetric, its performance is characterized by a broken symmetry and by perturbations that exist in its structure. Effects of these are observed in the PIV imaging; images show axial and radial components. Moreover, PIV studies show effects of streaming and instabilities which affect the devices' acoustic efficiency. The acoustic efficiency is high, being of 40% of Carnot. This type of device shows much promise as a high efficiency energy converter; it can be reduced in size for microcircuit applications.

  4. Verification of anti-fatigue effect of anserine by angle fatigue indicator based on median frequency changes of electromyograms

    Directory of Open Access Journals (Sweden)

    Hirohisa Kishi

    2013-10-01

    Full Text Available ABSTRACT: Objective: Anserine, which is abundant in avian species and in a wide range of fish such as bonito and tuna, is reported to have anti-fatigue effect. Although chicken soup and bonito soup is traditionally used to recover from physical fatigue, it is generally difficult to verify the effect in humans. This study was to directly demonstrate the anti-fatigue effect of oceanic anserine in humans. Methods: Edible-grade anserine was purified from fish extract with food-grade reagents. Subjects were 17 healthy male volunteers (35.5 ± 5 yr., 75.5 ± 5.0 kg. Each subject performed the isometric exercise tolerance test (ETT on the rectus femoris muscle twice (Ex_1, Ex_2 both for anserine and water conditions on a different day. Median frequency changes (MDF during Functional Foods in Health and Disease 2013; 3(10 389-399 ETTs were calculated and regression curves were calculated over a frequency range of 21-214 Hz. The difference, or angle, between the slopes of Ex_1 and Ex_2 MDF regression curves, which corresponds to the degree of fatigue, was defined as an angle fatigue index and compared between anserine and water intake conditions. Results: MDF decreased during ETTs in most patients and the slopes of regression curves were larger in Ex_2 than in Ex_1. Angle fatigue index for water (control was significantly larger than that for anserine (p<0.01, paired t-test, n=17. The result indicates that anserine have an anti-fatigue effect on skeletal muscle in humans. Conclusions: We proposed the angle fatigue index as a touchstone of the muscle fatigue. The index indicates that anserine is effective to reduce the muscle fatigue in humans.

  5. Analysis of Binarized High Frequency Financial Data

    CERN Document Server

    Sazuka, N

    2006-01-01

    A non-trivial probability structure is evident in the binary data extracted from the up/down price movements of very high frequency data such as tick-by-tick data for USD/JPY. In this paper, we analyze the Sony bank USD/JPY rates, ignoring the small deviations from the market price. We then show there is a similar non-trivial probability structure in the Sony bank rate, in spite of the Sony bank rate's having less frequent and larger deviations than tick-by-tick data. However, this probability structure is not found in the data which has been sampled from tick-by-tick data at the same rate as the Sony bank rate. Therefore, the method of generating the Sony bank rate from the market rate has the potential for practical use since the method retains the probability structure as the sampling frequency decreases.

  6. Dry friction damping couple at high frequencies

    Directory of Open Access Journals (Sweden)

    Půst L.

    2014-06-01

    Full Text Available The contribution deals with the application of dry friction couples for noise and vibration damping at high frequency of several kHz what brings new problems connected with the small amplitudes of relative slipping motion of contact surfaces. The most important information from the experimental results is knowledge that the value of evaluated friction coefficient can have different physical sense according to the magnitude of excitation force and to the frequency of applied vibrations. If amplitudes of motion are very small, then the external harmonic force produces only elastic micro-deformations of contacting bodies, where no slip occurs and then the traction contact force is proportional only to elastic deformation of the sample.

  7. Seasonal Variations of Polarization Diversity Gain in a Vegetated Area considering High Elevation Angles and a Nomadic User

    OpenAIRE

    Milan Kvicera; Pavel Pechac

    2015-01-01

    Seasonal variations of the polarization diversity gain are addressed for a nomadic user in a vegetated area taking high elevation angles and nongeostationary satellites into consideration. Corresponding experimental data were obtained at a frequency of 2.0 GHz at Stromovka Park in Prague, the Czech Republic, within the full in-leaf and out-of-leaf periods of 2013 and 2014, respectively. By detecting copolarized and cross-polarized components of the transmitted left- and right-handed circularl...

  8. Flutter Clearance of the F-18 High-angle-of-attack Research Vehicle with Experimental Wingtip Instrumentation Pods

    Science.gov (United States)

    Freudinger, Lawrence C.

    1989-01-01

    An F-18 aircraft was modified with wingtip instrumentation pods for use in NASA's high-angle-of-attack research program. Ground vibration and flight flutter testing were performed to clear an acceptable flight envelope for the aircraft. Flight test utilized atmospheric turbulence for structural excitation; the aircraft displayed no adverse aeroelastic trends within the envelope tested. The data presented in this report include mode shapes from the ground vibration and estimates of frequency and damping as a function of Mach number.

  9. High zenith angle observations of PKS 2155-304 with the MAGIC-I telescope

    Science.gov (United States)

    Aleksić, J.; Alvarez, E. A.; Antonelli, L. A.; Antoranz, P.; Asensio, M.; Backes, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Borla Tridon, D.; Braun, I.; Bretz, T.; Cañellas, A.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Cossio, L.; Covino, S.; Dazzi, F.; De Angelis, A.; De Caneva, G.; De Cea del Pozo, E.; De Lotto, B.; Delgado Mendez, C.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Eisenacher, D.; Elsaesser, D.; Ferenc, D.; Fonseca, M. V.; Font, L.; Fruck, C.; García López, R. J.; Garczarczyk, M.; Garrido, D.; Giavitto, G.; Godinović, N.; Gozzini, S. R.; Hadasch, D.; Häfner, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Jogler, T.; Kellermann, H.; Klepser, S.; Krähenbühl, T.; Krause, J.; Kushida, J.; La Barbera, A.; Lelas, D.; Leonardo, E.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; López, M.; López, R.; López-Oramas, A.; Lorenz, E.; Makariev, M.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Moldón, J.; Moralejo, A.; Munar-Adrover, P.; Niedzwiecki, A.; Nieto, D.; Nilsson, K.; Nowak, N.; Orito, R.; Paiano, S.; Paneque, D.; Paoletti, R.; Pardo, S.; Paredes, J. M.; Partini, S.; Perez-Torres, M. A.; Persic, M.; Peruzzo, L.; Pilia, M.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puerto Gimenez, I.; Puljak, I.; Reichardt, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamatescu, V.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Sun, S.; Surić, T.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Tibolla, O.; Torres, D. F.; Treves, A.; Uellenbeck, M.; Vankov, H.; Vogler, P.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.

    2012-08-01

    Context. The high frequency peaked BL Lac PKS 2155-304 with a redshift of z = 0.116 was discovered in 1997 in the very high energy (VHE, E > 100 GeV) γ-ray range by the University of Durham Mark VI γ-ray Cherenkov telescope in Australia with a flux corresponding to 20% of the Crab Nebula flux. It was later observed and detected with high significance by the southern Cherenkov observatory H.E.S.S. establishing this source as the best studied southern TeV blazar. Detection from the northern hemisphere is difficult due to challenging observation conditions under large zenith angles. In July 2006, the H.E.S.S. collaboration reported an extraordinary outburst of VHE γ-emission. During the outburst, the VHE γ-ray emission was found to be variable on the time scales of minutes and with a mean flux of ~7 times the flux observed from the Crab Nebula. Follow-up observations with the MAGIC-I standalone Cherenkov telescope were triggered by this extraordinary outburst and PKS 2155-304 was observed between 28 July to 2 August 2006 for 15 h at large zenith angles. Aims: We studied the behavior of the source after its extraordinary flare. Furthermore, we developed an analysis method in order to analyze these data taken under large zenith angles. Methods: Here we present an enhanced analysis method for data taken at high zenith angles. We developed improved methods for event selection that led to a better background suppression. Results: The quality of the results presented here is superior to the results presented previously for this data set: detection of the source on a higher significance level and a lower analysis threshold. The averaged energy spectrum we derived has a spectral index of (-3.5 ± 0.2) above 400 GeV, which is in good agreement with the spectral shape measured by H.E.S.S. during the major flare on MJD 53 944. Furthermore, we present the spectral energy distribution modeling of PKS 2155-304. With our observations we increased the duty cycle of the source

  10. Design of high frequency integrated analogue filters

    CERN Document Server

    Sun, Yichuang

    2002-01-01

    This book brings together leading researchers to highlight recent advances and identify promising directions for future development. Motivated by the market for mobile and wireless communications, fully integrated analog filters for high-frequency applications are now receiving great interest world-wide. Chapters are dedicated to MOSFET-C and Gm-C filters, current-mode continuous-time filters, log-domain filters, switched-current filters, adaptive filters and on-chip automatic tuning. The topical nature of the book and caliber of the authors ensures that this book will be of wide interest to t

  11. High frequency ultrasonic mitigation of microbial corrosion

    Science.gov (United States)

    Almahamedh, Hussain H.; Meegan, G. Douglas; Mishra, Brajendra; Olson, David L.; Spear, John R.

    2012-05-01

    Microbiologically Influenced Corrosion (MIC) is a major problem in oil industry facilities, and considerable effort has been spent to mitigate this costly issue. More environmentally benign methods are under consideration as alternatives to biocides, among which are ultrasonic techniques. In this study, a high frequency ultrasonic technique (HFUT) was used as a mitigation method for MIC. The killing percentages of the HFUT were higher than 99.8 percent and their corrosivity on steel was reduced by more than 50 percent. The practice and result will be discussed.

  12. Ion sources for high-frequency accelerators

    International Nuclear Information System (INIS)

    Ion sources are being applied increasingly in many areas of physica snd technology, from basic research in nuclear and atomic physics to energy research, isotope separation, implantation technology, surface processing and analysis all the way to biomedicine. It is impossible within the framework of this discussion to provide a comprehensive survey of the variety of available source types. The function and problems of the types important for high-frequency accelerators are to be explained using a few individual examples in order to stimulate a basic understanding for this technically sophisticated and little-known equipment. The sources discussed here supply single or multiple positively charged ions. 54 refs., 18 figs

  13. Aerodynamic characteristics of general aviation at high angle of attack with the propeller slipstream

    Science.gov (United States)

    Matsuo, N.; Hirano, S.

    1986-01-01

    The aerodynamic characteristics of the FA-300 business aircraft at high angle of attack with the propeller stream are described. The FA-300 offers two types, FA-300-700 for 340 HP, and -710 for 450 Hp of the engine. The effects of the propeller slipstream on the high angle of the attack are discussed.

  14. Determination of mass of an isolated neutron star using gravitational wave at two frequency modes: Effects of misalignment angle

    CERN Document Server

    Eda, Kazunari; Itoh, Yousuke

    2015-01-01

    A mountainous isolated neutron star (NS) would emit gravitational wave (GW) that may be detectable with KAGRA, advanced LIGO, advanced VIRGO, and proposed third generation detectors such as the Einstein telescope. GW emitted by a NS does not propagate freely, but suffers from a NS mass dependent phase shift due to the Coulomb type gravitational field of the NS itself. We have shown that we can determine mass of an isolated NS if we could detect such phase shifts in more than two frequency modes with correlated reference GW phases. Indeed, our Monte Carlo simulations have demonstrated that the mass of a NS with its ellipticity $10^{-6}$ at 1 kpc is typically measurable with precision of $20\\%$ using the Einstein Telescope, if the NS is precessing or has a pinned superfluid core and emits GWs at two frequency modes both detectable. After briefly explaining our idea and results, this paper concerns with the effect of misalignment angle ("wobble angle" in the case of a precessing NS) on the mass measurement preci...

  15. Accurate Angle Estimator for High-Frame-rate 2-D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Lindskov Hansen, Kristoffer;

    2016-01-01

    This paper presents a novel approach for estimating 2-D flow angles using a high-frame-rate ultrasound method. The angle estimator features high accuracy and low standard deviation (SD) over the full 360° range. The method is validated on Field II simulations and phantom measurements using the...... experimental ultrasound scanner SARUS and a flow rig before being tested in vivo. An 8-MHz linear array transducer is used with defocused beam emissions. In the simulations of a spinning disk phantom, a 360° uniform behavior on the angle estimation is observed with a median angle bias of 1.01° and a median...

  16. High voltage beam power source for high frequency heating

    International Nuclear Information System (INIS)

    Recently, the importance of the plasma heating by high frequency electric power has increased in the research and development of nuclear fusion. There are three methods in the plasma heating by high frequency electric power, that is, electron cyclotron heating, lower hybrid resonance frequency heating and ion cyclotron range of frequency heating. In all cases, the vacuum tubes requiring high voltage beam power sources are used as the high frequency electric power generator, and the typical vacuum tubes are a gyrotron in ECH, a Klystron in LHRF and a quadrupole tube in ICRF. The gyrotron is a special millimeter wave vibrating tube, while the other two are amplifying tubes, accordingly, severe specification is imposed on the stability of beam voltage and the protection function against load short circuit of the gyrotron. The typical specifications of beam power sources are shown. The vibrating characteristics of a gyrotron are dependent largely on beam voltage and anode voltage. The beam power source for a gyrotron is the type using commercial power or the output of a flywheel generator on-line, or the type making the constant voltage control of the energy accumulated in a condenser bank and supplying it to a gyrotron. The control of beam voltage and anode voltage in the beam power source for a gyrotron and the protection of a gyrotron are discussed. (Kako, I.)

  17. High-frequency electrodeless discharges in helium

    Energy Technology Data Exchange (ETDEWEB)

    Denisova, N [Institut of Theoretical and Applied Mechanics, Novosibirsk, Russia (Russian Federation); Skudra, A [Institut of Atomic Physics and Spectroscopy, University of Latvia, Raina blvd.19, Riga, Latvia (Latvia)

    2004-11-01

    Modelling of high-frequency electrodeless discharges (HFEDs) in helium is presented. The model combines calculations of electromagnetic field profiles and plasma parameters including kinetics of the excited atomic states. A method of the self-consistent numerical solution for the plasma-field system is proposed. The method takes into account a temporal hierarchy of the kinetic processes in the HFED plasma. A stationary collision-radiative model for helium plasma is developed considering the following equations: (i) the transport equations for the electrons, (ii) the electron energy balance equation, (iii) the population rate equations for balance in the excited states and (iv) the electromagnetic field equations. Discharge properties are investigated in a numerical simulation. The electron density, electron temperature and absorbed power versus gas pressure and external magnetic field amplitude are obtained. The electromagnetic field profiles demonstrate a significant role of the skin effect. The intensities of the lines 587.6 and 728.1 nm are calculated, and are found to be in good agreement with the experimental data. The developed model is used to obtain optimal operation conditions of high-frequency electrodeless helium lamps.

  18. High-Frequency Acoustic Sediment Classification in Shallow Water

    CERN Document Server

    Bentrem, F W; Kalcic, M T; Duncan, M E; Bentrem, Frank W.; Sample, John; Kalcic, Maria T.; Duncan, Michael E.

    2002-01-01

    A geoacoustic inversion technique for high-frequency (12 kHz) multibeam sonar data is presented as a means to classify the seafloor sediment in shallow water (40-300 m). The inversion makes use of backscattered data at a variety of grazing angles to estimate mean grain size. The need for sediment type and the large amounts of multibeam data being collected with the Naval Oceanographic Office's Simrad EM 121A systems, have fostered the development of algorithms to process the EM 121A acoustic backscatter into maps of sediment type. The APL-UW (Applied Physics Laboratory at the University of Washington) backscattering model is used with simulated annealing to invert for six geoacoustic parameters. For the inversion, three of the parameters are constrained according to empirical correlations with mean grain size, which is introduced as an unconstrained parameter. The four unconstrained (free) parameters are mean grain size, sediment volume interaction, and two seafloor roughness parameters. Acoustic sediment cla...

  19. High Tc superconductors at microwave frequencies

    International Nuclear Information System (INIS)

    The author discusses various experiments conducted in the micro- and millimeter wave spectral range on thin film and single crystal specimens of the high temperature oxide superconductors. For high quality film the surface resistance Rs is, except at low temperatures, due to thermally excited carriers, with extrinsic effects playing only a secondary role. Because of the low loss various passive microwave components, such as resonators, delay lines and filters, with performance far superior to those made of normal metals can be fabricated. The conductivity measured at millimeter wave frequencies displays a peak below Tc. Whether this is due to coherence factors or due to the change of the relaxation rate when the materials enter the superconducting state remains to be seen

  20. Flow structure and resistance over subaquaeous high- and low-angle dunes

    Science.gov (United States)

    Kwoll, E.; Venditti, J. G.; Bradley, R. W.; Winter, C.

    2016-03-01

    A prominent control on the flow over subaqueous dunes is the slope of the downstream leeside. While previous work has focused on steep (~30°), asymmetric dunes with permanent flow separation, little is known about dunes with lower lee slope angles for which flow separation is absent or intermittent. Here we present a laboratory investigation where we systematically varied the dune lee slope, holding other geometric parameters and flow hydraulics constant, to explore effects on the turbulent flow field and flow resistance. Three sets of fixed dunes (lee slopes of 10°, 20°, and 30°) were separately installed in a 15 m long and 1 m wide flume and subjected to 0.20 m deep flow. Measurements consisted of high-frequency, vertical profiles collected with a Laser Doppler Velocimeter. We show that the temporal and spatial occurrence of flow separation decreases with dune lee slope. Velocity gradients in the dune leeside depict a free shear layer downstream of the 30° dunes and a weaker shear layer closer to the bed for the 20° and 10° dunes. The decrease in velocity gradients leads to lower magnitude of turbulence production for gentle lee slopes. Aperiodic, strong ejection events dominate the shear layer but decrease in strength and frequency for low-angle dunes. Flow resistance of dunes decreases with lee slope; the transition being nonlinear. Over the 10°, 20°, and 30° dunes, shear stress is 8%, 33%, and 90% greater than a flat bed, respectively. Our results demonstrate that dune lee slope plays an important but often ignored role in flow resistance.

  1. High-frequency behavior of magnetic composites

    International Nuclear Information System (INIS)

    The paper reviews recent progress in the field of microwave magnetic properties of composites. The problem under discussion is developing composites with high microwave permeability that are needed in many applications. The theory of magnetic composites is briefly sketched with the attention paid to the laws governing the magnetic frequency dispersion in magnetic materials and basic mixing rules for composites. Recent experimental reports on the microwave performance of magnetic composites, as well as data on the agreement of the mixing rules with the measured permeability of composites that are available from the literature are discussed. From the data, a conclusion is made that the validity of a mixing rule is determined by the permeability contrast in the composite, i.e., the difference between permeability of inclusions and that of the host matrix. When the contrast is low, the Maxwell Garnet mixing rule is frequently valid. When the contrast is high, which is of the most interest for obtaining high microwave permeability of a composite, no conventionally accepted theory is capable of accurately predicting the permeability of the composites. Therefore, the mixing rules do not allow the microwave properties of magnetic composites to be predicted when the permeability of inclusions is high, that is the case of the most interest. Because of that, general limitations to the microwave performance of composites are of importance. In particular, an important relation constraining the microwave permeability of composites follows from Kittel's theory of ferromagnetic resonance and analytical properties of frequency dependence of permeability. Another constraint concerning the bandwidth of electromagnetic wave absorbers follows from the Kramers-Kronig relations for the reflection coefficient. The constraints are of importance in design and analysis of electromagnetic wave absorbers and other devices that employ the microwave magnetic properties of composites, such as

  2. Efficiency studies of high frequency current drive

    International Nuclear Information System (INIS)

    Pulsed high power free-electron-lasers (FELs) offer new possibilities for the current drive in tokamaks. High intensity FELs apply to the excitation of nonlinear wave-wave processes, such as beat-waves (BW) and stimulated Raman scattering (SRS), in which large phase velocity (vph>>ve) electrostatic modes are generated. These can accelerate resonant electrons to high parallel velocities v||∼vph, which produces a slowly decaying current. Furthermore, the fast electrons with v||>>v are not toroidally trapped into banana orbits. The operation at high frequencies provides for the FEL beam an easy access into the plasma centre. This makes possible to suppress sawtooth activity by profile control and to expand the operational limits in parameter space. Raman and beat-wave methods apply particularly well to bootstrap current seeding, which may considerably enhance the overall current drive efficiency. Both Raman forward (SRS-F) and backward (SRS-B) scattering can be applied to current drive. At high, reactor relevant temperatures SRS-F is the dominant process, because SRS-B is suppressed due to heavy damping of the plasma wave. At temperatures of a few keV, SRS-B dominates because of its short gain length. In this report we shall estimate the current drive efficiency at temperatures relevant for MTX and for a tokamak reactor. We shall also consider the dependence of the efficiency on the peak intensity of FEL in these two cases. (author) 8 refs., 2 figs., 1 tab

  3. High-resolution NMR spectroscopy of biological tissues usingprojected Magic Angle Spinning

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Rachel W.; Jachmann, Rebecca C.; Sakellariou, Dimitris; Nielsen, Ulla Gro; Pines, Alexander

    2005-01-27

    High-resolution NMR spectra of materials subject toanisotropic broadening are usually obtained by rotating the sample aboutthe magic angle, which is 54.7 degrees to the static magnetic field. Inprojected Magic Angle Spinning (p-MAS), the sample is spun about twoangles, neither of which is the magic angle. This provides a method ofobtaining isotropic spectra while spinning at shallow angles. The p-MASexperiment may be used in situations where spinning the sample at themagic angle is not possible due to geometric or other constraints,allowing the choice of spinning angle to be determined by factors such asthe shape of the sample, rather than by the spin physics. The applicationof this technique to bovine tissue samples is demonstrated as a proof ofprinciple for future biological or medical applications.

  4. Plasma effects in high frequency radiative transfer

    International Nuclear Information System (INIS)

    This paper is intended as a survey of collective plasma processes which can affect the transfer of high frequency radiation in a hot dense plasma. We are rapidly approaching an era when this subject will become important in the laboratory. For pedagogical reasons we have chosen to examine plasma processes by relating them to a particular reference plasma which will consist of fully ionized carbon at a temperature kT=1 KeV (1070K) and an electron density N = 3 x 1023cm-3, (which corresponds to a mass density rho = 1 gm/cm3 and an ion density N/sub i/ = 5 x 1022 cm-3). We will consider the transport in such a plasma of photons ranging from 1 eV to 1 KeV in energy. Such photons will probably be frequently used as diagnostic probes of hot dense laboratory plasmas

  5. High-frequency charged particle accelerator

    International Nuclear Information System (INIS)

    The device is refered to technical physics and may be used as a source of accelerated particles for irradiation of different objects in industry and agriculture. The device is aimed at increase of the power and enhancement of stability of the accelerator operation and decrease of its dimensions. High-frequency accelerator is composed of an accelerating cavity resonator a charged particle source and HF power supply. The aim is attained by the fact, that HF power source anode is made as one of coupling capasitor plates, the second plate of which is the nearest to anode HF power supply grid. The coupling capacitor plalte functional union with the HF power supply electrodes (anode and grid) reduces to spirious inductances of HF power supply circuit to minimum. Besides, the accelerator structure is simplified, as additional cooling system for the charged particle source is not necessary

  6. High frequency oscillators for chaotic radar

    Science.gov (United States)

    Beal, A. N.; Blakely, J. N.; Corron, N. J.; Dean, R. N.

    2016-05-01

    This work focuses on implementing a class of exactly solvable chaotic oscillators at speeds that allow real world radar applications. The implementation of a chaotic radar using a solvable system has many advantages due to the generation of aperiodic, random-like waveforms with an analytic representation. These advantages include high range resolution, no range ambiguity, and spread spectrum characteristics. These systems allow for optimal detection of a noise-like signal by the means of a linear matched filter using simple and inexpensive methods. This paper outlines the use of exactly solvable chaos in ranging systems, while addressing electronic design issues related to the frequency dependence of the system's stretching function introduced by the use of negative impedance converters (NICs).

  7. Inline high frequency ultrasonic particle sizer

    Science.gov (United States)

    Lefebvre, F.; Petit, J.; Nassar, G.; Debreyne, P.; Delaplace, G.; Nongaillard, B.

    2013-07-01

    This paper reports the development of a new method of particle sizing in a liquid. This method uses high frequency focused ultrasounds to detect particles crossing the focal zone of an ultrasonic sensor and to determine their size distribution by processing the reflected echoes. The major advantage of this technique compared to optical sizing methods is its ability to measure the size of particles suspended in an opaque liquid without any dedicated sample preparation. Validations of ultrasonic measurements were achieved on suspensions of polymethyl methacrylate beads in a size range extending from a few micrometer to several hundred micrometer with a temporal resolution of 1 s. The inline detection of aggregate formation was also demonstrated.

  8. Plant Responses to High Frequency Electromagnetic Fields

    Science.gov (United States)

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  9. The influence of erupting lateral teeth on maxillary anterior crowding in two Angle Class I maloclussion cases with high and low angles

    OpenAIRE

    Hiroshi Ueda; Morio Masunaga; Cynthia Concepcion; Kazuo Tanne

    2016-01-01

    Two cases of anterior crowding, both Skeletal Class I and Angle Class I maloclussion, one being low angle and the other high angle respectively, respectively, were treated and evaluated to ascertain whether or not there is a relationship among disproportionate mesial axial angulation of the maxillary lateral teeth and the Frankfurt Horizontal-Functional Occlusal plane, therefore generating maxillary anterior crowding. Both cases were Japanese boys, the first one aged 9 years 10 months with ch...

  10. High-frequency and low-frequency effects on vibrational resonance in a synthetic gene network

    International Nuclear Information System (INIS)

    The high-frequency and low-frequency effects on vibrational resonance (VR) in a synthetic gene network are studied. Results show that the role of the high-frequency signal in VR acts as that of noise in stochastic resonance (SR), namely a high-frequency signal can change the effective value of the control parameter such that the random state–state transitions of the switch can happen. A low-frequency signal with lower frequency and higher amplitude tends to favor the response of the system. When VR occurs, the ratio of the optimal amplitude (Bopt) to the corresponding frequency (Ω) of the high-frequency signal is a definite constant. Furthermore, if noise is introduced into the system, noise plays a suppressive role for VR, and various resonance phenomena including the bell-shaped VR and VR without tuning are exhibited in the system

  11. Angle identification for random projections of high-energy-rotating-object CT

    International Nuclear Information System (INIS)

    An angle identification method for random projections of high-energy-rotating-object CT (HeroCT) is presented. By using nano-second or micro-second flash X-ray, a series of instant projections transmitting a high-energy-rotating-object can be obtained. In case of no way to make synchronizing between the flash and the rotating, one has to identify the angle of all the random projections on the Sinogram before doing CT image reconstruction. A computer simulation for angle identification is described

  12. Sheath impedance effects in very high frequency plasma experiments

    International Nuclear Information System (INIS)

    The frequency dependence (13.56 MHz to 70 MHz) of the ion energy distribution at the ground electrode was measured by mass spectrometry in a symmetrical capacitive argon discharge. Reduced sheath impedance at Very High Frequency allows high levels of plasma power and substrate ion flux whilst maintaining low levels of ion energy and electrode voltage. The lower limit of ion bombardment energy is fixed by the sheath floating potential at high frequency, in contrast to low frequencies where only the rf voltage amplitude is determinant. The capacitive sheaths are thinner at high frequencies which accentuates the high frequency reduction in sheath impedance. It is argued that the frequency dependence of sheath impedance is responsible for the principal characteristics of Very High Frequency plasmas. The measurements are summarised by simple physical descriptions and compared with a Particle-In-Cell simulation. (author) figs., tabs., refs

  13. Reversible tobramycin-induced bilateral high-frequency vestibular toxicity.

    Science.gov (United States)

    Walsh, R M; Bath, A P; Bance, M L

    2000-01-01

    We report an unusual case of tobramycin-induced bilateral high-frequency vestibular toxicity with subsequent clinical and objective evidence of functional recovery. In those patients with a clinical presentation suggestive of aminoglycoside-induced bilateral vestibular toxicity (ataxia and oscillopsia) and normal low-frequency (ENG-caloric) responses, high-frequency rotation chair testing should be performed to exclude a high-frequency vestibular deficit. PMID:10810261

  14. Low Frequency Error Analysis and Calibration for High-Resolution Optical Satellite's Uncontrolled Geometric Positioning

    Science.gov (United States)

    Wang, Mi; Fang, Chengcheng; Yang, Bo; Cheng, Yufeng

    2016-06-01

    The low frequency error is a key factor which has affected uncontrolled geometry processing accuracy of the high-resolution optical image. To guarantee the geometric quality of imagery, this paper presents an on-orbit calibration method for the low frequency error based on geometric calibration field. Firstly, we introduce the overall flow of low frequency error on-orbit analysis and calibration, which includes optical axis angle variation detection of star sensor, relative calibration among star sensors, multi-star sensor information fusion, low frequency error model construction and verification. Secondly, we use optical axis angle change detection method to analyze the law of low frequency error variation. Thirdly, we respectively use the method of relative calibration and information fusion among star sensors to realize the datum unity and high precision attitude output. Finally, we realize the low frequency error model construction and optimal estimation of model parameters based on DEM/DOM of geometric calibration field. To evaluate the performance of the proposed calibration method, a certain type satellite's real data is used. Test results demonstrate that the calibration model in this paper can well describe the law of the low frequency error variation. The uncontrolled geometric positioning accuracy of the high-resolution optical image in the WGS-84 Coordinate Systems is obviously improved after the step-wise calibration.

  15. High permeability-high frequency stable MnZn ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Kalarus, J. [Ferroxcube Polska, 96-100 Skierniewice (Poland); Kogias, G., E-mail: kogias@cperi.certh.gr [Centre for Research and Technology-Hellas, Chemical Process Engineering Research Institute, Laboratory of Inorganic Materials, 57001 Thessaloniki (Greece); Aristotle University of Thessaloniki, Department of Chemical Engineering, Laboratory of Materials Technology, 54124 Thessaloniki (Greece); Holz, D. [Ferroxcube Polska, 96-100 Skierniewice (Poland); Zaspalis, V.T. [Centre for Research and Technology-Hellas, Chemical Process Engineering Research Institute, Laboratory of Inorganic Materials, 57001 Thessaloniki (Greece); Aristotle University of Thessaloniki, Department of Chemical Engineering, Laboratory of Materials Technology, 54124 Thessaloniki (Greece)

    2012-09-15

    Modern MnZn ferrite applications require high magnetic initial permeability and exceptional frequency stability; the former implies large grains, while the latter high grain boundary resistivity. In this article the optimization of the final firing process is described for achieving both. The optimization is based on the homogeneous dissolution of dopants under oxidative conditions and their subsequent precipitation along grain boundaries. This was accomplished by integrating isothermal plateaus at the upper stadia of the cooling stage of the final firing process. MnZn ferrites of the basic composition [Mn{sub 0.47}Zn{sub 0.47}Fe{sub 0.06}{sup 2+}]Fe{sub 2}{sup 3+}O{sub 4} were synthesized with initial permeability (measured at f=10 kHz, B<0.1 mT, T=25 Degree-Sign C) 12,600 and losses, expressed as tan({delta})/{mu}{sub i}, of 3.1 Multiplication-Sign 10{sup -6} at 10 kHz and 20.5 Multiplication-Sign 10{sup -6} at 100 kHz (B<0.1 mT, T=25 Degree-Sign C), that reflect good frequency stability. These results could be reproduced in pilot production scale. - Highlights: Black-Right-Pointing-Pointer Optimization of sintering is described for achieving high initial permeability. Black-Right-Pointing-Pointer Optimization of sintering is described for receiving frequency stability. Black-Right-Pointing-Pointer For high permeability, high densities and large grain sizes are required. Black-Right-Pointing-Pointer The achieved initial permeability is higher than 12,500. Black-Right-Pointing-Pointer The losses, tan({delta})/{mu}{sub i}, are 3.1 Multiplication-Sign 10{sup -6} at 10 kHz and 20.5 Multiplication-Sign 10{sup -6} at 100 kHz.

  16. Delayed detached eddy simulations of fighter aircraft at high angle of attack

    Science.gov (United States)

    Xu, Guoliang; Jiang, Xiong; Liu, Gang

    2016-08-01

    The massively separated flows over a realistic aircraft configuration at 40°, 50°, and 60° angles of attack are studied using the delayed detached eddy simulation (DDES). The calculations are carried out at experimental conditions corresponding to a mean aerodynamic chord-based Reynolds number of 8.93× 105 and Mach number of 0.088. The influence of the grid size is investigated using two grids, 20.0× 106 cells and 31.0× 106 cells. At the selected conditions, the lift, drag, and pitching moment from DDES predictions agree with the experimental data better than that from the Reynolds-averaged Navier-Stokes. The effect of angle of attack on the flow structure over the general aircraft is also studied, and it is found that the dominated frequency associated with the vortex shedding process decreases with increasing angle of attack.

  17. Active noise control for high frequencies

    OpenAIRE

    Kaymak, E; Atherton, MA; Rotter, KRG; Millar, B.

    2006-01-01

    There are many applications that can benefit from Active Noise Control (ANC) such as in aircraft cabins and air conditioning ducts, i.e. in situations where technology interferes with human hearing in a harmful way or disrupts communication. Headsets with analogue ANC circuits have been used in the armed forces for attenuating frequencies below 1 kHz, which when combined with passive filtering offers protection across the whole frequency range of human hearing. A dental surgery is also a nois...

  18. The high frequency fatigue behavior of continuous-fiber-reinforced ceramic matrix composites

    Science.gov (United States)

    Chawla, Nikhilesh

    Many potential applications for continuous fiber ceramic matrix composites (CFCMCs), such as gas turbines and heat exchangers, will involve high frequency cyclic loading (75 Hz or higher). While most of the work in the area of fatigue of CFCMCs has concentrated on low frequency behavior, it has been shown that fatigue at high frequencies can exacerbate the accumulation of microstructural damage and significantly decrease fatigue life. "Soft" matrix composites with strong interface bonding provided superior resistance to high frequency fatigue damage. Nicalon/SiCON composites with strong interfacial bonding between the fibers and matrix exhibited very little internal heating during high frequency fatigue loading. This composite system exhibited excellent fatigue life, with fatigue runout at 10sp7 cycles occurring for stresses close to 80% of the ultimate strength (at a loading frequency of 100 Hz). Thick fiber coatings may be more effective in reducing the amount of fiber wear and damage which occur during high frequency fatigue. More effective lubrication at the fiber/matrix interface was achieved with thicker carbon coatings in Nicalon/C/SiC composites subjected to high frequency fatigue loading. Composites with thicker coatings exhibited substantially lower frictional heating and had much higher fatigue lives. The effect of laminate stacking sequence had a significant effect on the high frequency fatigue behavior of CFCMCs. In SCS-6/Sisb3Nsb4 composites, frictional heating in angle-ply laminates (±45) was substantially higher than that in cross-ply laminates (0/90). Since the angle-ply had a lower stiffness, matrix microcracking in this composite was more predominant. Finally, preliminary fatigue damage mechanism maps for CFCMCs were developed. These maps provided a means to identify which fatigue mechanisms were operating at a given stress level and number of cycles.

  19. Power Supply for Variable Frequency Induction Heating Using MERS Soft-Switching High Frequency Inverter

    Science.gov (United States)

    Isobe, Takanori; Kitahara, Tadayuki; Fukutani, Kazuhiko; Shimada, Ryuichi

    Variable frequency induction heating has great potential for industrial heating applications due to the possibility of achieving heating distribution control; however, large-scale induction heating with variable frequency has not yet been introduced for practical use. This paper proposes a high frequency soft-switching inverter for induction heating that can achieve variable frequency operation. One challenge of variable frequency induction heating is increasing power electronics ratings. This paper indicates that its current source type dc-link configuration and soft-switching characteristics can make it possible to build a large-scale system with variable frequency capability. A 90-kVA 150-1000Hz variable frequency experimental power supply for steel strip induction heating was developed. Experiments confirmed the feasibility of variable frequency induction heating with proposed converter and the advantages of variable frequency operation.

  20. Calculation of Leakage Inductance for High Frequency Transformers

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Jun, Zhang; Hurley, William Gerard

    2015-01-01

    Frequency dependent leakage inductance is often observed. High frequency eddy current effects cause a reduction in leakage inductance. The proximity effect between adjacent layers is responsible for the reduction of leakage inductance. This paper gives a detailed analysis of high frequency leakag...

  1. High Performance of Space Vector Modulation Direct Torque Control SVM-DTC Based on Amplitude Voltage and Stator Flux Angle

    Directory of Open Access Journals (Sweden)

    Hassan Farhan Rashag

    2013-04-01

    Full Text Available Various aspects related to controlling induction motor are investigated. Direct torque control is an original high performance control strategy in the field of AC drive. In this proposed method, the control system is based on Space Vector Modulation (SVM, amplitude of voltage in direct- quadrature reference frame (d-q reference and angle of stator flux. Amplitude of stator voltage is controlled by PI torque and PI flux controller. The stator flux angle is adjusted by rotor angular frequency and slip angular frequency. Then, the reference torque and the estimated torque is applied to the input of PI torque controller and the control quadrature axis voltage is determined. The control d-axis voltage is determined from the flux calculator. These q and d axis voltage are converted into amplitude voltage. By applying polar to Cartesian on amplitude voltage and stator flux angle, direct voltage and quadratures voltage are generated. The reference stator voltages in d-q are calculated based on forcing the stator voltage error to zero at next sampling period. By applying inverse park transformation on d-q voltages, the stator voltages in &alpha and &beta frame are generated and apply to SVM. From the output of SVM, the motor control signal is generated and the speed of the induction motor regulated toward the rated speed. The simulation Results have demonstrated exceptional performance in steady and transient states and shows that decrease of torque and flux ripples is achieved in a complete speed range.

  2. Simulation study of high-frequency energetic particle driven geodesic acoustic mode

    International Nuclear Information System (INIS)

    High-frequency energetic particle driven geodesic acoustic modes (EGAM) observed in the large helical device plasmas are investigated using a hybrid simulation code for energetic particles and magnetohydrodynamics (MHD). Energetic particle inertia is incorporated in the MHD momentum equation for the simulation where the beam ion density is comparable to the bulk plasma density. Bump-on-tail type beam ion velocity distribution created by slowing down and charge exchange is considered. It is demonstrated that EGAMs have frequencies higher than the geodesic acoustic modes and the dependence on bulk plasma temperature is weak if (1) energetic particle density is comparable to the bulk plasma density and (2) charge exchange time (τcx) is sufficiently shorter than the slowing down time (τs) to create a bump-on-tail type distribution. The frequency of high-frequency EGAM rises as the energetic particle pressure increases under the condition of high energetic particle pressure. The frequency also increases as the energetic particle pitch angle distribution shifts to higher transit frequency. It is found that there are two kinds of particles resonant with EGAM: (1) trapped particles and (2) passing particles with transit frequency close to the mode frequency. The EGAMs investigated in this work are destabilized primarily by the passing particles whose transit frequencies are close to the EGAM frequency

  3. Simulation study of high-frequency energetic particle driven geodesic acoustic mode

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao, E-mail: wanghao@nifs.ac.jp; Ido, Takeshi; Osakabe, Masaki [National Institute for Fusion Science, Toki 509-5292 (Japan); Todo, Yasushi [National Institute for Fusion Science, Toki 509-5292 (Japan); The Graduate University for Advanced Studies, Toki 509-5292 (Japan)

    2015-09-15

    High-frequency energetic particle driven geodesic acoustic modes (EGAM) observed in the large helical device plasmas are investigated using a hybrid simulation code for energetic particles and magnetohydrodynamics (MHD). Energetic particle inertia is incorporated in the MHD momentum equation for the simulation where the beam ion density is comparable to the bulk plasma density. Bump-on-tail type beam ion velocity distribution created by slowing down and charge exchange is considered. It is demonstrated that EGAMs have frequencies higher than the geodesic acoustic modes and the dependence on bulk plasma temperature is weak if (1) energetic particle density is comparable to the bulk plasma density and (2) charge exchange time (τ{sub cx}) is sufficiently shorter than the slowing down time (τ{sub s}) to create a bump-on-tail type distribution. The frequency of high-frequency EGAM rises as the energetic particle pressure increases under the condition of high energetic particle pressure. The frequency also increases as the energetic particle pitch angle distribution shifts to higher transit frequency. It is found that there are two kinds of particles resonant with EGAM: (1) trapped particles and (2) passing particles with transit frequency close to the mode frequency. The EGAMs investigated in this work are destabilized primarily by the passing particles whose transit frequencies are close to the EGAM frequency.

  4. Development and characterization of high-frequency resonance-enhanced microjet actuators for control of high-speed jets

    Science.gov (United States)

    Upadhyay, Puja; Gustavsson, Jonas P. R.; Alvi, Farrukh S.

    2016-05-01

    For flow control applications requiring high-frequency excitation, very few actuators have sufficient dynamic response and/or control authority to be useful in high-speed flows. Due to this reason, experiments involving high-frequency excitation, attempted in the past, have been limited to either low-frequency actuation with reasonable control authority or moderate-frequency actuation with limited control authority. The current work expands on the previous development of the resonance-enhanced microactuators to design actuators that are capable of producing high-amplitude pulses at much higher frequencies [O (10 kHz)]. Using lumped element modeling, two actuators have been designed with nominal frequencies of 20 and 50 kHz. Extensive benchtop characterization using acoustic measurements as well as optical diagnostics using a high-resolution micro-schlieren setup is employed to characterize the dynamic response of these actuators. The actuators performed at a range of frequencies, 20.3-27.8 and 54.8-78.2 kHz, respectively. In addition to providing information on the actuator flow physics and performance at various operating conditions, this study serves to develop easy-to-integrate high-frequency actuators for active control of high-speed jets. Preliminary testing of these actuators is performed by implementing the 20-kHz actuator on a Mach 0.9 free jet flow field for noise reduction. Acoustic measurements in the jet near field demonstrate attenuation of radiated noise at all observation angles.

  5. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    Science.gov (United States)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  6. An inkjet vision measurement technique for high-frequency jetting

    International Nuclear Information System (INIS)

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance

  7. Devices and process for high-pressure magic angle spinning nuclear magnetic resonance

    Science.gov (United States)

    Hoyt, David W; Sears, Jr., Jesse A; Turcu, Romulus V.F.; Rosso, Kevin M; Hu, Jian Zhi

    2014-04-08

    A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

  8. Recent developments in high-frequency scattering

    International Nuclear Information System (INIS)

    Recent applications of the complex angular momentum theory of Mie scattering are reviewed: (i) very accurate asymptotic expansions for the average Mie cross sections for extinction, absorption and radiation pressure, averaged over a small range of size dispersion, have been obtained; (ii) forward optical glory effects have been predicted; (iii) A new diffraction effect, critical scattering, that takes place in the transition region around the critical scattering angle, has been treated, yielding results in good agreement with the exact Mie values. An overview of the major diffraction effects found in Mie scattering is also given. (Author)

  9. Evolution of Very High Frequency Power Supplies

    DEFF Research Database (Denmark)

    Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter;

    2013-01-01

    The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits used...

  10. Implementation of Low Frequency Ac to High Frequency Ac with Single Stage Zvs-Pwm Inverter

    OpenAIRE

    S. Arumugam S. Ramareddy M. Sridhar

    2011-01-01

    This paper presents a novel soft-switching pulse width modulation (PWM) utility frequency AC to high frequency (HF) AC power conversion circuit incorporating boost-active clamp single stage inverter topology. This power converter is more suitable and acceptable for cost effective HF consumer induction heating applications. Its operating principle is presented. The operating performances of this high frequency inverter using the latest insulated gate bipolar transistors are illustrated, which ...

  11. Planck 2013 results. VI. High Frequency Instrument data processing

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.;

    2013-01-01

    , and 857 GHz with an angular resolution ranging from 9.07 to 4.06. The detector noise per (effective) beam solid angle is respectively,10, 6 , 12, and 39 µK in the four lowest HFI frequency channels (100-353 GHz) and 13 and 14 kJy sr-1 in the 545 and 857 GHz channels. Relativeto the 143 GHz channel...

  12. Low velocity target detection based on time-frequency image for high frequency ground wave radar

    Institute of Scientific and Technical Information of China (English)

    YAN Songhua; WU Shicai; WEN Biyang

    2007-01-01

    The Doppler spectral broadening resulted from non-stationary movement of target and radio-frequency interference will decrease the veracity of target detection by high frequency ground wave(HEGW)radar.By displaying the change of signal energy on two dimensional time-frequency images based on time-frequency analysis,a new mathematical morphology method to distinguish target from nonlinear time-frequency curves is presented.The analyzed results from the measured data verify that with this new method the target can be detected correctly from wide Doppler spectrum.

  13. High-frequency homogenization of zero frequency stop band photonic and phononic crystals

    CERN Document Server

    Antonakakis, Tryfon; Guenneau, Sebastien

    2013-01-01

    We present an accurate methodology for representing the physics of waves, for periodic structures, through effective properties for a replacement bulk medium: This is valid even for media with zero frequency stop-bands and where high frequency phenomena dominate. Since the work of Lord Rayleigh in 1892, low frequency (or quasi-static) behaviour has been neatly encapsulated in effective anisotropic media. However such classical homogenization theories break down in the high-frequency or stop band regime. Higher frequency phenomena are of significant importance in photonics (transverse magnetic waves propagating in infinite conducting parallel fibers), phononics (anti-plane shear waves propagating in isotropic elastic materials with inclusions), and platonics (flexural waves propagating in thin-elastic plates with holes). Fortunately, the recently proposed high-frequency homogenization (HFH) theory is only constrained by the knowledge of standing waves in order to asymptotically reconstruct dispersion curves an...

  14. Anomalous waiting times in high-frequency financial data

    CERN Document Server

    Scalas, E; Luckock, H; Mainardi, F; Mantelli, M; Raberto, M; Scalas, Enrico; Gorenflo, Rudolf; Luckock, Hugh; Mainardi, Francesco; Mantelli, Maurizio; Raberto, Marco

    2004-01-01

    In high-frequency financial data not only returns, but also waiting times between consecutive trades are random variables. Therefore, it is possible to apply continuous-time random walks (CTRWs) as phenomenological models of the high-frequency price dynamics. An empirical analysis performed on the 30 DJIA stocks shows that the waiting-time survival probability for high-frequency data is non-exponential. This fact imposes constraints on agent-based models of financial markets.

  15. Free-field calibration of measurement microphones at high frequencies

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Rasmussen, Knud; Torras Rosell, Antoni;

    2011-01-01

    Measurement microphones are typically calibrated in a free field at frequencies up to 50 kHz. This is a sufficiently high frequency for the most of sound measurement applications related with noise assessment. However, other applications such as assessment of the noise emitted by ultrasound...... cleaning machines, and fail detection in aeronautic structures require that the sensitivity of the microphone is known at frequencies up to 150 kHz. Such a high frequency can only be reached using small measurement microphones with very low sensitivity. Thus, in order to extend the frequency range of free...

  16. Phoneme categorization relying solely on high-frequency energy

    Science.gov (United States)

    Vitela, A. Davi; Monson, Brian B.; Lotto, Andrew J.

    2015-01-01

    Speech perception studies generally focus on the acoustic information present in the frequency regions below 6 kHz. Recent evidence suggests that there is perceptually relevant information in the higher frequencies, including information affecting speech intelligibility. This experiment examined whether listeners are able to accurately identify a subset of vowels and consonants in CV-context when only high-frequency (above 5 kHz) acoustic information is available (through high-pass filtering and masking of lower frequency energy). The findings reveal that listeners are capable of extracting information from these higher frequency regions to accurately identify certain consonants and vowels. PMID:25618101

  17. Phoneme categorization relying solely on high-frequency energy.

    Science.gov (United States)

    Vitela, A Davi; Monson, Brian B; Lotto, Andrew J

    2015-01-01

    Speech perception studies generally focus on the acoustic information present in the frequency regions below 6 kHz. Recent evidence suggests that there is perceptually relevant information in the higher frequencies, including information affecting speech intelligibility. This experiment examined whether listeners are able to accurately identify a subset of vowels and consonants in CV-context when only high-frequency (above 5 kHz) acoustic information is available (through high-pass filtering and masking of lower frequency energy). The findings reveal that listeners are capable of extracting information from these higher frequency regions to accurately identify certain consonants and vowels. PMID:25618101

  18. Effects of interelectrode gap on high frequency and very high frequency capacitively coupled plasmas

    International Nuclear Information System (INIS)

    Capacitively coupled plasma (CCP) discharges using high frequency (HF) and very high frequency (VHF) sources are widely used for dielectric etching in the semiconductor industry. A two-dimensional fluid plasma model is used to investigate the effects of interelectrode gap on plasma spatial characteristics of both HF and VHF CCPs. The plasma model includes the full set of Maxwell's equations in their potential formulation. The peak in plasma density is close to the electrode edge at 13.5 MHz for a small interelectrode gap. This is due to electric field enhancement at the electrode edge. As the gap is increased, the plasma produced at the electrode edge diffuses to the chamber center and the plasma becomes more uniform. At 180 MHz, where electromagnetic standing wave effects are strong, the plasma density peaks at the chamber center at large interelectrode gap. As the interelectrode gap is decreased, the electron density increases near the electrode edge due to inductive heating and electrostatic electron heating, which makes the plasma more uniform in the interelectrode region.

  19. Optical Transmitter Terminal for Selective RF High Frequency Bans Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposal work is to investigate the highly innovative conceptual design of an optical communication selective frequency transmitter terminal...

  20. A high frequency resonance gravity gradiometer

    Energy Technology Data Exchange (ETDEWEB)

    Bagaev, S. N.; Kvashnin, N. L.; Skvortsov, M. N. [Laser Physics Institute SB RAS, Novosibirsc (Russian Federation); Bezrukov, L. B.; Krysanov, V. A. [Institute of Nuclear Physics RAS, Moscow (Russian Federation); Oreshkin, S. I.; Motylev, A. M.; Popov, S. M.; Samoilenko, A. A.; Yudin, I. S. [Lomonosov MSU, Sternberg Astronomical Institute, Moscow (Russian Federation); Rudenko, V. N. [Institute of Nuclear Physics RAS, Moscow (Russian Federation); Lomonosov MSU, Sternberg Astronomical Institute, Moscow (Russian Federation)

    2014-06-15

    A new setup OGRAN—the large scale opto-acoustical gravitational detector is described. As distinguished from known gravitational bar detectors it uses the optical interferometrical readout for registering weak variations of gravity gradient at the kilohetz frequency region. At room temperature, its sensitivity is limited only by the bar Brownian noise at the bandwidth close to 100 Hz. It is destined for a search for rare events—gravitational pulses coincident with signals of neutrino scintillator (BUST) in the deep underground of Baksan Neutrino Observatory of INR RAS.

  1. The influence of erupting lateral teeth on maxillary anterior crowding in two Angle Class I maloclussion cases with high and low angles

    Directory of Open Access Journals (Sweden)

    Hiroshi Ueda

    2016-01-01

    Full Text Available Two cases of anterior crowding, both Skeletal Class I and Angle Class I maloclussion, one being low angle and the other high angle respectively, respectively, were treated and evaluated to ascertain whether or not there is a relationship among disproportionate mesial axial angulation of the maxillary lateral teeth and the Frankfurt Horizontal-Functional Occlusal plane, therefore generating maxillary anterior crowding. Both cases were Japanese boys, the first one aged 9 years 10 months with chief complaint being anterior crowding and the second case aged 7 years and 8 months complaining of inadequate space for satisfying canine eruption. During and after the second stage of orthodontic treatment on both cases, several radiographic analysis were performed to assess treatment progress and retention; from these radiographs, it was noticed among other findings that in the high-angle case, the axial angulations of the maxillary lateral incisors were markedly smaller than in the low-angle case, thus indicating mesial tipping in the upper dental arch. This decreased mesial axial angulation of the lateral teeth observed at high angles may potentially cause maxillary space deficiency.

  2. Time and angle resolved photoemission spectroscopy using femtosecond visible and high-harmonic light

    Energy Technology Data Exchange (ETDEWEB)

    Mathias, S; Deicke, F; Ruffing, A; Aeschlimann, M [Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern (Germany); Wiesenmayer, M; Bauer, M [Institut fuer experimentelle und angewandte Physik, Christian-Albrechts Universitaet zu Kiel, 24118 Kiel (Germany); Miaja-Avila, L; Murnane, M M; Kapteyn, H C, E-mail: SMathias@gmx.d [JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440 (United States)

    2009-02-01

    The angle resolved photoelectron spectroscopy (ARPES) has emerged as a leading technique in identifying static key properties of complex systems such as the electronic band structure of adsorbed molecules, ultrathin quantum-well films or high temperature superconductors. We efficiently combined ARPES by using a two-dimensional analyzer for parallel energy (E) and momentum (k{sub ||}) detection with femtosecond time-resolved spectroscopies. Using time and angle resolved two photon photoemission (2PPE) with visible light pulses, the hot electron dynamics in complex electronic structures are directly accessible by means of angle resolved hot electron lifetime mapping. Furthermore, femtosecond ARPES spectra recorded with high harmonic generation (HHG) light pulses are presented, showing the potential of this technique for future investigations of surface dynamics and photo-induced phase transition processes.

  3. Research on the Command of a Single-Phase Frequency Converter at High Frequencies

    OpenAIRE

    Ioan Ruja; Constantin Marta; Florin Brabăn

    2013-01-01

    The present paper forwards several results obtained during the study of the induction heating installations of metallic materials at high frequencies [1]. It details aspects related to the command of a monophase (half-bridge) inverter with PWM signals (Pulse-With-Modulation). The command of the MOS transistors is done with frequencies ranging between [0÷400] KHz and modulation factor variable within the [0−1] range. The possibility to modify the command frequency of the inve...

  4. Calibration of High Frequency MEMS Microphones

    Science.gov (United States)

    Shams, Qamar A.; Humphreys, William M.; Bartram, Scott M.; Zuckewar, Allan J.

    2007-01-01

    Understanding and controlling aircraft noise is one of the major research topics of the NASA Fundamental Aeronautics Program. One of the measurement technologies used to acquire noise data is the microphone directional array (DA). Traditional direction array hardware, consisting of commercially available condenser microphones and preamplifiers can be too expensive and their installation in hard-walled wind tunnel test sections too complicated. An emerging micro-machining technology coupled with the latest cutting edge technologies for smaller and faster systems have opened the way for development of MEMS microphones. The MEMS microphone devices are available in the market but suffer from certain important shortcomings. Based on early experiments with array prototypes, it has been found that both the bandwidth and the sound pressure level dynamic range of the microphones should be increased significantly to improve the performance and flexibility of the overall array. Thus, in collaboration with an outside MEMS design vendor, NASA Langley modified commercially available MEMS microphone as shown in Figure 1 to meet the new requirements. Coupled with the design of the enhanced MEMS microphones was the development of a new calibration method for simultaneously obtaining the sensitivity and phase response of the devices over their entire broadband frequency range. Over the years, several methods have been used for microphone calibration. Some of the common methods of microphone calibration are Coupler (Reciprocity, Substitution, and Simultaneous), Pistonphone, Electrostatic actuator, and Free-field calibration (Reciprocity, Substitution, and Simultaneous). Traditionally, electrostatic actuators (EA) have been used to characterize air-condenser microphones for wideband frequency ranges; however, MEMS microphones are not adaptable to the EA method due to their construction and very small diaphragm size. Hence a substitution-based, free-field method was developed to

  5. Leaky-mode waveguide modulators with high deflection angle for use in holographic video displays.

    Science.gov (United States)

    Qaderi, Kamran; Smalley, Daniel E

    2016-09-01

    Film display holograms typically diffract light over a wide enough view-angle to be viewed, directly, without intervening optics. However, all holographic video displays (with the exception of eye-tracked systems) must use optics beyond the hologram surface to overcome the challenges of small display extent and low diffraction angle by using some form of demagnification and derotation (i.e. angle magnification and optical multiplexing). We report a leaky mode waveguide spatial light modulator with sufficiently high angular diffraction to obviate the need for demagnification in scanned aperture systems. This high angle was achieved by performing a number of experiments to determine the depth of the annealed, proton-exchanged waveguide which corresponded to a maximized diffracted angle. Diffraction sweeps were recorded in excess of 19.5° (corresponding to only 70 MHz of input bandwidth) for 632.8 nm light which is above the 15° required for direct view display. Device geometries are proposed which might achieve greater than 20° of total angular sweep for red, green, and blue light. PMID:27607687

  6. SINGLE PHASE HIGH FREQUENCY AC CONVERTER FOR INDUCTION HEATING APPLICATION

    Directory of Open Access Journals (Sweden)

    M.A INAYATHULLAAH,

    2010-12-01

    Full Text Available The proposed topology reduces the total harmonic distortion (THD of a high frequency AC/AC Converter well below the acceptable limit. This paper deals with a novel single phase AC/DC/AC soft switching utility frequency AC to high frequency AC converter. In this paper a single phase full bridge inverter with Vienna rectifier as front end is used instead of conventional diode bridge rectifier to provide continuous sinusoidal input current with nearly unity power factor at the source side with extremely low distortion.. This power converter is more suitable and acceptable for cost effective high frequency (HF consumer induction heating applications.

  7. Oscillations of the Boundary Layer and High-frequency QPOs

    Directory of Open Access Journals (Sweden)

    Blinova A. A.

    2014-01-01

    Full Text Available We observed persistent high-frequency oscillations of the boundary layer near an accreting, weakly-magnetized star in global 3D MHD simulations. The tilted dipole magnetic field is not strong enough to open a gap between the star and the disk. Instead, it forms a highly-wrapped azimuthal field near the surface of the star which slows down rotation of the disk matter, while a small tilt of the field excites oscillations of the boundary layer with a frequency below the Keplerian frequency. This mechanism may be responsible for the high-frequency oscillations in accreting neutron stars, white dwarfs and classical T Tauri stars.

  8. High power single-frequency Innoslab amplifier.

    Science.gov (United States)

    Han, Ke-Zhen; Ning, Jian; Zhang, Bai-Tao; Wang, Yi-Ran; Zhang, Hai-Kun; Nie, Hong-Kun; Sun, Xiao-Li; He, Jing-Liang

    2016-07-10

    A laser diode array (LDA) end-pumped continuous-wave single-frequency Innoslab amplifier has been demonstrated. The Gaussian ray bundle method was used to model the light propagation in the Innoslab amplifier for the first time to the best of our knowledge. With discrete reflectors, the maximum output of 60 W with a linewidth of 44 MHz was achieved under the pump power of 245 W, corresponding to the optical-optical efficiency of 24.5%. The beam quality factor M2 at the output power of 51 W in the horizontal and vertical direction was measured to be 1.4 and 1.3, respectively. The long-term power instability in 2 h was less than 0.25%. PMID:27409308

  9. Acoustic characterisation of ultrasound contrast agents at high frequency

    OpenAIRE

    Sun, Chao

    2013-01-01

    This thesis aims to investigate the acoustic properties of ultrasound contrast agents (UCAs) at high ultrasound frequencies. In recent years, there has been increasing development in the use of high frequency ultrasound in the fields of preclinical, intravascular, ophthalmology and superficial tissue imaging. Although research studying the acoustic response of UCAs at low diagnostic ultrasonic frequencies has been well documented, quantitative information on the acoustical prop...

  10. SINGLE PHASE HIGH FREQUENCY AC CONVERTER FOR INDUCTION HEATING APPLICATION

    OpenAIRE

    M.A INAYATHULLAAH,; Dr. R. Anita

    2010-01-01

    The proposed topology reduces the total harmonic distortion (THD) of a high frequency AC/AC Converter well below the acceptable limit. This paper deals with a novel single phase AC/DC/AC soft switching utility frequency AC to high frequency AC converter. In this paper a single phase full bridge inverter with Vienna rectifier as front end is used instead of conventional diode bridge rectifier to provide continuous sinusoidal input current with nearly unity power factor at the source side with ...

  11. High and low frequency Alfven modes in tokamaks

    International Nuclear Information System (INIS)

    We present an analysis of the typical features of shear Alfven waves in tokamak plasmas in a frequency domain ranging from the ''high'' frequencies (ω ≅ νA/2qR0; νA being the Alfven speed and qR0 the tokamak connection length) of the toroidal gap to the ''low'' frequencies, comparable with the thermal ion diamagnetic frequency, ω*pi and/or the thermal ion transit frequency ωti = νti/qR0 (νti being the ion thermal speed). (author)

  12. Effects of high frequency current in welding aluminum alloy 6061

    Science.gov (United States)

    Fish, R. E.

    1968-01-01

    Uncontrolled high frequency current causes cracking in the heat-affected zone of aluminum alloy 6061 weldments during tungsten inert gas ac welding. Cracking developed when an improperly adjusted superimposed high frequency current was agitating the semimolten metal in the areas of grain boundary.

  13. FREQUENCY DETERMINATION OF HIGH-FREQUENCY LINK FOR PERCPECTIVE ELECTRIC ROLLING STOCK

    Directory of Open Access Journals (Sweden)

    D. O. Zabarylo

    2014-12-01

    Full Text Available Purpose. Total mileage of Ukrainian electric railways is distributed approximately equally between the areas of direct and alternating current. A double system of electric rolling stock is used to pass jointing places of different current kinds without train’s stop. Therefore introduction of such rolling stock of a new concept that is using an asynchronous traction drive is prospective for Ukrainian railways. Apart from advantages a rolling stock of similar concept has significant disadvantages, it is pulse energy consumption from the power supply, and it can affect the reliability of track automatic devices, and consequently, the train traffic safety. In addition the specific power of traction transformer is considerably inferior to the power density of other traction elements. The promising schemes using an intermediary link of increased frequency, which consist of a transformer and inverter, have been proposed for disadvantages amendments. The main task for the further introduction of prospective circuit is to determine the operating frequency for high frequency link. Methodology. The method of thermal parameters calculation of semiconductor devices has been used for determination switching transistors of maximum operating frequency. To obtain analytical expressions curves of energy, released during the IGBT (insulated-gate bipolar transistor switching from its current load approximation method is used. Findings. The permissible frequency of low-frequency link is determinated by load current of intermediate transformer. Operating frequency range of a link depending on load current has been determined. A comparative analysis of the switching characteristics of 65 class IGBT production by companies Infineon and ABB has been performed. Originality. The further determination method of the maximum operating frequency of intermediate link for circuit with high-frequency transformer has been developed. Practical value. The established operating

  14. Faulting at Mormon Point, Death Valley, California: A low-angle normal fault cut by high-angle faults

    Science.gov (United States)

    Keener, Charles; Serpa, Laura; Pavlis, Terry L.

    1993-04-01

    New geophysical and fault kinematic studies indicate that late Cenozoic basin development in the Mormon Point area of Death Valley, California, was accommodated by fault rotations. Three of six fault segments recognized at Mormon Point are now inactive and have been rotated to low dips during extension. The remaining three segments are now active and moderately to steeply dipping. From the geophysical data, one active segment appears to offset the low-angle faults in the subsurface of Death Valley.

  15. Spatial and frequency coherence of oblique, one-hop, high-frequency paths

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, T.J.

    1995-10-01

    We consider the effect of random index of refraction fluctuations upon long-distance, ionospherically-reflected, hf paths. Along with deterministic effects such as multipath and dispersion, such fluctuations have a deleterious impact on hf communication including nonabsorptive fading, time-of-arrival spread, angle-of-arrival spread, and Doppler spread. We develop a formalism to calculate the mutual coherence functions for spatial and frequency separations based upon a path integral solution of the parabolic wave equation for a single refracted path through an ionosphere which contains random electron density fluctuations. The statistics of the hf path depend directly on the strength and statistics of the electron density fluctuations; we model the spatial power spectrum of the density fluctuation as a power law behavior versus frequency and with outer and inner scales.

  16. The vertex and large angle detectors of a spectrometer system for high energy muon physics

    International Nuclear Information System (INIS)

    A description is given of the detector system which forms the large angle spectrometer and vertex detector of the EMC spectrometer. The apparatus is used in the NA9 experiment which studies the complete hadronic final state from the interaction of high energy muons. (orig.)

  17. Surface pressure model for simple delta wings at high angles of attack

    Indian Academy of Sciences (India)

    A A Pashilkar

    2001-12-01

    A new aerodynamic modelling approach is proposed for the longitudinal static characteristics of a simple delta wing. It captures the static variation of normal force and pitching moment characteristics throughout the angle of attack range. The pressure model is based on parametrizing the surface pressure distribution on a simple delta wing. The model is then extended to a wing/body combination where body-alone data are also available. The model is shown to be simple and consistent with experimental data. The pressure model can be used as a first approximation for the load estimation on the delta wing at high angles of attack.

  18. Shell structure in superdeformed nuclei at high rotational frequencies

    International Nuclear Information System (INIS)

    Properties of the shell structure in superdeformed nuclei at high rotational frequencies are discussed. Moreover, stability of the high spin compound nucleus with respect to the fission and the emission of light particles is investigated. (author)

  19. High frequency microbubble-switched oscillations modulated by microfluidic transistors

    Science.gov (United States)

    Yang, Fanghao; Dai, Xianming; Li, Chen

    2012-08-01

    Creating high frequency two-phase oscillations (HF-TPOs) remains an important goal in advancing microscale fluidic logic devices, micro-mixers, micro-actuators, and flow controls. However, thermally driven TPO frequency has been hindered by confinements of compressible vapor bubbles and low thermal diffusivity in microfluidic systems. In this study, a mechanism creating high frequency microbubbles growth/collapse cycle has been developed to achieve HF-TPOs. A "microfluidic transistor" was conceptualized and fabricated to passively sustain and modulate HF-TPOs. Three orders of magnitude higher TPO frequency has been achieved compared to TPOs reported in literatures under similar working conditions.

  20. Implementation of Low Frequency Ac to High Frequency Ac with Single Stage Zvs-Pwm Inverter

    Directory of Open Access Journals (Sweden)

    S. Arumugam S. Ramareddy M. Sridhar

    2011-12-01

    Full Text Available This paper presents a novel soft-switching pulse width modulation (PWM utility frequency AC to high frequency (HF AC power conversion circuit incorporating boost-active clamp single stage inverter topology. This power converter is more suitable and acceptable for cost effective HF consumer induction heating applications. Its operating principle is presented. The operating performances of this high frequency inverter using the latest insulated gate bipolar transistors are illustrated, which includes HFAC power regulation ranges and actual efficiency characteristics based on zero voltage soft switching operation ranges.. The simulation circuits are models are developed and they are simulated using ORCAD.

  1. Finite Element Model for the Behavior of Partially Restrained High Strength Web Angle Connections

    Directory of Open Access Journals (Sweden)

    S. Taufik

    2013-06-01

    Full Text Available This study investigates the behavior of Partially Restrained (PR connections with high strength steel through the use of Finite Element (FE modeling. The connection model is such that double web angles are represented by radiused corner section shell elements. The full interaction between the angle and the beam and/or column is simulated by the contact element.The analysis of the moment- rotation relationship and behavior characteristics of the connection with high strength steel are compared and discussed. It is established that the contact elements and strength enhancements of the corner regions employed in this model are important parameters for accurate predictions of Double Web Angle (DWA connection behavior with cold-formed high strength steel. The proposed connection FE model is capable making highly accurate predictions about the ultimate load capacity and the plastic strain pattern. The model presented provides excellent results for significantly increasing the connection capacity as a result of employing a higher strength steel section. A power model expression was proposed to predict the ultimate moment and initial stiffness of the high strength DWA connection. A reasonable prediction was obtained for high strength PR connection.

  2. Advanced high frequency partial discharge measuring system

    Science.gov (United States)

    Karady, George G.

    1994-01-01

    This report explains the Advanced Partial Discharge Measuring System in ASU's High Voltage Laboratory and presents some of the results obtained using the setup. While in operation an insulation is subjected to wide ranging temperature and voltage stresses. Hence, it is necessary to study the effect of temperature on the behavior of partial discharges in an insulation. The setup described in this report can be used to test samples at temperatures ranging from -50 C to 200 C. The aim of conducting the tests described herein is to be able to predict the behavior of an insulation under different operating conditions in addition to being able to predict the possibility of failure.

  3. High frequency components in bottlenose dolphin echolocation signals

    OpenAIRE

    Toland, Ronald W., Jr.

    1998-01-01

    The research described in this thesis is a continuation of work started by the Applied Research Laboratories of the University of Texas at Austin into the analysis of biosonar signals. Experiments conducted in 1997 on two species of small toothed whales found these species to emit significant high frequency signal components, extending to as high as 400 to 500 kHz. To assess the importance of these high frequencies in dolphin echolocation and target identification, experiments were performed ...

  4. High frequency single mode traveling wave structure for particle acceleration

    Science.gov (United States)

    Ivanyan, M. I.; Danielyan, V. A.; Grigoryan, B. A.; Grigoryan, A. H.; Tsakanian, A. V.; Tsakanov, V. M.; Vardanyan, A. S.; Zakaryan, S. V.

    2016-09-01

    The development of the new high frequency slow traveling wave structures is one of the promising directions in accomplishment of charged particles high acceleration gradient. The disc and dielectric loaded structures are the most known structures with slowly propagating modes. In this paper a large aperture high frequency metallic two-layer accelerating structure is studied. The electrodynamical properties of the slowly propagating TM01 mode in a metallic tube with internally coated low conductive thin layer are examined.

  5. Frequency dynamics during high CCGT and wind penetrations

    OpenAIRE

    Meegahapola, Lasantha; Flynn, Damian

    2011-01-01

    Frequency stability is the paramount concern for secure and reliable operation of a power system. High wind penetration levels are reported in power systems with high thermal generation, and hence its likely to result high wind and combined-cycle gas turbine (CCGT) penetrations during system operation since CCGTs are the most preferable choice for the thermal generation. The doubly-fed induction generators (DFIGs) do not provide any inertial response while the CCGTs have unique frequency resp...

  6. High frequency detectors based on superconducting tunnel junctions

    International Nuclear Information System (INIS)

    This review discusses high frequency detectors, in particular two examples: the quasiparticle mixer and the inductively shunted Josephson parametric amplifier. The quasiparticle mixer is now routinely operated at several radio astronomy observatories. At high frequency, in the quantum limit, photon assisted tunneling sets in and the mixer gives conversion gain. Its noise temperature is close to the ultimate quantum limit. The use of the mixer is steadily pushed upwards in frequency into the mm (and sub-mm) band. The authors discuss several high frequency obstacles: Josephson noise, Josephson interference, pair breaking, a finite number of photon assisted tunneling steps within the gap region, matching, and non-equilibrium superconductivity. A scale type experiment and modeling indicate that good conversion and low noise are possible at least up to the superconducting gap frequency. Arrays of tunnel junctions enable a higher signal saturation level of the mixer, easier-impedance match, tuning and fabrication, and a better electrical shock resistance

  7. Extraction of ULSI Interconnect Resistance at High Frequencies

    Institute of Scientific and Technical Information of China (English)

    XIAO Xia; JIAN Duanduan; YAO Suying; ZHANG Shengcai; RUAN Gang

    2005-01-01

    Correct extraction of the ultra-large-scale integrated (ULSI) interconnect components at hight frequencies is very important for evaluating electrical performances of high-speed ULSI circuits.In this paper, the extraction of the interconnect resistance at high frequencies is derived from the Ohm′s law and verified by the software FastHenry.The results are also compared with those of another resistance formula originated from the effective area of the current flowing. The applicability of these two formulae is discussed.The influence of the interconnect geometry on the resistance at high frequencies is studied.The computation indicates that the effect of frequency on the resistance is weak when the skin depth is larger than half of the short side of the rectangular interconnect cross section.With further increase of frequency, the resistance increases obviously. Results imply that conductor with a square cross section exhibits the largest resistance for rectangular conductors of constant cross section area.

  8. Effective properties of mechanical systems under high-frequency excitation at multiple frequencies

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical p......-HFE with non-close frequencies. The general results may be used to investigate or utilize general effects, or as a shortcut to calculate effective properties for specific systems, or to calculate averaged equations of motion that may be much faster to simulate numerically.......-resonant. Then the change in effective stiffness is proportional to the sum of squared excitation velocities, and the corresponding changes in equilibria, equilibrium stability, and natural frequencies can be computed as for the mono-HFE case. When there are two or more close-excitation frequencies, an...

  9. High frequency energy cascades in inviscid hydrodynamics

    Science.gov (United States)

    Costa, Adam Smith N.; de Araújo, J. M.; Cohen, Nir; Lucena, Liacir S.; Viswanathan, G. M.

    2014-04-01

    With the aim of gaining insight into the notoriously difficult problem of energy and vorticity cascades in high dimensional incompressible flows, we take a simpler and very well understood low dimensional analog and approach it from a new perspective, using the Fourier transform. Specifically, we study, numerically and analytically, how kinetic energy moves from one scale to another in solutions of the hyperbolic or inviscid Burgers equation in one spatial dimension (1D). We restrict our attention to initial conditions which go to zero as x→±∞. The main result we report here is a Fourier analytic way of describing the cascade process. We find that the cascade proceeds by rapid growth of a crossover scale below which there is asymptotic power law decay of the magnitude of the Fourier transform.

  10. High-frequency multimodal atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Adrian P. Nievergelt

    2014-12-01

    Full Text Available Multifrequency atomic force microscopy imaging has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale topography as well as mechanical properties. Nevertheless, instrument bandwidth limitations on cantilever excitation and readout have restricted the ability of multifrequency techniques to fully benefit from small cantilevers. We present an approach for cantilever excitation and deflection readout with a bandwidth of 20 MHz, enabling multifrequency techniques extended beyond 2 MHz for obtaining materials contrast in liquid and air, as well as soft imaging of delicate biological samples.

  11. Advances in Very High Frequency Power Conversion

    DEFF Research Database (Denmark)

    Kovacevic, Milovan

    drive solution, which is applicable in cases when there are at least two power stages, and with minimal additional hardware requirements. It is experimentally confirmed that the method is suitable for both parallel and serial input configurations. Compared to state-of-the-art solutions, the proposed...... the use of conventional ICs, while still providing high control bandwidth and performance comparable to state-of-the-art solutions. Since in many applications of interest galvanic isolation is not a requirement, the thesis proposes a method for providing a DC power path from input to output...... response of VHF converters, on/off control schemes are often used for their output control. The options presented so far demonstrated excellent performance, but with very strict timing constraints on all functional blocks in the feedback loop. Therefore, an on/off control method is proposed which allows...

  12. Alveolar pressure during high-frequency jet ventilation

    NARCIS (Netherlands)

    A.J. van Vught (Adrianus); A. Versprille (Adrian); J.R.C. Jansen (Jos)

    1990-01-01

    textabstractWe studied the influence of ventilatory frequency (1-5 Hz), tidal volume, lung volume and body position on the end-expiratory alveolar-to-tracheal pressure difference during high-frequency jet ventilation (HFJV) in Yorkshire piglets. The animals were anesthetized and paralysed. Alveolar

  13. On temporal correlations in high-resolution frequency counting

    CERN Document Server

    Dunker, Tim; Rønningen, Ole Petter

    2016-01-01

    We analyze noise properties of time series of frequency data from different counting modes of a Keysight 53230A frequency counter. We use a 10 MHz reference signal from a passive hydrogen maser connected via phase-stable Huber+Suhner Sucoflex 104 cables to the reference and input connectors of the counter. We find that the high resolution gap-free (CONT) frequency counting process imposes long-term correlations in the output data, resulting in a modified Allan deviation that is characteristic of random walk phase noise. Equally important, the CONT mode results in a frequency bias. In contrast, the counter's undocumented raw continuous mode (RCON) yields unbiased frequency stability estimates with white phase noise characteristics, and of a magnitude consistent with the counter's 20 ps single-shot resolution. Furthermore, we demonstrate that a 100-point running average filter in conjunction with the RCON mode yields resolution enhanced frequency estimates with flicker phase noise characteristics. For instance,...

  14. Study and realisation of a high frequency analyzer

    International Nuclear Information System (INIS)

    This device is designed for the amplitude and frequency analysis of electric or electromagnetic signals in the frequency range of 0 to 55 MHz. The frequency spectrum of a preset bandwidth is displayed on the screen of an oscilloscope. Conceived to analyse the electromagnetic oscillations that can be generated in a plasma, its main characteristics are the following: extended bandwidth of analysed frequencies, on both sides of the ion cyclotron frequency in a magnetic field up to 20 kGs; linear amplitude and frequency response; possibility of analysing a narrow band; high sensitivity; analysis repetition rate of 25 per second. The different parts of the analyzer are described after a discussion of the choice of the techniques used in their design. In addition to its present use, the device can be applied to perform all the functions of a commercial spectral analyzer. (author)

  15. Polarization measurement analysis III. Analysis of the polarization angle dispersion function with high precision polarization data

    CERN Document Server

    Alina, D; Ristorcelli, I; Bernard, J -P; Levrier, F; Abdikamalov, E

    2016-01-01

    High precision polarization measurements open new opportunities for the study of the magnetic field structure as traced by polarimetric measurements of the interstellar dust emission. Polarization parameters suffer from bias in the presence of measurement noise. It is critical to take into account all the information available in the data in order to accurately derive these parameters. The goal of this paper is to characterize the bias on the polarization angle dispersion function that is used to study the spatial coherence of the polarization angle. We characterize, for the first time, the bias on the conventional estimator of the polarization angle dispersion function (S hereafter) and show that it can be positive or negative depending on the true value. Monte Carlo simulations are performed in order to explore the impact of the noise properties of the polarization data, as well as the impact of the distribution of the true polarization angles on the bias. We show that in the case where the ellipticity of t...

  16. Parametric macromodelling of linear high-frequency systems using multiple frequency scaling and sequential sampling

    OpenAIRE

    Chemmangat Manakkal Cheriya, Krishnan; Ferranti, Francesco; Dhaene, Tom; Knockaert, Luc

    2014-01-01

    An enhanced parametric macromodelling scheme is presented for linear high-frequency systems based on the use of multiple frequency scaling coefficients and a sequential sampling algorithm to fully automate the entire modelling process. The proposed method is applied on a ring resonator bandpass filter example and compared with another state-of-the-art macromodelling method to show its improved modelling capability and reduced setup time.

  17. Fall speed measurement and high-resolution multi-angle photography of hydrometeors in free fall

    Directory of Open Access Journals (Sweden)

    T. J. Garrett

    2012-11-01

    Full Text Available We describe here a new instrument for imaging hydrometeors in free fall. The Multi-Angle Snowflake Camera (MASC captures high-resolution photographs of hydrometeors from three angles while simultaneously measuring their fall speed. Based on the stereoscopic photographs captured over the two months of continuous measurements obtained at a high altitude location within the Wasatch Front in Utah, we derive statistics for fall speed, hydrometeor size, shape, orientation and aspect ratio. From a selection of the photographed hydrometeors, an illustration is provided for how the instrument might be used for making improved microwave scattering calculations. Complex, aggregated snowflake shapes appear to be more strongly forward scattering, at the expense of reduced back-scatter, than heavily rimed graupel particles of similar size.

  18. Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Mike L. Laue

    1997-05-30

    The distal fan margin in the northeast portion of the Yowlumne field contains significant reserves but is not economical to develop using vertical wells. Numerous interbedded shales and deteriorating rock properties limit producibility. In addition, extreme depths (13,000 ft) present a challenging environment for hydraulic fracturing and artificial lift. Lastly, a mature waterflood increases risk because of the uncertainty with size and location of flood fronts. This project attempts to demonstrate the effectiveness of exploiting the distal fan margin of this slope-basin clastic reservoir through the use of a high-angle well completed with multiple hydraulic-fracture treatments. The combination of a high-angle (or horizontal) well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three vertical wells are anticipated at one-half to two-thirds the cost.

  19. High frequency jet ventilation in fat embolism syndrome.

    Science.gov (United States)

    Lee, A; Simpson, D

    1986-11-01

    The use of high frequency jet ventilation in the management of a patient with fat embolism syndrome is described. Its principal advantage over conventional intermittent positive pressure ventilation is a reduction in the amount of sedation necessary. PMID:3789371

  20. 200 Hz repetition frequency joule-level high beam quality Nd:YAG nanosecond laser

    Science.gov (United States)

    Qiu, Jisi; Tang, Xiongxin; Fan, Zhongwei; Wang, Haocheng

    2016-06-01

    A joule-level Nd:YAG nanosecond laser of high repetition frequency and high beam quality is developed out. The laser is designed as a MOPA system mainly including single longitudinal mode seed, pre-amplifier unit an d power amplifier unit. In order to obtain the high-quality laser beam output, phase conjugation is adopted to compensate the laser beam distortion. Under the condition of 200 Hz high repetition frequency and 8.19 μJ single pulse energy injected by the single longitudinal mode seed, 1.53 J output energy is gained. The output laser beam is of 9 mm diameter, 7.41 ns pulse width, the far field beam spot 1.32 times the value of the diffraction limit, 1.2% energy stability (RMS) and less than 13 μrad far field beam spot angle shift.

  1. High-harmonic XUV source for time- and angle-resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dakovski, Georgi L [Los Alamos National Laboratory; Li, Yinwan [Los Alamos National Laboratory; Durakiewicz, Tomasz [Los Alamos National Laboratory; Rodriguez, George [Los Alamos National Laboratory

    2009-01-01

    We present a laser-based apparatus for visible pump/XUV probe time- and angle-resolved photoemission spectroscopy (TRARPES) utilizing high-harmonic generation from a noble gas. Femtosecond temporal resolution for each selected harmonic is achieved by using a time-delay-compensated monochromator (TCM). The source has been used to obtain photoemission spectra from insulators (UO{sub 2}) and ultrafast pump/probe processes in semiconductors (GaAs).

  2. Light pollution at high zenith angles, as measured at Cerro Tololo Inter-American Observatory

    CERN Document Server

    Krisciunas, Kevin; Sanhueza, Pedro; Smith, Malcolm G

    2010-01-01

    On the basis of measurements of the V-band sky brightness obtained at Cerro Tololo Inter-American Observatory in December 2006 and December 2008 we confirm the functional form of the basic model of Garstang (1989, 1991). At high zenith angles we measure an enhancement of a factor of two over Garstang's later model when there is no marine cloud layer over La Serena/Coquimbo. No corresponding enhancement is found in the B-band.

  3. High Frequency Trading in the Korean Index Futures Market

    OpenAIRE

    Eun Jung Lee

    2015-01-01

    We investigate the trading behavior of high frequency trading (HFT), the impact of HFT on market quality, its role in the price discovery process, and its profitability, using a very detailed data set of the KOSPI 200 index futures market. We find that high frequency traders (HFTs) do not provide liquidity in the futures market, nor does HFT have any role in enhancing market quality. Indeed, HFT is detrimental to the price discovery process. This finding is contrary to those in the existing ...

  4. Definition, Benefits and Risks of High-Frequency Trading

    OpenAIRE

    Jakub Kučera

    2013-01-01

    The paper deals with high-frequency algorithmic trading (HFT), which has recently come to dominate some financial markets, e.g. the US equity markets. The author first attempts to establish a clear definition of high-frequency trading. With the most important characteristics having been analysed, it is concluded that such a definition would not bring more clarity into the debate over HFT. Strategies pursued by traders should be given consideration instead. On this account, the text proceeds w...

  5. High-flow frequencies for selected streams in Oklahoma

    Science.gov (United States)

    Huntzinger, Thomas L.

    1978-01-01

    Streamflow records are analyzed statistically to determine high-flow characteristics of selected streams in Oklahoma. Tables are included which show the 2-, 5-, 10-, 25-, 50-, and 100-year high-flow frequencies for durations of 1, 3, 7, 30, 90, and 365 days. The log-Pearson Type III frequency distribution was used in the computations. Streamflow records used include data extending from 1903 to 1974.

  6. High frequency ultrasound imaging in pupillary block glaucoma.

    OpenAIRE

    Aslanides, I M; Libre, P E; Silverman, R H; Reinstein, D Z; Lazzaro, D R; Rondeau, M J; Harmon, G K; Coleman, D J

    1995-01-01

    BACKGROUND--The diagnosis of pupillary block glaucoma requires sufficient clarity of the ocular media. This is particularly important for assessment of both the presence and patency of an iridotomy, and the determination of central anterior chamber depth. METHODS--High frequency ultrasonography was used in three patients with suspected pupillary block to determine iris configuration, posterior chamber volume, and ciliary body conformation. RESULTS--All patients demonstrated high frequency ult...

  7. High-frequency oscillations and the neurobiology of schizophrenia

    OpenAIRE

    Uhlhaas, Peter J; Singer, Wolf

    2013-01-01

    Neural oscillations at low- and high-frequency ranges are a fundamental feature of large-scale networks. Recent evidence has indicated that schizophrenia is associated with abnormal amplitude and synchrony of oscillatory activity, in particular, at high (beta/gamma) frequencies. These abnormalities are observed during task-related and spontaneous neuronal activity which may be important for understanding the pathophysiology of the syndrome. In this paper, we shall review the current evidence ...

  8. Soft Switching SEPP High Frequency Inverter for Induction Heating

    Science.gov (United States)

    Ogiwara, Hiroyuki; Nakaoka, Mutsuo

    This paper presents a novel circuit topology to attain soft switching operation of a high frequency inverter. Its output power is regulated over a wide range using a PWM control technique by connecting an auxiliary resonant circuit to the conventional single ended push pull (SEPP) high frequency inverter for induction heating. All switching devices in the proposed inverter are operated soft switching mode. This paper describes its circuit constitution and obtained experimental results from a practical point of view.

  9. SEPP-ZVS High Frequency Inverter Incorporating Auxiliary Switch

    Science.gov (United States)

    Ogiwara, Hiroyuki; Itoi, Misao; Nakaoka, Mutsuo

    This paper presents a novel circuit topology to attain ZVS operation of a high frequency inverter over a wide range output power regulation using a PWM control technique by connecting an auxiliary switch to the conventional single ended push-pull (SEPP) ZVS high frequency inverter. A switching current is injected into the main switches via the auxiliary switch only during the short period between its turn-on and off times to supply a current required for its ZVS operation.

  10. High frequency characteristics of medium voltage XLPE power cables

    OpenAIRE

    Mugala, Gavita

    2005-01-01

    The response of a cable can be used to analyze the variation of the material characteristics along its length. For diagnosis of possible ageing, it is necessary to know how cable design, material properties and cable insulation ageing affects the wave propagation. A cable model has therefore been worked out based upon the high frequency properties of the cable insulation and conductor systems. The high frequency characteristics of the semi-conducting screens, new and water-tree aged cross-lin...

  11. High-frequency response of nanostructured magnetic materials

    International Nuclear Information System (INIS)

    This paper reports a brief overview on recent developments regarding the high-frequency response in the GHz range of nanostructured magnetic materials. Emphasis is placed on the linear regime in the frequency domain characterized by the dynamic susceptibility spectrum. Some modeling tools and experimental probes allowing determination of the dynamic susceptibility spectrum are first rapidly reviewed and their respective advantages and disadvantages are discussed. Next, some illustrative examples of the high-frequency response of nanopatterned materials based on recent works are presented. The role played by the shape of the element on the characteristics of excitation spectrum is underlined. Lastly, some prospects are proposed and promising trends are highlighted.

  12. Seasonal Variations of Polarization Diversity Gain in a Vegetated Area considering High Elevation Angles and a Nomadic User

    Directory of Open Access Journals (Sweden)

    Milan Kvicera

    2015-01-01

    Full Text Available Seasonal variations of the polarization diversity gain are addressed for a nomadic user in a vegetated area taking high elevation angles and nongeostationary satellites into consideration. Corresponding experimental data were obtained at a frequency of 2.0 GHz at Stromovka Park in Prague, the Czech Republic, within the full in-leaf and out-of-leaf periods of 2013 and 2014, respectively. By detecting copolarized and cross-polarized components of the transmitted left- and right-handed circularly polarized signals, the corresponding diversity gain was obtained for multiple-input single-output (MISO, single-input multiple-output (SIMO, and combined MISO/SIMO cases. It was found that tree defoliation results in a significant decrease of the polarization diversity gain achieved for low time percentages in particular scenarios.

  13. Enhancement of bichromatic high-harmonic generation with a high-frequency field

    OpenAIRE

    Faria, C. Figueira de Morisson; Du, M. L.

    2000-01-01

    Using a high-frequency field superposed to a linearly polarized bichromatic laser field composed by a wave with frequency $\\omega $ and a wave with frequency $2\\omega $, we show it is possible to enhance the intensity of a group of high harmonics in orders of magnitude. These harmonics have frequencies about 30% higher than the monochromatic-cutoff frequency, and, within the three-step-model framework, correspond to a set of electron trajectories for which tunneling ionization is strongly sup...

  14. Frequencies of inaudible high-frequency sounds differentially affect brain activity: positive and negative hypersonic effects.

    Directory of Open Access Journals (Sweden)

    Ariko Fukushima

    Full Text Available The hypersonic effect is a phenomenon in which sounds containing significant quantities of non-stationary high-frequency components (HFCs above the human audible range (max. 20 kHz activate the midbrain and diencephalon and evoke various physiological, psychological and behavioral responses. Yet important issues remain unverified, especially the relationship existing between the frequency of HFCs and the emergence of the hypersonic effect. In this study, to investigate the relationship between the hypersonic effect and HFC frequencies, we divided an HFC (above 16 kHz of recorded gamelan music into 12 band components and applied them to subjects along with an audible component (below 16 kHz to observe changes in the alpha2 frequency component (10-13 Hz of spontaneous EEGs measured from centro-parieto-occipital regions (Alpha-2 EEG, which we previously reported as an index of the hypersonic effect. Our results showed reciprocal directional changes in Alpha-2 EEGs depending on the frequency of the HFCs presented with audible low-frequency component (LFC. When an HFC above approximately 32 kHz was applied, Alpha-2 EEG increased significantly compared to when only audible sound was applied (positive hypersonic effect, while, when an HFC below approximately 32 kHz was applied, the Alpha-2 EEG decreased (negative hypersonic effect. These findings suggest that the emergence of the hypersonic effect depends on the frequencies of inaudible HFC.

  15. Parametric Study of High Frequency Pulse Detonation Tubes

    Science.gov (United States)

    Cutler, Anderw D.

    2008-01-01

    This paper describes development of high frequency pulse detonation tubes similar to a small pulse detonation engine (PDE). A high-speed valve injects a charge of a mixture of fuel and air at rates of up to 1000 Hz into a constant area tube closed at one end. The reactants detonate in the tube and the products exit as a pulsed jet. High frequency pressure transducers are used to monitor the pressure fluctuations in the device and thrust is measured with a balance. The effects of injection frequency, fuel and air flow rates, tube length, and injection location are considered. Both H2 and C2H4 fuels are considered. Optimum (maximum specific thrust) fuel-air compositions and resonant frequencies are identified. Results are compared to PDE calculations. Design rules are postulated and applications to aerodynamic flow control and propulsion are discussed.

  16. Gravitational Wave Detection with High Frequency Phonon Trapping Acoustic Cavities

    CERN Document Server

    Goryachev, Maxim

    2014-01-01

    There are a number of theoretical predictions for astrophysical and cosmological objects, which emit high frequency ($10^6-10^9$~Hz) Gravitation Waves (GW) or contribute somehow to the stochastic high frequency GW background. Here we propose a new sensitive detector in this frequency band, which is based on existing cryogenic ultra-high quality factor quartz Bulk Acoustic Wave cavity technology, coupled to near-quantum-limited SQUID amplifiers at $20$~mK. We show that spectral strain sensitivities reaching $10^{-22}$ per $\\sqrt{\\text{Hz}}$ per mode is possible, which in principle can cover the frequency range with multiple ($>100$) modes with quality factors varying between $10^6-10^{10}$ allowing wide bandwidth detection. Due to its compactness and well established manufacturing process, the system is easily scalable into arrays and distributed networks that can also impact the overall sensitivity and introduce coincidence analysis to ensure no false detections.

  17. Switch over to the high frequency rf systems near transition

    International Nuclear Information System (INIS)

    The purpose of this note is to point out that since bunch narrowing naturally occurs in the acceleration process in the vicinity of transition, it should be possible to switch over to the high frequency system close to transition when the bunch has narrowed enough to fit directly into the high frequency bucket. The advantage of this approach is the simplicity, no extra components or gymnastics are required of the low frequency system. The disadvantage, of course, is for protons which do not go through transition. But on the other hand, there is no shortage of intensity for protons and so it should be possible to keep the phase space area low for protons, and then matching to the high frequency bucket should be easily accomplished by adiabatic compression. 3 refs., 7 figs

  18. Computing effective properties of nonlinear structures exposed to strong high-frequency loading at multiple frequencies

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical p...... be used to investigate general effects, or as a short cut to calculate effective properties for specific systems, or to calculate averaged equations of motion that may be much faster to simulate numerically....... to the mean-square velocity of the excitation velocities, and the corresponding changes in equilibriums, equilibrium stability, and natural frequencies can be computed as for the mono-HFE case. When there are two or more close excitation frequencies, an additional contribution of slowly oscillating...

  19. Dynamic high-resolution spectroscopic frequency referencing for frequency sweeping interferometry

    Science.gov (United States)

    Prellinger, Günther; Meiners-Hagen, Karl; Pollinger, Florian

    2016-06-01

    A spectroscopic reference for the intrinsic frequency calibration of a ranging system based on frequency-sweeping interferometry (FSI) is presented. Saturation spectroscopy of iodine transitions at 636.8 nm is used to generate well-defined frequency markers. The experimental and analytic implementation is shown to enable in principle a frequency determination with an uncertainty of 0.17 MHz for a coverage factor k = 1. This corresponds to a relative standard uncertainty of 1.5× {10}-7 as contribution to the combined measurement uncertainty of the FSI-based length measurement. But the analysis also reveals the high sensitivity of the actually achievable measurement uncertainty to the quality of the spectroscopic reference data.

  20. Research on the Command of a Single-Phase Frequency Converter at High Frequencies

    Directory of Open Access Journals (Sweden)

    Ioan Ruja

    2013-09-01

    Full Text Available The present paper forwards several results obtained during the study of the induction heating installations of metallic materials at high frequencies [1]. It details aspects related to the command of a monophase (half-bridge inverter with PWM signals (Pulse-With-Modulation. The command of the MOS transistors is done with frequencies ranging between [0÷400] KHz and modulation factor variable within the [0−1] range. The possibility to modify the command frequency of the inverter, as well as the possibility to modify the PWM signal modulation factor allows the user to establish various resonance frequencies for the LC (parallel circuit which, together with the metallic sample, constitutes the inverter charge.

  1. High-frequency current oscillations in graphene-boron nitride resonant tunnel diodes

    Science.gov (United States)

    Greenaway, Mark; Gaskell, Jenn; Eaves, Laurence; Novoselov, Kostya; Mishchenko, Artem; Geim, Andre; Fromhold, Mark

    The successful realisation of multilayer graphene-hBN-graphene resonant tunnelling diodes (graphene- RTDs) with negative differential conductance (NDC) and MHz current oscillations offers the exciting possibility of exploiting them as high-frequency oscillators and mixers. In this paper, we examine their potential for generating higher frequencies by simulating the oscillations in the tunnel current and charge that arise when the device is biased in the NDC region and placed in a resonant circuit. Using the Bardeen transfer Hamiltonian method, we examine the effect on the device characteristics of the twist angle, θ, between the two graphene electrodes, the hBN barrier thickness and of the carrier density in the graphene electrodes, which can be adjusted by chemical doping or by an applied bias voltage. The simulations accurately reproduce our recently-reported measurements on these RTDs (Fig. 4,). The results of simulations show that frequencies of tens of GHz are achievable by optimising the device parameters. Leverhulme Trust, UK.

  2. A large area, 2-D, high-pressure MWPC for wide angle X-ray diffraction

    International Nuclear Information System (INIS)

    Multi wire proportional counters (MWPCs) possess all the required features for recording X-ray diffraction patterns: large area, high detective quantum efficiency (DQE), low dead time and simultaneous spatial and spectral information. However, their suitability as wide-angle diffraction is compromised by an effect known as parallax broadening. This phenomenon is due to the low density of the gas in the detector, where photons incident at large angles following the same ray may interact at different points along it and therefore appear as different coordinates in the image. One way to reduce this effect is by increasing the density of the absorbing medium in order to ensure the photons interact in a thinner gas layer, this can be achieved if the pressure of the gas in the detector is increased. We present here a high-pressure (5 bar) detector which has the potential to bring the desirable features of a photon counting system to wide-angle diffraction experiments. The preliminary results are also presented. (orig.)

  3. The use of low departure aspheric surfaces in high quality wide angle lenses

    Science.gov (United States)

    Dalzell, Kristen E.; Jonas, Reginald P.; Wallace, Brian P.

    2015-09-01

    Modern lens designs for digital sensors, such as those required in medium volumes for cinematography, often require the use of one or two high departure aspheric surfaces. With departures from best fit sphere of up to a few millimeters, the use of such surfaces are accompanied by a number of consequences: high cost metrology, very tight opto-mechanical tolerances and image artifacts due to the sub-aperture grinding and polishing process. Previously we examined the use of multiple aspheric surfaces with very low departures from best fit sphere (BFS) and concluded that advantages may be gained in standard and telephoto lenses, but not in wide angle lens designs1. In this work we consider the potential benefits of low departure aspheric surfaces, as applied to wide angle lenses in particular. We review the number, placement, and nature of aspheric surfaces in some wide angle lens design examples, and look at the potential to redesign with an increased number of low departure aspheric surfaces that have the potential to be manufactured without the need for computer generated holograms (CGH's). The use and limitations of modern interferometers capable of measuring aspheric surfaces without the use of CGH's will be considered. In one example we examine the performance, manufacturing, and cost perspective, paying particular attention to testing and mechanical alignment tolerances.

  4. Evolution of narrow band - high frequency hearing in odontocetes

    DEFF Research Database (Denmark)

    Miller, Lee A.; Galatius, Anders; Olsen, Morten Tange;

    2015-01-01

    known species in four families have peak frequencies between 120 kHz and 140 kHz? We propose and argue that at these frequencies an ambient noise minimum exists and has so over the past 10 million years or more. The spectral properties of the signals produced by smaller odontocetes, like the harbor......Whale biologists generally agree that predation by killer whales provided selection pressure for driving up the biosonar frequencies of some odontocetes. This made the signals of these species, like the harbor porpoise, less audible to their predator. But why should the acoustic signals of 13 to 15...... porpoise, have thus been shaped by predation pressure from larger odontocetes, driving the frequency up, and limited by increasing ambient noise above about 140 kHz. The result is a high frequency, narrow band acoustic signal. To support the above conclusions we use palæontological, palæoclimatic...

  5. High density THz frequency comb produced by coherent synchrotron radiation

    CERN Document Server

    Tammaro, S; Roy, P; Lampin, J -F; Ducournau, G; Cuisset, A; Hindle, F; Mouret, G

    2014-01-01

    Frequency combs (FC) have radically changed the landscape of frequency metrology and high-resolution spectroscopy investigations extending tremendously the achievable resolution while increasing signal to noise ratio. Initially developed in the visible and near-IR spectral regions, the use of FC has been expanded to mid-IR, extreme ultra-violet and X-ray. Significant effort is presently dedicated to the generation of FC at THz frequencies. One solution based on converting a stabilized optical frequency comb using a photoconductive terahertz emitter, remains hampered by the low available THz power. Another approach is based on active mode locked THz quantum-cascade-lasers providing intense FC over a relatively limited spectral extension. Alternatively, here we show that dense powerful THz FC is generated over one decade of frequency by coherent synchrotron radiation (CSR). In this mode, the entire ring behaves in a similar fashion to a THz resonator wherein electron bunches emit powerful THz pulses quasi-synch...

  6. High frequency acoustic microscopy with Fresnel zoom lens

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The acoustic field distributions and the convergent beams generated by the planar-structure Fresnel zone transducers on solid surface are investigated. Because only 0 and 180 degree phase transducers are used, an imaging system with the Fresnel zoom lens could work at very high frequency, which overcomes the frequency limit of the traditional phased array acoustic imaging system. Simulation results are given to illustrate the acoustic field distributions along the focal axis and the whole plane as well. Based on the principle of scanning of the focus with the change of frequency for the excited signal, an experimental imaging system is also built. Acoustic Fresnel zone transducers are fabricated at center frequency of 400 MHz. Measurements and detections of the known hole flaws at different depths of the fused quartz sample are presented to show that the imaging system with Fresnel zoom lens could move its focus by only changing the frequency of the excited signal.

  7. Wide-angle and high-efficiency achromatic metasurfaces for visible light

    CERN Document Server

    Deng, Zi-Lan; Wang, Guo Ping

    2016-01-01

    Recently, an achromatic metasurface was successfully demonstrated to deflect light of multiple wavelengths in the same direction and it was further applied to the design of planar lenses without chromatic aberrations [Science, 347, 1342(2015)]. However, such metasurface can only work for normal incidence and exhibit low conversion efficiency. Here, we present an ultrawide-angle and high-efficiency metasurface without chromatic aberration for wavefront shaping in visible range. The metasurface is constructed by multiple metallic nano-groove gratings, which support enhanced diffractions for an ultrawide incident angle range from 10o to 80o due to the excitations of localized gap plasmon modes at different resonance wavelengths. Incident light at these resonance wavelengths can be efficiently diffracted into the same direction with complete suppression of the specular reflection. This approach is applied to the design of an achromatic flat lens for focusing light of different wavelengths into the same position. ...

  8. Effects of angling and manual handling on pike behaviour investigated by high-resolution positional telemetry

    DEFF Research Database (Denmark)

    Baktoft, Henrik; Aarestrup, Kim; Berg, Søren;

    2013-01-01

    Human disturbances such as angling and manual handling may have long-term effects on the behaviour of pike, Esox lucius L., an ecologically important species. Using continuous high-resolution positional telemetry, this study compared the swimming activity of handled and unhandled pike in a small...... lake. Pike pre-equipped with acoustic transmitters were angled and exposed to a handling protocol including measurements of length and mass. Pike not recaptured constituted an unhandled control group. Results demonstrated that the handling protocol caused temperature-dependent changes in pike activity......, with higher temperatures leading to lower activity of the recaptured pike. The effects, however, were transitory and not detectable after 48-h post-release. These findings indicate that pike are relatively resilient to handling and quickly resume pre-handling activity...

  9. High-pressure, high-temperature magic angle spinning nuclear magnetic resonance devices and processes for making and using same

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi; Hu, Mary Y.; Townsend, Mark R.; Lercher, Johannes A.; Peden, Charles H. F.

    2015-10-06

    Re-usable ceramic magic angle spinning (MAS) NMR rotors constructed of high-mechanic strength ceramics are detailed that include a sample compartment that maintains high pressures up to at least about 200 atmospheres (atm) and high temperatures up to about least about 300.degree. C. during operation. The rotor designs minimize pressure losses stemming from penetration over an extended period of time. The present invention makes possible a variety of in-situ high pressure, high temperature MAS NMR experiments not previously achieved in the prior art.

  10. Design & Implementation of High Switching & Low Phase Noise Frequency Synthesizer

    Directory of Open Access Journals (Sweden)

    Ali M. N. Hassan

    2006-01-01

    Full Text Available This research describes the design & implementation of frequency synthesizer using single loop Phase lock loop with the following specifications: Frequency range (1.5 – 2.75 GHz,Step size (1 MHz, Switching time 36.4 µs, & phase noise @10 kHz = -92dBc & spurious -100 dBc The development in I.C. technology provide the simplicity in the design of frequency synthesizer because it implements the phase frequency detector(PFD , prescalar & reference divider in single chip. Therefore our system consists of a single chip contains (low phase noise PFD, charge pump, prescalar & reference divider, voltage controlled oscillator , loop filter & reference oscillator. The single chip is used to provide the following properties :•Low power consumptionSmall size, light weight.Flexibility in selecting crystal oscillator frequencies to fit into the system frequency planning.•High reliability.The application of this synthesizer in frequency hopping systems, satellite communications & radar because it has high switching speed ,low phase noise & low spurious level.

  11. Propagation of High Frequency Waves in the Quiet Solar Atmosphere

    CERN Document Server

    Andić, Aleksandra

    2008-01-01

    High-frequency waves (5 mHz to 20mHz) have previously been suggested as a source of energy accounting partial heating of the quiet solar atmosphere. The dynamics of previously detected high-frequency waves is analysed here. Image sequences are taken using the German Vacuum Tower Telescope (VTT), Observatorio del Teide, Izana, Tenerife, with a Fabry-Perot spectrometer. The data were speckle reduced and analyzed with wavelets. Wavelet phase-difference analysis is performed to determine whether the waves propagate. We observe the propagation of waves in the frequency range 10mHz to 13mHz. We also observe propagation of low-frequency waves in the ranges where they are thought to be evanescent in regions where magnetic structures are present.

  12. Propagation of High Frequency Waves in the Quiet Solar Atmosphere

    Directory of Open Access Journals (Sweden)

    Andić, A.

    2008-12-01

    Full Text Available High-frequency waves (5 mHz to 20 mHz have previously been suggested as a source of energy accounting for partial heating of the quiet solar atmosphere. The dynamics of previously detected high-frequency waves is analysed here. Image sequences were taken by using the German Vacuum Tower Telescope (VTT, Observatorio del Teide, Izana, Tenerife, with a Fabry-Perot spectrometer. The data were speckle reduced and analysed with wavelets. Wavelet phase-difference analysis was performed to determine whether the waves propagate. We observed the propagation of waves in the frequency range 10 mHz to 13 mHz. We also observed propagation of low-frequency waves in the ranges where they are thought to be evanescent in the regions where magnetic structures are present.

  13. Broadband high-resolution x-ray frequency combs

    CERN Document Server

    Cavaletto, Stefano M; Ott, Christian; Buth, Christian; Pfeifer, Thomas; Keitel, Christoph H

    2014-01-01

    Optical frequency combs have had a remarkable impact on precision spectroscopy. Enabling this technology in the x-ray domain is expected to result in wide-ranging applications, such as stringent tests of astrophysical models and quantum electrodynamics, a more sensitive search for the variability of fundamental constants, and precision studies of nuclear structure. Ultraprecise x-ray atomic clocks may also be envisaged. In this work, an x-ray pulse-shaping method is put forward to generate a comb in the absorption spectrum of an ultrashort high-frequency pulse. The method employs an optical-frequency-comb laser, manipulating the system's dipole response to imprint a comb on an excited transition with a high photon energy. The described scheme provides higher comb frequencies and requires lower optical-comb peak intensities than currently explored methods, preserves the overall width of the optical comb, and may be implemented by presently available x-ray technology.

  14. Broadband high-resolution X-ray frequency combs

    Science.gov (United States)

    Cavaletto, Stefano M.; Harman, Zoltán; Ott, Christian; Buth, Christian; Pfeifer, Thomas; Keitel, Christoph H.

    2014-07-01

    Optical frequency combs have had a remarkable impact on precision spectroscopy. Enabling this technology in the X-ray domain is expected to result in wide-ranging applications, such as stringent tests of astrophysical models and quantum electrodynamics, a more sensitive search for the variability of fundamental constants, and precision studies of nuclear structure. Ultraprecise X-ray atomic clocks may also be envisaged. In this work, an X-ray pulse-shaping method is proposed to generate a comb in the absorption spectrum of an ultrashort high-frequency pulse. The method employs an optical-frequency-comb laser, manipulating the system's dipole response to imprint a comb on an excited transition with a high photon energy. The described scheme provides higher comb frequencies and requires lower optical-comb peak intensities than currently explored methods, preserves the overall width of the optical comb, and may be implemented using currently available X-ray technology.

  15. High-frequency waves in a plasma waveguide

    International Nuclear Information System (INIS)

    An analysis of the azimuthally symmetrical, high-frequency eigenmodes of a cylindrical metallic waveguide partially filled with a magnetized plasma is presented. Equations that permit calculation of the dispersion curves for four families of electromagnetic and electrostatic modes are derived. Numerical solutions are presented to facilitate the development of devices for generation of high-power electromagnetic radiation, charged particle acceleration, and other applications of plasma waveguides. The dependence of the cutoff frequencies, and dispersion curves of various modes on the ratio of the plasma radius a to the waveguide radius R is studied in detail. Space-charge modes are found to be strongly dependent on the radius ratio a/R. The coupling of the dispersion curves of different modes and the variation of the cutoff frequencies of HE waveguide and cyclotron modes with cyclotron frequency are illustrated for the partially filled waveguide

  16. External high-frequency control of combustion instability

    Science.gov (United States)

    Larionov, V. M.; Mitrofanov, G. A.; Kozar, A. N.

    2016-01-01

    The article presents the results of experimental studies of combustion instability in the pulse combustor. Propane-air mixture is burned in the chamber with the flame holder. It was experimentally found that feeding high-frequency sound vibrations into the combustion chamber causes the suppression of pulsating combustion. The oscillation frequency ranges in 870 to 1400 Hz. This corresponds to 9-12 resonance frequencies of oscillations in the combustor. The physical mechanism of the observed phenomenon consists in changing the conditions of formation and destruction of fuel jets in the vortex zone behind the flame holder.

  17. Alveolar pressure during high-frequency jet ventilation

    OpenAIRE

    Vught, Adrianus; Versprille, Adrian; Jansen, Jos

    1990-01-01

    textabstractWe studied the influence of ventilatory frequency (1-5 Hz), tidal volume, lung volume and body position on the end-expiratory alveolar-to-tracheal pressure difference during high-frequency jet ventilation (HFJV) in Yorkshire piglets. The animals were anesthetized and paralysed. Alveolar pressure was estimated with the clamp off method, which was performed by a computer controlled ventilator and which had been extensively tested on its feasibility. The alveolar-to-tracheal pressure...

  18. Tailoring Carbon Nanostructure for High Frequency Supercapacitor Operation

    OpenAIRE

    Pritesh Hiralal; Gemma Rius; Piers Andrew; Masamichi Yoshimura; Amaratunga, Gehan A. J.

    2014-01-01

    The possibility of enhancing the frequency performance of electrochemical capacitors by tailoring the nanostructure of the carbon electrode to increase electrolyte permeability is demonstrated. Highly porous, vertically oriented carbon electrodes which are in direct electrical contact with the metallic current collector are produced via MPECVD growth on metal foils. The resulting structure has a capacitance and frequency performance between that of an electrolytic capacitor and an electrochem...

  19. Development of high efficiency second harmonic frequency converter

    International Nuclear Information System (INIS)

    An efficient four-pass quadrature frequency conversion scheme was developed. A high conversion efficiency in excess of 80% has been achieved for frequency doubling of 1064-nm in KTP with a low input fundamental laser intensity of 76 MW/cm2. A second-harmonic output of 486 mJ has been obtained with 607 mJ of the input 1064-nm fundamental laser at 10 Hz. (author)

  20. Development of high efficiency second harmonic frequency converter

    Energy Technology Data Exchange (ETDEWEB)

    Kiriyama, Hiromitsu; Matsuoka, Shinichi; Maruyama, Yoichiro; Arisawa, Takashi [Advanced Photon Research Center, Kansai Research Establishment, Japan Atomic Energy Research Inst., Kizu, Kyoto (Japan)

    2000-03-01

    An efficient four-pass quadrature frequency conversion scheme was developed. A high conversion efficiency in excess of 80% has been achieved for frequency doubling of 1064-nm in KTP with a low input fundamental laser intensity of 76 MW/cm{sup 2}. A second-harmonic output of 486 mJ has been obtained with 607 mJ of the input 1064-nm fundamental laser at 10 Hz. (author)

  1. Engineering Graphene Conductivity for Flexible and High-Frequency Applications.

    Science.gov (United States)

    Samuels, Alexander J; Carey, J David

    2015-10-14

    Advances in lightweight, flexible, and conformal electronic devices depend on materials that exhibit high electrical conductivity coupled with high mechanical strength. Defect-free graphene is one such material that satisfies both these requirements and which offers a range of attractive and tunable electrical, optoelectronic, and plasmonic characteristics for devices that operate at microwave, terahertz, infrared, or optical frequencies. Essential to the future success of such devices is therefore the ability to control the frequency-dependent conductivity of graphene. Looking to accelerate the development of high-frequency applications of graphene, here we demonstrate how readily accessible and processable organic and organometallic molecules can efficiently dope graphene to carrier densities in excess of 10(13) cm(-2) with conductivities at gigahertz frequencies in excess of 60 mS. In using the molecule 3,6-difluoro-2,5,7,7,8,8-hexacyanoquinodimethane (F2-HCNQ), a high charge transfer (CT) of 0.5 electrons per adsorbed molecule is calculated, resulting in p-type doping of graphene. n-Type doping is achieved using cobaltocene and the sulfur-containing molecule tetrathiafulvalene (TTF) with a CT of 0.41 and 0.24 electrons donated per adsorbed molecule, respectively. Efficient CT is associated with the interaction between the π electrons present in the molecule and in graphene. Calculation of the high-frequency conductivity shows dispersion-less behavior of the real component of the conductivity over a wide range of gigahertz frequencies. Potential high-frequency applications in graphene antennas and communications that can exploit these properties and the broader impacts of using molecular doping to modify functional materials that possess a low-energy Dirac cone are also discussed. PMID:26387636

  2. Extended High Frequency Audiometry in Polycystic Ovary Syndrome

    Directory of Open Access Journals (Sweden)

    Cuneyt Kucur

    2013-01-01

    and BMI of PCOS and control groups were comparable. Each subject was tested with low (250–2000 Hz, high (4000–8000 Hz, and extended high frequency audiometry (8000–20000. Hormonal and biochemical values including LH, LH/FSH, testosterone, fasting glucose, fasting insulin, HOMA-I, and CRP were calculated. Results. PCOS patients showed high levels of LH, LH/FSH, testosterone, fasting insulin, glucose, HOMA-I, and CRP levels. The hearing thresholds of the groups were similar at frequencies of 250, 500, 1000, 2000, and 4000 Hz; statistically significant difference was observed in 8000–14000 Hz in PCOS group compared to control group. Conclusion. PCOS patients have hearing impairment especially in extended high frequencies. Further studies are needed to help elucidate the mechanism behind hearing impairment in association with PCOS.

  3. Design of matching layers for high-frequency ultrasonic transducers

    Science.gov (United States)

    Fei, Chunlong; Ma, Jianguo; Chiu, Chi Tat; Williams, Jay A.; Fong, Wayne; Chen, Zeyu; Zhu, BenPeng; Xiong, Rui; Shi, Jing; Hsiai, Tzung K.; Shung, K. Kirk; Zhou, Qifa

    2015-09-01

    Matching the acoustic impedance of high-frequency (≥100 MHz) ultrasound transducers to an aqueous loading medium remains a challenge for fabricating high-frequency transducers. The traditional matching layer design has been problematic to establish high matching performance given requirements on both specific acoustic impedance and precise thickness. Based on both mass-spring scheme and microwave matching network analysis, we interfaced metal-polymer layers for the matching effects. Both methods hold promises for guiding the metal-polymer matching layer design. A 100 MHz LiNbO3 transducer was fabricated to validate the performance of the both matching layer designs. In the pulse-echo experiment, the transducer echo amplitude increased by 84.4% and its -6dB bandwidth increased from 30.2% to 58.3% comparing to the non-matched condition, demonstrating that the matching layer design method is effective for developing high-frequency ultrasonic transducers.

  4. Portable high precision small/wide angle X-ray scattering diffractometer

    CERN Document Server

    Gaponov, Y A; Kochubey, D I; Tolochko, B P

    2001-01-01

    The portable high precision small/wide angle X-ray scattering diffractometer (modified Bonze-Hart optical scheme) was designed and developed for the investigation of structure rearrangement during liquid state-solid state transformations (with reaction time of 10 h or more) for the investigation of the process of solid state phase formation. The FEM detectors are used as monitor and detector. The double crystal Si sub 1 sub 1 sub 1 analyzer (with changeable relative angle of the second crystal) is used as analyzer. All controlling electronics are designed in CAMAC. The diffractometer is controlled by a Sun SPARCStation with SVIC/VCC modules under a Solaris 2.4 operating system, and allows one to obtain the SAXS curves with accuracies (on s-vector for photon energy 8 keV) of about delta s approx 0.002 nm sup - sup 1 , s sub m sub i sub n approx 0.005 nm sup - sup 1 (scattering centers with the size of about 200-500 nm may be observed) and s sub m sub a sub x approx 50 nm sup - sup 1 (scattering angle is about ...

  5. Portable high precision small/wide angle X-ray scattering diffractometer

    International Nuclear Information System (INIS)

    The portable high precision small/wide angle X-ray scattering diffractometer (modified Bonze-Hart optical scheme) was designed and developed for the investigation of structure rearrangement during liquid state-solid state transformations (with reaction time of 10 h or more) for the investigation of the process of solid state phase formation. The FEM detectors are used as monitor and detector. The double crystal Si111 analyzer (with changeable relative angle of the second crystal) is used as analyzer. All controlling electronics are designed in CAMAC. The diffractometer is controlled by a Sun SPARCStation with SVIC/VCC modules under a Solaris 2.4 operating system, and allows one to obtain the SAXS curves with accuracies (on s-vector for photon energy 8 keV) of about δs∼0.002 nm-1, smin∼0.005 nm-1 (scattering centers with the size of about 200-500 nm may be observed) and smax∼50 nm-1 (scattering angle is about 80 deg.)

  6. Carbon nanotube transistor based high-frequency electronics

    Science.gov (United States)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  7. A method for achieving monotonic frequency-temperature response for langasite surface-acoustic-wave high-temperature sensor

    Science.gov (United States)

    Shaoming, Bao; Yabing, Ke; Yanqing, Zheng; Lina, Cheng; Honglang, Li

    2016-02-01

    To achieve the monotonic frequency-temperature response for a high-temperature langasite (LGS) surface-acoustic-wave (SAW) sensor in a wide temperature range, a method utilizing two substrate cuts with different propagation angles on the same substrate plane was proposed. In this method, the theory of effective permittivity is adopted to calculate the temperature coefficients of frequency (TCF), electromechanical coupling coefficients (k2), and power flow angle (PFA) for different propagation angles on the same substrate plane, and then the two substrate cuts were chosen to have large k2 and small PFA, as well as the difference in their TCFs (ΔTCF) to always have the same sign of their values. The Z-cut LGS substrate plane was taken as an example, and the two suitable substrate cuts with propagation angles of 74 and 80° were chosen to derive a monotonic frequency-temperature response for LGS SAW sensors at -50 to 540 °C. Experiments on a LGS SAW sensor using the above two substrate cuts were designed, and its measured frequency-temperature response at -50 to 540 °C agreed well with the theory, demonstrating the high accuracy of the proposed method.

  8. Development of dual frequency gyrotron and high power test of EC components

    Directory of Open Access Journals (Sweden)

    Sakamoto K.

    2012-09-01

    Full Text Available In JAEA, development of high-power long-pulse gyrotrons is underway. The output power of the gyrotron was applied for high-power long-pulse tests of the transmission line (TL and the equatorial launcher (EL mock up for ITER. The feature of design in the dual frequency gyrotron is the simultaneously satisfying the matching of both frequencies at a window and the same radiation angle at an internal mode convertor for both frequencies. The dual frequency gyrotron was developed and high power operations at 170 GHz and 137 GHz were carried out. The 170 GHz high power experiment of 40 m length ITER relevant TL was carried out and transmission efficiency and mode purity change caused by long pulse operation were measured. The mock-up model of EL was also tested using 170 GHz gyrotron. The power transmission through the quasi-optical beam line in EL was demonstrated using the full scale mock up model. Furthermore, the high power test results of the transmission components will be summarized.

  9. Surface modification of polyethylene terephthalate substrates by high frequency air discharge plasma. Structure, morphology, adhesion performance

    International Nuclear Information System (INIS)

    Effect of high frequency air discharge plasma on the surface and adhesion performance of polyethylene terephthalate (PET) substrates of different thickness was investigated. Based upon X-ray photoelectron spectroscopy, contact angle measurements and ATF FTIR was shown that chemical composition of thin surface layer changes even after first 5 minutes of plasma treatment in spite of mild conditions of etching. Structure changes were estimated by AFM and TEM. It was shown that plasma treatment reveals phase structure organization of PET, but total surface relief changes insignificantly. Dramatic change in surface energy after treatment was revealed by contact angle measurements. At the same time, it was shown that surface energy relaxation occurs during storage of substrate in room conditions. These results are in good agreement with adhesion performance of PET substrate to model silicon scotch estimated by 180º Peel Test. Key words: surface energy, adhesion properties, plasma etching of PET surface

  10. Electrojet-independent ionospheric extremely low frequency/very low frequency wave generation by powerful high frequency waves

    International Nuclear Information System (INIS)

    Results of extremely low frequency/very low frequency (ELF/VLF) wave generation by intensity-modulated high frequency (HF) heaters of 3.2 MHz in Gakona, Alaska, near local solar noon during a geomagnetic quiet time, are presented to support an electrojet-independent ELF/VLF wave generation mechanism. The modulation was set by splitting the HF transmitter array into two subarrays; one was run at cw full power and the other run alternatively at 50% and 100% power modulation by rectangular waves of 2.02, 5, 8, and 13 kHz. The most effective generation was from the X-mode heater with 100% modulation. While the 8 kHz radiation has the largest wave amplitude, the spectral intensity of the radiation increases with the modulation frequency, i.e., 13 kHz line is the strongest. Ionograms recorded significant virtual height spread of the O-mode sounding echoes. The patterns of the spreads and the changes of the second and third hop virtual height traces caused by the O/X-mode heaters are distinctively different, evidencing that it is due to differently polarized density irregularities generated by the filamentation instability of the O/X-mode HF heaters.

  11. Neighborite Under High Pressure: In Situ Angle Dispersive X-ray Diffraction Study Using Synchrotron Radiation

    Science.gov (United States)

    Liu, H.; Chen, J.; Weidner, D.; Hu, J.; Meng, Y.; Mao, H.

    2003-12-01

    The neighborite (NaMgF3) is an ideal analogue model for silicate perovskite (MgSiO3) due to the similarities between their crystal and electronic structures. The advantage of the analogue study is that the weaker bonding feature of neighborite grants us the opportunity to simulate behavior of silicate perovskite at lower mantlei. e.high pressure and high temperature condition, at relatively lower P-T conditions. The previous high pressure studies for neighborite were reported by Zhao et al [1, 2]. Energy dispersive x-ray diffraction data were achieved within 10GPa and 1000oC, while angle dispersive x-ray diffraction data were obtained only at 4.9GPa and room temperature.More information of atomic position change is required to reveal the role of MgF6 octahedral framework tilting during its phase transition process responding to heating andcompressing. Thus the high-resolution monochromatic x-ray powder diffraction studies on NaMgF3 perovskite at high pressure were carried out using diamond anvil cell at X17C of National Synchrotron Light Source (Brookhaven) and HPCAT of Advance Photon Source (Argonne). The orthorhombic structure keeps stable under pressure up to 30 GPa, and the crystal structure is refined using Rietveld method. The result indicates that tilting angle of the MgF6 octahedral framework increases continually while the octahedral Mg-F bond length decreases slightly with increasing pressure.Difference between the tilting angles derived from macro-structure (lattice parameters) and from micro-structure (atomic positions), as well as the trend of change in the tilting angle with temperature and pressureare discussed. [1]. Zhao YS, Weidner DJ, Ko JD, Leinenweber K, Liu X, Li BS, Meng Y,Pacalo REG, Vaughan MT, Wang YB, Yeganehhaeri A,J.Geophys. Res. Solid Earth, 99 (1994) 2871. [2]. Zhao YS, Parise JB, Wang YB, Kusaba K, Vaughan MT, Weidner DJ, Kikegawa T, Chen J, Shimomura O,Am.Miner., 79 (1994) 615.

  12. High frequency optical pulse generation by frequency doubling using polarization rotation

    Science.gov (United States)

    Liu, Yang

    2016-05-01

    In this work, we propose and experimentally characterize a stable 40 GHz optical pulse generation by frequency doubling using polarization rotation in a phase modulator (PM). Only half the electrical driving frequency is required (i.e. 20 GHz); hence the deployment cost can be reduced. Besides, precise control of the bias of the PM is not required. The generated optical pulses have a high center-mode-suppression-ratio (CMSR) of  >  28 dB. The single sideband (SSB) noise spectrum is also measured, and the time-domain waveforms under different CMSRs are also analyzed and discussed.

  13. High Frequency Amplitude Detector for GMI Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Aktham Asfour

    2014-12-01

    Full Text Available A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted.

  14. Control of high frequency microactuators using active structures

    International Nuclear Information System (INIS)

    A fluidically driven microactuator that generates supersonic, pulsed microjets has been implemented with smart materials to actively and precisely control the frequency of the microjets in a closed-loop manner. Since this actuator relies on a number of microscale flow and acoustic phenomena to produce the pulsed microjets, its resonant frequency is determined by its geometry and other flow parameters. The design discussed in this paper integrates piezoelectric stacks by connecting them to movable sidewalls within the actuator such that the microactuator's internal geometry can be controlled by varying the voltage across the piezo-stacks. An open-loop control scheme demonstrates the frequency modulation capabilities that are enabled with this design: very large frequency deviations (up to ±500 Hz) around the actuator design frequency are attained at very high rates (up to 1 kHz). Closed-loop control of the microactuator's frequency was also demonstrated, and the results indicate that (combined with appropriate sensors) this actuator could be used effectively for active, feedback control in high-speed, resonance-dominated flowfields. This proof of concept study clearly illustrates the ability of this robust and compact actuator to produce perturbations that can be modulated and controlled based on the desired control objective. (paper)

  15. High frequency conductivity of hot electrons in carbon nanotubes

    Science.gov (United States)

    Amekpewu, M.; Mensah, S. Y.; Musah, R.; Mensah, N. G.; Abukari, S. S.; Dompreh, K. A.

    2016-05-01

    High frequency conductivity of hot electrons in undoped single walled achiral Carbon Nanotubes (CNTs) under the influence of ac-dc driven fields was considered. We investigated semi-classically Boltzmann's transport equation with and without the presence of the hot electrons' source by deriving the current densities in CNTs. Plots of the normalized current density versus frequency of ac-field revealed an increase in both the minimum and maximum peaks of normalized current density at lower frequencies as a result of a strong injection of hot electrons. The applied ac-field plays a twofold role of suppressing the space-charge instability in CNTs and simultaneously pumping an energy for lower frequency generation and amplification of THz radiations. These have enormous promising applications in very different areas of science and technology.

  16. Structure of high angle grain boundaries in metals and ceramic oxides

    International Nuclear Information System (INIS)

    A critical review is given of the state of our current knowledge of the structure of high angle grain boundaries in metals and in ceramic oxides. Particular attention is given to effects due to differences in the bonding and crystal structure in these solid types. The results of recent experimental work and efforts to model grain boundary structure using computer simulation methods are described. Important characteristic features of boundaries in these materials are discussed. Difficulties which are presently being encountered in efforts to determine their structure are pointed out

  17. Large zenith angle momentum muon spectrum of high energy cosmic rays

    International Nuclear Information System (INIS)

    Preliminary results are presented on measuring the momentum of high-energy muons in cosmic radiation on the Aragats mountain at a mean zenith angle equal to 84 deg. The measurements have been carried out with a magnetic spectrometer, its maximum measurable momentum being 1630 GeV/c, and minimum 5 GeV/c, wide-gap spark chambers have been used as detectors. The method of processing is described and analysis of the experimental data obtained is given. The results are compared with data obtained with similar devices

  18. Ultra-high resolution small-angle x-ray diffractometry: measurements of very large periods in biological fibres

    International Nuclear Information System (INIS)

    The technique of small-angle x-ray scattering using a synchrotron source is described. Improved instrumentation is shown, using multiple-reflection crystal monoliths as high-quality collimators. A small-angle diffraction pattern from frog Sartorius muscle, using the improved apparatus, is shown. (U.K.)

  19. μHigh resolution-magic-angle spinning NMR spectroscopy for metabolic phenotyping of Caenorhabditis elegans.

    Science.gov (United States)

    Wong, Alan; Li, Xiaonan; Molin, Laurent; Solari, Florence; Elena-Herrmann, Bénédicte; Sakellariou, Dimitris

    2014-06-17

    Analysis of model organisms, such as the submillimeter-size Caenorhabditis elegans, plays a central role in understanding biological functions across species and in characterizing phenotypes associated with genetic mutations. In recent years, metabolic phenotyping studies of C. elegans based on (1)H high-resolution magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy have relied on the observation of large populations of nematodes, requiring labor-intensive sample preparation that considerably limits high-throughput characterization of C. elegans. In this work, we open new platforms for metabolic phenotyping of C. elegans mutants. We determine rich metabolic profiles (31 metabolites identified) from samples of 12 individuals using a (1)H NMR microprobe featuring high-resolution magic-angle coil spinning (HR-MACS), a simple conversion of a standard HR-MAS probe to μHR-MAS. In addition, we characterize the metabolic variations between two different strains of C. elegans (wild-type vs slcf-1 mutant). We also acquire a NMR spectrum of a single C. elegans worm at 23.5 T. This study represents the first example of a metabolomic investigation carried out on a small number of submillimeter-size organisms, demonstrating the potential of NMR microtechnologies for metabolomics screening of small model organisms. PMID:24897622

  20. High-frequency technology of grain protection from storehouse pests

    International Nuclear Information System (INIS)

    The results of experimental investigation of physical methods are presented for suppressing of biological activity of grain and grain product pests: harmful insects at each developmental stage except eggs (Insecta), mites (Arachrida, Acariformes) and microscopic fungi and bacteria. The technologies under development for disinfestation and disinfection of grain are based on irradiation of grain by high-frequency (HF) electromagnetic fields. Is shown, that at implementation of high-frequency technology in the chamber of irradiation there are premises for destruction harmful pests. It results in increase of efficiency of destruction grain pests, with complete environmental safety

  1. Extracting cardiac myofiber orientations from high frequency ultrasound images

    Science.gov (United States)

    Qin, Xulei; Cong, Zhibin; Jiang, Rong; Shen, Ming; Wagner, Mary B.; Kirshbom, Paul; Fei, Baowei

    2013-03-01

    Cardiac myofiber plays an important role in stress mechanism during heart beating periods. The orientation of myofibers decides the effects of the stress distribution and the whole heart deformation. It is important to image and quantitatively extract these orientations for understanding the cardiac physiological and pathological mechanism and for diagnosis of chronic diseases. Ultrasound has been wildly used in cardiac diagnosis because of its ability of performing dynamic and noninvasive imaging and because of its low cost. An extraction method is proposed to automatically detect the cardiac myofiber orientations from high frequency ultrasound images. First, heart walls containing myofibers are imaged by B-mode high frequency (hearts.

  2. HFT events - Shallow moonquakes. [High-Frequency Teleseismic

    Science.gov (United States)

    Nakamura, Y.

    1977-01-01

    A few large distant seismic events of distinctly high signal frequency, designated HFT (high-frequency teleseismic) events, are observed yearly by the Apollo lunar seismic network. Their sources are located on or near the surface of the moon, leaving a large gap in seismic activity between the zones of HFT sources and deep moonquakes. No strong regularities are found in either their spatial or temporal distributions. Several working hypotheses for the identity of these sources have advanced, but many characteristics of the events seem to favor a hypothesis that they are shallow moonquakes. Simultaneous observations of other lunar phenomena may eventually enable the determination of their true identity.

  3. Very High Frequency Switch-Mode Power Supplies

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre

    of technologies for very high frequency switch mode power supplies. At these highly elevated frequencies normal bulky magnetics with heavy cores consisting of rare earth materials, can be replaced by air core inductors embedded in the printed circuit board. This is investigated thoroughly and both spirals......, solenoids and toroids are considered, both for use as inductors and transformers. Two control methods are also investigated, namely burst mode control and outphasing. It is shown that a very flat efficiency curve can be achieved with burst mode. A 89.5% efficient converter is implemented and the efficiency...

  4. Infrared frequency combs and supercontinua for multiplex high sensitivity spectroscopy

    CERN Document Server

    Mandon, Julien; Sorokina, Irina T; Guelachvili, Guy; Picqué, Nathalie

    2007-01-01

    An infrared high-brightness light source based on supercontinuum generation through a SF6 photonic crystal fiber seeded by a Cr^4+:YAG femtosecond oscillator is developed for high resolution multiplex spectroscopy in the 1.5 $\\mu$m region. Moreover, a multiplex high resolution approach based on a Cr^4+:YAG frequency comb enables to probe large spectral domains, with simultaneous sensitive measurement of the absorption and the dispersion associated with all individual spectral features.

  5. High-Frequency Normal Mode Propagation in Aluminum Cylinders

    Science.gov (United States)

    Lee, Myung W.; Waite, William F.

    2009-01-01

    Acoustic measurements made using compressional-wave (P-wave) and shear-wave (S-wave) transducers in aluminum cylinders reveal waveform features with high amplitudes and with velocities that depend on the feature's dominant frequency. In a given waveform, high-frequency features generally arrive earlier than low-frequency features, typical for normal mode propagation. To analyze these waveforms, the elastic equation is solved in a cylindrical coordinate system for the high-frequency case in which the acoustic wavelength is small compared to the cylinder geometry, and the surrounding medium is air. Dispersive P- and S-wave normal mode propagations are predicted to exist, but owing to complex interference patterns inside a cylinder, the phase and group velocities are not smooth functions of frequency. To assess the normal mode group velocities and relative amplitudes, approximate dispersion relations are derived using Bessel functions. The utility of the normal mode theory and approximations from a theoretical and experimental standpoint are demonstrated by showing how the sequence of P- and S-wave normal mode arrivals can vary between samples of different size, and how fundamental normal modes can be mistaken for the faster, but significantly smaller amplitude, P- and S-body waves from which P- and S-wave speeds are calculated.

  6. Accurate fault location technique for distribution system using fault-generated high-frequency transient voltage signals

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Z.Q.; Weller, G. [Alstom T and D Protection Control Ltd., Stafford (United Kingdom); Redfern, M.A. [University of Bath (United Kingdom). Dept. of Electronic and Electrical Engineering

    1999-01-01

    A technique is presented for accurate fault location on distribution overhead lines and underground cables. A specially designed fault locator unit is used to capture the high-frequency voltage transient signal generated by faults on the distribution line/cable. The travelling time of the high-frequency components is used to determine the fault position. The technique is insensitive to fault type, fault resistance, fault inception angle and system source configuration, and is able to offer very high accuracy in fault location in a distribution system. (author)

  7. Ultrathin Semiconductor Perfect Light Absorbers with High Spectral, Polarization, and Angle Selectivity for Arbitrary Wavelengths

    CERN Document Server

    Huang, Lujun; Cao, Linyou

    2014-01-01

    Enabling perfect light absorption in ultrathin materials promises the development of exotic photonic devices. Here we demonstrate new strategies that can provide capabilities to rationally design ultrathin (thickness < {\\lambda}/10~{\\lambda}/5) semiconductor perfect absorbers for arbitrary wavelengths, including those at which the intrinsic absorption of the semiconductor is weak, e.g. Si for near-IR wavelengths. This is in stark contrast with the existing studies on ultrathin perfect absorbers, which have focused on metallic materials or highly-absorptive semiconductors. Our design strategies are built upon an intuitive model, coupled leaky mode theory that we recently developed and can turn the design for perfect absorbers to the design for leaky modes. The designed absorber is featured with extraordinary absorption enhancement, miniaturized dimension, and high selectivity for the wavelength, polarization, and angle of incident light. It can enable the development of flexible, light-weight, high-performa...

  8. High frequency modeling of power transformers. Stresses and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bjerkan, Eilert

    2005-05-15

    In this thesis a reliable, versatile and rigorous method for high frequency power transformer modeling is searched and established. The purpose is to apply this model to sensitivity analysis of FRA (Frequency Response Analysis) which is a quite new diagnostic method for assessing the mechanical integrity of power transformer windings on-site. The method should be versatile in terms of being able to estimate internal and external over voltages and resonances. Another important aspect is that the method chosen is suitable for real transformer geometries. In order to verify the suitability of the model for real transformers, a specific test-object is used. This is a 20MVA transformer, and details are given in chapter 1.4. The high frequency power transformer model is established from geometrical and constructional information from the manufacturer, together with available material characteristics. All circuit parameters in the lumped circuit representation are calculated based on these data. No empirical modifications need to be performed. Comparison shows capability of reasonable accuracy in the range from 10 khz to 1 MHz utilizing a disc-to-disc representation. A compromise between accuracy of model due to discretization and complexity of the model in a turn-to-turn representation is inevitable. The importance of the iron core is emphasized through a comparison of representations with/without the core included. Frequency-dependent phenomena are accurately represented using an isotropic equivalent for windings and core, even with a coarse mesh for the FEM-model. This is achieved through a frequency-dependent complex permeability representation of the materials. This permeability is deduced from an analytical solution of the frequency-dependent magnetic field inside the conductors and the core. The importance of dielectric losses in a transformer model is also assessed. Since published data on the high frequency properties of press board are limited, some initial

  9. Method for estimating the aerodynamic coefficients of wind turbine blades at high angles of attack

    Science.gov (United States)

    Beans, E. W.; Jakubowski, G. S.

    1983-12-01

    The method is based on the hypothesis that at high angles of attack the force on an airfoil is produced by the deflection of the fluid across the lower surface. It is also hypothesized that all airfoils behave the same regardless of shape and that the effects of circulation and skin friction are small. It is pointed out that the expression for the force N normal to the airfoil due to momentum exchange can be written in terms of the component parallel to the flow (drag) and the component perpendicular to the flow (lift). A comparison of estimated values with measured values and generally accepted data indicates that the method given here estimates coefficients which are low. It is thought that the difference may derive from the persistence of circulation at high angles of attack. Low estimates are not seen as a serious limitation to the designer of wind turbines. Owing to the fifth power diameter relation, the effect of a low estimate of performance on the inner portion of the blade is minimized.

  10. Iterative reconstruction optimisations for high angle cone-beam micro-CT

    Science.gov (United States)

    Recur, B.; Fauconneau, M.; Kingston, A.; Myers, G.; Sheppard, A.

    2014-09-01

    We address several acquisition questions that have arisen for the high cone-angle helical-scanning micro-CT facility developed at the Australian National University. These challenges are generally known in medical and industrial cone-beam scanners but can be neglected in these systems. For our large datasets, with more than 20483 voxels, minimising the number of operations (or iterations) is crucial. Large cone-angles enable high signal-to-noise ratio imaging and a large helical pitch to be used. This introduces two challenges: (i) non-uniform resolution throughout the reconstruction, (ii) over-scan beyond the region-of-interest significantly increases re- quired reconstructed volume size. Challenge (i) can be addressed by using a double-helix or lower pitch helix but both solutions slow down iterations. Challenge (ii) can also be improved by using a lower pitch helix but results in more projections slowing down iterations. This may be overcome using less projections per revolution but leads to more iterations required. Here we assume a given total time for acquisition and a given reconstruction technique (SART) and seek to identify the optimal trajectory and number of projections per revolution in order to produce the best tomogram, minimise reconstruction time required, and minimise memory requirements.

  11. The effect of contact angles and capillary dimensions on the burst frequency of super hydrophilic and hydrophilic centrifugal microfluidic platforms, a CFD study.

    Science.gov (United States)

    Kazemzadeh, Amin; Ganesan, Poo; Ibrahim, Fatimah; He, Shuisheng; Madou, Marc J

    2013-01-01

    This paper employs the volume of fluid (VOF) method to numerically investigate the effect of the width, height, and contact angles on burst frequencies of super hydrophilic and hydrophilic capillary valves in centrifugal microfluidic systems. Existing experimental results in the literature have been used to validate the implementation of the numerical method. The performance of capillary valves in the rectangular and the circular microfluidic structures on super hydrophilic centrifugal microfluidic platforms is studied. The numerical results are also compared with the existing theoretical models and the differences are discussed. Our experimental and computed results show a minimum burst frequency occurring at square capillaries and this result is useful for designing and developing more sophisticated networks of capillary valves. It also predicts that in super hydrophilic microfluidics, the fluid leaks consistently from the capillary valve at low pressures which can disrupt the biomedical procedures in centrifugal microfluidic platforms. PMID:24069169

  12. The effect of contact angles and capillary dimensions on the burst frequency of super hydrophilic and hydrophilic centrifugal microfluidic platforms, a CFD study.

    Directory of Open Access Journals (Sweden)

    Amin Kazemzadeh

    Full Text Available This paper employs the volume of fluid (VOF method to numerically investigate the effect of the width, height, and contact angles on burst frequencies of super hydrophilic and hydrophilic capillary valves in centrifugal microfluidic systems. Existing experimental results in the literature have been used to validate the implementation of the numerical method. The performance of capillary valves in the rectangular and the circular microfluidic structures on super hydrophilic centrifugal microfluidic platforms is studied. The numerical results are also compared with the existing theoretical models and the differences are discussed. Our experimental and computed results show a minimum burst frequency occurring at square capillaries and this result is useful for designing and developing more sophisticated networks of capillary valves. It also predicts that in super hydrophilic microfluidics, the fluid leaks consistently from the capillary valve at low pressures which can disrupt the biomedical procedures in centrifugal microfluidic platforms.

  13. Low- and high-frequency fatigue of bulk metallic glasses

    International Nuclear Information System (INIS)

    Research highlights: → Recovery stages are stipulated by migration of configurations of point defects. → Fatigue-endurance limit and the fracture mode depend on the frequency. → Ultrasonic vibrations induce irreversible changes of the BMG structure. - Abstract: The 2.5 MeV electron-irradiation and resistance-recovery experiments were performed. It was found that the majority of atoms of a (Zr0.55Al0.10Ni0.05Cu0.30)99Y1 bulk metallic glass (BMG) possess a locally preferred order, and vacancies are stable point defects. Low- and high-frequency compression-compression fatigue experiments show that the fatigue-endurance limit and mode of the fatigue fracture of this BMG essentially depend on the cycling frequency. At the low-frequency cycling (10 Hz), the catastrophic crack is initiated mainly due to the shear-of-steps formation, and the fatigue-endurance limit is ∼0.44 σFS (σFS is the fracture stress). At the high-frequency cycling (20 kHz), the catastrophic crack forms due to the propagation and mergence of nano-cracks initiated from slip layers at intercluster boundaries. The fatigue-endurance limit in this case is a random quantity with a mean value of ∼0.04 σFS.

  14. Features of the high frequency power transformer calculation

    Directory of Open Access Journals (Sweden)

    D.A. Zabarilo

    2013-06-01

    Full Text Available Purpose. The windings of power transformers have low resistance value and a most inductance, which reduces the rate of rise of current in the windings. Therefore, when the estimated amount of current is set one should make sure of the possibility of achieving it. As inductance is characterized by a short-circuit voltage, it is necessary to develop a technique for determining the maximum magnitude of the current in the windings of the transformer according to the short-circuit voltage and operating frequency. Methodology. The classical method of calculation of transient processes to determine the value of the transient current of the transformer windings to achieve purpose is used. Findings. The nature of the transient current in the windings of high-frequency transformer, which is powered by a voltage inverter is investigated and analyzed. Originality. The method for determining the maximum amount of current depending on the short-circuit voltage and frequency of the applied voltage with other set-up parameters was proposed. Practical value. The proposed method allows determining the maximum value of the current in the windings of the high-frequency transformer including its RL-parameters. This will let compare the value of a given current with possible depending on short-circuit voltage and frequency of the applied voltage. Research material may be applied for power transformers design.

  15. High frequency alternating current chip nano calorimeter with laser heating

    International Nuclear Information System (INIS)

    Heat capacity spectroscopy at frequencies up to 100 kHz is commonly performed by thermal effusivity measurements applying the 3ω-technique. Here we show that AC-calorimetry using a thin film chip sensor allows for the measurement of frequency dependent heat capacity in the thin film limit up to about 1 MHz. Using films thinner than the thermal length of the thermal wave (∼1 μm) at such frequencies is advantageous because it provides heat capacity alone and not in combination with other quantities like thermal conductivity, at least on a qualitative basis. The used calorimetric sensor and the sample are each less than 1 μm thick. For high frequency AC-calorimetry, high cooling rates at very small temperature differences are required. This is realized by minimizing the heated spot to the size of the on chip thermocouple (3 × 6 μm2). A modulated laser beam shaped and positioned by a glass fiber is used as the heat source. The device was used to measure the complex heat capacity in the vicinity of the dynamic glass transition (structural relaxation) of poly(methyl methacrylate). Combining different calorimeters finally provides data between 10−3 Hz and 106 Hz. In this frequency range the dynamic glass transition shifts about 120 K

  16. High frequency alternating current chip nano calorimeter with laser heating

    Science.gov (United States)

    Shoifet, E.; Chua, Y. Z.; Huth, H.; Schick, C.

    2013-07-01

    Heat capacity spectroscopy at frequencies up to 100 kHz is commonly performed by thermal effusivity measurements applying the 3ω-technique. Here we show that AC-calorimetry using a thin film chip sensor allows for the measurement of frequency dependent heat capacity in the thin film limit up to about 1 MHz. Using films thinner than the thermal length of the thermal wave (˜1 μm) at such frequencies is advantageous because it provides heat capacity alone and not in combination with other quantities like thermal conductivity, at least on a qualitative basis. The used calorimetric sensor and the sample are each less than 1 μm thick. For high frequency AC-calorimetry, high cooling rates at very small temperature differences are required. This is realized by minimizing the heated spot to the size of the on chip thermocouple (3 × 6 μm2). A modulated laser beam shaped and positioned by a glass fiber is used as the heat source. The device was used to measure the complex heat capacity in the vicinity of the dynamic glass transition (structural relaxation) of poly(methyl methacrylate). Combining different calorimeters finally provides data between 10-3 Hz and 106 Hz. In this frequency range the dynamic glass transition shifts about 120 K.

  17. Extremely high-frequency micro-Doppler measurements of humans

    Science.gov (United States)

    Hedden, Abigail S.; Silvious, Jerry L.; Dietlein, Charles R.; Green, Jeremy A.; Wikner, David A.

    2014-05-01

    The development of sensors that are capable of penetrating smoke, dust, fog, clouds, and rain is critical for maintaining situational awareness in degraded visual environments and for providing support to the Warfighter. Atmospheric penetration properties, the ability to form high-resolution imagery with modest apertures, and available source power make the extremely high-frequency (EHF) portion of the spectrum promising for the development of radio frequency (RF) sensors capable of penetrating visual obscurants. Comprehensive phenomenology studies including polarization and backscatter properties of relevant targets are lacking at these frequencies. The Army Research Laboratory (ARL) is developing a fully-polarimetric frequency-modulated continuous-wave (FMCW) instrumentation radar to explore polarization and backscatter properties of in-situ rain, scattering from natural and man-made surfaces, and the radar cross section and micro-Doppler signatures of humans at EHF frequencies, specifically, around the 220 GHz atmospheric window. This work presents an overview of the design and construction of the radar system, hardware performance, data acquisition software, and initial results including an analysis of human micro-Doppler signatures.

  18. Piping system subjected to seismic hard rock high frequencies

    International Nuclear Information System (INIS)

    Highlights: • A study of the influence of support gaps in the analysis of a piping system. • Piping system located within a nuclear power plant reactor containment building. • Piping system subjected to a seismic hard rock high-frequency load. • Comparison of low- and high-frequency seismic loads. • The influence on the stress response of piping and acceleration response of valves. - Abstract: This paper addresses the influence of support gaps in the analyses of a piping system when subjected to a seismic hard rock high-frequency load. The system is located within the reactor containment building of a nuclear power plant and is assessed to be susceptible to high-frequency loads. The stress response of the pipe and the acceleration response of the valves are evaluated for different support gap sizes. It is shown that the inclusion of the support gaps in the analyses reduces the stress response for almost all pipe elements. On the other hand, the acceleration response of the valves is not necessarily reduced by the consideration of the gaps

  19. High frequency microphone measurements for transition detection on airfoils

    DEFF Research Database (Denmark)

    Døssing, Mads

    Time series of pressure fluctuations has been obtained using high frequency microphones distributed over the surface of airfoils undergoing wind tunnel tests in the LM Windtunnel, owned by ’LM Glasfiber’, Denmark. The present report describes the dataanalysis, with special attention given to...

  20. The Origin of High-Frequency Hearing in Whales.

    Science.gov (United States)

    Churchill, Morgan; Martinez-Caceres, Manuel; de Muizon, Christian; Mnieckowski, Jessica; Geisler, Jonathan H

    2016-08-22

    Odontocetes (toothed whales) rely upon echoes of their own vocalizations to navigate and find prey underwater [1]. This sensory adaptation, known as echolocation, operates most effectively when using high frequencies, and odontocetes are rivaled only by bats in their ability to perceive ultrasonic sound greater than 100 kHz [2]. Although features indicative of ultrasonic hearing are present in the oldest known odontocetes [3], the significance of this finding is limited by the methods employed and taxa sampled. In this report, we describe a new xenorophid whale (Echovenator sandersi, gen. et sp. nov.) from the Oligocene of South Carolina that, as a member of the most basal clade of odontocetes, sheds considerable light on the evolution of ultrasonic hearing. By placing high-resolution CT data from Echovenator sandersi, 2 hippos, and 23 fossil and extant whales in a phylogenetic context, we conclude that ultrasonic hearing, albeit in a less specialized form, evolved at the base of the odontocete radiation. Contrary to the hypothesis that odontocetes evolved from low-frequency specialists [4], we find evidence that stem cetaceans, the archaeocetes, were more sensitive to high-frequency sound than their terrestrial ancestors. This indicates that selection for high-frequency hearing predates the emergence of Odontoceti and the evolution of echolocation. PMID:27498568

  1. Collocations of High Frequency Noun Keywords in Prescribed Science Textbooks

    Science.gov (United States)

    Menon, Sujatha; Mukundan, Jayakaran

    2012-01-01

    This paper analyses the discourse of science through the study of collocational patterns of high frequency noun keywords in science textbooks used by upper secondary students in Malaysia. Research has shown that one of the areas of difficulty in science discourse concerns lexis, especially that of collocations. This paper describes a corpus-based…

  2. Planck early results. VI. The High Frequency Instrument data processing

    DEFF Research Database (Denmark)

    Bucher, M.; Castex, G.; Colley, J.-M.; Cressiot, C.; Delabrouille, J.; Giraud-Héraud, Y.; Kaplan, J.; Le Jeune, M.; Patanchon, G.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.; Hills, R.; Hobson, M.; Stolyarov, V.; Bond, J.R.; Helou, G.; Matsumura, T.; Shellard, P.; Melin, J.-B.; Yvon, D.; Nørgaard-Nielsen, Hans Ulrik; Marleau, F.; Netterfield, C.B.; Chiang, C.; Jones, W.C.; Knox, L.; Dunkley, J.; De Bernardis, P.; Masi, S.; Nati, F.; Piacentini, F.; Kneissl, R.; Tauber, J.A.; Zacchei, A.; Mandolesi, N.; Bersanelli, M.; Guyot, G.; Désert, F.-X.; Chamballu, A.; Clements, D.L.; Jaffe, A.H.; Mortlock, D.; Novikov, D.; Rowan-Robinson, M.; Chary, R.-R.; Chen, X.; Ganga, K.; Lange, A.E.; McGehee, P.; Pearson, T.J.; Rusholme, B.; Benoît, A.; Aghanim, N.; Aumont, J.; Boulanger, F.; Dole, H.; Douspis, M.; Gispert, R.; Kunz, M.; Lagache, G.; Mercier, C.; Miville-Deschênes, M.-A.; Noviello, F.; Pajot, F.; Ponthieu, N.; Puget, J.-L.; Torre, J.-P.; Vibert, L.; Benabed, K.; Bouchet, F.R.; Colombi, S.; Delouis, J.-M.; Hivon, E.; Lesgourgues, J.; Moneti, A.; Prunet, S.; Riazuelo, A.; Sygnet, J.-F.; Wandelt, B.D.; Fosalba, P.; Wiesemeyer, H.; Thum, C.; Efstathiou, G.; Van Leeuwen, F.; Bartlett, J.G.; Bock, J.J.; Doré, O.; Holmes, W.A.; Lawrence, C.R.; Mitra, S.; Prézeau, G.; Rocha, G.; Saha, R.; Wade, L.A.; Maffei, B.; Ashdown, M.; Challinor, A.; Gratton, S.; Harrison, D.; Lasenby, A.; MacTavish, C.J.; Sutton, D.; Catalano, A.; Coulais, A.; Lamarre, J.-M.; Arnaud, M.; Starck, J.-L.; Cardoso, J.-F.; Vibert, D.; Girard, D.; Hildebrandt, S.R.; MacÍas-Pérez, J.F.; Perotto, L.; Renault, C.; Santos, D.; Ansari, R.; Couchot, F.; Filliard, C.; Haissinski, J.; Henrot-Versillé, S.; Lavabre, A.; Perdereau, O.; Plaszczynski, S.; Touze, F.; Tristram, M.; Dolag, K.; Hernández-Monteagudo, C.; White, S.D.M.; McAuley, I.; Murphy, A.; Peacocke, T.; Yurchenko, V.; Crill, B.P.; Savini, G.; Bradshaw, T.; Crook, M.; Mann, R.; Ade, P.A.R.; Griffin, M.; North, C.; Spencer, L.; Sudiwala, R.; Woodcraft, A.; Sunyaev, R.; Borrill, J.; Church, S.; Osborne, S.; Bartelmann, M.; Schaefer, B.M.; Banday, A.J.; Bernard, J.-P.; Forni, O.; Giard, M.; Leroy, C.; Marshall, D.J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.; Reach, W.T.; Battaner, E.; Huffenberger, K.M.; Górski, K.M.

    2011-01-01

    We describe the processing of the 336 billion raw data samples from the High Frequency Instrument (HFI) which we performed to produce six temperature maps from the first 295 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545 and...

  3. High frequency ground temperature fluctuation in a Convective Boundary Layer

    NARCIS (Netherlands)

    Garai, A.; Kleissl, J.; Lothon, M.; Lohou, F.; Pardyjak, E.; Saïd, F.; Cuxart, J.; Steeneveld, G.J.; Yaguë, C.; Derrien, S.; Alexander, D.; Villagrasa, D.M.

    2012-01-01

    To study influence of the turbulent structures in the convective boundary layer (CBL) on the ground temperature, during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) observational campaign, high frequency ground temperature was recorded through infra-red imagery from 13 June - 8 J

  4. Strange effects of strong high-frequency excitation

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2003-01-01

    Three general effects of mechanical high-frequency excitation (HFE) are described: Stiffening - an apparent change in the stiffness associated with an equilibrium; Biasing - a tendency for a system to move towards a particular state which does not exist or is unstable without HFE; and Smoothening...

  5. Automatic detection of high-frequency oscillations in invasive recordings

    Czech Academy of Sciences Publication Activity Database

    Havel, T.; Janča, R.; Ježdík, P.; Čmejla, R.; Kršek, P.; Jefferys, J. G. R.; Marusič, P.; Jiruška, Přemysl

    Ottawa : IEEE Instrumentation & Measurement Society IEEE Ottawa Section, 2013, s. 228-232. ISBN 978-1-4673-5195-9. [IEEE International Symposium on Medical Measurements and Applications /8./. Gatineau (CA), 04.05.2013-05.05.2013] Institutional support: RVO:67985823 Keywords : detector * high-frequency oscillations * intracranial * electroencephalography * microelectrodes * macroelectrodes Subject RIV: FH - Neurology

  6. High frequency properties of high Tc point contacts

    International Nuclear Information System (INIS)

    The millimeter-wave Josephson properties of the new high-Tc superconductors YBaCuO and GdBaCuO are studied, with the aim of using them in applications such as sensitive detectors of mm wave radiation. 3 figs

  7. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS)

    Energy Technology Data Exchange (ETDEWEB)

    Hura, Greg L.; Menon, Angeli L.; Hammel, Michal; Rambo, Robert P.; Poole II, Farris L.; Tsutakawa, Susan E.; Jenney Jr, Francis E.; Classen, Scott; Frankel, Kenneth A.; Hopkins, Robert C.; Yang, Sungjae; Scott, Joseph W.; Dillard, Bret D.; Adams, Michael W. W.; Tainer, John A.

    2009-07-20

    We present an efficient pipeline enabling high-throughput analysis of protein structure in solution with small angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling of microliter volumes, temperature and anaerobic control, rapid data collection and data analysis, and couples structural analysis with automated archiving. We subjected 50 representative proteins, mostly from Pyrococcus furiosus, to this pipeline and found that 30 were multimeric structures in solution. SAXS analysis allowed us to distinguish aggregated and unfolded proteins, define global structural parameters and oligomeric states for most samples, identify shapes and similar structures for 25 unknown structures, and determine envelopes for 41 proteins. We believe that high-throughput SAXS is an enabling technology that may change the way that structural genomics research is done.

  8. High frequency analyses of coastal meteorological phenomena affecting refractivity

    OpenAIRE

    Martinez, Anthony A.

    1991-01-01

    Approved for public release; distribution is unlimited An eastern Pacific Ocean survey was conducted 7-10 May 1991 along the California coast to determine temporal and spatial variability in refractive conditions. Refractive profiles obtained from high frequency radiosonde measurements at shore sites and a ship plus continuous shipboard surface measurements found a high degree of refractive variability to be present associated with frontal passage. Local and synoptic scale conditions wer...

  9. Neuropathy in female dental personnel exposed to high frequency vibrations.

    OpenAIRE

    Akesson, I; Lundborg, G.; Horstmann, V; Skerfving, S

    1995-01-01

    OBJECTIVE--To evaluate early neuropathy in dental personnel exposed to high frequency vibrations. METHODS--30 dentists and 30 dental hygienists who used low and high speed hand pieces and ultrasonic scalers were studied, and 30 dental assistants and 30 medical nurses not exposed to vibration (all women). Vibrotactile sensibility, strength, motor performance, sensorineural symptoms and signs, and vascular symptoms in the hands, as well as mercury concentrations in biological samples and cervic...

  10. High frequency trading and end-of-day price dislocation

    OpenAIRE

    Aitken, Michael; Cumming, Douglas; Zhan, Feng

    2013-01-01

    We show that the presence of high frequency trading (HFT) has significantly mitigated the frequency and severity of end-of-day price dislocation, counter to recent concerns expressed in the media. The effect of HFT is more pronounced on days when end of day price dislocation is more likely to be the result of market manipulation on days of option expiry dates and end of month. Moreover, the effect of HFT is more pronounced than the role of trading rules, surveillance, enforcement and legal co...

  11. High resolution mid-infrared spectroscopy based on frequency upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2013-01-01

    We present high resolution upconversion of incoherent infrared radiation by means of sum-frequency mixing with a laser followed by simple CCD Si-camera detection. Noise associated with upconversion is, in strong contrast to room temperature direct mid-IR detection, extremely small, thus very faint...... signals can be analyzed. The obtainable frequency resolution is usually in the nm range where sub nm resolution is preferred in many applications, like gas spectroscopy. In this work we demonstrate how to obtain sub nm resolution when using upconversion. In the presented realization one object point is...

  12. Contactless technique for high-frequency plasma fields investigation

    International Nuclear Information System (INIS)

    A method for investigation of localized HF-fields in plasma by means of a diagnostic electron beam is developed. Field measurement is based on the analysis of electron flux high-frequency modulation and by means of a phase analyzer. The method permits to measure electric HF-fields with characteristic dimension of field localization ≤ 1 cm and field strength ≥ 10 V/cm in the ± 20 MHz frequency range relatively to the reference signal. The measurements were conducted in the 10 cm range of wave length

  13. High energy x-ray phase contrast CT using glancing-angle grating interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Sarapata, A., E-mail: adrian.sarapata@tum.de [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 and Department of Physics and Institute of Medical Engineering, Technische Universität München, 85748 Garching (Germany); Stayman, J. W.; Siewerdsen, J. H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Finkenthal, M.; Stutman, D. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Pfeiffer, F. [Department of Physics and Institute of Medical Engineering, Technische Universität München, 85748 Garching (Germany)

    2014-02-15

    Purpose: The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. Methods: DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code the authors studied the dependence of the phase image contrast on exposure time and dose. Results: Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. Conclusions: DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not as

  14. Calibration of high-resolution electronic autocollimators with demanded low uncertainties using single reading head angle encoders

    International Nuclear Information System (INIS)

    Calibration of high-resolution electronic autocollimators is carried out in TUBITAK UME using an angle comparator to ensure direct traceability to the SI unit of plane angle, radian (rad). The device is a specially designed air-bearing rotary table fitted with a commercially available angular encoder utilizing a single reading head. It is shown that high-resolution electronic autocollimators in the large measurement range (e.g. ±1000 arcsec) can be calibrated with an expanded uncertainty of 0.035 arcsec (k = 2) in conventional dimensional laboratory conditions, applying good measurement strategy for single reading head angle encoders and taking simple but smart precautions. Description of the angle comparator is presented with various test results derived using different high-precision autocollimators, and a detailed uncertainty budget is given for the calibration of a high-resolution electronic autocollimator. (paper)

  15. High frequency resolution terahertz time-domain spectroscopy

    Science.gov (United States)

    Sangala, Bagvanth Reddy

    2013-12-01

    A new method for the high frequency resolution terahertz time-domain spectroscopy is developed based on the characteristic matrix method. This method is useful for studying planar samples or stack of planar samples. The terahertz radiation was generated by optical rectification in a ZnTe crystal and detected by another ZnTe crystal via electro-optic sampling method. In this new characteristic matrix based method, the spectra of the sample and reference waveforms will be modeled by using characteristic matrices. We applied this new method to measure the optical constants of air. The terahertz transmission through the layered systems air-Teflon-air-Quartz-air and Nitrogen gas-Teflon-Nitrogen gas-Quartz-Nitrogen gas was modeled by the characteristic matrix method. A transmission coefficient is derived from these models which was optimized to fit the experimental transmission coefficient to extract the optical constants of air. The optimization of an error function involving the experimental complex transmission coefficient and the theoretical transmission coefficient was performed using patternsearch algorithm of MATLAB. Since this method takes account of the echo waveforms due to reflections in the layered samples, this method allows analysis of longer time-domain waveforms giving rise to very high frequency resolution in the frequency-domain. We have presented the high frequency resolution terahertz time-domain spectroscopy of air and compared the results with the literature values. We have also fitted the complex susceptibility of air to the Lorentzian and Gaussian functions to extract the linewidths.

  16. Status of the JET high frequency pellet injector

    International Nuclear Information System (INIS)

    Highlights: ► JET pellet injection system operational for plasma fuelling and ELM pacing. ► Good reliability of the system for Low Field Side injection of fuelling size pellets. ► ELM triggered by small pellets at up to 4.5 times the intrinsic ELM frequency. ► Pellet parameters range leading to a high probability to trigger ELM identified. -- Abstract: A new high frequency pellet injector, part of the JET programme in support of ITER, has been installed on JET at the end of 2007. Its main objective is the mitigation of the Edge Localized Modes (ELMs), responsible for unacceptable thermal loads on the wall when their amplitude is too high. The injector was also required to have the capability to inject pellets for plasma fuelling. To reach this double goal, the injector has to be capable to produce and accelerate either small pellets to trigger ELMs (pace making), allowing to control their frequency and thus their amplitude, or large pellets to fuel the plasma. Operational since the beginning of the 2009 JET experimental campaign, the injector, based on the screw extruder technology, suffered from a general degradation of its performance linked to extrusion instability. After modifications of the nozzle assembly, re-commissioning on plasma has been undertaken during the first half of 2012 and successful pellet ELM pacing was achieved, rising the intrinsic ELM frequency up to 4.5 times

  17. Glancing angle Talbot-Lau grating interferometers for phase contrast imaging at high x-ray energy

    Science.gov (United States)

    Stutman, D.; Finkenthal, M.

    2012-08-01

    A Talbot-Lau interferometer is demonstrated using micro-periodic gratings inclined at a glancing angle along the light propagation direction. Due to the increase in the effective thickness of the absorption gratings, the device enables differential phase contrast imaging at high x-ray energy, with improved fringe visibility (contrast). For instance, at 28° glancing angle, we obtain up to ˜35% overall interferometer contrast with a spectrum having ˜43 keV mean energy, suitable for medical applications. In addition, glancing angle interferometers could provide high contrast at energies above 100 keV, enabling industrial and security applications of phase contrast imaging.

  18. Change detection from very high resolution satellite time series with variable off-nadir angle

    Science.gov (United States)

    Barazzetti, Luigi; Brumana, Raffaella; Cuca, Branka; Previtali, Mattia

    2015-06-01

    Very high resolution (VHR) satellite images have the potential for revealing changes occurred overtime with a superior level of detail. However, their use for metric purposes requires accurate geo-localization with ancillary DEMs and GCPs to achieve sub-pixel terrain correction, in order to obtain images useful for mapping applications. Change detection with a time series of VHS images is not a simple task because images acquired with different off-nadir angles have a lack of pixel-to-pixel image correspondence, even after accurate geo-correction. This paper presents a procedure for automatic change detection able to deal with variable off-nadir angles. The case study concerns the identification of damaged buildings from pre- and post-event images acquired on the historic center of L'Aquila (Italy), which was struck by an earthquake in April 2009. The developed procedure is a multi-step approach where (i) classes are assigned to both images via object-based classification, (ii) an initial alignment is provided with an automated tile-based rubber sheeting interpolation on the extracted layers, and (iii) change detection is carried out removing residual mis-registration issues resulting in elongated features close to building edges. The method is fully automated except for some thresholds that can be interactively set to improve the visualization of the damaged buildings. The experimental results proved that damages can be automatically found without additional information, such as digital surface models, SAR data, or thematic vector layers.

  19. Dependence of mechanical properties on fibre angle in narwhal tusk, a highly oriented biological composite.

    Science.gov (United States)

    Currey, J D; Brear, K; Zioupos, P

    1994-07-01

    The successful modelling of the mechanical properties of mineralized tissues depends critically on the knowledge of the off-axis behaviour of individual unidirectional lamellae. Information on this is lacking. In this work we attempt to rectify the situation. Young's modulus, measured in bending and tension, and the tensile strength and ultimate strain to failure of the dentine of the narwhal Monodon monoceros, were determined on specimens that had almost unidirectional fibres, whose direction differed considerably from specimen to specimen. Modulus and strength decreased steadily with the degree of off-angle loading, falling to about 45% of maximum for modulus, and 35% of maximum for strength. Ultimate strain showed a less uniform behaviour, and remained remarkably high at large angles. Differences in mechanical behaviour were not related to the very small differences in mineral content measured between specimens. These findings have strong implications for modelling the anisotropic behaviour of bone, because dentine is very much like bone in most important respects. Predictions using classical composite theory are reasonably satisfactory, as long as the mineral crystals are assumed to be platelets, not rods. PMID:8063839

  20. Roll-Yaw control at high angle of attack by forebody tangential blowing

    Science.gov (United States)

    Pedreiro, N.; Rock, S. M.; Celik, Z. Z.; Roberts, L.

    1995-01-01

    The feasibility of using forebody tangential blowing to control the roll-yaw motion of a wind tunnel model is experimentally demonstrated. An unsteady model of the aerodynamics is developed based on the fundamental physics of the flow. Data from dynamic experiments is used to validate the aerodynamic model. A unique apparatus is designed and built that allows the wind tunnel model two degrees of freedom, roll and yaw. Dynamic experiments conducted at 45 degrees angle of attack reveal the system to be unstable. The natural motion is divergent. The aerodynamic model is incorporated into the equations of motion of the system and used for the design of closed loop control laws that make the system stable. These laws are proven through dynamic experiments in the wind tunnel using blowing as the only actuator. It is shown that asymmetric blowing is a highly non-linear effector that can be linearized by superimposing symmetric blowing. The effects of forebody tangential blowing and roll and yaw angles on the flow structure are determined through flow visualization experiments. The transient response of roll and yaw moments to a step input blowing are determined. Differences on the roll and yaw moment dependence on blowing are explained based on the physics of the phenomena.

  1. Highly flexible distributions to fit multiple frequency financial returns

    Science.gov (United States)

    BenSaïda, Ahmed; Slim, Skander

    2016-01-01

    Financial data are usually studied via low flexible distributions, independently of the frequency of the data, due to their simplicity and analytical tractability. In this paper we analyze two highly flexible five-parameter distributions into fitting financial returns, these are the skewed generalized t (SGT) and the generalized hyperbolic (GH). Applications carried on two exchange rates (Euro-Dollar and Dollar-Yen), and two indexes (S&P 500 and Nikkei 225) over four frequencies: weekly, daily, 30-min and 5-min, confirm the superiority of the SGT and GH in approximating the distribution of a given data at a remarkable precision. Moreover, as we move from higher to lower frequency, the distribution's overall shape does indeed change radically, and the estimated parameters refute the tendency to normality, which calls into question the aggregational Gaussianity's stylized fact.

  2. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    Science.gov (United States)

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed. PMID:27131709

  3. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications

    Science.gov (United States)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  4. High-speed frequency-domain terahertz coherence tomography.

    Science.gov (United States)

    Yahng, Ji Sang; Park, Choon-Su; Don Lee, Hwi; Kim, Chang-Seok; Yee, Dae-Su

    2016-01-25

    High-speed frequency-domain terahertz (THz) coherence tomography is demonstrated using frequency sweeping of continuous-wave THz radiation and beam steering. For axial scanning, THz frequency sweeping with a kHz sweep rate and a THz sweep range is executed using THz photomixing with an optical beat source consisting of a wavelength-swept laser and a distributed feedback laser diode. During the frequency sweep, frequency-domain THz interferograms are measured using coherent homodyne detection employing signal averaging for noise reduction and used as axial-scan data via fast Fourier transform. Axial-scan data are acquired while scanning a transverse range of 100 × 100 mm2 by use of a THz beam scanner with moving neither sample nor THz transmitter/receiver unit. It takes 100 s to acquire axial-scan data for 100 × 100 points with 5 averaged traces at a sweep rate of 1 kHz. THz tomographic images of a glass fiber reinforced polymer sample with artificial internal defects are presented, acquired using the tomography system. PMID:26832489

  5. Vocal fold vibrations at high soprano fundamental frequencies.

    Science.gov (United States)

    Echternach, Matthias; Döllinger, Michael; Sundberg, Johan; Traser, Louisa; Richter, Bernhard

    2013-02-01

    Human voice production at very high fundamental frequencies is not yet understood in detail. It was hypothesized that these frequencies are produced by turbulences, vocal tract/vocal fold interactions, or vocal fold oscillations without closure. Hitherto it has been impossible to visually analyze the vocal mechanism due to technical limitations. Latest high-speed technology, which captures 20,000 frames/s, using transnasal endoscopy was applied. Up to 1568 Hz human vocal folds do exhibit oscillations with complete closure. Therefore, the recent results suggest that human voice production at very high F0s up to 1568 Hz is not caused by turbulence, but rather by airflow modulation from vocal fold oscillations. PMID:23363198

  6. Comparative study between ultrahigh spatial frequency algorithm and high spatial frequency algorithm in high-resolution CT of the lungs

    International Nuclear Information System (INIS)

    To date, the high spatial frequency algorithm (HSFA) which reduces image smoothing and increases spatial resolution has been used for the evaluation of parenchymal lung diseases in thin-section high-resolution CT. In this study, we compared the ultrahigh spatial frequency algorithm (UHSFA) with the high spatial frequency algorithm in the assessment of thin section images of the lung parenchyma. Three radiologists compared the UHSFA and HSFA on identical CT images in a line-pair resolution phantom, one lung specimen, 2 patients with normal lung and 18 patients with abnormal lung parenchyma. Scanning of a line-pair resolution phantom demonstrated no difference in resolution between two techniques but it showed that outer lines of the line pairs with maximal resolution looked thicker on UHSFA than those on HSFA. Lung parenchymal detail with UHSFA was judged equal or superior to HSFA in 95% of images. Lung parenchymal sharpness was improved with UHSFA in all images. Although UHSFA resulted in an increase in visible noise, observers did not found that image noise interfered with image interpretation. The visual CT attenuation of normal lung parenchyma is minimally increased in images with HSFA. The overall visual preference of the images reconstructed on UHSFA was considered equal to or greater than that of those reconstructed on HSFA in 78% of images. The ultrahigh spatial frequency algorithm improved the overall visual quality of the images in pulmonary parenchymal high-resolution CT

  7. High Frequency Acoustic Waves in the Sun's Atmosphere

    Science.gov (United States)

    Fleck, B.; Jefferies, S. M.; McIntosh, S. W.; Severino, G.; Straus, T.; Tarbell, T. D.

    2008-09-01

    This year marks the 60th anniversary of two pioneering papers by Schwarzschild (1948) and Biermann (1948), who independently proposed that acoustic waves generated in the turbulent convection zone play an important role in the heating of the chromosphere and corona. High frequency acoustic waves have remained one of the leading contenders for solving the heating problem of the non-magnetic chromospheres of the Sun and late-type stars ever since. Earlier attempts to determine the acoustic energy flux from ground were compromised by atmospheric seeing, which has its biggest effect on the high frequency parts of the observed signal. Recently, based on a comparison of TRACE observations and 1-D simulations, Fossum & Carlsson (2005, 2006) concluded that high-frequency acoustic waves are not sufficient to heat the solar chromosphere. The same conclusion was reached by Carlsson et al. (2007) from an analysis of Hinode SOT/BFI Ca II H and blue continuum observations. Other authors (e.g. Cuntz et al. 2007; Wedemeyer-Boehm et al. 2007, Kalkofen 2007), however, questioned these results for a number of reasons. Because of its limited spatial resolution and limited sensitivity there are inherent difficulties when comparing TRACE observations with numerical simulations. Further, intensity oscillations are difficult to interpret, as they result from a phase-sensitive mix of temperature and pressure fluctuations, and non-local radiation transfer effects may complicate the picture even more. Here we revisit the role of high frequency acoustic waves in the dynamics and energetics of the Sun's atmosphere using high cadence, high resolution Doppler velocity measurements obtained with SOT/SP and SOT/NFI on Hinode.

  8. About the origin of high-frequency ultrasonic backscattering signals

    International Nuclear Information System (INIS)

    Ultrasonic backscattering measurements allow to make a quick and nondestructive assessment of materials structures. As a qualitative assessment the homogeneity of structural states is determined, but also quantitative measurements are possible, like e.g. the determination of grain sizes in steels. But plottable measuring curves corresponding to the physically described interrelations will only be obtained as a result of a sufficiently large number (approx.= 1024) of averaging operations applied to equidirectional backscattering signals. The individual high-frequency signal is very strongly amplitude modulated. The signals required for averaging are obtained from different acoustic irradiation positions (position averaging), or by means of different center frequencies (frequency averaging). The present paper shows by means of numerical model calculations how the high-frequency backscattering signal is built up by superposition of the backscattering signals from all scattering objects lying in the acoustic beam. The improved understanding of the superposition of individual scattering processes opens up further opportunities of making a local structural analysis by means of ultrasonics. (orig.)

  9. Influence of fraction of high angle boundaries on the mechanical behavior of an ultrafine grained Al-Mg alloy

    International Nuclear Information System (INIS)

    The mechanical behavior of ultrafine grained AA5052 processed through different techniques-rolled, annealed, friction stir processed (FSP) and equal channel angular pressed (ECAP)-were compared and correlated with microstructure. The microstructure was characterized using electron back scattered diffraction to obtain the boundary spacing, the fraction of high angle boundaries and to estimate the dislocation density from local misorientations. Both FSP and ECAP conditions had ultrafine boundary spacing, but the fraction of high angle boundaries was larger for the FSP condition. Tensile deformation carried out at 297 K and 10-3 s-1 showed a lower work-hardening rate and recovery rate for FSP as compared to the ECAP condition. It was inferred that low angle boundaries are more effective sinks for dislocations. When comparing differently processed materials, the strength, ductility and work-hardening behavior correlate better with the fraction of high angle boundaries than the boundary spacing.

  10. High-Frequency Shear Viscosity of Low-Viscosity Liquids

    Science.gov (United States)

    Kaatze, U.; Behrends, R.

    2014-11-01

    A thickness shear quartz resonator technique is described to measure the shear viscosity of low-viscosity liquids in the frequency range from 6 MHz to 130 MHz. Examples of shear-viscosity spectra in that frequency range are presented to show that various molecular processes are accompanied by shear-viscosity relaxation. Among these processes are conformational variations of alkyl chains, with relaxation times of about 0.3 ns for -pentadecane and -hexadecane at 25 C. These variations can be well represented in terms of a torsional oscillator model. Also featured briefly are shear-viscosity relaxations associated with fluctuations of hydrogen-bonded clusters in alcohols, for which values between 0.3 ns (-hexanol) and 1.5 ns (-dodecanol) have been found at 25 C. In addition, the special suitability of high-frequency shear-viscosity spectroscopy to the study of critically demixing mixtures is demonstrated by some illustrative examples. Due to slowing, critical fluctuations do not contribute to the shear viscosity at sufficiently high frequencies of measurements so that the non-critical background viscosity of critical systems can be directly determined from high-frequency shear-viscosity spectroscopy. Relaxations in appear also in the shear-viscosity spectra with, for example, 2 ns for the critical triethylamine-water binary mixture at temperatures between 10 C and 18 C. Such relaxations noticeably influence the relaxation rate of order parameter fluctuations. They may be also the reason for the need of a special mesoscopic viscosity when mutual diffusion coefficients of critical polymer solutions are discussed in terms of mode-coupling theory.

  11. What can we learn from high precision measurements of neutrino mixing angles?

    Indian Academy of Sciences (India)

    R N Mohapatra

    2004-12-01

    Many experiments are being planned to measure the neutrino mixing angles more precisely. In this note, the theoretical significance of a high precision measurement of these parameters is discussed. It is emphasized that they can provide crucial information about different ways to understand the origin of large atmospheric neutrino mixing and move us closer towards determining the neutrino mass matrix. They may also be able to throw light on the question of lepton–quark unification as well as the existence of any leptonic symmetries. For instance if exact ↔ symmetry in the neutrino mass matrix is assumed to be the reason for maximal - mixing, one gets 13 = 0 and 13 ≃ $\\sqrt{ m^{2}_{\\odot} / m^{2}_{{\\text{A}}}$ or 13 ≃ $ m^{2}_{\\odot} / m^{2}_{{\\text{A}}}$ can provide information about the way the ↔ symmetry breaking manifests in the case of normal hierarchy.

  12. High-angle diffraction of a Gaussian beam by the grating with embedded phase singularity

    CERN Document Server

    Bekshaev, A; Vasnetsov, M

    2009-01-01

    Spatial characteristics of the optical-vortex (OV) beams created during the Gaussian beam diffraction by a grating with groove bifurcation are analyzed theoretically and numerically. In contrast to previous works, condition of small-angle diffraction is no longer required and the diffracted beam can be strongly deformed. This causes the intensity profile rotation and the high-order OV decomposition into a set of secondary single-charged OVs. These effects are studied quantitatively and confronted with similar properties of a Laguerre-Gaussian beam that undergoes astigmatic telescopic transformation. In contrast to the latter case, the secondary OVs do not lie on a single straight line within the beam cross section, and morphology parameters of the individual secondary OVs carried by the same beam are, in general, different. Conditions for maximum relative separation of the secondary OVs with respect to the beam transverse size are specified. The results can be used for practical generation of OV beams and OV ...

  13. Atomic-resolution incoherent high-angle annular dark field STEM images of Si(011)

    Science.gov (United States)

    Watanabe, K.; Yamazaki, T.; Kikuchi, Y.; Kotaka, Y.; Kawasaki, M.; Hashimoto, I.; Shiojiri, M.

    2001-02-01

    Characteristic atomic-resolution incoherent high-angle annular dark field (HAADF) scanning transmission electron microscope (STEM) images of [011]-orientated Si have been experimentally obtained by a through-focal series. Artificial bright spots appear at positions where no atomic columns exist along the electron beam, in some experimental images. Image simulation, based on the Bloch wave description by the Bethe method, reproduces the through-focal experimental images. It is shown that atomic-resolution HAADF STEM images, which are greatly influenced by the Bloch wave field depending on the incident electron beam probe, cannot always be interpreted intuitively as the projected atomic images. It is also found that the atomic-resolution HAADF STEM images can be simply explained using the relations to the probe functions without the need for complex dynamical simulations.

  14. Towards weighing individual atoms by high-angle scattering of electrons

    CERN Document Server

    Argentero, G; Kotakoski, J; Eder, F R; Meyer, J C

    2015-01-01

    We consider theoretically the energy loss of electrons scattered to high angles when assuming that the primary beam can be limited to a single atom. We discuss the possibility of identifying the isotopes of light elements and of extracting information about phonons in this signal. The energy loss is related to the mass of the much heavier nucleus, and is spread out due to atomic vibrations. Importantly, while the width of the broadening is much larger than the energy separation of isotopes, only the shift in the peak positions must be detected if the beam is limited to a single atom. We conclude that the experimental case will be challenging but is not excluded by the physical principles as far as considered here. Moreover, the initial experiments demonstrate the separation of gold and carbon based on a signal that is related to their mass, rather than their atomic number.

  15. Soft Magnetic Materials in High-Frequency, High-Power Conversion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Leary, AM; Ohodnicki, PR; McHenry, ME

    2012-07-04

    Advanced soft magnetic materials are needed to match high-power density and switching frequencies made possible by advances in wide band-gap semiconductors. Magnetics capable of operating at higher operating frequencies have the potential to greatly reduce the size of megawatt level power electronics. In this article, we examine the role of soft magnetic materials in high-frequency power applications and we discuss current material's limitations and highlight emerging trends in soft magnetic material design for high-frequency and power applications using the materials paradigm of synthesis -> structure -> property -> performance relationships.

  16. Soft Magnetic Materials in High-Frequency, High-Power Conversion Applications

    Science.gov (United States)

    Leary, Alex M.; Ohodnicki, Paul R.; McHenry, Michael E.

    2012-07-01

    Advanced soft magnetic materials are needed to match high-power density and switching frequencies made possible by advances in wide band-gap semiconductors. Magnetics capable of operating at higher operating frequencies have the potential to greatly reduce the size of megawatt level power electronics. In this article, we examine the role of soft magnetic materials in high-frequency power applications and we discuss current material's limitations and highlight emerging trends in soft magnetic material design for high-frequency and power applications using the materials paradigm of synthesis → structure → property → performance relationships.

  17. High-resolution-angle resolved photoemission studies of high temperature superconductors

    International Nuclear Information System (INIS)

    This paper presents recent photoemission studies of Y 123 and Bi 2212 performed with high energy and angular resolution. They provide detailed information on the nature of the states near the Fermi level. Measurements of the superconducting gap, band dispersion, and the density of states near the Fermi level in the normal state all support a Fermi liquid description of these materials

  18. Investigation of Power Semiconductor Devices for High Frequency High Density Power Converters

    OpenAIRE

    Wang, Hongfang

    2007-01-01

    The next generation of power converters not only must meet the characteristics demanded by the load, but also has to meet some specific requirements like limited space and high ambient temperature etc. This needs the power converter to achieve high power density and high temperature operation. It is usually required that the active power devices operate at higher switching frequencies to shrink the passive components volume. The power semiconductor devices for high frequency high density ...

  19. Growth Assisted by Glancing Angle Deposition: A New Technique to Fabricate Highly Porous Anisotropic Thin Films.

    Science.gov (United States)

    Sanchez-Valencia, Juan Ramon; Longtin, Remi; Rossell, Marta D; Gröning, Pierangelo

    2016-04-01

    We report a new methodology based on glancing angle deposition (GLAD) of an organic molecule in combination with perpendicular growth of a second inorganic material. The resulting thin films retain a very well-defined tilted columnar microstructure characteristic of GLAD with the inorganic material embedded inside the columns. We refer to this new methodology as growth assisted by glancing angle deposition or GAGLAD, since the material of interest (here, the inorganic) grows in the form of tilted columns, though it is deposited under a nonglancing configuration. As a "proof of concept", we have used silver and zinc oxide as the perpendicularly deposited material since they usually form ill-defined columnar microstructures at room temperature by GLAD. By means of our GAGLAD methodology, the typical tilted columnar microstructure can be developed for materials that otherwise do not form ordered structures under conventional GLAD. This simple methodology broadens significantly the range of materials where control of the microstructure can be achieved by tuning the geometrical deposition parameters. The two examples presented here, Ag/Alq3 and ZnO/Alq3, have been deposited by physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD), respectively: two different vacuum techniques that illustrate the generality of the proposed technique. The two type of hybrid samples present very interesting properties that demonstrate the potentiality of GAGLAD. On one hand, the Ag/Alq3 samples present highly optical anisotropic properties when they are analyzed with linearly polarized light. To our knowledge, these Ag/Alq3 samples present the highest angular selectivity reported in the visible range. On the other hand, ZnO/Alq3 samples are used to develop highly porous ZnO thin films by using Alq3 as sacrificial material. In this way, antireflective ZnO samples with very low refractive index and extinction coefficient have been obtained. PMID:26954074

  20. High frequency modeling of power transformers. Stresses and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bjerkan, Eilert

    2005-05-15

    In this thesis a reliable, versatile and rigorous method for high frequency power transformer modeling is searched and established. The purpose is to apply this model to sensitivity analysis of FRA (Frequency Response Analysis) which is a quite new diagnostic method for assessing the mechanical integrity of power transformer windings on-site. The method should be versatile in terms of being able to estimate internal and external over voltages and resonances. Another important aspect is that the method chosen is suitable for real transformer geometries. In order to verify the suitability of the model for real transformers, a specific test-object is used. This is a 20MVA transformer, and details are given in chapter 1.4. The high frequency power transformer model is established from geometrical and constructional information from the manufacturer, together with available material characteristics. All circuit parameters in the lumped circuit representation are calculated based on these data. No empirical modifications need to be performed. Comparison shows capability of reasonable accuracy in the range from 10 khz to 1 MHz utilizing a disc-to-disc representation. A compromise between accuracy of model due to discretization and complexity of the model in a turn-to-turn representation is inevitable. The importance of the iron core is emphasized through a comparison of representations with/without the core included. Frequency-dependent phenomena are accurately represented using an isotropic equivalent for windings and core, even with a coarse mesh for the FEM-model. This is achieved through a frequency-dependent complex permeability representation of the materials. This permeability is deduced from an analytical solution of the frequency-dependent magnetic field inside the conductors and the core. The importance of dielectric losses in a transformer model is also assessed. Since published data on the high frequency properties of press board are limited, some initial

  1. High Resolution Magic Angle Spinning 1H-NMR Metabolic Profiling of Nanoliter Biological Tissues at High Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Ju; Hu, Jian Z.; Burton, Sarah D.; Hoyt, David W.

    2013-03-05

    It is demonstrated that a high resolution magic angle spinning 1H-NMR spectrum of biological tissue samples with volumes as small as 150 nanoliters, or 0.15 mg in weight, can be acquired in a few minutes at 21.1 T magnetic field using a commercial 1.6 mm fast-MAS probe with minor modification of the MAS rotor. The strategies of sealing the samples inside the MAS rotor to avoid fluid leakage as well as the ways of optimizing the signal to noise are discussed.

  2. Piezoelectric Shaker Development for High Frequency Calibration of Accelerometers

    International Nuclear Information System (INIS)

    Calibration of vibration transducers requires sinusoidal motion over a wide frequency range with low distortion and low cross-axial motion. Piezoelectric shakers are well suited to generate such motion and are suitable for use with laser interferometric methods at frequencies of 3 kHz and above. An advantage of piezoelectric shakers is the higher achievable accelerations and displacement amplitudes as compared to electro-dynamic (ED) shakers. Typical commercial ED calibration shakers produce maximum accelerations from 100 m/s2 to 500 m/s2. Very large ED shakers may produce somewhat higher accelerations but require large amplifiers and expensive cooling systems to dissipate heat. Due to the limitations in maximum accelerations by ED shakers at frequencies above 5 kHz, the amplitudes of the generated sinusoidal displacement are frequently below the resolution of laser interferometers used in primary calibration methods. This limits the usefulness of ED shakers in interferometric based calibrations at higher frequencies.Small piezoelectric shakers provide much higher acceleration and displacement amplitudes for frequencies above 5 kHz, making these shakers very useful for accelerometer calibrations employing laser interferometric measurements, as will be shown in this paper. These piezoelectric shakers have been developed and used at NIST for many years for high frequency calibration of accelerometers. This paper documents the construction and performance of a new version of these shakers developed at NIST for the calibration of accelerometers over the range of 3 kHz to 30 kHz and possibly higher. Examples of typical calibration results are also given.

  3. Transition radiation at radio frequencies from ultra-high energy neutrino-induced showers

    CERN Document Server

    Motloch, Pavel; Privitera, Paolo; Zas, Enrique

    2015-01-01

    Coherent radiation at radio frequencies from high-energy showers fully contained in a dense radio-transparent medium - like ice, salt or regolith - has been extensively investigated as a promising technique to search for ultra-high energy (UHE) neutrinos. Additional emission in the form of transition radiation may occur when a neutrino-induced shower produced close to the Earth surface emerges from the ground into atmospheric air. We present the first detailed evaluation of transition radiation from high-energy showers crossing the boundary between two different media. We found that transition radiation is sizable over a wide solid angle and coherent up to $\\sim$ 1 GHz. These properties encourage further work to evaluate the potential of a large-aperture UHE neutrino experiment based on detection of transition radiation.

  4. Specimen Design for Fatigue Testing at Very High Frequencies

    Science.gov (United States)

    MATIKAS, T. E.

    2001-11-01

    Components in rotational machinery such as turbine blades used in military aircraft engines are subjected to low-amplitude, high-frequency loads in the kHz range. Under high cycle fatigue (HCF), the initiation state of a crack consumes most of the life of the component. Vibratory stresses may therefore result in unexpected failures of the material. Hence, there is a need for HCF studies to address HCF-related failures of turbine engines and to develop a life prediction methodology. Ultrasonic fatigue provides accelerated HCF testing enabling the simulation of realistic loading conditions for testing materials used in structural components subjected to vibratory stresses. Specimen design is critical for optimum ultrasonic fatigue testing. The objective of this study is therefore to develop analytical modelling necessary for the design of test coupons to be fatigue tested at ultrasonic frequencies.

  5. Predictions for high-frequency radio surveys of extragalactic sources

    CERN Document Server

    De Zotti, G; Mesa, D; Silva, L; Mazzotta, P; Toffolatti, L; González-Nuevo, J; Zotti, Gianfranco De; Ricci, Roberto; Mesa, Dino; Silva, Laura; Mazzotta, Pasquale; Toffolatti, Luigi; Gonzalez-Nuevo, Joaquin

    2004-01-01

    We present detailed predictions of the contributions of the various source populations to the counts at frequencies of tens of GHz. New evolutionary models are worked out for flat-spectrum radio quasars, BL Lac objects, and steep-spectrum sources. Source populations characterized by spectra peaking at high radio frequencies, such as extreme GPS sources, ADAF/ADIOS sources and early phases of gamma-ray burst afterglows are also dealt with. The counts of different populations of star-forming galaxies (normal spirals, starbursts, high-z galaxies detected by SCUBA and MAMBO surveys, interpreted as proto-spheroidal galaxies) are estimated taking into account both synchrotron and free-free emission, and dust re-radiation. Our analysis is completed by updated counts of Sunyaev-Zeldovich effects in clusters of galaxies and by a preliminary estimate of galactic-scale Sunyaev-Zeldovich signals associated to proto-galactic plasma.

  6. Inference from high-frequency data: A subsampling approach

    DEFF Research Database (Denmark)

    Christensen, Kim; Podolskij, Mark; Thamrongrat, Nopporn;

    copies of the original statistic based on local stretches of high-frequency data, and then it studies the sampling variation of these. We show that our estimator is consistent both in frictionless markets and models with additive microstructure noise. We derive a rate of convergence for it and are also...... able to determine an optimal rate for its tuning parameters (e.g., the number of subsamples). Subsampling does not require an extra set of estimators to do inference, which renders it trivial to implement. As a variance-covariance matrix estimator, it has the attractive feature that it is positive semi-definite...... facilitates assessment of the sampling errors inherent in high-frequency estimation of volatility. We highlight the finite sample properties of the subsampler in a Monte Carlo study, while some initial empirical work demonstrates its use to draw feasible inference about volatility in financial markets....

  7. Wide viewing-zone-angle full-color electronic holography system using very high resolution liquid crystal display panels

    Science.gov (United States)

    Senoh, Takanori; Mishina, Tomoyuki; Yamamoto, Kenji; Oi, Ryutaro; Kurita, Taiichiro

    2011-02-01

    A wide viewing-zone-angle full-color electronic holography reconstruction system is developed. Time division multiplexing of RGB color light and space division multiplexing of viewing-zone-angles are adopted to keep the optical system compact. Undesirable light such as illumination light, phase conjugate light, and high-order diffraction light are eliminated by half-zone-plate hologram generation and single sideband beam reconstruction. Color aberration and astigmatism caused by the reproduction optical system are analyzed and reduced. The developed system expands viewing-zone-angle of full-color holographic image three times wider than the original, suppressing undesirable light, color aberration, and astigmatism.

  8. Machines vs. Machines: High Frequency Trading and Hard Information

    OpenAIRE

    Huh, Yesol

    2014-01-01

    In today's markets where high frequency traders (HFTs) act as both liquidity providers and takers, I argue that information asymmetry induced by liquidity-taking HFTs' use of machine-readable information is important. This particular type of information asymmetry arises because some machines may access the information before other machines or because of randomness in relative speed. Applying a novel statistical approach to measure HFT activity through limit order book data and using a natural...

  9. ELECTRONIC TRANSACTIONS AS HIGH-FREQUENCY INDICATORS OF ECONOMICS ACTIVITY

    OpenAIRE

    John Galbraith; Greg Tkacz

    2008-01-01

    Since the advent of standard national accounts data over 60 years ago, economists have relied on monthly or quarterly data supplied by central statistical agencies for macroeconomics modelling and forecasting. However, technological advances of the past several years have resulted in new high-frequency data sources that could potentially provide more accurate and timely information on the current level of economic activity. In this paper we explore the usefulness of electronic transactions as...

  10. Electronic transactions as high-frequency indicators of economic activity

    OpenAIRE

    Galbraith, John W.; Tkacz, Greg

    2007-01-01

    Since the advent of standard national accounts data over 60 years ago, economists have traditionally relied on monthly or quarterly data supplied by central statistical agencies for macroeconomic modelling and forecasting. However, technological advances of the past several years have resulted in new high-frequency data sources that could potentially provide more accurate and timely information on the current level of economic activity. In this paper we explore the usefulness of electronic tr...

  11. Disentangling high-frequency traders' role in ETF mispricing

    OpenAIRE

    Isola, J

    2014-01-01

    Exchange Traded Funds (ETFs) should trade at a price equal to their fundamental Net Asset Value (NAV). However, ETFs’ can occasionally pose economically significant premiums/discounts to their NAV prices, i.e. arbitrage opportunities. The theoretical part focuses on ETF arbitrage and explains why this arbitrage trading is attractive to high-frequency traders (HFTs). In the empirical part, we introduce HFT activity proxies to a factor model explaining the observed SPDR trust (SPY) premiums dur...

  12. The Self-Financing Equation in High Frequency Markets

    OpenAIRE

    Rene Carmona; Kevin Webster

    2013-01-01

    High Frequency Trading (HFT) represents an ever growing proportion of all financial transactions as most markets have now switched to electronic order book systems. The main goal of the paper is to propose continuous time equations which generalize the self-financing relationships of frictionless markets to electronic markets with limit order books. We use NASDAQ ITCH data to identify significant empirical features such as price impact and recovery, rough paths of inventories and vanishing bi...

  13. Optimal high frequency strategy in an omniscient order book

    OpenAIRE

    Anane, Marouane; Abergel, Frédéric

    2014-01-01

    The aim of this study is to quantify the low latency advantage of High Frequency Trading (HFT) and to compute, empirically, an optimal holding period of a HF trader. Critics claim that low latency leads to information asymmetry victimizing retail investors. However, objective studies measuring the gain due to this asymmetry are rare. In order to perform the study, new methods are introduced in this paper, in particular, the optimal strategy problem is formulated and ideas are given to compute...

  14. High Frequency VLBI Studies of Sagittarius A* and NRAO 530

    OpenAIRE

    Lu, Ru-Sen

    2010-01-01

    Compact radio sources (Kellermann & Pauliny-Toth 1981) are widely accepted to be associated with supermassive black holes at the centers of active galaxies. Very long baseline interferometry (VLBI) observations at short millimeter wavelengths offer the unique advantage to look ``deeper" into the central core regions. In this thesis we study two com pact radio sources (Sagittarius A* and NRAO 530) with high frequency VLBI techniques. As a starting point, we give in Chapter 1 a general introduc...

  15. High frequency homogenization for travelling waves in periodic media

    OpenAIRE

    Harutyunyan, Davit; Craster, Richard V.; Milton, Graeme W.

    2016-01-01

    We consider high frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schr{\\"o}dinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated B...

  16. Ultra high frequency induction welding of powder metal compacts

    Energy Technology Data Exchange (ETDEWEB)

    Cavdar, U.; Gulsahin, I.

    2014-10-01

    The application of the iron based Powder Metal (PM) compacts in Ultra High Frequency Induction Welding (UHFIW) were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined. (Author)

  17. High frequency financial time series prediction: machine learning approach

    OpenAIRE

    Zankova, Ekaterina

    2016-01-01

    Machine learning is a rapidly evolving subfield of computer science. It has enormous amount of applications. One of the application domains is financial data analysis. Machine learning was usually applied for analysis and forecasting of daily financial time series. Availability of high frequency financial data became another challenge with its own specifics and difficulties. Regressors, being a significant part of machine learning field, have been selected as study subjects for this project. ...

  18. Ultra High-Speed Radio Frequency Switch Based on Photonics

    OpenAIRE

    Jia Ge; Fok, Mable P.

    2015-01-01

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed...

  19. A comparison of high-frequency cross-correlation measures

    OpenAIRE

    Precup, O. V.; Iori, G.

    2004-01-01

    On a high-frequency scale the time series are not homogeneous, therefore standard correlation measures can not be directly applied to the raw data. There are two ways to deal with this problem. The time series can be homogenised through an interpolation method [1] (linear or previous tick) and then the Pearson correlation statistic computed. Recently, methods that can handle raw non-synchronous time series have been developed [2,4]. This paper compares two traditional methods that use interpo...

  20. Should High-Frequency Ventilation in the Adult Be Abandoned?

    Science.gov (United States)

    Nguyen, Albert P; Schmidt, Ulrich H; MacIntyre, Neil R

    2016-06-01

    High-frequency oscillatory ventilation (HFOV) can improve ventilation-perfusion matching without excessive alveolar tidal stretching or collapse-reopening phenomenon. This is an attractive feature in the ventilation of patients with ARDS. However, two recent large multi-center trials of HFOV failed to show benefits in this patient population. The following review addresses whether, in view of these trails, HFOV should be abandoned in the adult population? PMID:27235314

  1. Alternative electronic packaging concepts for high frequency electronics

    OpenAIRE

    Siebert, Wolfgang Peter

    2005-01-01

    The aim of the research work presented here, is to contribute to the adaptation of electronic packaging towards the needs of high frequency applications. As the field of electronic packaging stretches over several very different professional areas, it takes an interdisciplinary approach to optimize the technology of electronic packaging. Besides this, an extensive knowledge of industrial engineering should be an essential part of this undertaking to improve electronic packaging. Customary adv...

  2. High-frequency, Algorithmic Spillovers Between NASDAQ and Forex

    OpenAIRE

    Takatoshi Ito; Masahiro Yamada

    2015-01-01

    We empirically examine the order flows spillovers between Nasdaq and the Forex markets in 2008 and 2009. With emphasis on a role of high-frequency traders (HFTs) who aggregate information between the two markets as well as within each market, our results show that HFTs in Nasdaq trade intensively on the market-wide information more rapidly than other market participants, and that their order flows contain more information about the Forex rates than those of the Forex themselves. As a result, ...

  3. Non-linear high-frequency waves in the magnetosphere

    Indian Academy of Sciences (India)

    S Moolla; R Bharuthram; S V Singh; G S Lakhina

    2003-12-01

    Using fluid theory, a set of equations is derived for non-linear high-frequency waves propagating oblique to an external magnetic field in a three-component plasma consisting of hot electrons, cold electrons and cold ions. For parameters typical of the Earth’s magnetosphere, numerical solutions of the governing equations yield sinusoidal, sawtooth or bipolar wave-forms for the electric field.

  4. Factor High-Frequency Based Volatility (HEAVY) Models

    OpenAIRE

    Kevin Sheppard

    2014-01-01

    We propose a new class of multivariate volatility models utilizing realized measures of asset volatility and covolatility extracted from high-frequency data. Dimension reduction for estimation of large covariance matrices is achieved by imposing a factor structure with time-varying conditional factor loadings. Statistical properties of the model, including conditions that ensure covariance stationary or returns, are established. The model is applied to modeling the conditional covariance data...

  5. High-Frequency and Model-Free Volatility Estimators

    OpenAIRE

    Robert Ślepaczuk; Grzegorz Zakrzewski

    2009-01-01

    This paper focuses on volatility of financial markets, which is one of the most important issues in finance, especially with regard to modeling high-frequency data. Risk management, asset pricing and option valuation techniques are the areas where the concept of volatility estimators (consistent, unbiased and the most efficient) is of crucial concern. Our intention was to find the best estimator of true volatility taking into account the latest investigations in finance literature. Basing on ...

  6. High-Performance Optical Frequency References for Space

    Science.gov (United States)

    Schuldt, Thilo; Döringshoff, Klaus; Milke, Alexander; Sanjuan, Josep; Gohlke, Martin; Kovalchuk, Evgeny V.; Gürlebeck, Norman; Peters, Achim; Braxmaier, Claus

    2016-06-01

    A variety of future space missions rely on the availability of high-performance optical clocks with applications in fundamental physics, geoscience, Earth observation and navigation and ranging. Examples are the gravitational wave detector eLISA (evolved Laser Interferometer Space Antenna), the Earth gravity mission NGGM (Next Generation Gravity Mission) and missions, dedicated to tests of Special Relativity, e.g. by performing a Kennedy- Thorndike experiment testing the boost dependence of the speed of light. In this context we developed optical frequency references based on Doppler-free spectroscopy of molecular iodine; compactness and mechanical and thermal stability are main design criteria. With a setup on engineering model (EM) level we demonstrated a frequency stability of about 2·10-14 at an integration time of 1 s and below 6·10-15 at integration times between 100s and 1000s, determined from a beat-note measurement with a cavity stabilized laser where a linear drift was removed from the data. A cavity-based frequency reference with focus on improved long-term frequency stability is currently under development. A specific sixfold thermal shield design based on analytical methods and numerical calculations is presented.

  7. Superplastic Constitutive Equation Including Percentage of High-Angle Grain Boundaries as a Microstructural Parameter

    Science.gov (United States)

    Wang, K.; Liu, F. C.; Xue, P.; Wang, D.; Xiao, B. L.; Ma, Z. Y.

    2016-01-01

    Fifteen Al-Mg-Sc samples with subgrain/grain sizes in the range of 1.8 to 4.9 μm were prepared through the processing methods of friction stir processing (FSP), equal-channel-angular pressing (ECAP), rolling, annealing, and combinations of the above. The percentages of high-angle grain boundaries (HAGBs) of these fine-grained alloys were distributed from 39 to 97 pct. The samples processed through FSP had a higher percentage of HAGBs compared to other samples. Superplasticity was achieved in all fifteen samples, but the FSP samples exhibited better superplasticity than other samples because their fine equiaxed grains, which were mostly surrounded by HAGBs, were conducive to the occurrence of grain boundary sliding (GBS) during superplastic deformation. The dominant deformation mechanism was the same for all fifteen samples, i.e., GBS controlled by grain boundary diffusion. However, the subgrains were the GBS units for the rolled or ECAP samples, which contained high percentages of unrecrystallized grains, whereas the fine grains were the GBS units for the FSP samples. Superplastic data analysis revealed that the dimensionless A in the classical constitutive equation for superplasticity of fine-grained Al alloys was not a constant, but increased with an increase in the percentage of HAGBs, demonstrating that the enhanced superplastic deformation kinetics can be ascribed to the high percentage of HAGBs. A modified superplastic constitutive equation with the percentage of HAGBs as a new microstructural parameter was established.

  8. Novel high frequency devices with graphene and GaN

    Science.gov (United States)

    Zhao, Pei

    This work focuses on exploring new materials and new device structures to develop novel devices that can operate at very high speed. In chapter 2, the high frequency performance limitations of graphene transistor with channel length less than 100 nm are explored. The simulated results predict that intrinsic cutoff frequency fT of graphene transistor can be close to 2 THz at 15 nm channel length. In chapter 3, we explored the possibility of developing a 2D materials based vertical tunneling device. An analytical model to calculate the channel potentials and current-voltage characteristics in a Symmetric tunneling Field-Effect-Transistor (SymFET) is presented. The symmetric resonant peak in SymFET is a good candidate for high-speed analog applications. Rest of the work focuses on Gallium Nitride (GaN), several novel device concepts based on GaN heterostructure have been proposed for high frequency and high power applications. In chapter 4, we compared the performance of GaN Schottky diodes on bulk GaN substrates and GaN-on-sapphire substrates. In addition, we also discussed the lateral GaN Schottky diode between metal/2DEGs. The advantage of lateral GaN Schottky diodes is the intrinsic cutoff frequency is in the THz range. In chapter 5, a GaN Heterostructure barrier diode (HBD) is designed using the polarization charge and band offset at the AlGaN/GaN heterojunction. The polarization charge at AlGaN/GaN interface behaves as a delta-doping which induces a barrier without any chemical doping. The IV characteristics can be explained by the barrier controlled thermionic emission current. GaN HBDs can be directly integrated with GaN HEMTs, and serve as frequency multipliers or mixers for RF applications. In chapter 6, a GaN based negative effective mass oscillator (NEMO) is proposed. The current in NEMO is estimated under the ballistic limits. Negative differential resistances (NDRs) can be observed with more than 50% of the injected electrons occupied the negative

  9. Articulated pipes conveying fluid pulsating with high frequency

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    1999-01-01

    Stability and nonlinear dynamics of two articulated pipes conveying fluid with a high-frequency pulsating component is investigated. The non-autonomous model equations are converted into autonomous equations by approximating the fast excitation terms with slowly varying terms. The downward hanging...... pipe position will lose stability if the mean flow speed exceeds a certain critical value. Adding a pulsating component to the fluid flow is shown to stabilize the hanging position for high values of the ratio between fluid and pipe-mass, and to marginally destabilize this position for low ratios. An...

  10. High-Frequency Trading Synchronizes Prices in Financial Markets

    OpenAIRE

    Austin Gerig

    2012-01-01

    High-speed computerized trading, often called "high-frequency trading" (HFT), has increased dramatically in financial markets over the last decade. In the US and Europe, it now accounts for nearly one-half of all trades. Although evidence suggests that HFT contributes to the efficiency of markets, there are concerns it also adds to market instability, especially during times of stress. Currently, it is unclear how or why HFT produces these outcomes. In this paper, I use data from NASDAQ to sh...

  11. Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies

    Science.gov (United States)

    Wang, Zenghui; Jia, Hao; Zheng, Xuqian; Yang, Rui; Wang, Zefang; Ye, G. J.; Chen, X. H.; Shan, Jie; Feng, Philip X.-L.

    2014-12-01

    We report on the experimental demonstration of a new type of nanoelectromechanical resonator based on black phosphorus crystals. Facilitated by a highly efficient dry transfer technique, crystalline black phosphorus flakes are harnessed to enable drumhead resonators vibrating at high and very high frequencies (HF and VHF bands, up to ~100 MHz). We investigate the resonant vibrational responses from the black phosphorus crystals by devising both electrical and optical excitation schemes, in addition to measuring the undriven thermomechanical motions in these suspended nanostructures. Flakes with thicknesses from ~200 nm down to ~20 nm clearly exhibit elastic characteristics transitioning from the plate to the membrane regime. Both frequency- and time-domain measurements of the nanomechanical resonances show that very thin black phosphorus crystals hold interesting potential for moveable and vibratory devices and for semiconductor transducers where high-speed mechanical motions could be coupled to the attractive electronic and optoelectronic properties of black phosphorus.We report on the experimental demonstration of a new type of nanoelectromechanical resonator based on black phosphorus crystals. Facilitated by a highly efficient dry transfer technique, crystalline black phosphorus flakes are harnessed to enable drumhead resonators vibrating at high and very high frequencies (HF and VHF bands, up to ~100 MHz). We investigate the resonant vibrational responses from the black phosphorus crystals by devising both electrical and optical excitation schemes, in addition to measuring the undriven thermomechanical motions in these suspended nanostructures. Flakes with thicknesses from ~200 nm down to ~20 nm clearly exhibit elastic characteristics transitioning from the plate to the membrane regime. Both frequency- and time-domain measurements of the nanomechanical resonances show that very thin black phosphorus crystals hold interesting potential for moveable and vibratory

  12. High Frequency Modulation Method for Measuring of Birefringence

    Directory of Open Access Journals (Sweden)

    Šulc M.

    2013-05-01

    Full Text Available A method of optical birefringence measurement is presented. It uses an el ectro-optic modulator for the high frequency modulation of polarization of the laser beam. The developed optical apparatus exhibits high sensitivity. It is able to measure very small birefringence of samples down to 10-3 rad. The accuracy and sensitivity of the method was checked by measurement of calibrated Sol eil – Babi net compensator. Method can be also used for online and accurate measurement of an optical components birefringence. This application was developed with the aim to measure Cotton-Mouton effect in air and nitrogen.

  13. Mechanisms and factors that influence high frequency retroviral recombination

    DEFF Research Database (Denmark)

    Delviks-Frankenberry, Krista; Galli, Andrea; Nikolaitchik, Olga;

    2011-01-01

    With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse...... of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment...

  14. High frequency noise studies at the Hartousov mofette area (CZE)

    Science.gov (United States)

    Schmidt, Andreas; Flores-Estrella, Hortencia; Pommerencke, Julia; Umlauft, Josefine

    2014-05-01

    Ambient noise analysis has been used as a reliable tool to investigate sub-surface structures at seismological quiet regions with none or less specific seismic events. Here, we consider the acoustic signals from a single mofette at the Hartoušov area (CZE) as a noise-like high frequency source caused by multiple near surface degassing processes in a restricted location. From this assumption we have used different array geometries for recording at least one hour of continuous noise. We installed triangular arrays with 3 component geophones: the first deployment consisted on two co-centric triangles with side length of 30 and 50 m with the mofette in the center; the second deployment consisted on two triangular arrays, both with side length of 30 m, co-directional to the mofette. Furthermore, we also installed profiles with 24 channels and vertical geophones locating them in different positions with respect to the mofette. In this work, we present preliminary results from the data analysis dependent on the geometry, to show the characteristics of the noise wave-field referring to frequency content and propagation features, such as directionality and surface wave velocity. The spectral analysis shows that the energy is concentrated in a frequency band among 10 and 40 Hz. However, in this interval there is no evidence of any exclusive fundamental frequencies. From this, man-induced influences can be identified as intermittent signal peaks in narrow frequency bands and can be separated to receive the revised mofette wave-field record. The inversion of dispersive surface waves, that were detected by interferometric methods, provides a velocity model down to 12 m with an S-wave velocity between 160 and 180 m/s on the uppermost layer. Furthermore, the interferometric signal properties indicate that it is not possible to characterize the mofette as a punctual source, but rather as a conglomerate of multiple sources with time and location variations.

  15. High-frequency vibrations of sandwich plates and delamination detection

    Science.gov (United States)

    Jensen, Alf E.; Irgens, Fridtjov

    1998-06-01

    In multi-hull marine vehicles assembled by FRP sandwich composite materials problems with delamination and skin/core debonding are reported. High frequency vibrations in foam core sandwich materials are investigated to see if it was possible to apply them, together with bending vibrations, in an early damage warning system for delamination detection in marine vessels. This manuscript presents a theory for high frequency vibration in sandwich plates and beams. The core is modeled as a two parameter foundation with shearing interaction effects as well as normal stress effects in the core included. The skins are modeled as ordinary plates or beams on a foundation. Expressions for both anti-symmetric and symmetric modes are given. In addition to the theoretical development, experiments with a simply supported sandwich beam, using a TV-Holography technic, were performed and good accordance between theory and experiments were achieved. The results indicates that disappearance of symmetric modes may be used a parameter for delamination detection. The anti-symmetric modes may be interchangeable with higher bending modes by an early damage warning system. To avoid this, the theory presented may be applied to determine the anti-symmetric frequency values in forehand.

  16. High-frequency synthetic ultrasound array incorporating an actuator

    Science.gov (United States)

    Ritter, Timothy A.; Shrout, Thomas R.; Shung, K. Kirk

    2001-05-01

    Ultrasound imaging at frequencies above 20 MHz relies almost exclusively on single-element transducers. IN order to apply array technology at these frequencies, several practical problems must be solved, including spatial scale and fabrication limitations, low device capacitance, and lack of a hardware beamformer. One method of circumventing these problems is to combine an array, an actuator, and a synthetic aperture software beamformer. The array can use relatively wide elements spaced on a coarse pitch. The actuator is used to move the array in short steps (less than the element pitch), and pulse-echo data is acquired at intermediate sample positions. The synthetic aperture beamformer reconstructs the image from the pulse-echo data. A 50 MHz example is analyzed in detail. Estimates of signal-to-noise reveal performance comparable to a standard phased array; furthermore, the actuated array requires half the number of elements, the elements are 8x wider, and only one channel is required. Simulated three-dimensional point spread functions demonstrate side lobe levels approaching - 40dB and main beam widths of 50 to 100 microns. A 50 MHz piezo-composite array design has been tested which displays experimental bandwidth of 70% while maintaining high sensitivity. Individual composite sub-elements are 18 microns wide. Once this array is integrated with a suitable actuator, it is anticipated that a tractable method of imaging with high frequency arrays will result.

  17. High-resolution time-frequency distributions for fall detection

    Science.gov (United States)

    Amin, Moeness G.; Zhang, Yimin D.; Boashash, Boualem

    2015-05-01

    In this paper, we examine the role of high-resolution time-frequency distributions (TFDs) of radar micro-Doppler signatures for fall detection. The work supports the recent and rising interest in using emerging radar technology for elderly care and assisted living. Spectrograms have been the de facto joint-variable signal representation, depicting the signal power in both time and frequency. Although there have been major advances in designing quadratic TFDs which are superior to spectrograms in terms of detailing the local signal behavior, the contributions of these distributions in the area of human motion classifications and their offerings in enhanced feature extractions have not yet been properly evaluated. The main purpose of this paper is to show the effect of using high-resolution TFD kernels, in lieu of spectrogram, on fall detection. We focus on the extended modified B-distribution (EMBD) and exploit the level of details it provides as compared with the coarse and smoothed time-frequency signatures offered by spectrograms.

  18. A perspective on high-frequency ultrasound for medical applications

    Science.gov (United States)

    Mamou, Jonathan; Aristizába, Orlando; Silverman, Ronald H.; Ketterling, Jeffrey A.

    2010-01-01

    High-frequency ultrasound (HFU, >15 MHz) is a rapidly developing field. HFU is currently used and investigated for ophthalmologic, dermatologic, intravascular, and small-animal imaging. HFU offers a non-invasive means to investigate tissue at the microscopic level with resolutions often better than 100 μm. However, fine resolution is only obtained over the limited depth-of-field (˜1 mm) of single-element spherically-focused transducers typically used for HFU applications. Another limitation is penetration depth because most biological tissues have large attenuation at high frequencies. In this study, two 5-element annular arrays with center frequencies of 17 and 34 MHz were fabricated and methods were developed to obtain images with increased penetration depth and depth-of-field. These methods were used in ophthalmologic and small-animal imaging studies. Improved blood sensitivity was obtained when a phantom mimicking a vitreous hemorrhage was imaged. Central-nervous systems of 12.5-day-old mouse embryos were imaged in utero and in three dimensions for the first time.

  19. Orientation dependence of high energy electron multiple scattering at small angles of incidence to crystal

    International Nuclear Information System (INIS)

    Experimental investigations is carried out for the orientational dependence of the mean square of the multiple scattering angle at small incidence angles of 4.5 GeV electrons relative to crystallographic (110) planes of diamond. A theoretical discussion of the experiment is reported. 4 refs.; 2 figs

  20. Rotor Design for High Pressure Magic Angle Spinning Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    High pressure magic angle spinning (MAS) nuclear magnetic resonance (NMR) with a sample spinning rate exceeding 2.1 kHz and pressure greater than 165 bar has never been realized. In this work, a new sample cell design is reported, suitable for constructing cells of different sizes. Using a 7.5 mm high pressure MAS rotor as an example, internal pressure as high as 200 bar at a sample spinning rate of 6 kHz is achieved. The new high pressure MAS rotor is re-usable and compatible with most commercial NMR set-ups, exhibiting low 1H and 13C NMR background and offering maximal NMR sensitivity. As an example of its many possible applications, this new capability is applied to determine reaction products associated with the carbonation reaction of a natural mineral, antigorite ((Mg,Fe2+)3Si2O5(OH)4), in contact with liquid water in water-saturated supercritical CO2 (scCO2) at 150 bar and 50 deg C. This mineral is relevant to the deep geologic disposal of CO2, but its iron content results in too many sample spinning sidebands at low spinning rate. Hence, this chemical system is a good case study to demonstrate the utility of the higher sample spinning rates that can be achieved by our new rotor design. We expect this new capability will be useful for exploring solid-state, including interfacial, chemistry at new levels of high-pressure in a wide variety of fields.

  1. Slow high-frequency effects in mechanics: problems, solutions, potentials

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2005-01-01

    them are introduced first in terms of simple physical examples, and then in generalized form for mathematical models covering broad classes of discrete and continuous mechanical systems. Several application examples are summarized. Three mathematical tools for analyzing HFE effects are described and......Strong high-frequency excitation (HFE) may change the ‘slow’ (i.e. effective or average) properties of mechanical systems, e.g. their stiffness, natural frequencies, equilibriums, equilibrium stability, and bifurcation paths. This tutorial describes three general HFE effects: Stiffening – an...... apparent change in the stiffness associated with an equilibrium; Biasing – a tendency for a system to move towards a particular state which does not exist or is unstable without HFE; and Smoothening – a tendency for discontinuities to be apparently smeared out by HFE. The effects and a method for analyzing...

  2. Towards high-frequency operation of spin-lasers

    Science.gov (United States)

    Faria Junior, Paulo E.; Xu, Gaofeng; Lee, Jeongsu; Gerhardt, Nils C.; Sipahi, Guilherme M.; Zutic, Igor

    2015-03-01

    Injecting spin-polarized carriers in lasers enables room-temperature spintronic applications,not limited to magnetoresistance. While steady-state operation of such spin-lasers has already revealed an improved operation as compared to their conventional (spin-unpolarized) counterparts, the main opportunities lie in their-high frequency operation. We systematically show how our accurate electronic structure and microscopic gain calculations could guide the improved dynamical operation of spin-lasers at modulation frequencies beyond what is possible in conventional lasers. FAPESP (2011/19333-4, 2012/05618-0 and 2013/23393-8), CNPq (246549/2012-2), DFG (GE 1231/2-1), NSF-ECCS, DOE-BES and US ONR

  3. Gravitational-wave astronomy: the high-frequency window

    CERN Document Server

    Andersson, N; Andersson, Nils; Kokkotas, Kostas D

    2004-01-01

    This contribution is divided in two parts. The first part provides a text-book level introduction to gravitational radiation. The key concepts required for a discussion of gravitational-wave physics are introduced. In particular, the quadrupole formula is applied to the anticipated ``bread-and-butter'' source for detectors like LIGO, GEO600, EGO and TAMA300: inspiralling compact binaries. The second part provides a brief review of high frequency gravitational waves. In the frequency range above (say) 100Hz, gravitational collapse, rotational instabilities and oscillations of the remnant compact objects are potentially important sources of gravitational waves. Significant and unique information concerning the various stages of collapse, the evolution of protoneutron stars and the details of the supranuclear equation of state of such objects can be drawn from careful study of the gravitational-wave signal. As the amount of exciting physics one may be able to study via the detections of gravitational waves from ...

  4. Frequency shift in high order harmonic generation from isotopic molecules

    CERN Document Server

    He, Lixin; Zhai, Chunyang; Wang, Feng; Shi, Wenjing; Zhang, Qingbin; Zhu, Xiaosong; Lu, Peixiang

    2016-01-01

    We report the first experimental observation of frequency shift in high order harmonic generation (HHG) from isotopic molecules H2 and D2 . It is found that harmonics generated from the isotopic molecules exhibit obvious spectral red shift with respect to those from Ar atom. The red shift is further demonstrated to arise from the laser-driven nuclear motion in isotopic molecules. By utilizing the red shift observed in experiment, we successfully retrieve the nuclear vibrations in H2 and D2, which agree well with the theoretical calculations from the time-dependent Schrodinger equation (TDSE) with Non-Born-Oppenheimer approximation. Moreover, we demonstrate that the frequency shift can be manipulated by changing the laser chirp.

  5. Electrostatic Instabilities at High Frequency in a Plasma Shock Front

    Institute of Scientific and Technical Information of China (English)

    LV Jian-Hong; HE Yong; HU Xi-Wei

    2007-01-01

    New electrostatic instabilities in the plasma shock front are reported.These instabilities are driven by the electrostatic field which is caused by charge separation and the parameter gradients in a plasma shock front.The linear analysis to the high frequency branch of electrostatic instabilities has been carried out and the dispersion relations are obtained numerically.There are unstable disturbing waves in both the parallel and perpendicular directions of shock propagation.The real frequencies of both unstable waves are similar to the electron electrostatic wave,and the unstable growth rate in the parallel direction is much greater than the one in the perpendicular direction.The dependence of growth rates on the electric field and parameter gradients is also presented.

  6. The Influence of High-Frequency Gravitational Waves Upon Muscles

    International Nuclear Information System (INIS)

    The objective of this paper is to present a theory for the possible influence of high-frequency gravitational waves or HFGWs and pulsed micro-current electromagnetic waves or EMs on biological matter specifically on muscle cells and myofibroblasts. The theory involves consideration of the natural frequency of contractions and relaxations of muscles, especially underlying facial skin, and the possible influence of HFGWs on that process. GWs pass without attenuation through all material thus conventional wisdom would dictate that GWs would have no influence on biological matter. On the other hand, GWs can temporarily modify a gravitational field in some locality if they are of high frequency and such a modification might have an influence in changing the skin muscles' natural frequency. Prior to the actual laboratory generation of HFGWs their influence can be emulated by micro-current EM pulses to the skin and some evidence presented here on that effect may predict the influence of HFGWs. We believe that the HFGW pulsations lead to increased muscle activity and may serve to reverse the aging process. A novel theoretical framework concerning these relaxation phenomena is one result of the paper. Another result is the analysis of the possible delivery system of the FBAR-generated HFGWs, the actual power of the generated HFGWs, and the system's application to nanostructural modification of the skin or muscle cells. It is concluded that a series of non-evasive experiments, which are identified, will have the potential to test theory by detecting and analyzing the possible HFGWs change in polarization, refraction, etc. after their interaction with the muscle cells

  7. The Influence of High-Frequency Gravitational Waves Upon Muscles

    Science.gov (United States)

    Moy, Lawrence S.; Baker, Robert M. L.

    2007-01-01

    The objective of this paper is to present a theory for the possible influence of high-frequency gravitational waves or HFGWs and pulsed micro-current electromagnetic waves or EMs on biological matter specifically on muscle cells and myofibroblasts. The theory involves consideration of the natural frequency of contractions and relaxations of muscles, especially underlying facial skin, and the possible influence of HFGWs on that process. GWs pass without attenuation through all material thus conventional wisdom would dictate that GWs would have no influence on biological matter. On the other hand, GWs can temporarily modify a gravitational field in some locality if they are of high frequency and such a modification might have an influence in changing the skin muscles' natural frequency. Prior to the actual laboratory generation of HFGWs their influence can be emulated by micro-current EM pulses to the skin and some evidence presented here on that effect may predict the influence of HFGWs. We believe that the HFGW pulsations lead to increased muscle activity and may serve to reverse the aging process. A novel theoretical framework concerning these relaxation phenomena is one result of the paper. Another result is the analysis of the possible delivery system of the FBAR-generated HFGWs, the actual power of the generated HFGWs, and the system's application to nanostructural modification of the skin or muscle cells. It is concluded that a series of non-evasive experiments, which are identified, will have the potential to test theory by detecting and analyzing the possible HFGWs change in polarization, refraction, etc. after their interaction with the muscle cells.

  8. Invited Article: High resolution angle resolved photoemission with tabletop 11 eV laser

    Energy Technology Data Exchange (ETDEWEB)

    He, Yu; Vishik, Inna M.; Yi, Ming; Yang, Shuolong; Lee, James J.; Chen, Sudi; Rebec, Slavko N.; Leuenberger, Dominik; Shen, Zhi-Xun [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Liu, Zhongkai [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, Stanford, California 94305 (United States); Zong, Alfred [Department of Physics, Stanford University, Stanford, California 94305 (United States); Jefferson, C. Michael; Merriam, Andrew J. [Lumeras LLC, 207 McPherson St, Santa Cruz, California 95060 (United States); Moore, Robert G.; Kirchmann, Patrick S. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-01-15

    We developed a table-top vacuum ultraviolet (VUV) laser with 113.778 nm wavelength (10.897 eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV laser operates at a repetition rate of 10 MHz, provides a flux of 2 × 10{sup 12} photons/s, and enables photoemission with energy and momentum resolutions better than 2 meV and 0.012 Å{sup −1}, respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2 meV. The setup reaches electron momenta up to 1.2 Å{sup −1}, granting full access to the first Brillouin zone of most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source and showcase its performance for rare earth metal tritellurides, high temperature cuprate superconductors, and iron-based superconductors.

  9. Invited Article: High resolution angle resolved photoemission with tabletop 11 eV laser

    International Nuclear Information System (INIS)

    We developed a table-top vacuum ultraviolet (VUV) laser with 113.778 nm wavelength (10.897 eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV laser operates at a repetition rate of 10 MHz, provides a flux of 2 × 1012 photons/s, and enables photoemission with energy and momentum resolutions better than 2 meV and 0.012 Å−1, respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2 meV. The setup reaches electron momenta up to 1.2 Å−1, granting full access to the first Brillouin zone of most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source and showcase its performance for rare earth metal tritellurides, high temperature cuprate superconductors, and iron-based superconductors

  10. Modeling and simulations of new electrostatically driven, bimorph actuator for high beam steering micromirror deflection angles

    Science.gov (United States)

    Walton, John P.; Coutu, Ronald A.; Starman, LaVern

    2015-02-01

    There are numerous applications for micromirror arrays seen in our everyday lives. From flat screen televisions and computer monitors, found in nearly every home and office, to advanced military weapon systems and space vehicles, each application bringing with it a unique set of requirements. The microelectromechanical systems (MEMS) industry has researched many ways micromirror actuation can be accomplished and the different constraints on performance each design brings with it. This paper investigates a new "zipper" approach to electrostatically driven micromirrors with the intent of improving duel plane beam steering by coupling large deflection angles, over 30°, and a fast switching speed. To accomplish this, an extreme initial deflection is needed which can be reached using high stress bimorph beams. Currently this requires long beams and high voltage for the electrostatic pull in or slower electrothermal switching. The idea for this "zipper" approach is to stack multiple beams of a much shorter length and allow for the deflection of each beam to be added together in order to reach the required initial deflection height. This design requires much less pull-in voltage because the pull-in of one short beam will in turn reduce the height of the all subsequent beams, making it much easier to actuate. Using modeling and simulation software to characterize operations characteristics, different bimorph cantilever beam configurations are explored in order to optimize the design. These simulations show that this new "zipper" approach increases initial deflection as additional beams are added to the assembly without increasing the actuation voltage.

  11. High-energy spectrum and zenith-angle distribution of atmospheric neutrinos

    CERN Document Server

    Sinegovsky, S I; Sinegovskaya, T S

    2011-01-01

    High-energy neutrinos, arising from decays of mesons produced through the collisions of cosmic ray particles with air nuclei, form the background in the astrophysical neutrino detection problem. An ambiguity in high-energy behavior of pion and especially kaon production cross sections for nucleon-nucleus collisions may affect essentially the calculated neutrino flux. We present results of the calculation of the energy spectrum and zenith-angle distribution of the muon and electron atmospheric neutrinos in the energy range 10 GeV to 10 PeV. The calculation was performed with usage of known hadronic models (QGSJET-II-03, SIBYLL 2.1, Kimel & Mokhov) for two of the primary spectrum parametrizations, by Gaisser & Honda and by Zatsepin & Sokolskaya. The comparison of the calculated muon neutrino spectrum with the IceCube40 experiment data make it clear that even at energies above 100 TeV the prompt neutrino contribution is not so apparent because of tangled uncertainties of the strange (kaons) and charm...

  12. Invited Article: High resolution angle resolved photoemission with tabletop 11 eV laser.

    Science.gov (United States)

    He, Yu; Vishik, Inna M; Yi, Ming; Yang, Shuolong; Liu, Zhongkai; Lee, James J; Chen, Sudi; Rebec, Slavko N; Leuenberger, Dominik; Zong, Alfred; Jefferson, C Michael; Moore, Robert G; Kirchmann, Patrick S; Merriam, Andrew J; Shen, Zhi-Xun

    2016-01-01

    We developed a table-top vacuum ultraviolet (VUV) laser with 113.778 nm wavelength (10.897 eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV laser operates at a repetition rate of 10 MHz, provides a flux of 2 × 10(12) photons/s, and enables photoemission with energy and momentum resolutions better than 2 meV and 0.012 Å(-1), respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2 meV. The setup reaches electron momenta up to 1.2 Å(-1), granting full access to the first Brillouin zone of most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source and showcase its performance for rare earth metal tritellurides, high temperature cuprate superconductors, and iron-based superconductors. PMID:26827301

  13. Invited Article: High resolution angle resolved photoemission with tabletop 11 eV laser

    Science.gov (United States)

    He, Yu; Vishik, Inna M.; Yi, Ming; Yang, Shuolong; Liu, Zhongkai; Lee, James J.; Chen, Sudi; Rebec, Slavko N.; Leuenberger, Dominik; Zong, Alfred; Jefferson, C. Michael; Moore, Robert G.; Kirchmann, Patrick S.; Merriam, Andrew J.; Shen, Zhi-Xun

    2016-01-01

    We developed a table-top vacuum ultraviolet (VUV) laser with 113.778 nm wavelength (10.897 eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV laser operates at a repetition rate of 10 MHz, provides a flux of 2 × 1012 photons/s, and enables photoemission with energy and momentum resolutions better than 2 meV and 0.012 Å-1, respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2 meV. The setup reaches electron momenta up to 1.2 Å-1, granting full access to the first Brillouin zone of most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source and showcase its performance for rare earth metal tritellurides, high temperature cuprate superconductors, and iron-based superconductors.

  14. High-frequency magneto-conductivity studies of low-dimensional organic conductors

    CERN Document Server

    Schrama, J M

    2000-01-01

    Chapter 5 I report two studies of the angle dependence of FTRs in the high-frequency magneto-conductivity. The FTRs in kappa-(BEDT-TTF) sub 2 Cu(NCS) sub 2 and alpha-(BEDT- TTF) sub 2 KHg(SCN) sub 4 show two previously unknown corrugations in the Q1D Fermi-surface sections of the two materials. The FTRs in alpha-(BEDT-TTF) sub 2 KHg(SCN) sub 4 are investigated both in the density-wave state and near its collapse into a high-temperature, high-field state. In Chapter 6 a study of the millimetre-wave properties of (TMTSF) sub 2 ClO sub 4 at low temperatures is described. Finally, in Chapter 7 I present a study of the angle dependence of the superconductor order parameter in kappa-(BEDT-TTF) sub 2 Cu(NCS) sub 2 with a new millimetre-wave technique. In this thesis I present experimental studies of the millimetre-wave magneto-conductivity of the organic charge-transfer salts kappa-(BEDT-TTF) sub 2 Cu(NCS) sub 2 , alpha-(BEDT-TTF sub 2 KHg(SCN) sub 4 and (TMTSF) sub 2 ClO sub 4. A rotating resonant cavity insert was...

  15. Design of 1 MHz solid state high frequency power supply

    International Nuclear Information System (INIS)

    A High Voltage High Frequency (HVHF) Power supply is used for various applications, like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources, etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼ 1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50 ohm respectively. This paper describes the conceptual design of a 200 kW power supply and experimental results of the prototype 600 W, 1 MHz source. (author)

  16. Ionospheric heating with oblique high-frequency waves

    International Nuclear Information System (INIS)

    This paper presents calculations of ionospheric electron temperature and density perturbations and ground-level signal changes produced by intense oblique high-frequency (HF) radio waves. The analysis takes into account focusing at caustics, the consequent Joule heating of the surrounding plasma, heat conduction, diffusion, and recombination processes, these being the effects of a powerful oblique modifying wave. It neglects whatever plasma instabilities might occur. The authors then seek effects on a secondary test wave that is propagated along the same path as the first. The calculations predict ground-level field strength reductions of several decibels in the test wave for modifying waves having effective radiated power (ERP) in the 85- to 90-dBW range. These field strength changes are similar in sign, magnitude, and location to ones measured in Soviet experiments. The location of the signal change is sensitive to the frequency and the model ionosphere assumed; so future experiments should employ the widest possible range of frequencies and propagation conditions. An ERP of 90 dBW seems to be a sort of threshold that, if exceeded, might result in substantial rather than small signal changes. The conclusions are based solely on Joule heating and subsequent refraction of waves passing through caustic regions

  17. Nodal Quasiparticle Meltdown in Ultra-High Resolution Pump-Probe Angle-Resolved Photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Jeff; Jozwiak, Chris; Smallwood, Chris L.; Eisaki, H.; Kaindl, Robert A.; Lee, Dung-Hai; Lanzara, Alessandra

    2011-06-03

    High-T{sub c} cuprate superconductors are characterized by a strong momentum-dependent anisotropy between the low energy excitations along the Brillouin zone diagonal (nodal direction) and those along the Brillouin zone face (antinodal direction). Most obvious is the d-wave superconducting gap, with the largest magnitude found in the antinodal direction and no gap in the nodal direction. Additionally, while antin- odal quasiparticle excitations appear only below T{sub c}, superconductivity is thought to be indifferent to nodal excitations as they are regarded robust and insensitive to T{sub c}. Here we reveal an unexpected tie between nodal quasiparticles and superconductivity using high resolution time- and angle-resolved photoemission on optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}. We observe a suppression of the nodal quasiparticle spectral weight following pump laser excitation and measure its recovery dynamics. This suppression is dramatically enhanced in the superconducting state. These results reduce the nodal-antinodal dichotomy and challenge the conventional view of nodal excitation neutrality in superconductivity. The electronic structures of high-Tc cuprates are strongly momentum-dependent. This is one reason why the momentum-resolved technique of angle-resolved photoemission spectroscopy (ARPES) has been a central tool in the field of high-temperature superconductivity. For example, coherent low energy excitations with momenta near the Brillouin zone face, or antinodal quasiparticles (QPs), are only observed below T{sub c} and have been linked to superfluid density. They have therefore been the primary focus of ARPES studies. In contrast, nodal QPs, with momenta along the Brillouin zone diagonal, have received less attention and are usually regarded as largely immune to the superconducting transition because they seem insensitive to perturbations such as disorder, doping, isotope exchange, charge ordering, and temperature. Clearly

  18. Identifying High Frequency Peakers using the Korean VLBI Network

    Science.gov (United States)

    Jeong, Y.; Sohn, B. W.; Chung, A.; Park, S.; Park, P.

    2016-02-01

    High Frequency Peakers (HFPs) are known to be promising targets to study the AGN properties at their very early evolutionary stage. To date, HFP classification has been usually relied on the spectral shape with the relatively sparse or short time range monitoring. However, HFP samples are often contaminated by blazars which are compact and highly variable, and hence may behave in similar ways to HFPs. In this work, we challenge to identify genuine young AGNs by long-term monitoring of HFP candidates at high radio frequencies. We performed single-dish monitoring of 19 candidates in 18 epochs over 2.5 years at 22 and 43 GHz simultaneously, using the Korean VLBI Network (KVN). Also, using the KVN and VERA array (KaVA), we carried out 22 and 43 GHz VLBI observations of seven candidates from our sample, and investigated their parsec-scale (milli-arcsecond scale) morphology. We discuss the results of the source classification from our long-term single dish monitoring observation and the preliminary results of follow-up VLBI observation.

  19. BBO sapphire compound for high-power frequency conversion

    Science.gov (United States)

    Rothhardt, Carolin; Rothhardt, Jan; Klenke, Arno; Peschel, Thomas; Eberhardt, Ramona; Limpert, Jens; Tünnermann, Andreas

    2015-02-01

    Lasers used for diverse applications from industry to fundamental science tend to increasing output powers. Some applications require frequency conversion via nonlinear optical crystals, which suffer from the formation of temperature gradients at high power operation which causes thermal lensing or destruction of the crystal due to tensile stresses. To avoid these unwanted effects we joined a beta barium borate (BBO) crystal with sapphire disks serving as effective heat spreaders due to their high thermal conductivity (thermal conductivity κ = 42 W/Km). Therefore, smooth and flat crystal surfaces were joined by plasma-activated bonding. The joining relies on covalent bonds, which are formed via a condensation reaction of the surfaces which are first connected by Van der Waals forces. The cleaned surfaces are activated by plasma and brought into contact, pressed together and heat treated at a temperature of about 100°C. Special attention has been paid to the cleaning of the surfaces. Therefor the surfaces have been evaluated before and after treatment by means of atomic force microscopy. A stable connection has been formed successfully, which has been tested in a proof of principle experiment and demonstrated efficient second harmonic generation at up to 253 W of input power. Compared to a bare single BBO crystal it could be shown that the temperature within the crystal compound is significantly reduced. Such hybrid structures pave the way for frequency conversion at kilowatts of average power for future high power lasers.

  20. Low-frequency oscillations at high density in JFT-2

    International Nuclear Information System (INIS)

    Low-frequency oscillations in a plasma were measured with magnetic probes and Si surface-barrier detectors, and behaviour of the high density plasmas was studied. The plasma current profile in the phase of decreasing density after the interruption of gas input is more peaked than during gas input. The introduction of hydrogen during a discharge results in a reduction of the impurities flux. The increase of density by fast gas input is limited with a negative voltage spike. Immediately before a negative voltage spike, oscillations of m=1,2 grow, leading to the spike. (auth.)

  1. High frequency drift instabilities in a dusty plasma

    Science.gov (United States)

    Rosenberg, M.; Krall, N. A.

    1994-01-01

    High frequency drift instabilities with omega(sub ce) much greater than omega which is greater than omega(sub ci) are investigated in a dusty magnetized plasma in which locally there is an electron density gradient which is opposite in sign to a dust density gradient. Two different equilibria are considered, characterized by rho(sub d) greater than L(sub d) and less than L(sub d), where rho(sub d) is the dust gyroradius and L(sub nd) is the dust density scale length. Possible application to Saturn's F-ring is discussed.

  2. A dynamical structure of high frequency currency exchange market

    Science.gov (United States)

    Sazuka, Naoya; Ohira, Toru; Marumo, Kouhei; Shimizu, Tokiko; Takayasu, Misako; Takayasu, Hideki

    2003-06-01

    We analyze tick-by-tick data, the most high frequency data available, of yen-dollar currency exchange rates. We show that a dynamical structure can be observed in binarized data indicating the direction of up and down movement of prices, which is not apparently seen from the price change itself. This result is consistent with our previous study that there exists a conditional probabilistic structure in binarized data. The dynamical and probabilistic structure which we found could indicate that dealers’ decision making is based on a binary strategy, even if they are unconscious of this fact.

  3. Cavity design for high-frequency axion dark matter detectors

    CERN Document Server

    Stern, I; Hoskins, J; Sikivie, P; Sullivan, N S; Tanner, D B; Carosi, G; van Bibber, K

    2016-01-01

    In an effort to extend the usefulness of microwave cavity detectors to higher axion masses, above ~8 $\\mu$eV (~2 GHz), a numerical trade study of cavities was conducted to investigate the merit of using variable periodic post arrays and regulating vane designs for higher-frequency searches. The results show that both designs could be used to develop resonant cavities for high-mass axion searches. Multiple configurations of both methods obtained the scanning sensitivity equivalent to approximately 4 coherently coupled cavities with a single tuning rod.

  4. High Frequency Trading and the New-Market Makers

    OpenAIRE

    Albert J. Menkveld

    2011-01-01

    This discussion paper led to an article in the Journal of Financial Markets (2013). Volume 16, pages 571-603. This paper links the recent fragmentation in equity trading to high frequency traders (HFTs). It shows how the success of a new market, Chi-X, critically depended on the participation of a large HFT who acts as a modern market-maker. The HFT, in turn, benefits from low fees in the entrant market, but also uses the incumbent market Euronext to offload nonzero positions. It trades, on ...

  5. High-Frequency Trading : en ønsket utvikling?

    OpenAIRE

    Thon, Martin I.; Torsvik, Kjetil K.

    2010-01-01

    Denne masterutredningen omhandler handelsmetoden High-frequency trading (HFT) og ulike strategier som benyttes i forbindelse med metoden. Utredningen ser på hvordan likviditet og effisiens blir påvirket av HFT. Vi har sett på ulike strategier som kan anvendes ved bruk av HFT og som påvirker markedet på ulike måter. Det ble gjennomført en spørreundersøkelse hvor formålet var å avdekke holdninger til HFT og bevisstheten rundt HFT på Oslo Børs. Respondentene i undersøkelsen var alle aktører i...

  6. The regulation of high-frequency trading: A pragmatic view

    OpenAIRE

    Imad Moosa

    2015-01-01

    High-frequency trading (HFT) has become a household term and a favourite topic for the financial media since the flash crash of May 2010. In this article, it is argued that the criticism directed at HFT is misplaced and based on a misconception of what HFT is all about. Specifically it is argued that HFT did not cause or exacerbate the flash crash, that it is not as profitable as it is typically portrayed to be, and that it is confused with other operations. Counterarguments are presented aga...

  7. A Comparison of High-Frequency Cross-Correlation Measures

    OpenAIRE

    Precup, Ovidiu; Iori, Giulia

    2004-01-01

    On a high-frequency scale the time series are not homogeneous, therefore standard correlation measures can not be directly applied to the raw data. There are two ways to deal with this problem. The time series can be homogenised through an interpolation method \\cite{Dacorogna} (linear or previous tick) and then the Pearson correlation statistic computed. Recently, methods that can handle raw non-synchronous time series have been developed \\cite{Reno1,deJong}. This paper compares two tradition...

  8. Automatic ion extraction from high-frequency ion source

    International Nuclear Information System (INIS)

    A description and results of tests of device for automatic extraction of ions from a high-frequency ion source are presented. The automatic regime is realized by introducing feedback with respect to the current of the source cathode and requires low sinusoidal modulation of the exctracting voltage. By varying the power of the discharge the beam current was controlled in the 90-1470μA range with automatic preservation of the optimal conditions in the extraction system. The device was used on a 210-kV neutron generator

  9. Applications of physical methods in high-frequency futures markets

    OpenAIRE

    Bartolozzi, M.; Mellen, C.; Chan, F; Oliver, David J.; Di Matteo, T.; Aste, Tomaso

    2007-01-01

    In the present work we demonstrate the application of different physical methods to high-frequency or tick-by-tick financial time series data. In particular, we calculate the Hurst exponent and inverse statistics for the price time series taken from a range of futures indices. Additionally, we show that in a limit order book the relaxation times of an imbalanced book state with more demand or supply can be described by stretched exponential laws analogous to those seen in many physical systems.

  10. RF MEMS Fractal Capacitors With High Self-Resonant Frequencies

    KAUST Repository

    Elshurafa, Amro M.

    2012-07-23

    This letter demonstrates RF microelectromechanical systems (MEMS) fractal capacitors possessing the highest reported self-resonant frequencies (SRFs) in PolyMUMPS to date. Explicitly, measurement results show SRFs beyond 20 GHz. Furthermore, quality factors higher than 4 throughout a band of 1-15 GHz and reaching as high as 28 were achieved. Additional benefits that are readily attainable from implementing fractal capacitors in MEMS are discussed, including suppressing residual stress warping, eliminating the need for etching holes, and reducing parasitics. The latter benefits were acquired without any fabrication intervention. © 2011 IEEE.

  11. Generation of sheet currents by high frequency fast MHD waves

    Science.gov (United States)

    Núñez, Manuel

    2016-07-01

    The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium.

  12. Very High Frequency Half Bridge DC/DC Converter

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    This paper presents the first, off chip, class DE (resonant half bridge) converter working in the Very High Frequency (VHF) range. The benefits of using half bridge circuits both in the inverter and rectifier part of a VHF resonant dc/dc converter are analyzed and design equations for all...... components in the power stage are given. The circuit has been simulated to verify the accuracy of the presented equations and an efficiency of 89% has been shown. A prototype has been implemented with self-oscillating resonant gate drives driving the switches. The prototype has been used to drive an LED...

  13. Nondestructive testing of high-temperature alloys by small angle neutron scattering (SANS)

    International Nuclear Information System (INIS)

    The suitability of the Small Angle Neutron Scattering (SANS) technique for the measurement of microstructural parameters of high-temperature alloys has been studied. The aim was the non-destructive determination of the creep damage for the estimation of the residual lifetime of service loaded gas turbine blades. In the first step the quantitative correlation between the SANS Signal and the microstructure of the material has been investigated using two oxide dispersion strengthened (ODS) alloys of simple microstructure. The size distributions of the dispersoid in the as-received alloy and the thermally induced growth of the dispersoid have been measured. Good agreement with results of transmission electron microscopy examinations was found. Subsequently the relationship between the SNS signal and the strain of a typical, creep loaded, γ'-strengthened Ni-base superalloy has been investigated. In a series of creep specimens made from the cast superalloy IN100, systematically increasing amounts of creep strain have been produced. With these specimens two parameters can be derived from the SANS scattering curve, each pair of values having a clear relationship with the creep strain. A hypothesis is discussed concerning the related scattering mechanism. (orig.)

  14. Colloidal crystallite suspensions studied by high pressure small angle x-ray scattering

    Science.gov (United States)

    Schroer, M. A.; Westermeier, F.; Lehmkühler, F.; Conrad, H.; Schavkan, A.; Zozulya, A. V.; Fischer, B.; Roseker, W.; Sprung, M.; Gutt, C.; Grübel, G.

    2016-02-01

    We report on high pressure small angle x-ray scattering on suspensions of colloidal crystallites in water. The crystallites made out of charge-stabilized poly-acrylate particles exhibit a complex pressure dependence which is based on the specific pressure properties of the suspending medium water. The dominant effect is a compression of the crystallites caused by the compression of the water. In addition, we find indications that also the electrostatic properties of the system, i.e. the particle charge and the dissociation of ions, might play a role for the pressure dependence of the samples. The data further suggest that crystallites in a metastable state induced by shear-induced melting can relax to a similar structural state upon the application of pressure and dilution with water. X-ray cross correlation analysis of the two-dimensional scattering patterns indicates a pressure-dependent increase of the orientational order of the crystallites correlated with growth of these in the suspension. This study underlines the potential of pressure as a very relevant parameter to understand colloidal crystallite systems in aqueous suspension.

  15. Towards weighing individual atoms by high-angle scattering of electrons

    Energy Technology Data Exchange (ETDEWEB)

    Argentero, G.; Mangler, C.; Kotakoski, J.; Eder, F.R.; Meyer, J.C., E-mail: Jannik.Meyer@univie.ac.at

    2015-04-15

    We consider theoretically the energy loss of electrons scattered to high angles when assuming that the primary beam can be limited to a single atom. We discuss the possibility of identifying the isotopes of light elements and of extracting information about phonons in this signal. The energy loss is related to the mass of the much heavier nucleus, and is spread out due to atomic vibrations. Importantly, while the width of the broadening is much larger than the energy separation of isotopes, only the shift in the peak positions must be detected if the beam is limited to a single atom. We conclude that the experimental case will be challenging but is not excluded by the physical principles as far as considered here. Moreover, the initial experiments demonstrate that the separation of gold and carbon based on a signal that is related to their mass, rather than their atomic number. - Highlights: • We explore how energy loss spectroscopy could be used to obtain information about the mass, rather than the charge, of atoms. • The dose and precision that would be needed to distinguish between the two isotopes of carbon, C12 and C13, is estimated. • Signal broadening due to phonons is included in the calculation. • Initial experiments show the separation between gold and carbon based on their mass rather than charge.

  16. Direct angle resolved photoemission spectroscopy and superconductivity of strained high-c films

    Indian Academy of Sciences (India)

    Davor Pavuna; Daniel Ariosa; Dominique Cloetta; Claudia Cancellieri; Mike Abrecht

    2008-02-01

    Since 1997 we systematically perform direct angle resolved photoemission spectroscopy (ARPES) on in-situ grown thin (< 30 nm) cuprate films. Specifically, we probe low-energy electronic structure and properties of high-c superconductors (HTSC) under different degrees of epitaxial (compressive vs. tensile) strain. In overdoped and underdoped in-plane compressed (the strain is induced by the choice of substrate) ≃ 15 nm thin La2-SrCuO4 (LSCO) films we almost double c to 40 K, from 20 K and 24 K, respectively. Yet the Fermi surface (FS) remains essentially two-dimensional. In contrast, ARPES data under tensile strain exhibit the dispersion that is three-dimensional, yet c drastically decreases. It seems that the in-plane compressive strain tends to push the apical oxygen far away from the CuO2 plane, enhances the two-dimensional character of the dispersion and increases c, while the tensile strain acts in the opposite direction and the resulting dispersion is three-dimensional. We have established the shape of the FS for both cases, and all our data are consistent with other ongoing studies, like EXAFS. As the actual lattice of cuprates is like a `Napoleon-cake', i.e. rigid CuO2 planes alternating with softer `reservoir', that distort differently under strain, our data rule out all oversimplified two-dimensional (rigid lattice) mean field models. The work is still in progress on optimized La-doped Bi-2201 films with enhanced c.

  17. Optical vortex generation with a “fork” hologram under conditions of high-angle diffraction

    Science.gov (United States)

    Bekshaev, A.; Orlinska, O.; Vasnetsov, M.

    2010-05-01

    Spatial characteristics of the optical-vortex (OV) beams created during the Gaussian beam diffraction by a grating with groove bifurcation are analyzed theoretically and numerically. In contrast to previous works, condition of small-angle diffraction is no longer required and the diffracted beam can be strongly deformed. This causes the intensity profile rotation and the high-order OV decomposition into a set of secondary single-charged OVs. These effects are studied quantitatively and confronted with similar properties of a Laguerre-Gaussian beam that undergoes astigmatic telescopic transformation. In contrast to the latter case, the secondary OVs do not lie on a single straight line within the beam cross section, and morphology parameters of the individual secondary OVs carried by the same beam are, in general, different. Conditions for maximum relative separation of the secondary OVs with respect to the beam transverse size are specified. The results can be used for practical generation of OV beams and OV arrays with prescribed properties.

  18. High Resolution Angle Resolved Photoemission with Tabletop 11eV Laser

    CERN Document Server

    He, Yu; Yi, Ming; Yang, Shuolong; Liu, Zhongkai; Lee, James; Chen, Sudi; Rebec, Slavko; Leuenberger, Dominik; Zong, Alfred; Jefferson, Michael; Moore, Robert; Kirchmann, Patrick; Merriam, Andrew; Shen, Zhixun

    2015-01-01

    We developed a table-top vacuum ultraviolet (VUV) laser with $113.778$nm wavelength (10.897eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV laser operates at a repetition rate of 10MHz, provides a flux of 2$\\times$10$^{12}$ photons/second, and enables photoemission with energy and momentum resolutions better than 2meV and 0.012\\AA$^{-1}$, respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2meV. The setup reaches electron momenta up to 1.2\\AA$^{-1}$, granting full access to the first Brillouin zone of most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source, and sho...

  19. High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues.

    Science.gov (United States)

    Beckonert, Olaf; Coen, Muireann; Keun, Hector C; Wang, Yulan; Ebbels, Timothy M D; Holmes, Elaine; Lindon, John C; Nicholson, Jeremy K

    2010-06-01

    Metabolic profiling, metabolomic and metabonomic studies require robust study protocols for any large-scale comparisons and evaluations. Detailed methods for solution-state NMR spectroscopy have been summarized in an earlier protocol. This protocol details the analysis of intact tissue samples by means of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy and we provide a detailed description of sample collection, preparation and analysis. Described here are (1)H NMR spectroscopic techniques such as the standard one-dimensional, relaxation-edited, diffusion-edited and two-dimensional J-resolved pulse experiments, as well as one-dimensional (31)P NMR spectroscopy. These are used to monitor different groups of metabolites, e.g., sugars, amino acids and osmolytes as well as larger molecules such as lipids, non-invasively. Through the use of NMR-based diffusion coefficient and relaxation times measurements, information on molecular compartmentation and mobility can be gleaned. The NMR methods are often combined with statistical analysis for further metabonomics analysis and biomarker identification. The standard acquisition time per sample is 8-10 min for a simple one-dimensional (1)H NMR spectrum, giving access to metabolite information while retaining tissue integrity and hence allowing direct comparison with histopathology and MRI/MRS findings or the evaluation together with biofluid metabolic-profiling data. PMID:20539278

  20. What can we learn from high precision measurements of neutrino mixing angles?

    International Nuclear Information System (INIS)

    Many experiments are being planned to measure the neutrino mixing angles more precisely. In this note, the theoretical significance of a high precision measurement of these parameters is discussed. It is emphasized that they can provide crucial information about different ways to understand the origin of large atmospheric neutrino mixing and move us closer towards determining the neutrino mass matrix. They may also be able to throw light on the question of lepton-quark unification as well as the existence of any leptonic symmetries. For instance if exact μ ↔ τ symmetry in the neutrino mass matrix is assumed to be the reason for maximal νμ → ντ mixing, one gets θ13 = 0 and θ13 ≅ √ Δm20/Δm2A or θ13 ≅ Δm20/Δm2A can provide information about the way the μ ↔ τ symmetry breaking manifests in the case of normal hierarchy. (author)

  1. Design of High Frequency Power Oscillator Board Based on Rotary Encoder Control

    OpenAIRE

    Jiang Shifen; Liang Jiyi

    2013-01-01

    Accurate and stable high frequency pulse power supply is studied to improve high-speed wedm machine tool's efficiency. Regarding to the shortcomings of traditional digital circuit high frequency oscillator board, we design a high frequency power oscillator board based on rotary encoder control, control accuracy and high-frequency waveform by programming, adjusting the frequency and display. It has six brakes of processing function, it also includes feedback function of emulsification oil. The...

  2. Excitation and Ionisation dynamics in high-frequency plasmas

    Science.gov (United States)

    O'Connell, D.

    2008-07-01

    Non-thermal low temperature plasmas are widely used for technological applications. Increased demands on plasma technology have resulted in the development of various discharge concepts based on different power coupling mechanisms. Despite this, power dissipation mechanisms in these discharges are not yet fully understood. Of particular interest are low pressure radio-frequency (rf) discharges. The limited understanding of these discharges is predominantly due to the complexity of the underlying mechanisms and difficult diagnostic access to important parameters. Optical measurements are a powerful diagnostic tool offering high spatial and temporal resolution. Optical emission spectroscopy (OES) provides non-intrusive access, to the physics of the plasma, with comparatively simple experimental requirements. Improved advances in technology and modern diagnostics now allow deeper insight into fundamental mechanisms. In low pressure rf discharges insight into the electron dynamics within the rf cycle can yield vital information. This requires high temporal resolution on a nano-second time scale. The optical emission from rf discharges exhibits temporal variations within the rf cycle. These variations are particularly strong, in for example capacitively coupled plasmas (CCPs), but also easily observable in inductively coupled plasmas (ICPs), and can be exploited for insight into power dissipation. Interesting kinetic and non-linear coupling effects are revealed in capacitive systems. The electron dynamics exhibits a complex spatio-temporal structure. Excitation and ionisation, and, therefore, plasma sustainment is dominated through directed energetic electrons created through the dynamics of the plasma boundary sheath. In the relatively simple case of an asymmetric capacitively coupled rf plasma the complexity of the power dissipation is exposed and various mode transitions can be clearly observed and investigated. At higher pressure secondary electrons dominate the

  3. Nanocrystalline iron based powder cores for high frequency applications

    Directory of Open Access Journals (Sweden)

    P. Gramatyka

    2006-08-01

    Full Text Available Purpose: The aim of this paper was to develop a various nanocrystalline powder cores with different polymersas a binder and investigate their magnetic properties (especially permeability and power losses at highfrequency range.Design/methodology/approach: Numerous experimental techniques were used to characterize startingpowders: laser particles analysis, scanning electron microscopy (SEM, transmission electron microscopy(TEM, X-ray diffraction (XRD and Mössbauer spectrometry (MS. The dynamic magnetic properties at thefrequency range from 50 Hz up to 100 kHz of nanocrystalline iron based powder cores were measured usingcomputerized hysteresis loop tracer Remacomp C-100 and Ferrometr device.Findings: It was found from the experimental studies, that nanocrystalline powder cores proved to be suitablefor high frequency applications. Their frequency dependences are comparable to that of permalloy or carbonyliron powder cores but shows smaller power losses.Research limitations/implications: Further studies should be undertaken in order to produce high densitycomposites with good soft magnetic properties and to find a good compromise between mechanical andmagnetic properties for power electronics applications.Practical implications: Developed nanocrystalline powder cores with permeability’s below 100 are potentialcandidates for a variety of industrial applications, such as electromagnetic interference filters, radio frequencycoupling devices, filter inductors and radio frequency tuning cores.Originality/value: Soft magnetic materials have recently regained interest as inductive component whichis a result of better raw materials, more developed technologies and a need for the materials from electricalmicromotors and low power motors for automation, robotics and other equipments. The present studycomplements and extends earlier investigations of polymer bonded powders.

  4. Material control and surveillance for high frequency access vaults project

    International Nuclear Information System (INIS)

    The 'Material Control and Surveillance for High Frequency Access Vaults' project sponsored by United States Department of Energy's Office of Security Policy, Policy Integration and Technical Support Program (SO-20.3) focuses on enhancing nuclear materials control and surveillance in vaults that are frequently accessed. The focus of this effort is to improve materials control and accountability (MC and A) while decreasing the operational impact of these activities. Los Alamos and Y-12 have developed a testbed at the Los Alamos National Laboratory for evaluating and demonstrating integrated technologies for use in enhancing materials control and accountability in active nuclear material storage vaults. An update will be provided on the new systems demonstrated in the test-bed including a 'confirmatory cart' for expediting the performance of inventory and radio-frequency actuated video that demonstrates the concept of automated data entry for materials moving between MBA's. The United States Department of Energy's Office of Security Policy, Policy Integration and Technical Support Program (SO-20.3) has sponsored a project where nuclear material inventory, control and surveillance systems are evaluated, developed, and demonstrated in an effort to provide technologies that reduce risk, increase material assurance, and provide cost-efficient alternatives to manpower-intensive physical inventory and surveillance approaches for working (high-frequency-access) vaults. This Fiscal Year has been largely focused on evaluating and developing components of two sub-systems that could be used either separately in nuclear material vaults or as part of a larger integrated system for nuclear materials accountability, control and surveillance.

  5. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase II project proposes a single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  6. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a tunable single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  7. High accuracy subwavelength distance measurements: A variable-angle standing-wave total-internal-reflection optical microscope

    International Nuclear Information System (INIS)

    We describe an extension of the total-internal-reflection microscopy technique that permits direct in-plane distance measurements with high accuracy (<10 nm) over a wide range of separations. This high position accuracy arises from the creation of a standing evanescent wave and the ability to sweep the nodal positions (intensity minima of the standing wave) in a controlled manner via both the incident angle and the relative phase of the incoming laser beams. Some control over the vertical resolution is available through the ability to scan the incoming angle and with it the evanescent penetration depth.

  8. 10 K high frequency pulse tube cryocooler with precooling

    Science.gov (United States)

    Liu, Sixue; Chen, Liubiao; Wu, Xianlin; Zhou, Yuan; Wang, Junjie

    2016-07-01

    A high frequency pulse tube cryocooler with precooling (HPTCP) has been developed and tested to meet the requirement of weak magnetic signals measurement, and the performance characteristics are presented in this article. The HPTCP is a two-stage pulse tube cryocooler with the precooling-stage replaced by liquid nitrogen. Two regenerators completely filled with stainless steel (SS) meshes are used in the cooler. Together with cold inertance tubes and cold gas reservoir, a cold double-inlet configuration is used to control the phase relationship of the HPTCP. The experimental result shows that the cold double-inlet configuration has improved the performance of the cooler obviously. The effects of operation parameters on the performance of the cooler are also studied. With a precooling temperature of 78.5 K, the maximum refrigeration capacity is 0.26 W at 15 K and 0.92 W at 20 K when the input electric power are 174 W and 248 W respectively, and the minimum no-load temperature obtained is 10.3 K, which is a new record on refrigeration temperature for high frequency pulse tube cryocooler reported with SS completely used as regenerative matrix.

  9. A High Power Single Frequency Diode Side-Pumped Nd:YAG Ring Laser

    Institute of Scientific and Technical Information of China (English)

    XIE Shi-Yong; BO Yong; XU Jia-Lin; WANG Zhi-Chao; PENG Qin-Jun; CUI Da-Fu; XU Zu-Yan

    2011-01-01

    @@ We demonstrate a high-power single-frequency diode-side pumped Nd:YAG laser at 1064nm.A bow-tie ring cavity configuration comprising two plane and two curved mirrors with two-rod birefringence compensation is employed.The influence of length L.between two curved mirrors on output power and beam quality is investigated theoretically and experimentally while the separation of the flat mirrors is set to be 656mm and the fold angle is 10°.When the pump powers are 358, 343 and 329 W at 808 nm, the maximal output powers of 31.9,26 and 14.1 W are obtained with beam quality factors M2=1.41, 1.12 and 1.20 for Lx = 205, 215 and 230 mm,respectively.

  10. High-order harmonics with frequency-varying polarization within each harmonic

    CERN Document Server

    Fleischer, Avner; Sidorenko, Pavel; Cohen, Oren

    2014-01-01

    We predict high-order harmonics in which the polarization within the spectral bandwidth of each harmonic varies continuously and significantly. For example, the interaction of counter-rotating circularly-polarized bichromatic drivers having close central frequencies with isotropic gas leads to the emission of polarization-fan harmonics which are nearly circularly-polarized in one tail of the harmonic peak, linear in the center of the peak and nearly circular with the opposite helicity in the opposite tail. Polarization fan harmonics are obtained as a result of multiple (at least two) head-on recollisions of electrons with their parent ions occurring from different angles. The process can be phase-matched using standard methods (e.g. pressure tuning phase matching) and maintains the single-atom polarization property through propagation. These polarization-fan harmonics may be used for exploring non-repetitive ultrafast chiral phenomena, e.g. dynamics of magnetic domains, in a single shot

  11. Development of high frequency and wide bandwidth Johnson noise thermometry

    International Nuclear Information System (INIS)

    We develop a high frequency, wide bandwidth radiometer operating at room temperature, which augments the traditional technique of Johnson noise thermometry for nanoscale thermal transport studies. Employing low noise amplifiers and an analog multiplier operating at 2 GHz, auto- and cross-correlated Johnson noise measurements are performed in the temperature range of 3 to 300 K, achieving a sensitivity of 5.5 mK (110 ppm) in 1 s of integration time. This setup allows us to measure the thermal conductance of a boron nitride encapsulated monolayer graphene device over a wide temperature range. Our data show a high power law (T ∼ 4) deviation from the Wiedemann-Franz law above T ∼ 100 K

  12. High-Performance Control in Radio Frequency Power Amplification Systems

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Kofod

    This thesis presents a broad study of methods for increasing the efficiency of narrow-band radio transmitters. The study is centered around the base station application and TETRA/TEDS networks. The general solution space studied is that of envelope tracking applied to linear class-A/B radio...... frequency power amplifiers (RFPAs) in conjunction with cartesian feedback (CFB) used to linearize the overall transmitter system. On a system level, it is demonstrated how envelope tracking is particularly useful for RF carriers with high peak-to-average power ratios, such as TEDS with 10dB. It is also...... further research. Practically demonstrated is a high-efficiency 25W TEDS transmitter capable of meeting all base station adjacent channel power ratio and wideband noise specifications with ample margins. Efficiency is improved from 23% to 44% by application of envelope tracking - almost a doubling - at...

  13. Active Control of High-Frequency Combustor Instability Demonstrated

    Science.gov (United States)

    DeLaat, John C.; Chang, Clarence T.

    2003-01-01

    To reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities-high-pressure oscillations much like sound waves that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the combustor and turbine safe operating life. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Propulsion and Power Program, the NASA Glenn Research Center in partnership with Pratt & Whitney, United Technologies Research Center, and Georgia Institute of Technology is developing technologies for the active control of combustion instabilities.

  14. Efficient estimation for ergodic diffusions sampled at high frequency

    DEFF Research Database (Denmark)

    Sørensen, Michael

    estimators of parameters in the drift coefficient, and for efficiency. The conditions turn out to be equal to those implying small Δ-optimality in the sense of Jacobsen and thus gives an interpretation of this concept in terms of classical sta- tistical concepts. Optimal martingale estimating functions in......A general theory of efficient estimation for ergodic diffusions sampled at high fre- quency is presented. High frequency sampling is now possible in many applications, in particular in finance. The theory is formulated in term of approximate martingale estimating functions and covers a large class...... the sense of Godambe and Heyde are shown to be give rate optimal and efficient estimators under weak conditions....

  15. High frequency nano-optomechanical disk resonators in liquids

    CERN Document Server

    Gil-Santos, E; Nguyen, D T; Hease, W; Lemaître, A; Ducci, S; Leo, G; Favero, I

    2015-01-01

    Vibrating nano- and micromechanical resonators have been the subject of research aiming at ultrasensitive mass sensors for mass spectrometry, chemical analysis and biomedical diagnosis. Unfortunately, their merits diminish dramatically in liquids due to dissipative mechanisms like viscosity and acoustic losses. A push towards faster and lighter miniaturized nanodevices would enable improved performances, provided dissipation was controlled and novel techniques were available to efficiently drive and read-out their minute displacement. Here we report on a nano-optomechanical approach to this problem using miniature semiconductor disks. These devices combine mechanical motion at high frequency above the GHz, ultra-low mass of a few picograms, and moderate dissipation in liquids. We show that high-sensitivity optical measurements allow to direct resolve their thermally driven Brownian vibrations, even in the most dissipative liquids. Thanks to this novel technique, we experimentally, numerically and analytically...

  16. Physics of collisional plasmas. Application to high frequency discharges

    International Nuclear Information System (INIS)

    This book is an introduction to collisional plasmas, these plasmas are more and more often used in industrial applications such as thermonuclear fusion, surface treatments, plasma screens or ions sources. The authors aim at an audience of third year physics students. This book is made up of 4 chapters. The first chapter is devoted to the definition of a plasma and to the description of its main features. The second chapter details the motion of a charged particle in different configurations of electric and magnetic fields, underlining the energy transfer between the electric field and the particle and the cyclotron gyration due to the magnetic field. In the third chapter the authors show how to infer the hydrodynamics equations from the Boltzmann's kinetic equation. The last chapter is dedicated to the physics processes that occur in high frequency discharges for both low and high pressure plasmas. (A.C.)

  17. Frequency selective surfaces based high performance microstrip antenna

    CERN Document Server

    Narayan, Shiv; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on performance enhancement of printed antennas using frequency selective surfaces (FSS) technology. The growing demand of stealth technology in strategic areas requires high-performance low-RCS (radar cross section) antennas. Such requirements may be accomplished by incorporating FSS into the antenna structure either in its ground plane or as the superstrate, due to the filter characteristics of FSS structure. In view of this, a novel approach based on FSS technology is presented in this book to enhance the performance of printed antennas including out-of-band structural RCS reduction. In this endeavor, the EM design of microstrip patch antennas (MPA) loaded with FSS-based (i) high impedance surface (HIS) ground plane, and (ii) the superstrates are discussed in detail. The EM analysis of proposed FSS-based antenna structures have been carried out using transmission line analogy, in combination with the reciprocity theorem. Further, various types of novel FSS structures are considered in desi...

  18. Large deflection angle, high-power adaptive fiber optics collimator with preserved near-diffraction-limited beam quality.

    Science.gov (United States)

    Zhi, Dong; Ma, Yanxing; Chen, Zilun; Wang, Xiaolin; Zhou, Pu; Si, Lei

    2016-05-15

    We report on the development of a monolithic adaptive fiber optics collimator, with a large deflection angle and preserved near-diffraction-limited beam quality, that has been tested at a maximal output power at the 300 W level. Additionally, a new measurement method of beam quality (M2 factor) is developed. Experimental results show that the deflection angle of the collimated beam is in the range of 0-0.27 mrad in the X direction and 0-0.19 mrad in the Y direction. The effective working frequency of the device is about 710 Hz. By employing the new measurement method of the M2 factor, we calculate that the beam quality is Mx2=1.35 and My2=1.24, which is in agreement with the result from the beam propagation analyzer and is preserved well with the increasing output power. PMID:27176966

  19. Harnessing high-dimensional hyperentanglement through a biphoton frequency comb

    CERN Document Server

    Xie, Zhenda; Shrestha, Sajan; Xu, XinAn; Liang, Junlin; Gong, Yan-Xiao; Bienfang, Joshua C; Restelli, Alessandro; Shapiro, Jeffrey H; Wong, Franco N C; Wong, Chee Wei

    2015-01-01

    Quantum entanglement is a fundamental resource for secure information processing and communications, where hyperentanglement or high-dimensional entanglement has been separately proposed towards high data capacity and error resilience. The continuous-variable nature of the energy-time entanglement makes it an ideal candidate for efficient high-dimensional coding with minimal limitations. Here we demonstrate the first simultaneous high-dimensional hyperentanglement using a biphoton frequency comb to harness the full potential in both energy and time domain. The long-postulated Hong-Ou-Mandel quantum revival is exhibited, with up to 19 time-bins, 96.5% visibilities. We further witness the high-dimensional energy-time entanglement through Franson revivals, which is observed periodically at integer time-bins, with 97.8% visibility. This qudit state is observed to simultaneously violate the generalized Bell inequality by up to 10.95 deviations while observing recurrent Clauser-Horne-Shimony-Holt S-parameters up to...

  20. Disturbed spontaneous brain activity pattern in patients with primary angle-closure glaucoma using amplitude of low-frequency fluctuation: a fMRI study

    Directory of Open Access Journals (Sweden)

    Huang X

    2015-07-01

    Full Text Available Xin Huang,1,* Yu-Lin Zhong,1,* Xian-Jun Zeng,2 Fuqing Zhou,2 Xin-Hua Liu,1 Pei-Hong Hu,1 Chong-Gang Pei,1 Yi Shao,1 Xi-Jian Dai21Department of Ophthalmology, 2Department of Radiology, The First Affiliated Hospital of Nanchang University, Nangchang, Jiangxi, People’s Republic of China*These authors contributed equally to this workObjective: The aim of this study is to use amplitude of low-frequency fluctuation (ALFF as a method to explore the local features of spontaneous brain activity in patients with primary angle -closure glaucoma (PACG and ALFFs relationship with the behavioral performances.Methods: A total of twenty one patients with PACG (eight males and 13 females, and twenty one healthy subjects (nine males and twelve females closely matched in age, sex, and education, each underwent a resting-state functional magnetic resonance imaging scan. The ALFF method was used to assess the local features of spontaneous brain activity. The correlation analysis was used to explore the relationships between the observed mean ALFF signal values of the different areas in PACG patients and the thickness of the retinal nerve fiber layer (RNFL. Results: Compared with the healthy subjects, patients with PACG had significant lower ALFF areas in the left precentral gyrus, bilateral middle frontal gyrus, bilateral superior frontal gyrus, right precuneus, and right angular gyrus, and higher areas in the right precentral gyrus. In the PACG group, there were significant negative correlations between the mean ALFF signal value of the right middle frontal gyrus and the left mean RNFL thickness (r=-0.487, P=0.033, and between the mean ALFF signal value of the left middle frontal gyrus and the right mean RNFL thickness (r=-0.504, P=0.020. Conclusion: PACG mainly involved in the dysfunction in the frontal lobe, which may reflect the underlying pathologic mechanism of PACG.Keywords: angle-closure glaucoma, amplitude of low-frequency fluctuation, functional

  1. Direct angle resolved photoemission spectroscopy and superconductivity of strained high-Tc films

    Science.gov (United States)

    Pavuna, Davor; Ariosa, Daniel; Cloetta, Dominique; Cancellieri, Claudia; Abrecht, Mike

    2008-02-01

    Since 1997 we systematically perform direct angle resolved photoemission spectroscopy (ARPES) on in-situ grown thin (<30 nm) cuprate films. Specifically, we probe low-energy electronic structure and properties of high-T_{c} superconductors (HTSC) under different degrees of epitaxial ({compressive vs. tensile}) strain. In overdoped and underdoped in-plane compressed (the strain is induced by the choice of substrate) ≈15 nm thin La_{2-x}Sr_{x}CuO_{4} (LSCO) films we almost double T_{c} to 40 K, from 20 K and 24 K, respectively. Yet the Fermi surface (FS) remains essentially two-dimensional. In contrast, ARPES data under {tensile} strain exhibit the dispersion that is three-dimensional, yet T_{c} drastically decreases. It seems that the in-plane compressive strain tends to push the apical oxygen far away from the CuO_{2} plane, enhances the two-dimensional character of the dispersion and increases T_{c}, while the tensile strain acts in the opposite direction and the resulting dispersion is three-dimensional. We have established the shape of the FS for both cases, and all our data are consistent with other ongoing studies, like EXAFS. As the actual lattice of cuprates is like a `Napoleon-cake', i.e. rigid CuO_{2 } planes alternating with softer `reservoir', that distort differently under strain, our data rule out all oversimplified two-dimensional (rigid lattice) mean field models. The work is still in progress on optimized La-doped Bi-2201 films with enhanced T_{c}.

  2. Detecting blind building façades from highly overlapping wide angle aerial imagery

    Science.gov (United States)

    Burochin, Jean-Pascal; Vallet, Bruno; Brédif, Mathieu; Mallet, Clément; Brosset, Thomas; Paparoditis, Nicolas

    2014-10-01

    This paper deals with the identification of blind building façades, i.e. façades which have no openings, in wide angle aerial images with a decimeter pixel size, acquired by nadir looking cameras. This blindness characterization is in general crucial for real estate estimation and has, at least in France, a particular importance on the evaluation of legal permission of constructing on a parcel due to local urban planning schemes. We assume that we have at our disposal an aerial survey with a relatively high stereo overlap along-track and across-track and a 3D city model of LoD 1, that can have been generated with the input images. The 3D model is textured with the aerial imagery by taking into account the 3D occlusions and by selecting for each façade the best available resolution texture seeing the whole façade. We then parse all 3D façades textures by looking for evidence of openings (windows or doors). This evidence is characterized by a comprehensive set of basic radiometric and geometrical features. The blindness prognostic is then elaborated through an (SVM) supervised classification. Despite the relatively low resolution of the images, we reach a classification accuracy of around 85% on decimeter resolution imagery with 60 × 40 % stereo overlap. On the one hand, we show that the results are very sensitive to the texturing resampling process and to vegetation presence on façade textures. On the other hand, the most relevant features for our classification framework are related to texture uniformity and horizontal aspect and to the maximal contrast of the opening detections. We conclude that standard aerial imagery used to build 3D city models can also be exploited to some extent and at no additional cost for facade blindness characterisation.

  3. Cassini UVIS Solar Zenith Angle Studies of Titan Dayglow Based on N2 High Resolution Spectroscopy

    Science.gov (United States)

    Ajello, Joseph; West, Robert; Holsclaw, Greg; Royer, Emilie; Heays, Alan; Bradley, Todd; Stevens, Michael

    2014-11-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan’s day and night limb-airglow on multiple occasions, including during an eclipse observation. On one occasion the UVIS made a Solar Zenith Angle (SZA) study of the Titan limb dayglow (2011 DOY 171) from about 70 to 95 degrees SZA. The UV intensity variation observations of the N2 photoelectron excited spectral features from the EUV (563-118.2 nm) and FUV (111.5-191.2nm) sub-systems followed a Chapman function. For other observations at night on the limb, the emission features are much weaker in intensity. Beyond 120 deg SZA, when the upper atmosphere of Titan below 1200 km is in total XUV darkness, there is an indication of weak and sporadic night side UV airglow emission excited by magnetosphere plasma collisions with ambient thermosphere gas, with similar N2 excited features as above in the daylight or twilight glow over an extended altitude range. We have analyzed the UVIS airglow spectra with models based on high resolution laboratory electron impact induced fluorescence spectra. We have measured high-resolution (FWHM = 0.2 Å) extreme-ultraviolet (EUV, 800-1350 Å) laboratory emission spectra of molecular nitrogen excited by electron impact at 20 and 100 eV. Molecular emission was observed to vibrationally-excited ground state levels as high as v''=17, from the a 1Πg , b 1Πu, and b‧ 1Σu+ excited valence states and the Rydberg series c‧n+1 1Σu+, cn 1Πu and o 1Πu for n between 3 and 9. A total of 491 emission features were observed from N2 electronic-vibrational transitions and atomic N I and N II multiplets. Their emission cross sections were measured.The blended molecular emission bands were disentangled with the aid of a model which solves the coupled-Schroedinger equation

  4. HIGH FREQUENCY POWER TRANSMISSION LINE FOR CYCLOTRONS AND THE LIKE

    Science.gov (United States)

    Armstrong, W.J.

    1954-04-20

    High-frequency power transmission systems, particularly a stacked capacitance alternating power current transmission line wherein maximum utilization of the effective conductios skin of the line conductors is achieved while enabling a low impedance to be obtained are reported. The transmission line consists of a number of flat metal strips with interleaved dielectric strips. The metal dielectric strips are coiled spirally with the axis of the spiral extending along the length of the strips, and the alternating metal strips at the output end have outwardly extending aligned lugs which are directly strapped together and connected to the respective terminals on the load. At the input end of the transmission line, similarly, the alternate metal strips are directly strapped together and connected to an altereating current source. With the arrangement described each metal strip conducts on both sides, so that the metal strips are designed to have a thickness corresponding to twice the depth of the "skin effect" conducting lamina of each conductor at the source frequency.

  5. Why high-frequency pulse tubes can be tipped

    Energy Technology Data Exchange (ETDEWEB)

    Swift, Gregory W092710 [Los Alamos National Laboratory; Backhaus, Scott N [Los Alamos National Laboratory

    2010-01-01

    The typical low-frequency pulse-tube refrigerator loses significant cooling power when it is tipped with the pulse tube's cold end above its hot end, because natural convection in the pulse tube loads the cold heat exchanger. Yet most high-frequency pulse-tube refrigerators work well in any orientation with respect to gravity. In such a refrigerator, natural convection is suppressed by sufficiently fast velocity oscil1ations, via a nonlinear hydrodynamic effect that tends to align the density gradients in the pulse tube parallel to the oscillation direction. Since gravity's tendency to cause convection is only linear in the pulse tube's end-to-end temperature difference while the oscillation's tendency to align density gradients with oscillating velocity is nonlinear, it is easiest to suppress convection when the end-to-end temperature difference is largest. Simple experiments demonstrate this temperature dependence, the strong dependence on the oscillating velocity, and little dependence on the magnitude or phase of the oscillating pressure. In some circumstances in this apparatus, the suppression of convection is a hysteretic function of oscillating velocity. In some other circumstances, a time-dependent convective state seems more difficult to suppress.

  6. Ultra High-Speed Radio Frequency Switch Based on Photonics

    Science.gov (United States)

    Ge, Jia; Fok, Mable P.

    2015-11-01

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  7. The nature of high frequency sister chromatid exchange cells (HFCs).

    Science.gov (United States)

    Ponzanelli, I; Landi, S; Bernacchi, F; Barale, R

    1997-09-01

    We employed the three-way differential staining technique (TWD), which allows SCEs to be distinguished on a per generation basis by scoring third metaphases (M3), in order to study the spontaneous levels of SCEs in normal and high frequency cells (HFCs) that occurred in the first (S1), second (S2) and third (S3) S phases. Fifty one of 900 lymphocytes from 37 healthy donors were defined as HFCs by calculating the 95th percentile of the distribution of SCEs in S1 + S2. 'Normal' cells presented almost the same number of SCEs after the first, second and third cell cycles (SCE averages of 2.43, 2.04 and 3.53 respectively). In contrast, HFCs showed a higher SCE count in S1, which decreased rapidly through the cycles and reached baseline level at S3 (SCE averages of 7.18, 4.29 and 3.45 respectively). This would suggest that the lesions responsible for the higher SCE frequency in HFCs were effectively removed after two cell cycles and strongly support the hypothesis that HFCs are lymphocytes which accumulate higher levels of DNA lesions through time. PMID:9379910

  8. High-frequency modes of a magnetic antivortex

    Science.gov (United States)

    Asmat-Uceda, Martin; Riley, Grant; Haldar, Arabinda; Buchanan, Kristen

    2015-03-01

    Magnetic vortices have attracted considerable attention in recent years not only because of their interesting physical properties but also due to their potential for applications. The magnetic antivortex (AV), the topological counterpart of the magnetic vortex, possesses similarly rich dynamics and its spin configuration may prove advantageous for spin-wave-based devices, however, it has not been studied as intensely. Recent experiments show that AV's will form naturally at the intersections of patterned pound-key-like nanostructures that are magnetically soft. Here we present micromagnetic simulations of the dynamics of AV's in these structures. The simulations show that pound-key-like structures made of 30-nm thick Permalloy exhibit a complex dynamic profile that includes a number of discrete high-frequency modes (>1 GHz). Spatial maps of the dynamic modes that were constructed using Fourier analysis of the simulation results show modes that are in similar in character to the radial and azimuthal modes observed for magnetic vortices but the spin dynamics also differ from those of a vortex due to the presence of the elongated nanowires in the pound-key-like structure. The frequencies of the observed modes tend to decrease with increasing sample size, however, the general features of the modes remains relatively unaffected by the structure size. The simulations will be compared to Brillouin Light Scattering (BLS) experimental results. This work was supported by the US DOE-BES Award #ER 46854.

  9. Tecnologia radio cognitiva en la banda ultra high frequency (UHF

    Directory of Open Access Journals (Sweden)

    Hernán Paz Penagos

    2014-01-01

    Full Text Available Mobile cellular communication companies in Colombia require more spectrum resources to expand their portfolio of services. However, additional frequency bands for that particular purpose are scarce, yet it is well known that there are many underutilized licensed bands. Therefore new radio technologies are being studied in order to solve this problem, e.g. Software Defined Radio SDR Cognitive Radio CR and Dynamic Spectrum Access DSA. These strategies recommend mobility across the radio spectrum to meet various needs and achieve greater efficiency when managing such a scarce resource. In this context, a case study is presented in an attempt to examine the require¬ments that must be met for the implementation of cognitive radio networks in Bogota. The case study includes evaluation for the possibility of migration from cellular communications to cognitive radio since the bands assigned to UltraHigh Frequency UHF television offer possible free-of-interference coexistence between the two services (i.e. Cellular and TV. The study shows feasibility to migration; however, the implementations of cognitive radio need availability of hardware, software and flexible radio platforms.

  10. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    Science.gov (United States)

    Ge, Jia; Fok, Mable P

    2015-01-01

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches. PMID:26608349

  11. Effect of driving frequency on plasma property in radio frequency and very high frequency magnetron sputtering discharges

    International Nuclear Information System (INIS)

    Ion energy distributions (IEDs), electron energy distributions (EEDs) and other plasma parameters of magnetron sputtering discharges driven by 13.56, 27.12 and 60 MHz sources were investigated by a retarding field energy analyzer and Langmuir probe measurements. An increase in driving frequency leads to an increase in ion energy and the evolution of IEDs from a uni-modal distribution at the 13.56 MHz discharge toward a bi-modal distribution at 27.12 MHz, and a multi-modal distribution at the 60 MHz discharge. For IEDs near the target surface, this evolution is related to the ion acceleration and the charge transfer collisions between Ar atoms and Ar+ ions in the presheath, while for IEDs at the substrate, the evolution depends on the ratio of the ion transit time across the sheath to the radio frequency period. The increase in driving frequency also leads to the evolution of EED function from a Maxwellian type at the 13.56 MHz discharge toward a bi-Maxwellian type at the 27.12 MHz discharge and a Druyvesteyn-like type at the 60 MHz discharge due to the change in the generation and loss mechanisms of electrons. In addition, increasing the driving frequency can lead to a higher electron temperature and a lower electron density. Therefore, the driving frequency becomes an effective tool to control the plasma properties of magnetron sputtering discharges. (paper)

  12. Measurements of high-frequency acoustic scattering from glacially-eroded rock outcrops

    CERN Document Server

    Olson, Derek R; Sæbo, Torstein

    2016-01-01

    Measurements of acoustic backscattering from glacially-eroded rock outcrops were made off the coast of Sandefjord, Norway using a high-frequency synthetic aperture sonar (SAS) system. A method by which scattering strength can be estimated from data collected by a SAS system is detailed, as well as a method to estimate an effective calibration parameter for the system. Scattering strength measurements from very smooth areas of the rock outcrops agree with predictions from both the small-slope approximation and perturbation theory, and range between -33 and -26 dB at 20$^\\circ$ grazing angle. Scattering strength measurements from very rough areas of the rock outcrops agree with the sine-squared shape of the empirical Lambertian model and fall between -30 and -20 dB at 20$^\\circ$ grazing angle. Both perturbation theory and the small-slope approximation are expected to be inaccurate for the very rough area, and overestimate scattering strength by 8 dB or more for all measurements of very rough surfaces. Supportin...

  13. Measurements of high-frequency acoustic scattering from glacially eroded rock outcrops.

    Science.gov (United States)

    Olson, Derek R; Lyons, Anthony P; Sæbø, Torstein O

    2016-04-01

    Measurements of acoustic backscattering from glacially eroded rock outcrops were made off the coast of Sandefjord, Norway using a high-frequency synthetic aperture sonar (SAS) system. A method by which scattering strength can be estimated from data collected by a SAS system is detailed, as well as a method to estimate an effective calibration parameter for the system. Scattering strength measurements from very smooth areas of the rock outcrops agree with predictions from both the small-slope approximation and perturbation theory, and range between -33 and -26 dB at 20° grazing angle. Scattering strength measurements from very rough areas of the rock outcrops agree with the sine-squared shape of the empirical Lambertian model and fall between -30 and -20 dB at 20° grazing angle. Both perturbation theory and the small-slope approximation are expected to be inaccurate for the very rough area, and overestimate scattering strength by 8 dB or more for all measurements of very rough surfaces. Supporting characterization of the environment was performed in the form of geoacoustic and roughness parameter estimates. PMID:27106331

  14. High-frequency Ramsey excitation in a Penning trap

    CERN Document Server

    Suhonen, M; Fritioff, T; Nagy, Sz; Solders, A; Schuch, R

    2007-01-01

    The Ramsey excitation method for high-precision mass-measurements of highly-charged ions has been investigated and benchmarked using H2+ ions in the Penning-trap mass-spectrometer SMILETRAP. The reason for using H2+ ions are their high cyclotron frequency which is typical for the highly-charged ions usually used at SMILETRAP. Two-, three- and four-pulse Ramsey excitation data are analyzed with the help of recent theoretical work and are compared with the previously used single-pulse excitation data. An improvement factor of 2.9 in the statistical uncertainty is achieved. Furthermore the mass of 76Se, included in the previous Q-value measurement of the 76Ge neutrinoless double beta decay, is checked using 76Se25+ ions and a three-pulse Ramsey excitation. The results show a convincing agreement with the measurement when using single-pulse excitation and therefore our Q-value of 2039.006(50) keV, performed with single-pulse excitation, is confirmed.

  15. Mess: a small-angle high resolution neutron spin echo spectrometer installed on a neutron guide of the Orphee reactor

    International Nuclear Information System (INIS)

    A new small-angle, high resolution Neutron Spin Echo (NSE) spectrometer, MESS*, has been built using both novel devices and new developments such as - a conceptually new velocity-selector, a polarizer which intercepts a large solid angle and operates in transmission geometry, an XY-position sensitive detector, and the Maximum Entropy Method of Data Analysis. A gain of 4 in the spectral resolution as well as a gain of 2 in the spatial one is expected over the IN11 spectrometer at the Institut Laue Langevin. First tests have been successfully carried out and NSE echoes were obtained

  16. Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies

    Science.gov (United States)

    Liu, Yajun; Xia, Song; Shi, Hongyu; Zhang, Anxue; Xu, Zhuo

    2016-06-01

    We present a dual-band and high-efficiency polarization converter in microwave regime. The proposed converter can convert a linearly polarized wave to its cross-polarized wave for two distinct bands: Ku (11.5-20.0 GHz) and Ka (28.8-34.0 GHz). It can also convert the linearly polarized wave to a circularly polarized wave at four other frequencies. The experimental results are in good agreement with simulation results for both frequency bands. The polarization conversion ratio is above 0.94 for the Ku-band and 0.90 for the Ka-band. Furthermore, the converter can achieve dual-band and high-efficiency polarization conversion over angles of incidence up to 45°. The converter is also polarization-selective in that only the x- and y-polarized waves can be converted. The physical mechanism of the dual-band polarization conversion effect is interpreted via decomposed electric field components that couple with different plasmon resonance modes of the structure.

  17. High Frequency QPOs due to Black Hole Spin

    Science.gov (United States)

    Kazanas, Demos; Fukumura, K.

    2009-01-01

    We present detailed computations of photon orbits emitted by flares at the innermost stable circular orbit (ISCO) of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. a > 0.94 M, flare a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of T approximates 14 M. This constant time delay, then, leads to a power spectrum with a QPO at a frequency nu approximates 1/14M, even for a totally random ensemble of such flares. Observation of such a QPO will provide incontrovertible evidence for the high spin of the black hole and a very accurate, independent, measurement of its mass.

  18. High frequency techniques an introduction to RF and microwave engineering

    CERN Document Server

    White, Joseph F

    2004-01-01

    A practical guide for today's wireless engineerHigh Frequency Techniques: An Introduction to RF and Microwave Engineering is a clearly written classical circuit and field theory text illustrated with modern computer simulation software. The book's ten chapters cover: *The origins and current uses of wireless transmission *A review of AC analysis, Kirchhoff's laws, RLC elements, skin effect, and introduction to the use of computer simulation software*Resonators, Q definitions, and Q-based impedance matching *Transmission lines, waves, VSWR, reflection phenomena, Fano's reflection bandwidth limits, telegrapher, and impedance transformation equations*Development and in-depth use of the Smith Chart *Matrix algebra with Z, Y, ABCD, S, and T matrix applications*An unusually thorough introduction to electromagnetic field theory, step-by-step development of vector calculus, Maxwell's equations, waveguides, propagation, and antennas*Backward wave, branch line, rat race and Wilkinson couplers, impedance measurements, a...

  19. High-Frequency Wave Propagation by the Segment Projection Method

    Science.gov (United States)

    Engquist, Björn; Runborg, Olof; Tornberg, Anna-Karin

    2002-05-01

    Geometrical optics is a standard technique used for the approximation of high-frequency wave propagation. Computational methods based on partial differential equations instead of the traditional ray tracing have recently been applied to geometrical optics. These new methods have a number of advantages but typically exhibit difficulties with linear superposition of waves. In this paper we introduce a new partial differential technique based on the segment projection method in phase space. The superposition problem is perfectly resolved and so is the problem of computing amplitudes in the neighborhood of caustics. The computational complexity is of the same order as that of ray tracing. The new algorithm is described and a number of computational examples are given, including a simulation of waveguides.

  20. The wave buoy analogy - estimating high-frequency wave excitations

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2008-01-01

    The paper deals with the wave buoy analogy where a ship is considered as a wave buoy, so that measured ship responses are used as a basis to estimate wave spectra and associated sea state parameters. The study presented follows up on a previous paper, Nielsen [Nielsen UD. Response-based estimation...... of sea state parameters — influence of filtering. Ocean Engineering 2007;34:1797–810.], where time series of ship responses were generated from a known wave spectrum for the purpose of the inverse process — the estimation of the underlying wave excitations. Similar response generations and vice versa...... estimated reasonably well, even considering high-frequency wave components of a wind sea wave spectrum....

  1. High frequency ultrasonic characterization of sintered SiC

    Energy Technology Data Exchange (ETDEWEB)

    Baaklini, G.Y.; Generazio, E.R.; Kiser, J.D.

    1987-01-01

    High frequency (60 to 160 MHz) ultrasonic nondestructive evaluation was used to characterize variations in density and microstructural constituents of sintered SiC bars. Ultrasonic characterization methods included longitudinal velocity, reflection coefficient, and precise attenuation measurements. The SiC bars were tailored to provide bulk densities ranging from 90 to 98 percent of theoretical, average grain sizes ranging from 3.0 to 12.0 microns, and average pore sizes ranging from 1.5 to 4.0 microns. Velocity correlated with specimen bulk density irrespective of specimen average grain size, average pore size, and average pore orientation. Attenuation coefficient was found to be sensitive to both density and average pore size variations, but was not affected by large differences in average grain size.

  2. Ultra-high Frequency Linear Fiber Optic Systems

    CERN Document Server

    Lau, Kam

    2011-01-01

    This book provides an in-depth treatment of both linear fiber-optic systems and their key enabling devices. It presents a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers. To the second edition of this book important new aspects of linear fiber-optic transmission technologies are added, such as high level system architectural issues, algorithms for deriving the optimal frequency assignment, directly modulated or externally modulated laser t...

  3. High-precision absolute coordinate measurement using frequency scanned interferometry

    International Nuclear Information System (INIS)

    We reported previously on measurements of absolute distance with frequency scanned interferometry (FSI) method [1, 2]. In this paper, we extend the FSI method into 2-dimensional and 3-dimensional high-precision absolute coordinate measurements using a single laser. Absolute position is determined by several related absolute distances measured simultaneously. The achieved precision on X and Y in 2- and in 3-dimensional measurements is confirmed to be below 1 μm, while the precision in Z (in 3D case) is found to be about 2 μm. The last one is limited by the accuracy of the available translational stage used in the tests. A much more powerful laser and a better real-time data acquirement system will be required in case of measurements of larger absolute distances

  4. High-frequency thermal processes in harmonic crystals

    CERN Document Server

    Kuzkin, Vitaly A

    2016-01-01

    We consider two high-frequency thermal processes in uniformly heated harmonic crystals relaxing towards equilibrium: (i) equilibration of kinetic and potential energies and (ii) redistribution of energy among spatial directions. Equation describing these processes with deterministic initial conditions is derived. Solution of the equation shows that characteristic time of these processes is of the order of ten periods of atomic vibrations. After that time the system practically reaches the stationary state. It is shown analytically that in harmonic crystals temperature tensor is not isotropic even in the stationary state. As an example, harmonic triangular lattice is considered. Simple formula relating the stationary value of the temperature tensor and initial conditions is derived. The function describing equilibration of kinetic and potential energies is obtained. It is shown that the difference between the energies (Lagrangian) oscillates around zero. Amplitude of these oscillations decays inversely proport...

  5. Dynamical Structures of High-Frequency Financial Data

    CERN Document Server

    Kim, K; Kim, S Y; Kim, Y; Yoon, S M; Chang, Ki-Ho; Kim, Kyungsik; Kim, Soo Yong; Kim, Yup; Yoon, Seong-Min

    2005-01-01

    We study the dynamical behavior of high-frequency data from the Korean Stock Price Index (KOSPI) using the movement of returns in Korean financial markets. The dynamical behavior for a binarized series of our models is not completely random. The conditional probability is numerically estimated from a return series of KOSPI tick data. Non-trivial probability structures can be constituted from binary time series of autoregressive (AR), logit, and probit models, for which the Akaike Information Criterion shows a minimum value at the 15th order. From our results, we find that the value of the correct match ratio for the AR model is slightly larger than the findings of other models.

  6. High resolution mid-infrared spectroscopy based on frequency upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Tidemand-Lichtenberg, Peter;

    2013-01-01

    We present high resolution upconversion of incoherent infrared radiation by means of sum-frequency mixing with a laser followed by simple CCD Si-camera detection. Noise associated with upconversion is, in strong contrast to room temperature direct mid-IR detection, extremely small, thus very faint...... is imaged through the upconverter. Assuming homogeneous spherical emission from the object point, the upconverted radiation will carry the spectral information as con-centric rings. From the optical path length and dispersion properties of the nonlinear material, the acceptance bandwidth of the upconversion...... process is calculated. It is then straightforward to deduce the spectral information of the light emitted from the object point by a simple analysis of the upconverted radiation. In order to increase resolution, a scanning Fabry-Perot etalon is inserted in a collimated geometry of the upconverted light...

  7. Synchronization of vortex formation frequency with the body motion frequency at high Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Luiz Antonio Alcantara [Federal University of Itajuba (UNIFEI), MG (Brazil). Inst. of Mechanical Engineering], E-mail: luizantp@unifei.edu.br; Hirata, Miguel Hiroo [State University of Rio de Janeiro (FAT/UERJ), Resende, RJ (Brazil). Fac. de Tecnologia], E-mail: hirata@fat.uerj.br

    2010-07-01

    Understanding vortex induced vibrations is of great importance in the design of a variety of offshore engineering structures, nuclear plant components and cylindrical elements in tube-bank heat exchangers, for example. If a body is placed in a flow, it experiences alternating lift and drag forces caused by the asymmetric formation of vortices, which can cause a structure to vibrate. One of the most interesting features of this flow is the phenomenon of lock-in which is observed when the vortex shedding frequency is close to the body oscillation frequency. This paper presents the results of numerical experiments on vortex shedding from a circular cylinder vibrating in-line or transversely with an incident uniform flow at Reynolds number of 1.0 x 10{sup 5}. The frequencies of the lift and drag coefficients are compared with the body motion frequency when the frequency ratio is about unity. (author)

  8. Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting.

    Science.gov (United States)

    Li, Zhongyang; Palacios, Edgar; Butun, Serkan; Aydin, Koray

    2015-03-11

    Ultrathin metasurfaces have recently emerged as promising materials that have huge potential to enable novel, flat optical components, and surface-confined, miniature photonic devices. Metasurfaces offer new degrees of freedom in molding the optical wavefronts by introducing abrupt and drastic changes in the amplitude, phase, and/or polarization of electromagnetic radiation at the wavelength scale. By carefully arranging multiple subwavelength anisotropic or gradient optical resonators, metasurfaces have been shown to enable anomalous transmission, anomalous reflection, optical holograms, and spin-orbit interaction. However, experimental realization of high-performance metasurfaces that can operate at visible frequency range has been a significant challenge due to high optical losses of plasmonic materials and difficulties in fabricating several plasmonic resonators of subwavelength size with high uniformity. Here, we propose a highly efficient yet a simple metasurface design comprising of a single, anisotropic silver antenna in its unit cell. We demonstrate broadband (450-850 nm) anomalous reflection and spectrum splitting at visible and near-IR frequencies with high conversion efficiency. Average power ratio of anomalous reflection to the strongest diffraction mode was calculated to be on the order of 10(3) and measured to be on the order of 10. The anomalous reflected photons have been visualized using a charge-coupled device camera, and broadband spectrum splitting performance has been confirmed experimentally using a free space, angle-resolved reflection measurement setup. Metasurface design proposed in this study is a clear departure from conventional metasurfaces utilizing multiple, anisotropic and/or gradient optical resonators and could enable high-efficiency, broadband metasurfaces for achieving flat high signal-to-noise ratio optical spectrometers, polarization beam splitters, directional emitters, and spectrum splitting surfaces for photovoltaics. PMID

  9. Development of a Multi-Channel, High Frequency QRS Electrocardiograph

    Science.gov (United States)

    DePalma, Jude L.

    2003-01-01

    With the advent of the ISS era and the potential requirement for increased cardiovascular monitoring of crewmembers during extended EVAs, NASA flight surgeons would stand to benefit from an evolving technology that allows for a more rapid diagnosis of myocardial ischemia compared to standard electrocardiography. Similarly, during the astronaut selection process, NASA flight surgeons and other physicians would also stand to benefit from a completely noninvasive technology that, either at rest or during maximal exercise tests, is more sensitive than standard ECG in identifying the presence of ischemia. Perhaps most importantly, practicing cardiologists and emergency medicine physicians could greatly benefit from such a device as it could augment (or even replace) standard electrocardiography in settings where the rapid diagnosis of myocardial ischemia (or the lack thereof) is required for proper clinical decision-making. A multi-channel, high-frequency QRS electrocardiograph is currently under development in the Life Sciences Research Laboratories at JSC. Specifically the project consisted of writing software code, some of which contained specially-designed digital filters, which will be incorporated into an existing commercial software program that is already designed to collect, plot and analyze conventional 12-lead ECG signals on a desktop, portable or palm PC. The software will derive the high-frequency QRS signals, which will be analyzed (in numerous ways) and plotted alongside of the conventional ECG signals, giving the PC-viewing clinician advanced diagnostic information that has never been available previously in all 12 ECG leads simultaneously. After the hardware and software for the advanced digital ECG monitor have been fully integrated, plans are to use the monitor to begin clinical studies both on healthy subjects and on patients with known coronary artery disease in both the outpatient and hospital settings. The ultimate goal is to get the technology

  10. Frequency conversion of high-intensity, femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Banks, P S

    1997-06-01

    Almost since the invention of the laser, frequency conversion of optical pulses via non- linear processes has been an area of active interest. However, third harmonic generation using ~(~1 (THG) in solids is an area that has not received much attention because of ma- terial damage limits. Recently, the short, high-intensity pulses possible with chirped-pulse amplification (CPA) laser systems allow the use of intensities on the order of 1 TW/cm2 in thin solids without damage. As a light source to examine single-crystal THG in solids and other high field inter- actions, the design and construction of a Ti:sapphire-based CPA laser system capable of ultimately producing peak powers of 100 TW is presented. Of special interest is a novel, all-reflective pulse stretcher design which can stretch a pulse temporally by a factor of 20,000. The stretcher design can also compensate for the added material dispersion due to propagation through the amplifier chain and produce transform-limited 45 fs pulses upon compression. A series of laser-pumped amplifiers brings the peak power up to the terawatt level at 10 Hz, and the design calls for additional amplifiers to bring the power level to the 100 TW level for single shot operation. The theory for frequency conversion of these short pulses is presented, focusing on conversion to the third harmonic in single crystals of BBO, KD*P, and d-LAP (deuterated I-arginine phosphate). Conversion efficiencies of up to 6% are obtained with 500 fs pulses at 1053 nm in a 3 mm thick BBO crystal at 200 GW/cm 2. Contributions to this process by unphasematched, cascaded second harmonic generation and sum frequency generation are shown to be very significant. The angular relationship between the two orders is used to measure the tensor elements of C = xt3)/4 with Crs = -1.8 x 1O-23 m2/V2 and .15Cri + .54Crs = 4.0 x 1O-23 m2/V2. Conversion efficiency in d-LAP is about 20% that in BBO and conversion efficiency in KD*P is 1% that of BBO. It is calculated

  11. The limits of narrow and wide-angle AVA inversions for high Vp/Vs ratios: An application to elastic seabed characterization

    Science.gov (United States)

    Aleardi, Mattia; Tognarelli, Andrea

    2016-08-01

    high frequency content of the data allow two different ranges of incidence angles to be considered: 0-30° and 0-60°. The results of the field data inversion confirm the conclusions from the theoretical analysis.

  12. Parametric approximation of airfoil aerodynamic coefficients at high angles of attack

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert; Zahle, Frederik; Bak, Christian

    2014-01-01

    Three methods for estimating the lift and drag curves in the 360° angle of attack (α) range with harmonic approximation functions were analyzed in the present work. The first method assumes aerodynamic response of a flat plate, the second utilizes even sine and even cosine approximation functions...

  13. High frequency flow-structural interaction in dense subsonic fluids

    Science.gov (United States)

    Liu, Baw-Lin; Ofarrell, J. M.

    1995-01-01

    Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.

  14. High frequency strain measurements with fiber Bragg grating sensors

    Science.gov (United States)

    Koch, J.; Angelmahr, M.; Schade, W.

    2015-05-01

    In recent years fiber Bragg grating sensors gained interest in structural health monitoring and concepts for smart structures. They are small, lightweight, and immune to electromagnetic interference. Using multiplexing techniques, several sensors can be addressed by a single fiber. Therefore, well-established structures and materials in industrial applications can be easily equipped with fiber optical sensors with marginal influence on their mechanical properties. In return, critical components can be monitored in real-time, leading to reduced maintenance intervals and a great reduction of costs. Beside of generally condition monitoring, the localization of failures in a structure is a desired feature of the condition monitoring system. Detecting the acoustic emission of a sudden event, its place of origin can be determined by analyzing the delay time of distributed sensor signals. To achieve high localization accuracies for the detection of cracks, breaks, and impacts high sampling rates combined with the simultaneous interrogation of several fiber Bragg grating sensors are required. In this article a fiber Bragg grating interrogator for high frequency measurements up to the megahertz range is presented. The interrogator is based on a passive wavelength to intensity conversion applying arrayed waveguide gratings. Light power fluctuations are suppressed by a differential data evaluation, leading to a reduced signal-to-noise ratio and a low strain detection limit. The measurement system is used to detect, inter alia, wire breaks in steel wire ropes for dockside cranes.

  15. Birefringence-induced frequency beating in high-finesse cavities by continuous-wave cavity ring-down spectroscopy

    Science.gov (United States)

    Dupré, Patrick

    2015-11-01

    By analyzing the decaying intensity, leaking out a high-finesse cavity previously "filled" by a cw laser source (using the cavity ring-down spectroscopy technique), we observed frequency beating between what we think are two orthogonal eigenpolarization states of the intracavity electromagnetic field. The time decay (ring down) is analyzed by varying the angle of the polarization analyzer located in front of the detector. A full modeling of the observed signal is proposed. It is based on the Jones matrix formalism required for modeling the cavity behavior following a rotated phase shifter. The full transfer function is first established in the frequency domain, and then Fourier transformed to recover the temporal response. The same optical cavity, i.e., constituted of the same set of mirrors, is used at two different wavelengths (˜800 and ˜880 nm). It demonstrates the differences in behavior between a high-finesse cavity (˜400 000 ) and a lower finesse cavity (˜50 000 ). Beating frequency, characteristics time, and beat amplitude are mainly discussed versus the analyzer angle. A cavity birefringence of ˜1.6 ×10-5 rad, resulting from the mirror birefringence is suggested. If the current analysis is in agreement with pulsed CRDS experiments (polarimetry) obtained in an isotropic moderate-finesse cavity, it differs from a recent work report on a high-finesse cavity associated with a source mode locking [Phys. Rev. A 85, 013837 (2012), 10.1103/PhysRevA.85.013837].

  16. High power, continuous-wave, single frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm

    OpenAIRE

    Stappel, M.; Steinborn, R.; Kolbe, D.; Walz, J

    2012-01-01

    We present a high power single-frequency ytterbium fiber amplifier system with an output power of 30 W at 1091 nm. The amplifier system consists of two stages, a preamplifier stage in which amplified spontaneous emission is efficiently suppressed (>40 dB) and a high power amplifier with an efficiency of 52 %. Two different approaches of frequency doubling are compared. We achieve 8.6 W at 545.5 nm by single-pass frequency doubling in a MgO-doped periodically poled stoichiometric LiTaO3 and up...

  17. High Frequency VLBI Studies of Sagittarius A* and NRAO 530

    Science.gov (United States)

    Lu, Ru-Sen

    2010-10-01

    Compact radio sources (Kellermann & Pauliny-Toth 1981) are widely accepted to be associated with supermassive black holes at the centers of active galaxies. Very long baseline interferometry (VLBI) observations at short millimeter wavelengths offer the unique advantage to look "deeper" into the central core regions. In this thesis we study two com pact radio sources (Sagittarius A* and NRAO 530) with high frequency VLBI techniques. As a starting point, we give in Chapter 1 a general introduction to observational properties of Active galactic nuclei (AGNs) and a theoretical basis. In Chapter 2, the compact radio source at the center of the Milky Way, Sagittarius A*, is reviewed. In Chapter 3, the technical basis of VLBI is outlined and then the difficulties of VLBI (and therefore the ways to improve) at short millimeter wavelengths are discussed. Due to its proximity, Sagittarius A* has the largest apparent event horizon of any black hole candidate and therefore it provides a unique opportunity for testing the SMBH paradigm. However, direct imaging of the nucleus is only accessible at short millimeter wavelengths due to the scatter broadening. In Chapter 4, we present results of an inter-day VLBI monitoring of Sagittarius A* at wavelengths of 13, 7, and 3 mm during a global observing campaign in 2007. We measure the flux density and source structure and study their variability on daily time scales. In addition to the VLBI monitoring of the Galactic Center, we present in Chapter 5 results of multi-epoch multi-frequency VLBI observations of the blazar nrao 530. NRAO 530 is an optically violent variable (OVV) source and was observed as a VLBI calibrator in our observations of Sagittarius A*. We investigate the spectral properties of jet components, their frequency-dependent position shifts, and variability of flux density and structure on daily time scales. Analysis of archival data over the last ten years allows us to study the detailed jet kinematics. Finally, a

  18. High Frequency Monitoring of the Aigion Fault Activity

    Science.gov (United States)

    Cornet, Francois; Bourouis, Seid

    2013-04-01

    In 2007, a high frequency monitoring system was deployed in the 1000 m deep AIG10 well that intersects the Aigion fault at a depth of 760 m. This active 15 km long fault is located on the south shore of the Corinth rift, some 40 km east from Patras, in western central Greece. The borehole intersects quaternary sediments down to 495 m, then cretaceous and tertiary heavily tectonized deposits from the Pindos nappe. Below the fault encountered at 760 m, the borehole remains within karstic limestone of the Gavrovo Tripolitza nappe. The monitoring system involved two geophones located some 15 m above the fault, and two hydrophones located respectively at depths equal to 500 m and 250 m. The frequency domain for the data acquisition system ranged from a few Hz to 2500 Hz. The seismic velocity structure close to the borehole was determined through both sonic logs and vertical seismic profiles. This monitoring system has been active during slightly over six months and has recorded signals from microseismic events that occurred in the rift, the location of which was determined thanks to the local 11 stations, three components, short period (2 Hz), monitoring system. In addition, the borehole monitoring system has recorded more than 1000 events not identified with the regional network. Events were precisely correlated with pressure variations associated with two human interventions. These extremely low magnitude events occurred at distances that reached at least up to 1500 m from the well. They were associated, some ten days later, with some local rift activity. A tentative model is proposed that associates local short slip instabilities in the upper part of the fault close to the well, with a longer duration pore pressure diffusion process. Results demonstrate that the Aigion fault is continuously creeping down to a depth at least equal to 5 km but probably deeper.

  19. Grid Cell Relaxation Effects on the High Frequency Vibration Characteristics

    International Nuclear Information System (INIS)

    The plate structure of the grid of fuel assembly is always exposed to serious vortex induced vibration. Also, High Frequency flow induced Vibration (HFV) is primarily generated by vortex-shedding effect. When it comes to grid design as a fuel assembly component, HFV should be considered in advance since it is one of the critical factors. Excessive HFV has a possibility of making degradation of the fuel reliability that is directly related to the fuel robustness and operating performance. KEPCO NF (KNF) has performed HFV tests with various grid designs. While studying the HFV characteristics through the HFV tests, it has been observed that HFV amplitudes show different levels according to grid cell relaxation. It means that the testing could give different interpretations due to the condition of grid cell. Since the amount of relaxation is different under operating conditions and environments in a reactor, test specimens should be modified as much as possible to the real state of the fuel. Therefore, in order to consider the grid cell relaxation effects on the HFV tests, it is important to use cell sized or non-cell sized grids. The main focus of this study is to find out how the HFV characteristics such as amplitude and frequency are affected by grid cell relaxation. Three cases of the grid cell sized specimen which is nickel alloy were prepared and tested. Through the comparison of the test results, it could be concluded that HFV amplitudes show decreasing trend according to the grid cell relaxation in the case of nickel alloy grid. It is also possible to expect the tendency of grid cell relaxation of a zirconium alloy grid based on test results

  20. A high frequency high power IGBT inverter drive for 45 HP/16,000 rpm brushless homopolar inductor motor

    International Nuclear Information System (INIS)

    A microprocessor-based ultra-high speed brushless homopolar inductor motor drive system (HiDrive) with no gearing and using a high frequency IGBT inverter switching at 32 kHz is described and discussed in this paper. The homopolar motor features a solid steel rotor without magnets, windings, or laminations, which allows the motor to be operated at very high speed. The HiDrive system achieves 16,000 RPM, 45 Hp continuously. The drive system discussed in this paper can be used to replace conventional motors and speed increasing gear boxes in very high speed industrial applications such as centrifuges, compressors, blowers, pumps, and machine tool spindles. The HiDrive system discussed in this paper is used to drive a compressor for nuclear power application. In this paper, the detailed descriptions of the motor construction, equivalent circuit, operation and control principle are offered. The IGBT inverter drive system design and controls including motor speed sensing, load angle control, synchronization, brake control, power device switchings, and thermal issues are addressed. The simulation results various test results, and the typical application examples of the high speed drives are also presented in this paper

  1. Velocity field measurements on high-frequency, supersonic microactuators

    Science.gov (United States)

    Kreth, Phillip A.; Ali, Mohd Y.; Fernandez, Erik J.; Alvi, Farrukh S.

    2016-05-01

    The resonance-enhanced microjet actuator which was developed at the Advanced Aero-Propulsion Laboratory at Florida State University is a fluidic-based device that produces pulsed, supersonic microjets by utilizing a number of microscale, flow-acoustic resonance phenomena. The microactuator used in this study consists of an underexpanded source jet that flows into a cylindrical cavity with a single, 1-mm-diameter exhaust orifice through which an unsteady, supersonic jet issues at a resonant frequency of 7 kHz. The flowfields of a 1-mm underexpanded free jet and the microactuator are studied in detail using high-magnification, phase-locked flow visualizations (microschlieren) and two-component particle image velocimetry. These are the first direct measurements of the velocity fields produced by such actuators. Comparisons are made between the flow visualizations and the velocity field measurements. The results clearly show that the microactuator produces pulsed, supersonic jets with velocities exceeding 400 m/s for roughly 60 % of their cycles. With high unsteady momentum output, this type of microactuator has potential in a range of ow control applications.

  2. Theory of High Frequency Rectification by Silicon Crystals

    Science.gov (United States)

    Bethe, H. A.

    1942-10-29

    The excellent performance of British "red dot" crystals is explained as due to the knife edge contact against a polished surface. High frequency rectification depends critically on the capacity of the rectifying boundary layer of the crystal, C. For high conversion efficiency, the product of this capacity and of the "forward" (bulk) resistance R {sub b} of the crystal must be small. For a knife edge, this product depends primarily on the breadth of the knife edge and very little upon its length. The contact can therefore have a rather large area which prevents burn-out. For a wavelength of 10 cm. the computations show that the breadth of the knife edge should be less than about 10 {sup -3} cm. For a point contact the radius must be less than 1.5 x 10 {sup -3} cm. and the resulting small area is conducive to burn-out. The effect of "tapping" is probably to reduce the area of contact. (auth)

  3. Photodetachment of H- from intense, short, high-frequency pulses

    Science.gov (United States)

    Shao, Hua-Chieh; Robicheaux, F.

    2016-05-01

    We study the photodetachment of an electron from the hydrogen anion due to short, high-frequency laser pulses by numerically solving the time-dependent Schrödinger equation. Simulations are performed to investigate the dependence of the photoelectron spectra on the duration, chirp, and intensity of the pulses. Specifically, we concentrate on the low-energy distributions in the spectra that result from the Raman transitions of the broadband pulses. Contrary to one-photon ionization, the low-energy distribution maintains an almost constant width as the laser bandwidth is expanded by chirping the pulses. In addition, we study the transitions of the ionization dynamics from the perturbative to the strong-field regime. At high intensities, the positions of the net one- and two-photon absorption peaks in the spectrum shift and the peaks split to multiple subpeaks due to multiphoton effects. Moreover, although the one- and two-photon peaks and low-energy distribution exhibit saturation of the ionization yields, the low-energy distribution shows relatively mild saturation.

  4. High Frequency Mechanical Pyroshock Simulations for Payload Systems

    Energy Technology Data Exchange (ETDEWEB)

    BATEMAN,VESTA I.; BROWN,FREDERICK A.; CAP,JEROME S.; NUSSER,MICHAEL A.

    1999-12-15

    Sandia National Laboratories (SNL) designs mechanical systems with components that must survive high frequency shock environments including pyrotechnic shock. These environments have not been simulated very well in the past at the payload system level because of weight limitations of traditional pyroshock mechanical simulations using resonant beams and plates. A new concept utilizing tuned resonators attached to the payload system and driven with the impact of an airgun projectile allow these simulations to be performed in the laboratory with high precision and repeatability without the use of explosives. A tuned resonator has been designed and constructed for a particular payload system. Comparison of laboratory responses with measurements made at the component locations during actual pyrotechnic events show excellent agreement for a bandwidth of DC to 4 kHz. The bases of comparison are shock spectra. This simple concept applies the mechanical pyroshock simulation simultaneously to all components with the correct boundary conditions in the payload system and is a considerable improvement over previous experimental techniques and simulations.

  5. Planck pre-launch status: High Frequency Instrument polarization calibration

    CERN Document Server

    Rosset, C; Ponthieu, N; Ade, P; Catalano, A; Conversi, L; Couchot, F; Crill, B P; Désert, F -X; Ganga, K; Giard, M; Giraud-Héraud, Y; Haïssinski, J; Henrot-Versillé, S; Holmes, W; Jones, W C; Lamarre, J -M; Lange, A; Leroy, C; Macías-Pérez, J; Maffei, B; de Marcillac, P; Miville-Deschênes, M -A; Montier, L; Noviello, F; Pajot, F; Perdereau, O; Piacentini, F; Piat, M; Plaszczynski, S; Pointecouteau, E; Puget, J -L; Ristorcelli, I; Savini, G; Sudiwala, R; Veneziani, M; Yvon, D

    2010-01-01

    The High Frequency Instrument of Planck will map the entire sky in the millimeter and sub-millimeter domain from 100 to 857 GHz with unprecedented sensitivity to polarization ($\\Delta P/T_{\\tiny cmb} \\sim 4\\cdot 10^{-6}$) at 100, 143, 217 and 353 GHz. It will lead to major improvements in our understanding of the Cosmic Microwave Background anisotropies and polarized foreground signals. Planck will make high resolution measurements of the $E$-mode spectrum (up to $\\ell \\sim 1500$) and will also play a prominent role in the search for the faint imprint of primordial gravitational waves on the CMB polarization. This paper addresses the effects of calibration of both temperature (gain) and polarization (polarization efficiency and detector orientation) on polarization measurements. The specific requirements on the polarization parameters of the instrument are set and we report on their pre-flight measurement on HFI bolometers. We present a semi-analytical method that exactly accounts for the scanning strategy of...

  6. DEVELOPMENT OF HIGH-VOLTAGE HIGH-FREQUENCY POWER SUPPLY FOR OZONE GENERATION

    Directory of Open Access Journals (Sweden)

    NACERA HAMMADI

    2016-05-01

    Full Text Available A high-voltage high-frequency power supply for ozone generation is presented in this paper. Ozone generation is intended to be used in air and in water disinfection. A power stage consisting of a single-phase full bridge inverter for regulating the output power, a current push-pull inverter (driver and a control circuit are described and analyzed. This laboratory build power supply using a high voltage ferrite transformer and a PIC microcontroller was employed to energize a dielectric barrier discharge (DBD ozone generator. The inverter working on the basis of control strategy is of simple structure and has a variation range of the working frequency in order to obtain the optimal frequency value. The experimental results concerning electrical characterization and water treatment using a cylindrical DBD ozone generator supplied by this power supply are given in the end.

  7. Studies of phospholipid hydration by high-resolution magic-angle spinning nuclear magnetic resonance.

    OpenAIRE

    Zhou, Z.; Sayer, B G; Hughes, D. W.; Stark, R E; Epand, R M

    1999-01-01

    A sample preparation method using spherical glass ampoules has been used to achieve 1.5-Hz resolution in 1H magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of aqueous multilamellar dispersions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), serving to differentiate between slowly exchanging interlamellar and bulk water and to reveal new molecular-level information about hydration phenomena in these model biolo...

  8. Reynolds number effects on supersonic asymmetrical flows over a cone at high angle of attack

    Science.gov (United States)

    Thomas, J. L.

    1991-01-01

    The supersonic viscous flow over a 5-degree half-angle cone at an angle of attack of four times the cone half-angle is studied computationally using both the conical and the three-dimensional Navier-Stokes equations. The numerical solutions were obtained with an implicit, upwind-biased algorithm. Asymmetrical flowfields of the absolute-instability type are found using the conical-flow equations which agree with published results. However, the absolute instabilities of the originally symmetric flow found with the conical equations do not occur in the three-dimensional simulations, although spurious asymmetric three-dimensional flows for symmetric bodies arise if the grid resolution is insufficient in the nose region. The asymmetric flows computed with the three-dimensional equations are convective instabilities and are possible if the local Reynolds number exceeds a critical value and a fixed geometric asymmetry is imposed. A continuous range of asymmetries can be developed, depending on the size of the disturbance and the Reynolds number. As the Reynolds number is increased, the asymmetries demonstrate a bistable behavior at levels of side force consistent with those predicted using the conical equations. Below a certain critical Reynolds number, any flow asymmetries arising from a geometrical asymmetry are damped with increasing distance downstream from the geometrical asymmetry.

  9. Empirical sea ice thickness retrieval during the freeze-up period from SMOS high incident angle observations

    Directory of Open Access Journals (Sweden)

    M. Huntemann

    2014-03-01

    Full Text Available Sea ice thickness information is important for sea ice modelling and ship operations. Here a method to detect the thickness of sea ice up to 50 cm during the freeze-up season based on high incidence angle observations of the Soil Moisture and Ocean Salinity (SMOS satellite working at 1.4 GHz is suggested. By comparison of thermodynamic ice growth data with SMOS brightness temperatures, a high correlation to intensity and an anticorrelation to the difference between vertically and horizontally polarised brightness temperatures at incidence angles between 40 and 50° are found and used to develop an empirical retrieval algorithm sensitive to thin sea ice up to 50 cm thickness. The algorithm shows high correlation with ice thickness data from airborne measurements and reasonable ice thickness patterns for the Arctic freeze-up period.

  10. Viscoelastic properties of bovine articular cartilage attached to subchondral bone at high frequencies

    Directory of Open Access Journals (Sweden)

    Shepherd Duncan ET

    2009-06-01

    Full Text Available Abstract Background Articular cartilage is a viscoelastic material, but its exact behaviour under the full range of physiological loading frequencies is unknown. The objective of this study was to measure the viscoelastic properties of bovine articular cartilage at loading frequencies of up to 92 Hz. Methods Intact tibial plateau cartilage, attached to subchondral bone, was investigated by dynamic mechanical analysis (DMA. A sinusoidally varying compressive force of between 16 N and 36 N, at frequencies from 1 Hz to 92 Hz, was applied to the cartilage surface by a flat indenter. The storage modulus, loss modulus and phase angle (between the applied force and the deformation induced were determined. Results The storage modulus, E', increased with increasing frequency, but at higher frequencies it tended towards a constant value. Its dependence on frequency, f, could be represented by, E' = Aloge (f + B where A = 2.5 ± 0.6 MPa and B = 50.1 ± 12.5 MPa (mean ± standard error. The values of the loss modulus (4.8 ± 1.0 MPa mean ± standard deviation were much less than the values of storage modulus and showed no dependence on frequency. The phase angle was found to be non-zero for all frequencies tested (4.9 ± 0.6°. Conclusion Articular cartilage is viscoelastic throughout the full range of frequencies investigated. The behaviour has implications for mechanical damage to articular cartilage and the onset of osteoarthritis. Storage modulus increases with frequency, until the plateau region is reached, and has a higher value than loss modulus. Furthermore, loss modulus does not increase with loading frequency. This means that more energy is stored by the tissue than is dissipated and that this effect is greater at higher frequencies. The main mechanism for this excess energy to be dissipated is by the formation of cracks.

  11. L型阵列天线的测频测角实现研究%Implementation of Frequency and Angle Measurements of L-shaped Array Antenna

    Institute of Scientific and Technical Information of China (English)

    谭俊锋; 王建涛; 闫晓鹏

    2012-01-01

    基于构建的FPGA协同DSP(FPGA+DSP)异构系统提出了一种L型阵列天线的测频和测角实现方案,研究了谱峰搜索多重信号分类(MUSIC)算法和酉矩阵求根MUSIC算法的实现.2种算法的实测数据试验结果表明,谱峰搜索MUSIC算法实现简单,但处理精度受限于频域和空域的搜索精度.在同一精度量级时,酉矩阵求根MUSIC算法的处理时间只有谱峰搜索MUSIC算法的62.6%,且可以避免多维搜索,还对宽带信号具有一定的分辨率,具有较好的工程鲁棒性.%The implementation scheme of frequency and angle measurements of L-array based on the designed FPGA+DSP system is studied in this paper. The peak searching MUSIC algorithm and the unitary transformation root MUSIC algorithm are both implemented in DSP with real data, and the processing results show that the time of unitary transformation root MUSIC algorithm is faster than that of peak searching MUSIC algorithm by 62.6% at the same precision level. The unitary transformation root MUSIC algorithm can also find the wideband signal in the experimentation, which has better robustness of engineering.

  12. High-frequency electrodeless lamps in argon-mercury mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Denisova, N [Institute of Theoretical and Applied Mechanics, Novosibirsk (Russian Federation); Revalde, G [Institute of Atomic Physics and Spectroscopy, University of Latvia, Raina blvd. 19, Riga (Latvia); Skudra, A [Institute of Atomic Physics and Spectroscopy, University of Latvia, Raina blvd. 19, Riga (Latvia); Zissis, G [CPAT, University Toulouse 3, 118 rte de Narbonne, 31062 Toulouse (France); Zorina, N [Institute of Atomic Physics and Spectroscopy, University of Latvia, Raina blvd. 19, Riga (Latvia)

    2005-09-07

    In this paper, numerical and experimental investigations of high-frequency (HF) electrodeless lamps in argon-mercury mixtures are performed. The intensities of the mercury spectral lines having wavelengths {lambda} = 404.66, 435.83, 546.07 nm (7{sup 3}S{sub 1}-6{sup 3}P{sub 0,1,2}) and the resonance line {lambda} = 253.7 nm (6{sup 3} P{sub 1}-6{sup 1}S{sub 0}) are measured at a wide range of mercury pressures, varying the HF generator current and argon filling pressure. A stationary self-consistent model of HF electrodeless discharge lamp is developed including kinetics of the excited mercury and argon atomic states. Based on the developed model, the radiation characteristics of the discharge plasma are calculated. Numerical simulation of the line intensities behaviour in dependence on the mercury pressure, HF generator current and argon filling pressure is performed. The model results are in qualitative agreement with the experimental data. The calculations of the relative intensities of the visible triplet lines 7{sup 3}S{sub 1}-6{sup 3}P{sub 0,1,2} are presented for the first time in this paper.

  13. Scattering of high-frequency surface waves in Scotland

    Science.gov (United States)

    MacBeth, Colin; Snieder, Roel

    1989-02-01

    High-frequency (≤5 Hz) coda waves for velocities of arrival less than 3 km/s, recorded on vertical component instruments and generated from a local earthquake in Scotland, are analyzed to ascertain their cause. The adaption of existing velocity models and scattering from near-surface irregularities in Scotland such as mountains and lochs are considered as possible causes of the observed behavior. The former mechanism is not feasible, as it implies a significant alteration of the velocities in the upper 2 km crust, contradicting previous seismic surveys in the area. An analysis of the effects of scattering is performed using a formalism derived from the Born approximation. The scattered wave field is computed for interactions between first six Rayleigh and Love modes. The general character of the synthetic seismograms for these scattered waves agrees with the observations on a qualitative basis. The apparent absence of the fundamental mode energy from the records is also explained by the synthetic seismograms. The calculations imply that scatterers with a scale length of less than 300 m are applicable to these data from the northernmost stations but around 2 km for the more southern areas. It is thought that the scale length relates to the size of a region on the slopes of the mountains or lochs where there is a sharp gradient. This study emphasises the effectiveness of linear scattering theory in accounting, on a qualitative basis for many of the observed features of the apparently complex coda waves.

  14. Study of high frequency field effect electron emission

    International Nuclear Information System (INIS)

    A cavity was developed in order to investigate field emission in a radio frequency (RF) regime. Field emitted current from a removable sample is directly collected by a probe. A correlation was made between RF field emission and surface defects such as scratches and dust particles. Consequently, experiments on intentionally dust contaminated niobium samples were performed. Microscopic surface analysis revealed: 1/ important thermal effects, 2/ geometrical changes of the emitting sites (iron particles stand up and pile up) that led to revisit the protrusion model, 3/ RF field emission from alumina. On the other hand, measurements of the contact thermal resistance between particles and the substrate seem to point out ion bombardment (micro-plasma) as a possible cause of the global particle melting observed. An efficient surface treatment is highly required if one wishes to raise up threshold field at which field emission starts. RF pulse processing is a promising one, as it provides a damage free surface under certain conditions. Finally, first comparisons on continuous and RF field emission seem to show that the basic mechanism is unchanged for the two field emission regimes. (author)

  15. High Radio Frequency Properties and Variability of Brightest Cluster Galaxies

    CERN Document Server

    Hogan, M T; Geach, J E; Grainge, K J B; Hlavacek-Larrondo, J; Hovatta, T; Karim, A; McNamara, B R; Rumsey, C; Russell, H R; Salomé, P; Aller, H D; Aller, M F; Benford, D J; Fabian, A C; Readhead, A C S; Sadler, E M; Saunders, R D E

    2015-01-01

    We consider the high radio frequency (15 GHz - 353 GHz) properties and variability of 35 Brightest Cluster Galaxies (BCGs). These are the most core-dominated sources drawn from a parent sample of more than 700 X-ray selected clusters, thus allowing us to relate our results to the general population. We find that >6.0% of our parent sample (>15.1% if only cool-core clusters are considered) contain a radio-source at 150 GHz of at least 3mJy (~1x10^23 W/Hz at our median redshift of z~0.13). Furthermore, >3.4% of the BCGs in our parent sample contain a peaked component (Gigahertz Peaked Spectrum, GPS) in their spectra that peaks above 2 GHz, increasing to >8.5% if only cool-core clusters are considered. We see little evidence for strong variability at 15 GHz on short (week-month) time-scales although we see variations greater than 20% at 150 GHz over 6-month times-frames for 4 of the 23 sources with multi-epoch observations. Much more prevalent is long-term (year-decade time-scale) variability, with average annua...

  16. High-Frequency Chest Compression: A Summary of the Literature

    Directory of Open Access Journals (Sweden)

    Cara F Dosman

    2005-01-01

    Full Text Available The purpose of the present literature summary is to describe high-frequency chest compression (HFCC, summarize its history and outline study results on its effect on mucolysis, mucus transport, pulmonary function and quality of life. HFCC is a mechanical method of self-administered chest physiotherapy, which induces rapid air movement in and out of the lungs. This mean oscillated volume is an effective method of mucolysis and mucus clearance. HFCC can increase independence. Some studies have shown that HFCC leads to more mucus clearance and better lung function compared with conventional chest physiotherapy. However, HFCC also decreases end-expiratory lung volume, which can lead to increased airway resistance and a decreased oscillated volume. Adding positive end-expiratory pressure to HFCC has been shown to prevent this decrease in end-expiratory lung volume and to increase the oscillated volume. It is possible that the HFCC-induced decrease in end-expiratory lung volume may result in more mucus clearance in airways that remain open by reducing airway size. Adjunctive methods, such as positive end-expiratory pressure, may not always be needed to make HFCC more effective.

  17. Challenges in graphene integration for high-frequency electronics

    Science.gov (United States)

    Giannazzo, F.; Fisichella, G.; Greco, G.; Roccaforte, F.

    2016-06-01

    This paper provides an overview of the state-of-the-art research on graphene (Gr) for high-frequency (RF) devices. After discussing current limitations of lateral Gr RF transistors, novel vertical devices concepts such as the Gr Base Hot Electron Transistor (GBHET) will be introduced and the main challenges in Gr integration within these architectures will be discussed. In particular, a GBHET device based on Gr/AlGaN/GaN heterostructure will be considered. An approach to the fabrication of this heterostructure by transfer of CVD grown Gr on copper to the AlGaN surface will be presented. The morphological and electrical properties of this system have been investigated at nanoscale by atomic force microscopy (AFM) and conductive atomic force microscopy (CAFM). In particular, local current-voltage measurements by the CAFM probe revealed the formation of a Schottky contact with low barrier height (˜0.41 eV) and excellent lateral uniformity between Gr and AlGaN. Basing on the electrical parameters extracted from this characterization, the theoretical performances of a GBHET formed by a metal/Al2O3/Gr/AlGaN/GaN stack have been evaluated.

  18. High-frequency Ultrasound Imaging of Mouse Cervical Lymph Nodes.

    Science.gov (United States)

    Walk, Elyse L; McLaughlin, Sarah L; Weed, Scott A

    2015-01-01

    High-frequency ultrasound (HFUS) is widely employed as a non-invasive method for imaging internal anatomic structures in experimental small animal systems. HFUS has the ability to detect structures as small as 30 µm, a property that has been utilized for visualizing superficial lymph nodes in rodents in brightness (B)-mode. Combining power Doppler with B-mode imaging allows for measuring circulatory blood flow within lymph nodes and other organs. While HFUS has been utilized for lymph node imaging in a number of mouse  model systems, a detailed protocol describing HFUS imaging and characterization of the cervical lymph nodes in mice has not been reported. Here, we show that HFUS can be adapted to detect and characterize cervical lymph nodes in mice. Combined B-mode and power Doppler imaging can be used to detect increases in blood flow in immunologically-enlarged cervical nodes. We also describe the use of B-mode imaging to conduct fine needle biopsies of cervical lymph nodes to retrieve lymph tissue for histological  analysis. Finally, software-aided steps are described to calculate changes in lymph node volume and to visualize changes in lymph node morphology following image reconstruction. The ability to visually monitor changes in cervical lymph node biology over time provides a simple and powerful technique for the non-invasive monitoring of cervical lymph node alterations in preclinical mouse models of oral cavity disease. PMID:26274059

  19. Three-Dimensional Electromagnetic High Frequency Axisymmetric Cavity Scars.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt

    2014-10-01

    This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through the electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank

  20. High Frequency GPS sources in the AT20G Survey

    CERN Document Server

    Hancock, P J

    2009-01-01

    The Australia Telescope 20GHz (AT20G) survey was used to select a complete sample of 656 Gigahertz Peaked Spectrum (GPS) sources with spectral turnovers above 5GHz. The AT20G has near simultaneous observations at 4.8, 8.6 and 20GHz, which makes it possible to exclude flat spectrum variability as a cause of a source's peaked spectrum. Optical identification of the sample results in 361 QSOs and 104 galaxies and 191 blank fields. Redshifts are known for 104 of the GPS sources. The GPS sources from the AT20G are discussed and compared to previously known samples. The new sample of high frequency peaking GPS sources is found at a lower redshift than previous samples and to also have a lower 5GHz radio power. Evidence is found to support the idea that the origin of the GPS spectral shape are intrinsically different for galaxies and QSOs. This paper is an elaboration and extension of the talk given at the $4^{th}$ CSS/GPS conference in Riccione in May 2008.

  1. Improving NASICON Sinterability through Crystallization under High Frequency Electrical Fields

    Directory of Open Access Journals (Sweden)

    Ilya eLisenker

    2016-03-01

    Full Text Available The effect of high frequency (HF electric fields on the crystallization and sintering rates of a lithium aluminum germanium phosphate (LAGP ion conducting ceramic was investigated. LAGP with the nominal composition Li1.5Al0.5Ge1.5(PO43 was crystallized and sintered, both conventionally and under effect of electrical field. Electrical field application, of 300V/cm at 1MHz, produced up to a 40% improvement in sintering rate of LAGP that was crystallized and sintered under the HF field. Heat sink effect of the electrodes appears to arrest thermal runaway and subsequent flash behavior. Sintered pellets were characterized using XRD, SEM, TEM and EIS to compare conventionally and field sintered processes. The as-sintered structure appears largely unaffected by the field as the sintering curves tend to converge beyond initial stages of sintering. Differences in densities and microstructure after 1 hour of sintering were minor with measured sintering strains of 31% vs. 26% with and without field, respectively . Ionic conductivity of the sintered pellets was evaluated and no deterioration due to the use of HF field was noted, though capacitance of grain boundaries due to secondary phases was significantly increased.

  2. Cobalt Nanoparticle Inks for Printed High Frequency Applications on Polycarbonate

    Science.gov (United States)

    Nelo, Mikko; Myllymäki, Sami; Juuti, Jari; Uusimäki, Antti; Jantunen, Heli

    2015-12-01

    In this work the high frequency properties of low curing temperature cobalt nanoparticle inks printed on polycarbonate substrates were investigated. The inks consisted of 30-70 vol.% metallic cobalt nanoparticles and poly (methylene methacrylate) polymer, having excellent adhesion on polycarbonate and a curing temperature of 110°C. The influence of binder material content on the electromagnetic properties of the ink was investigated using the shorted microstrip transmission-line perturbation method. Changes in mechanical properties were evaluated with adhesion tests using the pull-out strength test and the ASTM D 3359-B cross-hatch tape peel test. The microstructure of the printed patterns was investigated with field emission scanning electron microscopy (FESEM). The inks remained mechanically durable with metal contents up to 60 vol.%, achieving pull-off strength of up to 5.2 MPa and the highest marks in adhesion of the tape peel test. The inks obtained a relative permeability of 1.5-3 in the 45 MHz-10 GHz band with a magnetic loss tangent of 0.01-0.06. The developed inks can be utilized in various printed electronics applications such as antenna miniaturization, antenna substrates and magnetic sensors or sensing.

  3. High-frequency search for mass-coupled mesoscopic forces

    Science.gov (United States)

    Yan, Haiyang; Otto, Hans; Weisman, Evan; Khatiwada, Rakshya; Long, Josh

    2014-03-01

    The possible existence of unobserved interactions of nature with ranges of mesoscopic scale (microns to millimeters) and very weak couplings to matter has attracted a great deal of scientific attention. We report on an experimental search for exotic mass-coupled in this range. Our technique uses a planar, double-torsional tungsten oscillator as a test mass, a similar oscillator as a source mass, and a stiff conducting shield in between them to suppress backgrounds. This method affords operation at the limit of instrumental thermal noise, which we have we have recently demonstrated with a measurement of the noise kinetic energy of a detector prototype in thermal equilibrium at room temperature. The fluctuations of the oscillator in a high-Q torsional mode with a resonant frequency near 1 kHz are detected with capacitive transducers coupled to a sensitive differential amplifier. The apparatus is calibrated by means of a known electrostatic force and input from a finite-element model of the selected mode. The measured kinetic energy is in agreement with the expected value of 1/2 kT.

  4. Transport of pulmonary secretions by asymmetric high frequency oscillation

    International Nuclear Information System (INIS)

    Asymmetric high frequency oscillation (AHFO) was investigated as a mechanism for augmenting the clearance of excess pulmonary secretions from the airways of the lungs. In vitro and in vivo models were developed to test its ability to predictably transport pulmonary secretions. The augmentation of mucus transport by 10 Hz AHFO was investigated in the canine trachea. Ventilation of eight dogs (2 studies each) was performed with three AHFO power settings in random order and conventional mechanical ventilation (CMV) before or after the AHFO trials. Prior to each trial, 35-45 μl of canine muscus mixed with a radiotagged colloid (99Tc/sup m/) was instilled in the distal trachea. As the radiotagged mixture traveled up the trachea, tracheal muscus velocities (TMV) were recorded on six channels with a multidetector probe. CMV mean TMVs before and after AHFO were not significantly different. The mean TMV of 6.3 +/- 2.6 mm/min at 30% power AHFO was faster than the CMV mean TVM of 4.1 +/- 2.1 mm/min (p <0.05)

  5. Resting high frequency heart rate variability selectively predicts cooperative behavior.

    Science.gov (United States)

    Beffara, Brice; Bret, Amélie G; Vermeulen, Nicolas; Mermillod, Martial

    2016-10-01

    This study explores whether the vagal connection between the heart and the brain is involved in prosocial behaviors. The Polyvagal Theory postulates that vagal activity underlies prosocial tendencies. Even if several results suggest that vagal activity is associated with prosocial behaviors, none of them used behavioral measures of prosociality to establish this relationship. We recorded the resting state vagal activity (reflected by High Frequency Heart Rate Variability, HF-HRV) of 48 (42 suitale for analysis) healthy human adults and measured their level of cooperation during a hawk-dove game. We also manipulated the consequence of mutual defection in the hawk-dove game (severe vs. moderate). Results show that HF-HRV is positively and linearly related to cooperation level, but only when the consequence of mutual defection is severe (compared to moderate). This supports that i) prosocial behaviors are likely to be underpinned by vagal functioning ii) physiological disposition to cooperate interacts with environmental context. We discuss these results within the theoretical framework of the Polyvagal Theory. PMID:27343804

  6. Automated target classification in high resolution dual frequency sonar imagery

    Science.gov (United States)

    Aridgides, Tom; Fernández, Manuel

    2007-04-01

    An improved computer-aided-detection / computer-aided-classification (CAD/CAC) processing string has been developed. The classified objects of 2 distinct strings are fused using the classification confidence values and their expansions as features, and using "summing" or log-likelihood-ratio-test (LLRT) based fusion rules. The utility of the overall processing strings and their fusion was demonstrated with new high-resolution dual frequency sonar imagery. Three significant fusion algorithm improvements were made. First, a nonlinear 2nd order (Volterra) feature LLRT fusion algorithm was developed. Second, a Box-Cox nonlinear feature LLRT fusion algorithm was developed. The Box-Cox transformation consists of raising the features to a to-be-determined power. Third, a repeated application of a subset feature selection / feature orthogonalization / Volterra feature LLRT fusion block was utilized. It was shown that cascaded Volterra feature LLRT fusion of the CAD/CAC processing strings outperforms summing, baseline single-stage Volterra and Box-Cox feature LLRT algorithms, yielding significant improvements over the best single CAD/CAC processing string results, and providing the capability to correctly call the majority of targets while maintaining a very low false alarm rate. Additionally, the robustness of cascaded Volterra feature fusion was demonstrated, by showing that the algorithm yields similar performance with the training and test sets.

  7. Spondylolysis and the sacro-horizontal angle in athletes

    International Nuclear Information System (INIS)

    The frequency of spondylolysis and the relationship between spondylolysis and the sacro-horizontal angle in 143 athletes and 30 non-athletes is reported. Athletes had a larger sacro-horizontal angle than non-athletes. The sacro-horizontal angle was larger in athletes with spondylolysis as compared with those without. An increased incidence of spondylolysis with an increased angle was demonstrated. It is suggested that an increased sacro-horizontal angle may predispose to spondylolysis, especially in combination with the high mechanical loads sustained in certain sports. (orig.)

  8. High power, continuous-wave, single frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm

    CERN Document Server

    Stappel, M; Kolbe, D; Walz, J

    2012-01-01

    We present a high power single-frequency ytterbium fiber amplifier system with an output power of 30 W at 1091 nm. The amplifier system consists of two stages, a preamplifier stage in which amplified spontaneous emission is efficiently suppressed (>40 dB) and a high power amplifier with an efficiency of 52 %. Two different approaches of frequency doubling are compared. We achieve 8.6 W at 545.5 nm by single-pass frequency doubling in a MgO-doped periodically poled stoichiometric LiTaO3 and up to 19.3 W at 545.5 nm by frequency doubling with a lithium-triborate (LBO) crystal in an external enhancement cavity.

  9. High shock, high frequency characteristics of a mechanical isolator for a piezoresistive accelerometer

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, V.I.; Brown, F.A.; Davie, N.T. [and others

    1995-07-01

    A mechanical isolator has been developed for a piezoresistive accelerometer. The purpose of the isolator is to mitigate high frequency shocks before they reach the accelerometer because the high frequency shocks may cause the accelerometer to resonate. Since the accelerometer is undamped, it often breaks when it resonates. The mechanical isolator was developed in response to impact test requirements for a variety of structures at Sandia National Laboratories. An Extended Technical Assistance Program with the accelerometer manufacturer has resulted in a commercial isolator that will be available to the general public. This mechanical isolator has ten times the bandwidth of any other commercial isolator and has acceptable frequency domain performance from DC to 10 kHz ({plus_minus} 10%) over a temperature range of -65{degrees}F to +185{degrees}F as demonstrated in this paper.

  10. High-frequency resonant tunnelling diode oscillator with high-output power

    Science.gov (United States)

    Wang, Jue; Alharbi, Khalid; Ofiare, Afesomeh; Khalid, Ata; Cumming, David; Wasige, Edward

    2015-10-01

    In this paper, a prototype G-band (140 GHz-220 GHz) monolithic microwave integrated circuit (MMIC) resonant tunneling diode (RTD) oscillator is reported. The oscillator employs two In0.53Ga0.47As/AlAs RTD devices in the circuit to increase the output power. The measured output power was about 0.34 mW (-4.7 dBm) at 165.7 GHz, which is the highest power reported for RTD oscillator in G-band frequency range. This result demonstrates the validity of the high frequency/high power RTD oscillator design. It indicates that RTD devices, as one of the terahertz (THz) source candidates, have promising future for room-temperature THz applications in such as imaging, wireless communication and spectroscopy analysis, etc. By optimizing RTD oscillator design, it is expected that considerably higher power (>1 mW) at THz frequencies (>300 GHz) will be obtained.

  11. High-frequency solitons in media with induced scattering from damped low-frequency waves with nonuniform dispersion and nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Aseeva, N. V., E-mail: vtyutin@hse.ru; Gromov, E. M.; Tyutin, V. V. [National Research University Higher School of Economics (Russian Federation)

    2015-12-15

    The dynamics of high-frequency field solitons is considered using the extended nonhomogeneous nonlinear Schrödinger equation with induced scattering from damped low-frequency waves (pseudoinduced scattering). This scattering is a 3D analog of the stimulated Raman scattering from temporal spatially homogeneous damped low-frequency modes, which is well known in optics. Spatial inhomogeneities of secondorder linear dispersion and cubic nonlinearity are also taken into account. It is shown that the shift in the 3D spectrum of soliton wavenumbers toward the short-wavelength region is due to nonlinearity increasing in coordinate and to decreasing dispersion. Analytic results are confirmed by numerical calculations.

  12. Magic angle spinning nuclear magnetic resonance apparatus and process for high-resolution in situ investigations

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Mehta, Hardeep S.; Peden, Charles H. F.

    2015-11-24

    A continuous-flow (CF) magic angle sample spinning (CF-MAS) NMR rotor and probe are described for investigating reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions in situ. The rotor includes a sample chamber of a flow-through design with a large sample volume that delivers a flow of reactants through a catalyst bed contained within the sample cell allowing in-situ investigations of reactants and products. Flow through the sample chamber improves diffusion of reactants and products through the catalyst. The large volume of the sample chamber enhances sensitivity permitting in situ .sup.13C CF-MAS studies at natural abundance.

  13. High-Precision Narrow Angle Astrometry with a Space-Borne Interferometer

    Science.gov (United States)

    Milman, Mark H.; Murphy, Dave

    2008-01-01

    This paper develops an observing and processing scheme for narrow angle astrometry using a single baseline interferometer without the aid of "grid" stars to characterize the interferometer baseline vector in inertial space. The basic concept derives from the recognition that over a narrow field the set of fundamental unknown instrument parameters that arise because the interferometer baseline vector has large uncertainties (since there are no grid star measurements) is indistinguishable from a particular set of unobservable errors in the determination of star positions within the field. Reference stars within the narrow field of regard are used to circumvent the unobservable modes. Feasibility of the approach is demonstrated through analysis and example simulations.

  14. Gender and vocal production mode discrimination using the high frequencies for speech and singing

    OpenAIRE

    Monson, Brian B.; Lotto, Andrew J.; Story, Brad H.

    2014-01-01

    Humans routinely produce acoustical energy at frequencies above 6 kHz during vocalization, but this frequency range is often not represented in communication devices and speech perception research. Recent advancements toward high-definition (HD) voice and extended bandwidth hearing aids have increased the interest in the high frequencies. The potential perceptual information provided by high-frequency energy (HFE) is not well characterized. We found that humans can accomplish tasks of gender ...

  15. SANS2-high-resolution small-angle diffractometer-reference instrument WBS 1.7.9

    International Nuclear Information System (INIS)

    SANS2 is a general-purpose small-angle neutron scattering spectrometer providing relatively high resolution and relatively low minimum Q values. Figure 1 provides a schematic representation of SANS2, and Table 1 gives the parameters for this instrument. Because of the broad Q range sampled in a single measurement, this instrument will be particularly useful in the study of time-dependent phenomena, such as deformation/orientation and phase transformations in complex fluids and polymers

  16. Comparison of high-angle-of-attack slender-body theory and exact solutions for potential flow over an ellipsoid

    Science.gov (United States)

    Hemsch, Michael J.

    1990-01-01

    The accuracy of high-alpha slender-body theory (HASBT) for bodies with elliptical cross-sections is presently demonstrated by means of a comparison with exact solutions for incompressible potential flow over a wide range of ellipsoid geometries and angles of attack and sideslip. The addition of the appropriate trigonometric coefficients to the classical slender-body theory decomposition yields the formally correct HASBT, and results in accuracies previously considered unattainable.

  17. Frequency Modulation of High-Speed Mill Chatter

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Mill chatter is a common phenomenon in the metal strip rolling process. Product defects caused by mill vibration were reported worldwide during last two decades, which is usually classified as torque vibration of the driving system with low frequencies and vertical vibration of the mill stand with comparative higher frequencies. The frequency range of the vertical vibration is wide (in general from more than 100 Hz to more than 1 000 Hz), and the vibration phenomena are very complex, even it is very diffic...

  18. Fully Integrated, Miniature, High-Frequency Flow Probe Utilizing MEMS Leadless SOI Technology

    Science.gov (United States)

    Ned, Alex; Kurtz, Anthony; Shang, Tonghuo; Goodman, Scott; Giemette. Gera (d)

    2013-01-01

    This work focused on developing, fabricating, and fully calibrating a flowangle probe for aeronautics research by utilizing the latest microelectromechanical systems (MEMS), leadless silicon on insulator (SOI) sensor technology. While the concept of angle probes is not new, traditional devices had been relatively large due to fabrication constraints; often too large to resolve flow structures necessary for modern aeropropulsion measurements such as inlet flow distortions and vortices, secondary flows, etc. Mea surements of this kind demanded a new approach to probe design to achieve sizes on the order of 0.1 in. (.3 mm) diameter or smaller, and capable of meeting demanding requirements for accuracy and ruggedness. This approach invoked the use of stateof- the-art processing techniques to install SOI sensor chips directly onto the probe body, thus eliminating redundancy in sensor packaging and probe installation that have historically forced larger probe size. This also facilitated a better thermal match between the chip and its mount, improving stability and accuracy. Further, the leadless sensor technology with which the SOI sensing element is fabricated allows direct mounting and electrical interconnecting of the sensor to the probe body. This leadless technology allowed a rugged wire-out approach that is performed at the sensor length scale, thus achieving substantial sensor size reductions. The technology is inherently capable of high-frequency and high-accuracy performance in high temperatures and harsh environments.

  19. A Near-linear Time Approximation Algorithm for Angle-based Outlier Detection in High-dimensional Data

    DEFF Research Database (Denmark)

    Pham, Ninh Dang; Pagh, Rasmus

    2012-01-01

    neighbor are deteriorated in high-dimensional data. Following up on the work of Kriegel et al. (KDD '08), we investigate the use of angle-based outlier factor in mining high-dimensional outliers. While their algorithm runs in cubic time (with a quadratic time heuristic), we propose a novel random...... approximation to guarantee the reliability of our estimation algorithm. The empirical experiments on synthetic and real world data sets demonstrate that our approach is efficient and scalable to very large high-dimensional data sets....

  20. Survey of needs and capabilities for wind tunnel testing of dynamic stability of aircraft at high angles of attack

    Science.gov (United States)

    Orlik-Ruckemann, K. J.

    1973-01-01

    A survey was conducted relative to future requirements for dynamic stability information for such aerospace vehicles as the space shuttle and advanced high performance military aircraft. High-angle-of-attack and high-Reynolds number conditions were emphasized. A review was made of the wind-tunnel capabilities in North America for measuring dynamic stability derivatives, revealing an almost total lack of capabilities that could satisfy these requirements. Recommendations are made regarding equipment that should be constructed to remedy this situation. A description is given of some of the more advanced existing capabilities, which can be used to at least partly satisfy immediate demands.