WorldWideScience

Sample records for angle distribution evolution

  1. Evolution of electron pitch angle distributions across Saturn's middle magnetospheric region from MIMI/LEMMS

    Science.gov (United States)

    Clark, G.; Paranicas, C.; Santos-Costa, D.; Livi, S.; Krupp, N.; Mitchell, D. G.; Roussos, E.; Tseng, W.-L.

    2014-12-01

    We provide a global view of ~20 to 800 keV electron pitch angle distributions (PADs) close to Saturn's current sheet using observations from the Cassini MIMI/LEMMS instrument. Previous work indicated that the nature of pitch angle distributions in Saturn's inner to middle magnetosphere changes near the radial distance of 10RS. This work confirms the existence of a PAD transition region. Here we go further and develop a new technique to statistically quantify the spatial profile of butterfly PADs as well as present new spatial trends on the isotropic PAD. Additionally, we perform a case study analysis and show the PADs exhibit strong energy dependent features throughout this transition region. We also present a diffusion theory model based on adiabatic transport, Coulomb interactions with Saturn's neutral gas torus, and an energy dependent radial diffusion coefficient. A data-model comparison reveals that adiabatic transport is the dominant transport mechanism between ~8 to 12RS, however interactions with Saturn's neutral gas torus become dominant inside ~7RS and govern the flux level of ~20 to 800 keV electrons. We have also found that field-aligned fluxes were not well reproduced by our modeling approach. We suggest that wave-particle interactions and/or a polar source of the energetic particles needs further investigation.

  2. Anomalous polymer collapse winding angle distributions

    Science.gov (United States)

    Narros, A.; Owczarek, A. L.; Prellberg, T.

    2018-03-01

    In two dimensions polymer collapse has been shown to be complex with multiple low temperature states and multi-critical points. Recently, strong numerical evidence has been provided for a long-standing prediction of universal scaling of winding angle distributions, where simulations of interacting self-avoiding walks show that the winding angle distribution for N-step walks is compatible with the theoretical prediction of a Gaussian with a variance growing asymptotically as Clog N . Here we extend this work by considering interacting self-avoiding trails which are believed to be a model representative of some of the more complex behaviour. We provide robust evidence that, while the high temperature swollen state of this model has a winding angle distribution that is also Gaussian, this breaks down at the polymer collapse point and at low temperatures. Moreover, we provide some evidence that the distributions are well modelled by stretched/compressed exponentials, in contradistinction to the behaviour found in interacting self-avoiding walks. Dedicated to Professor Stu Whittington on the occasion of his 75th birthday.

  3. Cosmic ray zenith angle distribution at low geomagnetic latitude

    Energy Technology Data Exchange (ETDEWEB)

    Aragon, G [Instituto de Astronomia y Fisica del Espacio, Buenos Aires, Argentina; Gagliardini, A; Ghielmetti, H S

    1977-12-01

    The intensity of secondary charged cosmic rays at different zenith angles was measured by narrow angle Geiger-Mueller telescopes up to an atmospheric depth of 2 g cm/sup -2/. The angular distribution observed at high altitudes is nearly flat at small angles around the vertical and suggests that the particle intensity peaks at large zenith angles, close to the horizon.

  4. Contact angle distribution of particles at fluid interfaces.

    Science.gov (United States)

    Snoeyink, Craig; Barman, Sourav; Christopher, Gordon F

    2015-01-27

    Recent measurements have implied a distribution of interfacially adsorbed particles' contact angles; however, it has been impossible to measure statistically significant numbers for these contact angles noninvasively in situ. Using a new microscopy method that allows nanometer-scale resolution of particle's 3D positions on an interface, we have measured the contact angles for thousands of latex particles at an oil/water interface. Furthermore, these measurements are dynamic, allowing the observation of the particle contact angle with high temporal resolution, resulting in hundreds of thousands of individual contact angle measurements. The contact angle has been found to fit a normal distribution with a standard deviation of 19.3°, which is much larger than previously recorded. Furthermore, the technique used allows the effect of measurement error, constrained interfacial diffusion, and particle property variation on the contact angle distribution to be individually evaluated. Because of the ability to measure the contact angle noninvasively, the results provide previously unobtainable, unique data on the dynamics and distribution of the adsorbed particles' contact angle.

  5. Mathematical simulation of gamma-radiation angle distribution measurements

    International Nuclear Information System (INIS)

    Batij, V.G.; Batij, E.V.; Egorov, V.V.; Fedorchenko, D.V.; Kochnev, N.A.

    2008-01-01

    We developed mathematical model of the facility for gamma-radiation angle distribution measurement and calculated response functions for gamma-radiation intensities. We developed special software for experimental data processing, the 'Shelter' object radiation spectra unfolding and Sphere detector (ShD) angle resolution estimation. Neuronet method using for detection of the radiation directions is given. We developed software based on the neuronet algorithm, that allows obtaining reliable distribution of gamma-sources that make impact on the facility detectors at the measurement point. 10 refs.; 15 figs.; 4 tab

  6. Disordered porous solids : from chord distributions to small angle scattering

    Science.gov (United States)

    Levitz, P.; Tchoubar, D.

    1992-06-01

    Disordered biphasic porous solids are examples of complex interfacial media. Small angle scattering strongly depends on the geometrical properties of the internal surface partitioning a porous system. Properties of the second derivative of the bulk autocorrelation function quantitatively defines the level of connection between the small angle scattering and the statistical properties of this interface. A tractable expression of this second derivative, involving the pore and the mass chord distribution functions, was proposed by Mering and Tchoubar (MT). Based on the present possibility to make a quantitative connection between imaging techniques and the small angle scattering, this paper tries to complete and to extend the MT approach. We first discuss how chord distribution functions can be used as fingerprints of the structural disorder. An explicit relation between the small angle scattering and these chord distributions is then proposed. In a third part, the application to different types of disorder is critically discussed and predictions are compared to available experimental data. Using image processing, we will consider three types of disorder : the long-range Debye randomness, the “ correlated " disorder with a special emphasis on the structure of a porous glass (the vycor), and, finally, complex structures where length scale invariance properties can be observed. Les solides poreux biphasiques sont des exemples de milieux interfaciaux complexes. La diffusion aux petits angles (SAS) dépend fortement des propriétés géométriques de l'interface partitionant le milieu poreux. Les propriétés de la dérivée seconde de la fonction d'autocorrélation de densité définit quantitativement le niveau de connection entre la diffusion aux petits angles et les caractéristiques statistiques de cette interface. Une expression utilisable de cette seconde dérivée, impliquant les distributions de cordes associées à la phase massique et au réseau de pores, fut

  7. Evolution of broadcast content distribution

    CERN Document Server

    Beutler, Roland

    2017-01-01

    This book discusses opportunities for broadcasters that arise with the advent of broadband networks, both fixed and mobile. It discusses how the traditional way of distributing audio-visual content over broadcasting networks has been complemented by the usage of broadband networks. The author shows how this also gives the possibility to offer new types of interactive or so-called nonlinear services. The book illustrates how change in distribution technology is accelerating the need for broadcasters around the world to adapt their content distribution strategy and how it will impact the portfolios of content they offer. Outlines the shift in broadcast content distribution paradigms and related strategic issues Provides an overview of the new broadcasting ecosystem encompassing new types of content, user habits, expectations, and devices Discusses complementary usage of different distribution technologies and platforms.

  8. Statistical study of ion pitch-angle distributions

    International Nuclear Information System (INIS)

    Sibeck, D.G.; Mcentire, R.W.; Lui, A.T.Y.; Krimigis, S.M.

    1987-01-01

    Preliminary results of a statistical study of energetic (34-50 keV) ion pitch-angle distributions (PADs) within 9 Re of earth provide evidence for an orderly pattern consistent with both drift-shell splitting and magnetopause shadowing. Normal ion PADs dominate the dayside and inner magnetosphere. Butterfly PADs typically occur in a narrow belt stretching from dusk to dawn through midnight, where they approach within 6 Re of earth. While those ion butterfly PADs that typically occur on closed drift paths are mainly caused by drift-shell splitting, there is also evidence for magnetopause shadowing in observations of more frequent butterfly PAD occurrence in the outer magnetosphere near dawn than dusk. Isotropic and gradient boundary PADs terminate the tailward extent of the butterfly ion PAD belt. 9 references

  9. Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler-mode chorus

    Science.gov (United States)

    Yang, Chang; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H. E.; Reeves, G. D.; Baker, D. N.; Blake, J. B.; Funsten, H. O.

    2016-08-01

    Van Allen radiation belt electrons exhibit complex dynamics during geomagnetically active periods. Investigation of electron pitch angle distributions (PADs) can provide important information on the dominant physical mechanisms controlling radiation belt behaviors. Here we report a storm time radiation belt event where energetic electron PADs changed from butterfly distributions to normal or flattop distributions within several hours. Van Allen Probes observations showed that the flattening of butterfly PADs was closely related to the occurrence of whistler-mode chorus waves. Two-dimensional quasi-linear STEERB simulations demonstrate that the observed chorus can resonantly accelerate the near-equatorially trapped electrons and rapidly flatten the corresponding electron butterfly PADs. These results provide a new insight on how chorus waves affect the dynamic evolution of radiation belt electrons.

  10. Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler-mode chorus

    International Nuclear Information System (INIS)

    Yang, Chang; Changsha University of Science and Technology, Changsha; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan

    2016-01-01

    Van Allen radiation belt electrons exhibit complex dynamics during geomagnetically active periods. Investigation of electron pitch angle distributions (PADs) can provide important information on the dominant physical mechanisms controlling radiation belt behaviors. In this paper, we report a storm time radiation belt event where energetic electron PADs changed from butterfly distributions to normal or flattop distributions within several hours. Van Allen Probes observations showed that the flattening of butterfly PADs was closely related to the occurrence of whistler-mode chorus waves. Two-dimensional quasi-linear STEERB simulations demonstrate that the observed chorus can resonantly accelerate the near-equatorially trapped electrons and rapidly flatten the corresponding electron butterfly PADs. Finally, these results provide a new insight on how chorus waves affect the dynamic evolution of radiation belt electrons.

  11. Research of working pulsation in closed angle based on rotating-sleeve distributing-flow system

    Science.gov (United States)

    Zhang, Yanjun; Zhang, Hongxin; Zhao, Qinghai; Jiang, Xiaotian; Cheng, Qianchang

    2017-08-01

    In order to reduce negative effects including hydraulic impact, noise and mechanical vibration, compression and expansion of piston pump in closed volume are used to optimize the angle between valve port and chamber. In addition, the mathematical model about pressurization and depressurization in pump chamber are analyzed based on distributing-flow characteristic, and it is necessary to use simulation software Fluent to simulate the distributing-flow fluid model so as to select the most suitable closed angle. As a result, when compression angle is 3°, the angle is closest to theoretical analysis and has the minimum influence on flow and pump pressure characteristic. Meanwhile, cavitation phenomenon appears in pump chamber in different closed angle on different degrees. Besides the flow pulsation is increasingly smaller with increasing expansion angle. Thus when expansion angle is 2°, the angle is more suitable for distributing-flow system.

  12. Angular Distributions of Sputtered Atoms from Semiconductor Targets at Grazing Ion Beam Incidence Angles

    International Nuclear Information System (INIS)

    Sekowski, M.; Burenkov, A.; Martinez-Limia, A.; Hernandez-Mangas, J.; Ryssel, H.

    2008-01-01

    Angular distributions of ion sputtered germanium and silicon atoms are investigated within this work. Experiments are performed for the case of grazing ion incidence angles, where the resulting angular distributions are asymmetrical with respect to the polar angle of the sputtered atoms. The performed experiments are compared to Monte-Carlo simulations from different programs. We show here an improved model for the angular distribution, which has an additional dependence of the ion incidence angle.

  13. Predicting dihedral angle probability distributions for protein coil residues from primary sequence using neural networks

    DEFF Research Database (Denmark)

    Helles, Glennie; Fonseca, Rasmus

    2009-01-01

    residue in the input-window. The trained neural network shows a significant improvement (4-68%) in predicting the most probable bin (covering a 30°×30° area of the dihedral angle space) for all amino acids in the data set compared to first order statistics. An accuracy comparable to that of secondary...... seem to have a significant influence on the dihedral angles adopted by the individual amino acids in coil segments. In this work we attempt to predict a probability distribution of these dihedral angles based on the flanking residues. While attempts to predict dihedral angles of coil segments have been...... done previously, none have, to our knowledge, presented comparable results for the probability distribution of dihedral angles. Results: In this paper we develop an artificial neural network that uses an input-window of amino acids to predict a dihedral angle probability distribution for the middle...

  14. On World Religion Adherence Distribution Evolution

    Science.gov (United States)

    Ausloos, Marcel; Petroni, Filippo

    Religious adherence can be considered as a degree of freedom, in a statistical physics sense, for a human agent belonging to a population. The distribution, performance and life time of religions can thus be studied having in mind heterogeneous interacting agent modeling. We present a comprehensive analysis of 58 so-called religions (to be better defined in the main text) as measured through their number of adherents evolutions, between 1900 and 2000, - data taken from the World Christian Trends (Barrett and Johnson, "World Christian Trends AD 30 - AD 2200: Interpreting the Annual Christian Megacensus", William Carey Library, 2001): 40 are considered to be "presently growing" cases, including 11 turn overs in the twentieth century; 18 are "presently decaying", among which 12 are found to have had a recent maximum, in the nineteenth or the twentieth century. The Avrami-Kolmogorov differential equation which usually describes solid state transformations, like crystal growth, is used in each case in order to obtain the preferential attachment parameter introduced previously (Europhys Lett 77:38002, 2007). It is not often found close to unity, though often corresponding to a smooth evolution. However large values suggest the occurrence of extreme cases which we conjecture are controlled by so-called external fields. A few cases indicate the likeliness of a detachment process. We discuss a few growing and decaying religions, and illustrate various fits. Some cases seem to indicate the lack of reliability of the data, but others some marked departure from Avrami law. Whence the Avrami evolution equation might be surely improved, in particular, and somewhat obviously, for the decaying religion cases. We point out two major difficulties in such an analysis: (1) the "precise" original time of apparition of a religion, (2) the time at which there is a maximum number of adherents, both information being necessary for integrating reliably any evolution equation.

  15. Effects of Compound K-Distributed Sea Clutter on Angle Measurement of Wideband Monopulse Radar

    Directory of Open Access Journals (Sweden)

    Hong Zhu

    2017-01-01

    Full Text Available The effects of compound K-distributed sea clutter on angle measurement of wideband monopulse radar are investigated in this paper. We apply the conditional probability density function (pdf of monopulse ratio (MR error to analyze these effects. Based on the angle measurement procedure of the wideband monopulse radar, this conditional pdf is first deduced in detail for the case of compound K-distributed sea clutter plus noise. Herein, the spatial correlation of the texture components for each channel clutter and the correlation of the texture components between the sum and difference channel clutters are considered, and two extreme situations for each of them are tackled. Referring to the measured sea clutter data, angle measurement performances in various K-distributed sea clutter plus noise circumstances are simulated, and the effects of compound K-distributed sea clutter on angle measurement are discussed.

  16. Controls on stream network branching angles, tested using landscape evolution models

    Science.gov (United States)

    Theodoratos, Nikolaos; Seybold, Hansjörg; Kirchner, James W.

    2016-04-01

    Stream networks are striking landscape features. The topology of stream networks has been extensively studied, but their geometry has received limited attention. Analyses of nearly 1 million stream junctions across the contiguous United States [1] have revealed that stream branching angles vary systematically with climate and topographic gradients at continental scale. Stream networks in areas with wet climates and gentle slopes tend to have wider branching angles than in areas with dry climates or steep slopes, but the mechanistic linkages underlying these empirical correlations remain unclear. Under different climatic and topographic conditions different runoff generation mechanisms and, consequently, transport processes are dominant. Models [2] and experiments [3] have shown that the relative strength of channel incision versus diffusive hillslope transport controls the spacing between valleys, an important geometric property of stream networks. We used landscape evolution models (LEMs) to test whether similar factors control network branching angles as well. We simulated stream networks using a wide range of hillslope diffusion and channel incision parameters. The resulting branching angles vary systematically with the parameters, but by much less than the regional variability in real-world stream networks. Our results suggest that the competition between hillslope and channeling processes influences branching angles, but that other mechanisms may also be needed to account for the variability in branching angles observed in the field. References: [1] H. Seybold, D. H. Rothman, and J. W. Kirchner, 2015, Climate's watermark in the geometry of river networks, Submitted manuscript. [2] J. T. Perron, W. E. Dietrich, and J. W. Kirchner, 2008, Controls on the spacing of first-order valleys, Journal of Geophysical Research, 113, F04016. [3] K. E. Sweeney, J. J. Roering, and C. Ellis, 2015, Experimental evidence for hillslope control of landscape scale, Science, 349

  17. AFM, SEM and in situ RHEED study of Cu texture evolution on amorphous carbon by oblique angle vapor deposition

    International Nuclear Information System (INIS)

    Tang, F.; Gaire, C.; Ye, D.-X.; Karabacak, T.; Lu, T.-M.; Wang, G.-C.

    2005-01-01

    The evolution of the crystal orientation of a Cu film grown on an amorphous carbon substrate without intentional heating under 75±6 deg. oblique angle vapor deposition was investigated ex-situ by atomic force microscopy (AFM) and scanning electron microscopy (SEM), and in-situ by reflection high-energy electron diffraction (RHEED). At the initial stage of growth ( ∼100 nm thick) the diffraction pattern started to break symmetrically from the middle of the (111) and (200) rings representing the absence of (111) and (200) planes parallel to the substrate. However, after this transition stage, at the thickness of ∼410 nm, the intensity distribution of diffraction patterns appeared asymmetric about the middle of the rings, which is interpreted as the appearance of a tilted (111) texture. Finally the diffraction patterns developed into separated short arcs and showed only a II-O (two-orientation) texture. By comparing RHEED patterns with the SEM and AFM images of the final film, we argue that the tilted columns having tilted (111) top faces dominate in the later stage of growth. Furthermore, considering the geometry of crystals and shadowing effects, we argue that the vertices of columns having the highest growth velocity normal to the substrate and therefore receiving the maximum flux will dominate the film growth and determine the tilt angle of the texture and the preference of the azimuthal angle orientation

  18. Time evolution of distribution functions in dissipative environments

    International Nuclear Information System (INIS)

    Hu Li-Yun; Chen Fei; Wang Zi-Sheng; Fan Hong-Yi

    2011-01-01

    By introducing the thermal entangled state representation, we investigate the time evolution of distribution functions in the dissipative channels by bridging the relation between the initial distribution function and the any time distribution function. We find that most of them are expressed as such integrations over the Laguerre—Gaussian function. Furthermore, as applications, we derive the time evolution of photon-counting distribution by bridging the relation between the initial distribution function and the any time photon-counting distribution, and the time evolution of R-function characteristic of nonclassicality depth. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. Broadband and wide-angle distributed Bragg reflectors based on amorphous germanium films by glancing angle deposition.

    Science.gov (United States)

    Leem, Jung Woo; Yu, Jae Su

    2012-08-27

    We fabricated the distributed Bragg reflectors (DBRs) with amorphous germanium (a-Ge) films consisted of the same materials at a center wavelength (λc) of 1.33 μm by the glancing angle deposition. Their optical reflectance properties were investigated in the infrared wavelength region of 1-1.9 μm at incident light angles (θ inc) of 8-70°, together with the theoretical analysis using a rigorous coupled-wave analysis simulation. The two alternating a-Ge films at the incident vapor flux angles of 0 and 75° were formed as the high and low refractive index materials, respectively. The a-Ge DBR with only 5 periods exhibited a normalized stop bandwidth (∆λ/λ c) of ~24.1%, maintaining high reflectance (R) values of > 99%. Even at a high θ inc of 70°, the ∆λ/λ c was ~21.9%, maintaining R values of > 85%. The a-Ge DBR with good uniformity was obtained over the area of a 2 inch Si wafer. The calculated reflectance results showed a similar tendency to the measured data.

  20. Evolution of ANB and SN-GoGn angles during craniofacial growth: A retrospective longitudinal study

    Directory of Open Access Journals (Sweden)

    Rodrigo Oyonarte

    2016-01-01

    Full Text Available Objective: The aim of this study is to describe the evolution of the ANB and SN-GoGn angles throughout development, in a longitudinal sample of Caucasian patients. Materials and Methods: Historical cephalometric records from North American individuals available at the American Association of Orthodontists Foundation Craniofacial Legacy Growth Collection website were used to carry out an exploratory longitudinal study. Lateral cephalometric radiographs of orthodontically untreated males and females were included. Individuals with three or more longitudinal cephalometric records at pre- and post-pubertal stages, with at least one postpubertal radiograph available in vertebral cervical maturation stage (cervical vertebral maturation 5 or 6, were selected. Seventy-one individuals met the inclusion criteria. ANB, SNA, SNB, and SN-GoGn angles were measured. Individuals were classified according to the latest postpubertal ANB angle available and grouped by CVM. Descriptive statistics were obtained for the cephalometric variables, and differences between genders were analyzed. Results: Forty-five individuals were classified as skeletal Class I at the end of growth, 17 as Class II, and 9 as Class III. ANB values decrease as growth occurs in every group (average ANB decrease between the stages CVM 1 and 6: Class I - 1.5°, Class II - 0.7°, and Class III - 3.1°. For SN-GoGn angle, a constant reduction was observed as skeletal maturation increased (Average SN-GoGn decrease between the stages CVM 1 and 6: Class I - 4°, Class II - 2.5°, and Class III - 4.9°. Conclusions: ANB and SN-GoGn angles decrease during growth. The magnitude varies depending on individual sagittal characteristics, Class III individuals displaying the greatest reduction, and Class II individuals the least.

  1. Conical pitch angle distributions of very-low energy ion fluxes observed by ISEE 1

    International Nuclear Information System (INIS)

    Horowitz, J.L.; Baugher, C.R.; Chappell, C.R.; Shelley, E.G.; Young, D.T.

    1982-01-01

    Observations of low-energy ionospheric ions by the plasma composition experiment abroad ISEE 1 often show conical pitch angle distributions, that is, peak fluxes between 0 0 and 90 0 to the directions parallel or antiparallel to the magnetic field. Frequently, all three primary ionospheric ion species (H + , He + , and O + ) simultaneously exhibit conical distributions with peak fluxes at essentially the same pitch angle. A distinction is made here between unidirectional, or streaming, distributions, in which ions are traveling essentially from only one hemisphere, and symmetrical distributions, in which significant fluxes are observed traveling from both hemispheres. The orbital coverage for this survey was largely restricted to the night sector, approximately 2100--0600 LT, and moderate geomagnetic latitudes of 20 0 --40 0 . Also, lack of complete pitch angle coverage at all times may have reduced detection for conics with small cone angles. However, we may conclude that the unidirectional conical distributions observed in the northern hemisphere are always observed to be traveling from the northern hemisphere and that they exhibit the following characteristics relative to the symmetric distributions, in that they (1) are typically observed on higher L shells (that is, higher geomagnetic latitudes or larger geocentric distances or both), (2) tend to have significantly larger cone angles, and (3), are associated with higher magnetic activity levels

  2. Regge behaviour of distribution functions and evolution of gluon ...

    Indian Academy of Sciences (India)

    work we solved DGLAP evolution equation for gluon distribution function at low-x in next-to-leading order (NLO) and the t and x-evolutions of gluon distribution function thus obtained have been compared with global MRST2004 and GRV98 parametrizations. In PQCD, since the higher-order terms in the leading logarithmic.

  3. Optimal the tilt angles for photovoltaic modules using PSO method with nonlinear time-varying evolution

    International Nuclear Information System (INIS)

    Chang, Ying-Pin

    2010-01-01

    A particle-swarm optimization method with nonlinear time-varying evolution (PSO-NTVE) is employed in determining the tilt angle of photovoltaic (PV) modules in Taiwan. The objective is to maximize the output electrical energy of the modules. In this study, seven Taiwanese cities were selected for analysis. First, the sun's position at any time and location was predicted by the mathematical procedure of Julian dating, and then the solar irradiation was obtained at each site under a clear sky. By combining the temperature effect, the PSO-NTVE method is adopted to calculate the optimal tilt angles for fixed south-facing PV modules. In this method, the parameters are determined by using matrix experiments with an orthogonal array, in which a minimal number of experiments have an effect that approximates the full factorial experiments. Statistical error analysis was performed to compare the results between the four PSO methods and experimental results. Hengchun city in which the minimum total error value of 6.12% the reasons for the weather more stability and less building shade. A comparison of the measurement results in electrical energy between the four PSO methods and the PV modules set a six tilt angles. Obviously four types of PSO methods simulation of electrical energy value from 231.12 kWh/m 2 for Taipei to 233.81 kWh/m 2 for Hengchun greater than the measurement values from 224.71 kWh/m 2 for Taichung to 228.47 kWh/m 2 for Hengchun by PV module which is due to instability caused by climate change. Finally, the results show that the annual optimal angle for the Taipei area is 18.16 o ; for Taichung, 17.3 o ; for Tainan, 16.15 o ; for Kaosiung, 15.79 o ; for Hengchung, 15.17 o ; for Hualian, 17.16 o ; and for Taitung, 15.94 o . It is evident that the authorized Industrial Technology Research Institute (ITRI) recommends that tilt angle of 23.5 o was not an appropriate use of Taiwan's seven cities. PV modules with the installation of the tilt angle should be

  4. Assessing protein conformational sampling methods based on bivariate lag-distributions of backbone angles

    KAUST Repository

    Maadooliat, Mehdi; Gao, Xin; Huang, Jianhua Z.

    2012-01-01

    Despite considerable progress in the past decades, protein structure prediction remains one of the major unsolved problems in computational biology. Angular-sampling-based methods have been extensively studied recently due to their ability to capture the continuous conformational space of protein structures. The literature has focused on using a variety of parametric models of the sequential dependencies between angle pairs along the protein chains. In this article, we present a thorough review of angular-sampling-based methods by assessing three main questions: What is the best distribution type to model the protein angles? What is a reasonable number of components in a mixture model that should be considered to accurately parameterize the joint distribution of the angles? and What is the order of the local sequence-structure dependency that should be considered by a prediction method? We assess the model fits for different methods using bivariate lag-distributions of the dihedral/planar angles. Moreover, the main information across the lags can be extracted using a technique called Lag singular value decomposition (LagSVD), which considers the joint distribution of the dihedral/planar angles over different lags using a nonparametric approach and monitors the behavior of the lag-distribution of the angles using singular value decomposition. As a result, we developed graphical tools and numerical measurements to compare and evaluate the performance of different model fits. Furthermore, we developed a web-tool (http://www.stat.tamu. edu/~madoliat/LagSVD) that can be used to produce informative animations. © The Author 2012. Published by Oxford University Press.

  5. STEREO/LET Observations of Solar Energetic Particle Pitch Angle Distributions

    Science.gov (United States)

    Leske, Richard; Cummings, Alan; Cohen, Christina; Mewaldt, Richard; Labrador, Allan; Stone, Edward; Wiedenbeck, Mark; Christian, Eric; von Rosenvinge, Tycho

    2015-04-01

    As solar energetic particles (SEPs) travel through interplanetary space, the shape of their pitch angle distributions is determined by magnetic focusing and scattering. Measurements of SEP anisotropies therefore probe interplanetary conditions far from the observer and can provide insight into particle transport. Bidirectional flows of SEPs are often seen within interplanetary coronal mass ejections (ICMEs), resulting from injection of particles at both footpoints of the CME or from mirroring of a unidirectional beam. Mirroring is clearly implicated in those cases that show a loss cone distribution, in which particles with large pitch angles are reflected but the magnetic field enhancement at the mirror point is too weak to turn around particles with the smallest pitch angles. The width of the loss cone indicates the magnetic field strength at the mirror point far from the spacecraft, while if timing differences are detectable between outgoing and mirrored particles they may help constrain the location of the reflecting boundary.The Low Energy Telescopes (LETs) onboard both STEREO spacecraft measure energetic particle anisotropies for protons through iron at energies of about 2-12 MeV/nucleon. With these instruments we have observed loss cone distributions in several SEP events, as well as other interesting anisotropies, such as unusual oscillations in the widths of the pitch angle distributions on a timescale of several minutes during the 23 July 2012 SEP event and sunward-flowing particles when the spacecraft was magnetically connected to the back side of a distant shock well beyond 1 AU. We present the STEREO/LET anisotropy observations and discuss their implications for SEP transport. In particular, we find that the shapes of the pitch angle distributions generally vary with energy and particle species, possibly providing a signature of the rigidity dependence of the pitch angle diffusion coefficient.

  6. Assessing protein conformational sampling methods based on bivariate lag-distributions of backbone angles

    KAUST Repository

    Maadooliat, Mehdi

    2012-08-27

    Despite considerable progress in the past decades, protein structure prediction remains one of the major unsolved problems in computational biology. Angular-sampling-based methods have been extensively studied recently due to their ability to capture the continuous conformational space of protein structures. The literature has focused on using a variety of parametric models of the sequential dependencies between angle pairs along the protein chains. In this article, we present a thorough review of angular-sampling-based methods by assessing three main questions: What is the best distribution type to model the protein angles? What is a reasonable number of components in a mixture model that should be considered to accurately parameterize the joint distribution of the angles? and What is the order of the local sequence-structure dependency that should be considered by a prediction method? We assess the model fits for different methods using bivariate lag-distributions of the dihedral/planar angles. Moreover, the main information across the lags can be extracted using a technique called Lag singular value decomposition (LagSVD), which considers the joint distribution of the dihedral/planar angles over different lags using a nonparametric approach and monitors the behavior of the lag-distribution of the angles using singular value decomposition. As a result, we developed graphical tools and numerical measurements to compare and evaluate the performance of different model fits. Furthermore, we developed a web-tool (http://www.stat.tamu. edu/~madoliat/LagSVD) that can be used to produce informative animations. © The Author 2012. Published by Oxford University Press.

  7. The leaf angle distribution of natural plant populations: assessing the canopy with a novel software tool.

    Science.gov (United States)

    Müller-Linow, Mark; Pinto-Espinosa, Francisco; Scharr, Hanno; Rascher, Uwe

    2015-01-01

    Three-dimensional canopies form complex architectures with temporally and spatially changing leaf orientations. Variations in canopy structure are linked to canopy function and they occur within the scope of genetic variability as well as a reaction to environmental factors like light, water and nutrient supply, and stress. An important key measure to characterize these structural properties is the leaf angle distribution, which in turn requires knowledge on the 3-dimensional single leaf surface. Despite a large number of 3-d sensors and methods only a few systems are applicable for fast and routine measurements in plants and natural canopies. A suitable approach is stereo imaging, which combines depth and color information that allows for easy segmentation of green leaf material and the extraction of plant traits, such as leaf angle distribution. We developed a software package, which provides tools for the quantification of leaf surface properties within natural canopies via 3-d reconstruction from stereo images. Our approach includes a semi-automatic selection process of single leaves and different modes of surface characterization via polygon smoothing or surface model fitting. Based on the resulting surface meshes leaf angle statistics are computed on the whole-leaf level or from local derivations. We include a case study to demonstrate the functionality of our software. 48 images of small sugar beet populations (4 varieties) have been analyzed on the base of their leaf angle distribution in order to investigate seasonal, genotypic and fertilization effects on leaf angle distributions. We could show that leaf angle distributions change during the course of the season with all varieties having a comparable development. Additionally, different varieties had different leaf angle orientation that could be separated in principle component analysis. In contrast nitrogen treatment had no effect on leaf angles. We show that a stereo imaging setup together with the

  8. The angular distributions of ultraviolet spectral irradiance at different solar elevation angles under clear sky conditions

    Science.gov (United States)

    Liu, Yan; Hu, LiWen; Wang, Fang; Gao, YanYan; Zheng, Yang; Wang, Yu; Liu, Yang

    2016-01-01

    To investigate the angular distributions of UVA, UVB, and effective UV for erythema and vitamin D (vitD) synthesis, the UV spectral irradiances were measured at ten inclined angles (from 0° to 90°) and seven azimuths (from 0° to 180°) at solar elevation angle (SEA) that ranged from 18.8° to 80° in Shanghai (31.22° N, 121.55° E) under clear sky and the albedo of ground was 0.1. The results demonstrated that in the mean azimuths and with the back to the sun, the UVA, UVB, and erythemally and vitD-weighted irradiances increased with the inclined angles and an increase in SEA. When facing toward the sun at 0°-60° inclined angles, the UVA first increased and then decreased with an increase in SEA; at other inclined angles, the UVA increased with SEA. At 0°-40° inclined angles, the UVB and erythemally and vitD-weighted irradiances first increased and then decreased with an increase in SEA, and their maximums were achieved at SEA 68.7°; at other inclined angles, the above three irradiances increased with an increase in SEA. The maximum UVA, UVB, and erythemally and vitD-weighted irradiances were achieved at an 80° inclined angle at SEA 80° (the highest in our measurements); the cumulative exposure of the half day achieved the maximum at a 60° inclined angle, but not on the horizontal. This study provides support for the assessment of human skin sun exposure.

  9. HEART ELECTRICAL AXIS Α ANGLE VALUES DISTRIBUTION IN PATIENTS, UNDERGOING PERMANENT PACEMAKER IMPLANTATION

    Directory of Open Access Journals (Sweden)

    O. S. Voronenko

    2016-06-01

    Full Text Available 52 patients (24 male and 28 female aged 71 ± 8 years, underwent permanent pacemaker implantation were included in the study. Analysis of heart electrical axis (HEA α angle values distribution was carried out in three dimensions in patience before and after pacemaker (PM implantation. The data processed in Microsoft Excel with calculation of the average and it’s standard deviation. Significance of differences in data before and after PM implantation was assessed using Friedman ANOVA test and Kendall concordance coefficient. It was found, that α angle values distribution in patients with implanted PM is transformed from a unimodal to bimodal on the permanent cardiac pacing background. It’s assumed, that α angle changes resulting due to right ventricular electrode positioning options during PM implantation. Clarification of the nature of this change requires a special study.

  10. Zenith-angle distributions of atmospheric muons above 20 GeV

    International Nuclear Information System (INIS)

    Decoster, R.J.; Stevenson, M.L.; Breakstone, A.; Flatte, S.M.

    1975-01-01

    The results of a magnetic-spectrometer experiment at ground level with optical spark chambers, scintillator hodoscope trigger and an air-gap magnet, are reported to given an evaluation of the zenith-angle distribution of the atmospheric muons above 20 GeV. An automatic flying spot digitizer, the Hummingbird, was used

  11. A distributed snow-evolution modeling system (SnowModel)

    Science.gov (United States)

    Glen E. Liston; Kelly. Elder

    2006-01-01

    SnowModel is a spatially distributed snow-evolution modeling system designed for application in landscapes, climates, and conditions where snow occurs. It is an aggregation of four submodels: MicroMet defines meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowPack simulates snow depth and water-equivalent evolution, and SnowTran-3D...

  12. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB

    Science.gov (United States)

    Khazanov, G. V.; Gamayunov, K. V.

    2007-01-01

    We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.

  13. Correlations in double parton distributions. Effects of evolution

    International Nuclear Information System (INIS)

    Diehl, Markus; Keane, Shane; Kasemets, Tomas; Vrije Univ., Amsterdam

    2014-01-01

    We numerically investigate the impact of scale evolution on double parton distributions, which are needed to compute multiple hard scattering processes. Assuming correlations between longitudinal and transverse variables or between the parton spins to be present at a low scale, we study how they are affected by evolution to higher scales, i.e. by repeated parton emission. We find that generically evolution tends to wash out correlations, but with a speed that may be slow or fast depending on kinematics and on the type of correlation. Nontrivial parton correlations may hence persist in double parton distributions at the high scales relevant for hard scattering processes.

  14. Analytic Evolution of Singular Distribution Amplitudes in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Radyushkin, Anatoly V. [Old Dominion University, Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tandogan Kunkel, Asli [Old Dominion University, Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-03-01

    We describe a method of analytic evolution of distribution amplitudes (DA) that have singularities, such as non-zero values at the end-points of the support region, jumps at some points inside the support region and cusps. We illustrate the method by applying it to the evolution of a flat (constant) DA, anti-symmetric at DA and then use it for evolution of the two-photon generalized distribution amplitude. Our approach has advantages over the standard method of expansion in Gegenbauer polynomials, which requires infinite number of terms in order to accurately reproduce functions in the vicinity of singular points, and over a straightforward iteration of an initial distribution with evolution kernel. The latter produces logarithmically divergent terms at each iteration, while in our method the logarithmic singularities are summed from the start, which immediately produces a continuous curve, with only one or two iterations needed afterwards in order to get rather precise results.

  15. Galactic distribution and evolution of pulsars

    International Nuclear Information System (INIS)

    Taylor, J.H.; Manchester, R.N.

    1977-01-01

    The distribution of pulsars with respect to period, z-distance, luminosity, and galactocentric radius has been investigated using data from three extensive pulsar surveys. It is shown that selection effects only slightly modify the observed period and z-distributions but strongly affect the observed luminosity function and galactic distribution. These latter two distributions are computed from the Jodrell Bank and Arecibo data, using an iterative procedure. The largest uncertainties in our results are the result of uncertainty in the adopted distance scale. Therefore, where relevant, separate calculations have been made for two values of the average interstellar electron density, , 0.02 cm -3 and 0.03 cm -3 .The derived luminosity function is closely represented by a power law with index (for logarithmic luminosity intervals) close to -1. For =0.03 cm -3 , the density of potentially observable pulsars is about 90 kpc -2 in the local region and increases with decreasing galactocentric radius. These distributions imply that the total number of pulsars in the Galaxy is about 10 5 . If only a fraction of all pulsars are observable because of beaming effects, then the total number in the Galaxy is correspondingly greater.Recent observations of pulsar proper motions show that pulsars are generally high-velocity objects. The observed z-distribution of pulsars implies that the mean age of observable pulsars does not exceed 2 x 10 6 years. With this mean age the pulsar birthrate required to maintain the observed galactic distribution is 10 -4 yr -1 kpc -2 in the local region and one pulsar birth every 6 years in the Galaxy as a whole. For =0.02 cm -3 , the corresponding rate is one birth every 40 years. These rates exceed most estimates of supernova occurrence rates and may require that all stars with mass greater than approx.2.5 Msun form pulsars at the end of their evolutionary life

  16. Using a Neural Network Approach to Find Unusual Butterfly Pitch Angle Distribution Shapes

    Science.gov (United States)

    Medeiros, C.; Sibeck, D. G.; Souza, V. M. C. E. S.; Vieira, L.; Alves, L. R.; Da Silva, L. A.; Kanekal, S. G.; Baker, D. N.

    2017-12-01

    A special kind of neural network referred to as a Self-Organizing Map (SOM) was previously adopted to identify, in pitch angle-resolved relativistic electron flux data provided by the REPT instrument onboard the Van Allen Probes, three major types of electron pitch angle distributions (PADs), namely 90o-peaked, butterfly and flattop (Souza et al., 2016), following the classification scheme employed by Gannon et al. (2007). Previous studies show that butterfly distribution can be found in more than one shape. They usually exhibit an intense decrease near 90° pitch angles compared to the peaks usually around 30° and 150°. Sometimes unusual butterfly PAD shapes with peaks near 45° and 135° pitch angles can be observed. These could be correlated with different physical processes that govern the production and loss of energetic particles in the Van Allen radiation belt. A neural network approach allows the distinction of different kinds of butterfly PADs which were not analyzed in detail by Souza et al. (2016). This study uses SOM methodology to find these unusual butterfly PAD shape during the interval between January 1, 2014 and October 1, 2015, during which Van Allen Probes orbit covered all MLT. The spatial and temporal occurrence of these events were investigated as well as their solar wind and magnetospheric drivers.

  17. The evolution of a distributed operating system

    NARCIS (Netherlands)

    van Renesse, Robbert; Tanenbaum, Andrew S.; Mullender, Sape J.; Schröder-Preikschat, Wolfgang; Zimmer, Wolfgang

    AMOEBA is a research project to build a true distributed operating system using the object model. Under the COST11-ter MANDIS project this work was extended to cover wide-area networks. Besides describing the system, this paper discusses the successive versions in the implementation of its model,

  18. Arrival time and incidence angle distributions of extensive air showers (EAS) muons

    International Nuclear Information System (INIS)

    Brancus, I.M.; Duma, M.; Vulpescu, B.; Foeller, M.; Rebel, H.; Voelker, G.; Chilingarian, A.A.

    1995-01-01

    The arrival time distributions of the muons can be related to the longitudinal EAS development and may provide additional information about the nature of the primary. Based on EAS simulations using the Monte-Carlo code CORSIKA, the correlations between arrival time and incidence angle distributions have been investigated in a case of a set of ideal detectors (10 m x 10 m) placed at various distances from the shower core. Applying advanced statistical techniques based on Bayes decision rule and non-parametric multivariate analysing methods it turns out that the correlations of muon arrival time and incidence angle at various separating distances of about 50 m exhibit promising features for mass discrimination (author)

  19. ATLAS Distributed Computing: Experience and Evolution

    CERN Document Server

    Nairz, A; The ATLAS collaboration

    2013-01-01

    The ATLAS experiment has just concluded its first running period which commenced in 2010. After two years of remarkable performance from the LHC and ATLAS, the experiment has accumulated more than 25 fb-1 of data. The total volume of beam and simulated data products exceeds 100 PB distributed across more than 150 computing centers around the world, managed by the experiment's distributed data management system. These sites have provided up to 150,000 computing cores to ATLAS's global production and analysis processing system, enabling a rich physics program including the discovery of the Higgs-like boson in 2012. The wealth of accumulated experience in global data-intensive computing at this massive scale, and the considerably more challenging requirements of LHC computing from 2014 when the LHC resumes operation, are driving a comprehensive design and development cycle to prepare a revised computing model together with data processing and management systems able to meet the demands of higher trigger rates, e...

  20. ATLAS distributed computing: experience and evolution

    CERN Document Server

    Nairz, A; The ATLAS collaboration

    2014-01-01

    The ATLAS experiment has just concluded its first running period which commenced in 2010. After two years of remarkable performance from the LHC and ATLAS, the experiment has accumulated more than 25/fb of data. The total volume of beam and simulated data products exceeds 100~PB distributed across more than 150 computing centres around the world, managed by the experiment's distributed data management system. These sites have provided up to 150,000 computing cores to ATLAS's global production and analysis processing system, enabling a rich physics programme including the discovery of the Higgs-like boson in 2012. The wealth of accumulated experience in global data-intensive computing at this massive scale, and the considerably more challenging requirements of LHC computing from 2015 when the LHC resumes operation, are driving a comprehensive design and development cycle to prepare a revised computing model together with data processing and management systems able to meet the demands of higher trigger rates, e...

  1. Transforming between discrete and continuous angle distribution models: application to protein χ1 torsions

    International Nuclear Information System (INIS)

    Schmidt, Jürgen M.

    2012-01-01

    Two commonly employed angular-mobility models for describing amino-acid side-chain χ 1 torsion conformation, the staggered-rotamer jump and the normal probability density, are discussed and performance differences in applications to scalar-coupling data interpretation highlighted. Both models differ in their distinct statistical concepts, representing discrete and continuous angle distributions, respectively. Circular statistics, introduced for describing torsion-angle distributions by using a universal circular order parameter central to all models, suggest another distribution of the continuous class, here referred to as the elliptic model. Characteristic of the elliptic model is that order parameter and circular variance form complementary moduli. Transformations between the parameter sets that describe the probability density functions underlying the different models are provided. Numerical aspects of parameter optimization are considered. The issues are typified by using a set of χ 1 related 3 J coupling constants available for FK506-binding protein. The discrete staggered-rotamer model is found generally to produce lower order parameters, implying elevated rotatory variability in the amino-acid side chains, whereas continuous models tend to give higher order parameters that suggest comparatively less variation in angle conformations. The differences perceived regarding angular mobility are attributed to conceptually different features inherent to the models.

  2. Signature of non-isotropic distribution of stellar rotation inclination angles in the Praesepe cluster

    Science.gov (United States)

    Kovacs, Geza

    2018-04-01

    The distribution of the stellar rotation axes of 113 main sequence stars in the open cluster Praesepe are examined by using current photometric rotation periods, spectroscopic rotation velocities, and estimated stellar radii. Three different samples of stellar rotation data on spotted stars from the Galactic field and two independent samples of planetary hosts are used as control samples to support the consistency of the analysis. Considering the high completeness of the Praesepe sample and the behavior of the control samples, we find that the main sequence F - K stars in this cluster are susceptible to rotational axis alignment. Using a cone model, the most likely inclination angle is 76° ± 14° with a half opening angle of 47° ± 24°. Non-isotropic distribution of the inclination angles is preferred over the isotropic distribution, except if the rotation velocities used in this work are systematically overestimated. We found no indication of this being the case on the basis of the currently available data. Data are only available at the CDS, together with the other two compiled datasets used in this paper, via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/L2

  3. ATLAS distributed computing: experience and evolution

    International Nuclear Information System (INIS)

    Nairz, A

    2014-01-01

    The ATLAS experiment has just concluded its first running period which commenced in 2010. After two years of remarkable performance from the LHC and ATLAS, the experiment has accumulated more than 25 fb −1 of data. The total volume of beam and simulated data products exceeds 100 PB distributed across more than 150 computing centres around the world, managed by the experiment's distributed data management system. These sites have provided up to 150,000 computing cores to ATLAS's global production and analysis processing system, enabling a rich physics programme including the discovery of the Higgs-like boson in 2012. The wealth of accumulated experience in global data-intensive computing at this massive scale, and the considerably more challenging requirements of LHC computing from 2015 when the LHC resumes operation, are driving a comprehensive design and development cycle to prepare a revised computing model together with data processing and management systems able to meet the demands of higher trigger rates, energies and event complexities. An essential requirement will be the efficient utilisation of current and future processor technologies as well as a broad range of computing platforms, including supercomputing and cloud resources. We will report on experience gained thus far and our progress in preparing ATLAS computing for the future

  4. THE EFFECTS OF VIEWING ANGLE ON THE MASS DISTRIBUTION OF EXOPLANETS

    International Nuclear Information System (INIS)

    Lopez, S.; Jenkins, J. S.

    2012-01-01

    We present a mathematical method to statistically decouple the effects of unknown inclination angles on the mass distribution of exoplanets that have been discovered using radial-velocity (RV) techniques. The method is based on the distribution of the product of two random variables. Thus, if one assumes a true mass distribution, the method makes it possible to recover the observed distribution. We compare our prediction with available RV data. Assuming that the true mass function is described by a power law, the minimum mass function that we recover proves a good fit to the observed distribution at both mass ends. In particular, it provides an alternative explanation for the observed low-mass decline, usually explained as sample incompleteness. In addition, the peak observed near the low-mass end arises naturally in the predicted distribution as a consequence of imposing a low-mass cutoff in the true distribution. If the low-mass bins below 0.02 M J are complete, then the mass distribution in this regime is heavily affected by the small fraction of lowly inclined interlopers that are actually more massive companions. Finally, we also present evidence that the exoplanet mass distribution changes form toward low mass, implying that a single power law may not adequately describe the sample population.

  5. Rocket measurements of relativistic electrons: New features in fluxes, spectra and pitch angle distributions

    International Nuclear Information System (INIS)

    Herrero, F.A.; Baker, D.N.; Goldberg, R.A.

    1991-01-01

    The authors report new features of precipitating relativistic electron fluxes measured on a spinning sounding rocket payload at midday between altitudes of 70 and 130 km in the auroral region (Poker Flat, Alaska, 65.1 degree N, 147.5 degree W, and L = 5.5). The sounding rocket (NASA 33.059) was launched at 21:29 UT on May 13, 1990 during a relativistic electron enhancement event of modest intensity. Electron fluxes were measured for a total of about 210 seconds at energies from 0.1 to 3.8 MeV, while pitch angle was sampled from 0 degree to 90 degree every spin cycle. Flux levels during the initial 90 seconds were about 5 to 8 times higher than in the next 120 seconds, revealing a time scale of more than 100 seconds for large amplitude intensity variations. A shorter time scale appeared for downward electron bursts lasting 10 to 20 seconds. Electrons with energies below about 0.2 MeV showed isotropic pitch angle distributions during most of the first 90 seconds of data, while at higher energies the electrons had highest fluxes near the mirroring angle (90 degree); when they occurred, the noted downward bursts were seen at all energies. Data obtained during the second half of the flight showed little variation in the shape of the pitch angle distribution for energies greater than 0.5 MeV; the flux at 90 degree was about 100 times the flux at 0 degree. They have compared the low altitude fluxes with those measured at geostationary orbit (L = 6.6), and find that the low altitude fluxes are much higher than expected from a simple mapping of a pancake distribution at high altitudes (at the equator). Energy deposition of this modest event is estimated to increase rapidly above 45 km, already exceeding the cosmic ray background at 45 km

  6. Analytic Evolution of Singular Distribution Amplitudes in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Tandogan Kunkel, Asli [Old Dominion Univ., Norfolk, VA (United States)

    2014-08-01

    Distribution amplitudes (DAs) are the basic functions that contain information about the quark momentum. DAs are necessary to describe hard exclusive processes in quantum chromodynamics. We describe a method of analytic evolution of DAs that have singularities such as nonzero values at the end points of the support region, jumps at some points inside the support region and cusps. We illustrate the method by applying it to the evolution of a at (constant) DA, antisymmetric at DA, and then use the method for evolution of the two-photon generalized distribution amplitude. Our approach to DA evolution has advantages over the standard method of expansion in Gegenbauer polynomials [1, 2] and over a straightforward iteration of an initial distribution with evolution kernel. Expansion in Gegenbauer polynomials requires an infinite number of terms in order to accurately reproduce functions in the vicinity of singular points. Straightforward iteration of an initial distribution produces logarithmically divergent terms at each iteration. In our method the logarithmic singularities are summed from the start, which immediately produces a continuous curve. Afterwards, in order to get precise results, only one or two iterations are needed.

  7. Probability evolution method for exit location distribution

    Science.gov (United States)

    Zhu, Jinjie; Chen, Zhen; Liu, Xianbin

    2018-03-01

    The exit problem in the framework of the large deviation theory has been a hot topic in the past few decades. The most probable escape path in the weak-noise limit has been clarified by the Freidlin-Wentzell action functional. However, noise in real physical systems cannot be arbitrarily small while noise with finite strength may induce nontrivial phenomena, such as noise-induced shift and noise-induced saddle-point avoidance. Traditional Monte Carlo simulation of noise-induced escape will take exponentially large time as noise approaches zero. The majority of the time is wasted on the uninteresting wandering around the attractors. In this paper, a new method is proposed to decrease the escape simulation time by an exponentially large factor by introducing a series of interfaces and by applying the reinjection on them. This method can be used to calculate the exit location distribution. It is verified by examining two classical examples and is compared with theoretical predictions. The results show that the method performs well for weak noise while may induce certain deviations for large noise. Finally, some possible ways to improve our method are discussed.

  8. Impact of foot progression angle on the distribution of plantar pressure in normal children.

    Science.gov (United States)

    Lai, Yu-Cheng; Lin, Huey-Shyan; Pan, Hui-Fen; Chang, Wei-Ning; Hsu, Chien-Jen; Renn, Jenn-Huei

    2014-02-01

    Plantar pressure distribution during walking is affected by several gait factors, most especially the foot progression angle which has been studied in children with neuromuscular diseases. However, this relationship in normal children has only been reported in limited studies. The purpose of this study is to clarify the correlation between foot progression angle and plantar pressure distribution in normal children, as well as the impacts of age and sex on this correlation. This study retrospectively reviewed dynamic pedobarographic data that were included in the gait laboratory database of our institution. In total, 77 normally developed children aged 5-16 years who were treated between 2004 and 2009 were included. Each child's footprint was divided into 5 segments: lateral forefoot, medial forefoot, lateral midfoot, medial midfoot, and heel. The percentages of impulse exerted at the medial foot, forefoot, midfoot, and heel were calculated. The average foot progression angle was 5.03° toe-out. Most of the total impulse was exerted on the forefoot (52.0%). Toe-out gait was positively correlated with high medial (r = 0.274; P plantar pressure as part of the treatment of various foot pathologies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Target Tracking Using SePDAF under Ambiguous Angles for Distributed Array Radar

    Science.gov (United States)

    Long, Teng; Zhang, Honggang; Zeng, Tao; Chen, Xinliang; Liu, Quanhua; Zheng, Le

    2016-01-01

    Distributed array radar can improve radar detection capability and measurement accuracy. However, it will suffer cyclic ambiguity in its angle estimates according to the spatial Nyquist sampling theorem since the large sparse array is undersampling. Consequently, the state estimation accuracy and track validity probability degrades when the ambiguous angles are directly used for target tracking. This paper proposes a second probability data association filter (SePDAF)-based tracking method for distributed array radar. Firstly, the target motion model and radar measurement model is built. Secondly, the fusion result of each radar’s estimation is employed to the extended Kalman filter (EKF) to finish the first filtering. Thirdly, taking this result as prior knowledge, and associating with the array-processed ambiguous angles, the SePDAF is applied to accomplish the second filtering, and then achieving a high accuracy and stable trajectory with relatively low computational complexity. Moreover, the azimuth filtering accuracy will be promoted dramatically and the position filtering accuracy will also improve. Finally, simulations illustrate the effectiveness of the proposed method. PMID:27618058

  10. Pitch angle distributions of > 30 keV electrons at geostationary altitudes

    International Nuclear Information System (INIS)

    Higbie, P.R.; Baker, D.N.; Hones, E.W. Jr.; Belian, R.D.

    1978-01-01

    The satellites 1976-059A and 1977-007A each carry energetic particle detectors which measure fluxes of electrons in the 30 to 300 keV energy range. Five separate sensors mounted at 30, 60, 90, 120, and 150 0 to the spacecraft spin axis provide two hundred samples of the three dimensional distribution function for every ten second spacecraft rotation. Spherical harmonic functions up to the fourth order were fit to the observed pitch angle distributions. The second and fourth order coefficients obtained for these fits were averaged for each hour of local time. The probability distributions for the averaged harmonic coefficients were calculated and are presented as a function of local time. Possible relations of these distributions to interplanetary conditions are discussed. Using the present analysis techniques, the intensity of electrons at the noon meridian is derived as a function of pitch angle and radial distance and is given by j(α,r) = 2.03 x 10 8 (0.49 sin 4 . 78 α + 0.51 sin 0 . 27 α) e/sup -r/1.60/ el/cm 2 sec sr. 11 references

  11. Geometrically distributed one-dimensional photonic crystals for light-reflection in all angles.

    Science.gov (United States)

    Alagappan, G; Wu, P

    2009-07-06

    We demonstrate that a series of one-dimensional photonic crystals made of any dielectric materials, with the periods are distributed in a geometrical progression of a common ratio, r rc (theta,P), where rc is a structural parameter that depends on the angle of incidence, theta, and polarization, P, is capable of blocking light of any spectral range. If an omni-directional reflection is desired for all polarizations and for all incident angles smaller than thetao, then r rc (theta(o),p), where p is the polarization with the electric field parallel to the plane of incidence. We present simple and formula like expressions for rc, width of the bandgap, and minimum number of photonic crystals to achieve a perfect light reflection.

  12. The distribution of tilt angles in newly born NSs: role of interior viscosity and magnetic field

    Science.gov (United States)

    Dall'Osso, Simone; Perna, Rosalba

    2017-12-01

    We study how the viscosity of neutron star (NS) matter affects the distribution of tilt angles (χ) between the spin and magnetic axes in young pulsars. Under the hypothesis that the NS shape is determined by the magnetically induced deformation, and that the toroidal component of the internal magnetic field exceeds the poloidal one, we show that the dissipation of precessional motions by bulk viscosity can naturally produce a bi-modal distribution of tilt angles, as observed in radio/γ-ray pulsars, with a low probability of achieving χ ˜ (20°-70°) if the interior B-field is ˜(1011-1015) G and the birth spin period is ˜10-300 ms. As a corollary of the model, the idea that the NS shape is solely determined by the poloidal magnetic field, or by the centrifugal deformation of the crust, is found to be inconsistent with the tilt angle distribution in young pulsars. When applied to the Crab pulsar, with χ ˜ 45°-70° and birth spin ≳20 ms, our model implies that: (I) the magnetically induced ellipticity is ɛB ≳ 3 × 10-6; and (II) the measured positive\\dot{χ } ˜ 3.6 × 10^{-12} rad s-1 requires an additional viscous process, acting on a time-scale ≲104 yr. We interpret the latter as crust-core coupling via mutual friction in the superfluid NS interior. One critical implication of our model is a gravitational wave signal at (twice) the spin frequency of the NS. For ɛB ˜ 10-6, this could be detectable by Advanced LIGO/Virgo operating at design sensitivity.

  13. Parameterization of Cherenkov Light Lateral Distribution Function as a Function of the Zenith Angle around the Knee Region

    OpenAIRE

    Abdulsttar, Marwah M.; Al-Rubaiee, A. A.; Ali, Abdul Halim Kh.

    2016-01-01

    Cherenkov light lateral distribution function (CLLDF) simulation was fulfilled using CORSIKA code for configurations of Tunka EAS array of different zenith angles. The parameterization of the CLLDF was carried out as a function of the distance from the shower core in extensive air showers (EAS) and zenith angle on the basis of the CORSIKA simulation of primary proton around the knee region with the energy 3.10^15 eV at different zenith angles. The parameterized CLLDF is verified in comparison...

  14. Electron Source Brightness and Illumination Semi-Angle Distribution Measurement in a Transmission Electron Microscope.

    Science.gov (United States)

    Börrnert, Felix; Renner, Julian; Kaiser, Ute

    2018-05-21

    The electron source brightness is an important parameter in an electron microscope. Reliable and easy brightness measurement routes are not easily found. A determination method for the illumination semi-angle distribution in transmission electron microscopy is even less well documented. Herein, we report a simple measurement route for both entities and demonstrate it on a state-of-the-art instrument. The reduced axial brightness of the FEI X-FEG with a monochromator was determined to be larger than 108 A/(m2 sr V).

  15. Some thoughts on the Musala anisotropy; pitch angle distribution or what else

    International Nuclear Information System (INIS)

    Kota, J.; Somogyi, A.J.

    1977-01-01

    Based on the results obtained in the Musala experiment and in other anisotropy measurements, an attempt is made to explore the three-dimensional structure of cosmic ray anisotropy in the 10 11 - 107M1 4 eV range. (i) It is investigated whether observtions can be reconcilied with a pitch angle distribution. (ii) Assuming that the principal axes of the tensor anisotropy are known, the vector and tensor anisotropies are separated. Discussed are the theoretical implications of the results obtained and possible origins of the second harmonic. (author)

  16. Large field distributed aperture laser semiactive angle measurement system design with imaging fiber bundles.

    Science.gov (United States)

    Xu, Chunyun; Cheng, Haobo; Feng, Yunpeng; Jing, Xiaoli

    2016-09-01

    A type of laser semiactive angle measurement system is designed for target detecting and tracking. Only one detector is used to detect target location from four distributed aperture optical systems through a 4×1 imaging fiber bundle. A telecentric optical system in image space is designed to increase the efficiency of imaging fiber bundles. According to the working principle of a four-quadrant (4Q) detector, fiber diamond alignment is adopted between an optical system and a 4Q detector. The structure of the laser semiactive angle measurement system is, we believe, novel. Tolerance analysis is carried out to determine tolerance limits of manufacture and installation errors of the optical system. The performance of the proposed method is identified by computer simulations and experiments. It is demonstrated that the linear region of the system is ±12°, with measurement error of better than 0.2°. In general, this new system can be used with large field of view and high accuracy, providing an efficient, stable, and fast method for angle measurement in practical situations.

  17. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering

    Science.gov (United States)

    Gamayunov, K. V.; Khazanov, G. V.

    2006-01-01

    calculate the pitch-angle diffusion coefficients using the typical wave normal distributions obtained from our self-consistent ring current-EMIC wave model, and try to quantify the effect of EMIC wave normal angle characteristics on relativistic electron scattering.

  18. Particle size distribution models of small angle neutron scattering pattern on ferro fluids

    International Nuclear Information System (INIS)

    Sistin Asri Ani; Darminto; Edy Giri Rachman Putra

    2009-01-01

    The Fe 3 O 4 ferro fluids samples were synthesized by a co-precipitation method. The investigation of ferro fluids microstructure is known to be one of the most important problems because the presence of aggregates and their internal structure influence greatly the properties of ferro fluids. The size and the size dispersion of particle in ferro fluids were determined assuming a log normal distribution of particle radius. The scattering pattern of the measurement by small angle neutron scattering were fitted by the theoretical scattering function of two limitation models are log normal sphere distribution and fractal aggregate. Two types of particle are detected, which are presumably primary particle of 30 Armstrong in radius and secondary fractal aggregate of 200 Armstrong with polydispersity of 0.47 up to 0.53. (author)

  19. The Effect of Resection Angle on Stress Distribution after Root-End Surgery

    Science.gov (United States)

    Monteiro, Jaiane Bandoli; Dal Piva, Amanda Maria de Oliveira; Tribst, João Paulo Mendes; Borges, Alexandre Luiz Souto; Tango, Rubens Nisie

    2018-01-01

    Introduction: This study aimed to investigate the influence of the resection angle on the stress distribution of retrograde endodontic treated maxillary incisors under oblique-load application. Methods and Materials: A maxillary central incisor which was endodontically treated and restored with a fiber glass post was obtained in a 3-dimensional numerical model and distributed into three groups according to type of resection: control; restored with fiber post without retrograde obturation, R45 and R90 with 45º and 90º resection from tooth axial axis, respectively and restored with Fuji II LC (GC America). The numerical models received a 45º occlusal load of 200 N/cm2 on the middle of lingual surface. All materials and structures were considered linear elastic, homogeneous and isotropic. Numerical models were plotted and meshed with isoparametric elements, and the results were analyzed using maximum principal stress (MPS). Results: MPS showed greater stress values in the bone tissue for control group than the other groups. Groups with apicectomy showed acceptable stress distribution on the fiber post, cement layer and root dentin, presenting more improved values than control group. Conclusion: Apicectomy at 90º promotes more homogeneity on stress distribution on the fiber post, cement layer and root dentin, which suggests less probability of failure. However, due to its facility and stress distribution also being better than control group, apicectomy at 45° could be a good choice for clinicians. PMID:29707013

  20. Optimized chord and twist angle distributions of wind turbine blade considering Reynolds number effects

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.; Tang, X. [Univ. of Central Lancashire. Engineering and Physical Sciences, Preston (United Kingdom); Liu, X. [Univ. of Cumbria. Sustainable Engineering, Workington (United Kingdom)

    2012-07-01

    The aerodynamic performance of a wind turbine depends very much on its blade geometric design, typically based on the blade element momentum (BEM) theory, which divides the blade into several blade elements. In current blade design practices based on Schmitz rotor design theory, the blade geometric parameters including chord and twist angle distributions are determined based on airfoil aerodynamic data at a specific Reynolds number. However, rotating wind turbine blade elements operate at different Reynolds numbers due to variable wind speed and different blade span locations. Therefore, the blade design through Schmitz rotor theory at a specific Reynolds number does not necessarily provide the best power performance under operational conditions. This paper aims to provide an optimal blade design strategy for horizontal-axis wind turbines operating at different Reynolds numbers. A fixed-pitch variable-speed (FPVS) wind turbine with S809 airfoil is chosen as a case study and a Matlab program which considers Reynolds number effects is developed to determine the optimized chord and twist angle distributions of the blade. The performance of the optimized blade is compared with that of the preliminary blade which is designed based on Schmitz rotor design theory at a specific Reynolds number. The results demonstrate that the proposed blade design optimization strategy can improve the power performance of the wind turbine. This approach can be further developed for any practice of horizontal axis wind turbine blade design. (Author)

  1. Pitch angle distributions of electrons at dipolarization sites during geomagnetic activity: THEMIS observations

    Science.gov (United States)

    Wang, Kaiti; Lin, Ching-Huei; Wang, Lu-Yin; Hada, Tohru; Nishimura, Yukitoshi; Turner, Drew L.; Angelopoulos, Vassilis

    2014-12-01

    Changes in pitch angle distributions of electrons with energies from a few eV to 1 MeV at dipolarization sites in Earth's magnetotail are investigated statistically to determine the extent to which adiabatic acceleration may contribute to these changes. Forty-two dipolarization events from 2008 and 2009 observed by Time History of Events and Macroscale Interactions during Substorms probes covering the inner plasma sheet from 8 RE to 12 RE during geomagnetic activity identified by the AL index are analyzed. The number of observed events with cigar-type distributions (peaks at 0° and 180°) decreases sharply below 1 keV after dipolarization because in many of these events, electron distributions became more isotropized. From above 1 keV to a few tens of keV, however, the observed number of cigar-type events increases after dipolarization and the number of isotropic events decreases. These changes can be related to the ineffectiveness of Fermi acceleration below 1 keV (at those energies, dipolarization time becomes comparable to electron bounce time). Model-calculated pitch angle distributions after dipolarization with the effect of betatron and Fermi acceleration tested indicate that these adiabatic acceleration mechanisms can explain the observed patterns of event number changes over a large range of energies for cigar events and isotropic events. Other factors still need to be considered to assess the observed increase in cigar events around 2 keV. Indeed, preferential directional increase/loss of electron fluxes, which may contribute to the formation of cigar events, was observed. Nonadiabatic processes to accelerate electrons in a parallel direction may also be important for future study.

  2. On the evolution of jet energy and opening angle in strongly coupled plasma

    International Nuclear Information System (INIS)

    Chesler, Paul M.; Rajagopal, Krishna

    2016-01-01

    We calculate how the energy and the opening angle of jets in N=4 SYM theory evolve as they propagate through the strongly coupled plasma of that theory. We define the rate of energy loss dE_j_e_t/dx and the jet opening angle in a straightforward fashion directly in the gauge theory before calculating both holographically, in the dual gravitational description. In this way, we rederive the previously known result for dE_j_e_t/dx without the need to introduce a finite slab of plasma. We obtain a striking relationship between the initial opening angle of the jet, which is to say the opening angle that it would have had if it had found itself in vacuum instead of in plasma, and the thermalization distance of the jet. Via this relationship, we show that N=4 SYM jets with any initial energy that have the same initial opening angle and the same trajectory through the plasma experience the same fractional energy loss. We also provide an expansion that describes how the opening angle of the N=4 SYM jets increases slowly as they lose energy, over the fraction of their lifetime when their fractional energy loss is not yet large. We close by looking ahead toward potential qualitative lessons from our results for QCD jets produced in heavy collisions and propagating through quark-gluon plasma.

  3. Q2 evolution of a soft gluon distribution function

    International Nuclear Information System (INIS)

    Enkovskij, L.L.; Kotikov, A.V.; Pakkanoni, F.

    1992-01-01

    Model parameter dependence refferring to the function of gluon distribution linked with the exchange of a dipole pomeron from Q 2 is calculated within the framework of the Gribov-Lipatov-Altarelli-Parisi evolution equation (GLAP) both in the leading logarithm approximation and in the double logarithmic approximation. The behaviour of logarithmic parametrization ∼ (ln(1/x)) b appears to be unstable in relation to perturbative calculations

  4. Winter precipitation particle size distribution measurement by Multi-Angle Snowflake Camera

    Science.gov (United States)

    Huang, Gwo-Jong; Kleinkort, Cameron; Bringi, V. N.; Notaroš, Branislav M.

    2017-12-01

    From the radar meteorology viewpoint, the most important properties for quantitative precipitation estimation of winter events are 3D shape, size, and mass of precipitation particles, as well as the particle size distribution (PSD). In order to measure these properties precisely, optical instruments may be the best choice. The Multi-Angle Snowflake Camera (MASC) is a relatively new instrument equipped with three high-resolution cameras to capture the winter precipitation particle images from three non-parallel angles, in addition to measuring the particle fall speed using two pairs of infrared motion sensors. However, the results from the MASC so far are usually presented as monthly or seasonally, and particle sizes are given as histograms, no previous studies have used the MASC for a single storm study, and no researchers use MASC to measure the PSD. We propose the methodology for obtaining the winter precipitation PSD measured by the MASC, and present and discuss the development, implementation, and application of the new technique for PSD computation based on MASC images. Overall, this is the first study of the MASC-based PSD. We present PSD MASC experiments and results for segments of two snow events to demonstrate the performance of our PSD algorithm. The results show that the self-consistency of the MASC measured single-camera PSDs is good. To cross-validate PSD measurements, we compare MASC mean PSD (averaged over three cameras) with the collocated 2D Video Disdrometer, and observe good agreements of the two sets of results.

  5. Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions

    Science.gov (United States)

    Hao, Y.; Zong, Q.; Zhou, X.; Rankin, R.; Chen, X.; Liu, Y.; Fu, S.; Spence, H. E.; Blake, J. B.; Reeves, G. D.

    2017-12-01

    We present an analysis of "boomerang-shaped" pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on June 7th, 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90º pitch angle electrons, the phase change of the flux modulations across energy exceeds 180º, and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact with electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wave field reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift-resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.

  6. Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions

    International Nuclear Information System (INIS)

    Hao, Y. X.; Zong, Q.-G.; Zhou, X.-Z.; Rankin, R.; Chen, X. R.

    2017-01-01

    Here, we present an analysis of “boomerang-shaped” pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on 7 June 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90° pitch angle electrons, the phase change of the flux modulations across energy exceeds 180° and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact with electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wavefield reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.

  7. Interpretation and Utility of the Moments of Small-Angle X-Ray Scattering Distributions.

    Science.gov (United States)

    Modregger, Peter; Kagias, Matias; Irvine, Sarah C; Brönnimann, Rolf; Jefimovs, Konstantins; Endrizzi, Marco; Olivo, Alessandro

    2017-06-30

    Small angle x-ray scattering has been proven to be a valuable method for accessing structural information below the spatial resolution limit implied by direct imaging. Here, we theoretically derive the relation that links the subpixel differential phase signal provided by the sample to the moments of scattering distributions accessible by refraction sensitive x-ray imaging techniques. As an important special case we explain the scatter or dark-field contrast in terms of the sample's phase signal. Further, we establish that, for binary phase objects, the nth moment scales with the difference of the refractive index decrement to the power of n. Finally, we experimentally demonstrate the utility of the moments by quantitatively determining the particle sizes of a range of powders with a laboratory-based setup.

  8. Angle resolved photoelectron distribution of the 1{pi} resonance of CO/Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Haarlammert, Thorben; Wegner, Sebastian; Tsilimis, Grigorius; Zacharias, Helmut [Physikalisches Institut, Westfaelische Wilhelms Universitaet, Muenster (Germany); Golovin, Alexander [Institute of Physics, St. Petersburg State University (Russian Federation)

    2009-07-01

    The CO 1{pi} level of a c(4 x 2)-2CO/Pt(111) reconstruction shows a significant resonance when varying the photon energy between h{nu}=23 eV and h{nu}=48 e V. This resonance has not been observed in gas phase measurements or on the Pt(1 10) surface. To investigate the photoelectron distribution of the 1{pi} level high harmonic radiaton has been used. By conversion in rare gases like argon, neon, or helium photon energies of up to 100 eV have been generated at repetition r ates of up to 10 kHz. The single harmonics have been separated and focused by a toroidal grating and directed to the sample surface. A time-of-flight detector with multiple anodes registers the kinetic energies of the emitted photoelectrons and enables the simultaneous detection of multiple emission angles. The angular distributions of photoelectrons emitted from the CO 1{pi} level have been measured for a variety of initial photon energies. Further the angular distributions of the CO 1{pi} level photoelectrons emitted from a CO-Pt{sub 7} cluster have been calculated using the MSX{alpha}-Method which shows good agreement with the ex perimental data.

  9. Small-angle scattering study of mesoscopic structures in charged gel and their evolution on dehydration

    DEFF Research Database (Denmark)

    Sugiyama, Masaaki; Annaka, Masahiko; Hara, Kazuhiro

    2003-01-01

    Mesoscopic structures, with length scales similar to10(2) Angstrom, were investigated by small-angle X-ray and neutron scattering (SAXS and SANS) in several N-isopropylacrylamide-sodium acrylate (NIPA-SA) copolymeric hydrogels with varying [NIPA]/[SA] ratios and water contents. The SAXS experimen...

  10. Effects of Schroth and Pilates exercises on the Cobb angle and weight distribution of patients with scoliosis.

    Science.gov (United States)

    Kim, Gichul; HwangBo, Pil-Neo

    2016-03-01

    [Purpose] The purpose of this study was to compare the effect of Schroth and Pilates exercises on the Cobb angle and body weight distribution of patients with idiopathic scoliosis. [Subjects] Twenty-four scoliosis patients with a Cobb angle of ≥20° were divided into the Schroth exercise group (SEG, n = 12) and the Pilates exercise group (PEG, n = 12). [Methods] The SEG and PEG performed Schroth and Pilates exercises, respectively, three times a week for 12 weeks. The Cobb angle was measured in the standing position with a radiography apparatus, and weight load was measured with Gait View Pro 1.0. [Results] In the intragroup comparison, both groups showed significant changes in the Cobb angle. For weight distribution, the SEG showed significant differences in the total weight between the concave and convex sides, but the PEG did not show significant differences. Furthermore, in the intragroup comparison, the SEG showed significant differences in the changes in the Cobb angle and weight distribution compared with the PEG. [Conclusion] Both Schroth and Pilates exercises were effective in changing the Cobb angle and weight distribution of scoliosis patients; however, the intergroup comparison showed that the Schroth exercise was more effective than the Pilates exercise.

  11. Evolution of longitudinal equilibrium distribution in the adiabatic regime

    International Nuclear Information System (INIS)

    Wei, J.; Lee, S.Y.; Ruggiero, A.G.

    1990-01-01

    Evolution of longitudinal equilibrium distribution of a hadron bunch under the beam-environment interaction is investigated based on a self-consistent solution of the Vlasov equation. The effect of this interaction on the distribution can be characterized by a dimensionless quantity in analogy to the one describing the microwave-instability criterion. In the case that the coupling impedance (Z/n) is reactive and frequency independent, the change in the distribution results in a stabilization that keeps the bunch below the instability threshold; microwave instability is thus eliminated. Monte Carlo simulation for the microwave instability agrees with analytic solution of the Vlasov equation provided that bunch shape distortion due to the coupling is taken into account

  12. Evolution of truncated moments of singlet parton distributions

    International Nuclear Information System (INIS)

    Forte, S.; Magnea, L.; Piccione, A.; Ridolfi, G.

    2001-01-01

    We define truncated Mellin moments of parton distributions by restricting the integration range over the Bjorken variable to the experimentally accessible subset x 0 ≤x≤1 of the allowed kinematic range 0≤x≤1. We derive the evolution equations satisfied by truncated moments in the general (singlet) case in terms of an infinite triangular matrix of anomalous dimensions which couple each truncated moment to all higher moments with orders differing by integers. We show that the evolution of any moment can be determined to arbitrarily good accuracy by truncating the system of coupled moments to a sufficiently large but finite size, and show how the equations can be solved in a way suitable for numerical applications. We discuss in detail the accuracy of the method in view of applications to precision phenomenology

  13. From evolution theory to parallel and distributed genetic

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    Lecture #1: From Evolution Theory to Evolutionary Computation. Evolutionary computation is a subfield of artificial intelligence (more particularly computational intelligence) involving combinatorial optimization problems, which are based to some degree on the evolution of biological life in the natural world. In this tutorial we will review the source of inspiration for this metaheuristic and its capability for solving problems. We will show the main flavours within the field, and different problems that have been successfully solved employing this kind of techniques. Lecture #2: Parallel and Distributed Genetic Programming. The successful application of Genetic Programming (GP, one of the available Evolutionary Algorithms) to optimization problems has encouraged an increasing number of researchers to apply these techniques to a large set of problems. Given the difficulty of some problems, much effort has been applied to improving the efficiency of GP during the last few years. Among the available proposals,...

  14. A Distributed Snow Evolution Modeling System (SnowModel)

    Science.gov (United States)

    Liston, G. E.; Elder, K.

    2004-12-01

    A spatially distributed snow-evolution modeling system (SnowModel) has been specifically designed to be applicable over a wide range of snow landscapes, climates, and conditions. To reach this goal, SnowModel is composed of four sub-models: MicroMet defines the meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowMass simulates snow depth and water-equivalent evolution, and SnowTran-3D accounts for snow redistribution by wind. While other distributed snow models exist, SnowModel is unique in that it includes a well-tested blowing-snow sub-model (SnowTran-3D) for application in windy arctic, alpine, and prairie environments where snowdrifts are common. These environments comprise 68% of the seasonally snow-covered Northern Hemisphere land surface. SnowModel also accounts for snow processes occurring in forested environments (e.g., canopy interception related processes). SnowModel is designed to simulate snow-related physical processes occurring at spatial scales of 5-m and greater, and temporal scales of 1-hour and greater. These include: accumulation from precipitation; wind redistribution and sublimation; loading, unloading, and sublimation within forest canopies; snow-density evolution; and snowpack ripening and melt. To enhance its wide applicability, SnowModel includes the physical calculations required to simulate snow evolution within each of the global snow classes defined by Sturm et al. (1995), e.g., tundra, taiga, alpine, prairie, maritime, and ephemeral snow covers. The three, 25-km by 25-km, Cold Land Processes Experiment (CLPX) mesoscale study areas (MSAs: Fraser, North Park, and Rabbit Ears) are used as SnowModel simulation examples to highlight model strengths, weaknesses, and features in forested, semi-forested, alpine, and shrubland environments.

  15. A Neural Network Approach for Identifying Particle Pitch Angle Distributions in Van Allen Probes Data

    Science.gov (United States)

    Souza, V. M.; Vieira, L. E. A.; Medeiros, C.; Da Silva, L. A.; Alves, L. R.; Koga, D.; Sibeck, D. G.; Walsh, B. M.; Kanekal, S. G.; Jauer, P. R.; hide

    2016-01-01

    Analysis of particle pitch angle distributions (PADs) has been used as a means to comprehend a multitude of different physical mechanisms that lead to flux variations in the Van Allen belts and also to particle precipitation into the upper atmosphere. In this work we developed a neural network-based data clustering methodology that automatically identifies distinct PAD types in an unsupervised way using particle flux data. One can promptly identify and locate three well-known PAD types in both time and radial distance, namely, 90deg peaked, butterfly, and flattop distributions. In order to illustrate the applicability of our methodology, we used relativistic electron flux data from the whole month of November 2014, acquired from the Relativistic Electron-Proton Telescope instrument on board the Van Allen Probes, but it is emphasized that our approach can also be used with multiplatform spacecraft data. Our PAD classification results are in reasonably good agreement with those obtained by standard statistical fitting algorithms. The proposed methodology has a potential use for Van Allen belt's monitoring.

  16. Intracranial cerebrospinal fluid spaces imaging using a pulse-triggered three-dimensional turbo spin echo MR sequence with variable flip-angle distribution

    Energy Technology Data Exchange (ETDEWEB)

    Hodel, Jerome [Unite Analyse et Restauration du Mouvement, UMR-CNRS, 8005 LBM ParisTech Ensam, Paris (France); University Paris Est Creteil (UPEC), Creteil (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri Mondor, Department of Neuroradiology, Creteil (France); Hopital Henri Mondor, Creteil (France); Silvera, Jonathan [University Paris Est Creteil (UPEC), Creteil (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri Mondor, Department of Neuroradiology, Creteil (France); Bekaert, Olivier; Decq, Philippe [Unite Analyse et Restauration du Mouvement, UMR-CNRS, 8005 LBM ParisTech Ensam, Paris (France); University Paris Est Creteil (UPEC), Creteil (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri Mondor, Department of Neurosurgery, Creteil (France); Rahmouni, Alain [University Paris Est Creteil (UPEC), Creteil (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri Mondor, Department of Radiology, Creteil (France); Bastuji-Garin, Sylvie [University Paris Est Creteil (UPEC), Creteil (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri Mondor, Department of Public Health, Creteil (France); Vignaud, Alexandre [Siemens Healthcare, Saint Denis (France); Petit, Eric; Durning, Bruno [Laboratoire Images Signaux et Systemes Intelligents, UPEC, Creteil (France)

    2011-02-15

    To assess the three-dimensional turbo spin echo with variable flip-angle distribution magnetic resonance sequence (SPACE: Sampling Perfection with Application optimised Contrast using different flip-angle Evolution) for the imaging of intracranial cerebrospinal fluid (CSF) spaces. We prospectively investigated 18 healthy volunteers and 25 patients, 20 with communicating hydrocephalus (CH), five with non-communicating hydrocephalus (NCH), using the SPACE sequence at 1.5T. Volume rendering views of both intracranial and ventricular CSF were obtained for all patients and volunteers. The subarachnoid CSF distribution was qualitatively evaluated on volume rendering views using a four-point scale. The CSF volumes within total, ventricular and subarachnoid spaces were calculated as well as the ratio between ventricular and subarachnoid CSF volumes. Three different patterns of subarachnoid CSF distribution were observed. In healthy volunteers we found narrowed CSF spaces within the occipital aera. A diffuse narrowing of the subarachnoid CSF spaces was observed in patients with NCH whereas patients with CH exhibited narrowed CSF spaces within the high midline convexity. The ratios between ventricular and subarachnoid CSF volumes were significantly different among the volunteers, patients with CH and patients with NCH. The assessment of CSF spaces volume and distribution may help to characterise hydrocephalus. (orig.)

  17. Intracranial cerebrospinal fluid spaces imaging using a pulse-triggered three-dimensional turbo spin echo MR sequence with variable flip-angle distribution

    International Nuclear Information System (INIS)

    Hodel, Jerome; Silvera, Jonathan; Bekaert, Olivier; Decq, Philippe; Rahmouni, Alain; Bastuji-Garin, Sylvie; Vignaud, Alexandre; Petit, Eric; Durning, Bruno

    2011-01-01

    To assess the three-dimensional turbo spin echo with variable flip-angle distribution magnetic resonance sequence (SPACE: Sampling Perfection with Application optimised Contrast using different flip-angle Evolution) for the imaging of intracranial cerebrospinal fluid (CSF) spaces. We prospectively investigated 18 healthy volunteers and 25 patients, 20 with communicating hydrocephalus (CH), five with non-communicating hydrocephalus (NCH), using the SPACE sequence at 1.5T. Volume rendering views of both intracranial and ventricular CSF were obtained for all patients and volunteers. The subarachnoid CSF distribution was qualitatively evaluated on volume rendering views using a four-point scale. The CSF volumes within total, ventricular and subarachnoid spaces were calculated as well as the ratio between ventricular and subarachnoid CSF volumes. Three different patterns of subarachnoid CSF distribution were observed. In healthy volunteers we found narrowed CSF spaces within the occipital aera. A diffuse narrowing of the subarachnoid CSF spaces was observed in patients with NCH whereas patients with CH exhibited narrowed CSF spaces within the high midline convexity. The ratios between ventricular and subarachnoid CSF volumes were significantly different among the volunteers, patients with CH and patients with NCH. The assessment of CSF spaces volume and distribution may help to characterise hydrocephalus. (orig.)

  18. Magnetic field drift shell splitting: Cause of unusual dayside particle pitch angle distributions during storms and substorms

    International Nuclear Information System (INIS)

    Sibeck, D.G.; McEntire, R.W.; Lui, A.T.Y.; Lopez, R.E.; Krimigis, S.M.

    1987-01-01

    We present a magnetic field drift shell--splitting model for the unusual butterfly and head-and-shoulder energetic (E>25 keV) particle pitch angle distributions (PADs) which appear deep within the dayside magnetosphere during the course of storms and substorms. Drift shell splitting separates the high and low pitch angle particles in nightside injections as they move to the dayside magnetosphere, so that the higher pitch angle particles move radially away from Earth. Consequently, butterfly PADs with a surplus of low pitch angle particles form on the inner edge of the injection, but head-and-shoulder PADs with a surplus of high pitch angle particles from on the outer edge. A similar process removes high pitch angle particles from the inner dayside magnetosphere during storms, leaving the remaining lower pitch angle particles to form butterfly PADs on the inner edge of the ring current. A detailed case and statistical study of CCE/MEPA observations, as well as a review of previous work, shows most examples of unusual PADs to be consistent with the model. copyright American Geophysical Union 1987

  19. Electron Pitch-Angle Distribution in Pressure Balance Structures Measured by Ulysses/SWOOPS

    Science.gov (United States)

    Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi; Six, N. Frank (Technical Monitor)

    2002-01-01

    Pressure balance structures (PBSs) are a common feature in the high-latitude solar wind near solar minimum. From previous studies, PBSs are believed to be remnants of coronal plumes. Yamauchi et al [2002] investigated the magnetic structures of the PBSs, applying a minimum variance analysis to Ulysses/Magnetometer data. They found that PBSs contain structures like current sheets or plasmoids, and suggested that PBSs are associated with network activity such as magnetic reconnection in the photosphere at the base of polar plumes. We have investigated energetic electron data from Ulysses/SWOOPS to see whether bi-directional electron flow exists and we have found evidence supporting the earlier conclusions. We find that 45 ot of 53 PBSs show local bi-directional or isotopic electron flux or flux associated with current-sheet structure. Only five events show the pitch-angle distribution expected for Alfvenic fluctuations. We conclude that PBSs do contain magnetic structures such as current sheets or plasmoids that are expected as a result of network activity at the base of polar plumes.

  20. Geometry and evolution of low-angle normal faults (LANF) within a Cenozoic high-angle rift system, Thailand: Implications for sedimentology and the mechanisms of LANF development

    Science.gov (United States)

    Morley, Chris K.

    2009-10-01

    At least eight examples of large (5-35 km heave), low-angle normal faults (LANFs, 20°-30° dip) occur in the Cenozoic rift basins of Thailand and laterally pass into high-angle extensional fault systems. Three large-displacement LANFs are found in late Oligocene-Miocene onshore rift basins (Suphan Buri, Phitsanulok, and Chiang Mai basins), they have (1) developed contemporaneous with, or after the onset of, high-angle extension, (2) acted as paths for magma and associated fluids, and (3) impacted sedimentation patterns. Displacement on low-angle faults appears to be episodic, marked by onset of lacustrine conditions followed by axial progradation of deltaic systems that infilled the lakes during periods of low or no displacement. The Chiang Mai LANF is a low-angle (15°-25°), high-displacement (15-35 km heave), ESE dipping LANF immediately east of the late early Miocene Doi Inthanon and Doi Suthep metamorphic core complexes. Early Cenozoic transpressional crustal thickening followed by the northward motion of India coupled with Burma relative to east Burma and Thailand (˜40-30 Ma) caused migmatization and gneiss dome uplift in the late Oligocene of the core complex region, followed by LANF activity. LANF displacement lasted 4-6 Ma during the early Miocene and possibly transported a late Oligocene-early Miocene high-angle rift system 35 km east. Other LANFs in Thailand have lower displacements and no associated metamorphic core complexes. The three LANFs were initiated as low-angle faults, not by isostatic rotation of high-angle faults. The low-angle dips appear to follow preexisting low-angle fabrics (thrusts, shear zones, and other low-angle ductile foliations) predominantly developed during Late Paleozoic and early Paleogene episodes of thrusting and folding.

  1. Simultaneous distribution between the deflection angle and the lateral displacement under the Moliere theory of multiple scattering

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsuka, Takao [Okayama Shoka University, Laboratory of Information Science, Okayama (Japan); Okei, Kazuhide [Kawasaki Medical School, Dept. of Information Sciences, Kurashiki (Japan); Iyono, Atsushi [Okayama university of Science, Dept. of Fundamental Science, Faculty of Science, Okayama (Japan); Bielajew, Alex F. [Univ. of Michigan, Dept. Nuclear Engineering and Radiological Sciences, Ann Arbor, MI (United States)

    2015-12-15

    Simultaneous distribution between the deflection angle and the lateral displacement of fast charged particles traversing through matter is derived by applying numerical inverse Fourier transforms on the Fourier spectral density solved analytically under the Moliere theory of multiple scattering, taking account of ionization loss. Our results show the simultaneous Gaussian distribution at the region of both small deflection angle and lateral displacement, though they show the characteristic contour patterns of probability density specific to the single and the double scatterings at the regions of large deflection angle and/or lateral displacement. The influences of ionization loss on the distribution are also investigated. An exact simultaneous distribution is derived under the fixed energy condition based on a well-known model of screened single scattering, which indicates the limit of validity of the Moliere theory applied to the simultaneous distribution. The simultaneous distribution will be valuable for improving the accuracy and the efficiency of experimental analyses and simulation studies relating to charged particle transports. (orig.)

  2. AGIS: Evolution of Distributed Computing information system for ATLAS

    Science.gov (United States)

    Anisenkov, A.; Di Girolamo, A.; Alandes, M.; Karavakis, E.

    2015-12-01

    ATLAS, a particle physics experiment at the Large Hadron Collider at CERN, produces petabytes of data annually through simulation production and tens of petabytes of data per year from the detector itself. The ATLAS computing model embraces the Grid paradigm and a high degree of decentralization of computing resources in order to meet the ATLAS requirements of petabytes scale data operations. It has been evolved after the first period of LHC data taking (Run-1) in order to cope with new challenges of the upcoming Run- 2. In this paper we describe the evolution and recent developments of the ATLAS Grid Information System (AGIS), developed in order to integrate configuration and status information about resources, services and topology of the computing infrastructure used by the ATLAS Distributed Computing applications and services.

  3. Evolution and Distribution of Saxitoxin Biosynthesis in Dinoflagellates

    Directory of Open Access Journals (Sweden)

    Kjetill S. Jakobsen

    2013-08-01

    Full Text Available Numerous species of marine dinoflagellates synthesize the potent environmental neurotoxic alkaloid, saxitoxin, the agent of the human illness, paralytic shellfish poisoning. In addition, certain freshwater species of cyanobacteria also synthesize the same toxic compound, with the biosynthetic pathway and genes responsible being recently reported. Three theories have been postulated to explain the origin of saxitoxin in dinoflagellates: The production of saxitoxin by co-cultured bacteria rather than the dinoflagellates themselves, convergent evolution within both dinoflagellates and bacteria and horizontal gene transfer between dinoflagellates and bacteria. The discovery of cyanobacterial saxitoxin homologs in dinoflagellates has enabled us for the first time to evaluate these theories. Here, we review the distribution of saxitoxin within the dinoflagellates and our knowledge of its genetic basis to determine the likely evolutionary origins of this potent neurotoxin.

  4. The spatial distribution and evolution characteristics of North Atlantic cyclones

    Science.gov (United States)

    Dacre, H.; Gray, S.

    2009-09-01

    Mid-latitude cyclones play a large role in determining the day-to-day weather conditions in western Europe through their associated wind and precipitation patterns. Thus, their typical spatial and evolution characteristics are of great interest to meteorologists, insurance and risk management companies. In this study a feature tracking algorithm is applied to a cyclone database produced using the Hewson-method of cyclone identification, based on low-level gradients of wet-bulb potential temperature, to produce a climatology of mid-latitude cyclones. The aim of this work is to compare the cyclone track and density statistics found in this study with previous climatologies and to determine reasons for any differences. This method is found to compare well with other cyclone identification methods; the north Atlantic storm track is reproduced along with the major regions of genesis. Differences are attributed to cyclone lifetime and strength thresholds, dataset resolution and cyclone identification and tracking methods. Previous work on cyclone development has been largely limited to case studies as opposed to analysis of climatological data, and does not distinguish between the different stages of cyclone evolution. The cyclone database used in this study allows cyclone characteristics to be tracked throughout the cyclone lifecycle. This enables the evaluation of the characteristics of cyclone evolution for systems forming in different genesis regions and a calculation of the spatial distribution and evolution of these characteristics in composite cyclones. It was found that most of the cyclones that cross western Europe originate in the east Atlantic where the baroclinicity and sea surface temperature gradients are weak compared to the west Atlantic. East Atlantic cyclones also have higher low-level relative vorticity and lower mean sea level pressure at their genesis point than west Atlantic cyclones. This is consistent with the hypothesis that they are secondary

  5. Modeling and simulation of water flow on containment walls with inhomogeneous contact angle distribution

    International Nuclear Information System (INIS)

    Amend, Katharina; Klein, Markus

    2017-01-01

    The paper presents a three-dimensional numerical simulation for water running down inclined surfaces using OpenFOAM. This research project aims at developing a CFD model to describe the run down behavior of liquids and the resulting wash down of fission products on surfaces in the reactor containment. An empirical contact angle model with wetted history is introduced as well as a filtered randomized initial contact angle field. Simulation results are in good agreement with the experiments. Experimental Investigation on Passive.

  6. Modeling and simulation of water flow on containment walls with inhomogeneous contact angle distribution

    Energy Technology Data Exchange (ETDEWEB)

    Amend, Katharina; Klein, Markus [Univ. der Bundeswehr Muenchen, Neubiberg (Germany). Inst. for Numerical Methods in Aerospace Engineering

    2017-07-15

    The paper presents a three-dimensional numerical simulation for water running down inclined surfaces using OpenFOAM. This research project aims at developing a CFD model to describe the run down behavior of liquids and the resulting wash down of fission products on surfaces in the reactor containment. An empirical contact angle model with wetted history is introduced as well as a filtered randomized initial contact angle field. Simulation results are in good agreement with the experiments. Experimental Investigation on Passive.

  7. Method to measure the position offset of multiple light spots in a distributed aperture laser angle measurement system.

    Science.gov (United States)

    Jing, Xiaoli; Cheng, Haobo; Xu, Chunyun; Feng, Yunpeng

    2017-02-20

    In this paper, an accurate measurement method of multiple spots' position offsets on a four-quadrant detector is proposed for a distributed aperture laser angle measurement system (DALAMS). The theoretical model is put forward, as well as the corresponding calculation method. This method includes two steps. First, as the initial estimation, integral approximation is applied to fit the distributed spots' offset function; second, the Boltzmann function is employed to compensate for the estimation error to improve detection accuracy. The simulation results attest to the correctness and effectiveness of the proposed method, and tolerance synthesis analysis of DALAMS is conducted to determine the maximum uncertainties of manufacturing and installation. The maximum angle error is less than 0.08° in the prototype distributed measurement system, which shows the stability and robustness for prospective applications.

  8. Probing BL Lac and Cluster Evolution via a Wide-angle, Deep X-ray Selected Sample

    Science.gov (United States)

    Perlman, E.; Jones, L.; White, N.; Angelini, L.; Giommi, P.; McHardy, I.; Wegner, G.

    1994-12-01

    The WARPS survey (Wide-Angle ROSAT Pointed Survey) has been constructed from the archive of all public ROSAT PSPC observations, and is a subset of the WGACAT catalog. WARPS will include a complete sample of >= 100 BL Lacs at F_x >= 10(-13) erg s(-1) cm(-2) . A second selection technique will identify ~ 100 clusters at 0.15 = 0.304 +/- 0.062 for XBLs but = 0.60 +/- 0.05 for RBLs. Models of the X-ray luminosity function (XLF) are also poorly constrained. WARPS will allow us to compute an accurate XLF, decreasing the error bars above by over a factor of two. We will also test for low-luminosity BL Lacs, whose non-thermal nuclear sources are dim compared to the host galaxy. Browne and Marcha (1993) claim the EMSS missed most of these objects and is incomplete. If their predictions are correct, 20-40% of the BL Lacs we find will fall in this category, enabling us to probe the evolution and internal workings of BL Lacs at lower luminosities than ever before. By removing likely QSOs before optical spectroscopy, WARPS requires only modest amounts of telescope time. It will extend measurement of the cluster XLF both to higher redshifts (z>0.5) and lower luminosities (LX<1x10(44) erg s(-1) ) than previous measurements, confirming or rejecting the 3sigma detection of negative evolution found in the EMSS, and constraining Cold Dark Matter cosmologies. Faint NELGs are a recently discovered major contributor to the X-ray background. They are a mixture of Sy2s, starbursts and galaxies of unknown type. Detailed classification and evolution of their XLF will be determined for the first time.

  9. Spatial distribution, luminosity function and cosmological evolution of quasars

    International Nuclear Information System (INIS)

    Mathez, G.

    1981-01-01

    The different ways of studying quasars statistics and evolution are reviewed. Attempt is given to deduce, from the observed evolution, some constraints on physical models of energy sources in quasars [fr

  10. Si-O-Si bond-angle distribution in vitreous silica from first-principles 29Si NMR analysis

    International Nuclear Information System (INIS)

    Mauri, Francesco; Pasquarello, Alfredo; Pfrommer, Bernd G.; Yoon, Young-Gui; Louie, Steven G.

    2000-01-01

    The correlation between 29 Si chemical shifts and Si-O-Si bond angles in SiO 2 is determined within density-functional theory for the full range of angles present in vitreous silica. This relation closely reproduces measured shifts of crystalline polymorphs. The knowledge of the correlation allows us to reliably extract from the experimental NMR spectrum the mean (151 degree sign ) and the standard deviation (11 degree sign ) of the Si-O-Si angular distribution of vitreous silica. In particular, we show that the Mozzi-Warren Si-O-Si angular distribution is not consistent with the NMR data. This analysis illustrates the potential of our approach for structural determinations of silicate glasses. (c) 2000 The American Physical Society

  11. Influence of Off-Take Angles on Flow Distribution Pattern at Concave ...

    African Journals Online (AJOL)

    Predicting equations for the off-take discharge dependent on the off-take angles, main channel discharges, dispersion coefficients and Reynolds numbers were developed and calibrated statistically. Results of the study and predicting equations showed that the off-take discharge increased positively with increases in ...

  12. Distribution and Evolution of Peroxisomes in Alveolates (Apicomplexa, Dinoflagellates, Ciliates)

    Science.gov (United States)

    Ludewig-Klingner, Ann-Kathrin; Michael, Victoria; Jarek, Michael; Brinkmann, Henner

    2018-01-01

    Abstract The peroxisome was the last organelle to be discovered and five decades later it is still the Cinderella of eukaryotic compartments. Peroxisomes have a crucial role in the detoxification of reactive oxygen species, the beta-oxidation of fatty acids, and the biosynthesis of etherphospholipids, and they are assumed to be present in virtually all aerobic eukaryotes. Apicomplexan parasites including the malaria and toxoplasmosis agents were described as the first group of mitochondriate protists devoid of peroxisomes. This study was initiated to reassess the distribution and evolution of peroxisomes in the superensemble Alveolata (apicomplexans, dinoflagellates, ciliates). We established transcriptome data from two chromerid algae (Chromera velia, Vitrella brassicaformis), and two dinoflagellates (Prorocentrum minimum, Perkinsus olseni) and identified the complete set of essential peroxins in all four reference species. Our comparative genome analysis provides unequivocal evidence for the presence of peroxisomes in Toxoplasma gondii and related genera. Our working hypothesis of a common peroxisomal origin of all alveolates is supported by phylogenetic analyses of essential markers such as the import receptor Pex5. Vitrella harbors the most comprehensive set of peroxisomal proteins including the catalase and the glyoxylate cycle and it is thus a promising model organism to investigate the functional role of this organelle in Apicomplexa. PMID:29202176

  13. The application of low angle Rutherford backscattering and channelling techniques to determine implantation induced disorder profile distributions in semiconductors

    International Nuclear Information System (INIS)

    Ahmed, N.A.G.; Christodoulides, C.E.; Carter, G.; Nobes, M.J.; Titov, A.I.

    1980-01-01

    Low angle exit (9 0 ) Rutherford backscattering geometry and channelling of 2 MeV 4 He + are employed to investigate the disorder depth profiles created by 40 keV N + implantation in (111) silicon and (100) GaAs targets. Parameters which can influence the disordering rate and its spatial distribution, such as ion fluence flux, substrate type and substrate temperature are examined. Under certain implantation conditions, the damage profile distributions are asymmetric - exhibiting a bimodal form in silicon targets or confined much closer to the GaAs surface than the normally expected mean range of 40 keV N + ions. (orig.)

  14. Measuring helium bubble diameter distributions in tungsten with grazing incidence small angle x-ray scattering (GISAXS)

    Science.gov (United States)

    Thompson, M.; Kluth, P.; Doerner, R. P.; Kirby, N.; Riley, D.; Corr, C. S.

    2016-02-01

    Grazing incidence small angle x-ray scattering was performed on tungsten samples exposed to helium plasma in the MAGPIE and Pisces-A linear plasma devices to measure the size distributions of resulting helium nano-bubbles. Nano-bubbles were fitted assuming spheroidal particles and an exponential diameter distribution. These particles had mean diameters between 0.36 and 0.62 nm. Pisces-A exposed samples showed more complex patterns, which may suggest the formation of faceted nano-bubbles or nano-scale surface structures.

  15. Signatures of the various regions of the outer magnetosphere in the pitch angle distributions of energetic particles

    Energy Technology Data Exchange (ETDEWEB)

    West, H.I. Jr.

    1978-12-11

    An account is given of the obervations of the pitch angle distributions of energetic particles in the near equatorial regions of the Earth's magnetosphere. The emphasis is on relating the observed distributions to the field configuration responsible for the observed effects. The observed effects relate to drift-shell splitting, to the breakdown of adiabatic guiding center motion in regions of sharp field curvature relative to partial gyro radii, to wave-particle interactions, and to moving field configurations. 39 references.

  16. Interaction of ring current and radiation belt protons with ducted plasmaspheric hiss. 2. Time evolution of the distribution function

    Science.gov (United States)

    Kozyra, J. U.; Rasmussen, C. E.; Miller, R. H.; Villalon, E.

    1995-11-01

    The evolution of the bounce-averaged ring current/radiation belt proton distribution is simulated during resonant interactions with ducted plasmaspheric hiss. The plasmaspheric hiss is assumed to be generated by ring current electrons and to be damped by the energetic protons. Thus energy is transferred between energetic electrons and protons using the plasmaspheric hiss as a mediary. The problem is not solved self-consistently. During the simulation period, interactions with ring current electrons (not represented in the model) are assumed to maintain the wave amplitudes in the presence of damping by the energetic protons, allowing the wave spectrum to be held fixed. Diffusion coefficients in pitch angle, cross pitch angle/energy, and energy were previously calculated by Kozyra et al. (1994) and are adopted for the present study. The simulation treats the energy range, E>=80 keV, within which the wave diffusion operates on a shorter timescale than other proton loss processes (i.e., Coulomb drag and charge exchange). These other loss processes are not included in the simulation. An interesting result of the simulation is that energy diffusion maximizes at moderate pitch angles near the edge of the atmospheric loss cone. Over the simulation period, diffusion in energy creates an order of magnitude enhancement in the bounce-averaged proton distribution function at moderate pitch angles. The loss cone is nearly empty because scattering of particles at small pitch angles is weak. The bounce-averaged flux distribution, mapped to ionospheric heights, results in elevated locally mirroring proton fluxes. OGO 5 observed order of magnitude enhancements in locally mirroring energetic protons at altitudes between 350 and 1300 km and invariant latitudes between 50° and 60° (Lundblad and Soraas, 1978). The proton distributions were highly anisotropic in pitch angle with nearly empty loss cones. The similarity between the observed distributions and those resulting from this

  17. Distribution and molecular evolution of bacillus anthracis genotypes in Namibia.

    Directory of Open Access Journals (Sweden)

    Wolfgang Beyer

    Full Text Available The recent development of genetic markers for Bacillus anthracis has made it possible to monitor the spread and distribution of this pathogen during and between anthrax outbreaks. In Namibia, anthrax outbreaks occur annually in the Etosha National Park (ENP and on private game and livestock farms. We genotyped 384 B. anthracis isolates collected between 1983-2010 to identify the possible epidemiological correlations of anthrax outbreaks within and outside the ENP and to analyze genetic relationships between isolates from domestic and wild animals. The isolates came from 20 animal species and from the environment and were genotyped using a 31-marker multi-locus-VNTR-analysis (MLVA and, in part, by twelve single nucleotide polymorphism (SNP markers and four single nucleotide repeat (SNR markers. A total of 37 genotypes (GT were identified by MLVA, belonging to four SNP-groups. All GTs belonged to the A-branch in the cluster- and SNP-analyses. Thirteen GTs were found only outside the ENP, 18 only within the ENP and 6 both inside and outside. Genetic distances between isolates increased with increasing time between isolations. However, genetic distance between isolates at the beginning and end of the study period was relatively small, indicating that while the majority of GTs were only found sporadically, three genetically close GTs, accounting for more than four fifths of all the ENP isolates, appeared dominant throughout the study period. Genetic distances among isolates were significantly greater for isolates from different host species, but this effect was small, suggesting that while species-specific ecological factors may affect exposure processes, transmission cycles in different host species are still highly interrelated. The MLVA data were further used to establish a model of the probable evolution of GTs within the endemic region of the ENP. SNR-analysis was helpful in correlating an isolate with its source but did not elucidate

  18. Distribution and Evolution of Yersinia Leucine-Rich Repeat Proteins

    Science.gov (United States)

    Hu, Yueming; Huang, He; Hui, Xinjie; Cheng, Xi; White, Aaron P.

    2016-01-01

    Leucine-rich repeat (LRR) proteins are widely distributed in bacteria, playing important roles in various protein-protein interaction processes. In Yersinia, the well-characterized type III secreted effector YopM also belongs to the LRR protein family and is encoded by virulence plasmids. However, little has been known about other LRR members encoded by Yersinia genomes or their evolution. In this study, the Yersinia LRR proteins were comprehensively screened, categorized, and compared. The LRR proteins encoded by chromosomes (LRR1 proteins) appeared to be more similar to each other and different from those encoded by plasmids (LRR2 proteins) with regard to repeat-unit length, amino acid composition profile, and gene expression regulation circuits. LRR1 proteins were also different from LRR2 proteins in that the LRR1 proteins contained an E3 ligase domain (NEL domain) in the C-terminal region or an NEL domain-encoding nucleotide relic in flanking genomic sequences. The LRR1 protein-encoding genes (LRR1 genes) varied dramatically and were categorized into 4 subgroups (a to d), with the LRR1a to -c genes evolving from the same ancestor and LRR1d genes evolving from another ancestor. The consensus and ancestor repeat-unit sequences were inferred for different LRR1 protein subgroups by use of a maximum parsimony modeling strategy. Structural modeling disclosed very similar repeat-unit structures between LRR1 and LRR2 proteins despite the different unit lengths and amino acid compositions. Structural constraints may serve as the driving force to explain the observed mutations in the LRR regions. This study suggests that there may be functional variation and lays the foundation for future experiments investigating the functions of the chromosomally encoded LRR proteins of Yersinia. PMID:27217422

  19. Product Distribution from Precursor Bite Angle Variation in Multitopic Alkyne Metathesis: Evidence for a Putative Kinetic Bottleneck.

    Science.gov (United States)

    Moneypenny, Timothy P; Yang, Anna; Walter, Nathan P; Woods, Toby J; Gray, Danielle L; Zhang, Yang; Moore, Jeffrey S

    2018-05-02

    In the dynamic synthesis of covalent organic frameworks and molecular cages, the typical synthetic approach involves heuristic methods of discovery. While this approach has yielded many remarkable products, the ability to predict the structural outcome of subjecting a multitopic precursor to dynamic covalent chemistry (DCC) remains a challenge in the field. The synthesis of covalent organic cages is a prime example of this phenomenon, where precursors designed with the intention of affording a specific product may deviate dramatically when the DCC synthesis is attempted. As such, rational design principles are needed to accelerate discovery in cage synthesis using DCC. Herein, we test the hypothesis that precursor bite angle contributes significantly to the energy landscape and product distribution in multitopic alkyne metathesis (AM). By subjecting a series of precursors with varying bite angles to AM, we experimentally demonstrate that the product distribution, and convergence toward product formation, is strongly dependent on this geometric attribute. Surprisingly, we discovered that precursors with the ideal bite angle (60°) do not afford the most efficient pathway to the product. The systematic study reported here illustrates how seemingly minor adjustments in precursor geometry greatly affect the outcome of DCC systems. This research illustrates the importance of fine-tuning precursor geometric parameters in order to successfully realize desirable targets.

  20. The effect of alpha incident- and poloidal-angle distributions on blister-induced first-wall erosion

    International Nuclear Information System (INIS)

    Fenske, G.; Hively, L.; Miley, G.

    1979-01-01

    The incident velocity distribution of high-energy alpha particles bombarding the first wall of an axisymmetric tokamak is evaluated as a function of poloidal angle (theta). The resulting helium concentration profile as a function of the poloidal angle and the implant depth is calculated for a typical Experimental Power Reactor (EPR) design. The critical helium concentration for blistering is first exceeded at theta approx. 55 0 . Peak concentrations are reduced somewhat through continuous D-T sputtering which, dependent on theta, reduces the blister skin thicknesses. The blistering-induced impurity level is found to increase drastically (< approx. 50%), relative to sputtering-induced impurities, at periodic intervals corresponding to approx. 4000 hours operation when each generation of blister begins to exfoliate. (orig.)

  1. The distribution of lumbar intervertebral angles in upright standing and extension is related to low back pain developed during standing.

    Science.gov (United States)

    Viggiani, Daniel; Gallagher, Kaitlin M; Sehl, Michael; Callaghan, Jack P

    2017-11-01

    Lumbar lordosis measures are poorly related to clinical low back pain, however using a controlled exposure such as prolonged standing to identify pain groups may clarify this relationship. The purpose of this study was to determine the distribution of lumbar intervertebral angles in asymptomatic persons who do (pain developers) and do not (non-pain developers) develop low back pain during standing. Sagittal plane lumbar spine radiographs of eight pain developers and eight non-pain developers were taken in three poses: upright standing, full extension and full flexion. Measures of vertebral end plate orientations from L1 to S1 were taken in each pose to compute: intervertebral angles, contribution of each level to the total curve, total lordosis, ranges of motion, relative pose positioning within the range of motion, vertebral shape, and lumbar spine recurve. Measures were compared between pain groups and lumbar levels. Pain group differences in intervertebral angles and level contributions were greatest in the full extension pose, with pain developers having greater contributions from higher lumbar levels and fewer contributions from lower levels than non-pain developers. Pain group differences in intervertebral angle distributions were less pronounced in upright standing and non-existent in full flexion. No other measures differentiated pain groups. Although participants had similar gross-lumbar spine curvature characteristics, non-pain developers have more curvature at lower levels in upright standing and full extension. These differences in regional vertebral kinematics may partially be responsible for standing-induced low back pain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Finite Element Analysis of the Effect of Superstructure Materials and Loading Angle on Stress Distribution around the Implant

    Directory of Open Access Journals (Sweden)

    Jafari K

    2014-12-01

    Full Text Available Statement of Problem: A general process in implant design is to determine the reason of possible problems and to find the relevant solutions. The success of the implant depends on the control technique of implant biomechanical conditions. Objectives: The goal of this study was to evaluate the influence of both abutment and framework materials on the stress of the bone around the implant by using threedimensional finite element analysis. Materials and Methods: A three-dimensional model of a patient’s premaxillary bone was fabricated using Cone Beam Computed Tomography (CBCT. Then, three types of abutment from gold, nickel-chromium and zirconia and also three types of crown frame from silver-palladium, nickel-chromium and zirconia were designed. Finally, a 178 N force at angles of zero, 30 and 45 degrees was exerted on the implant axis and the maximum stress and strain in the trabecular, cortical bones and cement was calculated. Results: With changes of the materials and mechanical properties of abutment and frame, little difference was observed in the level and distribution pattern of stress. The stress level was increased with the rise in the angle of pressure exertion. The highest stress concentration was related to the force at the angle of 45 degrees. The results of the cement analysis proved an inverse relationship between the rate of elastic modulus of the frame material and that of the maximum stress in the cement. Conclusions: The impact of the angle at which the force was applied was more significant in stress distribution than that of abutment and framework core materials.

  3. An Angle Resolved Photoemission Study of a Mott Insulator and Its Evolution to a High Temperature Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Ronning, Filip

    2002-03-19

    One of the most remarkable facts about the high temperature superconductors is their close proximity to an antiferromagnetically ordered Mott insulating phase. This fact suggests that to understand superconductivity in the cuprates we must first understand the insulating regime. Due to material properties the technique of angle resolved photoemission is ideally suited to study the electronic structure in the cuprates. Thus, a natural starting place to unlocking the secrets of high Tc would appears to be with a photoemission investigation of insulating cuprates. This dissertation presents the results of precisely such a study. In particular, we have focused on the compound Ca{sub 2-x}Na{sub x}CuO{sub 2}Cl{sub 2}. With increasing Na content this system goes from an antiferromagnetic Mott insulator with a Neel transition of 256K to a superconductor with an optimal transition temperature of 28K. At half filling we have found an asymmetry in the integrated spectral weight, which can be related to the occupation probability, n(k). This has led us to identify a d-wave-like dispersion in the insulator, which in turn implies that the high energy pseudogap as seen by photoemission is a remnant property of the insulator. These results are robust features of the insulator which we found in many different compounds and experimental conditions. By adding Na we were able to study the evolution of the electronic structure across the insulator to metal transition. We found that the chemical potential shifts as holes are doped into the system. This picture is in sharp contrast to the case of La{sub 2-x}Sr{sub x}CuO{sub 4} where the chemical potential remains fixed and states are created inside the gap. Furthermore, the low energy excitations (ie the Fermi surface) in metallic Ca{sub 1.9}Na{sub 0.1}CuO{sub 2}Cl{sub 2} is most well described as a Fermi arc, although the high binding energy features reveal the presence of shadow bands. Thus, the results in this dissertation provide a

  4. Characteristics of pitch angle distributions of relativistic electrons under the interaction with Pc5 waves in the inner magnetosphere

    Science.gov (United States)

    Kamiya, K.; Seki, K.; Saito, S.; Amano, T.; Yoshizumi, M.

    2017-12-01

    Radial transport of relativistic electrons in the inner magnetosphere has been considered as one of acceleration mechanisms of the outer radiation belt electrons and can be driven by the drift resonance with ULF waves in the Pc5 frequency range. The maximum changes of the electron in the radial distance (L) due to the drift resonance depend on the electron energy, pitch angle, and Pc5 wave structure. Those dependences are expected to form the characteristic pitch angle distributions (PADs) as a function of L and electron energy. In this study, we investigate PADs of relativistic electrons due to the drift resonance with a monochromatic Pc5 wave by using two simulation models of the inner magnetosphere: GEMSIS-Ring Current (RC) and GEMSIS-Radiation Belt (RB) models. The GEMSIS-RB simulations calculate guiding center trajectories of relativistic electrons in electric and magnetic fields obtained from the GEMSIS-RC model, which simulates a monochromatic Pc5 wave propagation in the inner magnetosphere. The results show the characteristic PADs depending on the energy and L, which is explicable with the pitch angle dependence of resonance conditions. At a fixed location, those PADs can change from pancake (90°peaked) to butterfly (two peaks in oblique PAs) distributions as the transport by the monochromatic Pc5 wave progresses. These butterfly distributions are seen in the L range where electrons with lower PAs satisfy the resonance condition. It is also found that the lower PA electron with a fixed magnetic moment can be transported deeper inside because of the PA changes to larger values through the adiabatic transport, which enables them to satisfy the efficient resonance condition in wider L range compared to the 90 degrees PA electrons.

  5. A verification scenario of nuclear plus interference scattering effects using neutron incident angle distribution to the wall in beam-injected deuterium plasmas

    International Nuclear Information System (INIS)

    Sugiyama, Shota; Matsuura, Hideaki; Uchiyama, Daisuke; Sawada, Daisuke; Watanabe, Tsuguhiro; Goto, Takuya; Mitarai, Osamu

    2015-01-01

    A verification scenario of knock-on tail formation in the deuteron distribution function due to nuclear plus interference scattering is presented by observing the incident angle distribution of neutrons in a vacuum vessel. Assuming a knock-on tail created in a "3He-beam-injected deuterium plasma, the incident angle distribution and energy spectra of the neutrons produced by fusion reactions between 1-MeV and thermal deuterons are evaluated. The relation between the neutron incident angle to the vacuum vessel and neutron energy is examined in the case of anisotropic neutron emission due to knock-on tail formation in neutral-beam-injected plasmas. (author)

  6. Exit angle, energy loss and internuclear distance distributions of H2+ ions dissociated when traversing different materials

    International Nuclear Information System (INIS)

    Garcia-Molina, Rafael; Abril, Isabel; Denton, Cristian D.; Arista, Nestor R.

    2000-01-01

    We have performed computer simulations of the trajectory followed by each proton resulting from the dissociation of H 2 + molecules when traversing a thin solid target. We use the dielectric formalism to describe the forces due to electronic excitations in the medium, and we also consider the Coulomb repulsion between the pair of protons. Nuclear collisions with target nuclei are incorporated through a Monte Carlo code and the effect of the coherent scattering is taken into account by means of an effective force model. The distributions of exit angle, energy loss and internuclear separations of the protons fragments are discussed for the case of amorphous carbon and aluminum targets

  7. Characteristics of pitch angle distributions of hundreds of keV electrons in the slot region and inner radiation belt

    Science.gov (United States)

    Zhao, H.; Li, X.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Baker, D. N.; Jaynes, A. N.; Malaspina, D. M.

    2014-12-01

    The pitch angle distribution (PAD) of energetic electrons in the slot region and inner radiation belt received little attention in the past decades due to the lack of quality measurements. Using the state-of-the-art pitch angle-resolved data from the Magnetic Electron Ion Spectrometer instrument onboard the Van Allen Probes, a detailed analysis of hundreds of keV electron PADs below L = 4 is performed, in which the PADs are categorized into three types: normal (flux peaking at 90°), cap (exceedingly peaking narrowly around 90°), and 90° minimum (lower flux at 90°) PADs. By examining the characteristics of the PADs of ˜460 keV electrons for over a year, we find that the 90° minimum PADs are generally present in the inner belt (Lpitch angle scattering of hiss waves. Fitting the normal PADs into sinnα form, the parameter n is much higher below L = 3 than that in the outer belt and relatively constant in the inner belt but changes significantly in the slot region (2 mechanism can hardly explain the formation of 90° minimum PADs at the center of inner belt.

  8. Early-stage evolution of particle size distribution with Johnson's SB function due to Brownian coagulation

    International Nuclear Information System (INIS)

    Tang Hong; Lin Jianzhong

    2013-01-01

    The moment method can be used to determine the time evolution of particle size distribution due to Brownian coagulation based on the general dynamic equation (GDE). But the function form of the initial particle size distribution must be determined beforehand for the moment method. If the assumed function type of the initial particle size distribution has an obvious deviation from the true particle population, the evolution of particle size distribution may be different from the real evolution tendency. Thus, a simple and general method is proposed based on the moment method. In this method, the Johnson's S B function is chosen as a general distribution function to fit the initial distributions including the log normal (L-N), Rosin–Rammler (R-R), normal (N-N) and gamma distribution functions, respectively. Meanwhile, using the modified beta function to fit the L-N, R-R, N-N and gamma functions is also conducted as a comparison in order to present the advantage of the Johnson's S B function as the general distribution function. And then, the time evolution of particle size distributions using the Johnson's S B function as the initial distribution can be obtained by several lower order moment equations of the Johnson's S B function in conjunction with the GDE during the Brownian coagulation process. Simulation experiments indicate that fairly reasonable results of the time evolution of particle size distribution can be obtained with this proposed method in the free molecule regime, transition regime and continuum plus near continuum regime, respectively, at the early time stage of evolution. The Johnson's S B function has the ability of describing the early time evolution of different initial particle size distributions. (paper)

  9. An in situ USAXS-SAXS-WAXS study of precipitate size distribution evolution in a model Ni-based alloy.

    Science.gov (United States)

    Andrews, Ross N; Serio, Joseph; Muralidharan, Govindarajan; Ilavsky, Jan

    2017-06-01

    Intermetallic γ' precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS-SAXS-WAXS) analysis can be used to evaluate the temporal evolution of an alloy's precipitate size distribution (PSD) and phase structure during in situ heat treatment. Analysis of PSDs from USAXS-SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoiding a priori definition of a functional form of the PSD. However, strong low- q scattering from grain boundaries and/or structure factor effects inhibit MaxEnt analysis of typical alloys. This work describes the extension of Bayesian-MaxEnt analysis methods to data exhibiting structure factor effects and low- q power law slopes and demonstrates their use in an in situ study of precipitate size evolution during heat treatment of a model Ni-Al-Si alloy.

  10. The power of hard-sphere models: explaining side-chain dihedral angle distributions of Thr and Val.

    Science.gov (United States)

    Zhou, Alice Qinhua; O'Hern, Corey S; Regan, Lynne

    2012-05-16

    The energy functions used to predict protein structures typically include both molecular-mechanics and knowledge-based terms. In contrast, our approach is to develop robust physics- and geometry-based methods. Here, we investigate to what extent simple hard-sphere models can be used to predict side-chain conformations. The distributions of the side-chain dihedral angle χ(1) of Val and Thr in proteins of known structure show distinctive features: Val side chains predominantly adopt χ(1) = 180°, whereas Thr side chains typically adopt χ(1) = 60° and 300° (i.e., χ(1) = ±60° or g- and g(+) configurations). Several hypotheses have been proposed to explain these differences, including interresidue steric clashes and hydrogen-bonding interactions. In contrast, we show that the observed side-chain dihedral angle distributions for both Val and Thr can be explained using only local steric interactions in a dipeptide mimetic. Our results emphasize the power of simple physical approaches and their importance for future advances in protein engineering and design. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Evolution of the sedimentation technique for particle size distribution analysis

    International Nuclear Information System (INIS)

    Maley, R.

    1998-01-01

    After an introduction on the significance of particle size measurements, sedimentation methods are described, with emphasis on the evolution of the gravitational approach. The gravitational technique based on mass determination by X-ray adsorption allows fast analysis by automation and easy data handling, in addition to providing the accuracy required by quality control and research applications [it

  12. An Investigation of the Pareto Distribution as a Model for High Grazing Angle Clutter

    Science.gov (United States)

    2011-03-01

    radar detection schemes under controlled conditions. Complicated clutter models result in mathematical difficulties in the determination of optimal and...a population [7]. It has been used in the modelling of actuarial data; an example is in excess of loss quotations in insurance [8]. Its usefulness as...UNCLASSIFIED modified Bessel functions, making it difficult to employ in radar detection schemes. The Pareto Distribution is amenable to mathematical

  13. The effect of particle size distributions on the microstructural evolution during sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Tikare, V.; Frandsen, Henrik Lund

    2013-01-01

    Microstructural evolution and sintering behavior of powder compacts composed of spherical particles with different particle size distributions (PSDs) were simulated using a kinetic Monte Carlo model of solid state sintering. Compacts of monosized particles, normal PSDs with fixed mean particle...

  14. Evolution and change of He bubbles in He-containing Ti films upon thermal treatment studied by small-angle X-ray scattering and transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Guangai [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); College of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029 (China); Wu, Erdong, E-mail: ewu@imr.ac.cn [National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Huang, Chaoqiang [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); College of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029 (China); Cheng, Chun [National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Yan, Guanyun [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Wang, Xiaolin [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); College of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029 (China); Liu, Shi [National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Tian, Qiang; Chen, Bo [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Wu, Zhonghua [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Liu, Yi; Wang, Jie [Institute of Shanghai Apply Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2014-05-02

    Evolution and change of He bubbles in magnetron sputtering prepared He-containing Ti films under thermal treatment are studied by small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM) and X-ray diffraction. Incorporation of He introduces a large number of He-vacancy clusters and some voids in the films, and significantly increases SAXS intensity and causes anisotropic scattering. The change of He induced defects during annealing is affected by thermal diffusion and migration of trapped He to the surface and between interfaces of He induced defects within the films. Annealing at 200 and 400 °C reduces intensity and anisotropy of SAXS, in accord with observed shrinking and disappearance of the voids. The simultaneous growth of non-uniformly distributed He bubbles to the sizes of 1–2 nm and a population level of 10{sup 5}/μm{sup 3} are detected in the temperature range. The changes are explained by migration and coalescence mechanisms, which requires low apparent activation energy. Inconsistence between TEM and SAXS observations is noted and attributed to thinning induced internal stress relaxation of TEM specimen. Remarkable enlargement of He bubbles, associated with increased SAXS intensity and fractal dimension, is observed after 600 °C annealing, indicating involvement of Ostwald Ripening (OR) mechanism. The OR process dominates at 800 °C, where the high temperature provides activation energy for accelerated He dissociation from small bubbles into larger ones, and generating textured microstructure and agglomerated bubble clusters. The inhomogeneous bubble size distribution observed at this temperature covers a broad range of about 10–50 nm and possessing a population density level of 10{sup 3}/μm{sup 3}. - Highlights: • Change of He bubbles in thermally treated Ti–He films is studied by SAXS and TEM. • SAXS reveals size distribution and fractional population of He bubbles in films. • He-vacancy clusters in Ti–He film

  15. Evolution equations for connected and disconnected sea parton distributions

    Science.gov (United States)

    Liu, Keh-Fei

    2017-08-01

    It has been revealed from the path-integral formulation of the hadronic tensor that there are connected sea and disconnected sea partons. The former is responsible for the Gottfried sum rule violation primarily and evolves the same way as the valence. Therefore, the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations can be extended to accommodate them separately. We discuss its consequences and implications vis-á-vis lattice calculations.

  16. Energy distributions of plume ions from silver at different angles ablated in vacuum

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen; Canulescu, Stela

    A typical pulsed laser deposition (PLD) is carried out for a fluence between 0.5 and 2.5 J/cm2. The ablated particles are largely neutrals at the lowest fluence, but the fraction of ions increases strongly with fluence and accounts for more 0.5 of the particles at 2.5 J/cm2 [1,2]. Since it may...... be comparatively difficult to measure the energy and angular distribution of neutrals, measurements of the ionic fraction will be valuable for any modeling of PLD. We have irradiated silver in a vacuum chamber (~ 10-7 mbar) with a Nd:YAG laser at a wavelength of 355 nm and made detailed measurements of the time......-resolved angular distribution. The ion flow in different directions has been measured with a hemispherical array of Langmuir probes, by which the time-of-flight spectra the in all directions can be recorded [1,2]. In contrast to earlier work the beam spot was circular such that any flip-over effect of the plume...

  17. New Angle on the Parton Distribution Functions: Self-Organizing Maps

    International Nuclear Information System (INIS)

    Honkanen, H.; Liuti, S.

    2009-01-01

    Neural network (NN) algorithms have been recently applied to construct Parton Distribution Function (PDF) parametrizations, providing an alternative to standard global fitting procedures. Here we explore a novel technique using Self-Organizing Maps (SOMs). SOMs are a class of clustering algorithms based on competitive learning among spatially-ordered neurons. We train our SOMs with stochastically generated PDF samples. On every optimization iteration the PDFs are clustered on the SOM according to a user-defined feature and the most promising candidates are used as a seed for the subsequent iteration using the topology of the map to guide the PDF generating process. Our goal is a fitting procedure that, at variance with the standard neural network approaches, will allow for an increased control of the systematic bias by enabling user interaction in the various stages of the process.

  18. Space distribution of extragalactic sources - Cosmology versus evolution

    International Nuclear Information System (INIS)

    Cavaliere, A.; Maccacaro, T.

    1990-01-01

    Alternative cosmologies have been recurrently invoked to explain in terms of global spacetime structure the apparent large increase, with increasing redshift, in the average luminosity of active galactic nuclei. These models interestingly seek to avoid the complexities of the canonical interpretation in terms of intrinsic population evolutions in a Friedmann universe. However, a problem of consistency for these cosmologies is pointed out, since they have to include also other classes of extragalactic sources, such as clusters of galaxies and BL Lac objects, for which there is preliminary evidence of a different behavior. 40 refs

  19. Pitch angle distribution of trapped energetic protons and helium isotope nuclei measured along the Resurs-01 No. 4 LEO satellite

    Directory of Open Access Journals (Sweden)

    A. Leonov

    2005-11-01

    Full Text Available The NINA detector on board the Resurs-01 No. 4 satellite (835 km, 98° inclination is equipped with particle trackers based on silicon strip detectors. From the energy deposited in each of its silicon layers the mass, the momentum direction and energy of incident particles have been determined. The resolutions in mass and energy allow identification of H and He isotopes over the 10-50 MeV/n energy range. The angular resolution is about 2.5°. We present the direct measurements of proton and helium isotopes pitch angle distributions derived from Resurs-01 No.4/NINA observations and their variations as functions of (B, L coordinates and energy. The measurements of trapped helium isotopes spectrum are also presented.

  20. Determination by Small-angle X-ray Scattering of Pore Size Distribution in Nanoporous Track-etched Polycarbonate Membranes

    Science.gov (United States)

    Jonas, A. M.; Legras, R.; Ferain, E.

    1998-03-01

    Nanoporous track-etched membranes with narrow pore size distributions and average pore size diameters tunable from 100 to 1000 Åare produced by the chemical etching of latent tracks in polymer films after irradiation by a beam of accelerated heavy ions. Nanoporous membranes are used for highly demanding filtration purposes, or as templates to obtain metallic or polymeric nanowires (L. Piraux et al., Nucl. Instr. Meth. Phys. Res. 1997, B131, 357). Such applications call for developments in nanopore size characterization techniques. In this respect, we report on the characterization by small-angle X-ray scattering (SAXS) of nanopore size distribution (nPSD) in polycarbonate track-etched membranes. The obtention of nPSD requires inverting an ill-conditioned inhomogeneous equation. We present different numerical routes to overcome the amplification of experimental errors in the resulting solutions, including a regularization technique allowing to obtain the nPSD without a priori knowledge of its shape. The effect of deviations from cylindrical pore shape on the resulting distributions are analyzed. Finally, SAXS results are compared to results obtained by electron microscopy and conductometry.

  1. Control of the Diameter and Chiral Angle Distributions during Production of Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Nikolaev, Pavel

    2009-01-01

    Many applications of single wall carbon nanotubes (SWCNT), especially in microelectronics, will benefit from use of certain (n,m) nanotube types (metallic, small gap semiconductor, etc.) Especially fascinating is the possibility of quantum conductors that require metallic armchair nanotubes. However, as produced SWCNT samples are polydisperse, with many (n,m) types present and typical approx.1:2 metal/semiconductor ratio. Nanotube nucleation models predict that armchair nuclei are energetically preferential due to formation of partial triple bonds along the armchair edge. However, nuclei can not reach any meaningful thermal equilibrium in a rapidly expanding and cooling plume of carbon clusters, leading to polydispersity. In the present work, SWCNTs were produced by a pulsed laser vaporization (PLV) technique. The carbon vapor plume cooling rate was either increased by change in the oven temperature (expansion into colder gas), or decreased via "warm-up" with a laser pulse at the moment of nucleation. The effect of oven temperature and "warm-up" on nanotube type population was studied via photoluminescence, UV-Vis-NIR absorption and Raman spectroscopy. It was found that reduced temperatures leads to smaller average diameters, progressively narrower diameter distributions, and some preference toward armchair structures. "Warm-up" shifts nanotube population towards arm-chair structures as well, but the effect is small. Possible improvement of the "warm-up" approach to produce armchair SWCNTs will be discussed. These results demonstrate that PLV production technique can provide at least partial control over the nanotube (n,m) population. In addition, these results have implications for the understanding the nanotube nucleation mechanism in the laser oven.

  2. The Evolution of a distributed operating system (Amoeba)

    NARCIS (Netherlands)

    van Renesse, Robbert; Tanenbaum, Andrew S.; Mullender, Sape J.

    1989-01-01

    AMOEBA is a research project to build a true distributed operating system using the object model. Under the COST11-ter MANDIS project this work was extended to cover wide-area networks. Besides describing the system, this paper discusses the successive versions in the implementation of its model,

  3. An investigation on effect of geometrical parameters on spray cone angle and droplet size distribution of a two-fluid atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Shafaee, Maziar; Banitabaei, Sayed Abdolhossein; Esfahanian, Vahid; Ashjaee, Mehdi [Tehran University, Tehran (Iran, Islamic Republic of)

    2011-12-15

    A visual study is conducted to determine the effect of geometrical parameters of a two-fluid atomizer on its spray cone angle. The liquid (water) jets exit from six peripheral inclined orifices and are introduced to a high speed gas (air) stream in the gravitational direction. Using a high speed imaging system, the spray cone angle has been determined in constant operational conditions, i.e., Reynolds and Weber numbers for different nozzle geometries. Also, the droplet sizes (Sauter mean diameter) and their distributions have been determined using Malvern Master Sizer x. The investigated geometrical parameters are the liquid jet diameter, liquid port angle and the length of the gas-liquid mixing chamber. The results show that among these parameters, the liquid jet diameter has a significant effect on spray cone angle. In addition, an empirical correlation has been obtained to predict the spray cone angle of the present two-fluid atomizer in terms of nozzle geometries.

  4. Structural evolution of regenerated silk fibroin under shear: Combined wide- and small-angle x-ray scattering experiments using synchrotron radiation

    International Nuclear Information System (INIS)

    Rossle, Manfred; Panine, Pierre; Urban, Volker S.; Riekel, Christine

    2004-01-01

    The structural evolution of regenerated Bombyx mori silk fibroin during shearing with a Couette cell has been studied in situ by synchrotron radiation small- and wide-angle x-ray scattering techniques. An elongation of fibroin molecules was observed with increasing shear rate, followed by an aggregation phase. The aggregates were found to be amorphous with β-conformation according to infrared spectroscopy. Scanning x-ray microdiffraction with a 5 (micro)m beam on aggregated material, which had solidified in air, showed silk II reflections and a material with equatorial reflections close to the silk I structure reflections, but with strong differences in reflection intensities. This silk I type material shows up to two low-angle peaks suggesting the presence of water molecules that might be intercalated between hydrogen-bonded sheets.

  5. Structural evolution of regenerated silk fibroin under shear: Combined wide- and small-angle x-ray scattering experiments using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rossle, Manfred [European Molecular Biology Laboratory (EMBL), France; Panine, Pierre [European Synchrotron Radiation Facility (ESRF); Urban, Volker S [ORNL; Riekel, Christine [European Synchrotron Radiation Facility (ESRF)

    2004-04-01

    The structural evolution of regenerated Bombyx mori silk fibroin during shearing with a Couette cell has been studied in situ by synchrotron radiation small- and wide-angle x-ray scattering techniques. An elongation of fibroin molecules was observed with increasing shear rate, followed by an aggregation phase. The aggregates were found to be amorphous with {beta}-conformation according to infrared spectroscopy. Scanning x-ray microdiffraction with a 5 {micro}m beam on aggregated material, which had solidified in air, showed silk II reflections and a material with equatorial reflections close to the silk I structure reflections, but with strong differences in reflection intensities. This silk I type material shows up to two low-angle peaks suggesting the presence of water molecules that might be intercalated between hydrogen-bonded sheets.

  6. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering Based on the Newly Developed Self-consistent RC/EMIC Waves Model by Khazanov et al. [2006

    Science.gov (United States)

    Khazanov, G. V.; Gallagher, D. L.; Gamayunov, K.

    2007-01-01

    It is well known that the effects of EMIC waves on RC ion and RB electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. Therefore, realistic characteristics of EMIC waves should be properly determined by modeling the RC-EMIC waves evolution self-consistently. Such a selfconsistent model progressively has been developing by Khaznnov et al. [2002-2006]. It solves a system of two coupled kinetic equations: one equation describes the RC ion dynamics and another equation describes the energy density evolution of EMIC waves. Using this model, we present the effectiveness of relativistic electron scattering and compare our results with previous work in this area of research.

  7. AGIS: Evolution of Distributed Computing Information system for ATLAS

    CERN Document Server

    Anisenkov, Alexey; The ATLAS collaboration; Alandes Pradillo, Maria; Karavakis, Edward

    2015-01-01

    The variety of the ATLAS Computing Infrastructure requires a central information system to define the topology of computing resources and to store the different parameters and configuration data which are needed by the various ATLAS software components. The ATLAS Grid Information System is the system designed to integrate configuration and status information about resources, services and topology of the computing infrastructure used by ATLAS Distributed Computing applications and services.

  8. Demonstrating of Cosmic Ray Characteristics by Estimating the Cherenkov Light Lateral Distribution Function for Yakutsk Array as a Function of the Zenith Angle

    OpenAIRE

    Abdulsttar, Marwah M.; Al-Rubaiee, A. A.; Ali, Abdul Halim Kh.

    2016-01-01

    Cherenkov light lateral distribution function (CLLDF) in Extensive Air Showers (EAS) for different primary particles (e-, n , p, F, K and Fe) was simulated using CORSIKA code for conditions and configurations of Yakutsk EAS array with the fixed primary energy 3 PeV around the knee region at different zenith angles. Basing on the results of CLLDF numerical simulation, sets of approximated functions are reconstructed for different primary particles as a function of the zenith angle. A compariso...

  9. Spatial distribution of intra-molecular water and polymeric components in polyelectrolyte dendrimers revealed by small angle scattering investigations

    Science.gov (United States)

    Wu, Bin; Li, Xin; Do, Changwoo; Kim, Tae-Hwan; Shew, Chwen-Yang; Liu, Yun; Yang, Jun; Hong, Kunlun; Porcar, Lionel; Chen, Chun-Yu; Liu, Emily L.; Smith, Gregory S.; Herwig, Kenneth W.; Chen, Wei-Ren

    2011-10-01

    An experimental scheme using contrast variation small angle neutron scattering technique is developed to investigate the structural characteristics of amine-terminated poly(amidoamine) dendrimers solutions. Using this methodology, we present the dependence of both the intra-dendrimer water and the polymer distribution on molecular protonation, which can be precisely adjusted by tuning the pH of the solution. Assuming spherical symmetry of the spatial arrangement of the constituent components of dendrimer, and that the atomic ratio of hydrogen-to-deuterium for the solvent residing within the cavities of dendrimer is identical to that for the solvent outside the dendrimer, the intra-dendrimer water distribution along the radial direction is determined. Our result clearly reveals an outward relocation of the peripheral groups, as well as enhanced intra-dendrimer hydration, upon increasing the molecular protonation and, therefore, allows the determination of segmental backfolding in a quantitative manner. The connection between these charge-induced structural changes and our recently observed progressively active segmental dynamics is also discussed.

  10. Regge behaviour of distribution functions and t and x-evolutions of ...

    Indian Academy of Sciences (India)

    We also discuss the limitations of Taylor series expansion method used earlier to solve DGLAP evolution .... F s. 2 (x/ω, t). ] , and Af = 36/(33 − 2Nf ). As the gluons are expected to be dominant at low-x, we can neglect the quark contribution to the evolution equation of gluon distribution function and we get the amount of ...

  11. Modelling rate distributions using character compatibility: implications for morphological evolution among fossil invertebrates.

    Science.gov (United States)

    Wagner, Peter J

    2012-02-23

    Rate distributions are important considerations when testing hypotheses about morphological evolution or phylogeny. They also have implications about general processes underlying character evolution. Molecular systematists often assume that rates are Poisson processes with gamma distributions. However, morphological change is the product of multiple probabilistic processes and should theoretically be affected by hierarchical integration of characters. Both factors predict lognormal rate distributions. Here, a simple inverse modelling approach assesses the best single-rate, gamma and lognormal models given observed character compatibility for 115 invertebrate groups. Tests reject the single-rate model for nearly all cases. Moreover, the lognormal outperforms the gamma for character change rates and (especially) state derivation rates. The latter in particular is consistent with integration affecting morphological character evolution.

  12. Research on social communication network evolution based on topology potential distribution

    Science.gov (United States)

    Zhao, Dongjie; Jiang, Jian; Li, Deyi; Zhang, Haisu; Chen, Guisheng

    2011-12-01

    Aiming at the problem of social communication network evolution, first, topology potential is introduced to measure the local influence among nodes in networks. Second, from the perspective of topology potential distribution the method of network evolution description based on topology potential distribution is presented, which takes the artificial intelligence with uncertainty as basic theory and local influence among nodes as essentiality. Then, a social communication network is constructed by enron email dataset, the method presented is used to analyze the characteristic of the social communication network evolution and some useful conclusions are got, implying that the method is effective, which shows that topology potential distribution can effectively describe the characteristic of sociology and detect the local changes in social communication network.

  13. Cloud Computing as Evolution of Distributed Computing – A Case Study for SlapOS Distributed Cloud Computing Platform

    Directory of Open Access Journals (Sweden)

    George SUCIU

    2013-01-01

    Full Text Available The cloud computing paradigm has been defined from several points of view, the main two directions being either as an evolution of the grid and distributed computing paradigm, or, on the contrary, as a disruptive revolution in the classical paradigms of operating systems, network layers and web applications. This paper presents a distributed cloud computing platform called SlapOS, which unifies technologies and communication protocols into a new technology model for offering any application as a service. Both cloud and distributed computing can be efficient methods for optimizing resources that are aggregated from a grid of standard PCs hosted in homes, offices and small data centers. The paper fills a gap in the existing distributed computing literature by providing a distributed cloud computing model which can be applied for deploying various applications.

  14. Evolution of drop size distribution in natural rain

    Science.gov (United States)

    D'Adderio, Leo Pio; Porcù, Federico; Tokay, Ali

    2018-02-01

    Both numerical modeling and laboratory experiments document the possibility of a raindrop size distribution (DSD) to evolve to an equilibrium stage (EDSD), where all the principal processes occur at steady rates. The aim of this work is to observe the temporal behavior of the DSD and to directly investigate the conditions favorable to the onset of the EDSD in natural rain. We exploited a large disdrometer dataset collected in the framework of the Ground Validation activities related to the NASA Global Precipitation Measurement mission. More than 200,000 one-minute data of two-dimensional video disdrometer (2DVD) are collected over USA to represent a wide range of precipitation types. The original data are averaged over 2 min and an automatic algorithm is used on a selected subset to identify samples with EDSD. Results show that the EDSD occurs mainly in convective events and lasts for very short time intervals (2 to 4 min). It is more frequent for rain rate between 20 and 40 mm h- 1 and it mostly occurs during sharp increase of precipitation rates.

  15. Estimating the number of components and detecting outliers using Angle Distribution of Loading Subspaces (ADLS) in PCA analysis.

    Science.gov (United States)

    Liu, Y J; Tran, T; Postma, G; Buydens, L M C; Jansen, J

    2018-08-22

    Principal Component Analysis (PCA) is widely used in analytical chemistry, to reduce the dimensionality of a multivariate data set in a few Principal Components (PCs) that summarize the predominant patterns in the data. An accurate estimate of the number of PCs is indispensable to provide meaningful interpretations and extract useful information. We show how existing estimates for the number of PCs may fall short for datasets with considerable coherence, noise or outlier presence. We present here how Angle Distribution of the Loading Subspaces (ADLS) can be used to estimate the number of PCs based on the variability of loading subspace across bootstrap resamples. Based on comprehensive comparisons with other well-known methods applied on simulated dataset, we show that ADLS (1) may quantify the stability of a PCA model with several numbers of PCs simultaneously; (2) better estimate the appropriate number of PCs when compared with the cross-validation and scree plot methods, specifically for coherent data, and (3) facilitate integrated outlier detection, which we introduce in this manuscript. We, in addition, demonstrate how the analysis of different types of real-life spectroscopic datasets may benefit from these advantages of ADLS. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Development of low angle grain boundaries in lightly deformed superconducting niobium and their influence on hydride distribution and flux perturbation

    Science.gov (United States)

    Sung, Z.-H.; Wang, M.; Polyanskii, A. A.; Santosh, C.; Balachandran, S.; Compton, C.; Larbalestier, D. C.; Bieler, T. R.; Lee, P. J.

    2017-05-01

    This study shows that low angle grain boundaries (LAGBs) can be created by small 5% strains in high purity (residual resistivity ratio ≥ 200) superconducting radio frequency (SRF)-grade single crystalline niobium (Nb) and that these boundaries act as hydrogen traps as indicated by the distribution of niobium hydrides (Nb1-xHx). Nb1-xHx is detrimental to SRF Nb cavities due to its normal conducting properties at cavity operating temperatures. By designing a single crystal tensile sample extracted from a large grain (>5 cm) Nb ingot slice for preferred slip on one slip plane, LAGBs and dense dislocation boundaries developed. With chemical surface treatments following standard SRF cavity fabrication practice, Nb1-xHx phases were densely precipitated at the LAGBs upon cryogenic cooling (8-10 K/min). Micro-crystallographic analysis confirmed heterogeneous hydride precipitation, which included significant hydrogen atom accumulation in LAGBs. Magneto-optical imaging analysis showed that these sites can then act as sites for both premature flux penetration and eventually flux trapping. However, this hydrogen related degradation at LAGBs did not completely disappear even after an 800 °C/2 h anneal typically used for hydrogen removal in SRF Nb cavities. These findings suggest that hydride precipitation at an LAGB is facilitated by a non-equilibrium concentration of vacancy-hydrogen (H) complexes aided by mechanical deformation and the hydride phase interferes with the recovery process under 800 °C annealing.

  17. A method for producing uniform dose distributions in the junction regions of large hinge angle electrol fields

    International Nuclear Information System (INIS)

    Zavgorodni, S.F.; Beckham, W.A.; Roos, D.E.

    1996-01-01

    The planning problems presented by abutting electron fields are well recognised. Junctioning electron fields with large hinge angle compounds the problems because of the creation of closely situated 'hot' and 'cold' spots. The technique involving a compensated superficial x-ray (SXR) field to treat the junction region between electron fields was developed and used in a particular clinical case (treatment of a squamous cell carcinoma of the forehead/scalp). The SXR beam parameters were chosen and the compensator was designed to make the SXR field complementary to the electron fields. Application of a compensated SXR field eliminated 'cold' spots in the junction region and minimised 'hot' spots to (110%). In the clinical case discusses the 'hot' spots due to the SXR field would not appear because of increased attenuation of the soft x-rays in bone. The technique proposed produces uniform dose distribution up to 3 cm deep and can be considered as an additional tool for dealing with electron fields junctioning problems. (author)

  18. Thermal electron acceleration by electric field spikes in the outer radiation belt: generation of field-aligned pitch angle distributions

    Science.gov (United States)

    Vasko, I.; Agapitov, O. V.; Mozer, F.; Artemyev, A.

    2015-12-01

    Van Allen Probes observations in the outer radiation belt have demonstrated an abundance non-linear electrostatic stucture called Time Domain Structures (TDS). One of the type of TDS is electrostatic electron-acoustic double layers (DL). Observed DLs are frequently accompanied by field-aligned (bi-directional) pitch angle distributions (PAD) of electrons with energies from hundred eVs up to several keV (rarely up to tens of keV). We perform numerical simulations of the DL interaction with thermal electrons making use of the test particle approach. DL parameters assumed in the simulations are adopted from observations. We show that DLs accelerate thermal electrons parallel to the magnetic field via the electrostatic Fermi mechanism, i.e. due to reflections from DL potential humps. Due to this interaction some fraction of electrons is scattered into the loss cone. The electron energy gain is larger for larger DL scalar potential amplitudes and higher propagation velocities. In addition to the Fermi mechanism electrons can be trapped by DLs in their generation region and accelerated due to transport to higher latitudes. Both mechanisms result in formation of field-aligned PADs for electrons with energies comparable to those found in observations. The Fermi mechanism provides field-aligned PADs for <1 keV electrons, while the trapping mechanism extends field-aligned PADs to higher energy electrons.

  19. Evaluation of size distribution of starch granules in selected wheat varieties by the Low Angle Laser Light Scattering method

    International Nuclear Information System (INIS)

    Capouchová, I.; Petr, J.; Marešová, D.

    2003-01-01

    The distribution of the size of wheat starch granules using the method LALLS (Low Angle Laser Light Scattering), followed by the evaluation of the effect of variety, experimental site and intensity of cultivation on the vol. % of the starch A (starch granules > 10 μm) was determined. The total starch content and crude protein content in dry matter of flour T530 in selected collection of five winter wheat varieties were determined. Vol. % of the starch A in evaluated collection of wheat varieties varied between 65.31 and 72.34%. The effect of a variety on the vol. % of starch A seemed to be more marked than the effect of site and intensity of cultivation. The highest vol. % of starch A reached evaluated varieties from the quality group C, i.e. varieties unsuitable for baking utilisation (except variety Contra with high total content of starch in dry matter of flour T530, but relatively low vol. % of starch A). A low vol. % of starch A was also found in the variety Hana (very good variety for baking utilisation). Certain variety differences followed from the evaluation of distribution of starch fractions of starch granules, forming starch A. In the case of varieties Hana, Contra and Siria higher representation of fractions up to 30 μm was recorded, while starch A in the varieties Estica and Versailles was formed in higher degree by size fractions of starch granules over 30 μm and particularly size fraction > 50 μm was greatest in these varieties of all evaluated samples. With increasing total starch content in dry matter of flour T530 the crude protein content decreased; the vol. % of starch A not always increased proportionally with increasing total starch content. (author)

  20. Physical mechanism causing rapid changes in ultrarelativistic electron pitch angle distributions right after a shock arrival: Evaluation of an electron dropout event

    Science.gov (United States)

    Zhang, X.-J.; Li, W.; Thorne, R. M.; Angelopoulos, V.; Ma, Q.; Li, J.; Bortnik, J.; Nishimura, Y.; Chen, L.; Baker, D. N.; Reeves, G. D.; Spence, H. E.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Blake, J. B.; Fennell, J. F.

    2016-09-01

    Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth's outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed by Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, the phase space density of ultrarelativistic (>1 MeV) electrons was depleted by more than 1 order of magnitude over the entire radial extent of the outer radiation belt (3 pitch angle distribution under a compressed magnetic field topology based on actual solar wind conditions. Although these ultrarelativistic electrons exhibit highly anisotropic (peaked in 90°), energy-dependent pitch angle distributions, which appear to be associated with the typical EMIC wave scattering, comparison of the modeled electron distribution to electron measurements indicates that drift shell splitting is responsible for this rapid change in electron pitch angle distributions. This further indicates that magnetopause loss is the predominant cause of the electron dropout right after the shock arrival.

  1. Physical mechanism causing rapid changes in ultrarelativistic electron pitch angle distributions right after a shock arrival: Evaluation of an electron dropout event: Drift Shell Splitting on the Dayside

    International Nuclear Information System (INIS)

    Zhang, X.-J.; University of California, Los Angeles, CA; Li, W.; Boston University, MA; Thorne, R. M.

    2016-01-01

    Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth's outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed by Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, the phase space density of ultrarelativistic (>1MeV) electrons was depleted by more than 1 order of magnitude over the entire radial extent of the outer radiation belt (3 < L* < 5) in less than 6 h after the passage of an interplanetary shock. We model the electron pitch angle distribution under a compressed magnetic field topology based on actual solar wind conditions. Although these ultrarelativistic electrons exhibit highly anisotropic (peaked in 90°), energy-dependent pitch angle distributions, which appear to be associated with the typical EMIC wave scattering, comparison of the modeled electron distribution to electron measurements indicates that drift shell splitting is responsible for this rapid change in electron pitch angle distributions. This further indicates that magnetopause loss is the predominant cause of the electron dropout right after the shock arrival.

  2. Academic training: From Evolution Theory to Parallel and Distributed Genetic Programming

    CERN Multimedia

    2007-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 15, 16 March From 11:00 to 12:00 - Main Auditorium, bldg. 500 From Evolution Theory to Parallel and Distributed Genetic Programming F. FERNANDEZ DE VEGA / Univ. of Extremadura, SP Lecture No. 1: From Evolution Theory to Evolutionary Computation Evolutionary computation is a subfield of artificial intelligence (more particularly computational intelligence) involving combinatorial optimization problems, which are based to some degree on the evolution of biological life in the natural world. In this tutorial we will review the source of inspiration for this metaheuristic and its capability for solving problems. We will show the main flavours within the field, and different problems that have been successfully solved employing this kind of techniques. Lecture No. 2: Parallel and Distributed Genetic Programming The successful application of Genetic Programming (GP, one of the available Evolutionary Algorithms) to optimization problems has encouraged an ...

  3. Qualitative numerical studies of the modification of the pitch angle distribution of test particles by alfvènic wave activity

    Science.gov (United States)

    Keilbach, D.; Drews, C.; Berger, L.; Marsch, E.; Wimmer-Schweingruber, R. F.

    2017-12-01

    Using a test particle approach we have investigated, how an oxygen pickup ion torus velocity distribution is modified by continuous and intermittent alfvènic waves on timescales, where the gyro trajectory of each particle can be traced.We have therefore exposed the test particles to mono frequent waves, which expanded through the whole simulation in time and space. The general behavior of the pitch angle distribution is found to be stationary and a nonlinear function of the wave frequency, amplitude and the initial angle between wave elongation and field-perpendicular particle velocity vector. The figure shows the time-averaged pitch angle distributions as a function of the Doppler shifted wave frequency (where the Doppler shift was calculated with respect to the particles initial velocity) for three different wave amplitudes (labeled in each panel). The background field is chosen to be 5 nT and the 500 test particles were initially distributed on a torus with 120° pitch angle at a solar wind velocity of 450 km/s. Each y-slice of the histogram (which has been normalized to it's respective maximum) represents an individual run of the simulation.The frequency-dependent behavior of the test particles is found to be classifiable into the regimes of very low/high frequencies and frequencies close to first order resonance. We have found, that only in the latter regime the particles interact strongly with the wave, where in the time averaged histograms a branch structure is found, which was identified as a trace of particles co-moving with the wave phase. The magnitude of pitch angle change of these particles is as well as the frequency margin, where the branch structure is found, an increasing function with the wave amplitude.We have also investigated the interaction with mono frequent intermittent waves. Exposed to such waves a torus distribution is scattered in pitch angle space, whereas the pitch angle distribution is broadened systematically over time similar to

  4. Time evolution of the drop size distribution for liquid-liquid dispersion in an agitated tank

    Czech Academy of Sciences Publication Activity Database

    Šulc, R.; Kysela, Bohuš; Ditl, P.

    2018-01-01

    Roč. 72, č. 3 (2018), s. 543-553 ISSN 0366-6352 R&D Projects: GA ČR GA16-20175S Institutional support: RVO:67985874 Keywords : liquid–liquid dispersion * drop breakup * drop size distribution * time evolution Subject RIV: BK - Fluid Dynamics Impact factor: 1.258, year: 2016

  5. A century of shocks : The evolution of the German city size distribution 1925-1999

    NARCIS (Netherlands)

    Bosker, Maarten; Brakman, Steven; Garretsen, Harry; Schramm, Marc

    This paper uses empirical evidence on the evolution and structure of the West-German city size distribution to assess the relevance of three different theories of urban growth. The West-German case is of particular interest as Germany's urban system has been subject to some of history's largest

  6. Distribution and evolution of genes responsible for biosynthesis of mycotoxins in Fusarium

    Science.gov (United States)

    Fusarium secondary metabolites (SMs) include some of the mycotoxins of greatest concern to food and feed safety. In fungi, genes directly involved in synthesis of the same SM are typically located adjacent to one another in gene clusters. To better understand the distribution and evolution of mycoto...

  7. Simulation of beam-splitter made of metamaterials with angle spatial distribution of constitutive parameters based on transformation optics for THz frequency range

    International Nuclear Information System (INIS)

    Gurvitz, E A; Vozianova, A V; Khodzitsky, M K

    2014-01-01

    New approach to design beam splitter on basis of the transformation optics using angle constitutive parameters distribution of medium was proposed. The beam splitter was numerically simulated by COMSOL Multiphysics for terahertz frequency range. The numerical simulations were carried out for ideal and reduced constitutive parameters of medium for the case of TM plane wave

  8. Measurement of the weak mixing angle and the spin of the gluon from angular distributions in the reaction pp→ Z/γ*+X→μ+μ-+X with ATLAS

    International Nuclear Information System (INIS)

    Schmieden, Kristof

    2013-04-01

    The measurement of the effective weak mixing angle with the ATLAS experiment at the LHC is presented. It is extracted from the forward-backward asymmetry in the polar angle distribution of the muons originating from Z boson decays in the reaction pp→Z/γ * +X→ μ + μ - +X. In total 4.7 fb -1 of proton-proton collisions at √(s)=7 TeV are analysed. In addition, the full polar and azimuthal angular distributions are measured as a function of the transverse momentum of the Z/γ * system and are compared to several simulations as well as recent results obtained in p anti p collisions. Finally, the angular distributions are used to confirm the spin of the gluon using the Lam-Tung relation.

  9. [The relationship between angle of puncture and distribution of bone cement of unilateral percutaneous kyphoplasty for the treatment of thoracolumbar compression fractures].

    Science.gov (United States)

    Wang, Xiang-fu; Fan, You-fu; Shi, Rui-fang; Deng, Qiang; Li, Zhong-feng

    2015-08-01

    To explore the relationship of bone cement distribution and the puncture angle in the treatment of thoracolumbar compression fractures with unilateral percutaneous kyphoplasty (PKP). The clinical data of 37 patients with thoracolumbar osteoporotic compression fractures underwent PKP between January 2013 to March 2014 were retrospectively analyzed, all punctures were performed unilaterally. There were 6 males, aged from 65 to 78 years old with an average of (71.83 ± 6.15) years; and 31 females, aged from 57 to 89 years old with an average of (71.06 ± 7.89) years. Imaging data were analyzed and puncture angle and puncture point were measured before operation. According to the measured data, the puncture were performeds during the operation. Distribution area of bone cement were calculated by X-rays data after operation. The effect of bone cement distribution on suitable puncture angle was analyzed; VAS score was used to evaluate the clinical effects. The puncture angle of thoracic vertebrae in T8-T12 was from 28° to 33° with an average 30.4°; and the puncture angle of lumbar vertebrae in L1-L5 was from 28° to 35° with an average of 31.3°. Postoperative X-rays showed the area ratios of bilateral bone cement was 0.97 ± 0.15. Bilateral diffuse area were basic equal. Postoperative VAS score decreased significantly (1.89 ± 1.29 vs 7.03 ± 1.42). Through measure imaging data before operation with PKP,the puncture point and entry point can be confirmed. According the measured data to puncture during operation, unilateral puncture can reach the distribution effect of the bilateral puncture in the treatment of thoracolumbar compression fractures.

  10. Details of 1π sr wide acceptance angle electrostatic lens for electron energy and two-dimensional angular distribution analysis combined with real space imaging

    International Nuclear Information System (INIS)

    Tóth, László; Matsuda, Hiroyuki; Matsui, Fumihiko; Goto, Kentaro; Daimon, Hiroshi

    2012-01-01

    We propose a new 1π sr Wide Acceptance Angle Electrostatic Lens (WAAEL), which works as a photoemission electron microscope (PEEM), a highly sensitive display-type electron energy and two-dimensional angular distribution analyzer. It can display two-dimensional angular distributions of charged particles within the acceptance angle of ±60° that is much larger than the largest acceptance angle range so far and comparable to the display-type spherical mirror analyzer developed by Daimon et al. . It has good focusing capabilities with 5-times magnification and 27(4) μm lateral-resolution. The relative energy resolution is typically from 2 to 5×10 -3 depending on the diameter of energy aperture and the emission area on the sample. Although, the lateral resolution of the presented lens is far from those are available nowadays, but this is the first working model that can form images using charged particles collected from 1π sr wide acceptance angle. The realization of such lens system is one of the first possible steps towards reaching the field of imaging type atomic resolution electron microscopy Feynman et al. Here some preliminary results are shown.

  11. Time evolution of a Gaussian class of quasi-distribution functions under quadratic Hamiltonian.

    Science.gov (United States)

    Ginzburg, D; Mann, A

    2014-03-10

    A Lie algebraic method for propagation of the Wigner quasi-distribution function (QDF) under quadratic Hamiltonian was presented by Zoubi and Ben-Aryeh. We show that the same method can be used in order to propagate a rather general class of QDFs, which we call the "Gaussian class." This class contains as special cases the well-known Wigner, Husimi, Glauber, and Kirkwood-Rihaczek QDFs. We present some examples of the calculation of the time evolution of those functions.

  12. Time evolution analysis of the electron distribution in Thomson/Compton back-scattering

    International Nuclear Information System (INIS)

    Petrillo, V.; Bacci, A.; Curatolo, C.; Maroli, C.; Serafini, L.; Rossi, A. R.

    2013-01-01

    We present the time evolution of the energy distribution of a relativistic electron beam after the Compton back-scattering with a counter-propagating laser field, performed in the framework of the Quantum Electrodynamics, by means of the code CAIN. As the correct angular distribution of the spontaneous emission is accounted, the main effect is the formation of few stripes, followed by the diffusion of the more energetic particles toward lower values in the longitudinal phase space. The Chapman-Kolmogorov master equation gives results in striking agreement with the numerical ones. An experiment on the Thomson source at SPARC-LAB is proposed

  13. Distribution, movement, and evolution of the volatile elements in the lunar regolith

    International Nuclear Information System (INIS)

    Gibson, E.K. Jr.

    1975-01-01

    The abundances and distributions of carbon, nitrogen, and sulfur in lunar soils are reviewed. Carbon and nitrogen have a predominantly extra-lunar origin in lunar soils and breccias, while sulfur is mostly indigeneous to the Moon. The lunar processes which effect the movement, distribution, and evolution of carbon, nitrogen, and sulfur, along with the volatile alkali elements sodium, potassium, and rubidium during regolith processes are discussed. Possible mechanisms which may result in the addition to or loss from the Moon of these volatile elements are considered. (Auth.)

  14. Distribution, movement, and evolution of the volatile elements in the lunar regolith

    Science.gov (United States)

    Gibson, E. K., Jr.

    1975-01-01

    The abundances and distributions of carbon, nitrogen, and sulfur in lunar soils are reviewed. Carbon and nitrogen have a predominantly extra-lunar origin in lunar soils and breccias, while sulfur is mostly indigeneous to the moon. The lunar processes which effect the movement, distribution, and evolution of carbon, nitrogen, and sulfur, along with the volatile alkali elements sodium, potassium, and rubidium during regolith processes are discussed. Possible mechanisms which may result in the addition to or loss from the moon of these volatile elements are considered.

  15. An investigation of the dose distribution effect related with collimator angle in volumetric arc therapy of prostate cancer

    Directory of Open Access Journals (Sweden)

    Bora Tas

    2016-01-01

    Full Text Available To investigate the dose-volume variations of planning target volume (PTV and organ at risks (OARs in eleven prostate cancer patients planned with single and double arc volumetric modulated arc therapy (VMAT when varying collimator angle. Single and double arc VMAT treatment plans were created using Monaco5.0® with collimator angle set to 0°. All plans were normalized 7600 cGy dose to the 95% of clinical target volume (CTV volume. The single arc VMAT plans were reoptimized with different collimator angles (0°, 15°, 30°, 45°, 60°, 75°, and 90°, and for double arc VMAT plans (0–0°, 15°–345, 30–330°, 45–315°, 60–300°, 75–285°, 90–270° using the same optimization parameters. For the comparison the parameters of heterogeneity index (HI, dose-volume histogram and minimum dose to the 95% of PTV volume (D95 PTV calculated and analyzed. The best plans were verified using 2 dimensional ion chamber array IBA Matrixx® and three-dimensional IBA Compass® program. The comparison between calculation and measurement were made by the γ-index (3%/3 mm analysis. A higher D95 (PTV were found for single arc VMAT with 15° collimator angle. For double arc, VMAT with 60–300° and 75–285° collimator angles. However, lower rectum doses obtained for 75–285° collimator angles. There was no significant dose difference, based on other OARs which are bladder and femur head. When we compared single and double arc VMAT's D95 (PTV, we determined 2.44% high coverage and lower HI with double arc VMAT. All plans passed the γ-index (3%/3 mm analysis with more than 97% of the points and we had an average γ-index for CTV 0.36, for PTV 0.32 with double arc VMAT. These results were significant by Wilcoxon signed rank test statistically. The results show that dose coverage of target and OAR's doses also depend significantly on the collimator angles due to the geometry of target and OARs. Based on the results we have decided to plan prostate

  16. DSTATCOM allocation in distribution networks considering reconfiguration using differential evolution algorithm

    International Nuclear Information System (INIS)

    Jazebi, S.; Hosseinian, S.H.; Vahidi, B.

    2011-01-01

    Highlights: → Reconfiguration and DSTATCOM allocation are implemented for RDS planning. → Differential evolution algorithm is applied to solve the nonlinear problem. → Optimal status of tie switches, DSTATCOM size and location are determined. → The goal is to minimize network losses and to improve voltage profile. → The results show the effectiveness of the proposed method to satisfy objectives. -- Abstract: The main idea in distribution network reconfiguration is usually to reduce loss by changing the status of sectionalizing switches and determining appropriate tie switches. Recently Distribution FACTS (DFACTS) devices such as DSTATCOM also have been planned for loss reduction and voltage profile improvement in steady state conditions. This paper implements a combinatorial process based on reconfiguration and DSTATCOM allocation in order to mitigate losses and improve voltage profile in power distribution networks. The distribution system tie switches, DSTATCOM location and size have been optimally determined to obtain an appropriate operational condition. Differential evolution algorithm (DEA) has been used to solve and overcome the complicity of this combinatorial nonlinear optimization problem. To validate the accuracy of results a comparison with particle swarm optimization (PSO) has been made. Simulations have been applied on 69 and 83 busses distribution test systems. All optimization results show the effectiveness of the combinatorial approach in loss reduction and voltage profile improvement.

  17. Depth distribution of secondary phases in kesterite Cu2ZnSnS4 by angle-resolved X-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    J. Just

    2017-12-01

    Full Text Available The depth distribution of secondary phases in the solar cell absorber material Cu2ZnSnS4 (CZTS is quantitatively investigated using X-ray Absorption Near Edge Structure (XANES analysis at the K-edge of sulfur at varying incidence angles. Varying information depths from several nanometers up to the full thickness is achieved. A quantitative profile of the phase distribution is obtained by a self-consistent fit of a multilayer model to the XANES spectra for different angles. Single step co-evaporated CZTS thin-films are found to exhibit zinc and copper sulfide secondary phases preferentially at the front or back interfaces of the film.

  18. Size Evolution and Stochastic Models: Explaining Ostracod Size through Probabilistic Distributions

    Science.gov (United States)

    Krawczyk, M.; Decker, S.; Heim, N. A.; Payne, J.

    2014-12-01

    The biovolume of animals has functioned as an important benchmark for measuring evolution throughout geologic time. In our project, we examined the observed average body size of ostracods over time in order to understand the mechanism of size evolution in these marine organisms. The body size of ostracods has varied since the beginning of the Ordovician, where the first true ostracods appeared. We created a stochastic branching model to create possible evolutionary trees of ostracod size. Using stratigraphic ranges for ostracods compiled from over 750 genera in the Treatise on Invertebrate Paleontology, we calculated overall speciation and extinction rates for our model. At each timestep in our model, new lineages can evolve or existing lineages can become extinct. Newly evolved lineages are assigned sizes based on their parent genera. We parameterized our model to generate neutral and directional changes in ostracod size to compare with the observed data. New sizes were chosen via a normal distribution, and the neutral model selected new sizes differentials centered on zero, allowing for an equal chance of larger or smaller ostracods at each speciation. Conversely, the directional model centered the distribution on a negative value, giving a larger chance of smaller ostracods. Our data strongly suggests that the overall direction of ostracod evolution has been following a model that directionally pushes mean ostracod size down, shying away from a neutral model. Our model was able to match the magnitude of size decrease. Our models had a constant linear decrease while the actual data had a much more rapid initial rate followed by a constant size. The nuance of the observed trends ultimately suggests a more complex method of size evolution. In conclusion, probabilistic methods can provide valuable insight into possible evolutionary mechanisms determining size evolution in ostracods.

  19. T2 image contrast evaluation using three dimension sampling perfection with application optimized contrasts using different flip angle evolution (3D-SPACE)

    International Nuclear Information System (INIS)

    Yamazaki, Ryo; Hiura, Yukikazu; Tsuji, Akio; Nishiki, Shigeo; Uchikoshi, Masato

    2011-01-01

    Sampling perfection with application optimized contrasts using different flip angle evolution (3D-SPACE) sequence enables one to decrease specific absorption rate (SAR) by using variable flip angle refocusing pulse. Therefore, it is expected that the contrast obtained with 3D-SPACE sequences is different from that of spin echo (SE) images and turbo spin echo (TSE) images. The purpose of this study was to evaluate the characteristics of the signal intensity and central nervous system (CNS) image contrast in T 2 weighted 3D-SPACE. Using 3 different sequences (SE, 3D-TSE and 3D-SPACE) with repetition time (TR)/ echo time (TE)=3500/70, 90 and 115 ms, we obtained T 2 weighted magnetic resonance (MR) images of inhouse phantom and five healthy volunteers' brain. Signal intensity of the phantom which contains various T 1 and T 2 value was evaluated. Tissue contrasts of white/gray matter, cerebrospinal fluid (CSF)/subcutaneous fat and gray matter/subcutaneous fat were evaluated for a clinical image study. The phantom study showed that signal intensity in 3D-SPACE significantly decreased under a T 1 value of 250 ms. It was markedly decreased in comparison to other sequences, as effective echo time (TE) was extended. White/gray matter contrast of 3D-SPACE was the highest in all sequences. On the other hand, CSF/fat and gray matter/fat contrast of 3D-SPACE was higher than TSE but lower than SE. CNS image contrasts of 3D-SPACE were comparable to that of SE. Signal intensity had decreased in the range where T 1 and T 2 values were extremely short. (author)

  20. Evolution of α-particle distribution in burning plasmas including energy dependent α-transport effects

    International Nuclear Information System (INIS)

    Kamelander, G.; Sigmar, D.; Woloch, F.

    1991-09-01

    This report resumes the essential results of a common OEFZS/MIT (Plasma Fusion Center) project to investigate fusion alpha transport. A computer code has been developed going beyond standard FOKKER-PLANCK-codes assuming that the fusion products give their energy to the plasma on the place of their birth. The present transport code admits the calculation of the α-distribution function. By means of the distribution function the energy deposition rates are calculated. The time-evolution of the α-distribution function has been evaluated for an ignited plasma. A description of the transport code, of the subroutines and of the input data as well as a listing is enclosed to this report. (Authors)

  1. Characterization of the energy distribution of neutrons generated by 5 MeV protons on a thick beryllium target at different emission angles

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Colautti, P., E-mail: paolo.colautti@lnl.infn.it [INFN, Laboratori Nazionali di Legnaro (LNL), Via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Esposito, J., E-mail: juan.esposito@tin.it [INFN, Laboratori Nazionali di Legnaro (LNL), Via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Fazzi, A.; Introini, M.V.; Pola, A. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2011-12-15

    Neutron energy spectra at different emission angles, between 0 Degree-Sign and 120 Degree-Sign from the Be(p,xn) reaction generated by a beryllium thick-target bombarded with 5 MeV protons, have been measured at the Legnaro Laboratories (LNL) of the Italian National Institute for Nuclear Physics research (INFN). A new and quite compact recoil-proton spectrometer, based on a monolithic silicon telescope, coupled to a polyethylene converter, was efficiently used with respect to the traditional Time-of-Flight (TOF) technique. The measured distributions of recoil-protons were processed through an iterative unfolding algorithm in order to determine the neutron energy spectra at all the angles accounted for. The neutron energy spectrum measured at 0 Degree-Sign resulted to be in good agreement with the only one so far available at the requested energy and measured years ago with TOF technique. Moreover, the results obtained at different emission angles resulted to be consistent with detailed past measurements performed at 4 MeV protons at the same angles by TOF techniques.

  2. Distribution of smile line, gingival angle and tooth shape among the Saudi Arabian subpopulation and their association with gingival biotype.

    Science.gov (United States)

    AlQahtani, Nabeeh A; Haralur, Satheesh B; AlMaqbol, Mohammad; AlMufarrij, Ali Jubran; Al Dera, Ahmed Ali; Al-Qarni, Mohammed

    2016-04-01

    To determine the occurrence of smile line and maxillary tooth shape in the Saudi Arabian subpopulation, and to estimate the association between these parameters with gingival biotype. On the fulfillment of selection criteria, total 315 patients belong to Saudi Arabian ethnic group were randomly selected. Two frontal photographs of the patients were acquired. The tooth morphology, gingival angle, and smile line classification were determined with ImageJ image analyzing software. The gingival biotype was assessed by probe transparency method. The obtained data were analyzed with SPSS 19 (IBM Corporation, New York, USA) software to determine the frequency and association between other parameters and gingival biotype. Among the clinical parameters evaluated, the tapering tooth morphology (56.8%), thick gingival biotype (53%), and average smile line (57.5%) was more prevalent. The statistically significant association was found between thick gingival biotype and the square tooth, high smile line. The high gingival angle was associated with thin gingival biotype. The study results indicate the existence of an association between tooth shape, smile line, and gingival angle with gingival biotype.

  3. Assessment of pituitary micro-lesions using 3D sampling perfection with application-optimized contrasts using different flip-angle evolutions.

    Science.gov (United States)

    Wang, Jing; Wu, Yue; Yao, Zhenwei; Yang, Zhong

    2014-12-01

    The aim of this study was to explore the value of three-dimensional sampling perfection with application-optimized contrasts using different flip-angle evolutions (3D-SPACE) sequence in assessment of pituitary micro-lesions. Coronal 3D-SPACE as well as routine T1- and dynamic contrast-enhanced (DCE) T1-weighted images of the pituitary gland were acquired in 52 patients (48 women and four men; mean age, 32 years; age range, 17-50 years) with clinically suspected pituitary abnormality at 3.0 T, retrospectively. The interobserver agreement of assessment results was analyzed with K-statistics. Qualitative analyses were compared using Wilcoxon signed-rank test. There was good interobserver agreement of the independent evaluations for 3D-SPACE images (k = 0.892), fair for routine MR images (k = 0.649). At 3.0 T, 3D-SPACE provided significantly better images than routine MR images in terms of the boundary of pituitary gland, definition of pituitary lesions, and overall image quality. The evaluation of pituitary micro-lesions using combined routine and 3D-SPACE MR imaging was superior to that using only routine or 3D-SPACE imaging. The 3D-SPACE sequence can be used for appropriate and successful evaluation of the pituitary gland. We suggest 3D-SPACE sequence to be a powerful supplemental sequence in MR examinations with suspected pituitary micro-lesions.

  4. Dependence of black fragment azimuthal and projected angular distributions on polar angle in silicon-emulsion collisions at 4.5A GeV/c

    International Nuclear Information System (INIS)

    Liu Fuhu; Abd Allah, Nabil N.; Singh, B.K.

    2004-01-01

    The experimental results of dependence of black fragment azimuth (φ) and projected angle (ψ) distributions on polar angle θ in silicon-emulsion collisions at 4.5A GeV/c (the Dubna momentum) are reported. There are two regions of enhancement around φ=±90 deg. for different θ ranges. These enhancements are due to directed (v 1 ) and elliptic (v 2 ) flows. The v 1 and v 2 dependence of values on θ shows that the directed flow is weak and the elliptic flow is strong in these collisions. A multisource ideal gas model is used to describe the experimental results of dependence. The Monte Carlo calculated results are approximately in agreement with the experimental data

  5. Single ionization of Ne, Ar and Kr by proton impact: Single differential distributions in energy and angle

    Energy Technology Data Exchange (ETDEWEB)

    Otranto, S [CONICET and Dto. de Fisica, Universidad Nacional del Sur, 8000 BahIa Blanca (Argentina); Miraglia, J E [Instituto de AstronomIa y Fisica del Espacio, CONICET and Universidad de Buenos Aires C1428EGA (Argentina); Olson, R E, E-mail: sotranto@uns.edu.a [Physics Department, Missouri University of Science and Technology, Rolla MO 65409 (United States)

    2009-11-01

    In this work we present a theoretical study of singly differential cross sections in energy and angle for the single ionization of neon, argon and krypton by proton impact. Theoretical results obtained by means of the Continuum Distorted Wave-Eikonal initial state (CDW-EIS) model are compared to those provided by the First Born Approximation (FBA) and the classical trajectory Monte Carlo (CTMC) method as well as to experimental data from several laboratories. We note in particular for argon, that the CDW-EIS model does not reproduce the experimental data as accurately as expected, while the CTMC instead is in very good agreement.

  6. Evolution of the distribution of baryons in a simulated Local Group Universe

    Science.gov (United States)

    Peirani, S.

    2012-12-01

    Using hydrodynamical zoom simulations in the standard ΛCDM cosmology, we have investigated the evolution of the distribution of baryons (gas and stars) in a local group-type universe. We found that physical mechanisms able to drive the gas out of the virial radius at high redshifts (such as AGN) will have a stronger impact on the deficit of baryons in the mass budget of Milky Way type-galaxies at present times than those that expel the gas in the longer, late phases of galaxy formation.

  7. The characteristic pitch angle distributions of 1 eV to 600 keV protons near the equator based on Van Allen Probes observations

    Science.gov (United States)

    Yue, C.; Bortnik, J.; Thorne, R. M.; Ma, Q.; An, X.; Chappell, C. R.; Gerrard, A. J.; Lanzerotti, L. J.; Shi, Q.

    2017-12-01

    Understanding the source and loss processes of various plasma populations is greatly aided by having accurate knowledge of their pitch angle distributions (PADs). Here, we statistically analyze 1 eV to 600 keV hydrogen (H+) PADs near the geomagnetic equator in the inner magnetosphere based on Van Allen Probes measurements, to comprehensively investigate how the H+ PADs vary with different energies, magnetic local times (MLTs), L-shells, and geomagnetic conditions. Our survey clearly indicates four distinct populations with different PADs: (1) a pancake distribution of the plasmaspheric H+ at low L-shells except for dawn sector; (2) a bi-directional field-aligned distribution of the warm plasma cloak; (3) pancake or isotropic distributions of ring current H+; (4) radiation belt particles show pancake, butterfly and isotropic distributions depending on their energy, MLT and L-shell. Meanwhile, the pancake distribution of ring current H+ moves to lower energies as L-shell increases which is primarily caused by adiabatic transport. Furthermore, energetic H+ (> 10 keV) PADs become more isotropic following the substorm injections, indicating wave-particle interactions. The radiation belt H+ butterfly distributions are identified in a narrow energy range of 100 5), which are less significant during quiet times and extend from dusk to dawn sector through midnight during substorms. The different PADs near the equator provide clues of the underlying physical processes that produce the dynamics of these different populations.

  8. Optimal Location and Sizing of UPQC in Distribution Networks Using Differential Evolution Algorithm

    Directory of Open Access Journals (Sweden)

    Seyed Abbas Taher

    2012-01-01

    Full Text Available Differential evolution (DE algorithm is used to determine optimal location of unified power quality conditioner (UPQC considering its size in the radial distribution systems. The problem is formulated to find the optimum location of UPQC based on an objective function (OF defined for improving of voltage and current profiles, reducing power loss and minimizing the investment costs considering the OF's weighting factors. Hence, a steady-state model of UPQC is derived to set in forward/backward sweep load flow. Studies are performed on two IEEE 33-bus and 69-bus standard distribution networks. Accuracy was evaluated by reapplying the procedures using both genetic (GA and immune algorithms (IA. Comparative results indicate that DE is capable of offering a nearer global optimal in minimizing the OF and reaching all the desired conditions than GA and IA.

  9. Knowledge Evolution in Distributed Geoscience Datasets and the Role of Semantic Technologies

    Science.gov (United States)

    Ma, X.

    2014-12-01

    Knowledge evolves in geoscience, and the evolution is reflected in datasets. In a context with distributed data sources, the evolution of knowledge may cause considerable challenges to data management and re-use. For example, a short news published in 2009 (Mascarelli, 2009) revealed the geoscience community's concern that the International Commission on Stratigraphy's change to the definition of Quaternary may bring heavy reworking of geologic maps. Now we are in the era of the World Wide Web, and geoscience knowledge is increasingly modeled and encoded in the form of ontologies and vocabularies by using semantic technologies. Accordingly, knowledge evolution leads to a consequence called ontology dynamics. Flouris et al. (2008) summarized 10 topics of general ontology changes/dynamics such as: ontology mapping, morphism, evolution, debugging and versioning, etc. Ontology dynamics makes impacts at several stages of a data life cycle and causes challenges, such as: the request for reworking of the extant data in a data center, semantic mismatch among data sources, differentiated understanding of a same piece of dataset between data providers and data users, as well as error propagation in cross-discipline data discovery and re-use (Ma et al., 2014). This presentation will analyze the best practices in the geoscience community so far and summarize a few recommendations to reduce the negative impacts of ontology dynamics in a data life cycle, including: communities of practice and collaboration on ontology and vocabulary building, link data records to standardized terms, and methods for (semi-)automatic reworking of datasets using semantic technologies. References: Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., Antoniou, G., 2008. Ontology change: classification and survey. The Knowledge Engineering Review 23 (2), 117-152. Ma, X., Fox, P., Rozell, E., West, P., Zednik, S., 2014. Ontology dynamics in a data life cycle: Challenges and recommendations

  10. Evolution of arbitrary moments of radiant intensity distribution for partially coherent general beams in atmospheric turbulence

    Science.gov (United States)

    Dan, Youquan; Xu, Yonggen

    2018-04-01

    The evolution law of arbitrary order moments of the Wigner distribution function, which can be applied to the different spatial power spectra, is obtained for partially coherent general beams propagating in atmospheric turbulence using the extended Huygens-Fresnel principle. A coupling coefficient of radiant intensity distribution (RID) in turbulence is introduced. Analytical expressions of the evolution of the first five-order moments, kurtosis parameter, coupling coefficient of RID for general beams in turbulence are derived, and the formulas are applied to Airy beams. Results show that there exist two types for general beams in turbulence. A larger value of kurtosis parameter for Airy beams also reveals that coupling effect due to turbulence is stronger. Both theoretical analysis and numerical results show that the maximum value of kurtosis parameter for an Airy beam in turbulence is independent of turbulence strength parameter and is only determined by inner scale of turbulence. Relative angular spread, kurtosis and coupling coefficient are less influenced by turbulence for Airy beams with a smaller decay factor and a smaller initial width of the first lobe.

  11. Evolution of uranium distribution and speciation in mill tailings, COMINAK Mine, Niger

    International Nuclear Information System (INIS)

    Déjeant, Adrien; Galoisy, Laurence; Roy, Régis; Calas, Georges; Boekhout, Flora; Phrommavanh, Vannapha; Descostes, Michael

    2016-01-01

    This study investigated the evolution of uranium distribution and speciation in mill tailings from the COMINAK mine (Niger), in production since 1978. A multi-scale approach was used, which combined high resolution remote sensing imagery, ICP-MS bulk rock analyses, powder X-ray diffraction, Scanning Electron Microscopy, Focused Ion Beam — Transmission Electron Microscopy and X-ray Absorption Near Edge Spectroscopy. Mineralogical analyses showed that some ore minerals, including residual uraninite and coffinite, undergo alteration and dissolution during tailings storage. The migration of uranium and other contaminants depends on (i) the chemical stability of secondary phases and sorbed species (dissolution and desorption processes), and (ii) the mechanical transport of fine particles bearing these elements. Uranium is stabilized after formation of secondary uranyl sulfates and phosphates, and adsorbed complexes on mineral surfaces (e.g. clay minerals). In particular, the stock of insoluble uranyl phosphates increases with time, thus contributing to the long-term stabilization of uranium. At the surface, a sulfate-cemented duricrust is formed after evaporation of pore water. This duricrust limits water infiltration and dust aerial dispersion, though it is enriched in uranium and many other elements, because of pore water rising from underlying levels by capillary action. Satellite images provided a detailed description of the tailings pile over time and allow monitoring of the chronology of successive tailings deposits. Satellite images suggest that uranium anomalies that occur at deep levels in the pile are most likely former surface duricrusts that have been buried under more recent tailings. - Highlights: • The evolution of U distribution and speciation in mill tailings is investigated. • High resolution satellite images provide useful information on tailings evolution. • U and many other elements are enriched in a sulfate-rich duricrust. • Formation of

  12. Evolution of uranium distribution and speciation in mill tailings, COMINAK Mine, Niger

    Energy Technology Data Exchange (ETDEWEB)

    Déjeant, Adrien, E-mail: adrien.dejeant@normalesup.org [Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Case 115, 4 place Jussieu, 75005 Paris (France); Université Paris Diderot — Paris VII, 5 rue Thomas Mann, 75013 Paris (France); Galoisy, Laurence [Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Case 115, 4 place Jussieu, 75005 Paris (France); Université Pierre et Marie Curie — Paris VI, 4 place Jussieu, 75005 Paris (France); Roy, Régis [AREVA Mines — Geoscience Department, Tour AREVA, 1 place Jean Millier, 92084 Paris, La Défense (France); Calas, Georges; Boekhout, Flora [Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Case 115, 4 place Jussieu, 75005 Paris (France); Université Pierre et Marie Curie — Paris VI, 4 place Jussieu, 75005 Paris (France); Phrommavanh, Vannapha; Descostes, Michael [AREVA Mines — R& D Department, BAL 0414C-2, Tour AREVA, 1 place Jean Millier, 92084 Paris, La Défense (France)

    2016-03-01

    This study investigated the evolution of uranium distribution and speciation in mill tailings from the COMINAK mine (Niger), in production since 1978. A multi-scale approach was used, which combined high resolution remote sensing imagery, ICP-MS bulk rock analyses, powder X-ray diffraction, Scanning Electron Microscopy, Focused Ion Beam — Transmission Electron Microscopy and X-ray Absorption Near Edge Spectroscopy. Mineralogical analyses showed that some ore minerals, including residual uraninite and coffinite, undergo alteration and dissolution during tailings storage. The migration of uranium and other contaminants depends on (i) the chemical stability of secondary phases and sorbed species (dissolution and desorption processes), and (ii) the mechanical transport of fine particles bearing these elements. Uranium is stabilized after formation of secondary uranyl sulfates and phosphates, and adsorbed complexes on mineral surfaces (e.g. clay minerals). In particular, the stock of insoluble uranyl phosphates increases with time, thus contributing to the long-term stabilization of uranium. At the surface, a sulfate-cemented duricrust is formed after evaporation of pore water. This duricrust limits water infiltration and dust aerial dispersion, though it is enriched in uranium and many other elements, because of pore water rising from underlying levels by capillary action. Satellite images provided a detailed description of the tailings pile over time and allow monitoring of the chronology of successive tailings deposits. Satellite images suggest that uranium anomalies that occur at deep levels in the pile are most likely former surface duricrusts that have been buried under more recent tailings. - Highlights: • The evolution of U distribution and speciation in mill tailings is investigated. • High resolution satellite images provide useful information on tailings evolution. • U and many other elements are enriched in a sulfate-rich duricrust. • Formation of

  13. Characteristics of Pitch Angle Distributions of 100s Kev Electrons in the Slot Region and Inner Radiation Belt­­­­­­­­

    Science.gov (United States)

    Zhao, H.; Li, X.; Blake, J. B.; Fennell, J.; Claudepierre, S. G.; Baker, D. N.; Jaynes, A. N.; Malaspina, D.

    2014-12-01

    The pitch angle distribution (PAD) of energetic electrons in the slot region and inner radiation belt received little attention in the past decades due to the lack of quality measurements. Using the state-of-art pitch-angle-resolved data from the Magnetic Electron Ion Spectrometer (MagEIS) instrument onboard the Van Allen Probes, a detailed analysis of 100s keV electron PADs below L =4 is performed, in which the PADs is categorized into three types: normal (flux peaking at 90°), cap (exceedingly peaking narrowly around 90°) and 90°-minimum (lower flux at 90°) PADs. By examining the characteristics of the PADs of 460 keV electrons for over a year, we find that the 90°-minimum PADs are generally present in the inner belt (Lpitch angle scattering of hiss waves. Fitting the normal PADs into sinnα form, the parameter n is much higher below L=3 than that in the outer belt and relatively constant in the inner belt but changes significantly in the slot region (2mechanism can hardly explain the formation of 90°-minimum PADs at the center of inner belt. These new and compelling observations, made possible by the high-quality measurements of MagEIS, present a challenge for the wave modelers, and future work is still needed to fully understand them.

  14. MERA: a webserver for evaluating backbone torsion angle distributions in dynamic and disordered proteins from NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Mantsyzov, Alexey B. [M.V. Lomonosov Moscow State University, Faculty of Fundamental Medicine (Russian Federation); Shen, Yang; Lee, Jung Ho [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Hummer, Gerhard [Max Planck Institute of Biophysics (Germany); Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2015-09-15

    MERA (Maximum Entropy Ramachandran map Analysis from NMR data) is a new webserver that generates residue-by-residue Ramachandran map distributions for disordered proteins or disordered regions in proteins on the basis of experimental NMR parameters. As input data, the program currently utilizes up to 12 different parameters. These include three different types of short-range NOEs, three types of backbone chemical shifts ({sup 15}N, {sup 13}C{sup α}, and {sup 13}C′), six types of J couplings ({sup 3}J{sub HNHα}, {sup 3}J{sub C′C′}, {sup 3}J{sub C′Hα}, {sup 1}J{sub HαCα}, {sup 2}J{sub CαN} and {sup 1}J{sub CαN}), as well as the {sup 15}N-relaxation derived J(0) spectral density. The Ramachandran map distributions are reported in terms of populations of their 15° × 15° voxels, and an adjustable maximum entropy weight factor is available to ensure that the obtained distributions will not deviate more from a newly derived coil library distribution than required to account for the experimental data. MERA output includes the agreement between each input parameter and its distribution-derived value. As an application, we demonstrate performance of the program for several residues in the intrinsically disordered protein α-synuclein, as well as for several static and dynamic residues in the folded protein GB3.

  15. Evolution of the ATLAS distributed computing system during the LHC long shutdown

    Science.gov (United States)

    Campana, S.; Atlas Collaboration

    2014-06-01

    The ATLAS Distributed Computing project (ADC) was established in 2007 to develop and operate a framework, following the ATLAS computing model, to enable data storage, processing and bookkeeping on top of the Worldwide LHC Computing Grid (WLCG) distributed infrastructure. ADC development has always been driven by operations and this contributed to its success. The system has fulfilled the demanding requirements of ATLAS, daily consolidating worldwide up to 1 PB of data and running more than 1.5 million payloads distributed globally, supporting almost one thousand concurrent distributed analysis users. Comprehensive automation and monitoring minimized the operational manpower required. The flexibility of the system to adjust to operational needs has been important to the success of the ATLAS physics program. The LHC shutdown in 2013-2015 affords an opportunity to improve the system in light of operational experience and scale it to cope with the demanding requirements of 2015 and beyond, most notably a much higher trigger rate and event pileup. We will describe the evolution of the ADC software foreseen during this period. This includes consolidating the existing Production and Distributed Analysis framework (PanDA) and ATLAS Grid Information System (AGIS), together with the development and commissioning of next generation systems for distributed data management (DDM/Rucio) and production (Prodsys-2). We will explain how new technologies such as Cloud Computing and NoSQL databases, which ATLAS investigated as R&D projects in past years, will be integrated in production. Finally, we will describe more fundamental developments such as breaking job-to-data locality by exploiting storage federations and caches, and event level (rather than file or dataset level) workload engines.

  16. Evolution of the ATLAS distributed computing system during the LHC long shutdown

    International Nuclear Information System (INIS)

    Campana, S

    2014-01-01

    The ATLAS Distributed Computing project (ADC) was established in 2007 to develop and operate a framework, following the ATLAS computing model, to enable data storage, processing and bookkeeping on top of the Worldwide LHC Computing Grid (WLCG) distributed infrastructure. ADC development has always been driven by operations and this contributed to its success. The system has fulfilled the demanding requirements of ATLAS, daily consolidating worldwide up to 1 PB of data and running more than 1.5 million payloads distributed globally, supporting almost one thousand concurrent distributed analysis users. Comprehensive automation and monitoring minimized the operational manpower required. The flexibility of the system to adjust to operational needs has been important to the success of the ATLAS physics program. The LHC shutdown in 2013-2015 affords an opportunity to improve the system in light of operational experience and scale it to cope with the demanding requirements of 2015 and beyond, most notably a much higher trigger rate and event pileup. We will describe the evolution of the ADC software foreseen during this period. This includes consolidating the existing Production and Distributed Analysis framework (PanDA) and ATLAS Grid Information System (AGIS), together with the development and commissioning of next generation systems for distributed data management (DDM/Rucio) and production (Prodsys-2). We will explain how new technologies such as Cloud Computing and NoSQL databases, which ATLAS investigated as R and D projects in past years, will be integrated in production. Finally, we will describe more fundamental developments such as breaking job-to-data locality by exploiting storage federations and caches, and event level (rather than file or dataset level) workload engines.

  17. EVOLUTION OF HIGH-ENERGY PARTICLE DISTRIBUTION IN MATURE SHELL-TYPE SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Houdun; Xin, Yuliang; Liu, Siming; Zhang, Shuinai [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Jokipii, J. R. [University of Arizona, Tucson, Arizona, 85721 (United States); Zhang, Li, E-mail: zhd@pmo.ac.cn, E-mail: liusm@pmo.ac.cn [Key Laboratory of Astroparticle Physics of Yunnan Province, Kunming, 650091 (China)

    2017-01-10

    Multi-wavelength observations of mature supernova remnants (SNRs), especially with recent advances in γ -ray astronomy, make it possible to constrain energy distribution of energetic particles within these remnants. In consideration of the SNR origin of Galactic cosmic rays and physics related to particle acceleration and radiative processes, we use a simple one-zone model to fit the nonthermal emission spectra of three shell-type SNRs located within 2° on the sky: RX J1713.7−3946, CTB 37B, and CTB 37A. Although radio images of these three sources all show a shell (or half-shell) structure, their radio, X-ray, and γ -ray spectra are quite different, offering an ideal case to explore evolution of energetic particle distribution in SNRs. Our spectral fitting shows that (1) the particle distribution becomes harder with aging of these SNRs, implying a continuous acceleration process, and the particle distributions of CTB 37A and CTB 37B in the GeV range are harder than the hardest distribution that can be produced at a shock via the linear diffusive shock particle acceleration process, so spatial transport may play a role; (2) the energy loss timescale of electrons at the high-energy cutoff due to synchrotron radiation appears to be always a bit (within a factor of a few) shorter than the age of the corresponding remnant, which also requires continuous particle acceleration; (3) double power-law distributions are needed to fit the spectra of CTB 37B and CTB 37A, which may be attributed to shock interaction with molecular clouds.

  18. QCD evolution of (un)polarized gluon TMDPDFs and the Higgs q T -distribution

    Science.gov (United States)

    Echevarria, Miguel G.; Kasemets, Tomas; Mulders, Piet J.; Pisano, Cristian

    2015-07-01

    We provide the proper definition of all the leading-twist (un)polarized gluon transverse momentum dependent parton distribution functions (TMDPDFs), by considering the Higgs boson transverse momentum distribution in hadron-hadron collisions and deriving the factorization theorem in terms of them. We show that the evolution of all the (un)polarized gluon TMDPDFs is driven by a universal evolution kernel, which can be resummed up to next-to-next-to-leading-logarithmic accuracy. Considering the proper definition of gluon TMDPDFs, we perform an explicit next-to-leading-order calculation of the unpolarized ( f {1/ g }), linearly polarized ( h {1/⊥ g }) and helicity ( g {1/L g }) gluon TMDPDFs, and show that, as expected, they are free from rapidity divergences. As a byproduct, we obtain the Wilson coefficients of the refactorization of these TMDPDFs at large transverse momentum. In particular, the coefficient of g {1/L g }, which has never been calculated before, constitutes a new and necessary ingredient for a reliable phenomenological extraction of this quantity, for instance at RHIC or the future AFTER@LHC or Electron-Ion Collider. The coefficients of f {1/ g } and h {1/⊥ g } have never been calculated in the present formalism, although they could be obtained by carefully collecting and recasting previous results in the new TMD formalism. We apply these results to analyze the contribution of linearly polarized gluons at different scales, relevant, for instance, for the inclusive production of the Higgs boson and the C-even pseudoscalar bottomonium state η b . Applying our resummation scheme we finally provide predictions for the Higgs boson q T -distribution at the LHC.

  19. The distribution, geochronology and geochemistry of early Paleozoic granitoid plutons in the North Altun orogenic belt, NW China: Implications for the petrogenesis and tectonic evolution

    Science.gov (United States)

    Meng, Ling-Tong; Chen, Bai-Lin; Zhao, Ni-Na; Wu, Yu; Zhang, Wen-Gao; He, Jiang-Tao; Wang, Bin; Han, Mei-Mei

    2017-01-01

    Abundant early Paleozoic granitoid plutons are widely distributed in the North Altun orogenic belt. These rocks provide clues to the tectonic evolution of the North Altun orogenic belt and adjacent areas. In this paper, we report an integrated study of petrological features, U-Pb zircon dating, in situ zircon Hf isotope and whole-rock geochemical compositions for the Abei, 4337 Highland and Kaladawan Plutons from north to south in the North Altun orogenic belt. The dating yielded magma crystallization ages of 514 Ma for the Abei Pluton, 494 Ma for the 4337 Highland Pluton and 480-460 Ma for the Kaladawan Pluton, suggesting that they are all products of oceanic slab subduction because of the age constraint. The Abei monzogranites derived from the recycle of Paleoproterozoic continental crust under low-pressure and high-temperature conditions are products of subduction initiation. The 4337 Highland granodiorites have some adakitic geochemical signatures and are sourced from partial melting of thickened mafic lower continental crust. The Kaladawan quartz diorites are produced by partial melting of mantle wedge according to the positive εHf(t) values, and the Kaladawan monzogranite-syenogranite are derived from partial melting of Neoproterozoic continental crust mixing the juvenile underplated mafic material from the depleted mantle. These results, together with existing data, provide significant information about the evolution history of oceanic crust subduction during the 520-460 Ma. The initiation of subduction occurred during 520-500 Ma with formation of Abei Pluton; subsequent transition from steep-angle to flat-slab subduction at ca.500 Ma due to the arrival of buoyant oceanic plateaus, which induces the formation of 4337 Highland Pluton. With ongoing subduction, the steep-angle subduction system is reestablished to cause the formation of 480-460 Ma Kaladawan Pluton. Meanwhile, it is this model that account for the temporal-spatial distribution of these early

  20. 3D Architecture of Trabecular Bone in the Pig Mandible and Femur: Inter-Trabecular Angle Distributions.

    Science.gov (United States)

    Ben-Zvi, Yehonatan; Reznikov, Natalie; Shahar, Ron; Weiner, Steve

    2017-09-01

    Cancellous bone is an intricate network of interconnected trabeculae, to which analysis of network topology can be applied. The inter-trabecular angle (ITA) analysis - an analysis of network topological parameters and regularity of network-forming nodes, was previously carried out on human proximal femora and showed that trabecular bone follows two main principles: sparsity of the network connectedness (prevalence of nodes with low connectivity in the network) and maximal space spanning (angular offset of connected elements is maximal for their number and approximates the values of geometrically symmetric shapes). These observations suggest that 3D organization of trabecular bone, irrespective of size and shape of individual elements, reflects a tradeoff between minimal metabolic cost of maintenance and maximal network stability under conditions of multidirectional loading. In this study we validate the ITA application using additional 3D structures (cork and 3D-printed metal lattices), analyze the ITA parameters in porcine proximal femora and mandibles and carry out a spatial analysis of the most common node type in the porcine mandibular condyle. The validation shows that the ITA application reliably detects designed or evolved topological parameters. The ITA parameters of porcine trabecular bones are similar to those of human bones. We demonstrate functional adaptation in the pig mandibular condyle by showing that the planar nodes with 3 edges are preferentially aligned in relation to the muscle forces that are applied to the condyle. We conclude that the ITA topological parameters are remarkable conserved, but locally do adapt to applied stresses.

  1. Closed-form solution for the Wigner phase-space distribution function for diffuse reflection and small-angle scattering in a random medium.

    Science.gov (United States)

    Yura, H T; Thrane, L; Andersen, P E

    2000-12-01

    Within the paraxial approximation, a closed-form solution for the Wigner phase-space distribution function is derived for diffuse reflection and small-angle scattering in a random medium. This solution is based on the extended Huygens-Fresnel principle for the optical field, which is widely used in studies of wave propagation through random media. The results are general in that they apply to both an arbitrary small-angle volume scattering function, and arbitrary (real) ABCD optical systems. Furthermore, they are valid in both the single- and multiple-scattering regimes. Some general features of the Wigner phase-space distribution function are discussed, and analytic results are obtained for various types of scattering functions in the asymptotic limit s > 1, where s is the optical depth. In particular, explicit results are presented for optical coherence tomography (OCT) systems. On this basis, a novel way of creating OCT images based on measurements of the momentum width of the Wigner phase-space distribution is suggested, and the advantage over conventional OCT images is discussed. Because all previous published studies regarding the Wigner function are carried out in the transmission geometry, it is important to note that the extended Huygens-Fresnel principle and the ABCD matrix formalism may be used successfully to describe this geometry (within the paraxial approximation). Therefore for completeness we present in an appendix the general closed-form solution for the Wigner phase-space distribution function in ABCD paraxial optical systems for direct propagation through random media, and in a second appendix absorption effects are included.

  2. Scoliosis angle

    International Nuclear Information System (INIS)

    Marklund, T.

    1978-01-01

    The most commonly used methods of assessing the scoliotic deviation measure angles that are not clearly defined in relation to the anatomy of the patient. In order to give an anatomic basis for such measurements it is proposed to define the scoliotic deviation as the deviation the vertebral column makes with the sagittal plane. Both the Cobb and the Ferguson angles may be based on this definition. The present methods of measurement are then attempts to measure these angles. If the plane of these angles is parallel to the film, the measurement will be correct. Errors in the measurements may be incurred by the projection. A hypothetical projection, called a 'rectified orthogonal projection', is presented, which correctly represents all scoliotic angles in accordance with these principles. It can be constructed in practice with the aid of a computer and by performing measurements on two projections of the vertebral column; a scoliotic curve can be represented independent of the kyphosis and lordosis. (Auth.)

  3. The influence of cathode excavation of cathodic arc evaporator on thickness uniformity and erosion products angle distribution

    Directory of Open Access Journals (Sweden)

    D. V. Duhopel'nikov

    2014-01-01

    Full Text Available Cathodic arc evaporators are used for coating with functional films. Prolonged or buttend evaporators may be used for this purposes. In butt-end evaporator the cathode spots move continuously on the cathode work surface and evaporate cathode material. High depth excavation profile forms on the cathode work surface while the thick coating precipitation (tens or hundreds of microns. The cathode excavation profile is shaped like a “cup” with high walls for electrostatic discharge stabilization systems with axial magnetic fields. Cathode spots move on the bottom of the “cup”. It is very likely that high “cup” walls are formed as a result of lasting work time influence on the uniformity of precipitated films.In the present work the influence of excavation profile walls height on the uniformity of precipitated coating was carried out. The high profile walls are formed due to lasting work of DC vacuum arc evaporator. The cathode material used for tests was 3003 aluminum alloy. The extended substrate was placed parallel to the cathode work surface. Thickness distribution along the substrate length with the new cathode was obtained after 6 hours and after 12 hours of continuous operation.The thickness distribution of precipitated coating showed that the cathode excavation has an influence on the angular distribution of the matter escaping the cathode. It can be clearly seen from the normalized dependence coating thickness vs the distance from the substrate center. Also the angular distribution of the matter flow from the cathode depending on the cathode working time was obtained. It was shown that matter flow from the cathode differs from the LambertKnudsen law. The more the cathode excavation the more this difference.So, cathode excavation profile has an influence on the uniformity of precipitated coating and it is necessary to take in account the cathode excavation profile while coating the thick films.

  4. Anisotropic pitch angle distribution of ~100 keV microburst electrons in the loss cone: measurements from STSAT-1

    Directory of Open Access Journals (Sweden)

    J. J. Lee

    2012-11-01

    Full Text Available Electron microburst energy spectra in the range of 170 keV to 360 keV have been measured using two solid-state detectors onboard the low-altitude (680 km, polar-orbiting Korean STSAT-1 (Science and Technology SATellite-1. Applying a unique capability of the spacecraft attitude control system, microburst energy spectra have been accurately resolved into two components: perpendicular to and parallel to the geomagnetic field direction. The former measures trapped electrons and the latter those electrons with pitch angles in the loss cone and precipitating into atmosphere. It is found that the perpendicular component energy spectra are harder than the parallel component and the loss cone is not completely filled by the electrons in the energy range of 170 keV to 360 keV. These results have been modeled assuming a wave-particle cyclotron resonance mechanism, where higher energy electrons travelling within a magnetic flux tube interact with whistler mode waves at higher latitudes (lower altitudes. Our results suggest that because higher energy (relativistic microbursts do not fill the loss cone completely, only a small portion of electrons is able to reach low altitude (~100 km atmosphere. Thus assuming that low energy microbursts and relativistic microbursts are created by cyclotron resonance with chorus elements (but at different locations, the low energy portion of the microburst spectrum will dominate at low altitudes. This explains why relativistic microbursts have not been observed by balloon experiments, which typically float at altitudes of ~30 km and measure only X-ray flux produced by collisions between neutral atmospheric particles and precipitating electrons.

  5. 3D Architecture of Trabecular Bone in the Pig Mandible and Femur: Inter-Trabecular Angle Distributions

    Directory of Open Access Journals (Sweden)

    Yehonatan Ben-Zvi

    2017-09-01

    Full Text Available Cancellous bone is an intricate network of interconnected trabeculae, to which analysis of network topology can be applied. The inter-trabecular angle (ITA analysis—an analysis of network topological parameters and regularity of network-forming nodes—was previously carried out on human proximal femora and showed that trabecular bone follows two main principles: sparsity of the network connectedness (prevalence of nodes with low connectivity in the network and maximal space spanning (angular offset of connected elements is maximal for their number and approximates the values of geometrically symmetric shapes. These observations suggest that 3D organization of trabecular bone, irrespective of size and shape of individual elements, reflects a tradeoff between minimal metabolic cost of maintenance and maximal network stability under conditions of multidirectional loading. In this study, we validate the ITA application using additional 3D structures (cork and 3D-printed metal lattices, analyze the ITA parameters in porcine proximal femora and mandibles, and carry out a spatial analysis of the most common node type in the porcine mandibular condyle. The validation shows that the ITA application reliably detects designed or evolved topological parameters. The ITA parameters of porcine trabecular bones are similar to those of human bones. We demonstrate functional adaptation in the pig mandibular condyle by showing that the planar nodes with three edges are preferentially aligned in relation to the muscle forces that are applied to the condyle. We conclude that the ITA topological parameters are remarkably conserved, but locally do adapt to applied stresses.

  6. Evolution equation for the higher-twist B-meson distribution amplitude

    International Nuclear Information System (INIS)

    Braun, V.M.; Offen, N.; Manashov, A.N.; Regensburg Univ.; Sankt-Petersburg State Univ.

    2015-07-01

    We find that the evolution equation for the three-particle quark-gluon B-meson light-cone distribution amplitude (DA) of subleading twist is completely integrable in the large N c limit and can be solved exactly. The lowest anomalous dimension is separated from the remaining, continuous, spectrum by a finite gap. The corresponding eigenfunction coincides with the contribution of quark-gluon states to the two-particle DA φ - (ω) so that the evolution equation for the latter is the same as for the leading-twist DA φ + (ω) up to a constant shift in the anomalous dimension. Thus, ''genuine'' three-particle states that belong to the continuous spectrum effectively decouple from φ - (ω) to the leading-order accuracy. In turn, the scale dependence of the full three-particle DA turns out to be nontrivial so that the contribution with the lowest anomalous dimension does not become leading at any scale. The results are illustrated on a simple model that can be used in studies of 1/m b corrections to heavy-meson decays in the framework of QCD factorization or light-cone sum rules.

  7. Wine evolution and spatial distribution of oxygen during storage in high-density polyethylene tanks.

    Science.gov (United States)

    del Alamo-Sanza, María; Laurie, V Felipe; Nevares, Ignacio

    2015-04-01

    Porous plastic tanks are permeable to oxygen due to the nature of the polymers with which they are manufactured. In the wine industry, these types of tanks are used mainly for storing wine surpluses. Lately, their use in combination with oak pieces has also been proposed as an alternative to mimic traditional barrel ageing. In this study, the spatial distribution of dissolved oxygen in a wine-like model solution, and the oxygen transfer rate (OTR) of high-density polyethylene tanks (HDPE), was analysed by means of a non-invasive opto-luminescence detector. Also, the chemical and sensory evolution of red wine, treated with oak pieces, and stored in HDPE tanks was examined and compared against traditional oak barrel ageing. The average OTR calculated for these tanks was within the commonly accepted amounts reported for new barrels. With regards to wine evolution, a number of compositional and sensory differences were observed between the wines aged in oak barrels and those stored in HDPE tanks with oak barrel alternatives. The use of HDPE tanks in combination with oak wood alternatives is a viable alternative too for ageing wine. © 2014 Society of Chemical Industry.

  8. Evolution of the ATLAS PanDA Production and Distributed Analysis System

    International Nuclear Information System (INIS)

    Maeno, T; Wenaus, T; Fine, V; Potekhin, M; Panitkin, S; De, K; Nilsson, P; Stradling, A; Walker, R; Compostella, G

    2012-01-01

    The PanDA (Production and Distributed Analysis) system has been developed to meet ATLAS production and analysis requirements for a data-driven workload management system capable of operating at LHC data processing scale. PanDA has performed well with high reliability and robustness during the two years of LHC data-taking, while being actively evolved to meet the rapidly changing requirements for analysis use cases. We will present an overview of system evolution including automatic rebrokerage and reattempt for analysis jobs, adaptation for the CernVM File System, support for the multi-cloud model through which Tier-2 sites act as members of multiple clouds, pledged resource management and preferential brokerage, and monitoring improvements. We will also describe results from the analysis of two years of PanDA usage statistics, current issues, and plans for the future.

  9. On the distribution of interspecies correlation for Markov models of character evolution on Yule trees.

    Science.gov (United States)

    Mulder, Willem H; Crawford, Forrest W

    2015-01-07

    Efforts to reconstruct phylogenetic trees and understand evolutionary processes depend fundamentally on stochastic models of speciation and mutation. The simplest continuous-time model for speciation in phylogenetic trees is the Yule process, in which new species are "born" from existing lineages at a constant rate. Recent work has illuminated some of the structural properties of Yule trees, but it remains mostly unknown how these properties affect sequence and trait patterns observed at the tips of the phylogenetic tree. Understanding the interplay between speciation and mutation under simple models of evolution is essential for deriving valid phylogenetic inference methods and gives insight into the optimal design of phylogenetic studies. In this work, we derive the probability distribution of interspecies covariance under Brownian motion and Ornstein-Uhlenbeck models of phenotypic change on a Yule tree. We compute the probability distribution of the number of mutations shared between two randomly chosen taxa in a Yule tree under discrete Markov mutation models. Our results suggest summary measures of phylogenetic information content, illuminate the correlation between site patterns in sequences or traits of related organisms, and provide heuristics for experimental design and reconstruction of phylogenetic trees. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Distribution and evolution of electrons in a cluster plasma created by a laser pulse

    International Nuclear Information System (INIS)

    Smirnov, M.B.

    2003-01-01

    We analyze the properties and the character of the evolution of an electron subsystem of a large cluster (with a number of atoms n ∼ 10 4 -10 6 ) interacting with a short laser pulse of high intensity (10 17 -10 19 W/cm 2 ). As a result of ionization in a strong laser field, cluster atoms are converted into multicharged ions, part of the electrons being formed leaves the cluster, and the other electrons move in a self-consistent field of the charged cluster and the laser wave. It is shown that electron-electron collisions are inessential both during the cluster irradiation by the laser pulse and in the course of cluster expansion; the electron distribution in the cluster therefore does not transform into the Maxwell distribution even during cluster expansion. During cluster expansion, the Coulomb field of a cluster charge acts on cluster ions more strongly than the pressure resulting from electron-ion collisions. In addition, bound electrons remain inside the cluster in the course of its expansion, and cluster expansion therefore does not lead to additional cluster ionization

  11. Asteroid age distributions determined by space weathering and collisional evolution models

    Science.gov (United States)

    Willman, Mark; Jedicke, Robert

    2011-01-01

    We provide evidence of consistency between the dynamical evolution of main belt asteroids and their color evolution due to space weathering. The dynamical age of an asteroid's surface (Bottke, W.F., Durda, D.D., Nesvorný, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H. [2005]. Icarus 175 (1), 111-140; Nesvorný, D., Jedicke, R., Whiteley, R.J., Ivezić, Ž. [2005]. Icarus 173, 132-152) is the time since its last catastrophic disruption event which is a function of the object's diameter. The age of an S-complex asteroid's surface may also be determined from its color using a space weathering model (e.g. Willman, M., Jedicke, R., Moskovitz, N., Nesvorný, D., Vokrouhlický, D., Mothé-Diniz, T. [2010]. Icarus 208, 758-772; Jedicke, R., Nesvorný, D., Whiteley, R.J., Ivezić, Ž., Jurić, M. [2004]. Nature 429, 275-277; Willman, M., Jedicke, R., Nesvorny, D., Moskovitz, N., Ivezić, Ž., Fevig, R. [2008]. Icarus 195, 663-673. We used a sample of 95 S-complex asteroids from SMASS and obtained their absolute magnitudes and u, g, r, i, z filter magnitudes from SDSS. The absolute magnitudes yield a size-derived age distribution. The u, g, r, i, z filter magnitudes lead to the principal component color which yields a color-derived age distribution by inverting our color-age relationship, an enhanced version of the 'dual τ' space weathering model of Willman et al. (2010). We fit the size-age distribution to the enhanced dual τ model and found characteristic weathering and gardening times of τw = 2050 ± 80 Myr and τg=4400-500+700Myr respectively. The fit also suggests an initial principal component color of -0.05 ± 0.01 for fresh asteroid surface with a maximum possible change of the probable color due to weathering of Δ PC = 1.34 ± 0.04. Our predicted color of fresh asteroid surface matches the color of fresh ordinary chondritic surface of PC1 = 0.17 ± 0.39.

  12. Study of solid chemical evolution in torrefaction of different biomasses through solid-state "1"3C cross-polarization/magic angle spinning NMR (nuclear magnetic resonance) and TGA (thermogravimetric analysis)

    International Nuclear Information System (INIS)

    Rodriguez Alonso, Elvira; Dupont, Capucine; Heux, Laurent; Da Silva Perez, Denilson; Commandre, Jean-Michel; Gourdon, Christophe

    2016-01-01

    The objective of this work is to compare mass loss and chemical evolution of the solid phase, versus time, during dynamic torrefaction of different types of biomass. For this purpose, two experiments, ThermoGravimetric Analysis and solid-state "1"3C Cross-Polarization/Magic Angle Spinning Nuclear Magnetic Resonance, were run on four representative biomasses. Overall mass loss and chemical evolution of the solid phase were followed, respectively, as a function of temperature and time. Thanks to this coupled information, it was shown that the knowledge of both solid mass loss and chemical evolution is necessary to characterize torrefaction severity. Moreover, biomasses containing higher proportions of xylan lost mass faster than those containing lower proportions. Lignin showed a protecting role towards cellulose, which would lead to a faster degradation of non-woody biomasses in comparison with woody biomasses. Three parameters would have an influence on solid chemical evolution during torrefaction: xylan content in hemicellulose, lignin content in biomass, and cellulose crystallinity. - Highlights: • Torrefaction of four biomasses was studied with TGA and solid-state NMR. • Both solid mass loss and chemical evolution characterize torrefaction severity. • Biomasses containing a higher proportion of xylan lose mass faster. • Lignin shows a stronger protecting role in degradation of woody biomasses. • Xylan, lignin and crystalline cellulose values influence solid chemical evolution.

  13. Monte Carlo simulation of electron depth distribution and backscattering for carbon films deposited on aluminium as a function of incidence angle and primary energy

    Science.gov (United States)

    Dapor, Maurizio

    2005-01-01

    Carbon films are deposited on various substrates (polymers, polyester fabrics, polyester yarns, metal alloys) both for experimental and technological motivations (medical devices, biocompatible coatings, food package and so on). Computational studies of the penetration of electron beams in supported thin film of carbon are very useful in order to compare the simulated results with analytical techniques data (obtained by scanning electron microscopy and/or Auger electron spectroscopy) and investigate the film characteristics. In the present paper, the few keV electron depth distribution and backscattering coefficient for the special case of film of carbon deposited on aluminium are investigated, by a Monte Carlo simulation, as a function of the incidence angle and primary electron energy. The simulated results can be used as a way to evaluate the carbon film thickness by a set of measurements of the backscattering coefficient.

  14. Atom and carrier depth distributions for 300 keV arsenic channeled in the of silicon as a function of alignment angle and ion fluence

    International Nuclear Information System (INIS)

    Wilson, R.G.

    1980-01-01

    Depth distributions of As atoms measured by SIMS, and of associated carriers measured by differential C-V, both give a measured most probable channeling range Rsub(c) of 3.35 to 3.40 μm for 300 keV As ions implanted in the of Si, aligned within approximately 0.05 deg (proper or axial channeling). The As ion fluences used were 3.0 x 10 13 and 1.0 x 10 14 , and 1.5 x 10 12 cm -2 , for the SIMS and C-V, respectively, and the lowest atom and carrier densities measured in the profiles were 1 x 10 15 and 1 x 10 14 cm -3 , respectively. The maximum or saturated As density measured at Rsub(c) was approximately 1.5 x 10 16 cm -3 . The depth distribution for 0.50 deg misalignment from the differed only slightly, probably within the experimental measurement reproducibility, and the Rsub(c) was still approximately 3.4 μm. Atom and carrier depth distributions are also shown for misalignment angles of 1.0 and 2.0 deg from the of Si and are significantly degraded. Comparison of the SIMS profiles shows that channeling has saturated by the time an ion fluence of 3 x 10 13 cm -2 is reached. No significant redistribution of channeled As atoms occurs upon annealing at 800 0 C for 30 min. (author)

  15. Q(n) species distribution in K2O.2SiO2 glass by 29Si magic angle flipping NMR.

    Science.gov (United States)

    Davis, Michael C; Kaseman, Derrick C; Parvani, Sahar M; Sanders, Kevin J; Grandinetti, Philip J; Massiot, Dominique; Florian, Pierre

    2010-05-06

    Two-dimensional magic angle flipping (MAF) was employed to measure the Q((n)) distribution in a (29)Si-enriched potassium disilicate glass (K(2)O.2SiO(2)). Relative concentrations of [Q((4))] = 7.2 +/- 0.3%, [Q((3))] = 82.9 +/- 0.1%, and [Q((2))] = 9.8 +/- 0.6% were obtained. Using the thermodynamic model for Q((n)) species disproportionation, these relative concentrations yield an equilibrium constant k(3) = 0.0103 +/- 0.0008, indicating, as expected, that the Q((n)) species distribution is close to binary in the potassium disilicate glass. A Gaussian distribution of isotropic chemical shifts was observed for each Q((n)) species with mean values of -82.74 +/- 0.03, -91.32 +/- 0.01, and -101.67 +/- 0.02 ppm and standard deviations of 3.27 +/- 0.03, 4.19 +/- 0.01, and 5.09 +/- 0.03 ppm for Q((2)), Q((3)), and Q((4)), respectively. Additionally, nuclear shielding anisotropy values of zeta =-85.0 +/- 1.3 ppm, eta = 0.48 +/- 0.02 for Q((2)) and zeta = -74.9 +/- 0.2 ppm, eta = 0.03 +/- 0.01 for Q((3)) were observed in the potassium disilicate glass.

  16. EVOLUTION OF DARK MATTER PHASE-SPACE DENSITY DISTRIBUTIONS IN EQUAL-MASS HALO MERGERS

    International Nuclear Information System (INIS)

    Vass, Ileana M.; Kazanzidis, Stelios; Valluri, Monica; Kravtsov, Andrey V.

    2009-01-01

    We use dissipationless N-body simulations to investigate the evolution of the true coarse-grained phase-space density distribution f(x, v) in equal-mass mergers between dark matter (DM) halos. The halo models are constructed with various asymptotic power-law indices ρ ∝ r -γ ranging from steep cusps to core-like profiles and we employ the phase-space density estimator 'EnBid' developed by Sharma and Steinmetz to compute f(x, v). The adopted force resolution allows robust phase-space density profile estimates in the inner ∼1% of the virial radii of the simulated systems. We confirm that merger events result in a decrease of the coarse-grained phase-space density in accordance with expectations from Mixing Theorems for collisionless systems. We demonstrate that binary mergers between identical DM halos produce remnants that retain excellent memories of the inner slopes and overall shapes of the phase-space density distribution of their progenitors. The robustness of the phase-space density profiles holds for a range of orbital energies, and a variety of encounter configurations including sequences of several consecutive merger events, designed to mimic hierarchical merging, and collisions occurring at different cosmological epochs. If the progenitor halos are constructed with appreciably different asymptotic power-law indices, we find that the inner slope and overall shape of the phase-space density distribution of the remnant are substantially closer to that of the initial system with the steepest central density cusp. These results explicitly demonstrate that mixing is incomplete in equal-mass mergers between DM halos, as it does not erase memory of the progenitor properties. Our results also confirm the recent analytical predictions of Dehnen regarding the preservation of merging self-gravitating central density cusps.

  17. Seasonal evolution of the Arctic marginal ice zone and its power-law obeying floe size distribution

    Science.gov (United States)

    Zhang, J.; Stern, H. L., III; Schweiger, A. J. B.; Steele, M.; Hwang, P. B.

    2017-12-01

    A thickness, floe size, and enthalpy distribution (TFED) sea ice model, implemented numerically into the Pan-arctic Ice-Ocean Modeling and Assimilation System (PIOMAS), is used to investigate the seasonal evolution of the Arctic marginal ice zone (MIZ) and its floe size distribution. The TFED sea ice model, by coupling the Zhang et al. [2015] sea ice floe size distribution (FSD) theory with the Thorndike et al. [1975] ice thickness distribution (ITD) theory, simulates 12-category FSD and ITD explicitly and jointly. A range of ice thickness and floe size observations were used for model calibration and validation. The model creates FSDs that generally obey a power law or upper truncated power law, as observed by satellites and aerial surveys. In this study, we will examine the role of ice fragmentation and lateral melting in altering FSDs in the Arctic MIZ. We will also investigate how changes in FSD impact the seasonal evolution of the MIZ by modifying the thermodynamic processes.

  18. A revisited Johnson-Mehl-Avrami-Kolmogorov model and the evolution of grain-size distributions in steel

    OpenAIRE

    Hömberg, D.; Patacchini, F. S.; Sakamoto, K.; Zimmer, J.

    2016-01-01

    The classical Johnson-Mehl-Avrami-Kolmogorov approach for nucleation and growth models of diffusive phase transitions is revisited and applied to model the growth of ferrite in multiphase steels. For the prediction of mechanical properties of such steels, a deeper knowledge of the grain structure is essential. To this end, a Fokker-Planck evolution law for the volume distribution of ferrite grains is developed and shown to exhibit a log-normally distributed solution. Numerical parameter studi...

  19. Angle Resolved Photoemission Spectroscopy Studies of the Mott Insulator to Superconductor Evolution in Ca2-xNaxCuO2Cl2

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Kyle Michael

    2005-09-02

    It is widely believed that many of the exotic physical properties of the high-T{sub c} cuprate superconductors arise from the proximity of these materials to the strongly correlated, antiferromagnetic Mott insulating state. Therefore, one of the fundamental questions in the field of high-temperature superconductivity is to understand the insulator-to-superconductor transition and precisely how the electronic structure of Mott insulator evolves as the first holes are doped into the system. This dissertation presents high-resolution, doping dependent angle-resolved photoemission (ARPES) studies of the cuprate superconductor Ca{sub 2-x}Na{sub x}CuO{sub 2}Cl{sub 2}, spanning from the undoped parent Mott insulator to a high-temperature superconductor with a T{sub c} of 22 K. A phenomenological model is proposed to explain how the spectral lineshape, the quasiparticle band dispersion, and the chemical potential all progress with doping in a logical and self-consistent framework. This model is based on Franck-Condon broadening observed in polaronic systems where strong electron-boson interactions cause the quasiparticle residue, Z, to be vanishingly small. Comparisons of the low-lying states to different electronic states in the valence band strongly suggest that the coupling of the photohole to the lattice (i.e. lattice polaron formation) is the dominant broadening mechanism for the lower Hubbard band states. Combining this polaronic framework with high-resolution ARPES measurements finally provides a resolution to the long-standing controversy over the behavior of the chemical potential in the high-T{sub c} cuprates. This scenario arises from replacing the conventional Fermi liquid quasiparticle interpretation of the features in the Mott insulator by a Franck-Condon model, allowing the reassignment of the position of the quasiparticle pole. As a function of hole doping, the chemical potential shifts smoothly into the valence band while spectral weight is transferred

  20. Influence of initial heterogeneities and recharge limitations on the evolution of aperture distributions in carbonate aquifers

    Directory of Open Access Journals (Sweden)

    B. Hubinger

    2011-12-01

    Full Text Available Karst aquifers evolve where the dissolution of soluble rocks causes the enlargement of discrete pathways along fractures or bedding planes, thus creating highly conductive solution conduits. To identify general interrelations between hydrogeological conditions and the properties of the evolving conduit systems the aperture-size frequency distributions resulting from generic models of conduit evolution are analysed. For this purpose, a process-based numerical model coupling flow and rock dissolution is employed. Initial protoconduits are represented by tubes with log-normally distributed aperture sizes with a mean μ0 = 0.5 mm for the logarithm of the diameters. Apertures are spatially uncorrelated and widen up to the metre range due to dissolution by chemically aggressive waters. Several examples of conduit development are examined focussing on influences of the initial heterogeneity and the available amount of recharge. If the available recharge is sufficiently high the evolving conduits compete for flow and those with large apertures and high hydraulic gradients attract more and more water. As a consequence, the positive feedback between increasing flow and dissolution causes the breakthrough of a conduit pathway connecting the recharge and discharge sides of the modelling domain. Under these competitive flow conditions dynamically stable bimodal aperture distributions are found to evolve, i.e. a certain percentage of tubes continues to be enlarged while the remaining tubes stay small-sized. The percentage of strongly widened tubes is found to be independent of the breakthrough time and decreases with increasing heterogeneity of the initial apertures and decreasing amount of available water. If the competition for flow is suppressed because the availability of water is strongly limited breakthrough of a conduit pathway is inhibited and the conduit pathways widen very slowly. The resulting aperture distributions are found to be

  1. Diversification Rates and the Evolution of Species Range Size Frequency Distribution

    Directory of Open Access Journals (Sweden)

    Silvia Castiglione

    2017-11-01

    Full Text Available The geographic range sizes frequency distribution (RFD within clades is typically right-skewed with untransformed data, and bell-shaped or slightly left-skewed under the log-transformation. This means that most species within clades occupy diminutive ranges, whereas just a few species are truly widespread. A number of ecological and evolutionary explanations have been proposed to account for this pattern. Among the latter, much attention has been given to the issue of how extinction and speciation probabilities influence RFD. Numerous accounts now convincingly demonstrate that extinction rate decreases with range size, both in living and extinct taxa. The relationship between range size and speciation rate, though, is much less obvious, with either small or large ranged species being proposed to originate more daughter taxa. Herein, we used a large fossil database including 21 animal clades and more than 80,000 fossil occurrences distributed over more than 400 million years of marine metazoans (exclusive of vertebrates evolution, to test the relationship between extinction rate, speciation rate, and range size. As expected, we found that extinction rate almost linearly decreases with range size. In contrast, speciation rate peaks at the large (but not the largest end of the range size spectrum. This is consistent with the peripheral isolation mode of allopatric speciation being the main mechanism of species origination. The huge variation in phylogeny, fossilization potential, time of fossilization, and the overarching effect of mass extinctions suggest caution must be posed at generalizing our results, as individual clades may deviate significantly from the general pattern.

  2. Geographical distribution and evolution of deaths in hospitals in Spain, 1996-2015.

    Science.gov (United States)

    Jiménez-Puente, A; García Alegría, J

    2018-05-05

    The location where death occurs varies widely among societies. The aim of this study was to describe the evolution in the hospital mortality rate (HMR) in Spain over the course of 20years and its distribution by province during a more recent period and to explore its relationship with potential explanatory variables. This was an ecological study. The population mortality rates were obtained from the Natural Population Movement (Movimiento Natural de la Población), and the hospital mortality rates were obtained from the Specialised Care Information System (Sistema de Información en Atención Especializada), which includes information from all hospitals in Spain. We calculated the mortality rates for patients who were not surveyed and the HMR at the national level between 1996 and 2015 and for provinces between 2013 and 2015. The relationship between the provincial distribution of HMR and various demographic, socioeconomic and healthcare variables were analysed through simple and multiple linear regression. The HMR in Spain increased from 49% in 1996 to 56% in 2007, having remained stable from 1996 to 2015. The variation among provinces was 40% to 70%. The multivariate analysis showed a higher HMR in the less rural provinces and in those with a larger availability of hospital beds. There is considerable provincial heterogeneity in Spain in terms of the probability of dying in hospital or at home. This result could be partly explained by demographics (percentage of rural population) and the healthcare structure (number of hospital beds per population). Copyright © 2018 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  3. Cyclotide Evolution: Insights from the Analyses of Their Precursor Sequences, Structures and Distribution in Violets (Viola

    Directory of Open Access Journals (Sweden)

    Sungkyu Park

    2017-12-01

    Full Text Available Cyclotides are a family of plant proteins that are characterized by a cyclic backbone and a knotted disulfide topology. Their cyclic cystine knot (CCK motif makes them exceptionally resistant to thermal, chemical, and enzymatic degradation. By disrupting cell membranes, the cyclotides function as host defense peptides by exhibiting insecticidal, anthelmintic, antifouling, and molluscicidal activities. In this work, we provide the first insight into the evolution of this family of plant proteins by studying the Violaceae, in particular species of the genus Viola. We discovered 157 novel precursor sequences by the transcriptomic analysis of six Viola species: V. albida var. takahashii, V. mandshurica, V. orientalis, V. verecunda, V. acuminata, and V. canadensis. By combining these precursor sequences with the phylogenetic classification of Viola, we infer the distribution of cyclotides across 63% of the species in the genus (i.e., ~380 species. Using full precursor sequences from transcriptomes, we show an evolutionary link to the structural diversity of the cyclotides, and further classify the cyclotides by sequence signatures from the non-cyclotide domain. Also, transcriptomes were compared to cyclotide expression on a peptide level determined using liquid chromatography-mass spectrometry. Furthermore, the novel cyclotides discovered were associated with the emergence of new biological functions.

  4. Revisiting the theory of the evolution of pick-up ion distributions: magnetic or adiabatic cooling?

    Directory of Open Access Journals (Sweden)

    H. J. Fahr

    2007-01-01

    Full Text Available We study the phasespace behaviour of heliospheric pick-up ions after the time of their injection as newly created ions into the solar wind bulk flow from either charge exchange or photoionization of interplanetary neutral atoms. As interaction with the ambient MHD wave fields we allow for rapid pitch angle diffusion, but for the beginning of this paper we shall neglect the effect of quasilinear or nonlinear energy diffusion (Fermi-2 acceleration induced by counterflowing ambient waves. In the up-to-now literature connected with the convection of pick-up ions by the solar wind only adiabatic cooling of these ions is considered which in the solar wind frame takes care of filling the gap between the injection energy and energies of the thermal bulk of solar wind ions. Here we reinvestigate the basics of the theory behind this assumption of adiabatic pick-up ion reactions and correlated predictions derived from it. We then compare it with the new assumption of a pure magnetic cooling of pick-up ions simply resulting from their being convected in an interplanetary magnetic field which decreases in magnitude with increase of solar distance. We compare the results for pick-up ion distribution functions derived along both ways and can point out essential differences of observational and diagnostic relevance. Furthermore we then include stochastic acceleration processes by wave-particle interactions. As we can show, magnetic cooling in conjunction with diffusive acceleration by wave-particle interaction allows for an unbroken power law with the unique power index γ=−5 beginning from lowest velocities up to highest energy particles of about 100 KeV which just marginally can be in resonance with magnetoacoustic turbulences. Consequences for the resulting pick-up ion pressures are also analysed.

  5. Revisiting the theory of the evolution of pick-up ion distributions: magnetic or adiabatic cooling?

    Directory of Open Access Journals (Sweden)

    H. J. Fahr

    2008-01-01

    Full Text Available We study the phasespace behaviour of heliospheric pick-up ions after the time of their injection as newly created ions into the solar wind bulk flow from either charge exchange or photoionization of interplanetary neutral atoms. As interaction with the ambient MHD wave fields we allow for rapid pitch angle diffusion, but for the beginning of this paper we shall neglect the effect of quasilinear or nonlinear energy diffusion (Fermi-2 acceleration induced by counterflowing ambient waves. In the up-to-now literature connected with the convection of pick-up ions by the solar wind only adiabatic cooling of these ions is considered which in the solar wind frame takes care of filling the gap between the injection energy and energies of the thermal bulk of solar wind ions. Here we reinvestigate the basics of the theory behind this assumption of adiabatic pick-up ion reactions and correlated predictions derived from it. We then compare it with the new assumption of a pure magnetic cooling of pick-up ions simply resulting from their being convected in an interplanetary magnetic field which decreases in magnitude with increase of solar distance. We compare the results for pick-up ion distribution functions derived along both ways and can point out essential differences of observational and diagnostic relevance. Furthermore we then include stochastic acceleration processes by wave-particle interactions. As we can show, magnetic cooling in conjunction with diffusive acceleration by wave-particle interaction allows for an unbroken power law with the unique power index γ=−5 beginning from lowest velocities up to highest energy particles of about 100 KeV which just marginally can be in resonance with magnetoacoustic turbulences. Consequences for the resulting pick-up ion pressures are also analysed.

  6. Search for the algorithm of genes distribution during the process of microbial evolution

    Science.gov (United States)

    Pikuta, Elena V.

    2015-09-01

    Previous two and three dimensional graph analysis of eco-physiological data of Archaea demonstrated specific geometry for distribution of major Prokaryotic groups in a hyperboloid function. The function of a two-sheet hyperboloid covered all known biological groups, and therefore, could be applied for the entire evolution of life on Earth. The vector of evolution was indicated from the point of hyper temperature, extreme acidity and low salinity to the point of low temperature and increased alkalinity and salinity. According to this vector, the following groups were chosen for the gene screening analysis. In the vector "High-Temperature → Low-Temperature" within extreme acidic pH (0-3), it is: 1) the hyperthermophilic Crenarchaeota - order Sulfolobales, 2) moderately thermophilic Euryarchaeota - Class Thermoplasmata, and 3) mesophilic acidophiles- genus Thiobacillus and others. In the vector "Low pH → High pH" the following groups were selected in three temperature ranges: a) Hyperthermophilic Archaea and Eubacteria, b) moderately thermophilic - representatives of the genera Anaerobacter and Anoxybacillus, and c) mesophilic haloalkaliphiles (Eubacteria and Archaea). The genes associated with acidophily (H+ pump), chemolitho-autotrophy (proteins of biochemichal cycles), polymerases, and histones were proposed for the first vector, and for the second vector the genes associated with halo-alkaliphily (Na+ pumps), enzymes of organotrophic metabolisms (sugar- and proteolytics), and others were indicated for the screening. Here, an introduction to the phylogenetic constant (ρη) is presented and discussed. This universal characteristic is calculated for two principally different life forms -Prokaryotes and Eukaryotes; Existence of the second type of living forms is impossible without the first one. The number of chromosomes in Prokaryotic organisms is limited to one (with very rare exceptions, to two), while in Eukaryotic organisms this number is larger. Currently

  7. Microstructural evolution in decomposition of amorphous Zr41Ti14Cu12.5Ni10Be22.5 alloy, as investigated by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Liu Junming; Hahn-Meitner-Inst. Berlin, Bereich, NM; Nanjing Univ.

    1997-01-01

    Small angle neutron scattering (SANS) has been applied to investigate decomposition kinetics and microstructural evolution in amorphous Zr 41 Ti 14 Cu 12.5 Ni 10 Be 22.5 . It is detected that immediately after the alloy is submitted into the supercooled liquid range, phase separation develops rapidly in the early stage, leaving a sluggish coarsening stage. The decomposed alloy finally achieves a roughly regular microstructure which consists of one particle-like supercooled liquid phase embedded in the similarly disordered matrix. The morphology of the particles as a function of time is evaluated, predicting a bar-like pattern. Strong temperature dependence of the phase separation is observed. (orig.)

  8. Evolution of uranium distribution and speciation in mill tailings, COMINAK Mine, Niger.

    Science.gov (United States)

    Déjeant, Adrien; Galoisy, Laurence; Roy, Régis; Calas, Georges; Boekhout, Flora; Phrommavanh, Vannapha; Descostes, Michael

    2016-03-01

    This study investigated the evolution of uranium distribution and speciation in mill tailings from the COMINAK mine (Niger), in production since 1978. A multi-scale approach was used, which combined high resolution remote sensing imagery, ICP-MS bulk rock analyses, powder X-ray diffraction, Scanning Electron Microscopy, Focused Ion Beam--Transmission Electron Microscopy and X-ray Absorption Near Edge Spectroscopy. Mineralogical analyses showed that some ore minerals, including residual uraninite and coffinite, undergo alteration and dissolution during tailings storage. The migration of uranium and other contaminants depends on (i) the chemical stability of secondary phases and sorbed species (dissolution and desorption processes), and (ii) the mechanical transport of fine particles bearing these elements. Uranium is stabilized after formation of secondary uranyl sulfates and phosphates, and adsorbed complexes on mineral surfaces (e.g. clay minerals). In particular, the stock of insoluble uranyl phosphates increases with time, thus contributing to the long-term stabilization of uranium. At the surface, a sulfate-cemented duricrust is formed after evaporation of pore water. This duricrust limits water infiltration and dust aerial dispersion, though it is enriched in uranium and many other elements, because of pore water rising from underlying levels by capillary action. Satellite images provided a detailed description of the tailings pile over time and allow monitoring of the chronology of successive tailings deposits. Satellite images suggest that uranium anomalies that occur at deep levels in the pile are most likely former surface duricrusts that have been buried under more recent tailings. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Two-Phase Exhumation of the Santa Rosa Mountains: Low- and High-Angle Normal Faulting During Initiation and Evolution of the Southern San Andreas Fault System

    Science.gov (United States)

    Mason, Cody C.; Spotila, James A.; Axen, Gary; Dorsey, Rebecca J.; Luther, Amy; Stockli, Daniel F.

    2017-12-01

    Low-angle detachment fault systems are important elements of oblique-divergent plate boundaries, yet the role detachment faulting plays in the development of such boundaries is poorly understood. The West Salton Detachment Fault (WSDF) is a major low-angle normal fault that formed coeval with localization of the Pacific-North America plate boundary in the northern Salton Trough, CA. Apatite U-Th/He thermochronometry (AHe; n = 29 samples) and thermal history modeling of samples from the Santa Rosa Mountains (SRM) reveal that initial exhumation along the WSDF began at circa 8 Ma, exhuming footwall material from depths of >2 to 3 km. An uplifted fossil (Miocene) helium partial retention zone is present in the eastern SRM, while a deeper crustal section has been exhumed along the Pleistocene high-angle Santa Rosa Fault (SFR) to much higher elevations in the southwest SRM. Detachment-related vertical exhumation rates in the SRM were 0.15-0.36 km/Myr, with maximum fault slip rates of 1.2-3.0 km/Myr. Miocene AHe isochrons across the SRM are consistent with northeast crustal tilting of the SRM block and suggest that the post-WSDF vertical exhumation rate along the SRF was 1.3 km/Myr. The timing of extension initiation in the Salton Trough suggests that clockwise rotation of relative plate motions that began at 8 Ma is associated with initiation of the southern San Andreas system. Pleistocene regional tectonic reorganization was contemporaneous with an abrupt transition from low- to high-angle faulting and indicates that local fault geometry may at times exert a fundamental control on rock uplift rates along strike-slip fault systems.

  10. THE INCLINATION ANGLE AND EVOLUTION OF THE BRAKING INDEX OF PULSARS WITH PLASMA-FILLED MAGNETOSPHERE: APPLICATION TO THE HIGH BRAKING INDEX OF PSR J1640–4631

    International Nuclear Information System (INIS)

    Ekşi, K. Y.; Andaç, I. C.; Çıkıntoğlu, S.; Motlagh, A. Vahdat; Gügercinoğlu, E.; Kızıltan, B.

    2016-01-01

    The recently discovered rotationally powered pulsar PSR J1640–4631 is the first to have a braking index measured, with high enough precision, that is greater than 3. An inclined magnetic rotator in vacuum or plasma would be subject not only to spin-down but also to an alignment torque. The vacuum model can address the braking index only for an almost orthogonal rotator, which is incompatible with the single-peaked pulse profile. The magnetic dipole model with the corotating plasma predicts braking indices between 3 and 3.25. We find that the braking index of 3.15 is consistent with two different inclination angles, 18.°5 ± 3° and 56° ± 4°. The smaller angle is preferred given that the pulse profile has a single peak and the radio output of the source is weak. We infer the change in the inclination angle to be at the rate −0.°23 per century, three times smaller in absolute value than the rate recently observed for the Crab pulsar.

  11. The general behavior of NLO unintegrated parton distributions based on the single-scale evolution and the angular ordering constraint

    International Nuclear Information System (INIS)

    Hosseinkhani, H.; Modarres, M.

    2011-01-01

    To overcome the complexity of generalized two hard scale (k t ,μ) evolution equation, well known as the Ciafaloni, Catani, Fiorani and Marchesini (CCFM) evolution equations, and calculate the unintegrated parton distribution functions (UPDF), Kimber, Martin and Ryskin (KMR) proposed a procedure based on (i) the inclusion of single-scale (μ) only at the last step of evolution and (ii) the angular ordering constraint (AOC) on the DGLAP terms (the DGLAP collinear approximation), to bring the second scale, k t into the UPDF evolution equations. In this work we intend to use the MSTW2008 (Martin et al.) parton distribution functions (PDF) and try to calculate UPDF for various values of x (the longitudinal fraction of parton momentum), μ (the probe scale) and k t (the parton transverse momentum) to see the general behavior of three-dimensional UPDF at the NLO level up to the LHC working energy scales (μ 2 ). It is shown that there exits some pronounced peaks for the three-dimensional UPDF(f a (x,k t )) with respect to the two variables x and k t at various energies (μ). These peaks get larger and move to larger values of k t , as the energy (μ) is increased. We hope these peaks could be detected in the LHC experiments at CERN and other laboratories in the less exclusive processes.

  12. The evolution and main determinants of productivity in Brazilian electricity distribution 1998-2005. An empirical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Real, Francisco Javier [Fac. CC. Economicas y Empresariales e IUDR - Universidad de La Laguna (ULL), Programa de investigacion Energia y Cambio Climatico Fedea-Abengoa (Spain); Tovar, Beatriz [Dpto. de Analisis Economico Aplicado y EIT - Universidad las Palmas de Gran Canaria (Spain); Iootty, Mariana [UFRRJ Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro (Brazil); De Almeida, Edmar Fagundes; Pinto, Helder Queiroz Jr. [IE-UFRJ Instituto de Economia - Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil)

    2009-03-15

    This paper estimates changes in the productivity of the Brazilian electricity distribution sector using Data Envelopment Analysis (DEA) on a panel of 18 firms from 1998 to 2005. The study decomposes the productivity change of these distribution firms in terms of technical efficiency, scale-efficiency and technical progress. This exercise aims to help the understanding of the main determinants of the evolution of productivity, focusing its relationship with the restructuring process implemented in the 1990s. TFP index records a yearly positive growth rate of 1.3% in the whole period under analysis for all firms. Technical change was the main component behind this evolution, with an average growth of 2.1% per year, while technical efficiency presented a yearly negative performance of - 0.8%. The results prove that, in general terms, the incentives generated in the reform process do not seem to have led the firms to behave in a more efficient manner. (author)

  13. Crab Cavity effects on transverse distribution evolution and tail cleaning in the HL-LHC

    CERN Document Server

    Baudrenghien, Philippe; Steeper, S; Tucker, D; Wieker, Devin; CERN. Geneva. ATS Department

    2018-01-01

    This work presents the transverse action and tune distribution evolution as a function of the Crab Cavity RF noise Power Spectral Density (PSD). In addition, it presents the potential for transverse tail cleaning through the deliberate injection of noise with an appropriate PSD. Such a procedure would be very beneficial since it would strongly reduce the transverse losses following a crab cavity trip, and could complement or substitute the electron lens approach.

  14. Agent-Based Modelling of the Evolution of the Russian Party System Based on Pareto and Hotelling Distributions. Part II

    Directory of Open Access Journals (Sweden)

    Владимир Геннадьевич Иванов

    2015-12-01

    Full Text Available The given article presents research of the evolution of the Russian party system. The chosen methodology is based on the heuristic potential of agent-based modelling. The author analyzes various scenarios of parties’ competition (applying Pareto distribution in connection with recent increase of the number of political parties. In addition, the author predicts the level of ideological diversity of the parties’ platforms (applying the principles of Hotelling distribution in order to evaluate their potential competitiveness in the struggle for voters.

  15. On the problem of time evolution of the particle distribution function in a high-temperature plasma

    International Nuclear Information System (INIS)

    Agaronyan, F.A.; Atoyan, A.M.

    1983-01-01

    Time evolution of a one-particle distribution function in nonrelativistic plasma is considered in the absence of an external field. A linear differential equation describing the high-energy part of the distribution function is derived. The approximated analytical solution to this equation yields thermalization time (maxwellization time) of particles in the energy range epsilon >> kT: tsub(epsilon) approximately 0.64 (epsilon/kT)sup(3/2)tsub(0), t 0 being relaxation time in the range of mean energies (epsilon approximately kT). The significance of the results is discussed on the example of γ-luminosity of accretion plasma around a black hole

  16. The evolution of biomass-burning aerosol size distributions due to coagulation: dependence on fire and meteorological details and parameterization

    Directory of Open Access Journals (Sweden)

    K. M. Sakamoto

    2016-06-01

    Full Text Available Biomass-burning aerosols have a significant effect on global and regional aerosol climate forcings. To model the magnitude of these effects accurately requires knowledge of the size distribution of the emitted and evolving aerosol particles. Current biomass-burning inventories do not include size distributions, and global and regional models generally assume a fixed size distribution from all biomass-burning emissions. However, biomass-burning size distributions evolve in the plume due to coagulation and net organic aerosol (OA evaporation or formation, and the plume processes occur on spacial scales smaller than global/regional-model grid boxes. The extent of this size-distribution evolution is dependent on a variety of factors relating to the emission source and atmospheric conditions. Therefore, accurately accounting for biomass-burning aerosol size in global models requires an effective aerosol size distribution that accounts for this sub-grid evolution and can be derived from available emission-inventory and meteorological parameters. In this paper, we perform a detailed investigation of the effects of coagulation on the aerosol size distribution in biomass-burning plumes. We compare the effect of coagulation to that of OA evaporation and formation. We develop coagulation-only parameterizations for effective biomass-burning size distributions using the SAM-TOMAS large-eddy simulation plume model. For the most-sophisticated parameterization, we use the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA to build a parameterization of the aged size distribution based on the SAM-TOMAS output and seven inputs: emission median dry diameter, emission distribution modal width, mass emissions flux, fire area, mean boundary-layer wind speed, plume mixing depth, and time/distance since emission. This parameterization was tested against an independent set of SAM-TOMAS simulations and yields R2 values of 0.83 and 0.89 for Dpm and modal width

  17. The evolution of biomass-burning aerosol size distributions due to coagulation: dependence on fire and meteorological details and parameterization

    Science.gov (United States)

    Sakamoto, Kimiko M.; Laing, James R.; Stevens, Robin G.; Jaffe, Daniel A.; Pierce, Jeffrey R.

    2016-06-01

    Biomass-burning aerosols have a significant effect on global and regional aerosol climate forcings. To model the magnitude of these effects accurately requires knowledge of the size distribution of the emitted and evolving aerosol particles. Current biomass-burning inventories do not include size distributions, and global and regional models generally assume a fixed size distribution from all biomass-burning emissions. However, biomass-burning size distributions evolve in the plume due to coagulation and net organic aerosol (OA) evaporation or formation, and the plume processes occur on spacial scales smaller than global/regional-model grid boxes. The extent of this size-distribution evolution is dependent on a variety of factors relating to the emission source and atmospheric conditions. Therefore, accurately accounting for biomass-burning aerosol size in global models requires an effective aerosol size distribution that accounts for this sub-grid evolution and can be derived from available emission-inventory and meteorological parameters. In this paper, we perform a detailed investigation of the effects of coagulation on the aerosol size distribution in biomass-burning plumes. We compare the effect of coagulation to that of OA evaporation and formation. We develop coagulation-only parameterizations for effective biomass-burning size distributions using the SAM-TOMAS large-eddy simulation plume model. For the most-sophisticated parameterization, we use the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) to build a parameterization of the aged size distribution based on the SAM-TOMAS output and seven inputs: emission median dry diameter, emission distribution modal width, mass emissions flux, fire area, mean boundary-layer wind speed, plume mixing depth, and time/distance since emission. This parameterization was tested against an independent set of SAM-TOMAS simulations and yields R2 values of 0.83 and 0.89 for Dpm and modal width, respectively. The

  18. On the spatial distribution and evolution of ultrafine particles in Barcelona

    Directory of Open Access Journals (Sweden)

    M. Dall'Osto

    2013-01-01

    Full Text Available Sources and evolution of ultrafine particles were investigated both horizontally and vertically in the large urban agglomerate of Barcelona, Spain. Within the SAPUSS project (Solving Aerosol Problems by Using Synergistic Strategies, a large number of instruments was deployed simultaneously at different monitoring sites (road, two urban background, regional background, urban tower 150 m a.s.l., urban background tower site 80 m a.s.l. during a 4 week period in September–October 2010. Particle number concentrations (N>5 nm are highly correlated with black carbon (BC at all sites only under strong vehicular traffic influences. By contrast, under cleaner atmospheric conditions (low condensation sink, CS such correlation diverges towards much higher N/BC ratios at all sites, indicating additional sources of particles including secondary production of freshly nucleated particles. Size-resolved aerosol distributions (N10–500 as well as particle number concentrations (N>5 nm allow us to identify three types of nucleation and growth events: (1 a regional type event originating in the whole study region and impacting almost simultaneously the urban city of Barcelona and the surrounding urban background area; (2 a regional type event impacting only the regional background area but not the urban agglomerate; (3 an urban type event which originates only within the city centre but whose growth continues while transported away from the city to the regional background. Furthermore, during these clean air days, higher N are found at tower level than at ground level only in the city centre whereas such a difference is not so pronounced at the remote urban background tower. In other words, this study suggests that the column of air above the city ground level possesses the optimal combination between low CS and high vapour source, hence enhancing the concentrations of freshly nucleated

  19. Evolution from the coplanar to the perpendicular plane geometry of helium (e,2e) differential cross sections symmetric in scattering angle and energy

    International Nuclear Information System (INIS)

    Murray, A.J.; Read, F.H.

    1993-01-01

    Experimentally determined differential cross sections are presented for the (e,2e) process in helium, in which the two outgoing electrons have the same energy and the same scattering angle with respect to the incident beam. At four incident energies from 20 to 50 eV above the ionization threshold the detection plane defined by the outgoing electrons was varied from being coplanar with the incident beam to being perpendicular to the beam. The differential cross section evolves from a two-peak structure in coplanar geometry to a three-peak structure in the perpendicular plane. At the lowest energy the forward-scattering coplanar peak is smaller than the backscatter peak, in contrast to the results at higher energies. A deep minimum is seen at an intermediate plane angle of 67.5 degree, this minimum being deepest at 40 eV above the ionization threshold. The results are normalized to an absolute scale using previous coplanar measurements as discussed in the text. The spectrometer used to collect these results is fully computer controlled and real-time computer optimized

  20. Numerical investigation on residual stress distribution and evolution during multipass narrow gap welding of thick-walled stainless steel pipes

    International Nuclear Information System (INIS)

    Liu, C.; Zhang, J.X.; Xue, C.B.

    2011-01-01

    Research highlights: → We performed pass-by-pass simulation of stresses for welding of thick-walled pipes. → The distributions and evolution of the residual stresses are demonstrated. → After the groove is filled to a height, the through-wall stress is almost unchanged. - Abstracts: The detailed pass-by-pass finite element (FE) simulation is presented to investigate the residual stresses in narrow gap multipass welding of pipes with a wall thickness of 70 mm and 73 weld passes. The simulated residual stress on the outer surface is validated with the experimental one. The distribution and evolution of the through-wall residual stresses are demonstrated. The investigated results show that the residual stresses on the outer and inner surfaces are tensile in the weld zone and its vicinity. The through-wall axial residual stresses at the weld center line and the HAZ line demonstrate a distribution of bending type. The through-wall hoop residual stress within the weld is mostly tensile. After the groove is filled to a certain height, the peak tensile stresses and the stress distribution patterns for both axial and hoop stresses remain almost unchanged.

  1. The correlation function for density perturbations in an expanding universe. IV - The evolution of the correlation function. [galaxy distribution

    Science.gov (United States)

    Mcclelland, J.; Silk, J.

    1979-01-01

    The evolution of the two-point correlation function for the large-scale distribution of galaxies in an expanding universe is studied on the assumption that the perturbation densities lie in a Gaussian distribution centered on any given mass scale. The perturbations are evolved according to the Friedmann equation, and the correlation function for the resulting distribution of perturbations at the present epoch is calculated. It is found that: (1) the computed correlation function gives a satisfactory fit to the observed function in cosmological models with a density parameter (Omega) of approximately unity, provided that a certain free parameter is suitably adjusted; (2) the power-law slope in the nonlinear regime reflects the initial fluctuation spectrum, provided that the density profile of individual perturbations declines more rapidly than the -2.4 power of distance; and (3) both positive and negative contributions to the correlation function are predicted for cosmological models with Omega less than unity.

  2. Small angle neutron scattering

    International Nuclear Information System (INIS)

    Bernardini, G.; Cherubini, G.; Fioravanti, A.; Olivi, A.

    1976-09-01

    A method for the analysis of the data derived from neutron small angle scattering measurements has been accomplished in the case of homogeneous particles, starting from the basic theory without making any assumption on the form of particle size distribution function. The experimental scattering curves are interpreted with the aid the computer by means of a proper routine. The parameters obtained are compared with the corresponding ones derived from observations at the transmission electron microscope

  3. The Paradigmatic Evolution of U.S. Television and the Emergence of Internet-Distributed Television

    Directory of Open Access Journals (Sweden)

    Amanda D. Lotz

    2016-07-01

    Full Text Available Television industries around the world have weathered profound change as technologies advanced and services developed to allow internet-distributed television to compete alongside broadcast and cable-distributed television. This article, drawn from the context of the U.S., explores the emergence of internet-distributed television as a mechanism that provides the affordance of nonlinear distribution. It assesses the preliminary organization of internet-distributed television by portals and explores the similarities and differences between portals and networks/channels with an eye toward conceptualizing emerging business practices and strategies.

  4. Measurement of the weak mixing angle and the spin of the gluon from angular distributions in the reaction pp{yields} Z/{gamma}*+X{yields}{mu}{sup +}{mu}{sup -}+X with ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Schmieden, Kristof

    2013-04-15

    The measurement of the effective weak mixing angle with the ATLAS experiment at the LHC is presented. It is extracted from the forward-backward asymmetry in the polar angle distribution of the muons originating from Z boson decays in the reaction pp{yields}Z/{gamma}{sup *}+X{yields} {mu}{sup +}{mu}{sup -}+X. In total 4.7 fb{sup -1} of proton-proton collisions at {radical}(s)=7 TeV are analysed. In addition, the full polar and azimuthal angular distributions are measured as a function of the transverse momentum of the Z/{gamma}{sup *} system and are compared to several simulations as well as recent results obtained in p anti p collisions. Finally, the angular distributions are used to confirm the spin of the gluon using the Lam-Tung relation.

  5. Evolution of the Distribution of Neutron Exposures in the Galaxy Disc ...

    Indian Academy of Sciences (India)

    this work was the development of an analytical model for the NEG, to provide ... paper is organized as follows: in section 2 we deduce the evolution equation of .... of neutron exposures for the seed nuclei that can experience any irradiation times. ..... We thank the referee for an extensive and helpful review, containing very ...

  6. The Evolution of Frequency Distributions: Relating Regularization to Inductive Biases through Iterated Learning

    Science.gov (United States)

    Reali, Florencia; Griffiths, Thomas L.

    2009-01-01

    The regularization of linguistic structures by learners has played a key role in arguments for strong innate constraints on language acquisition, and has important implications for language evolution. However, relating the inductive biases of learners to regularization behavior in laboratory tasks can be challenging without a formal model. In this…

  7. Temporal evolution of electron energy distribution function and plasma parameters in the afterglow of drifting magnetron plasma

    International Nuclear Information System (INIS)

    Seo, Sang-Hun; In, Jung-Hwan; Chang, Hong-Young

    2005-01-01

    The temporal behaviour of the electron energy distribution function (EEDF) and the plasma parameters such as electron density, electron temperature and plasma and floating potentials in a mid-frequency pulsed dc magnetron plasma are investigated using time-resolved probe measurements. A negative-voltage dc pulse with an average power of 160 W during the pulse-on period, a repetition frequency of 20 kHz and a duty cycle of 50% is applied to the cathode of a planar unbalanced magnetron discharge with a grounded substrate. The measured electron energy distribution is found to exhibit a bi-Maxwellian distribution, which can be resolved with the low-energy electron group and the high-energy tail part during the pulse-on period, and a Maxwellian distribution only with low-energy electrons as a consequence of initially rapid decay of the high-energy tail part during the pulse-off period. This characteristic evolution of the EEDF is reflected in the decay characteristics of the electron density and temperature in the afterglow. These parameters exhibit twofold decay represented by two characteristic decay times of an initial fast decay time τ 1 , and a subsequent slower decay time τ 2 in the afterglow when approximated with a bi-exponential function. While the initial fast decay times are of the order of 1 μs (τ T1 ∼ 0.99 μs and τ N1 ∼ 1.5 μs), the slower decay times are of the order of a few tens of microseconds (τ T2 ∼ 7 μs and τ N2 ∼ 40 μs). The temporal evolution of the plasma parameters are qualitatively explained by considering the formation mechanism of the bi-Maxwellian electron distribution function and the electron transports of these electron groups in bulk plasma

  8. Legacy systems: managing evolution through integration in a distributed and object-oriented computing environment.

    Science.gov (United States)

    Lemaitre, D; Sauquet, D; Fofol, I; Tanguy, L; Jean, F C; Degoulet, P

    1995-01-01

    Legacy systems are crucial for organizations since they support key functionalities. But they become obsolete with aging and the apparition of new techniques. Managing their evolution is a key issue in software engineering. This paper presents a strategy that has been developed at Broussais University Hospital in Paris to make a legacy system devoted to the management of health care units evolve towards a new up-to-date software. A two-phase evolution pathway is described. The first phase consists in separating the interface from the data storage and application control and in using a communication channel between the individualized components. The second phase proposes to use an object-oriented DBMS in place of the homegrown system. An application example for the management of hypertensive patients is described.

  9. QCD evolution of (un)polarized gluon TMDPDFs and the Higgs q(T)-distribution

    NARCIS (Netherlands)

    Garcia, M.; Kasemets, T.; Mulders, P.J.G.; Pisano, C.

    2015-01-01

    Abstract: We provide the proper definition of all the leading-twist (un)polarized gluon transverse momentum dependent parton distribution functions (TMDPDFs), by considering the Higgs boson transverse momentum distribution in hadron-hadron collisions and deriving the factorization theorem in terms

  10. Molecular and morphological systematics of the Ellisellidae (Coelenterata: Octocorallia): Parallel evolution in a globally distributed family of octocorals

    KAUST Repository

    Bilewitch, Jaret P.

    2014-04-01

    The octocorals of the Ellisellidae constitute a diverse and widely distributed family with subdivisions into genera based on colonial growth forms. Branching patterns are repeated in several genera and congeners often display region-specific variations in a given growth form. We examined the systematic patterns of ellisellid genera and the evolution of branching form diversity using molecular phylogenetic and ancestral morphological reconstructions. Six of eight included genera were found to be polyphyletic due to biogeographical incompatibility with current taxonomic assignments and the creation of at least six new genera plus several reassignments among existing genera is necessary. Phylogenetic patterns of diversification of colony branching morphology displayed a similar transformation order in each of the two primary ellisellid clades, with a sea fan form estimated as the most-probable common ancestor with likely origins in the Indo-Pacific region. The observed parallelism in evolution indicates the existence of a constraint on the genetic elements determining ellisellid colonial morphology. However, the lack of correspondence between levels of genetic divergence and morphological diversity among genera suggests that future octocoral studies should focus on the role of changes in gene regulation in the evolution of branching patterns. © 2014 Elsevier Inc.

  11. Molecular and morphological systematics of the Ellisellidae (Coelenterata: Octocorallia): Parallel evolution in a globally distributed family of octocorals

    KAUST Repository

    Bilewitch, Jaret P.; Ekins, Merrick; Hooper, John; Degnan, Sandie M.

    2014-01-01

    The octocorals of the Ellisellidae constitute a diverse and widely distributed family with subdivisions into genera based on colonial growth forms. Branching patterns are repeated in several genera and congeners often display region-specific variations in a given growth form. We examined the systematic patterns of ellisellid genera and the evolution of branching form diversity using molecular phylogenetic and ancestral morphological reconstructions. Six of eight included genera were found to be polyphyletic due to biogeographical incompatibility with current taxonomic assignments and the creation of at least six new genera plus several reassignments among existing genera is necessary. Phylogenetic patterns of diversification of colony branching morphology displayed a similar transformation order in each of the two primary ellisellid clades, with a sea fan form estimated as the most-probable common ancestor with likely origins in the Indo-Pacific region. The observed parallelism in evolution indicates the existence of a constraint on the genetic elements determining ellisellid colonial morphology. However, the lack of correspondence between levels of genetic divergence and morphological diversity among genera suggests that future octocoral studies should focus on the role of changes in gene regulation in the evolution of branching patterns. © 2014 Elsevier Inc.

  12. Evolution of the ATLAS Distributed Computing during the LHC long shutdown

    CERN Document Server

    Campana, S; The ATLAS collaboration

    2013-01-01

    The ATLAS Distributed Computing project (ADC) was established in 2007 to develop and operate a framework, following the ATLAS computing model, to enable data storage, processing and bookkeeping on top of the WLCG distributed infrastructure. ADC development has always been driven by operations and this contributed to its success. The system has fulfilled the demanding requirements of ATLAS, daily consolidating worldwide up to 1PB of data and running more than 1.5 million payloads distributed globally, supporting almost one thousand concurrent distributed analysis users. Comprehensive automation and monitoring minimized the operational manpower required. The flexibility of the system to adjust to operational needs has been important to the success of the ATLAS physics program. The LHC shutdown in 2013-2015 affords an opportunity to improve the system in light of operational experience and scale it to cope with the demanding requirements of 2015 and beyond, most notably a much higher trigger rate and event pileu...

  13. Evolution of the ATLAS Distributed Computing system during the LHC Long shutdown

    CERN Document Server

    Campana, S; The ATLAS collaboration

    2014-01-01

    The ATLAS Distributed Computing project (ADC) was established in 2007 to develop and operate a framework, following the ATLAS computing model, to enable data storage, processing and bookkeeping on top of the WLCG distributed infrastructure. ADC development has always been driven by operations and this contributed to its success. The system has fulfilled the demanding requirements of ATLAS, daily consolidating worldwide up to 1PB of data and running more than 1.5 million payloads distributed globally, supporting almost one thousand concurrent distributed analysis users. Comprehensive automation and monitoring minimized the operational manpower required. The flexibility of the system to adjust to operational needs has been important to the success of the ATLAS physics program. The LHC shutdown in 2013-2015 affords an opportunity to improve the system in light of operational experience and scale it to cope with the demanding requirements of 2015 and beyond, most notably a much higher trigger rate and event pileu...

  14. Distribution and evolution of repeated sequences in genomes of Triatominae (Hemiptera-Reduviidae inferred from genomic in situ hybridization.

    Directory of Open Access Journals (Sweden)

    Sebastian Pita

    Full Text Available The subfamily Triatominae, vectors of Chagas disease, comprises 140 species characterized by a highly homogeneous chromosome number. We analyzed the chromosomal distribution and evolution of repeated sequences in Triatominae genomes by Genomic in situ Hybridization using Triatoma delpontei and Triatoma infestans genomic DNAs as probes. Hybridizations were performed on their own chromosomes and on nine species included in six genera from the two main tribes: Triatomini and Rhodniini. Genomic probes clearly generate two different hybridization patterns, dispersed or accumulated in specific regions or chromosomes. The three used probes generate the same hybridization pattern in each species. However, these patterns are species-specific. In closely related species, the probes strongly hybridized in the autosomal heterochromatic regions, resembling C-banding and DAPI patterns. However, in more distant species these co-localizations are not observed. The heterochromatic Y chromosome is constituted by highly repeated sequences, which is conserved among 10 species of Triatomini tribe suggesting be an ancestral character for this group. However, the Y chromosome in Rhodniini tribe is markedly different, supporting the early evolutionary dichotomy between both tribes. In some species, sex chromosomes and autosomes shared repeated sequences, suggesting meiotic chromatin exchanges among these heterologous chromosomes. Our GISH analyses enabled us to acquire not only reliable information about autosomal repeated sequences distribution but also an insight into sex chromosome evolution in Triatominae. Furthermore, the differentiation obtained by GISH might be a valuable marker to establish phylogenetic relationships and to test the controversial origin of the Triatominae subfamily.

  15. Determination of the relations governing the evolution of the standard deviations of the distribution of pollution

    International Nuclear Information System (INIS)

    Crabol, B.

    1985-04-01

    An original concept on the difference of behaviour of the high frequency (small-scale) and low frequency (large-scale) atmospheric turbulence relatively to the mean wind speed has been introduced. Through a dimensional analysis based on TAYLOR's formulation, it has been shown that the parameter of the atmospheric dispersion standard-deviations was the travel distance near the source, and the travel time far from the source. Using hypotheses on the energy spectrum in the atmosphere, a numerical application has made it possible to quantify the evolution of the horizontal standard deviation for different mean wind speeds between 0,2 and 10m/s. The areas of validity of the parameter (travel distance or travel time) are clearly shown. The first one is confined in the near field and is all the smaller if the wind speed decreases. For t > 5000s, the dependence on the wind speed of the horizontal standard-deviation expressed in function of the travel time becomes insignificant. The horizontal standard-deviation is only function of the travel time. Results are compared with experimental data obtained in the atmosphere. The similar evolution of the calculated and experimental curves confirms the validity of the hypothesis and input data in calculation. This study can be applied to radioactive effluents transport in the atmosphere

  16. Quantification of the evolution of firm size distributions due to mergers and acquisitions.

    Science.gov (United States)

    Lera, Sandro Claudio; Sornette, Didier

    2017-01-01

    The distribution of firm sizes is known to be heavy tailed. In order to account for this stylized fact, previous economic models have focused mainly on growth through investments in a company's own operations (internal growth). Thereby, the impact of mergers and acquisitions (M&A) on the firm size (external growth) is often not taken into consideration, notwithstanding its potential large impact. In this article, we make a first step into accounting for M&A. Specifically, we describe the effect of mergers and acquisitions on the firm size distribution in terms of an integro-differential equation. This equation is subsequently solved both analytically and numerically for various initial conditions, which allows us to account for different observations of previous empirical studies. In particular, it rationalises shortcomings of past work by quantifying that mergers and acquisitions develop a significant influence on the firm size distribution only over time scales much longer than a few decades. This explains why M&A has apparently little impact on the firm size distributions in existing data sets. Our approach is very flexible and can be extended to account for other sources of external growth, thus contributing towards a holistic understanding of the distribution of firm sizes.

  17. Quantification of the evolution of firm size distributions due to mergers and acquisitions

    Science.gov (United States)

    Sornette, Didier

    2017-01-01

    The distribution of firm sizes is known to be heavy tailed. In order to account for this stylized fact, previous economic models have focused mainly on growth through investments in a company’s own operations (internal growth). Thereby, the impact of mergers and acquisitions (M&A) on the firm size (external growth) is often not taken into consideration, notwithstanding its potential large impact. In this article, we make a first step into accounting for M&A. Specifically, we describe the effect of mergers and acquisitions on the firm size distribution in terms of an integro-differential equation. This equation is subsequently solved both analytically and numerically for various initial conditions, which allows us to account for different observations of previous empirical studies. In particular, it rationalises shortcomings of past work by quantifying that mergers and acquisitions develop a significant influence on the firm size distribution only over time scales much longer than a few decades. This explains why M&A has apparently little impact on the firm size distributions in existing data sets. Our approach is very flexible and can be extended to account for other sources of external growth, thus contributing towards a holistic understanding of the distribution of firm sizes. PMID:28841683

  18. Quantification of the evolution of firm size distributions due to mergers and acquisitions.

    Directory of Open Access Journals (Sweden)

    Sandro Claudio Lera

    Full Text Available The distribution of firm sizes is known to be heavy tailed. In order to account for this stylized fact, previous economic models have focused mainly on growth through investments in a company's own operations (internal growth. Thereby, the impact of mergers and acquisitions (M&A on the firm size (external growth is often not taken into consideration, notwithstanding its potential large impact. In this article, we make a first step into accounting for M&A. Specifically, we describe the effect of mergers and acquisitions on the firm size distribution in terms of an integro-differential equation. This equation is subsequently solved both analytically and numerically for various initial conditions, which allows us to account for different observations of previous empirical studies. In particular, it rationalises shortcomings of past work by quantifying that mergers and acquisitions develop a significant influence on the firm size distribution only over time scales much longer than a few decades. This explains why M&A has apparently little impact on the firm size distributions in existing data sets. Our approach is very flexible and can be extended to account for other sources of external growth, thus contributing towards a holistic understanding of the distribution of firm sizes.

  19. A lattice determination of gA and left angle x right angle from overlap fermions

    International Nuclear Information System (INIS)

    Guertler, M.; Schiller, A.; Streuer, T.; Freie Univ. Berlin

    2004-10-01

    We present results for the nucleon's axial charge g A and the first moment left angle x right angle of the unpolarized parton distribution function from a simulation of quenched overlap fermions. (orig.)

  20. Rock fragment distributions and regolith evolution in the Ouachita Mountains, Arkansas, USA

    Science.gov (United States)

    Jonathan D. Phillips; Ken Luckow; Daniel A. Marion; Kristin R. Adams

    2005-01-01

    Rock fragments in the regolith are a persistent property that reflects the combined influences of geologic controls, erosion, deposition, bioturbation, and weathering. The distribution of rock fragments in regoliths of the Ouachita Mountains, Arkansas, shows that sandstone fragments are common in all layers, even if sandstone is absent in parent material. Shale and...

  1. Evolution of a Family Nurse Practitioner Program to Improve Primary Care Distribution

    Science.gov (United States)

    Andrus, Len Hughes; Fenley, Mary D.

    1976-01-01

    Describes a Family Nurse Practitioner Program that has effectively improved the distribution of primary health care manpower in rural areas. Program characteristics include selection of personnel from areas of need, decentralization of clinical and didactic training sites, competency-based portable curriculum, and circuit-riding institutionally…

  2. Dynamic distribution patterns of ribosomal DNA and chromosomal evolution in Paphiopedilum, a lady's slipper orchid

    Directory of Open Access Journals (Sweden)

    Albert Victor A

    2011-09-01

    Full Text Available Abstract Background Paphiopedilum is a horticulturally and ecologically important genus of ca. 80 species of lady's slipper orchids native to Southeast Asia. These plants have long been of interest regarding their chromosomal evolution, which involves a progressive aneuploid series based on either fission or fusion of centromeres. Chromosome number is positively correlated with genome size, so rearrangement processes must include either insertion or deletion of DNA segments. We have conducted Fluorescence In Situ Hybridization (FISH studies using 5S and 25S ribosomal DNA (rDNA probes to survey for rearrangements, duplications, and phylogenetically-correlated variation within Paphiopedilum. We further studied sequence variation of the non-transcribed spacers of 5S rDNA (5S-NTS to examine their complex duplication history, including the possibility that concerted evolutionary forces may homogenize diversity. Results 5S and 25S rDNA loci among Paphiopedilum species, representing all key phylogenetic lineages, exhibit a considerable diversity that correlates well with recognized evolutionary groups. 25S rDNA signals range from 2 (representing 1 locus to 9, the latter representing hemizygosity. 5S loci display extensive structural variation, and show from 2 specific signals to many, both major and minor and highly dispersed. The dispersed signals mainly occur at centromeric and subtelomeric positions, which are hotspots for chromosomal breakpoints. Phylogenetic analysis of cloned 5S rDNA non-transcribed spacer (5S-NTS sequences showed evidence for both ancient and recent post-speciation duplication events, as well as interlocus and intralocus diversity. Conclusions Paphiopedilum species display many chromosomal rearrangements - for example, duplications, translocations, and inversions - but only weak concerted evolutionary forces among highly duplicated 5S arrays, which suggests that double-strand break repair processes are dynamic and ongoing. These

  3. A low-angle normal fault and basement structures within the Enping Sag, Pearl River Mouth Basin: Insights into late Mesozoic to early Cenozoic tectonic evolution of the South China Sea area

    Science.gov (United States)

    Ye, Qing; Mei, Lianfu; Shi, Hesheng; Shu, Yu; Camanni, Giovanni; Wu, Jing

    2018-04-01

    The basement structure of the Cenozoic Enping Sag, within the Pearl River Mouth Basin on the northern margin of South China Sea, is revealed by borehole-constrained high-quality 3D seismic reflection data. Such data suggest that the Enping Sag is bounded in the north by a low-angle normal fault. We interpret this low-angle normal fault to have developed as the result of the reactivation of a pre-existing thrust fault part of a pre-Cenozoic thrust system. This is demonstrated by the selective reactivation of the pre-existing thrust and by diffuse contractional deformation recognized from the accurate analysis of basement reflections. Another significant result of this study is the finding of some residual rift basins within the basement of the Enping Sag. Both the thrust system and the residual basins are interpreted to have developed after the emplacement of continental margin arc-related granitoids (J3-K1) that define the basement within the study area. Furthermore, seismic sections show that the pre-existing residual rift basins are offset by the main thrust fault and they are both truncated by the Tg unconformity. These structural relationships, interpreted in the frame of previous studies, help us to reconstruct a six-event structural evolution model for the Enping Sag from the late Mesozoic to the early Cenozoic. In particular, we interpret the residual rift basins to have formed as the result of back-arc extension due to the slab roll-back of the Paleo-Pacific Plate subduction in the early K2. The thrust system has recorded a compressional event in the late K2 that followed the back-arc extension in the SCS area. The mechanism of this compressional event is still to be clarified, and might be related to continuous subduction of the Paleo-Pacific Plate or to the continent-continent collision between a micro-continental block and the South China margin.

  4. Predictions of Gene Family Distributions in Microbial Genomes: Evolution by Gene Duplication and Modification

    International Nuclear Information System (INIS)

    Yanai, Itai; Camacho, Carlos J.; DeLisi, Charles

    2000-01-01

    A universal property of microbial genomes is the considerable fraction of genes that are homologous to other genes within the same genome. The process by which these homologues are generated is not well understood, but sequence analysis of 20 microbial genomes unveils a recurrent distribution of gene family sizes. We show that a simple evolutionary model based on random gene duplication and point mutations fully accounts for these distributions and permits predictions for the number of gene families in genomes not yet complete. Our findings are consistent with the notion that a genome evolves from a set of precursor genes to a mature size by gene duplications and increasing modifications. (c) 2000 The American Physical Society

  5. Predictions of Gene Family Distributions in Microbial Genomes: Evolution by Gene Duplication and Modification

    Energy Technology Data Exchange (ETDEWEB)

    Yanai, Itai; Camacho, Carlos J.; DeLisi, Charles

    2000-09-18

    A universal property of microbial genomes is the considerable fraction of genes that are homologous to other genes within the same genome. The process by which these homologues are generated is not well understood, but sequence analysis of 20 microbial genomes unveils a recurrent distribution of gene family sizes. We show that a simple evolutionary model based on random gene duplication and point mutations fully accounts for these distributions and permits predictions for the number of gene families in genomes not yet complete. Our findings are consistent with the notion that a genome evolves from a set of precursor genes to a mature size by gene duplications and increasing modifications. (c) 2000 The American Physical Society.

  6. Dynamics of Rn-222 daughter size distribution evolution: modelling and experimental aspects

    International Nuclear Information System (INIS)

    Tymen, G.; El Moussaoui, B.; Renoux, A.

    1989-01-01

    Size distribution of short lived radon daughters is considered as a fundamental parameter in radiation protection in so far as about 40% of human exposure is due to inhalation of such radioactive particles, in mines as well as in indoor environments. Many experiments have been carried out in various conditions: controlled atmospheres, uranium mine atmospheres, atmospheric air, and more recently in houses because of the increasing interest in exposure to natural radiation. From an experimental point of view, previous measurements dealt with the cumulative size distribution of radon progeny alpha activity. Then, in spite of the difficulty in comparing data of different investigators, it was often found that a significant part of the activity was associated with particles above 0.1 μm in diameter. Otherwise, a bimodality was often observed in the case of airborne radioactive particles. The attachment of small radioactive ions or atoms produced by the radon decay on ambient particles has been studied. Differences arise in the calculation of the attachment coefficient and in the choice of the natural particle size distribution. This paper presents our investigation in this field by studying the theoretical and experimental aspects of the radon daughter behaviour in a cylindrical vessel simultaneously. (author)

  7. A methodology for determining the evolution law of gob permeability and its distributions in longwall coal mines

    International Nuclear Information System (INIS)

    Zhang, Cun; Tu, Shihao; Zhang, Lei; Bai, Qingsheng; Yuan, Yong; Wang, Fangtian

    2016-01-01

    In order to understand the permeability evolution law of the gob by mining disturbances and obtain the permeability distribution of the fully compacted gob, comprehensive methods including theoretical analyses of monitoring data and numerical simulation are used to determine the permeability of gobs in the mining process. Based on current research, three zones of the vertical stress and permeability in the gob are introduced in this article, which are the caving rock mass accumulation zone, the gradually compacted zone and the fully compacted zone. A simple algorithm is written by using FISH language to be imported into the reservoir model. FISH language is an internal programming language in FLAC3D. It is possible to calculate the permeability at each zone with this algorithm in the mining process. Besides, we analyze the gas flow rates from seven gob gas ventholes (GGV) located on a longwall face operated in a mine of a Huainan coalfield in Huainan City, China. Combined with Darcy’s law, a calculation model of permeability around GGV in the gob is proposed. Using this model, the evolution law of permeability in the gob is deduced; the phases of permeability evolution are the decline stage and the stable stage. The result of the vertical stress monitoring data and good fitting effect of the permeability to the experimental data show that the permeability decline caused by the compaction of the gob is the principal reason for the decline stage. The stable stage indicates that the gob has been fully compacted, and the average period of full gob compaction is 47.75 d. The permeability in the middle of the compacted gob is much smaller than the permeability on the edge of the gob which presents an O shape trend. Besides, the little difference among the results of the numerical simulation, the permeability calculation model and other commonly used calculation models validate the correctness of the permeability calculation model and numerical simulation results

  8. Patterns of a spatial exploration under time evolution of the attractiveness: Persistent nodes, degree distribution, and spectral properties

    Science.gov (United States)

    da Silva, Roberto

    2018-06-01

    This work explores the features of a graph generated by agents that hop from one node to another node, where the nodes have evolutionary attractiveness. The jumps are governed by Boltzmann-like transition probabilities that depend both on the euclidean distance between the nodes and on the ratio (β) of the attractiveness between them. It is shown that persistent nodes, i.e., nodes that never been reached by this special random walk are possible in the stationary limit differently from the case where the attractiveness is fixed and equal to one for all nodes (β = 1). Simultaneously, one also investigates the spectral properties and statistics related to the attractiveness and degree distribution of the evolutionary network. Finally, a study of the crossover between persistent phase and no persistent phase was performed and it was also observed the existence of a special type of transition probability which leads to a power law behaviour for the time evolution of the persistence.

  9. Modeling the isotopic evolution of snowpack and snowmelt: Testing a spatially distributed parsimonious approach.

    Science.gov (United States)

    Ala-Aho, Pertti; Tetzlaff, Doerthe; McNamara, James P; Laudon, Hjalmar; Kormos, Patrick; Soulsby, Chris

    2017-07-01

    Use of stable water isotopes has become increasingly popular in quantifying water flow paths and travel times in hydrological systems using tracer-aided modeling. In snow-influenced catchments, snowmelt produces a traceable isotopic signal, which differs from original snowfall isotopic composition because of isotopic fractionation in the snowpack. These fractionation processes in snow are relatively well understood, but representing their spatiotemporal variability in tracer-aided studies remains a challenge. We present a novel, parsimonious modeling method to account for the snowpack isotope fractionation and estimate isotope ratios in snowmelt water in a fully spatially distributed manner. Our model introduces two calibration parameters that alone account for the isotopic fractionation caused by sublimation from interception and ground snow storage, and snowmelt fractionation progressively enriching the snowmelt runoff. The isotope routines are linked to a generic process-based snow interception-accumulation-melt model facilitating simulation of spatially distributed snowmelt runoff. We use a synthetic modeling experiment to demonstrate the functionality of the model algorithms in different landscape locations and under different canopy characteristics. We also provide a proof-of-concept model test and successfully reproduce isotopic ratios in snowmelt runoff sampled with snowmelt lysimeters in two long-term experimental catchment with contrasting winter conditions. To our knowledge, the method is the first such tool to allow estimation of the spatially distributed nature of isotopic fractionation in snowpacks and the resulting isotope ratios in snowmelt runoff. The method can thus provide a useful tool for tracer-aided modeling to better understand the integrated nature of flow, mixing, and transport processes in snow-influenced catchments.

  10. Guangxi crustal structural evolution and the formation and distribution regularities of U-rich strata

    International Nuclear Information System (INIS)

    Kang Zili.

    1989-01-01

    Based on summing up Guangxi geotectonic features and evolutionary regularities, this paper discusses the occurrence features, formation conditions and time-space distribution regularities of various U-rich strata during the development of geosyncline, platform and diwa stages, Especially, during diwa stage all those U-rich strata might be reworked to a certain degree and resulted in the mobilization of uranium, then enriching to form polygenetic composite uranium ore deposits with stratabound features. This study will be helpful for prospecting in the region

  11. On the Relationship between Holocene Geomorphic Evolution of Rivers and Prehistoric Settlements Distribution in the Songshan Mountain Region of China

    Directory of Open Access Journals (Sweden)

    Peng Lu

    2017-01-01

    Full Text Available This paper deals with the study of Holocene geomorphic evolution of rivers around Songshan Mountain in relation to human frequentation in Prehistoric periods. The investigations were performed by means of an integration of GIS data processing; field surveys and particle size analysis. In 8000–3000 aBP; in the Songshan Mountain Region, large-scale river sedimentation occurred. This increased the elevation of river beds that were higher than today. After 3000 aBP; the upper reaches of the rivers experienced a down cut; while the lower reaches experienced continuing sedimentation. The data on the elevation of prehistoric settlements above the river levels were obtained from Digital Elevation Models (DEMs. These data were corrected according to the evolutionary features of fluvial landforms in order to obtain synchronous elevations above river levels of prehistoric settlements. The relationship between sediment distribution and the Holocene geomorphic evolution was investigated through the statistical analysis of the elevation above the river levels. Outputs from our analyses enabled us to differentiate three evolutionary stages. During the first one, related to Peiligang culture (9000–7500 aBP, populations mainly settled on both hilly relief and high plateaus depending on their agriculture production modes. During the second stage, from Yangshao (7500–5000 aBP to the Longshan period (5000–4000 aBP, settlements were mainly distributed on mountainous areas and hilly lands to avoid flooding and to develop agriculture. Finally, during the Xiashang culture (4000–3000 aBP, a large number of settlements migrated to the plain area to facilitate trade of goods and cultural exchanges.

  12. Microfracture spacing distributions and the evolution of fracture patterns in sandstones

    Science.gov (United States)

    Hooker, J. N.; Laubach, S. E.; Marrett, R.

    2018-03-01

    Natural fracture patterns in sandstone were sampled using scanning electron microscope-based cathodoluminescence (SEM-CL) imaging. All fractures are opening-mode and are fully or partially sealed by quartz cement. Most sampled fractures are too small to be height-restricted by sedimentary layers. At very low strains ( 100) datasets show spacings that are best fit by log-normal size distributions, compared to exponential, power law, or normal distributions. The clustering of fractures suggests that the locations of natural factures are not determined by a random process. To investigate natural fracture localization, we reconstructed the opening history of a cluster of fractures within the Huizachal Group in northeastern Mexico, using fluid inclusions from synkinematic cements and thermal-history constraints. The largest fracture, which is the only fracture in the cluster visible to the naked eye, among 101 present, opened relatively late in the sequence. This result suggests that the growth of sets of fractures is a self-organized process, in which small, initially isolated fractures grow and progressively interact, with preferential growth of a subset of fractures developing at the expense of growth of the rest. Size-dependent sealing of fractures within sets suggests that synkinematic cementation may contribute to fracture clustering.

  13. Antitropical distribution and evolution in the Indo-West Pacific Ocean

    Science.gov (United States)

    Briggs, J. C.

    1987-01-01

    Antitropical distributions of continental shelf, Indo-West Pacific species are probably not due to transgression of the tropics during the glacial periods, isothermic submergence, island integration, rising Neogene temperatures, or the Mesozoic dispersal of fragments from a Pacific continental mass. Characteristics of common antitropical patterns, plus information from systematic works on a variety on a variety of animal and plant groups, indicate that the long discarded "relict theory" of Theel (1885) appears to best fit the evidence, for it provides a mechanism whereby antitropical distribution may be brought about. The relict theory is compatible with the concept that the East Indies part of the Indo-West Pacific has been functioning as a center of evolutionary origin. It suggests that antitropical and associated disjunct patterns are produced as an older species, that has spread out to occupy a broad range, loses ground and gradually becomes supplanted by a younger species that had subsequently evolved in the East Indies. As this process goes on, the older species becomes restricted to a few isolated localities on the fringe of its original range. These isolates are often found to the north and south of the equatorial region but may include relict populations at the western edge of the Indian Ocean.

  14. Evolution of Sr distribution coefficient as a function of time, incubation conditions and measurement technique

    International Nuclear Information System (INIS)

    Wang Guo; Staunton, Siobhan

    2005-01-01

    A thorough understanding of the dynamics of radiostrontium in soil is required to allow accurate long-term predictions of its mobility. We have followed the soil solution distribution of 85 Sr as a function of time under controlled conditions over 4 months and studied the effect of soil moisture content and organic matter amendments. Data have been compared to redox conditions and soil pH. To fuel the ongoing debate on the validity of distribution coefficient (K d ) values measured in dilute suspension, we have compared values obtained from the activity concentration in soil solution obtained by centrifugation to data obtained in suspension with or without air-drying of the soil samples after incubation. The 85 Sr adsorption properties of soil, incubated without prior contamination were also measured. There is some time-dependent adsorption of Sr. This is partly due to changing soil composition due to the decomposition of added organic matter and anaerobic conditions induced by flooding. There is also a kinetic effect, but adsorption remains largely reversible. Most of the observed effects are lost when soil is suspended in electrolyte solution

  15. Controls on large landslide distribution and implications for the geomorphic evolution of the southern interior Columbia River basin

    Science.gov (United States)

    Safran, E.B.; Anderson, S.W.; Mills-Novoa, M.; House, P.K.; Ely, L.

    2011-01-01

    Large landslides (>0.1 km2) are important agents of geomorphic change. While most common in rugged mountain ranges, large landslides can also be widespread in relatively low-relief (several 100 m) terrain, where their distribution has been relatively little studied. A fuller understanding of the role of large landslides in landscape evolution requires addressing this gap, since the distribution of large landslides may affect broad regions through interactions with channel processes, and since the dominant controls on landslide distribution might be expected to vary with tectonic setting. We documented >400 landslides between 0.1 and ~40 km2 across ~140,000 km2 of eastern Oregon, in the semiarid, southern interior Columbia River basin. The mapped landslides cluster in a NW-SE-trending band that is 50-100 km wide. Landslides predominantly occur where even modest local relief (~100 m) exists near key contacts between weak sedimentary or volcaniclastic rock and coherent cap rock. Fault density exerts no control on landslide distribution, while ~10% of mapped landslides cluster within 3-10 km of mapped fold axes. Landslide occurrence is curtailed to the NE by thick packages of coherent basalt and to the SW by limited local relief. Our results suggest that future mass movements will localize in areas stratigraphically preconditioned for landsliding by a geologic history of fluviolacustrine and volcaniclastic sedimentation and episodic capping by coherent lava flows. In such areas, episodic landsliding may persist for hundreds of thousands of years or more, producing valley wall slopes of ~7??-13?? and impacting local channels with an evolving array of mass movement styles. ?? 2011 Geological Society of America.

  16. Temporal evolution of confined fast-ion velocity distributions measured by collective Thomson scattering in TEXTOR

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Bindslev, Henrik; Porte, L.

    2008-01-01

    reported [Bindslev , Phys. Rev. Lett. 97, 205005 2006]. Here we extend the discussion of these results which were obtained at the TEXTOR tokamak. The fast ions are generated by neutral-beam injection and ion-cyclotron resonance heating. The CTS system uses 100-150 kW of 110-GHz gyrotron probing radiation......Fast ions created in the fusion processes will provide up to 70% of the heating in ITER. To optimize heating and current drive in magnetically confined plasmas insight into fast-ion dynamics is important. First measurements of such dynamics by collective Thomson scattering (CTS) were recently...... of the velocity distribution after turnoff of the ion heating. These results are in close agreement with numerical simulations....

  17. Evolution of size distribution, optical properties, and structure of Si nanoparticles obtained by laser-assisted fragmentation

    Science.gov (United States)

    Plautz, G. L.; Graff, I. L.; Schreiner, W. H.; Bezerra, A. G.

    2017-05-01

    We investigate the physical properties of Si-based nanoparticles produced by an environment-friendly three-step method relying on: (1) laser ablation of a solid target immersed in water, (2) centrifugation and separation, and (3) laser-assisted fragmentation. The evolution of size distribution is followed after each step by means of dynamic light scattering (DLS) measurements and crosschecked by transmission electron microscopy (TEM). The as-ablated colloidal suspension of Si nanoparticles presents a large size distribution, ranging from a few to hundreds of nanometers. Centrifugation drives the very large particles to the bottom eliminating them from the remaining suspension. Subsequent irradiation of height-separated suspensions with a second high-fluence (40 mJ/pulse) Nd:YAG laser operating at the fourth harmonic (λ =266 nm) leads to size reduction and ultra-small nanoparticles are obtainable depending on the starting size. Si nanoparticles as small as 1.5 nm with low dispersion (± 0.7 nm) are observed for the uppermost part after irradiation. These nanoparticles present a strong blue photoluminescence that remains stable for at least 8 weeks. Optical absorption (UV-Vis) measurements demonstrate an optical gap widening as a consequence of size decrease. Raman spectra present features related to pure silicon and silicon oxides for the irradiated sample. Interestingly, a defect band associated with silicon oxide is also identified, indicating the possible formation of defect states, which, in turn, supports the idea that the blue photoluminescence has its origin in defects.

  18. The mangotoxin biosynthetic operon (mbo) is specifically distributed within Pseudomonas syringae genomospecies 1 and was acquired only once during evolution.

    Science.gov (United States)

    Carrión, Víctor J; Gutiérrez-Barranquero, José A; Arrebola, Eva; Bardaji, Leire; Codina, Juan C; de Vicente, Antonio; Cazorla, Francisco M; Murillo, Jesús

    2013-02-01

    Mangotoxin production was first described in Pseudomonas syringae pv. syringae strains. A phenotypic characterization of 94 P. syringae strains was carried out to determine the genetic evolution of the mangotoxin biosynthetic operon (mbo). We designed a PCR primer pair specific for the mbo operon to examine its distribution within the P. syringae complex. These primers amplified a 692-bp DNA fragment from 52 mangotoxin-producing strains and from 7 non-mangotoxin-producing strains that harbor the mbo operon, whereas 35 non-mangotoxin-producing strains did not yield any amplification. This, together with the analysis of draft genomes, allowed the identification of the mbo operon in five pathovars (pathovars aptata, avellanae, japonica, pisi, and syringae), all of which belong to genomospecies 1, suggesting a limited distribution of the mbo genes in the P. syringae complex. Phylogenetic analyses using partial sequences from housekeeping genes differentiated three groups within genomospecies 1. All of the strains containing the mbo operon clustered in groups I and II, whereas those lacking the operon clustered in group III; however, the relative branching order of these three groups is dependent on the genes used to construct the phylogeny. The mbo operon maintains synteny and is inserted in the same genomic location, with high sequence conservation around the insertion point, for all the strains in groups I and II. These data support the idea that the mbo operon was acquired horizontally and only once by the ancestor of groups I and II from genomospecies 1 within the P. syringae complex.

  19. The large scale and long term evolution of the solar wind speed distribution and high speed streams

    International Nuclear Information System (INIS)

    Intriligator, D.S.

    1977-01-01

    The spatial and temporal evolution of the solar wind speed distribution and of high speed streams in the solar wind are examined. Comparisons of the solar wind streaming speeds measured at Earth, Pioneer 11, and Pioneer 10 indicate that between 1 AU and 6.4 AU the solar wind speed distributions are narrower (i.e. the 95% value minus the 5% value of the solar wind streaming speed is less) at extended heliocentric distances. These observations are consistent with one exchange of momentum in the solar wind between high speed streams and low speed streams as they propagate outward from the Sun. Analyses of solar wind observations at 1 AU from mid 1964 through 1973 confirm the earlier results reported by Intriligator (1974) that there are statistically significant variations in the solar wind in 1968 and 1969, years of solar maximum. High speed stream parameters show that the number of high speed streams in the solar wind in 1968 and 1969 is considerably more than the predicted yearly average, and in 1965 and 1972 less. Histograms of solar wind speed from 1964 through 1973 indicate that in 1968 there was the highest percentage of elevated solar wind speeds and in 1965 and 1972 the lowest. Studies by others also confirm these results although the respective authors did not indicate this fact. The duration of the streams and the histograms for 1973 imply a shifting in the primary stream source. (Auth.)

  20. Spatio-temporal evolution of the dust particle size distribution in dusty argon rf plasmas

    International Nuclear Information System (INIS)

    Killer, Carsten; Mulsow, Matthias; Melzer, André

    2015-01-01

    An imaging Mie scattering technique has been developed to measure the spatially resolved size distribution of dust particles in extended dust clouds. For large dust clouds of micrometre-sized plastic particles confined in an radio frequency (rf) discharge, a segmentation of the dust cloud into populations of different sizes is observed, even though the size differences are very small. The dust size dispersion inside a population is much smaller than the difference between the populations. Furthermore, the dust size is found to be constantly decreasing over time while the particles are confined in an inert argon plasma. The processes responsible for the shrinking of the dust in the plasma have been addressed by mass spectrometry, ex situ microscopy of the dust size, dust resonance measurements, in situ determination of the dust surface temperature and Fourier transform infrared absorption (FT-IR). It is concluded that both a reduction of dust size and its mass density due to outgassing of water and other volatile constituents as well as chemical etching by oxygen impurities are responsible for the observations. (paper)

  1. Carnivore-specific SINEs (Can-SINEs): distribution, evolution, and genomic impact.

    Science.gov (United States)

    Walters-Conte, Kathryn B; Johnson, Diana L E; Allard, Marc W; Pecon-Slattery, Jill

    2011-01-01

    Short interspersed nuclear elements (SINEs) are a type of class 1 transposable element (retrotransposon) with features that allow investigators to resolve evolutionary relationships between populations and species while providing insight into genome composition and function. Characterization of a Carnivora-specific SINE family, Can-SINEs, has, has aided comparative genomic studies by providing rare genomic changes, and neutral sequence variants often needed to resolve difficult evolutionary questions. In addition, Can-SINEs constitute a significant source of functional diversity with Carnivora. Publication of the whole-genome sequence of domestic dog, domestic cat, and giant panda serves as a valuable resource in comparative genomic inferences gleaned from Can-SINEs. In anticipation of forthcoming studies bolstered by new genomic data, this review describes the discovery and characterization of Can-SINE motifs as well as describes composition, distribution, and effect on genome function. As the contribution of noncoding sequences to genomic diversity becomes more apparent, SINEs and other transposable elements will play an increasingly large role in mammalian comparative genomics.

  2. Distribution and evolution of stable single α-helices (SAH domains in myosin motor proteins.

    Directory of Open Access Journals (Sweden)

    Dominic Simm

    Full Text Available Stable single-alpha helices (SAHs are versatile structural elements in many prokaryotic and eukaryotic proteins acting as semi-flexible linkers and constant force springs. This way SAH-domains function as part of the lever of many different myosins. Canonical myosin levers consist of one or several IQ-motifs to which light chains such as calmodulin bind. SAH-domains provide flexibility in length and stiffness to the myosin levers, and may be particularly suited for myosins working in crowded cellular environments. Although the function of the SAH-domains in human class-6 and class-10 myosins has well been characterised, the distribution of the SAH-domain in all myosin subfamilies and across the eukaryotic tree of life remained elusive. Here, we analysed the largest available myosin sequence dataset consisting of 7919 manually annotated myosin sequences from 938 species representing all major eukaryotic branches using the SAH-prediction algorithm of Waggawagga, a recently developed tool for the identification of SAH-domains. With this approach we identified SAH-domains in more than one third of the supposed 79 myosin subfamilies. Depending on the myosin class, the presence of SAH-domains can range from a few to almost all class members indicating complex patterns of independent and taxon-specific SAH-domain gain and loss.

  3. The evolution of high summit metabolism and cold tolerance in birds and its impact on present-day distributions.

    Science.gov (United States)

    Swanson, David L; Garland, Theodore

    2009-01-01

    Summit metabolic rate (M(sum), maximum cold-induced metabolic rate) is positively correlated with cold tolerance in birds, suggesting that high M(sum) is important for residency in cold climates. However, the phylogenetic distribution of high M(sum) among birds and the impact of its evolution on current distributions are not well understood. Two potential adaptive hypotheses might explain the phylogenetic distribution of high M(sum) among birds. The cold adaptation hypothesis contends that species wintering in cold climates should have higher M(sum) than species wintering in warmer climates. The flight adaptation hypothesis suggests that volant birds might be capable of generating high M(sum) as a byproduct of their muscular capacity for flight; thus, variation in M(sum) should be associated with capacity for sustained flight, one indicator of which is migration. We collected M(sum) data from the literature for 44 bird species and conducted both conventional and phylogenetically informed statistical analyses to examine the predictors of M(sum) variation. Significant phylogenetic signal was present for log body mass, log mass-adjusted M(sum), and average temperature in the winter range. In multiple regression models, log body mass, winter temperature, and clade were significant predictors of log M(sum). These results are consistent with a role for climate in determining M(sum) in birds, but also indicate that phylogenetic signal remains even after accounting for associations indicative of adaptation to winter temperature. Migratory strategy was never a significant predictor of log M(sum) in multiple regressions, a result that is not consistent with the flight adaptation hypothesis.

  4. Freshwater Biogeography and Limnological Evolution of the Tibetan Plateau - Insights from a Plateau-Wide Distributed Gastropod Taxon (Radix spp.)

    Science.gov (United States)

    von Oheimb, Parm Viktor; Albrecht, Christian; Riedel, Frank; Du, Lina; Yang, Junxing; Aldridge, David C.; Bößneck, Ulrich; Zhang, Hucai; Wilke, Thomas

    2011-01-01

    Background The Tibetan Plateau is not only the highest and largest plateau on earth; it is also home to numerous freshwater lakes potentially harbouring endemic faunal elements. As it remains largely unknown whether these lakes have continuously existed during the Last Glacial Maximum (LGM), questions arise as to whether taxa have been able to exist on the plateau since before the latest Pleistocene, from where and how often the plateau was colonized, and by which mechanisms organisms conquered remote high altitude lentic freshwater systems. In this study, species of the plateau-wide distributed freshwater gastropod genus Radix are used to answer these biogeographical questions. Methodology/Principal Findings Based on a broad spatial sampling of Radix spp. on the Tibetan Plateau, and phylogenetic analyses of mtDNA sequence data, three probably endemic and one widespread major Radix clade could be identified on the plateau. Two of the endemic clades show a remarkably high genetic diversity, indicating a relatively great phylogenetic age. Phylogeographical analyses of individuals belonging to the most widely distributed clade indicate that intra-plateau distribution cannot be explained by drainage-related dispersal alone. Conclusions/Significance Our study reveals that Radix spp. persisted throughout the LGM on the Tibetan Plateau. Therefore, we assume the continuous existence of suitable water bodies during that time. The extant Radix diversity on the plateau might have been caused by multiple colonization events combined with a relatively long intra-plateau evolution. At least one colonization event has a Palaearctic origin. In contrast to freshwater fishes, passive dispersal, probably by water birds, might be an important mechanism for conquering remote areas on the plateau. Patterns found in Radix spp. are shared with some terrestrial plateau taxa, indicating that Radix may be a suitable model taxon for inferring general patterns of biotic origin, dispersal and

  5. Glaucoma, Open-Angle

    Science.gov (United States)

    ... Home » Statistics and Data » Glaucoma, Open-angle Listen Glaucoma, Open-angle Open-angle Glaucoma Defined In open-angle glaucoma, the fluid passes ... 2010 2010 U.S. Age-Specific Prevalence Rates for Glaucoma by Age and Race/Ethnicity The prevalence of ...

  6. Evolution of biological sequences implies an extreme value distribution of type I for both global and local pairwise alignment scores.

    Science.gov (United States)

    Bastien, Olivier; Maréchal, Eric

    2008-08-07

    Confidence in pairwise alignments of biological sequences, obtained by various methods such as Blast or Smith-Waterman, is critical for automatic analyses of genomic data. Two statistical models have been proposed. In the asymptotic limit of long sequences, the Karlin-Altschul model is based on the computation of a P-value, assuming that the number of high scoring matching regions above a threshold is Poisson distributed. Alternatively, the Lipman-Pearson model is based on the computation of a Z-value from a random score distribution obtained by a Monte-Carlo simulation. Z-values allow the deduction of an upper bound of the P-value (1/Z-value2) following the TULIP theorem. Simulations of Z-value distribution is known to fit with a Gumbel law. This remarkable property was not demonstrated and had no obvious biological support. We built a model of evolution of sequences based on aging, as meant in Reliability Theory, using the fact that the amount of information shared between an initial sequence and the sequences in its lineage (i.e., mutual information in Information Theory) is a decreasing function of time. This quantity is simply measured by a sequence alignment score. In systems aging, the failure rate is related to the systems longevity. The system can be a machine with structured components, or a living entity or population. "Reliability" refers to the ability to operate properly according to a standard. Here, the "reliability" of a sequence refers to the ability to conserve a sufficient functional level at the folded and maturated protein level (positive selection pressure). Homologous sequences were considered as systems 1) having a high redundancy of information reflected by the magnitude of their alignment scores, 2) which components are the amino acids that can independently be damaged by random DNA mutations. From these assumptions, we deduced that information shared at each amino acid position evolved with a constant rate, corresponding to the

  7. Evolution of biological sequences implies an extreme value distribution of type I for both global and local pairwise alignment scores

    Directory of Open Access Journals (Sweden)

    Maréchal Eric

    2008-08-01

    Full Text Available Abstract Background Confidence in pairwise alignments of biological sequences, obtained by various methods such as Blast or Smith-Waterman, is critical for automatic analyses of genomic data. Two statistical models have been proposed. In the asymptotic limit of long sequences, the Karlin-Altschul model is based on the computation of a P-value, assuming that the number of high scoring matching regions above a threshold is Poisson distributed. Alternatively, the Lipman-Pearson model is based on the computation of a Z-value from a random score distribution obtained by a Monte-Carlo simulation. Z-values allow the deduction of an upper bound of the P-value (1/Z-value2 following the TULIP theorem. Simulations of Z-value distribution is known to fit with a Gumbel law. This remarkable property was not demonstrated and had no obvious biological support. Results We built a model of evolution of sequences based on aging, as meant in Reliability Theory, using the fact that the amount of information shared between an initial sequence and the sequences in its lineage (i.e., mutual information in Information Theory is a decreasing function of time. This quantity is simply measured by a sequence alignment score. In systems aging, the failure rate is related to the systems longevity. The system can be a machine with structured components, or a living entity or population. "Reliability" refers to the ability to operate properly according to a standard. Here, the "reliability" of a sequence refers to the ability to conserve a sufficient functional level at the folded and maturated protein level (positive selection pressure. Homologous sequences were considered as systems 1 having a high redundancy of information reflected by the magnitude of their alignment scores, 2 which components are the amino acids that can independently be damaged by random DNA mutations. From these assumptions, we deduced that information shared at each amino acid position evolved with a

  8. Evolution equation for the B-meson distribution amplitude in the heavy-quark effective theory in coordinate space

    International Nuclear Information System (INIS)

    Kawamura, Hiroyuki; Tanaka, Kazuhiro

    2010-01-01

    The B-meson distribution amplitude (DA) is defined as the matrix element of a quark-antiquark bilocal light-cone operator in the heavy-quark effective theory, corresponding to a long-distance component in the factorization formula for exclusive B-meson decays. The evolution equation for the B-meson DA is governed by the cusp anomalous dimension as well as the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-type anomalous dimension, and these anomalous dimensions give the ''quasilocal'' kernel in the coordinate-space representation. We show that this evolution equation can be solved analytically in the coordinate space, accomplishing the relevant Sudakov resummation at the next-to-leading logarithmic accuracy. The quasilocal nature leads to a quite simple form of our solution which determines the B-meson DA with a quark-antiquark light-cone separation t in terms of the DA at a lower renormalization scale μ with smaller interquark separations zt (z≤1). This formula allows us to present rigorous calculation of the B-meson DA at the factorization scale ∼√(m b Λ QCD ) for t less than ∼1 GeV -1 , using the recently obtained operator product expansion of the DA as the input at μ∼1 GeV. We also derive the master formula, which reexpresses the integrals of the DA at μ∼√(m b Λ QCD ) for the factorization formula by the compact integrals of the DA at μ∼1 GeV.

  9. Glacial lakes in South Tyrol: distribution, evolution and potential for GLOFs

    Science.gov (United States)

    Schug, Marie-Claire; Mergili, Martin

    2017-04-01

    All over the world glaciers are currently retreating, leading to the formation or growth of glacial lakes. Some of these lakes are susceptible to sudden drainage. In order to assess the danger of glacial lake outburst floods (GLOFs) in South Tyrol in the Italian Alps, we present (i) an inventory of lakes, (ii) an analysis of the development of selected glacial lakes since 1945, and (iii) the susceptibility to and the possible impact areas of GLOFs. The inventory includes 1010 lakes that are larger than 250 m2 at an elevation above 2000 m asl, most of them of glacial origin. These lakes are mapped manually from orthophotos. Apart from collecting information on the spatial distribution of these lakes, the inventory lists dam material, glacier contact, and further parameters. 89% of the lakes in the investigation area are impounded by bedrock, whereas 93% of the lakes are detached from the associated glacier. The majority of lakes is small to medium sized (selected lakes are analyzed in detail in the field and from multi-temporal orthophotos, including the development of lake size and surroundings in the period since 1945. The majority of the selected lakes, however, was first recorded on orthophotos from the early 1980s. Eight of ten lakes grew significantly in that period. But when the lakes detached from the glacier until the early 2000s, the growth slowed down or ceased. Based on the current development of the selected lakes we conclude that the close surroundings of these lakes have stabilised and the lakes' susceptibility to an outburst has thus decreased. We further conduct broad-scale analyses of the susceptibility of the mapped lakes to GLOFs, and of the potential reach of possible GLOFs. The tool r.glachaz is used to determine the potentially dangerous lakes. Even though some few lakes require closer attention, the overall susceptibility to GLOFs in South Tyrol is relatively low, as most lakes are impounded by bedrock. In some cases, GLOFs caused by impact

  10. The evolution of the englacial temperature distribution in the superimposed ice zone of a polar ice cap during a summer season

    NARCIS (Netherlands)

    Greuell, W.; Oerlemans, J.

    1989-01-01

    The aim of the present investigation was to provide more insight into the processes affecting the evolution of the englacial temperature distribution at a non-temperate location on a glacier. Measurements were made in the top 10 m of the ice at the summit of Laika Ice Cap (Canadian Arctic)

  11. Discovery of cyclotides in the fabaceae plant family provides new insights into the cyclization, evolution, and distribution of circular proteins.

    Science.gov (United States)

    Poth, Aaron G; Colgrave, Michelle L; Philip, Reynold; Kerenga, Bomai; Daly, Norelle L; Anderson, Marilyn A; Craik, David J

    2011-04-15

    Cyclotides are plant proteins whose defining structural features are a head-to-tail cyclized backbone and three interlocking disulfide bonds, which in combination are known as a cyclic cystine knot. This unique structural motif confers cyclotides with exceptional resistance to proteolysis. Their endogenous function is thought to be as plant defense agents, associated with their insecticidal and larval growth-inhibitory properties. However, in addition, an array of pharmaceutically relevant biological activities has been ascribed to cyclotides, including anti-HIV, anthelmintic, uterotonic, and antimicrobial effects. So far, >150 cyclotides have been elucidated from members of the Rubiaceae, Violaceae, and Cucurbitaceae plant families, but their wider distribution among other plant families remains unclear. Clitoria ternatea (Butterfly pea) is a member of plant family Fabaceae and through its usage in traditional medicine to aid childbirth bears similarity to Oldenlandia affinis, from which many cyclotides have been isolated. Using a combination of nanospray and matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) analyses, we examined seed extracts of C. ternatea and discovered cyclotides in the Fabaceae, the third-largest family of flowering plants. We characterized 12 novel cyclotides, thus expanding knowledge of cyclotide distribution and evolution within the plant kingdom. The discovery of cyclotides containing novel sequence motifs near the in planta cyclization site has provided new insights into cyclotide biosynthesis. In particular, MS analyses of the novel cyclotides from C. ternatea suggest that Asn to Asp variants at the cyclization site are more common than previously recognized. Moreover, this study provides impetus for the examination of other economically and agriculturally significant species within Fabaceae, now the largest plant family from which cyclotides have been described.

  12. The evolution of body size in extant groups of North American freshwater fishes: speciation, size distributions, and Cope's rule.

    Science.gov (United States)

    Knouft, Jason H; Page, Lawrence M

    2003-03-01

    Change in body size within an evolutionary lineage over time has been under investigation since the synthesis of Cope's rule, which suggested that there is a tendency for mammals to evolve larger body size. Data from the fossil record have subsequently been examined for several other taxonomic groups to determine whether they also displayed an evolutionary increase in body size. However, we are not aware of any species-level study that has investigated the evolution of body size within an extant continental group. Data acquired from the fossil record and data derived from the evolutionary relationships of extant species are not similar, with each set exhibiting both strengths and weaknesses related to inferring evolutionary patterns. Consequently, expectation that general trends exhibited in the fossil record will correspond to patterns in extant groups is not necessarily warranted. Using phylogenetic relationships of extant species, we show that five of nine families of North American freshwater fishes exhibit an evolutionary trend of decreasing body size. These trends result from the basal position of large species and the more derived position of small species within families. Such trends may be caused by the invasion of small streams and subsequent isolation and speciation. This pattern, potentially influenced by size-biased dispersal rates and the high percentage of small streams in North America, suggests a scenario that could result in the generation of the size-frequency distribution of North American freshwater fishes.

  13. On γ5 in higher-order QCD calculations and the NNLO evolution of the polarized valence distribution

    International Nuclear Information System (INIS)

    Moch, S.; Vogt, A.

    2015-06-01

    We discuss the prescription for the Dirac matrix γ 5 in dimensional regularization used in most second- and third-order QCD calculations of collider cross sections. We provide an alternative implementation of this approach that avoids the use of an explicit form of γ 5 and of its (anti-) commutation relations in the most important case of no more than one γ 5 in each fermion trace. This treatment is checked by computing the third-order corrections to the structure functions F 2 and g 1 in charged-current deep-inelastic scattering with axial-vector couplings to the W-bosons. We derive the so far unknown third-order helicity-difference splitting function ΔP ns (2)s that contributes to the next-to-next-to-leading order (NNLO) evolution of the polarized valence quark distribution of the nucleon. This function is negligible at momentum fractions x>or similar 0.3 but relevant at x<<1.

  14. Long-term evolution of electron distribution function due to nonlinear resonant interaction with whistler mode waves

    Science.gov (United States)

    Artemyev, Anton V.; Neishtadt, Anatoly I.; Vasiliev, Alexei A.

    2018-04-01

    Accurately modelling and forecasting of the dynamics of the Earth's radiation belts with the available computer resources represents an important challenge that still requires significant advances in the theoretical plasma physics field of wave-particle resonant interaction. Energetic electron acceleration or scattering into the Earth's atmosphere are essentially controlled by their resonances with electromagnetic whistler mode waves. The quasi-linear diffusion equation describes well this resonant interaction for low intensity waves. During the last decade, however, spacecraft observations in the radiation belts have revealed a large number of whistler mode waves with sufficiently high intensity to interact with electrons in the nonlinear regime. A kinetic equation including such nonlinear wave-particle interactions and describing the long-term evolution of the electron distribution is the focus of the present paper. Using the Hamiltonian theory of resonant phenomena, we describe individual electron resonance with an intense coherent whistler mode wave. The derived characteristics of such a resonance are incorporated into a generalized kinetic equation which includes non-local transport in energy space. This transport is produced by resonant electron trapping and nonlinear acceleration. We describe the methods allowing the construction of nonlinear resonant terms in the kinetic equation and discuss possible applications of this equation.

  15. Stratigraphical discontinuities, tropical landscape evolution and soil distribution relationships in a case study in SE-Brazil

    Directory of Open Access Journals (Sweden)

    M. Cooper

    2002-09-01

    Full Text Available On a regional summit surface in the county of Piracicaba (SP within the Peripheric Depression of São Paulo, formed of discontinued flattened tops, there is an abrupt transition between a Typic Hapludox and a Kandiudalfic Eutrudox, together with two stoneline layers. Using stratigraphical, mineralogical, and cartographic studies, this transition and the soil distribution of this surface were studied, correlating them with the different parent materials and the morphoclimatic model of landscape evolution in Southeastern Brazil. The Typic Hapludox was formed on a sandy Cenozoic deposit (Q that overlies a pellitic deposit of the Iratí formation (Pi, representing a regional erosive discordance. Westwards to the Piracicaba River, this sequence is interrupted by a diabase sill overlain by a red clayey material which gave origin to the Kandiudalfic Eutrudox. Two post-Permian depositional events were identified by the two stonelines and stratigraphical discontinuities. The first event generated the deposition of a sandy sediment in the form of levelled alveoluses on regional barriers, most of these formed by dikes and diabase sills, probably during a drier phase. The second depositional event, leading to the deposition of the red clay was probably the dissection of the previously formed pediplane during a humid climate, followed by another pedimentation process during a later, drier period.

  16. Galactic evolution

    International Nuclear Information System (INIS)

    Pagel, B.

    1979-01-01

    Ideas are considered concerning the evolution of galaxies which are closely related to those of stellar evolution and the origin of elements. Using information obtained from stellar spectra, astronomers are now able to consider an underlying process to explain the distribution of various elements in the stars, gas and dust clouds of the galaxies. (U.K.)

  17. Evolution of a Directional Wave Spectrum in a 3D Marginal Ice Zone with Random Floe Size Distribution

    Science.gov (United States)

    Montiel, F.; Squire, V. A.

    2013-12-01

    A new ocean wave/sea-ice interaction model is proposed that simulates how a directional wave spectrum evolves as it travels through a realistic marginal ice zone (MIZ), where wave/ice dynamics are entirely governed by coherent conservative wave scattering effects. Field experiments conducted by Wadhams et al. (1986) in the Greenland Sea generated important data on wave attenuation in the MIZ and, particularly, on whether the wave spectrum spreads directionally or collimates with distance from the ice edge. The data suggest that angular isotropy, arising from multiple scattering by ice floes, occurs close to the edge and thenceforth dominates wave propagation throughout the MIZ. Although several attempts have been made to replicate this finding theoretically, including by the use of numerical models, none have confronted this problem in a 3D MIZ with fully randomised floe distribution properties. We construct such a model by subdividing the discontinuous ice cover into adjacent infinite slabs of finite width parallel to the ice edge. Each slab contains an arbitrary (but finite) number of circular ice floes with randomly distributed properties. Ice floes are modeled as thin elastic plates with uniform thickness and finite draught. We consider a directional wave spectrum with harmonic time dependence incident on the MIZ from the open ocean, defined as a continuous superposition of plane waves traveling at different angles. The scattering problem within each slab is then solved using Graf's interaction theory for an arbitrary incident directional plane wave spectrum. Using an appropriate integral representation of the Hankel function of the first kind (see Cincotti et al., 1993), we map the outgoing circular wave field from each floe on the slab boundaries into a directional spectrum of plane waves, which characterizes the slab reflected and transmitted fields. Discretizing the angular spectrum, we can obtain a scattering matrix for each slab. Standard recursive

  18. A study of molecular correlations observed in the small-angle photon scattering distributions of 60 KeV photons interacting with low-atomic-number media

    International Nuclear Information System (INIS)

    Bradley, D.A.

    1988-01-01

    A variant of the multisection filter and annular target geometry, with a designed angular acceptance of +-0.5 0 , has been utilised in measuring accurate, O(5%), absolute total differential scattering cross sections of 60 KeV photons for H 2 O, methyl methacrylate (C 5 H 8 O 2 ) n and nylon-6 (C 12 H 22 O 3 N 2 ) n in the angular scattering range of 2 0 -10 0 . The effects of molecular correlations manifest, to varying degree, in strong forward peaking of the scattered photon distribution. Comparison is made with available experiment and theory [pt

  19. Small angle spectrometers: Summary

    International Nuclear Information System (INIS)

    Courant, E.; Foley, K.J.; Schlein, P.E.

    1986-01-01

    Aspects of experiments at small angles at the Superconducting Super Collider are considered. Topics summarized include a small angle spectrometer, a high contingency spectrometer, dipole and toroid spectrometers, and magnet choices

  20. Contact Angle Goniometer

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  1. Medium dependence of multiplicity distributions in MLLA

    Energy Technology Data Exchange (ETDEWEB)

    Armesto, Nestor; Pajares, Carlos; Quiroga-Arias, Paloma [Universidade de Santiago de Compostela, Departamento de Fisica de Particulas and IGFAE, Santiago de Compostela (Spain)

    2009-06-15

    We study the modification of the multiplicity distributions in MLLA due to the presence of a QCD medium. The medium is introduced through a multiplicative constant (f{sub med}) in the soft infrared parts of the kernels of the QCD evolution equations. Using the asymptotic ansatz for mean multiplicities of the quark and gluons, left angle n{sub G} right angle =e{sup {gamma}}{sup y} and left angle n{sub Q} right angle =r {sup -1}e{sup {gamma}}{sup y}, respectively, we study two cases: fixed {gamma} as previously considered in the literature, and fixed {alpha}{sub s}. We find opposite behaviors of the dispersion of the multiplicity distributions with increasing f{sub med} in both cases. For fixed {gamma} the dispersion decreases, while for fixed {alpha}{sub s} it increases. (orig.)

  2. Medium dependence of multiplicity distributions in MLLA

    International Nuclear Information System (INIS)

    Armesto, Nestor; Pajares, Carlos; Quiroga-Arias, Paloma

    2009-01-01

    We study the modification of the multiplicity distributions in MLLA due to the presence of a QCD medium. The medium is introduced through a multiplicative constant (f med ) in the soft infrared parts of the kernels of the QCD evolution equations. Using the asymptotic ansatz for mean multiplicities of the quark and gluons, left angle n G right angle =e γy and left angle n Q right angle =r -1 e γy , respectively, we study two cases: fixed γ as previously considered in the literature, and fixed α s . We find opposite behaviors of the dispersion of the multiplicity distributions with increasing f med in both cases. For fixed γ the dispersion decreases, while for fixed α s it increases. (orig.)

  3. Three dimensional sampling perfection with application-optimized contrasts by using different flip angle evolutions-short time of the inversion recovery sequence for the post-ganglionic segments of the brachial plexus

    International Nuclear Information System (INIS)

    Fu Naiqi; Zhou Hongyu; Zheng Zhuozhao; Zhao Qiang

    2013-01-01

    Objective: To evaluate the contrast-enhanced 3D sampling perfection with application-optimized contrasts by using different flip angle evolutions-short TI inversion recovery sequence (SPACE-STIR) for the imaging of the post-ganglionic segments of the brachial plexus. Methods: Forty-three patients with suspected brachial plexus lesions were examined with 3D SPACE-STIR and contrast-enhanced 3D SPACE-STIR prospectively. Signal-to-noise ratios (SNR), contrast-to-noise ratios (CNR), and the conspicuousness of roots, trunks,divisions and cords of the brachial plexus of the two 3D sequences were retrospectively compared. Statistical analysis was performed by using student t-test and Wilcoxon rank sum test. Results: Compared with 3D SPACE-STIR, contrast-enhanced 3D SPACE-STIR provided the similar SNRs (left, 37.41 ± 7.34 vs 36.27 ± 7.66, t = 1.574, P = 0.123, right, 43.85 ± 9.56 vs 42.34 ± 9.74, t = 1.937, P = 0.073), but significantly higher nerve-to-muscle CNRs (left, 24.01 ± 6.31 vs 26.39 ± 6.95, right, 29.31 ± 7.84 vs 31.77 ± 8.85, t = -3.278, -3.278, both P < 0.01) and nerve-to-lymph gland CNRs(left, -0.84 ± 10.51 vs 15.35 ± 8.02, right, -8.47 ± 10.85 vs 19.30 ± 10.35, t = -15.984, -15.651, both P < 0.01). The conspicuousness of roots and trunks on contrast-enhanced 3D SPACE-STIR was significantly better than that on 3D SPACE-STIR (Z = -3.606, -4.472, P < 0.01), while the conspicuousness of divisions and cords was similar(Z = -1.732, -1.414, P = 0.083, 0.157). The signal intensity of neoplastic lesions on contrast-enhanced 3D SPACE-STIR tended to decrease rapidly, thus the lesion conspicuousness was worse than that on 3D SPACE-STIR. Conclusions: Contrast-enhanced 3D SPACE-STIR has obvious advantages in displaying normal brachial plexus and revealing non-neoplastic lesions of the brachial plexus, but may be insufficient for the diagnosis of neoplastic lesions of the brachial plexus. (authors)

  4. Lateral displacement in small angle multiple scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bichsel, H.; Hanson, K.M.; Schillaci, K.M. (Los Alamos National Lab., NM (USA))

    1982-07-01

    Values have been calculated for the average lateral displacement in small angle multiple scattering of protons with energies of several hundred MeV. The calculations incorporate the Moliere distribution which does not make the gaussian approximations of the distribution in projected angle and lateral deflections. Compared to other published data, such approximations can lead to errors in the lateral displacement of up to 10% in water.

  5. MIZMAS: Modeling the Evolution of Ice Thickness and Floe Size Distributions in the Marginal Ice Zone of the Chukchi and Beaufort Seas

    Science.gov (United States)

    2015-09-30

    ITD theory of Thorndike et al. (1975) in order to explicitly simulate the evolution of FSD and ITD jointly. The FSD theory includes a FSD function and...et al., 2015). 4 RESULTS Modeling: A FSD theory is developed and coupled to the ITD theory of Thorndike et al. (1975) in order to... Thorndike , A.S., D.A. Rothrock, G.A. Maykut, and R. Colony (1975), The thickness distribution of sea ice. J. Geophys. Res., 80, 4501–4513. Zhang

  6. Insecticidal genes of Yersinia spp.: taxonomical distribution, contribution to toxicity towards Manduca sexta and Galleria mellonella, and evolution

    Directory of Open Access Journals (Sweden)

    Schachtner Joachim

    2008-12-01

    Full Text Available Abstract Background Toxin complex (Tc proteins termed TcaABC, TcdAB, and TccABC with insecticidal activity are present in a variety of bacteria including the yersiniae. Results The tc gene sequences of thirteen Yersinia strains were compared, revealing a high degree of gene order conservation, but also remarkable differences with respect to pseudogenes, sequence variability and gene duplications. Outside the tc pathogenicity island (tc-PAIYe of Y. enterocolitica strain W22703, a pseudogene (tccC2'/3' encoding proteins with homology to TccC and similarity to tyrosine phosphatases at its C-terminus was identified. PCR analysis revealed the presence of the tc-PAIYe and of tccC2'/3'-homologues in all biotype 2–5 strains tested, and their absence in most representatives of biotypes 1A and 1B. Phylogenetic analysis of 39 TccC sequences indicates the presence of the tc-PAIYe in an ancestor of Yersinia. Oral uptake experiments with Manduca sexta revealed a higher larvae lethality of Yersinia strains harbouring the tc-PAIYe in comparison to strains lacking this island. Following subcutaneous infection of Galleria mellonella larvae with five non-human pathogenic Yersinia spp. and four Y. enterocolitica strains, we observed a remarkable variability of their insecticidal activity ranging from 20% (Y. kristensenii to 90% (Y. enterocolitica strain 2594 dead larvae after five days. Strain W22703 and its tcaA deletion mutant did not exhibit a significantly different toxicity towards G. mellonella. These data confirm a role of TcaA upon oral uptake only, and suggest the presence of further insecticidal determinants in Yersinia strains formerly unknown to kill insects. Conclusion This study investigated the tc gene distribution among yersiniae and the phylogenetic relationship between TccC proteins, thus contributing novel aspects to the current discussion about the evolution of insecticidal toxins in the genus Yersinia. The toxic potential of several Yersinia

  7. The OH + D2 --> HOD + D angle-velocity distribution: quasi-classical trajectory calculations on the YZCL2 and WSLFH potential energy surfaces and comparison with experiments at ET = 0.28 eV.

    Science.gov (United States)

    Sierra, José Daniel; Martínez, Rodrigo; Hernando, Jordi; González, Miguel

    2009-12-28

    The angle-velocity distribution (HOD) of the OH + D(2) reaction at a relative translational energy of 0.28 eV has been calculated using the quasi-classical trajectory (QCT) method on the two most recent potential energy surfaces available (YZCL2 and WSLFH PESs), widely extending a previous investigation of our group. Comparison with the high resolution experiments of Davis and co-workers (Science, 2000, 290, 958) shows that the structures (peaks) found in the relative translational energy distributions of products could not be satisfactorily reproduced in the calculations, probably due to the classical nature of the QCT method and the importance of quantum effects. The calculations, however, worked quite well for other properties. Overall, both surfaces led to similar results, although the YZCL2 surface is more accurate to describe the H(3)O PES, as derived from comparison with high level ab initio results. The differences observed in the QCT calculations were interpreted considering the somewhat larger anisotropy of the YZCL2 PES when compared with the WSLFH PES.

  8. Distribution

    Science.gov (United States)

    John R. Jones

    1985-01-01

    Quaking aspen is the most widely distributed native North American tree species (Little 1971, Sargent 1890). It grows in a great diversity of regions, environments, and communities (Harshberger 1911). Only one deciduous tree species in the world, the closely related Eurasian aspen (Populus tremula), has a wider range (Weigle and Frothingham 1911)....

  9. Modeling of the evolution of bubble size distribution of gas-liquid flow inside a large vertical pipe. Influence of bubble coalescence and breakup models

    International Nuclear Information System (INIS)

    Liao, Yixiang; Lucas, Dirk

    2011-01-01

    The range of gas-liquid flow applications in today's technology is immensely wide. Important examples can be found in chemical reactors, boiling and condensation equipments as well as nuclear reactors. In gas-liquid flows, the bubble size distribution plays an important role in the phase structure and interfacial exchange behaviors. It is therefore necessary to take into account the dynamic change of the bubble size distribution to get good predictions in CFD. An efficient 1D Multi-Bubble-Size-Class Test Solver was introduced in Lucas et al. (2001) for the simulation of the development of the flow structure along a vertical pipe. The model considers a large number of bubble classes. It solves the radial profiles of liquid and gas velocities, bubble-size class resolved gas fraction profiles as well as turbulence parameters on basis of the bubble size distribution present at the given axial position. The evolution of the flow along the height is assumed to be solely caused by the progress of bubble coalescence and break-up resulting in a bubble size distribution changing in the axial direction. In this model, the bubble coalescence and breakup models are very important for reasonable predictions of the bubble size distribution. Many bubble coalescence and breakup models have been proposed in the literature. However, some obvious discrepancies exist in the models; for example, the daughter bubble size distributions are greatly different from different bubble breakup models, as reviewed in our previous publication (Liao and Lucas, 2009a; 2010). Therefore, it is necessary to compare and evaluate typical bubble coalescence and breakup models that have been commonly used in the literature. Thus, this work is aimed to make a comparison of several typical bubble coalescence and breakup models and to discuss in detail the ability of the Test Solver to predict the evolution of bubble size distribution. (orig.)

  10. Cluster evolution

    International Nuclear Information System (INIS)

    Schaeffer, R.

    1987-01-01

    The galaxy and cluster luminosity functions are constructed from a model of the mass distribution based on hierarchical clustering at an epoch where the matter distribution is non-linear. These luminosity functions are seen to reproduce the present distribution of objects as can be inferred from the observations. They can be used to deduce the redshift dependence of the cluster distribution and to extrapolate the observations towards the past. The predicted evolution of the cluster distribution is quite strong, although somewhat less rapid than predicted by the linear theory

  11. The Average Temporal and Spectral Evolution of Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Fenimore, E.E.

    1999-01-01

    We have averaged bright BATSE bursts to uncover the average overall temporal and spectral evolution of gamma-ray bursts (GRBs). We align the temporal structure of each burst by setting its duration to a standard duration, which we call T left-angleDurright-angle . The observed average open-quotes aligned T left-angleDurright-angle close quotes profile for 32 bright bursts with intermediate durations (16 - 40 s) has a sharp rise (within the first 20% of T left-angleDurright-angle ) and then a linear decay. Exponentials and power laws do not fit this decay. In particular, the power law seen in the X-ray afterglow (∝T -1.4 ) is not observed during the bursts, implying that the X-ray afterglow is not just an extension of the average temporal evolution seen during the gamma-ray phase. The average burst spectrum has a low-energy slope of -1.03, a high-energy slope of -3.31, and a peak in the νF ν distribution at 390 keV. We determine the average spectral evolution. Remarkably, it is also a linear function, with the peak of the νF ν distribution given by ∼680-600(T/T left-angleDurright-angle ) keV. Since both the temporal profile and the peak energy are linear functions, on average, the peak energy is linearly proportional to the intensity. This behavior is inconsistent with the external shock model. The observed temporal and spectral evolution is also inconsistent with that expected from variations in just a Lorentz factor. Previously, trends have been reported for GRB evolution, but our results are quantitative relationships that models should attempt to explain. copyright copyright 1999. The American Astronomical Society

  12. Optimal reconstruction angles

    International Nuclear Information System (INIS)

    Cook, G.O. Jr.; Knight, L.

    1979-07-01

    The question of optimal projection angles has recently become of interest in the field of reconstruction from projections. Here, studies are concentrated on the n x n pixel space, where literative algorithms such as ART and direct matrix techniques due to Katz are considered. The best angles are determined in a Gauss--Markov statistical sense as well as with respect to a function-theoretical error bound. The possibility of making photon intensity a function of angle is also examined. Finally, the best angles to use in an ART-like algorithm are studied. A certain set of unequally spaced angles was found to be preferred in several contexts. 15 figures, 6 tables

  13. Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge.

    Science.gov (United States)

    Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng

    2018-04-19

    Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm 2 , the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.

  14. Effects of next-to-leading order DGLAP evolution on generalized parton distributions of the proton and deeply virtual Compton scattering at high energy

    Energy Technology Data Exchange (ETDEWEB)

    Khanpour, Hamzeh [University of Science and Technology of Mazandaran, Department of Physics, Behshahr (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of); Goharipour, Muhammad [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of); Guzey, Vadim [Petersburg Nuclear Physics Institute (PNPI), National Research Center ' ' Kurchatov Institute' ' , Gatchina (Russian Federation)

    2018-01-15

    We studied the effects of NLO Q{sup 2} evolution of generalized parton distributions (GPDs) using the aligned-jet model for the singlet quark and gluon GPDs at an initial evolution scale. We found that the skewness ratio for quarks is a slow logarithmic function of Q{sup 2}, reaching r{sup S} = 1.5-2 at Q{sup 2} = 100 GeV{sup 2} and r{sup g} ∼ 1 for gluons in a wide range of Q{sup 2}. Using the resulting GPDs, we calculated the DVCS cross section on the proton in NLO pQCD and found that this model in conjunction with modern parameterizations of proton PDFs (CJ15 and CT14) provides a good description of the available H1 and ZEUS data in a wide kinematic range. (orig.)

  15. Does Angling Technique Selectively Target Fishes Based on Their Behavioural Type?

    Directory of Open Access Journals (Sweden)

    Alexander D M Wilson

    Full Text Available Recently, there has been growing recognition that fish harvesting practices can have important impacts on the phenotypic distributions and diversity of natural populations through a phenomenon known as fisheries-induced evolution. Here we experimentally show that two common recreational angling techniques (active crank baits versus passive soft plastics differentially target wild largemouth bass (Micropterus salmoides and rock bass (Ambloplites rupestris based on variation in their behavioural tendencies. Fish were first angled in the wild using both techniques and then brought back to the laboratory and tested for individual-level differences in common estimates of personality (refuge emergence, flight-initiation-distance, latency-to-recapture and with a net, and general activity in an in-lake experimental arena. We found that different angling techniques appear to selectively target these species based on their boldness (as characterized by refuge emergence, a standard measure of boldness in fishes but not other assays of personality. We also observed that body size was independently a significant predictor of personality in both species, though this varied between traits and species. Our results suggest a context-dependency for vulnerability to capture relative to behaviour in these fish species. Ascertaining the selective pressures angling practices exert on natural populations is an important area of fisheries research with significant implications for ecology, evolution, and resource management.

  16. An investigation of processes controlling the evolution of the boundary layer aerosol size distribution properties at the Swedish background station Aspvreten

    Directory of Open Access Journals (Sweden)

    P. Tunved

    2004-01-01

    Full Text Available Aerosol size distributions have been measured at the Swedish background station Aspvreten (58.8° N, 17.4° E. Different states of the aerosol were determined using a novel application of cluster analysis. The analysis resulted in eight different clusters capturing different stages of the aerosol lifecycle. The atmospheric aerosol size distributions were interpreted as belonging to fresh, intermediate and aged types of size distribution. With aid of back trajectory analysis we present statistics concerning the relation of source area and different meteorological parameters using a non-Lagrangian approach. Source area is argued to be important although not sufficient to describe the observed aerosol properties. Especially processing by clouds and precipitation is shown to be crucial for the evolution of the aerosol size distribution. As much as 60% of the observed size distributions present features that are likely to be related to cloud processes or wet deposition. The lifetime properties of different sized aerosols are discussed by means of measured variability of the aerosol size distribution. Processing by clouds and precipitation is shown to be especially crucial in the size range 100 nm and larger. This indicates an approximate limit for activation in clouds to 100 nm in this type of environment. The aerosol lifecycle is discussed. Size distributions indicating signs of recent new particle formation (~30% of the observed size distributions represent the first stage in the lifecycle. Aging of the aerosol size distribution may follow two branches: either growth by condensation and coagulation or processing by non-precipitating clouds. In both cases mass is accumulated. Wet removal is the main process capable of removing aerosol mass. Wet deposition is argued to be an important mechanism in reaching a state where nucleation may occur (i.e. sufficiently low aerosol surface area in environments similar to the one studied.

  17. Expressions for the Total Yaw Angle

    Science.gov (United States)

    2016-09-01

    1. Introduction 1 2. Mathematical Notation 1 3. Total Yaw Expression Derivations 2 3.1 First Derivation 2 3.2 Second Derivation 4 3.3 Other...4 iv Approved for public release; distribution is unlimited. 1. Introduction The total yaw angle, γt , of a ballistic projectile is... elevation angles from spherical coordinates.∗ We again place point A at the end point of V. Now imagine a plane parallel to the y-z plane that includes

  18. Angles in hyperbolic lattices

    DEFF Research Database (Denmark)

    Risager, Morten S.; Södergren, Carl Anders

    2017-01-01

    It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior of the den......It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior...... of the density function in both the small and large variable limits. This extends earlier results by Boca, Pasol, Popa and Zaharescu and Kelmer and Kontorovich in dimension 2 to general dimension n . Our proofs use the decay of matrix coefficients together with a number of careful estimates, and lead...

  19. Galactic chemical evolution with main-sequence mass loss and the distribution of F and G dwarfs

    International Nuclear Information System (INIS)

    Guzik, J.A.; Struck-Marcell, C.

    1988-01-01

    Simple closed galactic chemical-evolution models incorporating early main-sequence stellar mass loss have been developed for disk ages of 5, 10, and 15 Gyr. Relative to models without stellar mass loss, the models are shown to produce a 30-60 percent increase in the present mass ratio of dwarfs to dwarfs plus remnants, and a 200-250 percent increase in the total mass of late F dwarfs remaining on the main sequence at the current disk age. For present disk ages 5 and 10 Gyr, the total mass of mid-F dwarfs remaining on the main sequence is also shown to increase by 90-120 percent. It is concluded that models with main-sequence mass loss have a slightly reduced gas metallicity and slightly increased gas fraction midway through the evolution. 30 references

  20. GALACTIC CHEMICAL EVOLUTION: THE IMPACT OF THE 13C-POCKET STRUCTURE ON THE s -PROCESS DISTRIBUTION

    International Nuclear Information System (INIS)

    Bisterzo, S.; Travaglio, C.; Wiescher, M.; Käppeler, F.; Gallino, R.

    2017-01-01

    The solar s -process abundances have been analyzed in the framework of a Galactic Chemical Evolution (GCE) model. The aim of this work is to implement the study by Bisterzo et al., who investigated the effect of one of the major uncertainties of asymptotic giant branch (AGB) yields, the internal structure of the 13 C pocket. We present GCE predictions of s -process elements computed with additional tests in the light of suggestions provided in recent publications. The analysis is extended to different metallicities, by comparing GCE results and updated spectroscopic observations of unevolved field stars. We verify that the GCE predictions obtained with different tests may represent, on average, the evolution of selected neutron-capture elements in the Galaxy. The impact of an additional weak s -process contribution from fast-rotating massive stars is also explored.

  1. Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution.

    Science.gov (United States)

    Gu, Xun; Wang, Yufeng; Gu, Jianying

    2002-06-01

    The classical (two-round) hypothesis of vertebrate genome duplication proposes two successive whole-genome duplication(s) (polyploidizations) predating the origin of fishes, a view now being seriously challenged. As the debate largely concerns the relative merits of the 'big-bang mode' theory (large-scale duplication) and the 'continuous mode' theory (constant creation by small-scale duplications), we tested whether a significant proportion of paralogous genes in the contemporary human genome was indeed generated in the early stage of vertebrate evolution. After an extensive search of major databases, we dated 1,739 gene duplication events from the phylogenetic analysis of 749 vertebrate gene families. We found a pattern characterized by two waves (I, II) and an ancient component. Wave I represents a recent gene family expansion by tandem or segmental duplications, whereas wave II, a rapid paralogous gene increase in the early stage of vertebrate evolution, supports the idea of genome duplication(s) (the big-bang mode). Further analysis indicated that large- and small-scale gene duplications both make a significant contribution during the early stage of vertebrate evolution to build the current hierarchy of the human proteome.

  2. The gas market opens out to competition: how will the French system of distributions evolve?; Ouverture a la concurrence du marche du gaz: quelle evolution pour le systeme francais des concessions de distribution?

    Energy Technology Data Exchange (ETDEWEB)

    Carbonnier, R. [Strasbourg-3 Universite, Robert Schuman, 67 (France)]|[Strasbourg-1 Univ. Louis Pasteur, 67 (France)

    1998-10-01

    Th public distribution of natural gas in France is organised around a system of franchises allocated by the communes to a unique designated distributor (Gaz de France in most cases). This system, which was recently eased by a legislative provision, seems to have an uncertain future faced with the opening of competition that is encouraged by the European authorities and with the demands of some local communities which would like to lay a greater role in the future organisational plan for gas. This article looks at the possible evolutions, from the reactivation of franchises to their complete disappearance. (author)

  3. Small angle X-ray scattering from hydrating tricalcium silicate

    International Nuclear Information System (INIS)

    Vollet, D.

    1983-01-01

    The small-angle X-ray scattering technique was used to study the structural evolution of hydrated tricalcium silicate at room temperature. The changes in specific area of the associated porosity and the evolution of density fluctuations in the solid hydrated phase were deduced from the scattering data. A correlation of these variations with the hydration mechanism is tried. (Author) [pt

  4. Long-period variables in the Large Magellanic Cloud. II. Infrared photometry, spectral classification, AGB evolution, and spatial distribution

    International Nuclear Information System (INIS)

    Hughes, S.M.G.; Wood, P.R.

    1990-01-01

    Infrared JHK photometry and visual spectra have been obtained for a large sample of long-period variables (LPVs) in the Large Magellanic Cloud (LMC). Various aspects of the asymptotic giant branch (AGB) evolution of LPVs are discussed using these data. The birth/death rate of LPVs of different ages in the LMC is compared with the birth rates of appropriate samples of planetary nebulas, clump stars, Cepheids, and OH/IR stars. It appears that there are much fewer large-amplitude LPVs per unit galactic stellar mass in the LMC than in the Galaxy. It is suggested that this may be due to the fact that the evolved intermediate-age AGB stars in the LMC often turn into carbon stars, which tend to have smaller pulsation amplitudes than M stars. There is also a major discrepancy between the number of LPVs in the LMC (and in the Galaxy) and the number predicted by the theories of AGB evolution, pulsation, and mass loss. A distance modulus to the LMC of 18.66 + or - 0.05 is derived by comparing the LMC LPVs with P about 200 days with the 47 Tucanae Mira variables in the (K, log P) plane. 64 refs

  5. Risks of nuclear waste disposal in space. III - Long-term orbital evolution of small particle distribution

    Science.gov (United States)

    Friedlander, A. L.; Wells, W. C.

    1980-01-01

    A study of long term risks is presented that treats an additional pathway that could result in earth reentry, namely, small radioactive particles released in solar orbit due to payload fragmentation by accidental explosion or meteoroid impact. A characterization of such an event and of the initial mass size distribution of particles is given for two extremes of waste form strength. Attention is given to numerical results showing the mass-time distribution of material and the fraction of initial mass intercepted by earth. It is concluded that it appears that program planners need not be to concerned about the risks of this particular failure mechanism and return pathway.

  6. Plant STAND P-loop NTPases: a current perspective of genome distribution, evolution, and function : Plant STAND P-loop NTPases: genomic organization, evolution, and molecular mechanism models contribute broadly to plant pathogen defense.

    Science.gov (United States)

    Arya, Preeti; Acharya, Vishal

    2018-02-01

    STAND P-loop NTPase is the common weapon used by plant and other organisms from all three kingdoms of life to defend themselves against pathogen invasion. The purpose of this study is to review comprehensively the latest finding of plant STAND P-loop NTPase related to their genomic distribution, evolution, and their mechanism of action. Earlier, the plant STAND P-loop NTPase known to be comprised of only NBS-LRRs/AP-ATPase/NB-ARC ATPase. However, recent finding suggests that genome of early green plants comprised of two types of STAND P-loop NTPases: (1) mammalian NACHT NTPases and (2) NBS-LRRs. Moreover, YchF (unconventional G protein and members of P-loop NTPase) subfamily has been reported to be exceptionally involved in biotic stress (in case of Oryza sativa), thereby a novel member of STAND P-loop NTPase in green plants. The lineage-specific expansion and genome duplication events are responsible for abundance of plant STAND P-loop NTPases; where "moderate tandem and low segmental duplication" trajectory followed in majority of plant species with few exception (equal contribution of tandem and segmental duplication). Since the past decades, systematic research is being investigated into NBS-LRR function supported the direct recognition of pathogen or pathogen effectors by the latest models proposed via 'integrated decoy' or 'sensor domains' model. Here, we integrate the recently published findings together with the previous literature on the genomic distribution, evolution, and distinct models proposed for functional molecular mechanism of plant STAND P-loop NTPases.

  7. Drop size distribution evolution after continuous or intermittent injection of butane or propane in a confined air flow

    NARCIS (Netherlands)

    Knubben, G.; Geld, van der C.W.M.

    1999-01-01

    Drop size distributions and velocities have been measured of n-butane and propane sprays, rapidly evaporating in air flowing at constant velocity, 15 m/s typically. The inlet air temperature has been found to be of main importance in the evaporation process. After a period of the order of the

  8. Matrix Structure Evolution and Nanoreinforcement Distribution in Mechanically Milled and Spark Plasma Sintered Al-SiC Nanocomposites.

    Science.gov (United States)

    Saheb, Nouari; Aliyu, Ismaila Kayode; Hassan, Syed Fida; Al-Aqeeli, Nasser

    2014-09-19

    Development of homogenous metal matrix nanocomposites with uniform distribution of nanoreinforcement, preserved matrix nanostructure features, and improved properties, was possible by means of innovative processing techniques. In this work, Al-SiC nanocomposites were synthesized by mechanical milling and consolidated through spark plasma sintering. Field Emission Scanning Electron Microscope (FE-SEM) with Energy Dispersive X-ray Spectroscopy (EDS) facility was used for the characterization of the extent of SiC particles' distribution in the mechanically milled powders and spark plasma sintered samples. The change of the matrix crystallite size and lattice strain during milling and sintering was followed through X-ray diffraction (XRD). The density and hardness of the developed materials were evaluated as function of SiC content at fixed sintering conditions using a densimeter and a digital microhardness tester, respectively. It was found that milling for 24 h led to uniform distribution of SiC nanoreinforcement, reduced particle size and crystallite size of the aluminum matrix, and increased lattice strain. The presence and amount of SiC reinforcement enhanced the milling effect. The uniform distribution of SiC achieved by mechanical milling was maintained in sintered samples. Sintering led to the increase in the crystallite size of the aluminum matrix; however, it remained less than 100 nm in the composite containing 10 wt.% SiC. Density and hardness of sintered nanocomposites were reported and compared with those published in the literature.

  9. The chromosomal distributions of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution

    Science.gov (United States)

    J.S. (Pat) Heslop-Harrison; Andrea Brandes; Shin Taketa; Thomas Schmidt; Alexander V. Vershinin; Elena G. Alkhimova; Anette Kamm; Robert L. Doudrick; . [and others

    1997-01-01

    Retrotransposons make up a major fraction - sometimes more than 40% - of all plant genomes investigated so far. We have isolated the reverse transcriptase domains of theTyl-copia group elements from several species, ranging in genome size from some 100 Mbp to 23,000 Mbp, and determined the distribution patterns of these retrotransposons on metaphase chromosomes and...

  10. Numerical Modeling Describing the Effects of Heterogeneous Distributions of Asperities on the Quasi-static Evolution of Frictional Slip

    Science.gov (United States)

    Selvadurai, P. A.; Parker, J. M.; Glaser, S. D.

    2017-12-01

    A better understanding of how slip accumulates along faults and its relation to the breakdown of shear stress is beneficial to many engineering disciplines, such as, hydraulic fracture and understanding induced seismicity (among others). Asperities forming along a preexisting fault resist the relative motion of the two sides of the interface and occur due to the interaction of the surface topographies. Here, we employ a finite element model to simulate circular partial slip asperities along a nominally flat frictional interface. Shear behavior of our partial slip asperity model closely matched the theory described by Cattaneo. The asperity model was employed to simulate a small section of an experimental fault formed between two bodies of polymethyl methacrylate, which consisted of multiple asperities whose location and sizes were directly measured using a pressure sensitive film. The quasi-static shear behavior of the interface was modeled for cyclical loading conditions, and the frictional dissipation (hysteresis) was normal stress dependent. We further our understanding by synthetically modeling lognormal size distributions of asperities that were randomly distributed in space. Synthetic distributions conserved the real contact area and aspects of the size distributions from the experimental case, allowing us to compare the constitutive behaviors based solely on spacing effects. Traction-slip behavior of the experimental interface appears to be considerably affected by spatial clustering of asperities that was not present in the randomly spaced, synthetic asperity distributions. Estimates of bulk interfacial shear stiffness were determined from the constitutive traction-slip behavior and were comparable to the theoretical estimates of multi-contact interfaces with non-interacting asperities.

  11. The quadriceps angle

    DEFF Research Database (Denmark)

    Miles, James Edward; Frederiksen, Jane V.; Jensen, Bente Rona

    2012-01-01

    : Pelvic limbs from red foxes (Vulpes vulpes). METHODS: Q angles were measured on hip dysplasia (HD) and whole limb (WL) view radiographs of each limb between the acetabular rim, mid-point (Q1: patellar center, Q2: femoral trochlea), and tibial tuberosity. Errors of 0.5-2.0 mm at measurement landmarks...

  12. open angle glaucoma (poag)?

    African Journals Online (AJOL)

    there is a build up of pressure due to poor outflow of aqueous humor. The outflow obstruction could occur at the trabecular meshwork of the anterior chamber angle or subsequently in the episcleral vein due to raised venous pressure. Such build up of pressure results in glaucoma . Elevated intraocular pressure remains the ...

  13. The lateral angle revisited

    DEFF Research Database (Denmark)

    Morgan, Jeannie; Lynnerup, Niels; Hoppa, R.D.

    2013-01-01

    measurements taken from computed tomography (CT) scans. Previous reports have observed that the lateral angle size in females is significantly larger than in males. The method was applied to an independent series of 77 postmortem CT scans (42 males, 35 females) to validate its accuracy and reliability...... method appears to be of minimal practical use in forensic anthropology and archeology....

  14. At Right Angles

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 9. At Right Angles. Shailesh A Shirali. Information and Announcements Volume 17 Issue 9 September 2012 pp 920-920. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/017/09/0920-0920 ...

  15. Wide angle isotope separator

    International Nuclear Information System (INIS)

    Kantrowitz, A.

    1976-01-01

    A method and apparatus is described for particle separation. The method uses a wide angle radially expanding vapor of a particle mixture. In particular, selective ionization of one isotope type in the particle mixture is produced in a multichamber separator and the ionized isotope type is accelerated out of the path of the vapor expansion for separate collection

  16. 3D-HST+CANDELS: The Evolution of the Galaxy Size-Mass Distribution since z = 3

    Science.gov (United States)

    van der Wel, A.; Franx, M.; van Dokkum, P. G.; Skelton, R. E.; Momcheva, I. G.; Whitaker, K. E.; Brammer, G. B.; Bell, E. F.; Rix, H.-W.; Wuyts, S.; Ferguson, H. C.; Holden, B. P.; Barro, G.; Koekemoer, A. M.; Chang, Yu-Yen; McGrath, E. J.; Häussler, B.; Dekel, A.; Behroozi, P.; Fumagalli, M.; Leja, J.; Lundgren, B. F.; Maseda, M. V.; Nelson, E. J.; Wake, D. A.; Patel, S. G.; Labbé, I.; Faber, S. M.; Grogin, N. A.; Kocevski, D. D.

    2014-06-01

    Spectroscopic+photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift range 0 3 × 109 M ⊙, and steep, R_{eff}\\propto M_*^{0.75}, for early-type galaxies with stellar mass >2 × 1010 M ⊙. The intrinsic scatter is lsim0.2 dex for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric but is skewed toward small sizes: at all redshifts and masses, a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (~1011 M ⊙), compact (R eff < 2 kpc) early-type galaxies increases from z = 3 to z = 1.5-2 and then strongly decreases at later cosmic times.

  17. New insights into the distribution and evolution of the Cenozoic Tan-Lu Fault Zone in the Liaohe sub-basin of the Bohai Bay Basin, eastern China

    Science.gov (United States)

    Huang, Lei; Liu, Chi-yang; Xu, Chang-gui; Wu, Kui; Wang, Guang-yuan; Jia, Nan

    2018-01-01

    As the largest strike-slip fault system in eastern China, the northeast-trending Tan-Lu Fault Zone (TLFZ) is a significant tectonic element contributing to the Mesozoic-Cenozoic regional geologic evolution of eastern Asia, as well as to the formation of ore deposits and oilfields. Because of the paucity of data, its distribution and evolutionary history in the offshore Liaohe sub-basin of the northern Bohai Bay Basin (BBB) are still poorly understood. Investigations of the strike-slip fault system in the western portion of the offshore Liaohe sub-basin via new seismic data provide us with new insights into the characteristics of the Cenozoic TLFZ. Results of this study show that Cenozoic dextral strike-slip faults occurred near the center of the Liaoxi graben in the offshore Liaohe sub-basin; these strike-slip faults connect with their counterparts to the north, the western part of the onshore Liaohe sub-basin, and have similar characteristics to those in other areas of the BBB in terms of kinematics, evolutionary history, and distribution; consequently, these faults are considered as the western branch of the TLFZ. All strike-slip faults within the Liaoxi graben merge at depth with a central subvertical basement fault induced by the reactivation of a pre-existing strike-slip basement fault, the pre-Cenozoic TLFZ. Data suggest that the TLFZ across the whole Liaohe sub-basin comprises two branches and that the Cenozoic distribution of this system was inherited from the pre-Cenozoic TLFZ. This characteristic distribution might be possessed by the whole TLFZ, thus the new understandings about the distribution and evolutionary model of the TLFZ in this study can be inferred in many research fields along the whole fault zone, such as regional geology, ore deposits, petroleum exploration and earthquake hazard.

  18. Computing distance distributions from dipolar evolution data with overtones: RIDME spectroscopy with Gd(iii)-based spin labels.

    Science.gov (United States)

    Keller, Katharina; Mertens, Valerie; Qi, Mian; Nalepa, Anna I; Godt, Adelheid; Savitsky, Anton; Jeschke, Gunnar; Yulikov, Maxim

    2017-07-21

    Extraction of distance distributions between high-spin paramagnetic centers from relaxation induced dipolar modulation enhancement (RIDME) data is affected by the presence of overtones of dipolar frequencies. As previously proposed, we account for these overtones by using a modified kernel function in Tikhonov regularization analysis. This paper analyzes the performance of such an approach on a series of model compounds with the Gd(iii)-PyMTA complex serving as paramagnetic high-spin label. We describe the calibration of the overtone coefficients for the RIDME kernel, demonstrate the accuracy of distance distributions obtained with this approach, and show that for our series of Gd-rulers RIDME technique provides more accurate distance distributions than Gd(iii)-Gd(iii) double electron-electron resonance (DEER). The analysis of RIDME data including harmonic overtones can be performed using the MATLAB-based program OvertoneAnalysis, which is available as open-source software from the web page of ETH Zurich. This approach opens a perspective for the routine use of the RIDME technique with high-spin labels in structural biology and structural studies of other soft matter.

  19. Assessing the evolution of oases in arid regions by reconstructing their historic spatio-temporal distribution: a case study of the Heihe River Basin, China

    Science.gov (United States)

    Xie, Yaowen; Wang, Guisheng; Wang, Xueqiang; Fan, Peilei

    2017-12-01

    Oasis evolution, one of the most obvious surface processes in arid regions, affects various aspects of the regional environment, such as hydrological processes, ecological conditions, and microclimates. In this paper, the historical spatio-temporal evolution of the cultivated oases in the Heihe River Basin, the second largest inland watershed in the northwest of China, was assessed using multidisciplinary methods and data from multiple sources, including historical literature, ancient sites, maps and remotely sensed images. The findings show that cultivated oases were first developed on a large scale during the Han Dynasty (121 BC-220) and then gradually decreased in extent from the Six Dynasties period (220-581) to the Sui-Tang period (581-907), reaching a minimum in the Song-Yuan period (960-1368). An abrupt revival occurred during the Ming Dynasty (1368-1644) and continued through the Qing Dynasty (1644-1911), and during the period of the Republic of China (1912-1949), oasis development reached its greatest peak of the entire historical period. The oasis areas during seven major historical periods, i.e., Han, Six Dynasties, Sui-Tang, Song-Yuan, Ming, Qing, and Republic of China, are estimated to have been 1703 km2, 1115 km2, 629 km2, 614 km2, 964 km2, 1205 km2, and 1917 km2, respectively. The spatial distribution generally exhibited a continuous sprawl process, with the center of the oases moving gradually from the downstream region to the middle and even upstream regions. The oases along the main river remained stable during most periods, whereas those close to the terminal reaches were subject to frequent variations and even abandonment. Socio-economic factors were the main forces driving the evolution of cultivated oases in the area; among them, political and societal stability, national defense, agricultural policy, population, and technological progress were the most important.

  20. Evolution of Hierarchical Structure and Spatial Pattern of Coastal Cities in China – Based on the Data of Distribution of Marine-Related Enterprises

    Directory of Open Access Journals (Sweden)

    Wang Lili

    2017-11-01

    Full Text Available In this paper, a comprehensive research of the evolution of the hierarchical structure and spatial pattern of coastal cities in China was conducted based on the data of distribution of the headquarters and subsidiaries of marine-related enterprises in 1995, 2005 and 2015 using the city network research method proposed by Taylor. The results of the empirical research showed: China’s coastal city network had an obvious hierarchical characteristics of “national coastal cityregional coastal city-sub-regional coastal city-local coastal city”, in the 20 years of development process, the hierarchies of coastal cities in China showed a hierarchical progressive evolution; in past 20 years, the spatial pattern and network structure of coastal cities in China tended to be complete, and the city network was more uniform, forming a “three tiers and three urban agglomerations” network structure; the strength of connection among the cities was obviously strengthened, and the efficiency of urban spatial connection was improved overall.

  1. EVOLUTION AND DISTRIBUTION OF MAGNETIC FIELDS FROM ACTIVE GALACTIC NUCLEI IN GALAXY CLUSTERS. II. THE EFFECTS OF CLUSTER SIZE AND DYNAMICAL STATE

    International Nuclear Information System (INIS)

    Xu Hao; Li Hui; Collins, David C.; Li, Shengtai; Norman, Michael L.

    2011-01-01

    Theory and simulations suggest that magnetic fields from radio jets and lobes powered by their central super massive black holes can be an important source of magnetic fields in the galaxy clusters. This is Paper II in a series of studies where we present self-consistent high-resolution adaptive mesh refinement cosmological magnetohydrodynamic simulations that simultaneously follow the formation of a galaxy cluster and evolution of magnetic fields ejected by an active galactic nucleus. We studied 12 different galaxy clusters with virial masses ranging from 1 x 10 14 to 2 x 10 15 M sun . In this work, we examine the effects of the mass and merger history on the final magnetic properties. We find that the evolution of magnetic fields is qualitatively similar to those of previous studies. In most clusters, the injected magnetic fields can be transported throughout the cluster and be further amplified by the intracluster medium (ICM) turbulence during the cluster formation process with hierarchical mergers, while the amplification history and the magnetic field distribution depend on the cluster formation and magnetism history. This can be very different for different clusters. The total magnetic energies in these clusters are between 4 x 10 57 and 10 61 erg, which is mainly decided by the cluster mass, scaling approximately with the square of the total mass. Dynamically older relaxed clusters usually have more magnetic fields in their ICM. The dynamically very young clusters may be magnetized weakly since there is not enough time for magnetic fields to be amplified.

  2. Evolution of grain boundary character distributions in alloy 825 tubes during high temperature annealing: Is grain boundary engineering achieved through recrystallization or grain growth?

    International Nuclear Information System (INIS)

    Bai, Qin; Zhao, Qing; Xia, Shuang; Wang, Baoshun; Zhou, Bangxin; Su, Cheng

    2017-01-01

    Grain boundary engineering (GBE) of nickel-based alloy 825 tubes was carried out with different cold drawing deformations by using a draw-bench on a factory production line and subsequent annealing at various temperatures. The microstructure evolution of alloy 825 during thermal-mechanical processing (TMP) was characterized by means of the electron backscatter diffraction (EBSD) technique to study the TMP effects on the grain boundary network and the evolution of grain boundary character distributions during high temperature annealing. The results showed that the proportion of ∑ 3 n coincidence site lattice (CSL) boundaries of alloy 825 tubes could be increased to > 75% by the TMP of 5% cold drawing and subsequent annealing at 1050 °C for 10 min. The microstructures of the partially recrystallized samples and the fully recrystallized samples suggested that the proportion of low ∑ CSL grain boundaries depended on the annealing time. The frequency of low ∑ CSL grain boundaries increases rapidly with increasing annealing time associating with the formation of large-size highly-twinned grains-cluster microstructure during recrystallization. However, upon further increasing annealing time, the frequency of low ∑ CSL grain boundaries decreased markedly during grain growth. So it is concluded that grain boundary engineering is achieved through recrystallization rather than grain growth. - Highlights: •The grain boundary engineering (GBE) is applicable to 825 tubes. •GBE is achieved through recrystallization rather than grain growth. •The low ∑ CSL grain boundaries in 825 tubes can be increased to > 75%.

  3. The impact of inlet angle and outlet angle of guide vane on pump in reversal based hydraulic turbine performance

    International Nuclear Information System (INIS)

    Shi, F X; Yang, J H; Wang, X H; Zhang, R H; Li, C E

    2012-01-01

    In this paper, in order to research the impact of inlet angle and outlet angle of guide vane on hydraulic turbine performance, a centrifugal pump in reversal is adopted as turbine. A numerical simulation method is adopted for researching outer performance and flow field of turbine. The results show: inlet angle has a crucial role to turbine, to the same flow, there is a noticeable decline for the efficiency and head of turbine with the inlet angle increases. At the best efficiency point(EFP),to a same inlet angle, when the inlet angle greater than inlet angle, velocity circulation in guide vane outlet decreases, which lead the efficiency of turbine to reduce, Contrarily, the efficiency rises. With the increase of inlet angle and outlet angle, the EFP moves to the big flow area and the uniformity of pressure distribution becomes worse. The paper indicates that the inlet angle and outlet angle have great impact on the turbine performance, and the best combination exists for the inlet angle and outlet angle of the guide vane.

  4. Determination of solid angle

    International Nuclear Information System (INIS)

    Qiu, S.; Amano, H.; Kasai, A.

    1988-01-01

    The solid angle in extended alpha source measurement for a series of counting geometries has been obtained by two methods: (1) calculated by means of the Nelson Blachmen series; (2) interpolated from the data table given by Gardner. A particular consequence of the application of the Nelson Blachmen series was deduced which was different from that given by the original author. The applicability of these two methods, as well as an experimentally measured method, is also evaluated. (author)

  5. 3D-HST + CANDELS: the Evolution of the Galaxy Size-mass Distribution Since Z=3

    Science.gov (United States)

    VanDerWel, A.; Franx, M.; vanDokkum, P. G.; Skelton, R. E.; Momcheva, I. G.; Whitaker, K. E.; Brammer, G. B.; Bell, E. F.; Rix, H.-W.; Wuyts, S.; hide

    2014-01-01

    Spectroscopic and photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift (z) range 0 3 x 10 (sup 9) solar masses, and steep, effective radius in proportion to mass of a black hole (sup 0.75), for early-type galaxies with stellar mass > 2 x 10 (sup 10) solar masses. The intrinsic scatter is approximately or less than 0.2 decimal exponents for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric, but skewed toward small sizes: at all redshifts and masses a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (approximately 10 (sup 11) solar masses), compact (effective radius less than 2 kiloparsecs) early-type galaxies increases from z = 3 to z = 1.5 - 2 and then strongly decreases at later cosmic times.

  6. A study of the energy evolution of event shape distributions and their means with the DELPHI detector at LEP

    CERN Document Server

    Abdallah, J.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P.P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, Nuno Filipe; Cavallo, F.; Chapkin, M.; Charpentier, P.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S.U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M.J.; Crawley, B.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; Da Silva, W.; Della Ricca, G.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Maria, N.; De Min, A.; de Paula, L.; Di Ciaccio, L.; Di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, P.; Gazis, Evangelos; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Hansen, J.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.O.; Holt, P.J.; Houlden, M.A.; Hultqvist, K.; Jackson, John Neil; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, Erik Karl; Johansson, P.D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, Frederic; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B.P.; Kiiskinen, A.; King, B.T.; Kjaer, N.J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, Fabienne; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J.H.; Lopez, J.M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; McNulty, R.; Meroni, C.; Meyer, W.T.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Monig, Klaus; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J.P.; Palka, H.; Papadopoulou, T.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, Alexander L.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Rosenberg, E.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A.C.; Tegenfeldt, F.; Timmermans, Jan; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; Van Dam, Piet; Van Eldik, J.; Van Lysebetten, A.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verbeure, F.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimine, N.I.; Zintchenko, A.; Zupan, M.

    2003-01-01

    Infrared and collinear safe event shape distributions and their mean values are determined in e+e− collisions at centre-of-mass energies between 45 and 202 GeV. A phenomenological analysis based on power correction models including hadron mass e ects for both differential distributions and mean values is presented. Using power corrections, s is extracted from the mean values and shapes. In an alternative approach, renormalisation group invariance (RGI) is used as an explicit constraint, leading to a consistent description of mean values without the need for sizeable power corrections. The QCD beta-function is precisely measured using this approach. From the DELPHI data on Thrust, including data from low energy experiments, one finds beta0 = 7:86 +- 0:32 for the one loop coefficient of the beta-function or, assuming QCD, nf = 4:75 +- 0:44 for the number of active flavours. These values agree well with the QCD expectation of beta0 = 7:67 and nf = 5. A direct measurement of the full logarithmic energy ...

  7. Dynamical Timescale of Pre-collapse Evolution Inferred from Chemical Distribution in the Taurus Molecular Cloud-1 (TMC-1) Filament

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yunhee; Lee, Jeong-Eun [School of Space Research, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 (Korea, Republic of); Bourke, Tyler L. [Square Kilometre Array Organisation, Jodrell Bank Observatory, Lower Withington, Cheshire SK11 9DL (United Kingdom); II, Neal J. Evans, E-mail: yunhee.choi@khu.ac.kr, E-mail: jeongeun.lee@khu.ac.kr [Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States)

    2017-04-01

    We present observations and analyses of the low-mass star-forming region, Taurus Molecular Cloud-1 (TMC-1). CS ( J = 2–1)/N{sub 2}H{sup +} ( J = 1–0) and C{sup 17}O ( J = 2–1)/C{sup 18}O ( J = 2–1) were observed with the Five College Radio Astronomy Observatory and the Seoul Radio Astronomy Observatory, respectively. In addition, Spitzer infrared data and 1.2 mm continuum data observed with Max-Planck Millimetre Bolometer are used. We also perform chemical modeling to investigate the relative molecular distributions of the TMC-1 filament. Based on Spitzer observations, there is no young stellar object along the TMC-1 filament, while five Class II and one Class I young stellar objects are identified outside the filament. The comparison between column densities calculated from dust continuum and C{sup 17}O 2–1 line emission shows that CO is depleted much more significantly in the ammonia peak than in the cyanopolyyne peak, while the column densities calculated from the dust continuum are similar at the two peaks. N{sub 2}H{sup +} is not depleted much in either peak. According to our chemical calculation, the differential chemical distribution in the two peaks can be explained by different timescales required to reach the same density, i.e., by different dynamical processes.

  8. Seasonal and spatial evolution of trihalomethanes in a drinking water distribution system according to the treatment process.

    Science.gov (United States)

    Domínguez-Tello, A; Arias-Borrego, A; García-Barrera, Tamara; Gómez-Ariza, J L

    2015-11-01

    This paper comparatively shows the influence of four water treatment processes on the formation of trihalomethanes (THMs) in a water distribution system. The study was performed from February 2005 to January 2012 with analytical data of 600 samples taken in Aljaraque water treatment plant (WTP) and 16 locations along the water distribution system (WDS) in the region of Andévalo and the coast of Huelva (southwest Spain), a region with significant seasonal and population changes. The comparison of results in the four different processes studied indicated a clear link of the treatment process with the formation of THM along the WDS. The most effective treatment process is preozonation and activated carbon filtration (P3), which is also the most stable under summer temperatures. Experiments also show low levels of THMs with the conventional process of preoxidation with potassium permanganate (P4), delaying the chlorination to the end of the WTP; however, this simple and economical treatment process is less effective and less stable than P3. In this study, strong seasonal variations were obtained (increase of THM from winter to summer of 1.17 to 1.85 times) and a strong spatial variation (1.1 to 1.7 times from WTP to end points of WDS) which largely depends on the treatment process applied. There was also a strong correlation between THM levels and water temperature, contact time and pH. On the other hand, it was found that THM formation is not proportional to the applied chlorine dose in the treatment process, but there is a direct relationship with the accumulated dose of chlorine. Finally, predictive models based on multiple linear regressions are proposed for each treatment process.

  9. Long-term Geochemical Evolution of Lithogenic Versus Anthropogenic Distribution of Macro and Trace Elements in Household Attic Dust.

    Science.gov (United States)

    Balabanova, Biljana; Stafilov, Trajče; Šajn, Robert; Tănăselia, Claudiu

    2017-01-01

    Attic dusts were examined as historical archives of anthropogenic emissions, with the goal of elucidating the enrichment pathways associated with hydrothermal exploitation of Cu, Pb, and Zn minerals in the Bregalnica River basin in the eastern part of the Republic of Macedonia. Dust samples were collected from 84 settlements. Atomic emission spectrometry and mass spectrometry with inductively coupled plasma were applied as analytical techniques for the determination of 69 element contents. Multivariate analysis was applied for the extraction of dominant geochemical markers. The lithogenic distribution was simplified to six dominant geochemical markers: F1: Ga-Nb-Ta-Y-(La-Gd)-(Eu-Lu); F2: Be-Cr-Li-Mg-Ni; F3: Ag-Bi-Cd-Cu-In-Mn-Pb-Sb-Te-W-Zn; F4: Ba-Cs-Hf-Pd-Rb-Sr-Tl-Zr; F5: As-Co-Ge-V; and F6: К-Na-Sc-Ti. The anthropogenic effects on the air pollution were marked by a dominance of F3 and secondary dominance of F5. The fifth factor also was determined as a lithogenic marker for the occurrence of the very old Rifeous shales. The first factor also presents a very unique association that despite the heterogeneity relays on natural phenomena of tracking the deposition in areas of Proterosoic gneisses; related to the distribution of fine particles was associated with carbonate-silicate volcanic rocks. Intensive poly-metallic dust depositions were recorded only in the surroundings of localities where the hydrothermal extractions are implemented. Long-term deposition can be considered as pollution indexes for these hot spots. This mainly affects the Cd, Pb, and Zn deposition that is as high as 25, 3900, and 3200 mg/kg, respectively.

  10. Solar cell angle of incidence corrections

    Science.gov (United States)

    Burger, Dale R.; Mueller, Robert L.

    1995-01-01

    Literature on solar array angle of incidence corrections was found to be sparse and contained no tabular data for support. This lack along with recent data on 27 GaAs/Ge 4 cm by 4 cm cells initiated the analysis presented in this paper. The literature cites seven possible contributors to angle of incidence effects: cosine, optical front surface, edge, shadowing, UV degradation, particulate soiling, and background color. Only the first three are covered in this paper due to lack of sufficient data. The cosine correction is commonly used but is not sufficient when the incident angle is large. Fresnel reflection calculations require knowledge of the index of refraction of the coverglass front surface. The absolute index of refraction for the coverglass front surface was not known nor was it measured due to lack of funds. However, a value for the index of refraction was obtained by examining how the prediction errors varied with different assumed indices and selecting the best fit to the set of measured values. Corrections using front surface Fresnel reflection along with the cosine correction give very good predictive results when compared to measured data, except there is a definite trend away from predicted values at the larger incident angles. This trend could be related to edge effects and is illustrated by a use of a box plot of the errors and by plotting the deviation of the mean against incidence angle. The trend is for larger deviations at larger incidence angles and there may be a fourth order effect involved in the trend. A chi-squared test was used to determine if the measurement errors were normally distributed. At 10 degrees the chi-squared test failed, probably due to the very small numbers involved or a bias from the measurement procedure. All other angles showed a good fit to the normal distribution with increasing goodness-of-fit as the angles increased which reinforces the very small numbers hypothesis. The contributed data only went to 65 degrees

  11. Modelling of surface evolution of rough surface on divertor target in fusion devices

    International Nuclear Information System (INIS)

    Dai, Shuyu; Liu, Shengguang; Sun, Jizhong; Kirschner, A.; Kawamura, G.; Tskhakaya, D.; Ding, Rui; Luo, Guangnan; Wang, Dezhen

    2015-01-01

    Highlights: • We study the surface evolution of rough surface on divertor target in fusion devices. • The effects of gyration motion and E × B drift affect 3D angular distribution. • A larger magnetic field angle leads to a reduced net eroded areal density. • The rough surface evolution affects the physical sputtering yield. - Abstract: The 3D Monte-Carlo code SURO has been used to study the surface evolution of rough surface on the divertor target in fusion devices. The edge plasma at divertor region is modelled by the SDPIC code and used as input data for SURO. Coupled with SDPIC, SURO can perform more sophisticated simulations to calculate the local angle and surface evolution of rough surface. The simulation results show that the incident direction of magnetic field, gyration and E × B force has a significant impact on 3D angular distribution of background plasma and accordingly on the erosion of rough surface. The net eroded areal density of rough surface is studied by varying the magnetic field angle with surface normal. The evolution of the microscopic morphology of rough surface can lead to a significant change in the physical sputtering yield

  12. Energy evolution of the moments of the hadron distribution in QCD jets including NNLL resummation and NLO running-coupling corrections

    CERN Document Server

    Perez-Ramos, Redamy

    2014-01-01

    The moments of the single inclusive momentum distribution of hadrons in QCD jets, are studied in the next-to-modified-leading-log approximation (NMLLA) including next-to-leading-order (NLO) corrections to the alpha_s strong coupling. The evolution equations are solved using a distorted Gaussian parametrisation, which successfully reproduces the spectrum of charged hadrons of jets measured in e+e- collisions. The energy dependencies of the maximum peak, multiplicity, width, kurtosis and skewness of the jet hadron distribution are computed analytically. Comparisons of all the existing jet data measured in e+e- collisions in the range sqrt(s)~2-200 GeV to the NMLLA+NLO* predictions allow one to extract a value of the QCD parameter Lambda_QCD, and associated two-loop coupling constant at the Z resonance alpha_s(m_Z^2)= 0.1195 +/- 0.0022, in excellent numerical agreement with the current world average obtained using other methods.

  13. Glancing angle x-ray studies of oxide films

    International Nuclear Information System (INIS)

    Davenport, A.J.; Isaacs, H.S.

    1989-01-01

    High brightness synchrotron radiation incident at glancing angles has been used to study inhibiting species present in low concentrations in oxide films on aluminum. Glancing incident angle fluorescence measurements give surface-sensitive information on the valence state of elements from the shape of the x-ray absorption edge. Angle-resolved measurements show the depth distribution of the species present. 15 refs., 4 figs

  14. The influence of flip angle on the magic angle effect

    International Nuclear Information System (INIS)

    Zurlo, J.V.; Blacksin, M.F.; Karimi, S.

    2000-01-01

    Objective. To assess the impact of flip angle with gradient sequences on the ''magic angle effect''. We characterized the magic angle effect in various gradient echo sequences and compared the signal- to-noise ratios present on these sequences with the signal-to-noise ratios of spin echo sequences.Design. Ten normal healthy volunteers were positioned such that the flexor hallucis longus tendon remained at approximately at 55 to the main magnetic field (the magic angle). The tendon was imaged by a conventional spin echo T1- and T2-weighted techniques and by a series of gradient techniques. Gradient sequences were altered by both TE and flip angle. Signal-to-noise measurements were obtained at segments of the flexor hallucis longus tendon demonstrating the magic angle effect to quantify the artifact. Signal-to-noise measurements were compared and statistical analysis performed. Similar measurements were taken of the anterior tibialis tendon as an internal control.Results and conclusions. We demonstrated the magic angle effect on all the gradient sequences. The intensity of the artifact was affected by both the TE and flip angle. Low TE values and a high flip angle demonstrated the greatest magic angle effect. At TE values less than 30 ms, a high flip angle will markedly increase the magic angle effect. (orig.)

  15. Variable angle correlation spectroscopy

    International Nuclear Information System (INIS)

    Lee, Y.K.; Lawrence Berkeley Lab., CA

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with 13 C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system

  16. RADIAL DISTRIBUTION OF STARS, GAS, AND DUST IN SINGS GALAXIES. III. MODELING THE EVOLUTION OF THE STELLAR COMPONENT IN GALAXY DISKS

    International Nuclear Information System (INIS)

    Munoz-Mateos, J. C.; Boissier, S.; Gil de Paz, A.; Zamorano, J.; Gallego, J.; Kennicutt, R. C. Jr; Moustakas, J.; Prantzos, N.

    2011-01-01

    We analyze the evolution of 42 spiral galaxies in the Spitzer Infrared Nearby Galaxies Survey. We make use of ultraviolet (UV), optical, and near-infrared radial profiles, corrected for internal extinction using the total-infrared to UV ratio, to probe the emission of stellar populations of different ages as a function of galactocentric distance. We fit these radial profiles with models that describe the chemical and spectro-photometric evolution of spiral disks within a self-consistent framework. These backward evolutionary models successfully reproduce the multi-wavelength profiles of our galaxies, except for the UV profiles of some early-type disks for which the models seem to retain too much gas. From the model fitting we infer the maximum circular velocity of the rotation curve V C and the dimensionless spin parameter λ. The values of V C are in good agreement with the velocities measured in H I rotation curves. Even though our sample is not volume limited, the resulting distribution of λ is close to the lognormal function obtained in cosmological N-body simulations, peaking at λ ∼ 0.03 regardless of the total halo mass. We do not find any evident trend between λ and Hubble type, besides an increase in the scatter for the latest types. According to the model, galaxies evolve along a roughly constant mass-size relation, increasing their scale lengths as they become more massive. The radial scale length of most disks in our sample seems to have increased at a rate of 0.05-0.06 kpc Gyr -1 , although the same cannot be said of a volume-limited sample. In relative terms, the scale length has grown by 20%-25% since z = 1 and, unlike the former figure, we argue that this relative growth rate can be indeed representative of a complete galaxy sample.

  17. Radial Distribution of Stars, Gas, and Dust in SINGS Galaxies. III. Modeling the Evolution of the Stellar Component in Galaxy Disks

    Science.gov (United States)

    Muñoz-Mateos, J. C.; Boissier, S.; Gil de Paz, A.; Zamorano, J.; Kennicutt, R. C., Jr.; Moustakas, J.; Prantzos, N.; Gallego, J.

    2011-04-01

    We analyze the evolution of 42 spiral galaxies in the Spitzer Infrared Nearby Galaxies Survey. We make use of ultraviolet (UV), optical, and near-infrared radial profiles, corrected for internal extinction using the total-infrared to UV ratio, to probe the emission of stellar populations of different ages as a function of galactocentric distance. We fit these radial profiles with models that describe the chemical and spectro-photometric evolution of spiral disks within a self-consistent framework. These backward evolutionary models successfully reproduce the multi-wavelength profiles of our galaxies, except for the UV profiles of some early-type disks for which the models seem to retain too much gas. From the model fitting we infer the maximum circular velocity of the rotation curve V C and the dimensionless spin parameter λ. The values of V C are in good agreement with the velocities measured in H I rotation curves. Even though our sample is not volume limited, the resulting distribution of λ is close to the lognormal function obtained in cosmological N-body simulations, peaking at λ ~ 0.03 regardless of the total halo mass. We do not find any evident trend between λ and Hubble type, besides an increase in the scatter for the latest types. According to the model, galaxies evolve along a roughly constant mass-size relation, increasing their scale lengths as they become more massive. The radial scale length of most disks in our sample seems to have increased at a rate of 0.05-0.06 kpc Gyr-1, although the same cannot be said of a volume-limited sample. In relative terms, the scale length has grown by 20%-25% since z = 1 and, unlike the former figure, we argue that this relative growth rate can be indeed representative of a complete galaxy sample.

  18. Prospective study related to the evolution of energy distribution networks. Needs of evolution of technical and organisational models of energy distribution networks with respect to energy transition scenarios in the Provence-Alpes-Cote d'Azur region. Part 1 - Hypotheses and perspectives, Part 2 - Needs of network evolution. Study related to the impact of the electric vehicle and of photovoltaic production on electric distribution networks - Case study for Provence-Alpes-Cote d'Azur

    International Nuclear Information System (INIS)

    Dauphin, Francois; Fontaine, Frederick

    2013-02-01

    The first part of this document aims at presenting perspectives of emergence of new energy production, consumption and storage sources, and their impacts on energy (electricity, gas, heat) distribution and transport networks. It is based on two scenarios: the regional climate-air-energy scheme, and the regional Negawatt scenario. The objective was to select a limited number of aspects: solutions enabling an optimal injection of biogas produced in the concerned region, development of photovoltaic energy and electric vehicles and their impact on the balance of medium-voltage and low-voltage networks, and smart grid technologies and their possible impact on the optimisation of electric network management. The second part reports the detailed study of these issues. It more particularly addresses technical impacts of different sectors on electric and gas networks in Provence-Alpes-Cote d'Azur, technical, economic and organisational assets of smart grid technologies, investments policies and implementation planning, and resulting evolutions for energy markets. Related documents published by ERDF and GrDF are provided

  19. Equilibrium contact angle or the most-stable contact angle?

    Science.gov (United States)

    Montes Ruiz-Cabello, F J; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A

    2014-04-01

    It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation. © 2013 Elsevier B.V. All rights reserved.

  20. Evolution models of helium white dwarf-main-sequence star merger remnants: the mass distribution of single low-mass white dwarfs

    Science.gov (United States)

    Zhang, Xianfei; Hall, Philip D.; Jeffery, C. Simon; Bi, Shaolan

    2018-02-01

    It is not known how single white dwarfs with masses less than 0.5Msolar -- low-mass white dwarfs -- are formed. One way in which such a white dwarf might be formed is after the merger of a helium-core white dwarf with a main-sequence star that produces a red giant branch star and fails to ignite helium. We use a stellar-evolution code to compute models of the remnants of these mergers and find a relation between the pre-merger masses and the final white dwarf mass. Combining our results with a model population, we predict that the mass distribution of single low-mass white dwarfs formed through this channel spans the range 0.37 to 0.5Msolar and peaks between 0.45 and 0.46Msolar. Helium white dwarf--main-sequence star mergers can also lead to the formation of single helium white dwarfs with masses up to 0.51Msolar. In our model the Galactic formation rate of single low-mass white dwarfs through this channel is about 8.7X10^-3yr^-1. Comparing our models with observations, we find that the majority of single low-mass white dwarfs (<0.5Msolar) are formed from helium white dwarf--main-sequence star mergers, at a rate which is about $2$ per cent of the total white dwarf formation rate.

  1. Modeling small angle scattering data using FISH

    International Nuclear Information System (INIS)

    Elliott, T.; Buckely, C.E.

    2002-01-01

    Full text: Small angle neutron scattering (SANS) and small angle x-ray scattering (SAXS) are important techniques for the characterisation of samples on the nanometer scale. From the scattered intensity pattern information about the sample such as particle size distribution, concentration and particle interaction can be determined. Since the experimental data is in reciprocal space and information is needed about real space, modeling of the scattering data to obtain parameters is extremely important and several paradigms are available. The use of computer programs to analyze the data is imperative for a robust description of the sample to be obtained. This presentation gives an overview of the SAS process and describes the data-modeling program FISH, written by R. Heenan 1983-2000. The results of using FISH to obtain the particle size distribution of bubbles in the aluminum hydrogen system and other systems of interest are described. Copyright (2002) Australian X-ray Analytical Association Inc

  2. The double Brewster angle effect

    Science.gov (United States)

    Thirion-Lefevre, Laetitia; Guinvarc'h, Régis

    2018-01-01

    The Double Brewster angle effect (DBE) is an extension of the Brewster angle to double reflection on two orthogonal dielectric surfaces. It results from the combination of two pseudo-Brewster angles occurring in complementary incidence angles domains. It can be observed for a large range of incidence angles provided that double bounces mechanism is present. As a consequence of this effect, we show that the reflection coefficient at VV polarization can be at least 10 dB lower than the reflection coefficient at HH polarization over a wide range of incidence angle - typically from 20 to 70∘. It is experimentally demonstrated using a Synthetic Aperture Radar (SAR) image that this effect can be seen on buildings and forests. For large buildings, the difference can reach more than 20 dB. xml:lang="fr"

  3. Angle Performance on Optima XE

    International Nuclear Information System (INIS)

    David, Jonathan; Satoh, Shu

    2011-01-01

    Angle control on high energy implanters is important due to shrinking device dimensions, and sensitivity to channeling at high beam energies. On Optima XE, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through a series of narrow slits, and any angle adjustment is made by steering the beam with the corrector magnet. In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen during implant.Using a sensitive channeling condition, we were able to quantify the angle repeatability of Optima XE. By quantifying the sheet resistance sensitivity to both horizontal and vertical angle variation, the total angle variation was calculated as 0.04 deg. (1σ). Implants were run over a five week period, with all of the wafers selected from a single boule, in order to control for any crystal cut variation.

  4. Small angle neutron scattering

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of

  5. Automated analysis of angle closure from anterior chamber angle images.

    Science.gov (United States)

    Baskaran, Mani; Cheng, Jun; Perera, Shamira A; Tun, Tin A; Liu, Jiang; Aung, Tin

    2014-10-21

    To evaluate a novel software capable of automatically grading angle closure on EyeCam angle images in comparison with manual grading of images, with gonioscopy as the reference standard. In this hospital-based, prospective study, subjects underwent gonioscopy by a single observer, and EyeCam imaging by a different operator. The anterior chamber angle in a quadrant was classified as closed if the posterior trabecular meshwork could not be seen. An eye was classified as having angle closure if there were two or more quadrants of closure. Automated grading of the angle images was performed using customized software. Agreement between the methods was ascertained by κ statistic and comparison of area under receiver operating characteristic curves (AUC). One hundred forty subjects (140 eyes) were included, most of whom were Chinese (102/140, 72.9%) and women (72/140, 51.5%). Angle closure was detected in 61 eyes (43.6%) with gonioscopy in comparison with 59 eyes (42.1%, P = 0.73) using manual grading, and 67 eyes (47.9%, P = 0.24) with automated grading of EyeCam images. The agreement for angle closure diagnosis between gonioscopy and both manual (κ = 0.88; 95% confidence interval [CI), 0.81-0.96) and automated grading of EyeCam images was good (κ = 0.74; 95% CI, 0.63-0.85). The AUC for detecting eyes with gonioscopic angle closure was comparable for manual and automated grading (AUC 0.974 vs. 0.954, P = 0.31) of EyeCam images. Customized software for automated grading of EyeCam angle images was found to have good agreement with gonioscopy. Human observation of the EyeCam images may still be needed to avoid gross misclassification, especially in eyes with extensive angle closure. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  6. Measurement of the angle gamma

    International Nuclear Information System (INIS)

    Aleksan, R.; Sphicas, P.; Massachusetts Inst. of Tech., Cambridge, MA

    1993-12-01

    The angle γ as defined in the Wolfenstein approximation is not completely out of reach of current or proposed dedicated B experiments. This work represents but a first step in the direction of extracting the third angle of the unitarity triangle by study the feasibility of using new decay modes in a hadronic machine. (A.B.). 11 refs., 1 fig., 7 tabs

  7. Nucleation of small angle boundaries

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1996-12-01

    Full Text Available The internal stresses induced by the strain gradients in an array of lattice cells delineated by low-angle dislocation boundaries are partially relieved by the creation of new low-angle boundaries. This is shown to be a first-order transition...

  8. Neutronic evolution of SENA reactor during the first and second cycles. Comparison between the experimental power distributions obtained from the in-core instrumentation evaluation code CIRCE and the theoretical power values computed with the two-dimensional diffusion-evolution code EVOE

    International Nuclear Information System (INIS)

    Andrieux, Chantal

    1976-03-01

    The neutronic evolution of the reacteur Sena during the first and second cycles is presented. The experimental power distributions, obtained from the in-core instrumentation evaluation code CIRCE are compared with the theoretical powers calculated with the two-dimensional diffusion-evolution code EVOE. The CIRCE code allows: the study of the evolution of the principal parameters of the core, the comparison of the results of measured and theoretical estimates. Therefore this study has a great interest for the knowledge of the neutronic evolution of the core, as well as the validation of the refinement of theoretical estimation methods. The core calculation methods and requisite data for the evaluation of the measurements are presented after a brief description of the SENA core and its inner instrumentation. The principle of the in-core instrumentation evaluation code CIRCE, and calculation of the experimental power distributions and nuclear core parameters are then exposed. The results of the evaluation are discussed, with a comparison of the theoretical and experimental results. Taking account of the approximations used, these results, as far as the first and second cycles at SENA are concerned, are satisfactory, the deviations between theoretical and experimental power distributions being lower than 3% at the middle of the reactor and 9% at the periphery [fr

  9. Internal Friction Angle of Metal Powders

    Directory of Open Access Journals (Sweden)

    Jiri Zegzulka

    2018-04-01

    Full Text Available Metal powders are components with multidisciplinary usage as their application is very broad. Their consistent characterization across all disciplines is important for ensuring repeatable and trouble-free processes. Ten metal powders were tested in the study. In all cases, the particle size distribution and morphology (scanning electron microscope—SEM photos were determined. The aim of this work was to inspect the flow behavior of metal powders through another measured characteristic, namely the angle of internal friction. The measured values of the effective internal friction angle in the range 28.6–32.9°, together with the spherical particle shape and the particle size distribution, revealed the likely dominant mode of the metal particle transfer mechanism for stainless steel 316L, zinc and aluminum powder. This third piston flow mechanism is described and illustrated in detail. The angle of internal friction is mentioned as another suitable parameter for the characterization of metal powders, not only for the relative simplicity of the determination but also for gaining insight into the method of the movement of individual particles during the flow.

  10. Weak mixing angle measurements at hadron colliders

    CERN Document Server

    Di Simone, Andrea; The ATLAS collaboration

    2015-01-01

    The Talk will cover weak mixing angle measurements at hadron colliders ATLAS and CMS in particular. ATLAS has measured the forward-backward asymmetry for the neutral current Drell Yan process in a wide mass range around the Z resonance region using dielectron and dimuon final states with $\\sqrt{s}$ =7 TeV data. For the dielectron channel, the measurement includes electrons detected in the forward calorimeter which extends the covered phase space. The result is then used to extract a measurement of the effective weak mixing angle. Uncertainties from the limited knowledge on the parton distribution functions in the proton constitute a significant part of the uncertainty and a dedicated study is performed to obtain a PDF set describing W and Z data measured previously by ATLAS. Similar studies from CMS will be reported.

  11. Small-angle neutron scattering study of structural evolution of ...

    Indian Academy of Sciences (India)

    Rheology of these gels shows a strong dependence on varying pH or ... which regulate and control the functionality and stability of these molecules. Pro- .... The variation of crystallization fraction as a function of time for 1 wt% lysozyme.

  12. Relationship between the Angle of Repose and Angle of Internal ...

    African Journals Online (AJOL)

    ). The angle of internal friction ... compression chambers. Lorenzen, 1957 (quoted by Mohsenin,. 1986), reported that the design of deep ... tiongiven for lateral pressure in deep bins as presented by Mohsenin. (1986). The presence of moisture ...

  13. Measurement of the azimuthal angle distribution of leptons from W boson decays as a function of the W transverse momentum in p anti-p collisions at s**(1/2) = 1.8-TeV

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, D.; Affolder, Anthony A.; Albrow, M.G.; Ambrose, D.; Amidei, D.; Anikeev, K.; Antos, J.; Apollinari, G.; Arisawa, T.; Artikov, A.; Ashmanskas, W.; Azfar, F.; Azzi-Bacchetta, P.; Bacchetta, N.; Bachacou, H.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Baroiant, S.; Barone, M.; /Taiwan, Inst. Phys. /Argonne /INFN,

    2005-04-01

    We present the first measurement of the A{sub 2} and A{sub 3} angular coefficients of the W boson produced in proton-antiproton collisions. We study W {yields} ev{sub e} and W {yields} {mu}{nu}{sub {mu}} candidate events produced in association with at least one jet at CDF, during Run Ia and Run Ib of the Tevatron at {radical}s = 1.8 TeV. The corresponding integrated luminosity was 110 pb{sup -1}. The jet balances the transverse momentum of the W and introduces QCD effects in W boson production. The extraction of the angular coefficients is achieved through the direct measurement of the azimuthal angle of the charged lepton in the Collins-Soper rest-frame of the W boson. The angular coefficients are measured as a function of the transverse momentum of the W boson. The electron, muon, and combined results are in good agreement with the Standard Model prediction, up to order {alpha}{sub s}{sup 2} in QCD.

  14. Ring magnet firing angle control

    International Nuclear Information System (INIS)

    Knott, M.J.; Lewis, L.G.; Rabe, H.H.

    1975-01-01

    A device is provided for controlling the firing angles of thyratrons (rectifiers) in a ring magnet power supply. A phase lock loop develops a smooth ac signal of frequency equal to and in phase with the frequency of the voltage wave developed by the main generator of the power supply. A counter that counts from zero to a particular number each cycle of the main generator voltage wave is synchronized with the smooth AC signal of the phase lock loop. Gates compare the number in the counter with predetermined desired firing angles for each thyratron and with coincidence the proper thyratron is fired at the predetermined firing angle

  15. Exfoliation of GaAs caused by MeV 1H and 4He ion implantation at left angle 100 right angle , left angle 110 right angle axial and random orientations

    International Nuclear Information System (INIS)

    Rauhala, E.; Raeisaenen, J.

    1994-01-01

    The exfoliation procedure of the ion range determination of gaseous implants in single crystal GaAs is investigated. The correlation of the observed crater depth with the ion range is studied for random, left angle 100 right angle and left angle 110 right angle axial orientation high dose implantations of 1.5-2.5 MeV 1 H and 4 He ions. Depending on the experimental conditions, the crater depths corresponded to range values between the modal range and the range maximum. The observed crater depths could be related to the actual He concentration depth distributions by determining the profiles of the 4 He implants by 2.7 MeV proton backscattering. The implantation parameters affecting the exfoliation process, and especially the increase rate of the sample temperature, are investigated. The range distribution parameters for the 1.5 MeV 4 He implants are presented. ((orig.))

  16. Deep learning methods for protein torsion angle prediction.

    Science.gov (United States)

    Li, Haiou; Hou, Jie; Adhikari, Badri; Lyu, Qiang; Cheng, Jianlin

    2017-09-18

    Deep learning is one of the most powerful machine learning methods that has achieved the state-of-the-art performance in many domains. Since deep learning was introduced to the field of bioinformatics in 2012, it has achieved success in a number of areas such as protein residue-residue contact prediction, secondary structure prediction, and fold recognition. In this work, we developed deep learning methods to improve the prediction of torsion (dihedral) angles of proteins. We design four different deep learning architectures to predict protein torsion angles. The architectures including deep neural network (DNN) and deep restricted Boltzmann machine (DRBN), deep recurrent neural network (DRNN) and deep recurrent restricted Boltzmann machine (DReRBM) since the protein torsion angle prediction is a sequence related problem. In addition to existing protein features, two new features (predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments) are used as input to each of the four deep learning architectures to predict phi and psi angles of protein backbone. The mean absolute error (MAE) of phi and psi angles predicted by DRNN, DReRBM, DRBM and DNN is about 20-21° and 29-30° on an independent dataset. The MAE of phi angle is comparable to the existing methods, but the MAE of psi angle is 29°, 2° lower than the existing methods. On the latest CASP12 targets, our methods also achieved the performance better than or comparable to a state-of-the art method. Our experiment demonstrates that deep learning is a valuable method for predicting protein torsion angles. The deep recurrent network architecture performs slightly better than deep feed-forward architecture, and the predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments are useful features for improving prediction accuracy.

  17. Has Human Evolution Stopped?

    Directory of Open Access Journals (Sweden)

    Alan R. Templeton

    2010-07-01

    Full Text Available It has been argued that human evolution has stopped because humans now adapt to their environment via cultural evolution and not biological evolution. However, all organisms adapt to their environment, and humans are no exception. Culture defines much of the human environment, so cultural evolution has actually led to adaptive evolution in humans. Examples are given to illustrate the rapid pace of adaptive evolution in response to cultural innovations. These adaptive responses have important implications for infectious diseases, Mendelian genetic diseases, and systemic diseases in current human populations. Moreover, evolution proceeds by mechanisms other than natural selection. The recent growth in human population size has greatly increased the reservoir of mutational variants in the human gene pool, thereby enhancing the potential for human evolution. The increase in human population size coupled with our increased capacity to move across the globe has induced a rapid and ongoing evolutionary shift in how genetic variation is distributed within and among local human populations. In particular, genetic differences between human populations are rapidly diminishing and individual heterozygosity is increasing, with beneficial health effects. Finally, even when cultural evolution eliminates selection on a trait, the trait can still evolve due to natural selection on other traits. Our traits are not isolated, independent units, but rather are integrated into a functional whole, so selection on one trait can cause evolution to occur on another trait, sometimes with mildly maladaptive consequences.

  18. Exchange interpretation of anomalous back angle heavy ion elastic scattering

    International Nuclear Information System (INIS)

    Zisman, M.S.

    1977-10-01

    Anomalous back angle oscillations in the angular distributions obtained in the elastic scattering of 16 O + 28 Si and 12 C + 28 Si have been interpreted in terms of an elastic cluster transfer comparable to that observed in other heavy ion reactions. The calculations appear to at least qualitatively explain the data with respect to the existence and phase of the back angle oscillations. The results indicate that an exchange mechanism may play an important role in the oscillations

  19. A study of images of Projective Angles of pulmonary veins

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jue [Beijing Anzhen Hospital, Beijing (China); Zhaoqi, Zhang [Beijing Anzhen Hospital, Beijing (China)], E-mail: zhaoqi5000@vip.sohu.com; Yu Wei; Miao Cuilian; Yan Zixu; Zhao Yike [Beijing Anzhen Hospital, Beijing (China)

    2009-09-15

    Aims: In images of magnetic resonance and computed tomography (CT) there are visible angles between pulmonary veins and the coronary, transversal or sagittal section of body. In this study these angles are measured and defined as Projective Angles of pulmonary veins. Several possible influential factors and characters of distribution are studied and analyzed for a better understanding of this imaging anatomic character of pulmonary veins. And it could be the anatomic base of adjusting correctly the angle of the central X-ray of the angiography of pulmonary veins undergoing the catheter ablation of atrial fibrillation (AF). Method: Images of contrast enhanced magnetic resonance angiography (CEMRA) and contrast enhanced computer tomography (CECT) of the left atrium and pulmonary veins of 137 health objects and patients with atrial fibrillation (AF) are processed with the technique of post-processing, and Projective Angles to the coronary and transversal sections are measured and analyzed statistically. Result: Project Angles of pulmonary veins are one of real and steady imaging anatomic characteristics of pulmonary veins. The statistical distribution of variables is relatively concentrated, with a fairly good representation of average value. It is possible to improve the angle of the central X-ray according to the average value in the selective angiography of pulmonary veins undergoing the catheter ablation of AF.

  20. Two Comments on Bond Angles

    Science.gov (United States)

    Glaister, P.

    1997-09-01

    Tetrahedral Bond Angle from Elementary Trigonometry The alternative approach of using the scalar (or dot) product of vectors enables the determination of the bond angle in a tetrahedral molecule in a simple way. There is, of course, an even more straightforward derivation suitable for students who are unfamiliar with vectors, or products thereof, but who do know some elementary trigonometry. The starting point is the figure showing triangle OAB. The point O is the center of a cube, and A and B are at opposite corners of a face of that cube in which fits a regular tetrahedron. The required bond angle alpha = AÔB; and using Pythagoras' theorem, AB = 2(square root 2) is the diagonal of a face of the cube. Hence from right-angled triangle OEB, tan(alpha/2) = (square root 2) and therefore alpha = 2tan-1(square root 2) is approx. 109° 28' (see Fig. 1).

  1. Characterisation of creep cavitation damage in a stainless steel pressure vessel using small angle neutron scattering

    CERN Document Server

    Bouchard, P J; Treimer, W

    2002-01-01

    Grain-boundary cavitation is the dominant failure mode associated with initiation of reheat cracking, which has been widely observed in austenitic stainless steel pressure vessels operating at temperatures within the creep range (>450 C). Small angle neutron scattering (SANS) experiments at the LLB PAXE instrument (Saclay) and the V12 double-crystal diffractometer of the HMI-BENSC facility (Berlin) are used to characterise cavitation damage (in the size range R=10-2000 nm) in a variety of creep specimens extracted from ex-service plant. Factors that affect the evolution of cavities and the cavity-size distribution are discussed. The results demonstrate that SANS techniques have the potential to quantify the development of creep damage in type-316H stainless steel, and thereby link microstructural damage with ductility-exhaustion models of reheat cracking. (orig.)

  2. Reaction plane angle dependence of dihadron azimuthal correlations from a multiphase transport model calculation

    International Nuclear Information System (INIS)

    Li, W.; Zhang, S.; Ma, Y. G.; Cai, X. Z.; Chen, J. H.; Ma, G. L.; Zhong, C.; Huang, H. Z.

    2009-01-01

    Dihadron azimuthal angle correlations relative to the reaction plane have been investigated in Au+Au collisions at √(s NN )=200 GeV using a multiphase transport model (AMPT). Such reaction plane azimuthal-angle-dependent correlations can shed light on the path-length effect of energy loss of high-transverse-momentum particles propagating through a hot dense medium. The correlations vary with the trigger particle azimuthal angle with respect to the reaction plane direction, φ s =φ T -Ψ EP , which is consistent with the experimental observation by the STAR Collaboration. The dihadron azimuthal angle correlation functions on the away side of the trigger particle present a distinct evolution from a single-peak to a broad, possibly double-peak structure when the trigger particle direction goes from in-plane to out-of-plane with the reaction plane. The away-side angular correlation functions are asymmetric with respect to the back-to-back direction in some regions of φ s , which could provide insight into the testing v 1 method for reconstructing the reaction plane. In addition, both the root-mean-square width (W rms ) of the away-side correlation distribution and the splitting parameter (D) between the away-side double peaks increase slightly with φ s , and the average transverse momentum of away-side-associated hadrons shows a strong φ s dependence. Our results indicate that a strong parton cascade and resultant energy loss could play an important role in the appearance of a double-peak structure in the dihadron azimuthal angular correlation function on the away side of the trigger particle.

  3. Flight and full-scale wind-tunnel comparison of pressure distributions from an F-18 aircraft at high angles of attack. [Conducted in NASA Ames Research Center's 80 by 120 ft wind tunnel

    Science.gov (United States)

    Fisher, David F.; Lanser, Wendy R.

    1994-01-01

    Pressure distributions were obtained at nearly identical fuselage stations and wing chord butt lines in flight on the F-18 HARV at NASA Dryden Flight Research Center and in the NASA Ames Research Center's 80 by 120 ft wind tunnel on a full-scale F/A-18 aircraft. The static pressures were measured at the identical five stations on the forebody, three stations on the left and right leading-edge extensions, and three spanwise stations on the wing. Comparisons of the flight and wind-tunnel pressure distributions were made at alpha = 30 deg, 45 deg, and 60 deg/59 deg. In general, very good agreement was found. Minor differences were noted at the forebody at alpha = 45 deg and 60 deg in the magnitude of the vortex footprints and a Mach number effect was noted at the leading-edge extension at alpha = 30 deg. The inboard leading edge flap data from the wind tunnel at alpha = 59 deg showed a suction peak that did not appear in the flight data. This was the result of a vortex from the corner of the leading edge flap whose path was altered by the lack of an engine simulation in the wind tunnel.

  4. Time-dependent angular distribution of sputtered particles from amorphous targets

    International Nuclear Information System (INIS)

    Yamamura, Yasunori

    1990-01-01

    Using the time-evolution computer simulation code DYACAT, the time-dependent behavior of sputtering phenomena has been investigated. The DYACAT program is based on the binary collision approximation, and the cascade development in solids is followed time-evolutionally. The total sputtering yield, the angular distribution and the energy distribution of sputtered atoms are calculated as a function of time for 1 keV Ar→Cu, where the angle of incidence is the inverse surface normal. It is found that the angular distribution of the prompt collisional phase of the sputtering process shows an under-cosine and that the corresponding energy spectrum has a peak near 10 eV. The slow collisional phase of 1 keV Ar→Cu will start after 3x10 -14 s, and its angular distribution shows an over-cosine distribution. (orig.)

  5. The mARM spatially distributed soil evolution model: A computationally efficient modeling framework and analysis of hillslope soil surface organization

    Science.gov (United States)

    Cohen, Sagy; Willgoose, Garry; Hancock, Greg

    2009-09-01

    equilibrium grading of the slope may be finer or coarser than the initial conditions. The results demonstrate the complexity of the evolution of surface grading and the balance between the armouring and weathering processes. They also point toward inherent organization of surface grading on the hillslope driven by erosion even for extremely high weathering rates. The implications for natural landforms are discussed. We also plot and quantify, for the first time, a log-log relationship between surface grading, contributing area and slope for a range of weathering rates. The results show that this log-log relationship is robust, the log-log scaling is constant in space, and true even for extreme weathering rates. This has potentially important implications for soil geomorphology. It suggests that an analytical solution can be found for soil grading catena. This might allow us to more easily map soil distribution as a function of topographic characteristics.

  6. Pressure coefficient evolutions on the blades of a Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, A.; Guignard, S. [UMRR 7343, Marseilles (France). Lab. IUSTI; Kamoun, B. [Faculte des Sciences de Sfax (Tunisia). Lab. de Physique

    2012-07-01

    Measurements of the pressure field distribution on the blades of a vertical axis Savonius wind machine are presented. The rotor used in the wind tunnel is a two blades cylindrical shape with a central gap. Pressure gauges are placed on each side of a blade, so the pressure jumps between intrados and extrados of a blade during a whole rotation are drawn. In the static configuration, the machine is disposed at various incidences. The determination of pressure jumps allows to calculate the static torque of the machine versus the incidence angle. In the dynamic situation the machine is rotating at various frequencies and gauges signals are varying dynamically of course with the incidence. The dynamic torque coefficient is calculated. Evolutions of the starting torque and starting conditions are then described and dynamic effects on torque evolution are presented. (orig.)

  7. Large-angle positronium emission for Al(110)

    International Nuclear Information System (INIS)

    Schultz, P.J.; Lynn, K.G.; Frieze, W.E.

    1984-10-01

    Mono-energetic positrons have been used to study the time-of-flight distribution of ortho-positronium (o-Ps) formed just outside the surface of an Al(110) single crystal. The data are interpreted in terms of two predominant angular distributions for the directly formed o-Ps: one that is peaked towards the surface normal and another that is directed towards large angles. These processes are shown to be very sensitive to both oxygen exposure and Ar + ion sputtering. Ps emitted at large-angles may be evidence of formation with electrons propagating in a two-dimensional surface state

  8. Frequency scaling for angle gathers

    KAUST Repository

    Zuberi, M. A H; Alkhalifah, Tariq Ali

    2014-01-01

    Angle gathers provide an extra dimension to analyze the velocity after migration. Space-shift and time shift-imaging conditions are two methods used to obtain angle gathers, but both are reasonably expensive. By scaling the time-lag axis of the time-shifted images, the computational cost of the time shift imaging condition can be considerably reduced. In imaging and more so Full waveform inversion, frequencydomain Helmholtz solvers are used more often to solve for the wavefields than conventional time domain extrapolators. In such cases, we do not need to extend the image, instead we scale the frequency axis of the frequency domain image to obtain the angle gathers more efficiently. Application on synthetic data demonstrate such features.

  9. Angle imaging: Advances and challenges

    Science.gov (United States)

    Quek, Desmond T L; Nongpiur, Monisha E; Perera, Shamira A; Aung, Tin

    2011-01-01

    Primary angle closure glaucoma (PACG) is a major form of glaucoma in large populous countries in East and South Asia. The high visual morbidity from PACG is related to the destructive nature of the asymptomatic form of the disease. Early detection of anatomically narrow angles is important and the subsequent prevention of visual loss from PACG depends on an accurate assessment of the anterior chamber angle (ACA). This review paper discusses the advantages and limitations of newer ACA imaging technologies, namely ultrasound biomicroscopy, Scheimpflug photography, anterior segment optical coherence tomography and EyeCam, highlighting the current clinical evidence comparing these devices with each other and with clinical dynamic indentation gonioscopy, the current reference standard. PMID:21150037

  10. Variable angle asymmetric cut monochromator

    International Nuclear Information System (INIS)

    Smither, R.K.; Fernandez, P.B.

    1993-09-01

    A variable incident angle, asymmetric cut, double crystal monochromator was tested for use on beamlines at the Advanced Photon Source (APS). For both undulator and wiggler beams the monochromator can expand area of footprint of beam on surface of the crystals to 50 times the area of incident beam; this will reduce the slope errors by a factor of 2500. The asymmetric cut allows one to increase the acceptance angle for incident radiation and obtain a better match to the opening angle of the incident beam. This can increase intensity of the diffracted beam by a factor of 2 to 5 and can make the beam more monochromatic, as well. The monochromator consists of two matched, asymmetric cut (18 degrees), silicon crystals mounted so that they can be rotated about three independent axes. Rotation around the first axis controls the Bragg angle. The second rotation axis is perpendicular to the diffraction planes and controls the increase of the area of the footprint of the beam on the crystal surface. Rotation around the third axis controls the angle between the surface of the crystal and the wider, horizontal axis for the beam and can make the footprint a rectangle with a minimum. length for this area. The asymmetric cut is 18 degrees for the matched pair of crystals, which allows one to expand the footprint area by a factor of 50 for Bragg angles up to 19.15 degrees (6 keV for Si[111] planes). This monochromator, with proper cooling, will be useful for analyzing the high intensity x-ray beams produced by both undulators and wigglers at the APS

  11. Relations between the galactic evolution and the stellar evolution

    International Nuclear Information System (INIS)

    Audouze, J.

    1984-01-01

    After a quick definition of the galactic evolution and a summary of the basic ingredients (namely the abundances of the chemical elements observed in different astrophysical sites), the parameters directly related to the stellar evolution which govern the galactic evolution are outlined. They are the rates of star formation, the initial mass functions and the various nucleosynthetic yields. The 'classical' models of chemical evolution of galaxies are then briefly recalled. Finally, attention is drawn to three recent contributions concerning both the galactic evolution and the stellar evolution. They are (i) some prediction of the rate of star formation for low mass stars made from the planetary nebula abundance distribution (ii) the chemical evolution of C, O and Fe and (iii) the chemical evolution of the galactic interstellar medium. (Auth.)

  12. Muon tomography imaging improvement using optimized limited angle data

    Science.gov (United States)

    Bai, Chuanyong; Simon, Sean; Kindem, Joel; Luo, Weidong; Sossong, Michael J.; Steiger, Matthew

    2014-05-01

    Image resolution of muon tomography is limited by the range of zenith angles of cosmic ray muons and the flux rate at sea level. Low flux rate limits the use of advanced data rebinning and processing techniques to improve image quality. By optimizing the limited angle data, however, image resolution can be improved. To demonstrate the idea, physical data of tungsten blocks were acquired on a muon tomography system. The angular distribution and energy spectrum of muons measured on the system was also used to generate simulation data of tungsten blocks of different arrangement (geometry). The data were grouped into subsets using the zenith angle and volume images were reconstructed from the data subsets using two algorithms. One was a distributed PoCA (point of closest approach) algorithm and the other was an accelerated iterative maximal likelihood/expectation maximization (MLEM) algorithm. Image resolution was compared for different subsets. Results showed that image resolution was better in the vertical direction for subsets with greater zenith angles and better in the horizontal plane for subsets with smaller zenith angles. The overall image resolution appeared to be the compromise of that of different subsets. This work suggests that the acquired data can be grouped into different limited angle data subsets for optimized image resolution in desired directions. Use of multiple images with resolution optimized in different directions can improve overall imaging fidelity and the intended applications.

  13. Basal friction evolution and crevasse distribution during the surge of Basin 3, Austfonna ice-cap - offline coupling between a continuum ice dynamic model and a discrete element model

    Science.gov (United States)

    Gong, Yongmei; Zwinger, Thomas; Åström, Jan; Gladstone, Rupert; Schellenberger, Thomas; Altena, Bas; Moore, John

    2017-04-01

    The outlet glacier at Basin 3, Austfonna ice-cap entered its active surge phase in autumn 2012. We assess the evolution of the basal friction during the surge through inverse modelling of basal friction coefficients using recent velocity observation from 2012 to 2014 in a continuum ice dynamic model Elmer/ice. The obtained basal friction coefficient distributions at different time instances are further used as a boundary condition in a discrete element model (HiDEM) that is capable of computing fracturing of ice. The inverted basal friction coefficient evolution shows a gradual 'unplugging' of the stagnant frontal area and northwards and inland expansion of the fast flowing region in the southern basin. The validation between the modeled crevasses distribution and the satellite observation in August 2013 shows a good agreement in shear zones inland and at the frontal area. Crevasse distributions of the summer before and after the glacier reached its maximum velocity in January 2013 (August 2012 and August 2014, respectively) are also evaluated. Previous studies suggest the triggering and development of the surge are linked to surface melt water penetrating through ice to form an efficient basal hydrology system thereby triggering a hydro- thermodynamic feedback. This preliminary offline coupling between a continuum ice dynamic model and a discrete element model will give a hint on future model development of linking supra-glacial to sub-glacial hydrology system.

  14. Angle independent velocity spectrum determination

    DEFF Research Database (Denmark)

    2014-01-01

    An ultrasound imaging system (100) includes a transducer array (102) that emits an ultrasound beam and produces at least one transverse pulse-echo field that oscillates in a direction transverse to the emitted ultrasound beam and that receive echoes produced in response thereto and a spectral vel...... velocity estimator (110) that determines a velocity spectrum for flowing structure, which flows at an angle of 90 degrees and flows at angles less than 90 degrees with respect to the emitted ultrasound beam, based on the received echoes....

  15. Temperature dependence of Brewster's angle.

    Science.gov (United States)

    Guo, Wei

    2018-01-01

    In this work, a dielectric at a finite temperature is modeled as an ensemble of identical atoms moving randomly around where they are trapped. Light reflection from the dielectric is then discussed in terms of atomic radiation. Specific calculation demonstrates that because of the atoms' thermal motion, Brewster's angle is, in principle, temperature-dependent, and the dependence is weak in the low-temperature limit. What is also found is that the Brewster's angle is nothing but a result of destructive superposition of electromagnetic radiation from the atoms.

  16. Development of an Operational System for the Retrieval of Aerosol and Land Surface Properties from the Terra Multi-Angle Imaging SpectroRadiometer

    Science.gov (United States)

    Crean, Kathleen A.

    2003-01-01

    An operational system to retrieve atmospheric aerosol and land surface properties using data from the Multi-angle Imaging SpectroRadiometer (MISR) instrument, currently flying onboard NASA's Terra spacecraft, has been deployed. The system is in full operation, with new data products generated daily and distributed to science users worldwide. This paper describes the evolution of the system, from initial requirements definition and prototyping through design, implementation, testing, operational deployment, checkout and maintenance activities. The current status of the system and future plans for enhancement are described. Major challenges encountered during implementation are detailed.

  17. Relação entre o ângulo quadriciptal (ÂQ e a distribuição da pressão plantar em jogadores de futebol Relationship between quadriceps angle (Q and plantar pressure distribution in football players

    Directory of Open Access Journals (Sweden)

    Rafael G. Braz

    2010-08-01

    Full Text Available OBJETIVOS: Verificar possível associação entre ângulo quadriciptal (ÂQ e distribuição de pressão plantar em jogadores de futebol, comparando-os com indivíduos não praticantes da modalidade. MÉTODOS: Cento e vinte e um participantes do sexo masculino foram selecionados: 50 jogadores de futebol (JF e 71 sujeitos para o grupo controle (GC. Avaliaram-se concomitantemente o ÂQ, por meio do Software para Avaliação Postural (SAPO, e a pressão plantar, pela plataforma F-Scan/F-Mat System. Para verificar correlação entre o ÂQ e os valores de picos de pressão em quatro segmentos do pé (antepé medial e lateral, médio-pé e retropé, utilizou-se o Coeficiente de Pearson (r para análises paramétricas. O teste t independente foi empregado para comparar isoladamente essas mesmas variáveis entre os grupos. A normalidade dos dados foi verificada pelos valores de skewness, adotando nível de significância de 5%. RESULTADOS: Encontrou-se correlação negativa e fraca (r=-0,32 somente entre ÂQ e médio-pé direito. Os grupos diferiram quanto ao ÂQ bilateralmente, sendo que o grupo JF teve média de 11,36º, e GC, de 13,80º à direita e de 11,03º contra 13,96º à esquerda, respectivamente. Em relação à pressão plantar, o JF teve maior média de força nas faces laterais do antepé direito (0,77 contra 0,63 kg/cm² e esquerdo (0,65 e 0,54 kg/cm², enquanto o GC apresentou maior pico de pressão no médio-pé esquerdo (JF: 0,37 e GC: 0,46 kg/cm². CONCLUSÕES: Não houve relação entre os valores de ÂQ na distribuição da pressão plantar nos jogadores de futebol. Os atletas apresentaram, porém, ÂQ diminuído e maiores picos de pressão nas faces laterais de ambos os pés, o que sugere alinhamento em varo dos joelhos e distribuição supinada das bases plantares.OBJECTIVES: To determine whether there is an association between the Q-angle (Q and the distribution of plantar pressure in football players, and to compare the

  18. Exclusive Backward-Angle Omega Meson Electroproduction

    Energy Technology Data Exchange (ETDEWEB)

    Wenliang, Li [Univ. of Regina, Regina, SK (Canada)

    2017-10-01

    photoproduction data. Through comparison of our σT data with the prediction of the Transition Distribution Amplitude (TDA) model, and signs of σT dominance, promising indications of the applicability of the TDA factorization are demonstrated at a much lower Q2 value than its preferred range of Q2 > 10 GeV2. These studies have opened a new means to study the transition of the nucleon wavefunction through backward-angle experimental observables.

  19. Modeling human-water-systems: towards a comprehensive and spatially distributed assessment of co-evolutions for river basins in Central Europe

    OpenAIRE

    P. Krahe; E. Nilson; M. Knoche; A.-D. Ebner von Eschenbach

    2016-01-01

    In the context of river basin and flood risk management there is a growing need to improve the understanding of and the feedbacks between the driving forces “climate and socio-economy” and water systems. We make use of a variety of data resources to illustrate interrelationships between different constituents of the human-water-systems. Taking water storage for energy production as an example we present a first analysis on the co-evolution of socio-economic and hydrological ...

  20. Evolution of wettability in terms of petroleum and petroleum fractions adsorption. An approach by the Wilhelmy method; Evolution de la mouillabilite en fonction de l`adsorption du petrole et de ses fractions. Approche par la methode des angles de contact dynamiques

    Energy Technology Data Exchange (ETDEWEB)

    Mattos Saliba, A

    1996-12-06

    Reservoir wettability is very important to petroleum recovery by waterflooding and other processes. It is a key parameter controlling multiphase flow and fluids distribution in a porous medium. Nevertheless, the original water-wetness can be modified by the petroleum`s natural surfactants (asphaltenes and resins) adsorption onto the rock surface. This adsorption may reduce petroleum recovery. In this study, the adsorption of model molecules (pyridine and benzo-quinoline), of rude oil and of its heavier fractions (asphaltenes and resins) has been investigated in terms of wettability alteration for initially water-wet surfaces (glass or quartz). In this case, the dynamic Wilhelmy plate technique provides quantitative values of wetting preference to either oil or water. The results show that, at ambient conditions, adsorption depends on concentration, adsorbent/adsorbate interaction time, pH, solvent type, substrate surface, brine concentration and environment liquid phase (water or oil). However, the initial water film on the surface does not strongly influence this phenomena. (author) 222 refs.

  1. Multi-angle compound imaging

    DEFF Research Database (Denmark)

    Jespersen, Søren Kragh; Wilhjelm, Jens Erik; Sillesen, Henrik

    1998-01-01

    This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared to conve......This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared...... to conventional B-mode imaging MACI offers better defined tissue boundaries and lower variance of the speckle pattern, resulting in an image with reduced random variations. Design and implementation of a compound imaging system is described, images of rubber tubes and porcine aorta are shown and effects...... on visualization are discussed. The speckle reduction is analyzed numerically and the results are found to be in excellent agreement with existing theory. An investigation of detectability of low-contrast lesions shows significant improvements compared to conventional imaging. Finally, possibilities for improving...

  2. Femoral varus: what's the angle

    DEFF Research Database (Denmark)

    Miles, James Edward; Svalastoga, Eiliv Lars; Eriksen, Thomas

    angles were calculated using Microsoft Excel for the three previously reported techniques and a novel method, which we believed would be more reliable. Reliability between readings was assessed using the within-subject standard deviation and repeatability coefficient, and the effect of angulation...

  3. Norovirus Genetic Diversity – from within patient viral evolution to global distribution : Genetische diversiteit van norovirus – van virale evolutie binnen patiënten tot wereldwijde verspreiding

    NARCIS (Netherlands)

    J. van Beek (Janko)

    2018-01-01

    textabstractNoroviruses belong to the family of Caliciviridae and cause acute gastroenteritis. The genetic diversity within the genus Norovirus is extremely large and novel genotypes, recombinants within and between genotypes, and antigenic drift variants are regularly discovered. The distribution

  4. Evolution models of helium white dwarf--main-sequence star merger remnants: the mass distribution of single low-mass white dwarfs

    OpenAIRE

    Zhang, Xianfei; Hall, Philip D.; Jeffery, C. Simon; Bi, Shaolan

    2017-01-01

    It is not known how single white dwarfs with masses less than 0.5Msolar -- low-mass white dwarfs -- are formed. One way in which such a white dwarf might be formed is after the merger of a helium-core white dwarf with a main-sequence star that produces a red giant branch star and fails to ignite helium. We use a stellar-evolution code to compute models of the remnants of these mergers and find a relation between the pre-merger masses and the final white dwarf mass. Combining our results with ...

  5. Chromosomal distribution of interstitial telomeric sequences as signs of evolution through chromosome fusion in six species of the giant water bugs (Hemiptera, Belostoma)

    Czech Academy of Sciences Publication Activity Database

    Chirino, M. G.; Dalíková, Martina; Marec, František; Bressa, M. J.

    2017-01-01

    Roč. 7, č. 14 (2017), s. 5227-5235 ISSN 2045-7758 R&D Projects: GA ČR(CZ) GA17-13713S Grant - others:GA ČR(CZ) GA17-17211S Institutional support: RVO:60077344 Keywords : chromosomal fusion * interstitial telomeric repeats * karyotype evolution Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 2.440, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/ece3.3098/full

  6. Contact angles on stretched solids

    Science.gov (United States)

    Mensink, Liz; Snoeijer, Jacco

    2017-11-01

    The surface energy of solid interfaces plays a central role in wetting, as they dictate the liquid contact angle. Yet, it has been challenging to measure the solid surface energies independently, without making use of Young's law. Here we present Molecular Dynamics (MD) simulations by which we measure the surface properties for all interfaces, including the solids. We observe change in contact angles upon stretching the solid substrates, showing that the surface energy is actually strain dependent. This is clear evidence of the so-called Shuttleworth effect, making it necessary to distinguish surface energy from surface tension. We discuss how this effect gives rise to a new class of elasto-capillary phenomena. ERC Consolidator Grant No. 616918.

  7. Disorders of the cerebellopontine angle

    International Nuclear Information System (INIS)

    Block, F.

    2006-01-01

    Disorders of the cerebellopontine angle may present by symptoms like vertigo, hearing problems, affection of the trigeminal or facial nerve. Ipsilateral ataxia and contralateral hemiparesis develop in case of a rather large tumor in this region and display an involvement of the cerebellum and/or brainstem. However, some of these typical symptoms are not recognized by the patient. Thus, in case of a suspicion of a disorder of the cerebellopontine angle the relevant functions have to be tested clinically. In addition, electrophysiology can confirm dysfunction of these cranial nerves. Mainstay of the therapy should be the treatment of the underlying cause. Nevertheless, not seldom it is necessary to treat symptoms like vertigo or facial pain. (orig.) [de

  8. Measurement of the angle gamma

    International Nuclear Information System (INIS)

    Aleksan, R.; Kayser, B.; Sphicas, P.

    1993-01-01

    The angle γ at least as defined in the Wolfenstein approximation is not completely out of reach of current or proposed dedicated B experiments. This conclusion certainly depends crucially on the assumed trigger and tagging efficiencies and also on the expected backgrounds. The work summarized here represents but a first step in the direction of extracting the third angle of the unitarity triangle. The theoretical developments during the workshop have resulted in a clearer understanding of the quantities studied. On the experimental side, new decay modes (i.e. in addition to the traditional ρK s decay) have resulted in expections for observing CP violation in B s decays which are not unreasonable. It is conceivable that a dedicated B experiment can probe a fundamental aspect of the Standard Model, the CKM matrix, in multiple ways. In the process, new physics can appear anywhere along the line

  9. RF sheaths for arbitrary B field angles

    Science.gov (United States)

    D'Ippolito, Daniel; Myra, James

    2014-10-01

    RF sheaths occur in tokamaks when ICRF waves encounter conducting boundaries and accelerate electrons out of the plasma. Sheath effects reduce the efficiency of ICRF heating, cause RF-specific impurity influxes from the edge plasma, and increase the plasma-facing component damage. The rf sheath potential is sensitive to the angle between the B field and the wall, the ion mobility and the ion magnetization. Here, we obtain a numerical solution of the non-neutral rf sheath and magnetic pre-sheath equations (for arbitrary values of these parameters) and attempt to infer the parametric dependences of the Child-Langmuir law. This extends previous work on the magnetized, immobile ion regime. An important question is how the rf sheath voltage distributes itself between sheath and pre-sheath for various B field angles. This will show how generally previous estimates of the rf sheath voltage and capacitance were reasonable, and to improve the RF sheath BC. Work supported by US DOE grants DE-FC02-05ER54823 and DE-FG02-97ER54392.

  10. LHC Report: playing with angles

    CERN Multimedia

    Mike Lamont for the LHC team

    2016-01-01

    Ready (after a machine development period), steady (running), go (for a special run)!   The crossing angles are an essential feature of the machine set-up. They have to be big enough to reduce the long-range beam-beam effect. The LHC has recently enjoyed a period of steady running and managed to set a new record for “Maximum Stable Luminosity Delivered in 7 days” of 3.29 fb-1 between 29 August and 4 September. The number of bunches per beam remains pegged at 2220 because of the limitations imposed by the SPS beam dump. The bunch population is also somewhat reduced due to outgassing near one of the injection kickers at point 8. Both limitations will be addressed during the year-end technical stop, opening the way for increased performance in 2017. On 10 and 11 September, a two day machine development (MD) period took place. The MD programme included a look at the possibility of reducing the crossing angle at the high-luminosity interaction points. The crossing angles are an ess...

  11. Light Scattering at Various Angles

    Science.gov (United States)

    Latimer, Paul; Pyle, B. E.

    1972-01-01

    The Mie theory of scattering is used to provide new information on how changes in particle volume, with no change in dry weight, should influence light scattering for various scattering angles and particle sizes. Many biological cells (e.g., algal cells, erythrocytes) and large subcellular structures (e.g., chloroplasts, mitochondria) in suspension undergo this type of reversible volume change, a change which is related to changes in the rates of cellular processes. A previous study examined the effects of such volume changes on total scattering. In this paper scattering at 10° is found to follow total scattering closely, but scattering at 45°, 90°, 135°, and 170° behaves differently. Small volume changes can cause very large observable changes in large angle scattering if the sample particles are uniform in size; however, the natural particle size heterogeneity of most samples would mask this effect. For heterogeneous samples of most particle size ranges, particle shrink-age is found to increase large angle scattering. PMID:4556610

  12. Angle comparison using an autocollimator

    Science.gov (United States)

    Geckeler, Ralf D.; Just, Andreas; Vasilev, Valentin; Prieto, Emilio; Dvorácek, František; Zelenika, Slobodan; Przybylska, Joanna; Duta, Alexandru; Victorov, Ilya; Pisani, Marco; Saraiva, Fernanda; Salgado, Jose-Antonio; Gao, Sitian; Anusorn, Tonmueanwai; Leng Tan, Siew; Cox, Peter; Watanabe, Tsukasa; Lewis, Andrew; Chaudhary, K. P.; Thalmann, Ruedi; Banreti, Edit; Nurul, Alfiyati; Fira, Roman; Yandayan, Tanfer; Chekirda, Konstantin; Bergmans, Rob; Lassila, Antti

    2018-01-01

    Autocollimators are versatile optical devices for the contactless measurement of the tilt angles of reflecting surfaces. An international key comparison (KC) on autocollimator calibration, EURAMET.L-K3.2009, was initiated by the European Association of National Metrology Institutes (EURAMET) to provide information on the capabilities in this field. The Physikalisch-Technische Bundesanstalt (PTB) acted as the pilot laboratory, with a total of 25 international participants from EURAMET and from the Asia Pacific Metrology Programme (APMP) providing measurements. This KC was the first one to utilise a high-resolution electronic autocollimator as a standard. In contrast to KCs in angle metrology which usually involve the full plane angle, it focused on relatively small angular ranges (+/-10 arcsec and +/-1000 arcsec) and step sizes (10 arcsec and 0.1 arcsec, respectively). This document represents the approved final report on the results of the KC. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCL, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  13. Mathematical modeling and comparison of protein size distribution in different plant, animal, fungal and microbial species reveals a negative correlation between protein size and protein number, thus providing insight into the evolution of proteomes

    Directory of Open Access Journals (Sweden)

    Tiessen Axel

    2012-02-01

    Full Text Available Abstract Background The sizes of proteins are relevant to their biochemical structure and for their biological function. The statistical distribution of protein lengths across a diverse set of taxa can provide hints about the evolution of proteomes. Results Using the full genomic sequences of over 1,302 prokaryotic and 140 eukaryotic species two datasets containing 1.2 and 6.1 million proteins were generated and analyzed statistically. The lengthwise distribution of proteins can be roughly described with a gamma type or log-normal model, depending on the species. However the shape parameter of the gamma model has not a fixed value of 2, as previously suggested, but varies between 1.5 and 3 in different species. A gamma model with unrestricted shape parameter described best the distributions in ~48% of the species, whereas the log-normal distribution described better the observed protein sizes in 42% of the species. The gamma restricted function and the sum of exponentials distribution had a better fitting in only ~5% of the species. Eukaryotic proteins have an average size of 472 aa, whereas bacterial (320 aa and archaeal (283 aa proteins are significantly smaller (33-40% on average. Average protein sizes in different phylogenetic groups were: Alveolata (628 aa, Amoebozoa (533 aa, Fornicata (543 aa, Placozoa (453 aa, Eumetazoa (486 aa, Fungi (487 aa, Stramenopila (486 aa, Viridiplantae (392 aa. Amino acid composition is biased according to protein size. Protein length correlated negatively with %C, %M, %K, %F, %R, %W, %Y and positively with %D, %E, %Q, %S and %T. Prokaryotic proteins had a different protein size bias for %E, %G, %K and %M as compared to eukaryotes. Conclusions Mathematical modeling of protein length empirical distributions can be used to asses the quality of small ORFs annotation in genomic releases (detection of too many false positive small ORFs. There is a negative correlation between average protein size and total number of

  14. Modeling human-water-systems: towards a comprehensive and spatially distributed assessment of co-evolutions for river basins in Central Europe

    Directory of Open Access Journals (Sweden)

    P. Krahe

    2016-05-01

    Full Text Available In the context of river basin and flood risk management there is a growing need to improve the understanding of and the feedbacks between the driving forces “climate and socio-economy” and water systems. We make use of a variety of data resources to illustrate interrelationships between different constituents of the human-water-systems. Taking water storage for energy production as an example we present a first analysis on the co-evolution of socio-economic and hydrological indicators. The findings will serve as for the development of conceptual, but fully coupled socio-hydrological models for selected sectors and regions. These models will be used to generate integrated scenarios of the climate and socio-economic change.

  15. Blending ecology and evolution using emerging technologies to determine species distributions with a non-native pathogen in a changing climate

    Science.gov (United States)

    K. Waring; S. Cushman; A. Eckert; L. Flores-Renteria; H. Lintz; R. Sniezko; C. Still; C. Wehenkel; A. Whipple; M. Wing

    2017-01-01

    A collaborative team of researchers from the United States and Mexico has begun an exciting new research project funded by The National Science Foundation’s Macrosystems Biology program. The project will study ecological and evolutionary processes affecting the distribution of southwestern white pine (Pinus strobiformis), an important tree species of mixed conifer...

  16. Studies of the hydrodynamic evolution of matter produced in fluctuations in p-barp collisions and in ultrarelativistic nuclear collisions. II. Transverse-momentum distributions

    International Nuclear Information System (INIS)

    Kataja, M.; Ruuskanen, P.V.; McLerran, L.D.; von Gersdorff, H.

    1986-01-01

    We study solutions to the hydrodynamic equations appropriate for ultrarelativistic nuclear collisions. We find that the matter produced in such collisions spends time t>30 fm/c at temperatures larger than 150 MeV. The transverse momentum of protons, kaons, and pions is computed in the central region of ultrarelativistic nuclear collisions. Assuming Bjorken's initial conditions for the hydrodynamic equations, and a bag-model equation of state, we show that the transverse-momentum distribution as a function of dN/dy does reflect properties of the equation of state. We demonstrate that such a distribution approximately scales as a function of (1/A)dN/dy. The relation between p/sub t/ and dN/dy is shown to be significantly altered under different assumptions about the equation of state. The transverse-momentum distribution of heavy hadrons is shown to be much enhanced relative to that of light pions. These distributions are little changed by differences in the assumptions about the initial transverse density and velocity profile. We are unable to fit the observed correlation between p/sub t/ and dE/dy observed in the Japanese-American Cooperative Emulsion Experiment

  17. The mARM3D spatially distributed soil evolution model: Three-dimensional model framework and analysis of hillslope and landform responses

    Science.gov (United States)

    Cohen, Sagy; Willgoose, Garry; Hancock, Greg

    2010-10-01

    We present a three-dimensional landscape-pedogenesis model, mARM3D (matrices ARMOUR 3D), which simulates soil evolution as a function of erosion and pedogenic processes. The model simulates the discretized soil profile for points on a spatial grid. The approach, using transition matrices, is computationally efficient and allows the simulation of large-scale spatial coupling and long-term soil evolution. We study the effect of the depth-dependent soil-weathering rate (i.e., the rate of soil particle breakdown) and bedrock-lowering rate (i.e., the rate of conversion of bedrock to soil). The difference in depth-dependent weathering functions has a significant effect on the in-profile soil properties through depth, specifically particle size grading. However, the depth dependency has a relatively minor effect on the surface properties of the soil profile, with all weathering functions generating very similar surface properties. The surface properties were a function of the cumulative amount of weathering (i.e., the integral of the weathering function over exhumation) with finer surface grading for higher weathering rates. Soil thickness could be estimated without explicitly modeling soil thickness. Thickness was negatively correlated with surface median grain size. As thickness decreases, the surface grading coarsens. This was driven by surface erosion, where as surface grading coarsens, erosion decreases and the soil deepens. Weathering and erosion interact to spatially organize the surface soil grading with a log-log relationship between surface grading, contributing area, and local slope. This relationship was independent of the weathering function. This relationship might be useful for the spatial description of soil properties in digital soil mapping.

  18. SWIMS: a small-angle multiple scattering computer code

    International Nuclear Information System (INIS)

    Sayer, R.O.

    1976-07-01

    SWIMS (Sigmund and WInterbon Multiple Scattering) is a computer code for calculation of the angular dispersion of ion beams that undergo small-angle, incoherent multiple scattering by gaseous or solid media. The code uses the tabulated angular distributions of Sigmund and Winterbon for a Thomas-Fermi screened Coulomb potential. The fraction of the incident beam scattered into a cone defined by the polar angle α is computed as a function of α for reduced thicknesses over the range 0.01 less than or equal to tau less than or equal to 10.0. 1 figure, 2 tables

  19. PIXE depth profiling using variation of detection angle

    International Nuclear Information System (INIS)

    Miranda, J.; Rickards, J.; Trejo-Luna, R.

    2006-01-01

    A method to apply particle induced X-ray emission (PIXE) for depth profiling, based on the variation of the X-ray detection angle, is proposed. The procedure uses X-ray yields normalized to those emitted at a particular reference angle. Application of the method to implanted samples and thin metallic films gave excellent results regarding the range of implanted ions and film thickness, respectively. However, there is no complete information about the width of the distribution of the implanted ions, emphasizing the need to develop a full mathematical algorithm to obtain the general depth profile

  20. Crystalline misfit-angle implications for solid sliding

    International Nuclear Information System (INIS)

    Manini, Nicola; Braun, O.M.

    2011-01-01

    For the contact of two finite portions of interacting rigid crystalline surfaces, we compute the pinning energy barrier dependency on the misfit angle and contact area. This simple model allows us to investigate a broad contact-size and angular range, thus obtaining the statistical properties of the energy barriers opposing sliding for a single asperity. These data are used to generate the distribution of static frictional thresholds for the contact of polycrystals, as in dry or even lubricated friction. This distribution is used as the input of a master equation to predict the sliding properties of macroscopic contacts. -- Highlights: → The pinning energy barrier depends on the misfit angle and contact area. → We compute this dependence for a idealized rigid model. → We obtain a distribution of static frictional thresholds. → It is used as input of a master-equation model for macroscopic surfaces in contact. → Overall we predict a transition from stick-slip to smooth sliding.

  1. Angular distributions in quasi-fission reactions

    International Nuclear Information System (INIS)

    Luetzenkirchen, K.; Kratz, J.V.; Lucas, R.; Poitou, J.; Gregoire, C.; Wirth, G.; Bruechle, W.; Suemmerer, K.

    1985-10-01

    Angular distributions for fission-like fragments were measured in the systems 50 Ti, 56 Fe + 208 Pb by applying an off-line KX-ray activation technique. The distributions d 2 sigma/dTHETAdZ exhibit forward-backward asymmetries that are strongly Z-dependent. They result from a process (quasi-fission) which yields nearly symmetric masses in times comparable to the rotational period of the composite system. A method for obtaining the variance of the tilting angular momentum, K 0 2 , from these skewed, differential angular distributions is described. The results indicate that the tilting mode is not fully excited in quasi-fission reactions. The results are compared to the sum of the variances of all statistical spin components, measured via γ-multiplicities. Integration of the angular distributions d 2 sigma/dTHETAdZ over all values of Z yields integral angular distributions dsigma/dTHETA and dsigma/dΩ symmetric around 90 0 . The associated unusually large anisotropies do not at all provide an adequate basis for tests or modifications of the transition state theory. A deconvolution of d 2 sigma/dTHETAdZ is performed with gaussian distributions depending on rotational angles ΔTHETA extending over a range of up to 540 0 . From the mean values a time scale for the evolution of K 0 is calculated. (orig.)

  2. Small angle scattering and polymers

    International Nuclear Information System (INIS)

    Cotton, J.P.

    1996-01-01

    The determination of polymer structure is a problem of interest for both statistical physics and industrial applications. The average polymer structure is defined. Then, it is shown why small angle scattering, associated with isotopic substitution, is very well suited to the measurement of the chain conformation. The corresponding example is the old, but pedagogic, measurement of the chain form factor in the polymer melt. The powerful contrast variation method is illustrated by a recent determination of the concentration profile of a polymer interface. (author) 12 figs., 48 refs

  3. Proton angular distribution of {sup 16}O(d,p){sup 17}O{sup *} near a deuteron capture resonance; Evolution de la distribution angulaire des protons {sup 16}O(d,p){sup 17}O{sup *} au voisinage d'une resonance de capture du deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Berthelot, R; Cohen, E; Cotton, H; Farraggi, T; Grjebine, A; Leveque, V; Naggiar, M; Roclawski-Conjeaud, D; Szteinsznaider, D [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1954-07-01

    The study of angular distributions of the protons from the reaction {sup 16}O(d,p){sup 17}O{sup *} (level at 875 keV) was made, using a photographic method, at seven different deuteron energies, from 1.66 to 2.20 MeV (obtained with the Saclay electrostatic generator). The analysis of results shows that the angular distribution for forward angles is for each chosen energy in good agreement with the stripping theory (l = 0), even at the maximum of the capture resonance of the deuteron, about 2.1 MeV. Moreover, the differential cross section at 7 deg reaches a maximum for this resonance energy. (author) [French] L'etude des distributions angulaires des protons emis au cours de la reaction {sup 16}O(d,p){sup 17}O{sup *} (niveau a 875 key) a ete effectuee, par une methode photographique, pour 7 energies differentes de deuterons comprises entre 1,66 et 2,20 MeV (obtenues grace a l'accelerateur electrostatique de Saclay). L'analyse des resultats montre que la distribution angulaire vers l'avant est, pour toutes ces energies, en bon accord avec la theorie du ''stripping'' ( 1=0), meme au maximum de la resonance de capture du deuteron situee vers 2,1 MeV. De plus, la section efficace differentielle a 7 deg passe par un maximum pour cette energie de resonance. (auteur)

  4. An Angle Criterion for Riesz Bases

    DEFF Research Database (Denmark)

    Lindner, Alexander M; Bittner, B.

    1999-01-01

    We present a characterization of Riesz bases in terms ofthe angles between certain finite dimensional subspaces. Correlationsbetween the bounds of the Riesz basis and the size of the angles arederived....

  5. Schumpeter's Evolution

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth

    reworking of his basic theory of economic evolution in Development from 1934, and this reworking was continued in Cycles from 1939. Here Schumpeter also tried to handle the statistical and historical evidence on the waveform evolution of the capitalist economy. Capitalism from 1942 modified the model...

  6. Darwinian evolution

    NARCIS (Netherlands)

    Jagers op Akkerhuis, Gerard A.J.M.; Spijkerboer, Hendrik Pieter; Koelewijn, Hans Peter

    2016-01-01

    Darwinian evolution is a central tenet in biology. Conventionally, the defi nition of Darwinian evolution is linked to a population-based process that can be measured by focusing on changes in DNA/allele frequencies. However, in some publications it has been suggested that selection represents a

  7. Temporal-Spatial Evolution Analysis of Lake Size-Distribution in the Middle and Lower Yangtze River Basin Using Landsat Imagery Data

    Directory of Open Access Journals (Sweden)

    Lin Li

    2015-08-01

    Full Text Available Four natural lakes in the middle and lower reaches of the Yangtze River—Dongting Lake, Poyang Lake, Chaohu Lake and Taihu Lake—play a key role in the climate, environment, and ecology of this area. Upstream of these lakes, the Three Gorges Dam Project has been storing water for 12 years. Future monitoring and management of rivers and lakes can certainly benefit from research on the patterns of variation of natural lakes downstream of the Three Gorges Project. This research applies Landsat TM/ETM data to evaluate water area changes in the four lakes from 2002 to 2013. The water area is estimated using AWEI (Automated Water Extraction Index from satellite images. The average areas decreased respectively 452, 11, and 5 km2 (29.6%, 1.4% and 0.2% from 2002 to 2013 for Dongting, Chaohu, and Taihu Lakes. Meanwhile, it increased 300 km2 (11.0% for Poyang Lake. Precipitation and changes in river inflow may account for the fluctuation in the surface area to a large degree, especially between 2009 and 2013. The present study was undertaken to characterize the evolution of lakes and to explore the potential driving force of variation in order to assist the management of dams upstream in the river basin.

  8. Isotropic Surface Remeshing without Large and Small Angles

    KAUST Repository

    Wang, Yiqun; Yan, Dong-Ming; Liu, Xiaohan; Tang, Chengcheng; Guo, Jianwei; Zhang, Xiaopeng; Wonka, Peter

    2018-01-01

    We introduce a novel algorithm for isotropic surface remeshing which progressively eliminates obtuse triangles and improves small angles. The main novelty of the proposed approach is a simple vertex insertion scheme that facilitates the removal of large angles, and a vertex removal operation that improves the distribution of small angles. In combination with other standard local mesh operators, e.g., connectivity optimization and local tangential smoothing, our algorithm is able to remesh efficiently a low-quality mesh surface. Our approach can be applied directly or used as a post-processing step following other remeshing approaches. Our method has a similar computational efficiency to the fastest approach available, i.e., real-time adaptive remeshing [1]. In comparison with state-of-the-art approaches, our method consistently generates better results based on evaluations using different metrics.

  9. Kinoform design with an optimal-rotation-angle method.

    Science.gov (United States)

    Bengtsson, J

    1994-10-10

    Kinoforms (i.e., computer-generated phase holograms) are designed with a new algorithm, the optimalrotation- angle method, in the paraxial domain. This is a direct Fourier method (i.e., no inverse transform is performed) in which the height of the kinoform relief in each discrete point is chosen so that the diffraction efficiency is increased. The optimal-rotation-angle algorithm has a straightforward geometrical interpretation. It yields excellent results close to, or better than, those obtained with other state-of-the-art methods. The optimal-rotation-angle algorithm can easily be modified to take different restraints into account; as an example, phase-swing-restricted kinoforms, which distribute the light into a number of equally bright spots (so called fan-outs), were designed. The phase-swing restriction lowers the efficiency, but the uniformity can still be made almost perfect.

  10. Isotropic Surface Remeshing without Large and Small Angles

    KAUST Repository

    Wang, Yiqun

    2018-05-18

    We introduce a novel algorithm for isotropic surface remeshing which progressively eliminates obtuse triangles and improves small angles. The main novelty of the proposed approach is a simple vertex insertion scheme that facilitates the removal of large angles, and a vertex removal operation that improves the distribution of small angles. In combination with other standard local mesh operators, e.g., connectivity optimization and local tangential smoothing, our algorithm is able to remesh efficiently a low-quality mesh surface. Our approach can be applied directly or used as a post-processing step following other remeshing approaches. Our method has a similar computational efficiency to the fastest approach available, i.e., real-time adaptive remeshing [1]. In comparison with state-of-the-art approaches, our method consistently generates better results based on evaluations using different metrics.

  11. Heavy ions reactions at GANIL energies: the use of LISE telescopic mode for the small angle measurements

    International Nuclear Information System (INIS)

    Bacri, C.O.

    1989-01-01

    The use of heavy ions at GANIL energies leads to a concentration of the reaction products in the forward direction. Measurements have to be performed at and around 0 degree and with an accuracy around one milliradian. The angular selection (after the two dipoles) is performed after a magnetic rigidity one (between the two dipoles). The double sorting does allow measurements close to the beam in magnetic rigidity and in angle. TRANSPORT calculations show that the LISE spectrometer of GANIL can be used in telescopic mode. Experiments with a 44 MeV per nucleon Argon beam on C, Al, Ni and Au targets are performed. The identification of all the detected ions allowed the obtention of angular distributions at and around 0 degree with the required accuracy. This study is completed by a theoretical approach of the thermodynamical evolution based on an extended quantal mean field theory in which a collision-like term simulates residual interaction effects [fr

  12. The chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Chiosi, Cesare

    1986-01-01

    The chemical evolution of galaxies is reviewed with particular attention to the theoretical interpretation of the distribution and abundances of elements in stars and the interstellar medium. The paper was presented to the conference on ''The early universe and its evolution'', Erice, Italy, 1986. The metallicity distribution of the solar vicinity, age metallicity relationship, abundance gradients in the galaxy, external galaxies, star formation and evolution, major sites of nucleosynthesis, yields of chemical elements, chemical models, and the galactic disk, are all discussed. (U.K.)

  13. Calculations of Total and Differential Solid Angles for a Proton Recoil Solid State Detector

    Energy Technology Data Exchange (ETDEWEB)

    Konijn, J; Lauber, A; Tollander, B

    1963-08-15

    The solid angles have been computed for a proton recoil counter consisting of a circular hydrogenous foil viewed by an isotropic neutron point source at different distances from the target foil. Tables are given for the total subtended solid angle as well as the differential energy distribution function of the proton recoil spectrum. The influence of finite foil thickness has also been studied.

  14. Auroal electron distribution function

    International Nuclear Information System (INIS)

    Kaufmann, R.L.; Dusenbery, P.B.; Thomas, B.J.; Arnoldy, R.L.

    1978-01-01

    The electron velocity distribution function is presented in the energy range 25 eV 8 cm/s (E=300 eV) are nearly isotropic in pitch angle throughout the flight. Upgoing electrons show almost no pitch angle dependence beyond 120 0 , and their fluxes decline smoothly as energy increases, with little or no evidence of a plateau. Preliminary results of numerical integrations, to study bulk properties and stability of the plasma are presented

  15. An ALMA survey of submillimeter galaxies in the extended Chandra deep field south: The redshift distribution and evolution of submillimeter galaxies

    International Nuclear Information System (INIS)

    Simpson, J. M.; Swinbank, A. M.; Smail, Ian; Alexander, D. M.; Danielson, A. L. R.; Thomson, A. P.; Brandt, W. N.; Bertoldi, F.; Karim, A.; De Breuck, C.; Chapman, S. C.; Coppin, K. E. K.; Da Cunha, E.; Hodge, J. A.; Schinnerer, E.; Dannerbauer, H.; Greve, T. R.; Ivison, R. J.; Knudsen, K. K.; Poggianti, B. M.

    2014-01-01

    We present the first photometric redshift distribution for a large sample of 870 μm submillimeter galaxies (SMGs) with robust identifications based on observations with ALMA. In our analysis we consider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band photometry. We model the SEDs for these 77 SMGs, deriving a median photometric redshift of z phot = 2.3 ± 0.1. The remaining 19 SMGs have insufficient photometry to derive photometric redshifts, but a stacking analysis of Herschel observations confirms they are not spurious. Assuming that these SMGs have an absolute H-band magnitude distribution comparable to that of a complete sample of z ∼ 1-2 SMGs, we demonstrate that they lie at slightly higher redshifts, raising the median redshift for SMGs to z phot = 2.5 ± 0.2. Critically we show that the proportion of galaxies undergoing an SMG-like phase at z ≥ 3 is at most 35% ± 5% of the total population. We derive a median stellar mass of M * = (8 ± 1) × 10 10 M ☉ , although there are systematic uncertainties of up to 5 × for individual sources. Assuming that the star formation activity in SMGs has a timescale of ∼100 Myr, we show that their descendants at z ∼ 0 would have a space density and M H distribution that are in good agreement with those of local ellipticals. In addition, the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events that form most of the stars seen in the majority of luminous elliptical galaxies at the present day.

  16. An ALMA survey of submillimeter galaxies in the extended Chandra deep field south: The redshift distribution and evolution of submillimeter galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J. M.; Swinbank, A. M.; Smail, Ian; Alexander, D. M.; Danielson, A. L. R.; Thomson, A. P. [Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Bertoldi, F.; Karim, A. [Argelander-Institute for Astronomy, Bonn University, Auf dem Hügel 71, D-53121 Bonn (Germany); De Breuck, C. [European Southern Observatory, Karl-Schwarzschild Straße, D-85748 Garching bei München (Germany); Chapman, S. C. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 3J5 (Canada); Coppin, K. E. K. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Da Cunha, E.; Hodge, J. A.; Schinnerer, E. [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Dannerbauer, H. [Universität Wien, Institut für Astrophysik, Türkenschanzstraße 17, A-1180 Wien (Austria); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Ivison, R. J. [Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Knudsen, K. K. [Department of Earth and Space Science, Onsala Space Observatory, Chalmers University of Technology, SE-43992 Onsala (Sweden); Poggianti, B. M., E-mail: j.m.simpson@dur.ac.uk [INAF-Astronomical Observatory of Padova, I-35122 Padova (Italy); and others

    2014-06-20

    We present the first photometric redshift distribution for a large sample of 870 μm submillimeter galaxies (SMGs) with robust identifications based on observations with ALMA. In our analysis we consider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band photometry. We model the SEDs for these 77 SMGs, deriving a median photometric redshift of z {sub phot} = 2.3 ± 0.1. The remaining 19 SMGs have insufficient photometry to derive photometric redshifts, but a stacking analysis of Herschel observations confirms they are not spurious. Assuming that these SMGs have an absolute H-band magnitude distribution comparable to that of a complete sample of z ∼ 1-2 SMGs, we demonstrate that they lie at slightly higher redshifts, raising the median redshift for SMGs to z {sub phot} = 2.5 ± 0.2. Critically we show that the proportion of galaxies undergoing an SMG-like phase at z ≥ 3 is at most 35% ± 5% of the total population. We derive a median stellar mass of M {sub *} = (8 ± 1) × 10{sup 10} M {sub ☉}, although there are systematic uncertainties of up to 5 × for individual sources. Assuming that the star formation activity in SMGs has a timescale of ∼100 Myr, we show that their descendants at z ∼ 0 would have a space density and M{sub H} distribution that are in good agreement with those of local ellipticals. In addition, the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events that form most of the stars seen in the majority of luminous elliptical galaxies at the present day.

  17. Effect of meniscus constact angle during early regimes of spontaneous capillarity in nanochannels

    DEFF Research Database (Denmark)

    Karna, N.K.; Oyarzua, Elton; Walther, Jens Honore

    2016-01-01

    4 and 18 nm. We alsofind that the meniscus contact angle remains constant during the inertial regime and its value depends upon the height of the channel. We also find that the meniscus velocity computed at the channel entrance is related to the particular value of themeniscus contact angle....... Moreover, after the inertial regime, the meniscus contactangle is found to be time dependent for all the channels under study. We propose an expression for the time evolution of the dynamic contact angle in nanochannels which, when incorporated in Bosanquets equation, satisfactorily explains the initial...

  18. TMDs: Evolution, modeling, precision

    Directory of Open Access Journals (Sweden)

    D’Alesio Umberto

    2015-01-01

    Full Text Available The factorization theorem for qT spectra in Drell-Yan processes, boson production and semi-inclusive deep inelastic scattering allows for the determination of the non-perturbative parts of transverse momentum dependent parton distribution functions. Here we discuss the fit of Drell-Yan and Z-production data using the transverse momentum dependent formalism and the resummation of the evolution kernel. We find a good theoretical stability of the results and a final χ2/points ≲ 1. We show how the fixing of the non-perturbative pieces of the evolution can be used to make predictions at present and future colliders.

  19. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    International Nuclear Information System (INIS)

    Mueller, K.T.; California Univ., Berkeley, CA

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-1/2 nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids

  20. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K.T. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry)

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  1. Pitch Angle Dependence of Drift Resonant Ions Observed by the Van Allen Probes

    Science.gov (United States)

    Rankin, R.; Wang, C.; Wang, Y.; Zong, Q. G.; Zhou, X.

    2017-12-01

    Acceleration and modulation of ring current ions by poloidal mode ULF waves is investigated. A simplified MHD model of ULF waves in a dipole magnetic field is presented that includes phase mixing to perpendicular scales determined by the ionospheric Pedersen conductivity. The wave model is combined with a full Lorentz force test particle code to study drift and drift bounce resonance wave-particle interactions. Ion trajectories are traced backward-in-time to an assumed form of the distribution function, and Liouville's method is used to reconstruct the phase space density response (PSD) poloidal mode waves observed by the Van Allen Probes. In spite of its apparent simplicity, simulations using the wave and test particle models are able to explain the acceleration of ions and energy dispersion observed by the Van Allen Probes. The paper focuses on the pitch angle evolution of the initial PSD as it responds to the action of ULF waves. An interesting aspect of the study is the formation of butterfly ion distributions as ions make periodic radial oscillations across L. Ions become trapped in an effective potential well across a limited range of L and follow trajectories that cause them to surf along constant phase fronts. The impications of this new trapping mechanism for both ions and electrons is discussed.

  2. Hydrogen evolution from aqueous-phase photocatalytic reforming of ethylene glycol over Pt/TiO{sub 2} catalysts: Role of Pt and product distribution

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fuying [State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, Fuzhou University, Fuzhou 350002 (China); College of Resources and Chemical Engineering, Sanming University, Sanming 365004 (China); Gu, Quan [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shanxi Normal University, Xi’an 710062 (China); Niu, Yu [College of Resources and Chemical Engineering, Sanming University, Sanming 365004 (China); School of Chemical Engineering, Fuzhou University, Fuzhou 350116 (China); Wang, Renzhang [College of Resources and Chemical Engineering, Sanming University, Sanming 365004 (China); Tong, Yuecong; Zhu, Shuying; Zhang, Hualei [State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, Fuzhou University, Fuzhou 350002 (China); Zhang, Zizhong, E-mail: z.zhang@fzu.edu.cn [State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, Fuzhou University, Fuzhou 350002 (China); Wang, Xuxu [State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, Fuzhou University, Fuzhou 350002 (China)

    2017-01-01

    Highlights: • Photocatalytic EG reforming generates many hydrocarbons besides H{sub 2}, CO{sub 2} and CO. • Pt loading greatly improves the photocatalytic activity of TiO{sub 2} for EG reforming. • Half amount of the produced H{sub 2} over Pt/TiO{sub 2} originates from EG reforming. - Abstract: Pt nanoparticles were loaded on anatase TiO{sub 2} by the photodeposition method to investigate their photocatalytic activity for H{sub 2} evolution in an aqueous solution containing a certain amount of ethylene glycol (EG) as the sacrificial agent. The surface properties and chemical states of the Pt/TiO{sub 2} sample were characterized by X-ray powder diffraction analysis, Brunauer–Emmett–Teller surface area analysis, transmission electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance, and electrochemical resistance. The aqueous-phase photocatalytic EG reforming using Pt/TiO{sub 2} and anatase TiO{sub 2} generated not only H{sub 2} and CO{sub 2}, but also CO, CH{sub 4}, C{sub 2}H{sub 6}, and C{sub 2}H{sub 4}. Moreover, the amount of formate and acetate complexes in the solution increased gradually. The EG adsorption and gas-phase intermediates during photocatalytic reaction processes were investigated by the in situ FTIR spectrum. Finally, the photocatalytic EG reforming reaction mechanism was elucidated. This helped to better understand the role of a sacrificial agent in a photocatalytic hydrogen production.

  3. Statistical analysis of temporal and spatial evolution of in-vessel dust particles in KSTAR

    International Nuclear Information System (INIS)

    Kim, Kyung-Rae; Hong, Suk-Ho; Nam, Yong-Un; Jung, Jinil; Kim, Woong-Chae

    2013-01-01

    Images of wide-angle visible standard CCD cameras contain information on in-vessel dusts such as dust creation events (DCEs) that occur during plasma operations, and their velocity. Analyzing the straight line-like dust traces in the shallow cylindrical shell-structured scrape-off layer along the vacuum vessel, a database on the short/long term temporal evolutions, spatial locations of DCEs caused by plasma–dust interaction, and the dust velocity distribution are built. We have studied DCEs of 2010 and 2011 KSTAR campaign

  4. Repulsion-based model for contact angle saturation in electrowetting.

    Science.gov (United States)

    Ali, Hassan Abdelmoumen Abdellah; Mohamed, Hany Ahmed; Abdelgawad, Mohamed

    2015-01-01

    We introduce a new model for contact angle saturation phenomenon in electrowetting on dielectric systems. This new model attributes contact angle saturation to repulsion between trapped charges on the cap and base surfaces of the droplet in the vicinity of the three-phase contact line, which prevents these surfaces from converging during contact angle reduction. This repulsion-based saturation is similar to repulsion between charges accumulated on the surfaces of conducting droplets which causes the well known Coulombic fission and Taylor cone formation phenomena. In our model, both the droplet and dielectric coating were treated as lossy dielectric media (i.e., having finite electrical conductivities and permittivities) contrary to the more common assumption of a perfectly conducting droplet and perfectly insulating dielectric. We used theoretical analysis and numerical simulations to find actual charge distribution on droplet surface, calculate repulsion energy, and minimize energy of the total system as a function of droplet contact angle. Resulting saturation curves were in good agreement with previously reported experimental results. We used this proposed model to predict effect of changing liquid properties, such as electrical conductivity, and system parameters, such as thickness of the dielectric layer, on the saturation angle, which also matched experimental results.

  5. Numerical study of hub taper angle on podded propeller performance

    International Nuclear Information System (INIS)

    Islam, M.F.; Veitch, B.; Bose, N.; Liu, P.

    2005-01-01

    Presently, the majority of podded propulsion systems are of the pulling type, because this type provides better hydrodynamic efficiency than the pushing type. There are several possible explanations for the better overall performance of a puller type podded propulsor. One is related to the difference in hub shape. Puller and pusher propellers have opposite hub taper angles, hence different hub and blade root shape. These differences cause changes in the flow condition and possibly influence the overall performance. The current study focuses on the variation in performance of pusher and puller propellers with the same blade sections, but different hub taper angles. A hyperboloidal low order source doublet steady/unsteady time domain panel method code was modified and used to evaluate effects of hub taper angle on the open water propulsive performance of some fixed pitch screw propellers used in podded propulsion systems. The modified code was first validated against measurements of two model propellers in terms of average propulsive performance and good agreement was found. Major findings include significant effects of hub taper angle on propulsive performance of tapered hub propellers and noticeable effects of hub taper angle on sectional pressure distributions of tapered hub propeller blades. (author)

  6. CORNEAL ENDOTHELIAL CELL DENSITY IN ACUTE ANGLE CLOSURE GLAUCOMA

    Directory of Open Access Journals (Sweden)

    Nishat Sultana K

    2016-09-01

    Full Text Available BACKGROUND Angle closure is characterised by apposition of the peripheral iris against the trabecular meshwork resulting in obstruction of aqueous outflow. Acute angle-closure glaucoma is characterised by pain, redness and blurred vision. The pain is typically a severe deep ache that follows the trigeminal distribution and maybe associated with nausea, vomiting, bradycardia and profuse sweating. The blurred vision, which is typically marked maybe caused by stretching of the corneal lamellae initially and later oedema of the cornea as well as a direct effect of the IOP on the optic nerve head. The modifications in corneal endothelial cell density after a crisis of angle-closure glaucoma is being evaluated. AIMS AND OBJECTIVES The objective of the study is to assess the corneal endothelial cell count (density by specular microscopy in patients presenting with acute angle-closure glaucoma. METHODS Corneal endothelial cell counts of 20 eyes of patients with PACG with an earlier documented symptomatic acute attack unilaterally were compared with 20 fellow eyes. Evaluation of patient included visual acuity, intraocular pressure, gonioscopy, disc findings and specular microscopy. RESULTS The mean endothelial cell density was 2104 cells/mm2 in the eye with acute attack and 2615 cells/mm2 in the fellow eye. The average endothelial cell count when the duration of attack lasted more than 72 hours was 1861 cells/mm2 . CONCLUSION Corneal endothelial cell density was found to be significantly reduced in eyes following an acute attack of primary angle closure glaucoma.

  7. Design considerations for a backlight with switchable viewing angles

    Science.gov (United States)

    Fujieda, Ichiro; Takagi, Yoshihiko; Rahadian, Fanny

    2006-08-01

    Small-sized liquid crystal displays are widely used for mobile applications such as cell phones. Electronic control of a viewing angle range is desired in order to maintain privacy for viewing in public as well as to provide wide viewing angles for solitary viewing. Conventionally, a polymer-dispersed liquid crystal (PDLC) panel is inserted between a backlight and a liquid crystal panel. The PDLC layer either transmits or scatters the light from the backlight, thus providing an electronic control of viewing angles. However, such a display system is obviously thick and expensive. Here, we propose to place an electronically-controlled, light-deflecting device between an LED and a light-guide of a backlight. For example, a liquid crystal lens is investigated for other applications and its focal length is controlled electronically. A liquid crystal phase grating either transmits or diffracts an incoming light depending on whether or not a periodic phase distribution is formed inside its liquid crystal layer. A bias applied to such a device will control the angular distribution of the light propagating inside a light-guide. Output couplers built in the light-guide extract the propagating light to outside. They can be V-shaped grooves, pyramids, or any other structures that can refract, reflect or diffract light. When any of such interactions occur, the output couplers translate the changes in the propagation angles into the angular distribution of the output light. Hence the viewing-angle characteristic can be switched. The designs of the output couplers and the LC devices are important for such a backlight system.

  8. Thickness distributions and evolution of growth mechanisms of NH4-illite from the fossil hydrothermal system of Harghita Bai, Eastern Carpathians, Romania

    Science.gov (United States)

    Bobos, Iuliu; Eberl, Dennis D.

    2013-01-01

    The crystal growth of NH4-illite (NH4-I) from the hydrothermal system of Harghita Bãi (Eastern Carpathians) was deduced from the shapes of crystal thickness distributions (CTDs). The 4-illite-smectite (I-S) interstratified structures (R1, R2, and R3-type ordering) with a variable smectite-layer content. The NH4-I-S (40–5% S) structures were identified underground in a hydrothermal breccia structure, whereas the K-I/NH4-I mixtures were found at the deepest level sampled (−110 m). The percentage of smectite interlayers generally decreases with increasing depth in the deposit. This decrease in smectite content is related to the increase in degree of fracturing in the breccia structure and corresponds to a general increase in mean illite crystal thickness. In order to determine the thickness distributions of NH4-I crystals (fundamental illite particles) which make up the NH4-I-S interstratified structures and the NH4,-I/K-I mixtures, 27 samples were saturated with Li+ and aqueous solutions of PVP-10 to remove swelling and then were analyzed by X-ray diffraction. The profiles for the mean crystallite thickness (Tmean) and crystallite thickness distribution (CTD) of NH4-I crystallites were determined by the Bertaut-Warren-Averbach method using the MudMaster computer code. The Tmean of NH4-I from NH4-I-S samples ranges from 3.4 to 7.8 nm. The Tmean measured for the NH4-I/K-I mixture phase ranges from 7.8 nm to 11.7 nm (NH4-I) and from 12.1 to 24.7 nm (K-I).The CTD shapes of NH4-I fundamental particles are asymptotic and lognormal, whereas illites from NH4-I/K-I mixtures have bimodal shapes related to the presence of two lognormal-like CTDs corresponding to NH4-I and K-I.The crystal-growth mechanism for NH4-I samples was simulated using the Galoper code. Reaction pathways for NH4-I crystal nucleation and growth could be determined for each sample by plotting their CTD parameters on an α–β2 diagram constructed using Galoper. This analysis shows that NH4-I crystals

  9. Measurements and amplitude analysis of small angle pp polarization between 398 and 572 MeV

    International Nuclear Information System (INIS)

    Aebischer, D.; Favier, B.; Greeniaus, L.G.; Hess, R.; Junod, A.; Lechanoine, C.; Nikles, J.C.; Rapin, D.; Werren, D.W.

    1976-01-01

    The analyzing power of pp scattering in the cm angular range 4 to 22 0 at 398 to 572 MeV. The analyzing power was determined from the asymmetry in the azimuthal angle distributions of the scattered protons

  10. Angle-resolved photoelectron spectrometry: new electron optics and detection system

    International Nuclear Information System (INIS)

    Hoof, H.A. van.

    1980-01-01

    A new spectrometer system is described, designed to measure angle-resolved energy distributions of photoemitted electrons efficiently. Some results are presented of measurements on a Si(001) surface. (Auth.)

  11. Dynamic Contact Angle at the Nanoscale: A Unified View.

    Science.gov (United States)

    Lukyanov, Alex V; Likhtman, Alexei E

    2016-06-28

    Generation of a dynamic contact angle in the course of wetting is a fundamental phenomenon of nature. Dynamic wetting processes have a direct impact on flows at the nanoscale, and therefore, understanding them is exceptionally important to emerging technologies. Here, we reveal the microscopic mechanism of dynamic contact angle generation. It has been demonstrated using large-scale molecular dynamics simulations of bead-spring model fluids that the main cause of local contact angle variations is the distribution of microscopic force acting at the contact line region. We were able to retrieve this elusive force with high accuracy. It has been directly established that the force distribution can be solely predicted on the basis of a general friction law for liquid flow at solid surfaces by Thompson and Troian. The relationship with the friction law provides both an explanation of the phenomenon of dynamic contact angle and a methodology for future predictions. The mechanism is intrinsically microscopic, universal, and irreducible and is applicable to a wide range of problems associated with wetting phenomena.

  12. A method for the generation of random multiple Coulomb scattering angles

    International Nuclear Information System (INIS)

    Campbell, J.R.

    1995-06-01

    A method for the random generation of spatial angles drawn from non-Gaussian multiple Coulomb scattering distributions is presented. The method employs direct numerical inversion of cumulative probability distributions computed from the universal non-Gaussian angular distributions of Marion and Zimmerman. (author). 12 refs., 3 figs

  13. Stellar evolution

    CERN Document Server

    Meadows, A J

    2013-01-01

    Stellar Evolution, Second Edition covers the significant advances in the understanding of birth, life, and death of stars.This book is divided into nine chapters and begins with a description of the characteristics of stars according to their brightness, distance, size, mass, age, and chemical composition. The next chapters deal with the families, structure, and birth of stars. These topics are followed by discussions of the chemical composition and the evolution of main-sequence stars. A chapter focuses on the unique features of the sun as a star, including its evolution, magnetic fields, act

  14. The Q-angle and sport

    DEFF Research Database (Denmark)

    Hahn, Thomas; Foldspang, Anders

    1997-01-01

    Quadriceps muscle contraction tends to straighten the Q angle. We expected that sports comprising a high amount of quadriceps training could be associated with low Q angles. The aim of the present study was to estimate the Q angle in athletes and to investigate its potential associations with par......Quadriceps muscle contraction tends to straighten the Q angle. We expected that sports comprising a high amount of quadriceps training could be associated with low Q angles. The aim of the present study was to estimate the Q angle in athletes and to investigate its potential associations...... with participation in sport. Three hundred and thirty-nine athletes had their Q angle measured. The mean of right-side Q angles was higher than left side, and the mean Q angle was higher in women than in men. The Q angle was positively associated with years of jogging, and negatively with years of soccer, swimming...... and sports participation at all. It is concluded that the use of Q angle measurements is questionable....

  15. INS as a probe of inter-monomer angles in polymers

    CERN Document Server

    Eijck, L V; Grozema, F C; Schepper, I M D; Kearley, G J

    2002-01-01

    The angle between monomers in conjugated polymers plays an important role in their conductivity. The vibrational spectrum is sensitive to this angle and can be used to probe the distribution of angles in poorly crystalline systems. We show that the INS spectrum is correctly calculated for bithiophene and shows the molecule to be planar in the solid - in agreement with crystallographic measurements. Poor agreement between observed and calculated spectra in the 700-cm sup - sup 1 region may be due to dynamic coupling, but this does not detract from the angle-sensitivity of the spectra. (orig.)

  16. Temporal evolution of natural radionuclides distributions 238U, 234Th, 226Ra, 228Ra, 210Pb and 210Po in the Bransfield strait, Antarctica peninsula

    International Nuclear Information System (INIS)

    Lapa, Flavia Valverde

    2013-01-01

    Research on the distribution of natural radionuclides in Antarctica is rare and thus, there is great interest in to know their occurrence and factors related to its mobilization, transference and accumulation in this extremely fragile environment. Natural radionuclides have been used intensively as tracers in the ocean, helping to better understand processes as sinking and particle resuspension, water masses mixture and oceanic circulation. 234 Th (t½ = 24.1 days) is a particle-reactive radionuclide produced continuously in seawater by the decay of its soluble precursor conservative with salinity 238 U (t½ = 4.5 10 9 years). Since 234 Th presents relatively short half-life, it is used to quantify processes that occur in temporal scale varying from days to weeks. The disequilibrium 234 Th/ 238 U in the surface ocean has been applied to estimate carbon fluxes exported via sinking material. The flux of particles biologically productive out of the euphotic zone in the Southern Ocean has special attention due to its importance in the control of CO 2 atmospheric concentrations. The radionuclides 210 Pb (t½ = 22.3 years) and 210 Po (t½ = 138 days) are also particle-reactive. The disequilibrium 210 Po/ 210 Pb has been used to estimate fluxes of particles exported in the ocean in the time scale of weeks. The long-lived Ra isotopes, 226 Ra (t½ = 1,600 years) and 228 Ra (t½ = 5.75 years) are soluble in seawater, presenting unique properties that make them excellent tracers of water masses. This research work had the aim to study the distributions of natural radionuclides 238 U, 234 Th, 22 '6Ra, 22 '8Ra, 210 Pb and 210 Po in the Bransfield Strait during 2 samplings carried out in the 2011 Austral Summer (OPERANTAR XXIX and XXX). (author)

  17. Evolution of the F0F1 ATP synthase complex in light of the patchy distribution of different bioenergetic pathways across prokaryotes.

    Directory of Open Access Journals (Sweden)

    Vassiliki Lila Koumandou

    2014-09-01

    Full Text Available Bacteria and archaea are characterized by an amazing metabolic diversity, which allows them to persist in diverse and often extreme habitats. Apart from oxygenic photosynthesis and oxidative phosphorylation, well-studied processes from chloroplasts and mitochondria of plants and animals, prokaryotes utilize various chemo- or lithotrophic modes, such as anoxygenic photosynthesis, iron oxidation and reduction, sulfate reduction, and methanogenesis. Most bioenergetic pathways have a similar general structure, with an electron transport chain composed of protein complexes acting as electron donors and acceptors, as well as a central cytochrome complex, mobile electron carriers, and an ATP synthase. While each pathway has been studied in considerable detail in isolation, not much is known about their relative evolutionary relationships. Wanting to address how this metabolic diversity evolved, we mapped the distribution of nine bioenergetic modes on a phylogenetic tree based on 16S rRNA sequences from 272 species representing the full diversity of prokaryotic lineages. This highlights the patchy distribution of many pathways across different lineages, and suggests either up to 26 independent origins or 17 horizontal gene transfer events. Next, we used comparative genomics and phylogenetic analysis of all subunits of the F0F1 ATP synthase, common to most bacterial lineages regardless of their bioenergetic mode. Our results indicate an ancient origin of this protein complex, and no clustering based on bioenergetic mode, which suggests that no special modifications are needed for the ATP synthase to work with different electron transport chains. Moreover, examination of the ATP synthase genetic locus indicates various gene rearrangements in the different bacterial lineages, ancient duplications of atpI and of the beta subunit of the F0 subcomplex, as well as more recent stochastic lineage-specific and species-specific duplications of all subunits. We

  18. Wafer scale oblique angle plasma etching

    Science.gov (United States)

    Burckel, David Bruce; Jarecki, Jr., Robert L.; Finnegan, Patrick Sean

    2017-05-23

    Wafer scale oblique angle etching of a semiconductor substrate is performed in a conventional plasma etch chamber by using a fixture that supports a multiple number of separate Faraday cages. Each cage is formed to include an angled grid surface and is positioned such that it will be positioned over a separate one of the die locations on the wafer surface when the fixture is placed over the wafer. The presence of the Faraday cages influences the local electric field surrounding each wafer die, re-shaping the local field to be disposed in alignment with the angled grid surface. The re-shaped plasma causes the reactive ions to follow a linear trajectory through the plasma sheath and angled grid surface, ultimately impinging the wafer surface at an angle. The selected geometry of the Faraday cage angled grid surface thus determines the angle at with the reactive ions will impinge the wafer.

  19. The morphology and distribution of submerged reefs in the Maui-Nui Complex, Hawaii: New insights into their evolution since the Early Pleistocene

    Science.gov (United States)

    Faichney, Iain D.E.; Webster, James M.; Clague, David A.; Kelley, Chris; Applegate, Bruce; Moore, James G.

    2009-01-01

    Reef drowning and backstepping have long been recognised as reef responses to sea-level rise on subsiding margins. During the Late Pleistocene (~500–14 ka) Hawaiian reefs grew in response to rapid subsidence and 120 m 100 kyr sea-level cycles, with recent work on the submerged drowned reefs around the big island of Hawaii, and in other locations from the last deglacial, providing insight into reef development under these conditions. In contrast, reefs of the Early Pleistocene (~1.8–0.8 Ma) remain largely unexplored despite developing in response to significantly different 60–70 m 41 kyr sea-level cycles. The Maui-Nui Complex (MNC — forming the islands of Maui, Molokai, Lanai and Kahoolawe), provides a natural laboratory to study reef evolution throughout this time period as recent data indicate the reefs grew from 1.1 to 0.5 Ma. We use new high resolution bathymetric and backscatter data as well as sub-bottom profiling seismic data and field observations from ROV and submersible dives to make a detailed analysis of reef morphology and structure around the MNC. We focus specifically on the south-central region of the complex that provides the best reef exposure and find that the morphology of the reefs varies both regionally and temporally within this region. Barrier and pinnacle features dominate the steeper margins in the north of the study area whilst broad backstepping of the reefs is observed in the south. Within the Au'au channel in the central region between the islands, closely spaced reef and karst morphology indicates repeated subaerial exposure. We propose that this variation in the morphology and structure of the reefs within the MNC has been controlled by three main factors; the subsidence rate of the complex, the amplitude and period of eustatic sea-level cycles, and the slope and continuity of the basement substrate. We provide a model of reef development within the MNC over the last 1.2 Ma highlighting the effect that the interaction

  20. Evaluation of blotchy pigments in the anterior chamber angle as a sign of angle closure

    Directory of Open Access Journals (Sweden)

    Harsha L Rao

    2012-01-01

    Full Text Available Background: Blotchy pigments in the anterior chamber (AC angle are considered diagnostic of primary angle closure (PAC. But there are no reports either on the prevalence of blotchy pigments in AC angles or the validity of this sign. Aims: To determine the prevalence of blotchy pigments in AC angles and to evaluate their relationship with glaucomatous optic neuropathy (GON in eyes with occludable angles. Setting and Design: Cross-sectional, comparative study. Materials and Methods: Gonioscopy was performed in 1001 eyes of 526 subjects (245 eyes of 148 consecutive, occludable angle subjects and 756 eyes of 378 non-consecutive, open angle subjects, above 35 years of age. Quadrant-wise location of blotchy pigments was documented. Statistical Analysis: Odds of blotchy pigments in occludable angles against that in open angles were evaluated. Relationship of GON with blotchy pigments in occludable angle eyes was evaluated using a multivariate model. Results: Prevalence of blotchy pigments in occludable angles was 28.6% (95% CI, 22.9-34.3 and in open angles was 4.7% (95% CI, 3.2-6.3. Blotchy pigments were more frequently seen in inferior (16% and superior quadrants (15% of occludable angles, and inferior quadrant of open angles (4%. Odds of superior quadrant blotchy pigments in occludable angles were 33 times that in open angles. GON was seen in 107 occludable angle eyes. Blotchy pigments were not significantly associated with GON (odds ratio = 0.5; P = 0.1. Conclusions: Blotchy pigments were seen in 28.6% of occludable angle eyes and 4.7% of open angles eyes. Presence of blotchy pigments in the superior quadrant is more common in occludable angles. Presence of GON in occludable angle eyes was not associated with blotchy pigments.

  1. Evaluation of blotchy pigments in the anterior chamber angle as a sign of angle closure

    Science.gov (United States)

    Rao, Harsha L; Mungale, Sachin C; Kumbar, Tukaram; Parikh, Rajul S; Garudadri, Chandra S

    2012-01-01

    Background: Blotchy pigments in the anterior chamber (AC) angle are considered diagnostic of primary angle closure (PAC). But there are no reports either on the prevalence of blotchy pigments in AC angles or the validity of this sign. Aims: To determine the prevalence of blotchy pigments in AC angles and to evaluate their relationship with glaucomatous optic neuropathy (GON) in eyes with occludable angles. Setting and Design: Cross-sectional, comparative study. Materials and Methods: Gonioscopy was performed in 1001 eyes of 526 subjects (245 eyes of 148 consecutive, occludable angle subjects and 756 eyes of 378 non-consecutive, open angle subjects), above 35 years of age. Quadrant-wise location of blotchy pigments was documented. Statistical Analysis: Odds of blotchy pigments in occludable angles against that in open angles were evaluated. Relationship of GON with blotchy pigments in occludable angle eyes was evaluated using a multivariate model. Results: Prevalence of blotchy pigments in occludable angles was 28.6% (95% CI, 22.9-34.3) and in open angles was 4.7% (95% CI, 3.2-6.3). Blotchy pigments were more frequently seen in inferior (16%) and superior quadrants (15%) of occludable angles, and inferior quadrant of open angles (4%). Odds of superior quadrant blotchy pigments in occludable angles were 33 times that in open angles. GON was seen in 107 occludable angle eyes. Blotchy pigments were not significantly associated with GON (odds ratio = 0.5; P = 0.1). Conclusions: Blotchy pigments were seen in 28.6% of occludable angle eyes and 4.7% of open angles eyes. Presence of blotchy pigments in the superior quadrant is more common in occludable angles. Presence of GON in occludable angle eyes was not associated with blotchy pigments. PMID:23202393

  2. Size effects in van der Waals clusters studied by spin and angle-resolved electron spectroscopy and multi-coincidence ion imaging

    International Nuclear Information System (INIS)

    Rolles, D; Pesic, Z D; Zhang, H; Bilodeau, R C; Bozek, J D; Berrah, N

    2007-01-01

    We have studied the valence and inner-shell photoionization of free rare-gas clusters by means of angle and spin resolved photoelectron spectroscopy and momentum resolving electron-multi-ion coincidence spectroscopy. The electron measurements probe the evolution of the photoelectron angular distribution and spin polarization parameters as a function of photon energy and cluster size, and reveal a strong cluster size dependence of the photoelectron angular distributions in certain photon energy regions. In contrast, the spin polarization parameter of the cluster photoelectrons is found to be very close to the atomic value for all covered photon energies and cluster sizes. The ion imaging measurements, which probe the fragmentation dynamics of multiply charged van der Waals clusters, also exhibit a pronounced cluster size dependence

  3. Numerical study of damage evolution and failure in an electromagnetic corner fill operation

    International Nuclear Information System (INIS)

    Imbert, J.M.; Winkler, S.L.; Worswick, M.J.; Oliveira, D.A.; Golovashchenko, S.

    2004-01-01

    A numerical study of an electromagnetic corner fill operation using AA5754 aluminum alloy sheet was performed. Conical parts with side angles of 40 and 45 deg. (included angles of 100 and 90 deg.) were modeled. The numerical calculations were performed with an explicit dynamic finite element structural code, using an analytical electromagnetic pressure distribution. Damage evolution was predicted using a damage subroutine based on the Gurson-Tvergaard-Needleman constitutive model. Experiments were performed to validate the numerical results. Damage measurements were made using optical microscopy to determine the actual damage produced by the forming operations. Predicted final shape, failure and damage levels are presented and compared with experimental results. The numerical models were able to accurately predict damage trends. Failure was predicted in general agreement with the experiments

  4. Beyond Cassie equation: Local structure of heterogeneous surfaces determines the contact angles of microdroplets

    Science.gov (United States)

    Zhang, Bo; Wang, Jianjun; Liu, Zhiping; Zhang, Xianren

    2014-01-01

    The application of Cassie equation to microscopic droplets is recently under intense debate because the microdroplet dimension is often of the same order of magnitude as the characteristic size of substrate heterogeneities, and the mechanism to describe the contact angle of microdroplets is not clear. By representing real surfaces statistically as an ensemble of patterned surfaces with randomly or regularly distributed heterogeneities (patches), lattice Boltzmann simulations here show that the contact angle of microdroplets has a wide distribution, either continuous or discrete, depending on the patch size. The origin of multiple contact angles observed is ascribed to the contact line pinning effect induced by substrate heterogeneities. We demonstrate that the local feature of substrate structure near the contact line determines the range of contact angles that can be stabilized, while the certain contact angle observed is closely related to the contact line width. PMID:25059292

  5. Stochastic resonance and the evolution of Daphnia foraging strategy

    International Nuclear Information System (INIS)

    Dees, Nathan D; Bahar, Sonya; Moss, Frank

    2008-01-01

    Search strategies are currently of great interest, with reports on foraging ranging from albatrosses and spider monkeys to microzooplankton. Here, we investigate the role of noise in optimizing search strategies. We focus on the zooplankton Daphnia, which move in successive sequences consisting of a hop, a pause and a turn through an angle. Recent experiments have shown that their turning angle distributions (TADs) and underlying noise intensities are similar across species and age groups, suggesting an evolutionary origin of this internal noise. We explore this hypothesis further with a digital simulation (EVO) based solely on the three central Darwinian themes: inheritability, variability and survivability. Separate simulations utilizing stochastic resonance (SR) indicate that foraging success, and hence fitness, is maximized at an optimum TAD noise intensity, which is represented by the distribution's characteristic width, σ. In both the EVO and SR simulations, foraging success is the criterion, and the results are the predicted characteristic widths of the TADs that maximize success. Our results are twofold: (1) the evolving characteristic widths achieve stasis after many generations; (2) as a hop length parameter is changed, variations in the evolved widths generated by EVO parallel those predicted by SR. These findings provide support for the hypotheses that (1) σ is an evolved quantity and that (2) SR plays a role in evolution. (communication)

  6. The paediatric Bohler's angle and crucial angle of Gissane: a case series

    Directory of Open Access Journals (Sweden)

    Crawford Haemish A

    2011-01-01

    Full Text Available Abstract Background Bohler's angle and the crucial angle of Gissane can be used to assess calcaneal fractures. While the normal adult values of these angles are widely known, the normal paediatric values have not yet been established. Our aim is to investigate Bohler's angle and the crucial angle of Gissane in a paediatric population and establish normal paediatric reference values. Method We measured Bohler's angle and the crucial angle of Gissane using normal plain ankle radiographs of 763 patients from birth to 14 years of age completed over a five year period from July 2003 to June 2008. Results In our paediatric study group, the mean Bohler's angle was 35.2 degrees and the mean crucial angle of Gissane was 111.3 degrees. In an adult comparison group, the mean Bohler's angle was 39.2 degrees and the mean crucial angle of Gissane was 113.8 degrees. The differences in Bohler's angle and the crucial angle of Gissane between these two groups were statistically significant. Conclusion We have presented the normal values of Bohler's angle and the crucial angle of Gissane in a paediatric population. These values may provide a useful comparison to assist with the management of the paediatric calcaneal fracture.

  7. Distribution and evolution of sterols and aliphatic hydrocarbons in dated marine sediment cores from the Cabo Frio upwelling region, SW Atlantic, Brazil.

    Science.gov (United States)

    Lourenço, Rafael André; Martins, César C; Taniguchi, Satie; Mahiques, Michel Michaelovitch; Montone, Rosalinda Carmela; Magalhães, Caio Augusto; Bícego, Márcia Caruso

    2017-08-01

    We report the distribution of selected lipid biomarkers specifically sterols and aliphatic hydrocarbons in sediment cores from Cabo Frio, SW Atlantic continental shelf, Brazil, corresponding approximately to the last 700 years. In the Cabo Frio region, a costal upwelling occurs as a quasi-seasonal phenomenon characterized by nutrient-rich bottom waters that intrude on the continental shelf and promote relatively high biological productivity compared to other Brazilian continental shelf areas. The results for sterols indicate the predominance of organic matter (OM) inputs related to marine organisms, mainly plankton, in all of the cores along the time scale studied. Principal component analyses show three different groups of variables, which may be associated with (i) the more effective intrusion of the nutrient-rich South Atlantic Central Water, resulting in the increase of marine lipid biomarkers such as sterols and short-chain n-alkanes; (ii) the influence of the Coastal Water with higher surface water temperature and subsequently lower primary productivity; and (iii) OM characterized by high total organic carbon and long-chain n-alkanes related to an allochthonous source. Relatively high concentrations of sterols and n-alkanes between 1450 and 1700 AD, chronologically associated with the Little Ice Age, suggest a period associated with changes in the local input of specific sources of these compounds. The concentrations of lipid biomarkers vary over core depth, but this does not suggest a notably high or low intensity of upwelling processes. It is possible that the climatic and sea surface temperature changes reported in previous studies did not affect the input of the sedimentary lipid biomarkers analyzed here.

  8. Statistical and physical evolution of QSO's

    International Nuclear Information System (INIS)

    Caditz, D.; Petrosian, V.

    1989-09-01

    The relationship between the physical evolution of discrete extragalactic sources, the statistical evolution of the observed population of sources, and the cosmological model is discussed. Three simple forms of statistical evolution: pure luminosity evolution (PLE), pure density evolution (PDE), and generalized luminosity evolution (GLE), are considered in detail together with what these forms imply about the physical evolution of individual sources. Two methods are used to analyze the statistical evolution of the observed distribution of QSO's (quasars) from combined flux limited samples. It is shown that both PLE and PDE are inconsistent with the data over the redshift range 0 less than z less than 2.2, and that a more complicated form of evolution such as GLE is required, independent of the cosmological model. This result is important for physical models of AGN, and in particular, for the accretion disk model which recent results show may be inconsistent with PLE

  9. Application of differential evolution algorithm on self-potential data.

    Science.gov (United States)

    Li, Xiangtao; Yin, Minghao

    2012-01-01

    Differential evolution (DE) is a population based evolutionary algorithm widely used for solving multidimensional global optimization problems over continuous spaces, and has been successfully used to solve several kinds of problems. In this paper, differential evolution is used for quantitative interpretation of self-potential data in geophysics. Six parameters are estimated including the electrical dipole moment, the depth of the source, the distance from the origin, the polarization angle and the regional coefficients. This study considers three kinds of data from Turkey: noise-free data, contaminated synthetic data, and Field example. The differential evolution and the corresponding model parameters are constructed as regards the number of the generations. Then, we show the vibration of the parameters at the vicinity of the low misfit area. Moreover, we show how the frequency distribution of each parameter is related to the number of the DE iteration. Experimental results show the DE can be used for solving the quantitative interpretation of self-potential data efficiently compared with previous methods.

  10. Application of differential evolution algorithm on self-potential data.

    Directory of Open Access Journals (Sweden)

    Xiangtao Li

    Full Text Available Differential evolution (DE is a population based evolutionary algorithm widely used for solving multidimensional global optimization problems over continuous spaces, and has been successfully used to solve several kinds of problems. In this paper, differential evolution is used for quantitative interpretation of self-potential data in geophysics. Six parameters are estimated including the electrical dipole moment, the depth of the source, the distance from the origin, the polarization angle and the regional coefficients. This study considers three kinds of data from Turkey: noise-free data, contaminated synthetic data, and Field example. The differential evolution and the corresponding model parameters are constructed as regards the number of the generations. Then, we show the vibration of the parameters at the vicinity of the low misfit area. Moreover, we show how the frequency distribution of each parameter is related to the number of the DE iteration. Experimental results show the DE can be used for solving the quantitative interpretation of self-potential data efficiently compared with previous methods.

  11. Hard exclusive pion electroproduction at backward angles with CLAS

    Science.gov (United States)

    Park, K.; Guidal, M.; Gothe, R. W.; Pire, B.; Semenov-Tian-Shansky, K.; Laget, J.-M.; Adhikari, K. P.; Adhikari, S.; Akbar, Z.; Avakian, H.; Ball, J.; Balossino, I.; Baltzell, N. A.; Barion, L.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Cao, F. T.; Carman, D. S.; Celentano, A.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Defurne, M.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fersch, R.; Filippi, A.; Garçon, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Golovatch, E.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Heddle, D.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Johnston, S.; Joo, K.; Kabir, M. L.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Lanza, L.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Paolone, M.; Paremuzyan, R.; Pasyuk, E.; Phelps, W.; Pogorelko, O.; Poudel, J.; Price, J. W.; Prok, Y.; Protopopescu, D.; Ripani, M.; Rizzo, A.; Rossi, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Sharabian, Y.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tan, J. A.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Wei, X.; Zachariou, N.; Zhang, J.

    2018-05-01

    We report on the first measurement of cross sections for exclusive deeply virtual pion electroproduction off the proton, ep →e‧ nπ+, above the resonance region at backward pion center-of-mass angles. The φπ* -dependent cross sections were measured, from which we extracted three combinations of structure functions of the proton. Our results are compatible with calculations based on nucleon-to-pion transition distribution amplitudes (TDAs). These non-perturbative objects are defined as matrix elements of three-quark-light-cone-operators and characterize partonic correlations with a particular emphasis on baryon charge distribution inside a nucleon.

  12. SPECTRAL ENERGY DISTRIBUTIONS OF YOUNG STARS IN IC 348: THE ROLE OF DISKS IN ANGULAR MOMENTUM EVOLUTION OF YOUNG, LOW-MASS STARS

    International Nuclear Information System (INIS)

    Le Blanc, Thompson S.; Stassun, Keivan G.; Covey, Kevin R.

    2011-01-01

    Theoretical work suggests that a young star's angular momentum content and rotation rate may be strongly influenced by magnetic interactions with its circumstellar disk. A generic prediction of these 'disk-locking' theories is that a disk-locked star will be forced to co-rotate with the Keplerian angular velocity of the inner edge of the disk; that is, the disk's inner-truncation radius should equal its co-rotation radius. These theories have also been interpreted to suggest a gross correlation between young stars' rotation periods and the structural properties of their circumstellar disks, such that slowly rotating stars possess close-in disks that enforce the star's slow rotation, whereas rapidly rotating stars possess anemic or evacuated inner disks that are unable to brake the stars and instead the stars spin up as they contract. To test these expectations, we model the spectral energy distributions (SEDs) of 33 young stars in IC 348 with known rotation periods and infrared excesses indicating the presence of circumstellar disks. For each star, we match the observed SED, typically sampling 0.6-8.0 μm, to a grid of 200,000 pre-computed star+disk radiative transfer models, from which we infer the disk's inner-truncation radius. We then compare this truncation radius to the disk's co-rotation radius, calculated from the star's measured rotation period. We do not find obvious differences in the disk truncation radii of slow rotators versus rapid rotators. This holds true both at the level of whether close-in disk material is present at all, and in analyzing the precise location of the inner disk edge relative to the co-rotation radius among the subset of stars with close-in disk material. One interpretation is that disk locking is unimportant for the IC 348 stars in our sample. Alternatively, if disk locking does operate, then it must operate on both the slow and rapid rotators, potentially producing both spin-up and spin-down torques, and the transition from the

  13. A thermodynamic model of contact angle hysteresis.

    Science.gov (United States)

    Makkonen, Lasse

    2017-08-14

    When a three-phase contact line moves along a solid surface, the contact angle no longer corresponds to the static equilibrium angle but is larger when the liquid is advancing and smaller when the liquid is receding. The difference between the advancing and receding contact angles, i.e., the contact angle hysteresis, is of paramount importance in wetting and capillarity. For example, it determines the magnitude of the external force that is required to make a drop slide on a solid surface. Until now, fundamental origin of the contact angle hysteresis has been controversial. Here, this origin is revealed and a quantitative theory is derived. The theory is corroborated by the available experimental data for a large number of solid-liquid combinations. The theory is applied in modelling the contact angle hysteresis on a textured surface, and these results are also in quantitative agreement with the experimental data.

  14. Investigation of silicon width (p, p') resonance scattering in left angle 110 right angle channeling direction

    International Nuclear Information System (INIS)

    Ditroi, F.; Meyer, J.D.; Michelmann, R.; Kislat, D.; Bethge, K.

    1994-01-01

    Crystalline silicon samples were investigated both in channeling and random directions by using the (p, p') resonance scattering at 2.3 MeV bombarding energy. The samples were positioned in the scattering chamber of a VdG accelerator after 2 m collimating path. The peaks due to the resonance at 2.1 MeV were measured at different angles in the vicinity of the channeling and random directions. A peak shift and broadening was seen at the channeling and near channeling directions compared with the random one. The spectra were also simulated using our modified Monte Carlo calculation method for stopping, range and energy distribution in highly ordered materials. The energy shift and the broadening between the random and the channeling spectra were compared and explained. (orig.)

  15. Longitudinal changes of angle configuration in primary angle-closure suspects: the Zhongshan Angle-Closure Prevention Trial.

    Science.gov (United States)

    Jiang, Yuzhen; Chang, Dolly S; Zhu, Haogang; Khawaja, Anthony P; Aung, Tin; Huang, Shengsong; Chen, Qianyun; Munoz, Beatriz; Grossi, Carlota M; He, Mingguang; Friedman, David S; Foster, Paul J

    2014-09-01

    To determine longitudinal changes in angle configuration in the eyes of primary angle-closure suspects (PACS) treated by laser peripheral iridotomy (LPI) and in untreated fellow eyes. Longitudinal cohort study. Primary angle-closure suspects aged 50 to 70 years were enrolled in a randomized, controlled clinical trial. Each participant was treated by LPI in 1 randomly selected eye, with the fellow eye serving as a control. Angle width was assessed in a masked fashion using gonioscopy and anterior segment optical coherence tomography (AS-OCT) before and at 2 weeks, 6 months, and 18 months after LPI. Angle width in degrees was calculated from Shaffer grades assessed under static gonioscopy. Angle configuration was also evaluated using angle opening distance (AOD250, AOD500, AOD750), trabecular-iris space area (TISA500, TISA750), and angle recess area (ARA) measured in AS-OCT images. No significant difference was found in baseline measures of angle configuration between treated and untreated eyes. At 2 weeks after LPI, the drainage angle on gonioscopy widened from a mean of 13.5° at baseline to a mean of 25.7° in treated eyes, which was also confirmed by significant increases in all AS-OCT angle width measures (Pgonioscopy (P = 0.18), AOD250 (P = 0.167) and ARA (P = 0.83). In untreated eyes, angle width consistently decreased across all follow-up visits after LPI, with a more rapid longitudinal decrease compared with treated eyes (P values for all variables ≤0.003). The annual rate of change in angle width was equivalent to 1.2°/year (95% confidence interval [CI], 0.8-1.6) in treated eyes and 1.6°/year (95% CI, 1.3-2.0) in untreated eyes (P<0.001). Angle width of treated eyes increased markedly after LPI, remained stable for 6 months, and then decreased significantly by 18 months after LPI. Untreated eyes experienced a more consistent and rapid decrease in angle width over the same time period. Copyright © 2014 American Academy of Ophthalmology. Published by

  16. Event Shape Sorting: selecting events with similar evolution

    Directory of Open Access Journals (Sweden)

    Tomášik Boris

    2017-01-01

    Full Text Available We present novel method for the organisation of events. The method is based on comparing event-by-event histograms of a chosen quantity Q that is measured for each particle in every event. The events are organised in such a way that those with similar shape of the Q-histograms end-up placed close to each other. We apply the method on histograms of azimuthal angle of the produced hadrons in ultrarelativsitic nuclear collisions. By selecting events with similar azimuthal shape of their hadron distribution one chooses events which are likely that they underwent similar evolution from the initial state to the freeze-out. Such events can more easily be compared to theoretical simulations where all conditions can be controlled. We illustrate the method on data simulated by the AMPT model.

  17. An electron back-scattered diffraction study on the microstructure evolution of AZ31 Mg alloy during equal channel angular extrusion

    International Nuclear Information System (INIS)

    Jin Li; Lin Dongliang; Mao Dali; Zeng Xiaoqin; Ding Wenjiang

    2006-01-01

    Microstructure evolution of AZ31 Mg alloy during equal channel angular extrusion (ECAE) was investigated by electron back-scattered diffraction (EBSD). The grains of AZ31 Mg alloy were refined significantly after ECAE 1-8 passes at 498 K and the distributions of grain size tended to be more uniform with pass number increasing. Frequency of sub-boundaries and low angle grain boundaries (LAGBs) increased at initial stage of deformation, and sub-boundaries and LAGBs evolved into high angle grain boundaries (HAGBs) with further deformation, which resulted in the high frequency of HAGBs in the alloy after ECAE 8 passes. Preferred misorientation angle with frequency peak near 30 deg. and 90 deg. were observed. The frequency peaks were weak after ECAE 1 pass but became stronger with the increase of pass numbers. Micro-textures were formed in AZ31 microstructure during ECAE and were stronger with the pass number increasing

  18. Behavior of Tilted Angle Shear Connectors

    Science.gov (United States)

    Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.

    2015-01-01

    According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193

  19. Behavior of Tilted Angle Shear Connectors.

    Directory of Open Access Journals (Sweden)

    Koosha Khorramian

    Full Text Available According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.

  20. The qualitative criterion of transient angle stability

    DEFF Research Database (Denmark)

    Lyu, R.; Xue, Y.; Xue, F.

    2015-01-01

    In almost all the literatures, the qualitative assessment of transient angle stability extracts the angle information of generators based on the swing curve. As the angle (or angle difference) of concern and the threshold value rely strongly on the engineering experience, the validity and robust...... of these criterions are weak. Based on the stability mechanism from the extended equal area criterion (EEAC) theory and combining with abundant simulations of real system, this paper analyzes the criterions in most literatures and finds that the results could be too conservative or too optimistic. It is concluded...

  1. Iridescence: views from many angles.

    Science.gov (United States)

    Meadows, Melissa G; Butler, Michael W; Morehouse, Nathan I; Taylor, Lisa A; Toomey, Matthew B; McGraw, Kevin J; Rutowski, Ronald L

    2009-04-06

    Iridescent colours have been fascinating to humans throughout history; they are flashy, shimmering, dynamic, and examples surround us, from the commonly seen iridescent sheen of oily street puddles to the exotic, gaudy displays of birds-of-paradise featured in nature documentaries. Iridescent colours and the structures that produce them have unique properties in comparison with other types of colourants found in nature. Scientists from a variety of disciplines study the optics, development, heritability, chemical make-up, origin, evolution, functions and biomimetic technological applications of naturally occurring iridescent colours. For the first time, graduate students at Arizona State University brought together these scientists, along with educators and artists, at 'Iridescence: more than meets the eye', a conference to promote interdisciplinary communication and collaboration in the study of iridescent coloration from all of these perspectives. Here, we summarize the outcomes of this conference, introduce the papers that follow in this special journal issue and briefly review the current status of our understanding of iridescence.

  2. Animal evolution

    DEFF Research Database (Denmark)

    Nielsen, Claus

    This book provides a comprehensive analysis of evolution in the animal kingdom. It reviews the classical, morphological information from structure and embryology, as well as the new data gained from studies using immune stainings of nerves and muscles and blastomere markings, which makes it possi......This book provides a comprehensive analysis of evolution in the animal kingdom. It reviews the classical, morphological information from structure and embryology, as well as the new data gained from studies using immune stainings of nerves and muscles and blastomere markings, which makes...

  3. Textural Evolution During Micro Direct Metal Deposition of NiTi Alloy

    Science.gov (United States)

    Khademzadeh, Saeed; Bariani, Paolo F.; Bruschi, Stefania

    2018-03-01

    In this research, a micro direct metal deposition process, newly developed as a potential method for micro additive manufacturing was used to fabricate NiTi builds. The effect of scanning strategy on grain growth and textural evolution was investigated using scanning electron microscope equipped with electron backscattered diffraction detector. Investigations showed that, the angle between the successive single tracks has an important role in grain size distribution and textural evolution of NiTi phase. Unidirectional laser beam scanning pattern developed a fiber texture; conversely, a backward and forward scanning pattern developed a strong ‖‖ RD texture on the surface of NiTi cubic samples produced by micro direct metal deposition.

  4. Bound-state momentum distributions

    International Nuclear Information System (INIS)

    Alexander, Y.; Redish, E.F.; Wall, N.S.

    1977-01-01

    Proposed forms for nuclear momentum distributions are investigated. Calculations of (p,p') reactions using those forms are done in a plane-wave impulse approximation at angles where the quasielastic peak is seen and also at back angles. The parameters used are derived from (e,e') data, where the nuclear momenta probed overlap with those of the low angle (p,p') experiment. Although there is reasonable agreement for the (p,p') data at 180 0 , the inclusion of distortion necessitates a different parameter set to obtain agreement for the quasifree process. We conclude that the (p,p') reaction cannot be readily understood with a simple momentum distribution

  5. The new INRIM rotating encoder angle comparator (REAC)

    International Nuclear Information System (INIS)

    Pisani, Marco; Astrua, Milena

    2017-01-01

    A novel angle comparator has been built and tested at INRIM. The device is based on a double air bearing structure embedding a continuously rotating encoder, which is read by two heads: one fixed to the base of the comparator and a second fixed to the upper moving part of the comparator. The phase measurement between the two heads’ signals is proportional to the relative angle suspended between them (and, therefore, the angle between the base and the upper, movable part of the comparator). The advantage of this solution is to reduce the encoder graduation errors and to cancel the cyclic errors due to the interpolation of the encoder lines. By using only two pairs of reading heads, we have achieved an intrinsic accuracy of  ±0.04″ (rectangular distribution) that can be reduced through self-calibration. The residual cyclic errors have shown to be less than 0.01″ peak-to-peak. The random fluctuations are less than 0.01″ rms on a 100 s time interval. A further advantage of the rotating encoder is the intrinsic knowledge of the absolute position without the need of a zeroing procedure. Construction details of the rotating encoder angle comparator (REAC), characterization tests, and examples of practical use are given. (paper)

  6. Effect of attack angle on flow characteristic of centrifugal fan

    Science.gov (United States)

    Wu, Y.; Dou, H. S.; Wei, Y. K.; Chen, X. P.; Chen, Y. N.; Cao, W. B.

    2016-05-01

    In this paper, numerical simulation is performed for the performance and internal flow of a centrifugal fan with different operating conditions using steady three-dimensional incompressible Navier-Stokes equations coupled with the RNG k-e turbulent model. The performance curves, the contours of static pressure, total pressure, radial velocity, relative streamlines and turbulence intensity at different attack angles are obtained. The distributions of static pressure and velocity on suction surface and pressure surface in the same impeller channel are compared for various attack angles. The research shows that the efficiency of the centrifugal fan is the highest when the attack angle is 8 degree. The main reason is that the vortex flow in the impeller is reduced, and the jet-wake pattern is weakened at the impeller outlet. The pressure difference between pressure side and suction side is smooth and the amplitude of the total pressure fluctuation is low along the circumferential direction. These phenomena may cause the loss reduced for the attack angle of about 8 degree.

  7. Optimum Tilt Angle at Tropical Region

    Directory of Open Access Journals (Sweden)

    S Soulayman

    2015-02-01

    Full Text Available : One of the important parameters that affect the performance of a solar collector is its tilt angle with the horizon. This is because of the variation of tilt angle changes the amount of solar radiation reaching the collector surface. Meanwhile, is the rule of thumb, which says that solar collector Equator facing position is the best, is valid for tropical region? Thus, it is required to determine the optimum tilt as for Equator facing and for Pole oriented collectors. In addition, the question that may arise: how many times is reasonable for adjusting collector tilt angle for a definite value of surface azimuth angle? A mathematical model was used for estimating the solar radiation on a tilted surface, and to determine the optimum tilt angle and orientation (surface azimuth angle for the solar collector at any latitude. This model was applied for determining optimum tilt angle and orientation in the tropical zones, on a daily basis, as well as for a specific period. The optimum angle was computed by searching for the values for which the radiation on the collector surface is a maximum for a particular day or a specific period. The results reveal that changing the tilt angle 12 times in a year (i.e. using the monthly optimum tilt angle maintains approximately the total amount of solar radiation near the maximum value that is found by changing the tilt angle daily to its optimum value. This achieves a yearly gain in solar radiation of 11% to 18% more than the case of a solar collector fixed on a horizontal surface.

  8. Automatic learning-based beam angle selection for thoracic IMRT

    International Nuclear Information System (INIS)

    Amit, Guy; Marshall, Andrea; Purdie, Thomas G.; Jaffray, David A.; Levinshtein, Alex; Hope, Andrew J.; Lindsay, Patricia; Pekar, Vladimir

    2015-01-01

    Purpose: The treatment of thoracic cancer using external beam radiation requires an optimal selection of the radiation beam directions to ensure effective coverage of the target volume and to avoid unnecessary treatment of normal healthy tissues. Intensity modulated radiation therapy (IMRT) planning is a lengthy process, which requires the planner to iterate between choosing beam angles, specifying dose–volume objectives and executing IMRT optimization. In thorax treatment planning, where there are no class solutions for beam placement, beam angle selection is performed manually, based on the planner’s clinical experience. The purpose of this work is to propose and study a computationally efficient framework that utilizes machine learning to automatically select treatment beam angles. Such a framework may be helpful for reducing the overall planning workload. Methods: The authors introduce an automated beam selection method, based on learning the relationships between beam angles and anatomical features. Using a large set of clinically approved IMRT plans, a random forest regression algorithm is trained to map a multitude of anatomical features into an individual beam score. An optimization scheme is then built to select and adjust the beam angles, considering the learned interbeam dependencies. The validity and quality of the automatically selected beams evaluated using the manually selected beams from the corresponding clinical plans as the ground truth. Results: The analysis included 149 clinically approved thoracic IMRT plans. For a randomly selected test subset of 27 plans, IMRT plans were generated using automatically selected beams and compared to the clinical plans. The comparison of the predicted and the clinical beam angles demonstrated a good average correspondence between the two (angular distance 16.8° ± 10°, correlation 0.75 ± 0.2). The dose distributions of the semiautomatic and clinical plans were equivalent in terms of primary target volume

  9. Portable mini-chamber for temperature dependent studies using small angle and wide angle x-ray scattering

    Science.gov (United States)

    Dev, Arun Singh; Kumar, Dileep; Potdar, Satish; Pandit, Pallavi; Roth, Stephan V.; Gupta, Ajay

    2018-04-01

    The present work describes the design and performance of a vacuum compatible portable mini chamber for temperature dependent GISAXS and GIWAXS studies of thin films and multilayer structures. The water cooled body of the chamber allows sample annealing up to 900 K using ultra high vacuum compatible (UHV) pyrolytic boron nitride heater, thus making it possible to study the temperature dependent evolution of structure and morphology of two-dimensional nanostructured materials. Due to its light weight and small size, the chamber is portable and can be accommodated at synchrotron facilities worldwide. A systematic illustration of the versatility of the chamber has been demonstrated at beamline P03, PETRA-III, DESY, Hamburg, Germany. Temperature dependent grazing incidence small angle x-ray scattering (GISAXS) and grazing incidence wide angle x-ray scattering (GIWAXS) measurements were performed on oblique angle deposited Co/Ag multilayer structure, which jointly revealed that the surface diffusion in Co columns in Co/Ag multilayer enhances by increasing temperature from RT to ˜573 K. This results in a morphology change from columnar tilted structure to densely packed morphological isotropic multilayer.

  10. Sharper angle, higher risk? The effect of cutting angle on knee mechanics in invasion sport athletes.

    Science.gov (United States)

    Schreurs, Mervin J; Benjaminse, Anne; Lemmink, Koen A P M

    2017-10-03

    Cutting is an important skill in team-sports, but unfortunately is also related to non-contact ACL injuries. The purpose was to examine knee kinetics and kinematics at different cutting angles. 13 males and 16 females performed cuts at different angles (45°, 90°, 135° and 180°) at maximum speed. 3D kinematics and kinetics were collected. To determine differences across cutting angles (45°, 90°, 135° and 180°) and sex (female, male), a 4×2 repeated measures ANOVA was conducted followed by post hoc comparisons (Bonferroni) with alpha level set at α≤0.05a priori. At all cutting angles, males showed greater knee flexion angles than females (pcutting angles with no differences in the amount of knee flexion -42.53°±8.95°, females decreased their knee flexion angle from -40.6°±7.2° when cutting at 45° to -36.81°±9.10° when cutting at 90°, 135° and 180° (pcutting towards sharper angles (pcutting angles and then stabilized compared to the 45° cutting angle (pcutting to sharper angles (pcutting angles demand different knee kinematics and kinetics. Sharper cutting angles place the knee more at risk. However, females and males handle this differently, which has implications for injury prevention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The Investigation of Intermediate Stage of Template Etching with Metal Droplets by Wetting Angle Analysis on (001 GaAs Surface

    Directory of Open Access Journals (Sweden)

    Lyamkina AA

    2011-01-01

    Full Text Available Abstract In this work, we study metal droplets on a semiconductor surface that are the initial stage for both droplet epitaxy and local droplet etching. The distributions of droplet geometrical parameters such as height, radius and volume help to understand the droplet formation that strongly influences subsequent nanohole etching. To investigate the etching and intermixing processes, we offer a new method of wetting angle analysis. The aspect ratio that is defined as the ratio of the height to radius was used as an estimation of wetting angle which depends on the droplet material. The investigation of the wetting angle and the estimation of indium content revealed significant materials intermixing during the deposition time. AFM measurements reveal the presence of two droplet groups that is in agreement with nanohole investigations. To explain this observation, we consider arsenic evaporation and consequent change in the initial substrate. On the basis of our analysis, we suggest the model of droplet evolution and the formation of two droplet groups.

  12. Universal pacemaker of genome evolution.

    Science.gov (United States)

    Snir, Sagi; Wolf, Yuri I; Koonin, Eugene V

    2012-01-01

    A fundamental observation of comparative genomics is that the distribution of evolution rates across the complete sets of orthologous genes in pairs of related genomes remains virtually unchanged throughout the evolution of life, from bacteria to mammals. The most straightforward explanation for the conservation of this distribution appears to be that the relative evolution rates of all genes remain nearly constant, or in other words, that evolutionary rates of different genes are strongly correlated within each evolving genome. This correlation could be explained by a model that we denoted Universal PaceMaker (UPM) of genome evolution. The UPM model posits that the rate of evolution changes synchronously across genome-wide sets of genes in all evolving lineages. Alternatively, however, the correlation between the evolutionary rates of genes could be a simple consequence of molecular clock (MC). We sought to differentiate between the MC and UPM models by fitting thousands of phylogenetic trees for bacterial and archaeal genes to supertrees that reflect the dominant trend of vertical descent in the evolution of archaea and bacteria and that were constrained according to the two models. The goodness of fit for the UPM model was better than the fit for the MC model, with overwhelming statistical significance, although similarly to the MC, the UPM is strongly overdispersed. Thus, the results of this analysis reveal a universal, genome-wide pacemaker of evolution that could have been in operation throughout the history of life.

  13. Effect of the meniscus contact angle during early regimes of spontaneous imbibition in nanochannels

    DEFF Research Database (Denmark)

    Karna, Nabin Kumar; Oyarzua, Elton; Walther, Jens Honore

    2016-01-01

    study, large scale atomistic simulations are conducted to investigate capillary imbibition of water in slit silica nanochannels with heights between 4 and 18 nm. We find that the meniscus contact angle remains constant during the inertial regime and its value depends on the height of the channel. We...... also find that the meniscus velocity computed at the channel entrance is related to the particular value of the meniscus contact angle. Moreover, during the subsequent visco-inertial regime, as the influence of viscosity increases, the meniscus contact angle is found to be time dependent for all...... the channels under study. Furthermore, we propose an expression for the time evolution of the dynamic contact angle in nanochannels which, when incorporated into Bosanquet's equation, satisfactorily explains the initial capillary rise....

  14. Page 1 '---------------------------- Presenting features ofprimary angle ...

    African Journals Online (AJOL)

    coma were assessed. The diagnosis of primary angle-closure glaucoma was made on presentation if the intra-ocular pressure was > 21 mmHg, or if a glaucomatous visual field was found, in the presence of a partially or totally closed angle or peripheral anterior synechiae. Provocation tests were not performed. Patients ...

  15. Gaugings at angles from orientifold reductions

    International Nuclear Information System (INIS)

    Roest, Diederik

    2009-01-01

    We consider orientifold reductions to N= 4 gauged supergravity in four dimensions. A special feature of this theory is that different factors of the gauge group can have relative angles with respect to the electro-magnetic SL(2) symmetry. These are crucial for moduli stabilization and de Sitter vacua. We show how such gaugings at angles generically arise in orientifold reductions.

  16. Automatic Cobb Angle Determination From Radiographic Images

    NARCIS (Netherlands)

    Sardjono, Tri Arief; Wilkinson, Michael H. F.; Veldhuizen, Albert G.; van Ooijen, Peter M. A.; Purnama, Ketut E.; Verkerke, Gijsbertus J.

    2013-01-01

    Study Design. Automatic measurement of Cobb angle in patients with scoliosis. Objective. To test the accuracy of an automatic Cobb angle determination method from frontal radiographical images. Summary of Background Data. Thirty-six frontal radiographical images of patients with scoliosis. Methods.

  17. Practical evaluation of action-angle variables

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1984-02-01

    A practical method is described for establishing action-angle variables for a Hamiltonian system. That is, a given nearly integrable Hamiltonian is divided into an exactly integrable system plus a perturbation in action-angle form. The transformation of variables, which is carried out using a few short trajectory integrations, permits a rapid determination of trajectory properties throughout a phase space volume

  18. Representing Evolution

    DEFF Research Database (Denmark)

    Hedin, Gry

    2012-01-01

    . This article discusses Willumsen's etching in the context of evolutionary theory, arguing that Willumsen is a rare example of an artist who not only let the theory of evolution fuel his artistic imagination, but also concerned himself with a core issue of the theory, namely to what extent it could be applied...

  19. Security Evolution.

    Science.gov (United States)

    De Patta, Joe

    2003-01-01

    Examines how to evaluate school security, begin making schools safe, secure schools without turning them into fortresses, and secure schools easily and affordably; the evolution of security systems into information technology systems; using schools' high-speed network lines; how one specific security system was developed; pros and cons of the…

  20. Cepheid evolution

    International Nuclear Information System (INIS)

    Becker, S.A.

    1984-05-01

    A review of the phases of stellar evolution relevant to Cepheid variables of both Types I and II is presented. Type I Cepheids arise as a result of normal post-main sequence evolutionary behavior of many stars in the intermediate to massive range of stellar masses. In contrast, Type II Cepheids generally originate from low-mass stars of low metalicity which are undergoing post core helium-burning evolution. Despite great progress in the past two decades, uncertainties still remain in such areas as how to best model convective overshoot, semiconvection, stellar atmospheres, rotation, and binary evolution as well as uncertainties in important physical parameters such as the nuclear reaction rates, opacity, and mass loss rates. The potential effect of these uncertainties on stellar evolution models is discussed. Finally, comparisons between theoretical predictions and observations of Cepheid variables are presented for a number of cases. The results of these comparisons show both areas of agreement and disagreement with the latter result providing incentive for further research

  1. Venom Evolution

    Indian Academy of Sciences (India)

    IAS Admin

    Therefore, the platypus sequence was studied to quantify the role of gene duplication in the evolution of venom. ... Platypus venom is present only in males and is used for asserting dominance over com- petitors during the ... Certain toxin gene families are known to re- peatedly evolve through gene duplications. The rapidly ...

  2. Apparent contact angle and contact angle hysteresis on liquid infused surfaces.

    Science.gov (United States)

    Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim

    2016-12-21

    We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small but finite ridge, which corresponds to an effective line tension term. We also predict contact angle hysteresis on liquid infused surfaces generated by the pinning of the contact lines by the surface corrugations. Our analytical expressions for both the apparent contact angle and contact angle hysteresis can be interpreted as 'weighted sums' between the contact angles of the infusing liquid relative to the droplet and surrounding gas phases, where the weighting coefficients are given by ratios of the fluid surface tensions.

  3. Laser peripheral iridoplasty for angle-closure.

    Science.gov (United States)

    Ng, Wai Siene; Ang, Ghee Soon; Azuara-Blanco, Augusto

    2012-02-15

    Angle-closure glaucoma is a leading cause of irreversible blindness in the world. Treatment is aimed at opening the anterior chamber angle and lowering the IOP with medical and/or surgical treatment (e.g. trabeculectomy, lens extraction). Laser iridotomy works by eliminating pupillary block and widens the anterior chamber angle in the majority of patients. When laser iridotomy fails to open the anterior chamber angle, laser iridoplasty may be recommended as one of the options in current standard treatment for angle-closure. Laser peripheral iridoplasty works by shrinking and pulling the peripheral iris tissue away from the trabecular meshwork. Laser peripheral iridoplasty can be used for crisis of acute angle-closure and also in non-acute situations.   To assess the effectiveness of laser peripheral iridoplasty in the treatment of narrow angles (i.e. primary angle-closure suspect), primary angle-closure (PAC) or primary angle-closure glaucoma (PACG) in non-acute situations when compared with any other intervention. In this review, angle-closure will refer to patients with narrow angles (PACs), PAC and PACG. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2011, Issue 12), MEDLINE (January 1950 to January 2012), EMBASE (January 1980 to January 2012), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to January 2012), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). There were no date or language restrictions in the electronic searches for trials. The electronic databases were last searched on 5 January 2012. We included only randomised controlled trials (RCTs) in this review. Patients with narrow angles, PAC or PACG were eligible. We excluded studies that included only patients with acute presentations

  4. Multi-angle Imaging SpectroRadiometer

    Science.gov (United States)

    Diner, David J. (Principal Investigator)

    MISR views the sunlit Earth simultaneously at nine widely spaced angles and provides ongoing global coverage with high spatial detail. Its imagery is carefully calibrated to provide accurate measures of the brightness, contrast, and color of reflected sunlight. MISR provides new types of information for scientists studying Earth's climate, such as the regional and global distribution of different types of atmospheric particles and aerosols. The change in reflection at different view angles provides the means to distinguish aerosol types, cloud forms, and land surface cover. Combined with stereoscopic techniques, this enables construction of 3-D cloud models and estimation of the total amount of sunlight reflected by Earth's diverse environments. MISR was built for NASA by the Jet Propulsion Laboratory (JPL) in Pasadena, California. It is part of NASA's first Earth Observing System (EOS) spacecraft, the Terra spacecraft, which was launched into polar orbit from Vandenberg Air Force Base on December 18, 1999. MISR has been continuously providing data since February 24, 2000. [Mission Objectives] The MISR instrument acquires systematic multi-angle measurements for global monitoring of top-of-atmosphere and surface albedos and for measuring the shortwave radiative properties of aerosols, clouds, and surface scenes in order to characterize their impact on the Earth's climate. The Earth's climate is constantly changing -- as a consequence of both natural processes and human activities. Scientists care a great deal about even small changes in Earth's climate, since they can affect our comfort and well-being, and possibly our survival. A few years of below-average rainfall, an unusually cold winter, or a change in emissions from a coal-burning power plant, can influence the quality of life of people, plants, and animals in the region involved. The goal of NASA's Earth Observing System (EOS) is to increase our understanding of the climate changes that are occurring on our

  5. Evolución de los métodos de evaluación de la confiabilidad para redes eléctricas de distribución; Evolution of reliability assessment methods for electrical distribution networks

    Directory of Open Access Journals (Sweden)

    Eduardo Sierra Gil

    2011-05-01

    Full Text Available Este trabajo pretende ofrecer una breve panorámica sobre la evolución de los métodos de evaluación de la confiabilidad y las especificidades de los mismos durante la caracterización de redes eléctricas de distribución y mostrar como la utilización de uno u otro depende no solo de de la disponibilidad de datos y la existencia o no de regulaciones para la continuidad del servicio eléctrico, sino que además depende del enfoque que se le de al estudio en cuestión, selección de variantes durante el diseño, opciones de mejora de la confiabilidad durante la explotación o gestión de mantenimiento.  This paper intends to offer a brief panoramic about the evolution of the reliability assessment methods and the specificities of the same ones during the characterization of the electrical distribution networks and to show how the utilization of either method not depends only of availability of data and the existence or not of regulations for the continuity of electrical service, rather besides depends of the approach to reliability studies in point: selection of variants during the design, reliability improving options during the exploitations or maintenance management.

  6. Scoliosis angle. Conceptual basis and proposed definition

    Energy Technology Data Exchange (ETDEWEB)

    Marklund, T [Linkoepings Hoegskola (Sweden)

    1978-01-01

    The most commonly used methods of assessing the scoliotic deviation measure angles that are not clearly defined in relation to the anatomy of the patient. In order to give an anatomic basis for such measurements it is proposed to define the scoliotic deviation as the deviation the vertebral column makes with the sagittal plane. Both the Cobb and the Ferguson angles may be based on this definition. The present methods of measurement are then attempts to measure these angles. If the plane of these angles is parallel to the film, the measurement will be correct. Errors in the measurements may be incurred by the projection. A hypothetical projection, called a 'rectified orthogonal projection', is presented, which correctly represents all scoliotic angles in accordance with these principles. It can be constructed in practice with the aid of a computer and by performing measurements on two projections of the vertebral column; a scoliotic curve can be represented independent of the kyphosis and lordosis.

  7. The resection angle in apical surgery

    DEFF Research Database (Denmark)

    von Arx, Thomas; Janner, Simone F M; Jensen, Simon S

    2016-01-01

    OBJECTIVES: The primary objective of the present radiographic study was to analyse the resection angle in apical surgery and its correlation with treatment outcome, type of treated tooth, surgical depth and level of root-end filling. MATERIALS AND METHODS: In the context of a prospective clinical...... study, cone beam computed tomography (CBCT) scans were taken before and 1 year after apical surgery to measure the angle of the resection plane relative to the longitudinal axis of the root. Further, the surgical depth (distance from the buccal cortex to the most lingual/palatal point of the resection...... or with the retrofilling length. CONCLUSIONS: Statistically significant differences were observed comparing resection angles of different tooth groups. However, the angle had no significant effect on treatment outcome. CLINICAL RELEVANCE: Contrary to common belief, the resection angle in maxillary anterior teeth...

  8. Experimental study of crossing angle collision

    International Nuclear Information System (INIS)

    Chen, T.; Rice, D.; Rubin, D.; Sagan, D.; Tigner, M.

    1993-01-01

    The non-linear coupling due to the beam-beam interaction with crossing angle has been studied. The major effect of a small (∼12mrad) crossing angle is to excite 5Q x ±Q s =integer coupling resonance family on large amplitude particles, which results in bad lifetime. On the CESR, a small crossing angle (∼2.4mr) was created at the IP and a reasonable beam-beam tune-shift was achieved. The decay rate of the beam is measured as a function of horizontal tune with and without crossing angle. The theoretical analysis, simulation and experimental measurements have a good agreement. The resonance strength as a function of crossing angle is also measured

  9. Pinus sylvestris L. needle surface wettability parameters as indicators of atmospheric environment pollution impacts: Novel contact angle hysteresis methodology

    Science.gov (United States)

    Pogorzelski, Stanisław J.; Rochowski, Pawel; Szurkowski, Janusz

    2014-02-01

    An investigation of water contact angles (CAs), contact angle hysteresis (CAH) was carried out for 1-year to 4-year old needles (Pinus sylvestris) collected in urban (Gdansk) and rural (Karsin) locations using an original measuring technique based on the geometry of the drop on a vertical filament. Concentrations of air pollutants (SO2, NOx, C6H6, and suspended particular matter - SPM) currently considered to be most important in causing direct damage to vegetation were simultaneously monitored. A set of the surface wettability parameters: the apparent surface free energy γSV, adhesive film tension Π, work of adhesion WA, and spreading WS, were determined from CAH data using the approach developed by Chibowski (2003) to quantify the surface energetics of the needle substrata affected by aging and pollution impacts. This formalism relates the total apparent surface free energy of the solid γSV with only three measurable quantities: the surface tension of the probe liquid γLV and its advancing θA and receding θR contact angle hysteresis. Since CAH depends on the outermost wax layer surface roughness and spatial physicochemical heterogeneity of a solid surface, CA data were corrected using surface architecture profiles registered with confocal scanning laser microscopy. It was found that the roughness parameter r is significantly negatively correlated (R = -0.74) with the needle age (collected at Karsin). The needle surface aging process resulted in its surface hydrophilization (CA↓ and CAH↓ with γSV↑ and WA↑). A temporal evolution of the needles wettability was traced with the data point distribution in the 2D space of CAH plotted versus WS. The wettability parameters were closely correlated to pollutant concentrations as evidenced from Spearman's rank correlation procedure (R = 0.63-0.91; p biological systems.

  10. Apparent Contact Angle and Contact Angle Hysteresis on Liquid Infused Surfaces

    OpenAIRE

    Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim

    2016-01-01

    We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a strong dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small b...

  11. Mercury's radius change estimates revisited using high incidence angle MESSENGER data

    Science.gov (United States)

    Di Achille, G.; Popa, C.; Massironi, M.; Ferrari, S.; Mazzotta Epifani, E.; Zusi, M.; Cremonese, G.; Palumbo, P.

    2012-04-01

    Estimates of Mercury's radius decrease obtained using the amount of strain recorded by tectonics on the planet range from 0.5 km to 2 km. These latter figures appear too low with respect to the radius contraction (up to 5-6 km) predicted by the most accredited studies based on thermo-mechanical evolution models. For this reason, it has been suggested that there may be hidden strain accommodated by features yet unseen on Mercury. Indeed, as it has been already cautioned by previous studies, the identification of tectonic features on Mercury might be largely biased by the lighting geometry of the used basemaps. This limitation might have affected the results of the extrapolations for estimating the radius change. In this study, we mapped tectonic features at the terminator thus using images acquired at high sun incidence angle (>50°) that represents the optimal condition for their observation. In fact, images with long shadows enhance the topography and texture of the surface and are ideal to detect tectonic structures. This favorable illumination conditions allowed us to infer reliable measurements of spatial distribution (i.e. frequency, orientation, and areal density) of tectonic features which can be used to estimate the average contractional strain and planetary radius decrease. We digitized tectonic structures within a region extending for an area of about 12 million sq. km (~16% of planet's surface). More than 1300 tectonic lineaments were identified and interpreted to be compressional features (i.e. lobate scarps, wrinkle ridges, and high relief ridges) with a total length of more than 12300 km. Assuming that the extensional strain is negligible within the area, the average contractional strain calculated for the survey area is ~0.21-0.28% (~0.24% for θ=30°). This strain, extrapolated to the entire surface, corresponds to a contraction in radius of about 2.5-3.4 km (~2.9 km for θ=30°). Interestingly, the values of contractional strain and radius decrease

  12. Survival and Growth of Cottonwood Clones After Angle Planting and Base Angle Treatments

    Science.gov (United States)

    W.K. Randall; Harvey E. Kennedy

    1976-01-01

    Presently, commercial cottonwood plantations in the lower Mississippi Valley are established using vertically planted, unrooted cuttings with a flat (90°) base. Neither survival nor first-year growth of a group of six Stoneville clones was improved by angle planting or cutting base angles diagonally. For one clone, survival was significantly better when base angle was...

  13. Titan Polar Landscape Evolution

    Science.gov (United States)

    Moore, Jeffrey M.

    2016-01-01

    With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.

  14. Control of ordered mesoporous titanium dioxide nanostructures formed using plasma enhanced glancing angle deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Des [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Child, David, E-mail: david.child@uws.ac.uk [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Song, Shigeng; Zhao, Chao [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Alajiani, Yahya [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Department of Physics, Faculty of Science, Jazan University, Jazan (Saudi Arabia); Waddell, Ewan [Thin Film Solutions Ltd, West of Scotland Science Park, Glasgow, G20 0TH (United Kingdom)

    2015-10-01

    Three dimensional nanostructures of mesoporous (pore diameter between 2-50 nm) nanocrystalline titania (TiO{sub 2}) were produced using glancing angle deposition combined with plasma ion assisted deposition, providing plasma enhanced glancing angle deposition eliminating the need for post-annealing to achieve film crystallinity. Electron beam evaporation was chosen to deposit nanostructures at various azimuthal angles, achieving designed variation in three dimensional nanostructure. A thermionic broad beam hollow cathode plasma source was used to enhance electron beam deposition, with ability to vary in real time ion fluxes and energies providing a means to modify and control TiO{sub 2} nanostructure real time with controlled density and porosity along and lateral to film growth direction. Plasma ion assisted deposition was carried out at room temperature using a hollow cathode plasma source, ensuring low heat loading to the substrate during deposition. Plasma enhanced glancing angle TiO{sub 2} structures were deposited onto borosilicate microscope slides and used to characterise the effects of glancing angle and plasma ion energy distribution function on the optical and nanostructural properties. Variation in TiO{sub 2} refractive index from 1.40 to 2.45 (@ 550 nm) using PEGLAD is demonstrated. Results and analysis of the influence of plasma enhanced glancing angle deposition on evaporant path and resultant glancing angle deviation from standard GLAD are described. Control of mesoporous morphology is described, providing a means of optimising light trapping features and film porosity, relevant to applications such as fabrication of dye sensitised solar cells. - Highlights: • Plasma assistance during glancing angle deposition enables control of morphology. • Ion energy variation during glancing angle deposition varies columnar angle • Column thickness of glancing angle deposition dependant on ion current density • Ion current density variation during

  15. Quasi-Linear Evolution of Trapped Electron Fluxes Under the Influence of Realistic Whistler-Mode Waves

    Science.gov (United States)

    Agapitov, O. V.; Mourenas, D.; Artemyev, A.; Krasnoselskikh, V.

    2014-12-01

    The evolution of fluxes of energetic trapped electrons as a function of geomagnetic activity is investigated using brand new statistical models of chorus waves derived from Cluster observations in the radiation belts. The new wave models provide the distributions of wave power and wave-normal angle with latitude as a function of either Dst or Kp indices. Lifetimes and energization of energetic electrons are examined, as well as the relevant uncertainties related to some of the wave models implicit assumptions.From the presented results, different implications concerning the characterization of relativistic flux enhancements and losses are provided.

  16. Communications and Tracking Distributed Systems Evolution Study

    Science.gov (United States)

    Culpepper, William

    1990-01-01

    The Communications and Tracking (C & T) techniques and equipment to support evolutionary space station concepts are being analyzed. Evolutionary space station configurations and operational concepts are used to derive the results to date. A description of the C & T system based on future capability needs is presented. Included are the hooks and scars currently identified to support future growth.

  17. Creation of the {pi} angle standard for the flat angle measurements

    Energy Technology Data Exchange (ETDEWEB)

    Giniotis, V; Rybokas, M, E-mail: gi@ap.vtu.l, E-mail: MRybokas@gama.l [Department of Information Technologies, Vilnius Gediminas Technical University, Sauletekio al. 11, 10223 Vilnius-40 (Lithuania)

    2010-07-01

    Angle measurements are based mainly on multiangle prisms - polygons with autocollimators, rotary encoders for high accuracy and circular scales as the standards of the flat angle. Traceability of angle measurements is based on the standard of the plane angle - prism (polygon) calibrated at an appropriate accuracy. Some metrological institutions have established their special test benches (comparators) equipped with circular scales or rotary encoders of high accuracy and polygons with autocollimators for angle calibration purposes. Nevertheless, the standard (etalon) of plane angle - polygon has many restrictions for the transfer of angle unit - radian (rad) and other units of angle. It depends on the number of angles formed by the flat sides of the polygon that is restricted by technological and metrological difficulties related to the production and accuracy determination of the polygon. A possibility to create the standard of the angle equal to {pi} rad or half the circle or the full angle is proposed. It can be created by the circular scale with the rotation axis of very high accuracy and two precision reading instruments, usually, photoelectric microscopes (PM), placed on the opposite sides of the circular scale using the special alignment steps. A great variety of angle units and values can be measured and its traceability ensured by applying the third PM on the scale. Calibration of the circular scale itself and other scale or rotary encoder as well is possible using the proposed method with an implementation of {pi} rad as the primary standard angle. The method proposed enables to assure a traceability of angle measurements at every laboratory having appropriate environment and reading instruments of appropriate accuracy together with a rotary table with the rotation axis of high accuracy - rotation trajectory (runout) being in the range of 0.05 {mu}m. Short information about the multipurpose angle measurement test bench developed is presented.

  18. Angle closure glaucoma in congenital ectropion uvea

    Directory of Open Access Journals (Sweden)

    Grace M. Wang

    2018-06-01

    Full Text Available Purpose: Congenital ectropion uvea is a rare anomaly, which is associated with open, but dysplastic iridocorneal angles that cause childhood glaucoma. Herein, we present 3 cases of angle-closure glaucoma in children with congenital ectropion uvea. Observations: Three children were initially diagnosed with unilateral glaucoma secondary to congenital ectropion uvea at 7, 8 and 13 years of age. The three cases showed 360° of ectropion uvea and iris stromal atrophy in the affected eye. In one case, we have photographic documentation of progression to complete angle closure, which necessitated placement of a glaucoma drainage device 3 years after combined trabeculotomy and trabeculectomy. The 2 other cases, which presented as complete angle closure, also underwent glaucoma drainage device implantation. All three cases had early glaucoma drainage device encapsulation (within 4 months and required additional surgery (cycloablation or trabeculectomy. Conclusions and importance: Congenital ectropion uvea can be associated with angle-closure glaucoma, and placement of glaucoma drainage devices in all 3 of our cases showed early failure due to plate encapsulation. Glaucoma in congenital ectropion uvea requires attention to angle configuration and often requires multiple surgeries to obtain intraocular pressure control. Keywords: Congenital ectropion uvea, Juvenile glaucoma, Angle-closure glaucoma, Glaucoma drainage device

  19. Modified Angle's Classification for Primary Dentition.

    Science.gov (United States)

    Chandranee, Kaushik Narendra; Chandranee, Narendra Jayantilal; Nagpal, Devendra; Lamba, Gagandeep; Choudhari, Purva; Hotwani, Kavita

    2017-01-01

    This study aims to propose a modification of Angle's classification for primary dentition and to assess its applicability in children from Central India, Nagpur. Modification in Angle's classification has been proposed for application in primary dentition. Small roman numbers i/ii/iii are used for primary dentition notation to represent Angle's Class I/II/III molar relationships as in permanent dentition, respectively. To assess applicability of modified Angle's classification a cross-sectional preschool 2000 children population from central India; 3-6 years of age residing in Nagpur metropolitan city of Maharashtra state were selected randomly as per the inclusion and exclusion criteria. Majority 93.35% children were found to have bilateral Class i followed by 2.5% bilateral Class ii and 0.2% bilateral half cusp Class iii molar relationships as per the modified Angle's classification for primary dentition. About 3.75% children had various combinations of Class ii relationships and 0.2% children were having Class iii subdivision relationship. Modification of Angle's classification for application in primary dentition has been proposed. A cross-sectional investigation using new classification revealed various 6.25% Class ii and 0.4% Class iii molar relationships cases in preschool children population in a metropolitan city of Nagpur. Application of the modified Angle's classification to other population groups is warranted to validate its routine application in clinical pediatric dentistry.

  20. Modified angle's classification for primary dentition

    Directory of Open Access Journals (Sweden)

    Kaushik Narendra Chandranee

    2017-01-01

    Full Text Available Aim: This study aims to propose a modification of Angle's classification for primary dentition and to assess its applicability in children from Central India, Nagpur. Methods: Modification in Angle's classification has been proposed for application in primary dentition. Small roman numbers i/ii/iii are used for primary dentition notation to represent Angle's Class I/II/III molar relationships as in permanent dentition, respectively. To assess applicability of modified Angle's classification a cross-sectional preschool 2000 children population from central India; 3–6 years of age residing in Nagpur metropolitan city of Maharashtra state were selected randomly as per the inclusion and exclusion criteria. Results: Majority 93.35% children were found to have bilateral Class i followed by 2.5% bilateral Class ii and 0.2% bilateral half cusp Class iii molar relationships as per the modified Angle's classification for primary dentition. About 3.75% children had various combinations of Class ii relationships and 0.2% children were having Class iii subdivision relationship. Conclusions: Modification of Angle's classification for application in primary dentition has been proposed. A cross-sectional investigation using new classification revealed various 6.25% Class ii and 0.4% Class iii molar relationships cases in preschool children population in a metropolitan city of Nagpur. Application of the modified Angle's classification to other population groups is warranted to validate its routine application in clinical pediatric dentistry.