WorldWideScience

Sample records for angiogenesis proliferative activity

  1. Immunohistochemical Estimates of Angiogenesis, Proliferative Activity, p53 Expression, and Multiple Drug Resistance Have No Prognostic Impact in Osteosarcoma: A Comparative Clinicopathological Investigation

    DEFF Research Database (Denmark)

    Sørensen, Flemming Brandt; Jensen, Kenneth; Vaeth, Michael;

    2008-01-01

    (P = .64) and p53 (P > .32), whereas the MIB-1 index was reduced in the post-chemotherapy specimens (P = .02). The overall, disease-specific survival was 47%, increasing to 54% in patients receiving pre-operative chemotherapy. Statistical analyses showed prognostic impact exclusively by patient age...... regarding angiogenesis (CD34), proliferative activity (MIB-1), and the expression of p53 and MDR (P-glycoprotein (Pgp); clones JSB-1, C494, and MRK16). Quantitative and semiquantitative scores of immunoreactive cells were analyzed statistically along with retrospectively obtained clinicopathologic variables....... Results. Chemotherapy reduced the rate of amputations (P = .00002). The Pgp was overexpressed (score >/=2) in 48% of the primary, diagnostic biopsies, and high Pgp correlated with high Pgp in postsurgical specimens (P = .003). In contrast, no such associations were disclosed for estimates of angiogenesis...

  2. Molecular and hormonal regulation of angiogenesis in proliferative endometrium

    OpenAIRE

    Yousef Rezaei Chianeh; Pragna Rao

    2014-01-01

    Angiogenesis is a hallmark of wound healing, the menstrual cycle, cancer, and various ischemic and inflammatory diseases. A rich variety of pro and anti-angiogenic molecules have already been identified. Vascular endothelial growth factor (VEGF) is an interesting inducer of angiogenesis and lymphangiogenesis, because it is a highly specific mitogen for endothelial cells. Signal transduction involves binding to tyrosine kinase receptors and results in endothelial cell proliferation, migration,...

  3. Molecular and hormonal regulation of angiogenesis in proliferative endometrium

    Directory of Open Access Journals (Sweden)

    Yousef Rezaei Chianeh

    2014-02-01

    Full Text Available Angiogenesis is a hallmark of wound healing, the menstrual cycle, cancer, and various ischemic and inflammatory diseases. A rich variety of pro and anti-angiogenic molecules have already been identified. Vascular endothelial growth factor (VEGF is an interesting inducer of angiogenesis and lymphangiogenesis, because it is a highly specific mitogen for endothelial cells. Signal transduction involves binding to tyrosine kinase receptors and results in endothelial cell proliferation, migration, and new vessel formation. In this article, the role of VEGF and other growth factors in the pathology of dysfunctional uterine bleeding is reviewed. We also discuss the role of VEGF expression and interaction with extracellular matrix that lead to possible inhibition or stimulation of Angiogenic factor on endometrium of dysfunctional uterine bleeding patients. [Int J Res Med Sci 2014; 2(1.000: 1-9

  4. Platelets actively sequester angiogenesis regulators

    OpenAIRE

    Lakka Klement, Giannoula; Yip, Tai-Tung; Cassiola, Flavia; Kikuchi, Lena; Cervi, David; Podust, Vladimir; Italiano, Joseph E.; Wheatley, Erin; Abou-Slaybi, Abdo; Bender, Elise; Almog, Nava; Kieran, Mark W.; Folkman, Judah

    2009-01-01

    Clinical trials with antiangiogenic agents have not been able to validate plasma or serum levels of angiogenesis regulators as reliable markers of cancer presence or therapeutic response. We recently reported that platelets contain numerous proteins that regulate angiogenesis. We now show that accumulation of angiogenesis regulators in platelets of animals bearing malignant tumors exceeds significantly their concentration in plasma or serum, as well as their levels in platelets from non–tumor...

  5. In vitro anti-proliferative and anti-angiogenic activities of thalidomide dithiocarbamate analogs.

    Science.gov (United States)

    El-Aarag, Bishoy Y A; Kasai, Tomonari; Zahran, Magdy A H; Zakhary, Nadia I; Shigehiro, Tsukasa; Sekhar, Sreeja C; Agwa, Hussein S; Mizutani, Akifumi; Murakami, Hiroshi; Kakuta, Hiroki; Seno, Masaharu

    2014-08-01

    Inhibition of angiogenesis is currently perceived as a promising strategy in the treatment of cancer. The anti-angiogenicity of thalidomide has inspired a second wave of research on this teratogenic drug. The present study aimed to investigate the anti-proliferative and anti-angiogenic activities of two thalidomide dithiocarbamate analogs by studying their anti-proliferative effects on human umbilical vein endothelial cells (HUVECs) and MDA-MB-231 human breast cancer cell lines. Their action on the expression levels of IL-6, IL-8, TNF-α, VEGF165, and MMP-2 was also assessed. Furthermore, their effect on angiogenesis was evaluated through wound healing, migration, tube formation, and nitric oxide (NO) assays. Results illustrated that the proliferation of HUVECs and MDA-MB-231 cells was not significantly affected by thalidomide at 6.25-100μM. Thalidomide failed to block angiogenesis at similar concentrations. By contrast, thalidomide dithiocarbamate analogs exhibited significant anti-proliferative action on HUVECs and MDA-MB-231 cells without causing cytotoxicity and also showed powerful anti-angiogenicity in wound healing, migration, tube formation, and NO assays. Thalidomide analogs 1 and 2 demonstrated more potent activity to suppress expression levels of IL-6, IL-8, TNF-α, VEGF165, and MMP-2 than thalidomide. Analog 1 consistently, showed the highest potency and efficacy in all the assays. Taken together, our results support further development and evaluation of novel thalidomide analogs as anti-tumor and anti-angiogenic agents.

  6. ROLE OF THE MORPHOMETRIC PARAMETERS OF INTRATUMORAL MICROVESSELS AND THE PROLIFERATIVE ACTIVITY OF TUMOR CELLS IN RENAL CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    N. A. Gorban

    2014-08-01

    Full Text Available Tumor cell proliferation and angiogenesis are essential factors for tumor growth, progression, and metastasis.Objective: to assess the relationship between the values of proliferative activity and the morphometric parameters of intratumoral microvessels in metastatic and localized carcinomas of the kidney.Materials and methods. Surgical specimens taken from 54 patients (32 men and 22 women aged 26 to 69 years (mean age 55 ± 1.5 years with the verified diagnosis of clear-cell renal cell carcinoma (RCC were studied.Conclusion. Proliferative activity and angioarchitectonics are an important biological characteristic of a tumor of unequal clinical value in RCC. Metastatic carcinoma has a higher proliferative activity and a low tumor vascularization than those of localized carcinoma.

  7. Role of VDR in anti-proliferative effects of calcitriol in tumor-derived endothelial cells and tumor angiogenesis in vivo

    Science.gov (United States)

    Chung, Ivy; Han, Guangzhou; Seshadri, Mukund; Gillard, Bryan M.; Yu, Wei-dong; Foster, Barbara A.; Trump, Donald L.; Johnson, Candace S.

    2008-01-01

    Calcitriol (1, 25-dihydroxycholecalciferol), the major active form of vitamin D, is anti-proliferative in tumor cells and tumor-derived endothelial cells (TDEC). These actions of calcitriol are mediated at least in part by vitamin D receptor (VDR), which is expressed in many tissues including endothelial cells. To investigate the role of VDR in calcitriol effects on tumor vasculature, we established TRAMP-2 tumors subcutaneously into either VDR wild type (WT) or knockout (KO) mice. Within 30 days post inoculation, tumors in KO mice were larger than those in WT (P<0.001). TDEC from WT expressed VDR and were able to transactivate a reporter gene whereas TDEC from KO mice were not. Treatment with calcitriol resulted in growth inhibition in TDEC expressing VDR. However, TDEC from KO mice were relatively resistant, suggesting that calcitriol-mediated growth inhibition on TDEC is VDR-dependent. Further analysis of the TRAMP-C2 tumor sections revealed that the vessels in KO mice were enlarged and had less pericyte coverage compared to WT (P<0.001). Contrast-enhanced MRI demonstrated an increase in vascular volume of TRAMP tumors grown in VDR KO mice compared to WT mice (P<0.001) and FITC-dextran permeability assay suggested a higher extent of vascular leakage in tumors from KO mice. Using ELISA and Western blot analysis, there was an increase of HIF-1 alpha, VEGF, Ang1 and PDGF-BB levels observed in tumors from KO mice. These results indicate that calcitriol-mediated anti-proliferative effects on TDEC are VDR dependent and loss of VDR can lead to abnormal tumor angiogenesis. PMID:19141646

  8. Roles of tissue plasminogen activator and its inhibitor in proliferative diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    Shu-Ling; Wu; Dong-Mei; Zhan; Shu-Hong; Xi; Xiang-Lian; He

    2014-01-01

    AIM:To investigate the role of tissue plasminogen activator(t-PA) and plasminogen activator inhibitor(PAI)in proliferative diabetic retinopathy(PDR) and to discuss the correlations among t-PA, PAI and vascular endothelial growth factor(VEGF) expressions.METHODS:A total of 36 vitreous samples were collected from 36 patients with PDR(PDR group), and 17 vitreous samples from 17 patients with idiopathic macular hole were used as control. The concentrations of t-PA, PAI and VEGF in samples were determined by ELISA method. The correlations among t-PA, PAI and VEGF expressions were discussed.RESULTS:The concentrations of t-PA, PAI and VEGF in the PDR group were significantly higher than those in the control group(P <0.001). The t-PA and PAI expressions were highly correlated with the VEGF expression(P <0.001).CONCLUSION:In addition to VEGF, a variety of bioactive substances, such as t-PA and PAI, are involved in the pathogenesis involved in the angiogenesis of PDR.VEGF can activate t-PA expression, resulting in collagen tissue degradation and angiogenesis. VEGF may also activate the mechanism for endogenous anti-neovascularization.

  9. Polyphenols with Anti-Proliferative Activities from Penthorum Chinense Pursh

    Directory of Open Access Journals (Sweden)

    Doudou Huang

    2014-07-01

    Full Text Available Two new polyphenols, penthorumin C (1 and 2,6-dihydroxyacetophenone-4-O- [4ꞌ,6ꞌ-(S-hexahydroxydiphenoyl]-β-D-glucose (2, along with four known polyphenolic acids, pinocembrin-7-O-[4ꞌꞌ,6ꞌꞌ-hexahydroxydiphenoyl]-β-D-glucose(3, pinocembrin-7-O-[3ꞌꞌ-O- galloyl- 4ꞌꞌ,6ꞌꞌ-hexahydroxydiphenoyl]-β-D-glucose (4, thonningianin A (5, and thonningianin B (6 were isolated from Penthourm chinense. All compounds were evaluated for their anti-proliferative activity in HSC-T6 cells, and 2 and 5 showed significant activity, with IC50 values of 12.7 and 19.2 μM, respectively.

  10. Anti proliferative activity of hydnophytum formicarium (sanola) extracts

    International Nuclear Information System (INIS)

    The whole plant of Hydnophytum formicarium Jack (Rubiaceae) locally known as sarang semut, was first extracted successively by petroleum-ether, followed by methanol (MeOH), chloroform, n-buthanol and distilled water and were tested for anti proliferative activity using a panel of human cancer cell lines. MeOH, n-buthanol and aqueous extracts showed anti proliferative effect towards KB-IV (EC50 methanol extract: 17.58 μg/ml; EC50 n-buthanol extract: 9.12 μg/ml and EC50 aqueous extract: 8.71 μg/ml) and only methanol extract showed positive activity towards Caov-3 (EC50: 14.79 μg/ml). No activity was observed in case of other extracts (i.e. petroleum ether and chloroform with EC50 >99 μg/ml). The methanolic extract was tested for its mechanism of action via apoptosis on Caov-3 by employing the TUNEL assay. In the present study, augmented levels of apoptosis were observed in Caov-3 cells treated with 15 μg/ml with apoptotic index of 43.3% and 78.8% in higher concentration (20 μg/ml), a significant different compared with control, which had apoptotic index of 2% only. In conclusion, there is a high possibility that the bioactive component in the methanol extract had selective anti proliferation effects on Caov-3 through apoptotic pathway. This finding may provide a new strategy and a promising approach to the discovery an effective anticancer drug. (Author)

  11. Proliferative activity of adrenal glands with adrenocortical cytomegaly measured by MIB-1 labeling index.

    Science.gov (United States)

    Fasano, M; Greco, M A

    1996-01-01

    To investigate the proliferative activity of cytomegalic cells in the fetal adrenal cortex, we studied adrenal glands with cytomegaly by immunohistochemistry using the nuclear proliferation maker MIB-1. The percentage of positively stained nuclei was quantified using the SAMBA 4000 image analysis system. Only one case showed occasional positively stained cytomegalic cell nuclei. The permanent cortices showed proliferative activity that decreased with increasing gestational age. No proliferative activity was seen in normal fetal cortices except in one case that received corticosteroid therapy and had a maternal history of diabetes. The near absence of proliferative activity of the cytomegalic cells supports the previously proposed theory of cellular exhaustion following hyperactivity. The high proliferative activity in the fetal cortex of the infant receiving corticosteroid therapy may provide insight into the stimulus causing the hypermetabolic state. PMID:9025875

  12. Biological Characterization of Cynara cardunculus L. Methanolic Extracts: Antioxidant, Anti-proliferative, Anti-migratory and Anti-angiogenic Activities

    Directory of Open Access Journals (Sweden)

    Maria Duarte

    2012-12-01

    Full Text Available Cynara cardunculus (Cc is a multipurpose species; beyond its use in southwestern European cuisine, it is also used for the production of solid biofuel, seed oil, biodiesel, paper pulp and cheese, as well as animal feed. In addition, Cc has a long tradition of use in folk medicine as a diuretic and liver protector. The value of this species as a source of bioactive compounds is known; however, pharmacological use would further increase its cultivation. The main goal of the current work was to evaluate the potential of Cc as source of anti-carcinogenic phytochemicals. Different methanolic extracts obtained from wild and cultivated plants were tested for antioxidant activity and effect on breast tumor cell viability. The most effective extract, both as antioxidant and inhibition of tumor cell viability, was tested for effects on angiogenesis and tumor cell migration capacity. All the extracts tested had high antioxidant activity; however, only green leaves and dry head extracts exhibit anti-proliferative activity. Green cultivated leaves (GCL were the most effective extract both as antioxidant and inhibiting the proliferation of tumor cells; it is equally active inhibiting tumor cell migration and in vivo angiogenesis. GCL extract is an effective inhibitor of several key points in tumor development and thus a promising source of anti-carcinogenic phytochemicals.

  13. Role of VDR in anti-proliferative effects of calcitriol in tumor-derived endothelial cells and tumor angiogenesis in vivo

    OpenAIRE

    Chung, Ivy; Han, Guangzhou; Seshadri, Mukund; Gillard, Bryan M.; Yu, Wei-Dong; Barbara A Foster; Trump, Donald L.; Johnson, Candace S.

    2009-01-01

    Calcitriol (1, 25-dihydroxycholecalciferol), the major active form of vitamin D, is anti-proliferative in tumor cells and tumor-derived endothelial cells (TDEC). These actions of calcitriol are mediated at least in part by vitamin D receptor (VDR), which is expressed in many tissues including endothelial cells. To investigate the role of VDR in calcitriol effects on tumor vasculature, we established TRAMP-2 tumors subcutaneously into either VDR wild type (WT) or knockout (KO) mice. Within 30 ...

  14. Anti-proliferative activity of Monensin and its tertiary amide derivatives.

    Science.gov (United States)

    Huczyński, Adam; Klejborowska, Greta; Antoszczak, Michał; Maj, Ewa; Wietrzyk, Joanna

    2015-10-15

    New tertiary amide derivatives of polyether ionophore Monensin A (MON) were synthesised and their anti-proliferative activity against cancer cell lines was studied. Very high activity (IC50=0.09 μM) and selectivity (SI=232) of MON against human biphenotypic myelomonocytic leukemia cell line (MV4-11) was demonstrated. The MON derivatives obtained exhibit interesting anti-proliferative activity, high selectivity index and also are able to break the drug-resistance of cancer cell line.

  15. Vasculogenesis and angiogenesis in diabetes mellitus: novel pathogenetic concepts for treatment of vascular complications

    Directory of Open Access Journals (Sweden)

    Vladimir Iosifovich Konenkov

    2012-12-01

    Full Text Available Hyperglycemia along with other metabolic disorders may disrupt the balance of pro- and antiangiogenic regulators, thus leading to a maladaptive formation of new blood vessels in the state of diabetes mellitus (DM. In their turn, aberrant angiogenesis and vasculogenesis are important mechanisms of vascular complications in DM. Activation of retinal angiogenesis is a cornerstone of proliferative diabetic retinopathy, though in diabetic nephropathy excessive angiogenesis is only seen at early stages. Quite on the contrary, macrovascular complications are characterized by certain inhibition of both angiogenesis and vasculogenesis. Novel therapeutic approaches, based on correction of angiogenesis, have emerged recently. Clinical trials have shown efficacy of angiogenesis inhibitors (the «anti-VEGF» agents for management of diabetic macular edema and proliferative retinopathy. Experimental evidence also indicates that this treatment may hinder the progress of diabetic nephropathy. In addition, stimulation of angiogenesis and vasculogenesis with stem cells or growth factors promise an option for treatment of large vessels in DM.

  16. APOPTOTIC AND PROLIFERATIVE ACTIVITY IN OVARIAN BENIGN,BORDERLINE AND MALIGNANT TUMORS

    Institute of Scientific and Technical Information of China (English)

    刘爱军; 陈乐真; 颜婉嫦; 邱玮璇; 赵昀; 张雅贤

    2002-01-01

    Objective.To determine the apoptotic and proliferative activities in various ovarian epithelial tumors.Methods.Formalin fixed,paraffin embedded tissues of 86 ovarian epithelial tumors,including 52 adenocarcinomas,23 borderline tumors and 11 cystadenomas,were retrieved.Apoptotic (AI) and proliferative (PI) index were estimated using the monoclonal antibodies: M30,Ki 67 and Ki S1 in these tumors.Quantitative assessment of AI and PI was estimated by calculating the percentage of positive cells among no less than 1000 tumor cells.Results.Statistically significant difference in AI was found between benign and borderline tumors or carcinomas (P=0.028,0.001,respectively).Significant differences in PI,as assessed by both Ki 67 and topo IIα,were demonstrated between carcinomas and benign or borderline tumors (both P< 0.001).Benign tumors had both low PI and AI; borderline tumors had lower PI but higher AI,while adenocarcinomas had both high proliferative and high apoptotic rates.Among borderline tumors,serous tumors had significantly lower AI and higher PI than mucinous ones.Conclusions.The results suggest that apoptotic and proliferative activities play important roles in the pathogenesis and development of ovarian borderline and malignant tumors.The high apoptotic rate in borderline tumor may explain its relatively indolent behavior while the high proliferative rate in carcinomas tends to explain its aggressive behavior.

  17. Proliferative activity (ki-67 expression) and outcome in high grade osteosarcoma: a study of 27 cases.

    Science.gov (United States)

    Jong, R; Davis, A M; Mendes, M G; Wunder, J S; Bell, R S; Kandel, R

    2000-01-01

    Purpose. Although pre-operative chemotherapy has improved the prognosis for individuals with osteosarcoma, approximately 40% of patients will die of their disease.The aim of this study was to quantitate proliferative activity in high grade osteosarcomas and to determine whether proliferation is a prognostic factor.Patients. The study consisted of 27 patients with high grade non-metastatic osteosarcoma at various sites for whom pre-operative biopsies and resection specimens were available for review. All patients were treated similarly and had at least 24 months' follow-up from the date of diagnosis.Methods. Proliferative activity (Ki-67 expression) was examined in the diagnostic biopsies immunohistochemically using the MIB-1 antibody. Proliferation was quantitated in two ways; (1) the number of immunopositive cells was counted manually using an ocular grid; or (2) the percentage of immunopositive nuclear area was assessed using morphometric image analysis. Proliferative index was evaluated in relation to patient outcome.Results. Proliferative activity was seen in all biopsies.The median proliferative index as determined by counting cells was 24% (mean of 27%, range of 7-61%) and by image analysis was 2% (mean 3%, range 0.32-8.4).The correlation between MIB-1 proliferation indices determined either by image analysis methodology or manual cell counting was high (Spearman's rho=0.79). Proliferative index did not appear to predict either disease-free or overall survival.Discussion. Tumor proliferation does not appear to be prognostic for high grade osteosarcomas.Whether assessment of this feature in conjunction with other tumor characteristics might be prognostic requires further study. PMID:18521434

  18. Mediators of ocular angiogenesis

    Indian Academy of Sciences (India)

    Yureeda Qazi; Surekha Maddula; Balamurali K. Ambati

    2009-12-01

    Angiogenesis is the formation of new blood vessels from pre-existing vasculature. Pathologic angiogenesis in the eye can lead to severe visual impairment. In our review, we discuss the roles of both pro-angiogenic and anti-angiogenic molecular players in corneal angiogenesis, proliferative diabetic retinopathy, exudative macular degeneration and retinopathy of prematurity, highlighting novel targets that have emerged over the past decade.

  19. Proliferative Activity in Libyan Breast Cancer with Comparison to European and Central African Patients

    Directory of Open Access Journals (Sweden)

    Jamela Boder

    2013-01-01

    Full Text Available Background. We evaluated the relation of proliferative indices with clinicopathological features and prognosis in breast cancer (BC of Libyan female patients. The data were compared with corresponding results in Finland and Nigeria. Patients and Methods. Histological samples of breast cancer from 130 patients were retrospectively studied. Mitotic activity index (MAI and standardized mitotic index (SMI were estimated. Results. There were statistically significant correlations between the proliferative indices and most clinicopathological features, with the strongest association observed for histological grade (P=0.01 for SMI and P=0.003 for MAI. The proliferative differences between Libyan, Nigerian, and Finnish population were prominent. The mean values of SMI and MAI in Libyan BC patients were 32.1 mitotic figures per square millimeter and 27.3 mitotic figures per 10 high-power fields, respectively. This is clearly lower than those in Nigeria but much higher than those in Finland. The differences between countries are seen in whole material and are also present in subgroups. The results indicated that mitotic activities can be reliable prognostic indicators in Libyan BCs, as they were among Finnish and Nigerian females. Univariate and multivariate analyses found at cut-offs of 19 and 44 mitosis/mm2 of SMI were the most significant prognostic factors. Conclusions. Proliferative indices with careful estimation of the MAI and SMI could be applied as quantitative criteria for Libyan BC to separate the patients into good, moderate, and bad prognosis groups.

  20. Comparative antitumor and anti-proliferative activities ofHippophae rhamnoidesL. leaves extracts

    Institute of Scientific and Technical Information of China (English)

    Javid Ali; Bashir Ahmad

    2015-01-01

    Objective:To evaluate the antitumor and anti-proliferative activities of methanol, aqueous, acetone, ethyl acetate, ethanol, chloroform andn-hexane extracts ofHippophae rhamnoides leaves. Methods: Antitumor activities were evaluated by using the antitumor potato disc assay by using inoculums (Agrobacterium tumefaciens) with three different concentrations of test samples (10, 100 and 1 000 mg/L). Anti-proliferative activity was evaluated by the given method of methyl thiazolyl tetrazolium assay. The concentrations of the extract ranging from 0.039 to 10 mg/mL were tested against HeLa cells. Results: Highest tumors inhibition activity (60.9% and 55.8%) was shown by methanol and ethanol extracts, with EC50 values of 424.41 and 434.61 mg/L respectively. At 10 mg/mL, The highest cell inhibition 75.61% was observed in methanol extract and the lowest 36.59% were calculated inn-hexane extract. The difference in tumor and cell inhibition (%) may be due to the different concentration of active compounds responsible for antitumor and anti-proliferative activities. All extracts have considerable level of tumor and cell inhibitiory effect in a dose dependent manner. Conclusions:Our finding showed thatHippophae rhamnoidesleaves are a potent natural source of antitumor and antiproliferative agent.

  1. Comparative antitumor and anti-proliferative activities of Hippophae rhamnoides L. leaves extracts

    Directory of Open Access Journals (Sweden)

    Javid Ali

    2015-03-01

    Full Text Available Objective: To evaluate the antitumor and anti-proliferative activities of methanol, aqueous, acetone, ethyl acetate, ethanol, chloroform and n-hexane extracts of Hippophae rhamnoides leaves. Methods: Antitumor activities were evaluated by using the antitumor potato disc assay by using inoculums (Agrobacterium tumefaciens with three different concentrations of test samples (10, 100 and 1 000 mg/L. Anti-proliferative activity was evaluated by the given method of methyl thiazolyl tetrazolium assay. The concentrations of the extract ranging from 0.039 to 10 mg/mL were tested against HeLa cells. Results: Highest tumors inhibition activity (60.9% and 55.8% was shown by methanol and ethanol extracts, with EC50 values of 424.41 and 434.61 mg/L respectively. At 10 mg/mL, The highest cell inhibition 75.61% was observed in methanol extract and the lowest 36.59% were calculated in n-hexane extract. The difference in tumor and cell inhibition (% may be due to the different concentration of active compounds responsible for antitumor and anti-proliferative activities. All extracts have considerable level of tumor and cell inhibitiory effect in a dose dependent manner. Conclusions: Our finding showed that Hippophae rhamnoides leaves are a potent natural source of antitumor and antiproliferative agent.

  2. Synthesis and anti-proliferative activity of fluoro-substituted chalcones.

    Science.gov (United States)

    Burmaoglu, Serdar; Algul, Oztekin; Anıl, Derya Aktas; Gobek, Arzu; Duran, Gulay Gulbol; Ersan, Ronak Haj; Duran, Nizami

    2016-07-01

    A series of novel fluoro-substituted chalcone derivatives have been synthesized. All synthesized compounds were characterized by (1)H nuclear magnetic resonance (NMR), (13)C NMR, and elemental analysis. Their anti-proliferative activities were evaluated against five cancer cells lines, namely, A549, A498, HeLa, A375, and HepG2 using the MTT method. Most of the compounds showed moderate to high activity with IC50 values in the range of 0.029-0.729μM. Of all the synthesized compounds, 10 and 19 exhibited the most potent anti-proliferative activities against cancer cells, and 10 was identified as the most promising compound. PMID:27217001

  3. ELK3 suppresses angiogenesis by inhibiting the transcriptional activity of ETS-1 on MT1-MMP.

    Science.gov (United States)

    Heo, Sun-Hee; Cho, Je-Yoel

    2014-01-01

    Ets transcription factors play important roles in vasculogenesis and angiogenesis. Knockout of the Ets gene family members in mice resulted in disrupted angiogenesis and malformed vascular systems. In this study, the role and mechanism of ELK3, an Ets factor, in angiogenesis was investigated using ELK3-specific siRNA in human vascular endothelial cells (HUVECs) and in vivo implantation assay. The suppression of ELK3 expression resulted in the reinforcement of VEGF-induced tube formation in HUVECs. The in vivo Matrigel plug assay also showed that ELK3 knockdown resulted in increased angiogenesis. Luciferase activity of the MT1-MMP promoter induced by ETS-1 factor was attenuated ELK3 co-transfection. CHIP assay showed the binding of ELK3 on the MT1-MMP promoter. MT1-MMP knockdown in the ELK3 knockdowned cells resulted in the decrease of tube formation suggesting that MT1-MMP transcriptional repression is required for ELK3-mediated anti-angiogenesis effect. Our data also showed that the suppressive effect of ELK3 on the angiogenesis was partly due to the inhibitory effect of ELK3 to the ETS-1 transcriptional activity on the MT1-MMP promoter rather than direct suppression of ELK3 on the target gene, since the expression level of co-repressor Sin3A is low in endothelial cells. Our results suggest that ELK3 plays a negative role of VEGF-induced angiogenesis through indirectly inhibiting ETS-1 function. PMID:24719561

  4. Different effects of neurotensin and neuromedin-N on the proliferative activity of rat adrenal cortex

    OpenAIRE

    Markowska, A.; Nussdorfer, G G; Malendowicz, L.K.

    1994-01-01

    Evidence indicates that neurotensin (NT) and neuromedin-N (NMN) exerts an adrenocorticotropic effect in the rat. The present study aimed to investigate whether these neuropeptides are able to stimulate the proliferation of rat adrenocortical cells in vivo and to compare their mode of action. Adrenocortical proliferative activity was assessed by the metaphasearrest technique and metaphases were counted per medulla-containing adrenal section. A bolus administ...

  5. Effects of bombesin and neuromedin-B on the proliferative activity of the rat adrenal cortex

    OpenAIRE

    Markowska, A.; Nussdorfer, G G; Malendowicz, L.K.

    1993-01-01

    Bombesin (BM) and neuromedin-B (NMB) exert similar biological effects, acting via two functionally distinct BM-receptor subtypes. The present study aimed to investigate whether BM and NMB stimulate the proliferation of rat adrenocortical cells and to compare their mode of action. Adult female rats were treated with a single subcutaneous dose of 3 pg BM or NMB. Adrenocortical proliferative activity was assessed by the metaphase-arrest technique. BM administratio...

  6. Angiogenic Factor AGGF1 Activates Autophagy with an Essential Role in Therapeutic Angiogenesis for Heart Disease

    Science.gov (United States)

    Hu, Zhenkun; Hu, Changqing; Song, Qixue; Ye, Jian; Xu, Chengqi; Wang, Annabel Z.; Wang, Qing Kenneth

    2016-01-01

    AGGF1 is an angiogenic factor with therapeutic potential to treat coronary artery disease (CAD) and myocardial infarction (MI). However, the underlying mechanism for AGGF1-mediated therapeutic angiogenesis is unknown. Here, we show for the first time that AGGF1 activates autophagy, a housekeeping catabolic cellular process, in endothelial cells (ECs), HL1, H9C2, and vascular smooth muscle cells. Studies with Atg5 small interfering RNA (siRNA) and the autophagy inhibitors bafilomycin A1 (Baf) and chloroquine demonstrate that autophagy is required for AGGF1-mediated EC proliferation, migration, capillary tube formation, and aortic ring-based angiogenesis. Aggf1+/- knockout (KO) mice show reduced autophagy, which was associated with inhibition of angiogenesis, larger infarct areas, and contractile dysfunction after MI. Protein therapy with AGGF1 leads to robust recovery of myocardial function and contraction with increased survival, increased ejection fraction, reduction of infarct areas, and inhibition of cardiac apoptosis and fibrosis by promoting therapeutic angiogenesis in mice with MI. Inhibition of autophagy in mice by bafilomycin A1 or in Becn1+/- and Atg5 KO mice eliminates AGGF1-mediated angiogenesis and therapeutic actions, indicating that autophagy acts upstream of and is essential for angiogenesis. Mechanistically, AGGF1 initiates autophagy by activating JNK, which leads to activation of Vps34 lipid kinase and the assembly of Becn1-Vps34-Atg14 complex involved in the initiation of autophagy. Our data demonstrate that (1) autophagy is essential for effective therapeutic angiogenesis to treat CAD and MI; (2) AGGF1 is critical to induction of autophagy; and (3) AGGF1 is a novel agent for treatment of CAD and MI. Our data suggest that maintaining or increasing autophagy is a highly innovative strategy to robustly boost the efficacy of therapeutic angiogenesis. PMID:27513923

  7. Retinol induces morphological alterations and proliferative focus formation through free radicalmediated activation of multiple signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Daniel Pens GELAIN; Matheus Augusto de Bittencourt PASQUALI; Fernanda Freitas CAREGNATO; Mauro Antonio Alves CASTRO; José Claudio Fonseca MOREIRA

    2012-01-01

    Aim:Toxicity of retinol (vitamin A)has been previously associated with apoptosis and/or cell malignant transformation.Thus,we investigated the pathways involved in the induction of proliferation,deformation and proliferative focus formation by retinol in cultured Sertoli cells of rats.Methods:Sertoli cells were isolated from immature rats and cultured.The cells were subjected to a 24-h treatment with different concentrations of retinol.Parameters of oxidative stress and cytotoxicity were analyzed.The effects of the p38 inhibitor SB203580(10 μmol/L),the JNK inhibitor SP600125 (10 μmol/L),the Akt inhibitor LY294002 (10 μmol/L),the ERK inhibitor U0126 (10 μmol/L)the pan-PKC inhibitor G(O)6983 (10 μmol/L)and the PKA inhibitor H89 (1 μmol/L)on morphological and proliferative/transformationassociated modifications were studied.Results:Retinol (7 and 14 μmol/L)significantly increases the reactive species production in Sertoli cells,inhibition of p38,JNK,ERK1/2,Akt,and PKA suppressed retinol-induced[3H]dT incorporation into the cells,while PKC inhibition had no effect.ERK1/2 and p38 inhibition also blocked retinol-induced proliferative focus formation in the cells,while Akt and JNK inhibition partially decreased focus formation.ERK1/2 and p38 inhibition hindered transformation-associated deformation in retinol-treated cells,while other treatments had no effect.Conclusion:Our results suggest that activation of multiple kinases is responsible for morphological and proliferative changes associated to malignancy development in Sertoli cells by retinol at the concentrations higher than physiological level.

  8. Evidence of Anti-Proliferative Activities in Blue Mussel (Mytilus edulis By-Products

    Directory of Open Access Journals (Sweden)

    Marie-Elise Carbonneau

    2013-03-01

    Full Text Available Shellfish waste components contain significant levels of high quality protein and are therefore a potential source for biofunctional high-value peptides. The feasibility of applying a pilot scale enzymatic hydrolysis process to whole Mytilus edulis and, by fractionation, recover hydrolysates presenting a biological activity of interest, was evaluated. Fractions were tested on four immortalized cancerous cell lines: A549, BT549, HCT15 and PC3. The 50 kDa fraction, enriched in peptides, presented anti-proliferative activity with all cell lines and results suggest a bioactive molecule synergy within the fraction. At a protein concentration of 44 µg/mL, the 50 kDa fraction induced a mortality of 90% for PC3, 89% for A549, 85% for HCT15 and of 81% for BT549 cell lines. At the low protein concentration of only 11 µg/mL the 50 kDa fraction still entails a cell mortality of 76% for A549 and 87% for PC3 cell lines. The 50 kDa fraction contains 56% of proteins, 3% of lipids and 6% of minerals on a dry weight basis and the lowest levels detected of taurine and methionine and highest levels of threonine, proline and glycine amino acids. The enzymatic hydrolysis process suggests that Mytilus edulis by-products should be viewed as high-valued products with strong potential as anti-proliferative agent and promising active ingredients in functional foods.

  9. [Synthesis and anti-proliferative activity of fluoroquinolone (rhodanine unsaturated ketone) amide derivatives].

    Science.gov (United States)

    Gao, Liu-zhou; Xie, Yu-suo; Yan, Qiang; Wu, Shu-min; Ni, Li-li; Zhao, Hui; Huang, Wen-long; Hu, Guo-qiang

    2015-08-01

    To discover novel antitumor rhodanine unsaturated ketones, a series of fluoroquinolone (rhodanine α, β-unsaturated ketone) amine derivatives (5a-5r) were designed and synthesized with fluoroquinolone amide scaffold as a carrier. The structures of eighteen title compounds were characterized by elemental analysis, 1H NMR and MS. The in vitro anti-proliferative activity against Hep-3B, Capan-1 and HL60 cells was evaluated by MTT assay. The results showed that the title compounds not only had more significant anti-proliferative activity against three tested cancer cell lines than that of the parent ciprofloxacin 1, but also exhibited the highest activity against Capan-1 cells. The SAR revealed that some compounds carrying aromatic heterocyclic rings or phenyl attached to an electron-withdrawing carboxyl or sulfonamide substituent were comparable to or better than comparison doxorubicin against Capan-1 cells. As such, it suggests that fluoroquinolone (rhodanine α, β-unsaturated ketone) amines are promising leads for the development of novel antitumor fluoroquinolones or rhodanine analogues. PMID:26669001

  10. Lack of Involvement of CEP Adducts in TLR Activation and in Angiogenesis

    Science.gov (United States)

    Gounarides, John; Cobb, Jennifer S.; Zhou, Jing; Cook, Frank; Yang, Xuemei; Yin, Hong; Meredith, Erik; Rao, Chang; Huang, Qian; Xu, YongYao; Anderson, Karen; De Erkenez, Andrea; Liao, Sha-Mei; Crowley, Maura; Buchanan, Natasha; Poor, Stephen; Qiu, Yubin; Fassbender, Elizabeth; Shen, Siyuan; Woolfenden, Amber; Jensen, Amy; Cepeda, Rosemarie; Etemad-Gilbertson, Bijan; Giza, Shelby; Mogi, Muneto; Jaffee, Bruce; Azarian, Sassan

    2014-01-01

    Proteins that are post-translationally adducted with 2-(ω-carboxyethyl)pyrrole (CEP) have been proposed to play a pathogenic role in age-related macular degeneration, by inducing angiogenesis in a Toll Like Receptor 2 (TLR2)-dependent manner. We have investigated the involvement of CEP adducts in angiogenesis and TLR activation, to assess the therapeutic potential of inhibiting CEP adducts and TLR2 for ocular angiogenesis. As tool reagents, several CEP-adducted proteins and peptides were synthetically generated by published methodology and adduction was confirmed by NMR and LC-MS/MS analyses. Structural studies showed significant changes in secondary structure in CEP-adducted proteins but not the untreated proteins. Similar structural changes were also observed in the treated unadducted proteins, which were treated by the same adduction method except for one critical step required to form the CEP group. Thus some structural changes were unrelated to CEP groups and were artificially induced by the synthesis method. In biological studies, the CEP-adducted proteins and peptides failed to activate TLR2 in cell-based assays and in an in vivo TLR2-mediated retinal leukocyte infiltration model. Neither CEP adducts nor TLR agonists were able to induce angiogenesis in a tube formation assay. In vivo, treatment of animals with CEP-adducted protein had no effect on laser-induced choroidal neovascularization. Furthermore, in vivo inactivation of TLR2 by deficiency in Myeloid Differentiation factor 88 (Myd88) had no effect on abrasion-induced corneal neovascularization. Thus the CEP-TLR2 axis, which is implicated in other wound angiogenesis models, does not appear to play a pathological role in a corneal wound angiogenesis model. Collectively, our data do not support the mechanism of action of CEP adducts in TLR2-mediated angiogenesis proposed by others. PMID:25343517

  11. Lack of involvement of CEP adducts in TLR activation and in angiogenesis.

    Directory of Open Access Journals (Sweden)

    John Gounarides

    Full Text Available Proteins that are post-translationally adducted with 2-(ω-carboxyethylpyrrole (CEP have been proposed to play a pathogenic role in age-related macular degeneration, by inducing angiogenesis in a Toll Like Receptor 2 (TLR2-dependent manner. We have investigated the involvement of CEP adducts in angiogenesis and TLR activation, to assess the therapeutic potential of inhibiting CEP adducts and TLR2 for ocular angiogenesis. As tool reagents, several CEP-adducted proteins and peptides were synthetically generated by published methodology and adduction was confirmed by NMR and LC-MS/MS analyses. Structural studies showed significant changes in secondary structure in CEP-adducted proteins but not the untreated proteins. Similar structural changes were also observed in the treated unadducted proteins, which were treated by the same adduction method except for one critical step required to form the CEP group. Thus some structural changes were unrelated to CEP groups and were artificially induced by the synthesis method. In biological studies, the CEP-adducted proteins and peptides failed to activate TLR2 in cell-based assays and in an in vivo TLR2-mediated retinal leukocyte infiltration model. Neither CEP adducts nor TLR agonists were able to induce angiogenesis in a tube formation assay. In vivo, treatment of animals with CEP-adducted protein had no effect on laser-induced choroidal neovascularization. Furthermore, in vivo inactivation of TLR2 by deficiency in Myeloid Differentiation factor 88 (Myd88 had no effect on abrasion-induced corneal neovascularization. Thus the CEP-TLR2 axis, which is implicated in other wound angiogenesis models, does not appear to play a pathological role in a corneal wound angiogenesis model. Collectively, our data do not support the mechanism of action of CEP adducts in TLR2-mediated angiogenesis proposed by others.

  12. Synthesis and anti-proliferative activity of novel azazerumbone conjugates with chalcones.

    Science.gov (United States)

    Truong, Vuong Van; Nam, Tran Duy; Hung, Truong Ngoc; Nga, Nguyen Thi; Quan, Pham Minh; Chinh, Luu Van; Jung, Sang-Hun

    2015-11-15

    The conjugation of azazerumbone ((3E,7E,11E)-5,5,8,12-tetramethylazacyclododeca-3,7,11-trien-2-one (7)) and 2,4-dihydroxychalcones was carried out for the preparation of novel target compounds 9a-g with 1-ethylene-4-methylene-1,2,3-triazole linker and 10a-f with propylene linker between amide nitrogen of azazerumbone and 4-hydroxy group of chalcone. The anti-proliferative activity of these compounds against the LU-1, Hep-G2, MCF-7 and SW480 human cancer cell lines were significantly improved compared to those of azazerumbone or zerumbone. The anti-proliferative activities of (3E,7E,11E)-1-((1-(2-(3-hydroxy-4-((E)-3-(3-methoxyphenyl)acryloyl)phenoxy)ethyl)-1H-1,2,3-triazol-4-yl)methyl)-5,5,8,12-tetramethyl azacyclododeca-3,7,11-trien-2-one (9b) and (3E,7E,11E)-1-(3-(4-((E)-3-(3,4,5-trimethoxyphenyl)acryloyl)phenoxy)propyl)-5,5,8,12-tetramethylazacyclododeca-3,7,11-trien-2-one (10d) are nearly comparable to those of ellipticine. PMID:26459207

  13. Anti-proliferative activity of Fumaria vaillantii extracts on different cancer cell lines

    Directory of Open Access Journals (Sweden)

    Fatemeh Haji Abbas Tabrizi

    2016-01-01

    Full Text Available Plant-derived natural products are known to have cancer chemo-preventive and chemo-therapeutic properties. Plant extracts or their active constituents are used as folk medicine in traditional therapies by 80% of the world population. The aim of the present study was to determine the anti-proliferative potential of Fumaria vaillantii extracts on three different cancer cell lines including malignant melanoma SKMEL-3, human breast adenocarcinoma MCF-7 and human myelogenous leukemia K562 as well as human gingival fibroblast (HGF as normal cell line. Anti-proliferative activity was evaluated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT, flowcytometry and annexin methods. Total phenolics and flavonoids were determined by Folin-Ciocalteu and aluminum chloride methods. Chloroform fraction had the lowest IC 50 value at 72 h (0.1 μg/ml in MCF-7 cells. Flowcytometry and annexin-V analysis indicated that the chloroform fraction induced necrosis in MCF-7 cells. In addition, the colorimetric methods showed that the methanolic fraction possessed the highest amount of total phenolics (33.03 ± 0.75 mg/g of dry powder and flavonoids (10.5 ± 2.0 mg/g of dry powder.The collective data demonstrated that F. vaillantii chloroform fraction may contain effective compounds with chemo-therapeutic potential act through an apoptotic independent pathway.

  14. Diffusion-Weighted MRI Reflects Proliferative Activity in Primary CNS Lymphoma

    Science.gov (United States)

    Meyer, Jonas; Gawlitza, Matthias; Frydrychowicz, Clara; Müller, Wolf; Preuss, Matthias; Bure, Lionel; Quäschling, Ulf; Hoffmann, Karl-Titus; Surov, Alexey

    2016-01-01

    Purpose To investigate if apparent diffusion coefficient (ADC) values within primary central nervous system lymphoma correlate with cellularity and proliferative activity in corresponding histological samples. Materials and Methods Echo-planar diffusion-weighted magnetic resonance images obtained from 21 patients with primary central nervous system lymphoma were reviewed retrospectively. Regions of interest were drawn on ADC maps corresponding to the contrast enhancing parts of the tumors. Biopsies from all 21 patients were histologically analyzed. Nuclei count, total nuclei area and average nuclei area were measured. The proliferation index was estimated as Ki-67 positive nuclei divided by total number of nuclei. Correlations of ADC values and histopathologic parameters were determined statistically. Results Ki-67 staining revealed a statistically significant correlation with ADCmin (r = -0.454, p = 0.038), ADCmean (r = -0.546, p = 0.010) and ADCmax (r = -0.515, p = 0.017). Furthermore, ADCmean correlated in a statistically significant manner with total nucleic area (r = -0.500, p = 0.021). Conclusion Low ADCmin, ADCmean and ADCmax values reflect a high proliferative activity of primary cental nervous system lymphoma. Low ADCmean values—in concordance with several previously published studies—indicate an increased cellularity within the tumor. PMID:27571268

  15. Moderation of calpain activity promotes neovascular integration and lumen formation during VEGF-induced pathological angiogenesis.

    Directory of Open Access Journals (Sweden)

    Mien V Hoang

    Full Text Available BACKGROUND: Successful neovascularization requires that sprouting endothelial cells (ECs integrate to form new vascular networks. However, architecturally defective, poorly integrated vessels with blind ends are typical of pathological angiogenesis induced by vascular endothelial growth factor-A (VEGF, thereby limiting the utility of VEGF for therapeutic angiogenesis and aggravating ischemia-related pathologies. Here we investigated the possibility that over-exuberant calpain activity is responsible for aberrant VEGF neovessel architecture and integration. Calpains are a family of intracellular calcium-dependent, non-lysosomal cysteine proteases that regulate cellular functions through proteolysis of numerous substrates. METHODOLOGY/PRINCIPAL FINDINGS: In a mouse skin model of VEGF-driven angiogenesis, retroviral transduction with dominant-negative (DN calpain-I promoted neovessel integration and lumen formation, reduced blind ends, and improved vascular perfusion. Moderate doses of calpain inhibitor-I improved VEGF-driven angiogenesis similarly to DN calpain-I. Conversely, retroviral transduction with wild-type (WT calpain-I abolished neovessel integration and lumen formation. In vitro, moderate suppression of calpain activity with DN calpain-I or calpain inhibitor-I increased the microtubule-stabilizing protein tau in endothelial cells (ECs, increased the average length of microtubules, increased actin cable length, and increased the interconnectivity of vascular cords. Conversely, WT calpain-I diminished tau, collapsed microtubules, disrupted actin cables, and inhibited integration of cord networks. Consistent with the critical importance of microtubules for vascular network integration, the microtubule-stabilizing agent taxol supported vascular cord integration whereas microtubule dissolution with nocodazole collapsed cord networks. CONCLUSIONS/SIGNIFICANCE: These findings implicate VEGF-induction of calpain activity and impairment of

  16. PROGNOSTIC SIGNIFICANCE OF PROLIFERATIVE ACTIVITY (KI67 EXPRESSION IN OSTEOSARCOMA IN CHILDREN

    Directory of Open Access Journals (Sweden)

    Moumita

    2014-05-01

    Full Text Available BACKGROUND: Osteosarcoma is the commonest primary malignant bone tumor in children. The treatment involves extensive and sometimes life threatening chemotherapy and mutilating surgery. The study of cell proliferation by Ki67 immunohistochemistry has been extensively analyzed in different cancers as a prognostic marker but little information is available in the field of osteosarcoma. The purpose of this study was to evaluate the expression of Ki67 activity in different histological types and grades of osteosarcoma and to evaluate whether higher Ki-67 expression in osteosarcoma can predict the clinical outcome. METHODS: The study was conducted with 30 patients of osteosarcoma. There were 19 boys and 11girls. The mean age was 12.8 yrs. We received the specimens of incisional biopsy of the suspected lesions. All the patients were treated similarly following diagnosis (chemotherapy, definitive surgery followed by chemotherapy and they were followed up for 24 months from the date of diagnosis. Histological type and grade were determined by examining the Hematoxylin and Eosin stained slides. Proliferative activity (Ki67 expression was measured immunohistochemically using MIB-1 antibody. Proliferation was quantitated by counting the number of immunopositive nuclei, detected manually under light microscope. Proliferation index was evaluated in relation to histological grade and survival. RESULTS AND CONCLUSION: We found 12 cases of low grade and 18 cases of high grade osteosarcomas. The mean of Ki67 LI in low grade osteosarcoma was seen 9.9 whereas in high grade osteosarcoma the mean was 21.6. A significant positive correlation between Ki67 LI and histological grade was observed in osteosarcomas (p <0.001. There was no statistically significant correlation found between Ki67LI and the histologic types of osteosarcomas. We followed up all the cases for 24 months; a worse prognosis was observed in osteosarcomas of higher proliferative activity

  17. [Proliferative activity parameters and their correlation with genetic damage of blood lymphocytes during cultivation under the conditions of cytokinetic block].

    Science.gov (United States)

    Ingel', F I; Iurchenko, V V; Gus'kov, A S; Krivtsova, E K; Iurtseva, N A

    2006-01-01

    The subjects of the study were 15 volunteers aged 22 to 25 years, who underwent 25 air ionization sessions. The effects of genome instability were evaluated, and correlations between indicators of genome damage (lesions of micronuclei and nucleoplasmatic bridges) and parameters of proliferative and replicative activity (mitotic index, proliferative pool, the fraction of rapidly dividing cells, and replication index) of blood lymphocytes in the culture were studied. In order to establish the associations between the parameters, the parallel cultures were exposed to 0.07 mM of the standard mutagen MNNG during 5 hours. The study showed that the course of air ionization did not induce the micronuclei and nucleoplasmatic bridges in binuclear cells, but increased proliferative cell activity. This effect was accompanied by an increase in the fraction of rapidly dividing cells among all the dividing cells, and an increase in the dispersion of all proliferation parameters. MNNG induced a constant level of micronuclei in binuclear cells during the whole course, but not before the beginning of air ionization. The changes in the parameter "the fraction of dividing cells" (proliferative pool) were the most prominent manifestation of the suppression of proliferation by MNNG. MNNG loading inhibited the formation of binuclear cells most of all. The results demonstrate a non-random character of the correlation between the level of micronuclei in binuclear cells and proliferative activity parameters during cell cultivation under the conditions of cytokinetic block.

  18. New ursane triterpenoids from Salvia urmiensis Bunge: Absolute configuration and anti-proliferative activity.

    Science.gov (United States)

    Farimani, Mahdi Moridi; Bahadori, Mir Babak; Koulaei, Sheyda Ahmadi; Salehi, Peyman; Ebrahimi, Samad Nejad; Khavasi, Hamid Reza; Hamburger, Matthias

    2015-10-01

    Two new triterpenoids, urmiensolide B (1) and urmiensic acid (2), with rare carbon skeletons together with three known compounds were isolated from the aerial parts of Salvia urmiensis Bunge, an endemic species of Iran. The structures were established by a combination of 1D and 2D NMR, and HRESIMS, and in the case of 2 and 3, their structures were confirmed by single-crystal X-ray analysis. The absolute configuration of 2 was established by electronic circular dichroism (ECD) spectra. The new compounds were evaluated for their anti-proliferative activities against A549 and MCF-7 human cancer cell lines. Compounds 1 and 2 showed IC50 values of 2.8 and 1.6 μM against MCF-7 cells, respectively. PMID:26254275

  19. Two new diterpene derivatives from Euphorbia lunulata Bge and their anti-proliferative activities.

    Science.gov (United States)

    Liu, Chao; Liao, Zhi-xin; Liu, Shi-jun; Qu, Yan-bo; Wang, Heng-shan

    2014-07-01

    A new ent-abietane-type diterpene lactone (1) and a new jatrophane-type diterpenoid (2), together with twelve known compounds including three diterpenes (3-5), five triterpenes (6-10) and four sterides (11-14) were isolated from the ethanol extract of the whole plant of Euphorbia lunulata Bge. The structure of compounds 1 and 2 was elucidated on the basis of 1D and 2D NMR spectra and the HR-ESI-MS data. The structure of compound 2 was further analyzed by an X-ray crystallographic study. The in vitro anti-proliferative activities against MCF-7 and NCI-H460 cell lines for compounds 1-5 (diterpene) were evaluated. The results showed marked activity for compound 1 against the two cell lines with the IC50 values 19.5 (NCI-H460) and 18.6 (MCF-7) μM, while for cis-platinum (a positive cytotoxic control agent) 29.7 (NCI-H460) and 27.7 (MCF-7) μM. Compounds 2-5 exhibited moderate cytotoxic activities for the two cell lines with the IC50 values ranging from 32.1 to 58.2 μM.

  20. Proliferative and signaling activities of insulin analogues in endometrial cancer cells.

    Science.gov (United States)

    Aizen, Daniel; Sarfstein, Rive; Bruchim, Ilan; Weinstein, Doron; Laron, Zvi; Werner, Haim

    2015-05-01

    Insulin analogues have been developed to achieve further improvement in the therapy of diabetes. However, modifications introduced into the insulin molecule may enhance their affinity for the insulin-like growth factor-1 receptor (IGF1R). Hyperinsulinemia has been identified as a risk factor for endometrial cancer. We hypothesized that insulin analogues may elicit atypical proliferative and signaling activities in endometrial cancer cells. Our results demonstrate that glargine, but not detemir, stimulated cell proliferation, displayed an anti-apoptotic effect, and had a positive effect on cell cycle progression in endometrial cancer cell lines ECC-1 and USPC-1. In addition, we showed that glargine and detemir induced dual activation of the insulin receptor (INSR) and IGF1R in both cell types. Furthermore, we showed that glargine elicited signaling events that are markedly different from those induced by insulin. In conclusion, our data support the concept that, although insulin analogues were designed to display insulin-like metabolic effects, glargine and, possibly, additional analogues exhibit IGF1-like activities and, accordingly, may function as IGF1 analogues. PMID:25697343

  1. Evaluation of viability and proliferative activity of human urothelial cells cultured onto xenogenic tissue-engineered extracellular matrices.

    LENUS (Irish Health Repository)

    Davis, Niall F

    2011-04-01

    To evaluate the viability and proliferative activity of human urothelial cells (HUCs) cultured on tissue-engineered extracellular matrix scaffolds and to assess the potential of extracellular matrixes to support the growth of HUCs in their expected in vivo urine environment.

  2. Nuclear Morphometry in Ductal Breast Carcinoma with Correlation to Cell Proliferative Activity and Prognosis

    International Nuclear Information System (INIS)

    Morphometry is the quantitative description of biologic structures. This study was designed to evaluate the efficiency of morphometric measurements in diagnosis and prognosis of patients with breast carcinoma. Methods: Histological samples from 61 patients of invasive duct carcinoma (IDC) of no special type (NST), 12 cases of ductal carcinoma in situ (DCIS) and 14 control breast samples taken from fibrocystic change disease were retrospectively analyzed by computerized nuclear morphometry. All IDC patients underwent modified radical mastectomy without preoperative chemotherapy. The mean follow up was 28±19 months (range] -71). In each case, 25-50 nuclei were measured and the mean nuclear area (MNA), mean nuclear perimeter (MNP), mean maximum nuclear diameter (MMNO) and mean minimal nuclear diameter (Mmnd) were measured. The mean axis ratio (MAR), mean nuclear compactness (MNC), mean nuclear size (MNS) and mean shape factor (MSHF), were calculated mathematically. To measure the nuclear diameters, a new method was employed using the AutoCAD program. Morphometric parameters were compared with different clinico pathologic features, patient's survival and cell proliferative activity as determined by Ki-67 immunostaining which was evaluated quantitatively. Most of the morphometric parameters were significantly higher in DCIS and IDC groups than benign one. In IDC group morphometric features related to nuclear size (MNA, MNP, MMNO, Mmnd and MNS) were significantly correlated to most clinico pathologic features and cell proliferative activity assessed by Ki-67 immunostaining. However, the shape factor failed to achieve this correlation. The univariate analysis using Kaplan Meier curves indicated that short survival time was correlated with high nuclear morphometric values (MNA. MNP, MMND, Mmnd, MNS and MSHF). Moreover, the Spear man correlation analysis showed that Mmnd has the highest converse correlation with survival (r= -0.75, (ρ < 0.0001). In multivariate analysis

  3. Biocatalytically Oligomerized Epicatechin with Potent and Specific Anti-proliferative Activity for Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ramaswamy Nagarajan

    2008-11-01

    Full Text Available Catechins, naturally occurring flavonoids derived from wine and green tea, are known to exhibit multiple health benefits. Epigallocatechin gallate (EGCG is one of the most widely investigated catechins, but its efficacy in cancer therapy is still inconsistent and limited. The poor stability of EGCG has contributed to the disparity in the reported anti-cancer activity and other beneficial properties. Here we report an innovative enzymatic strategy for the oligomerization of catechins (specifically epicatechin that yields stable, water-soluble oligomerized epicatechins with enhanced and highly specific anti-proliferative activity for human breast cancer cells. This one-pot oxidative oligomerization is carried out in ambient conditions using Horseradish Peroxidase (HRP as a catalyst yielding water-soluble oligo(epicatechins. The oligomerized epicatechins obtained exhibit excellent growth inhibitory effects against human breast cancer cells with greater specificity towards growth-inhibiting cancer cells as opposed to normal cells, achieving a high therapeutic differential. Our studies indicate that water-soluble oligomeric epicatechins surpass EGCG in stability, selectivity and efficacy at lower doses.

  4. Activation of the Endothelin System Mediates Pathological Angiogenesis during Ischemic Retinopathy

    OpenAIRE

    Patel, Chintan; Narayanan, S. Priya; Zhang, Wenbo; Xu, Zhimin; Sukumari-Ramesh, Sangeetha; Dhandapani, Krishnan M.; Caldwell, R. William; Caldwell, Ruth B.

    2014-01-01

    Retinopathy of prematurity adversely affects premature infants because of oxygen-induced damage of the immature retinal vasculature, resulting in pathological neovascularization (NV). Our pilot studies using the mouse model of oxygen-induced retinopathy (OIR) showed marked increases in angiogenic mediators, including endothelins and endothelin receptor (EDNR) A. We hypothesized that activation of the endothelin system via EDNRA plays a causal role in pathological angiogenesis and up-regulatio...

  5. Cucumarioside A2-2 causes changes in the morphology and proliferative activity in mouse spleen.

    Science.gov (United States)

    Pislyagin, E A; Manzhulo, I V; Dmitrenok, P S; Aminin, D L

    2016-05-01

    The immunomodulatory effect of triterpene glycoside cucumarioside A2-2 (CA2-2), isolated from the Far Eastern sea cucumber Cucumaria japonica, on the mouse spleen was investigated in comparison with lipopolysaccharide (LPS). It has been shown that the intraperitoneal (i.p.) glycoside administration did not influence on splenic weights, while the statistically significant increase in splenic weight was observed after LPS administration. Changes in the ratio of red to white pulp after CA2-2 or LPS administration were observed. The proportion of splenic white pulp after glycoside or LPS administration increased by up to 34% and 36%, respectively. A detailed study of the distribution of the РСNA (Proliferating Cell Nuclear Antigen) marker showed that the proliferative activity in the white pulp under CA2-2 and LPS influence increased 2.07 and 2.24 times, respectively. The localization of PCNA-positive nuclei in the white pulp region, as well as their dimensional characteristics, suggests that a large proportion of the proliferating cell population consisted of B cells. The mass spectrometry profiles of spleen peptide/protein homogenate were obtained using the MALDI-TOF-MS (Matrix -Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry) approach. It was found that i.p. stimulation of animals with CA2-2 or LPS leads to marked changes in the intensity of revealed characteristic peaks of peptides/proteins after exposure to immunostimulants. PMID:27079859

  6. Angiogenesis interactome and time course microarray data reveal the distinct activation patterns in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Liang-Hui Chu

    Full Text Available Angiogenesis involves stimulation of endothelial cells (EC by various cytokines and growth factors, but the signaling mechanisms are not completely understood. Combining dynamic gene expression time-course data for stimulated EC with protein-protein interactions associated with angiogenesis (the "angiome" could reveal how different stimuli result in different patterns of network activation and could implicate signaling intermediates as points for control or intervention. We constructed the protein-protein interaction networks of positive and negative regulation of angiogenesis comprising 367 and 245 proteins, respectively. We used five published gene expression datasets derived from in vitro assays using different types of blood endothelial cells stimulated by VEGFA (vascular endothelial growth factor A. We used the Short Time-series Expression Miner (STEM to identify significant temporal gene expression profiles. The statistically significant patterns between 2D fibronectin and 3D type I collagen substrates for telomerase-immortalized EC (TIME show that different substrates could influence the temporal gene activation patterns in the same cell line. We investigated the different activation patterns among 18 transmembrane tyrosine kinase receptors, and experimentally measured the protein level of the tyrosine-kinase receptors VEGFR1, VEGFR2 and VEGFR3 in human umbilical vein EC (HUVEC and human microvascular EC (MEC. The results show that VEGFR1-VEGFR2 levels are more closely coupled than VEGFR1-VEGFR3 or VEGFR2-VEGFR3 in HUVEC and MEC. This computational methodology can be extended to investigate other molecules or biological processes such as cell cycle.

  7. Trichostatin A Inhibits Retinal Pigmented Epithelium Activation in an In Vitro Model of Proliferative Vitreoretinopathy

    Science.gov (United States)

    Greene, Whitney A.; Burke, Teresa A.; Wang, Heuy-Ching

    2016-01-01

    Abstract Purpose: Proliferative vitreoretinopathy (PVR) is a blinding disorder that develops after a retinal tear or detachment. Activation of the retinal pigmented epithelium (RPE) is implicated in PVR; however, the mechanisms leading to enhanced RPE proliferation, migration, and contraction remain largely unknown. This study utilized an in vitro model of PVR to investigate the role of acetylation in RPE activation and its contribution to the progression of this disease. Methods: ARPE-19 cells, primary cultures of porcine RPE, and induced pluripotent stem cell-derived RPE (iPS-RPE) were utilized for cellular and molecular analyses. Cells treated with transforming growth factor beta 2 (TGFβ2; 10 ng/mL) alone or in the presence of the broad-spectrum histone deacetylase (HDAC) inhibitor, trichostatin A (TSA; 0.1 μM), were assessed for contraction and migration through collagen contraction and scratch assays, respectively. Western blotting and immunofluorescence analysis were performed to assess α-smooth muscle actin (α-SMA) and β-catenin expression after TGFβ2 treatment alone or in combination with TSA. Results: TGFβ2 significantly increased RPE cell contraction in collagen matrix and this effect was inhibited in the presence of TSA (0.1 μM). In agreement with these data, immunofluorescence analysis of TSA-treated iPS-RPE wounded monolayers revealed decreased α-SMA as compared with control. Scratch assays to assess wound healing revealed TSA inhibited TGFβ2-mediated iPS-RPE cell migration. Conclusions: Our findings indicate a role of acetylation in RPE activation. Specifically, the HDAC inhibitor TSA decreased RPE cell proliferation and TGFβ2-mediated cell contraction and migration. Further investigation of pharmacological compounds that modulate acetylation may hold promise as therapeutic agents for PVR. PMID:27494828

  8. New thiazolidinediones affect endothelial cell activation and angiogenesis.

    Science.gov (United States)

    Rudnicki, Martina; Tripodi, Gustavo L; Ferrer, Renila; Boscá, Lisardo; Pitta, Marina G R; Pitta, Ivan R; Abdalla, Dulcineia S P

    2016-07-01

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor-γ (PPARγ) agonists used in treating type 2 diabetes that may exhibit beneficial pleiotropic effects on endothelial cells. In this study, we characterized the effects of three new TZDs [GQ-32 (3-biphenyl-4-ylmethyl-5-(4-nitro-benzylidene)-thiazolidine-2,4-dione), GQ-169 (5-(4-chloro-benzylidene)-3-(2,6-dichloro-benzyl)-thiazolidine-2,4-dione), and LYSO-7 (5-(5-bromo-1H-indol-3-ylmethylene)-3-(4-chlorobenzyl)-thiazolidine-2,4-dione)] on endothelial cells. The effects of the new TZDs were evaluated on the production of nitric oxide (NO) and reactive oxygen species (ROS), cell migration, tube formation and the gene expression of adhesion molecules and angiogenic mediators in human umbilical vein endothelial cells (HUVECs). PPARγ activation by new TZDs was addressed with a reporter gene assay. The three new TZDs activated PPARγ and suppressed the tumor necrosis factor α-induced expression of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. GQ-169 and LYSO-7 also inhibited the glucose-induced ROS production. Although NO production assessed with 4-amino-5-methylamino-2',7'-difluorofluorescein-FM probe indicated that all tested TZDs enhanced intracellular levels of NO, only LYSO-7 treatment significantly increased the release of NO from HUVEC measured by chemiluminescence analysis of culture media. Additionally, GQ-32 and GQ-169 induced endothelial cell migration and tube formation by the up-regulation of angiogenic molecules expression, such as vascular endothelial growth factor A and interleukin 8. GQ-169 also increased the mRNA levels of basic fibroblast growth factor, and GQ-32 enhanced transforming growth factor-β expression. Together, the results of this study reveal that these new TZDs act as partial agonists of PPARγ and modulate endothelial cell activation and endothelial dysfunction besides to stimulate migration and tube formation. PMID:27108791

  9. Activation of the endothelin system mediates pathological angiogenesis during ischemic retinopathy.

    Science.gov (United States)

    Patel, Chintan; Narayanan, S Priya; Zhang, Wenbo; Xu, Zhimin; Sukumari-Ramesh, Sangeetha; Dhandapani, Krishnan M; Caldwell, R William; Caldwell, Ruth B

    2014-11-01

    Retinopathy of prematurity adversely affects premature infants because of oxygen-induced damage of the immature retinal vasculature, resulting in pathological neovascularization (NV). Our pilot studies using the mouse model of oxygen-induced retinopathy (OIR) showed marked increases in angiogenic mediators, including endothelins and endothelin receptor (EDNR) A. We hypothesized that activation of the endothelin system via EDNRA plays a causal role in pathological angiogenesis and up-regulation of angiogenic mediators, including vascular endothelial growth factor A (VEGFA) in OIR. Mice were exposed to 75% oxygen from post-natal day P7 to P12, treated with either vehicle or EDNRA antagonist BQ-123 or EDNRB antagonist BQ-788 on P12, and kept at room air from P12 to P17 (ischemic phase). RT-PCR analysis revealed increased levels of EDN2 and EDNRA mRNA, and Western blot analysis revealed increased EDN2 expression during the ischemic phase. EDNRA inhibition significantly increased vessel sprouting, resulting in enhanced physiological angiogenesis and decreased pathological NV, whereas EDNRB inhibition modestly improved vascular repair. OIR triggered significant increases in VEGFA protein and mRNA for delta-like ligand 4, apelin, angiopoietin-2, and monocyte chemoattractant protein-1. BQ-123 treatment significantly reduced these alterations. EDN2 expression was localized to retinal glia and pathological NV tufts of the OIR retinas. EDN2 also induced VEGFA protein expression in cultured astrocytes. In conclusion, inhibition of the EDNRA during OIR suppresses pathological NV and promotes physiological angiogenesis. PMID:25203536

  10. The effects of cryopreservation on angiogenesis modulation activity of human amniotic membrane.

    Science.gov (United States)

    Yazdanpanah, Ghasem; Paeini-Vayghan, Ghodsieh; Asadi, Samira; Niknejad, Hassan

    2015-12-01

    Amniotic membrane (AM), as the innermost layer of placenta, has side dependent effects on the angiogenesis. Cryopreservation is a necessary process to avoid the challenging problems of fresh tissues; a procedure which makes the AM ready-to-use. Since the cryopreservation can influence the AM characteristics for experimental and clinical purposes, in this study the effects of cryopreservation were evaluated on angiogenesis modulation activity of the AM compared to fresh tissues in an animal model. The AM was implanted mesenchymal side up or epithelial side up in a rat dorsal skinfold chamber. The length and number of branches of formed capillaries were measured via intravital microscopy after 7 days. The amount of IL-8 (interleukin-8) and TIMP-2 (Tissue Inhibitor of Matrix Metalloproteinase-2) as two factors in amniotic cells which have great impacts on angiogenesis were evaluated using ELISA assay. The epithelial surface of cryopreserved AM had inhibitory effects on vessel formation. The cryopreserved amniotic mesenchymal side increased the vessel length and sprout. The result of cryopreserved AM on angiogenesis was similar to that of fresh tissues. The levels of IL-8 and TIMP-2 in cryopreserved samples were significantly less than fresh AMs which shows that angio-modulatory properties are not limited to the effects of amnion epithelial and mesenchymal stem cells and the other components such as extracellular matrix may contribute in angio-modulatory effects. These promising results show that inducing and inhibitory effects of the AM, which make it an appropriate candidate for different clinical situations, were maintained after cryopreservation.

  11. Azithromycin Synergistically Enhances Anti-Proliferative Activity of Vincristine in Cervical and Gastric Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuezhang; Zhang, Yuyan; Li, Yong; Hao, Xiujing; Liu, Xiaoming, E-mail: erc1080@gmail.com; Wang, Yujiong, E-mail: erc1080@gmail.com [Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Yinchuan 750021, Ningxia (China); College of Life Science, Ningxia University, Yinchuan 750021, Ningxia (China)

    2012-12-04

    In this study, the anti-proliferative and anticancer activity of azithromycin (AZM) was examined. In the presence of AZM, cell growth was inhibited more effectively in Hela and SGC-7901 cancer cells, relative to transformed BHK-21 cells. The respective 50% inhibition of cell growth (IC{sub 50}) values for Hela, SGC-7901 and BHK-21 were 15.66, 26.05 and 91.00 µg/mL at 72 h post incubation, indicative of a selective cytotoxicity against cancer cells. Cell apoptosis analysis using Hoechst nuclear staining and annexin V-FITC binding assay further demonstrated that AZM was capable of inducing apoptosis in both cancer cells and transformed cells. The apoptosis induced by AZM was partly through a caspase-dependent mechanism with an up-regulation of apoptotic protein cleavage PARP and caspase-3 products, as well as a down-regulation of anti-apoptotic proteins, Mcl-1, bcl-2 and bcl-X1. More importantly, a combination of AZM and a low dose of the common anti-cancer chemotherapeutic agent vincristine (VCR), produced a selectively synergistic effect on apoptosis of Hela and SGC-7901 cells, but not BHK-21 cells. In the presence of 12.50 μg/mL of VCR, the respective IC{sub 50} values of Hela, SGC-7901 and BHK-21 cells to AZM were reduced to 9.47 µg/mL, 8.43 µg/mL and 40.15 µg/mL at 72 h after the incubation, suggesting that the cytotoxicity of AZM had a selective anti-cancer effect on cancer over transformed cells in vitro. These results imply that AZM may be a potential anticancer agent for use in chemotherapy regimens, and it may minimize side effects via reduction of dosage and enhancing the effectiveness common chemotherapeutic drugs.

  12. Evaluation of cell proliferative activity after irradiation using immunohistochemical approach and flow cytometry

    Energy Technology Data Exchange (ETDEWEB)

    Tamada, Takashi (Okayama Univ. (Japan). School of Medicine)

    1992-06-01

    To evaluate a proliferative activity of post-irradiated malignant cells, we studied the kinetics of HeLa cells using immunohistochemical approach and flow cytometry. HeLa cells were stained with two proliferation-associated monoclonal antibodies, Ki-67 and anti-DNA polymerase {alpha} antibody. Nucleoli of non-irradiated cells were granularly stained with Ki-67. After irradiation, only the center of nuclei was diffusely stained with Ki-67. One hundred forty-four hours after low-dose irradiation, the staining patterns became the same as the control. On the other hand, after high-dose irradiation, the center of nuclei was weakly stained. DNA polymerase {alpha} was diffusely labelled with nuclei of the control. It was located around the border of nuclei of low-dose irradiated cells like a ring. But after high-dose irradiation, it was granularly distributed in the periphery of nuclei. FITC conjugated Ki-67/PI two parameter analysis was done by a single laser flow cytometer. Twenty-four hours after irradiation, DNA-histograms showed the accumulation to G{sub 2}/M phase and the increase of DNA content of G{sub 2}/M cells, as exposure dose was increased. Two parameter analysis showed the increase of FITC uptake of G{sub 2}/M phase as dose increased. These changes of flow cytometry were remarkably observed after 24 hours' incubation. It was shown that the difference of Ki-67 antigen and DNA polymerase {alpha} appearance depended on the irradiation dose. These findings suggest that immunohistochemical staining with Ki-67 or anti-DNA polymerase {alpha} antibody and flow cytometry using Ki-67 are available to evaluate cell damages after irradiation. (author).

  13. Structural and functional development of rat and mouse gastric mucous cells in relation to their proliferative activity

    International Nuclear Information System (INIS)

    An investigation has been carried out to find a relation between the differentiation and the mitotic activity of gastric mucous cells of the rat and the mouse. It is shown that the bulk mucous production is carried out by the older, non-proliferative, surface mucous cells that line the foveolae and the gastric surface. One experiment describes the renewal of mouse gastric mucous cells following fast neutron irradiation. (C.F.)

  14. Lack of association between level of Plasminogen Activator Inhibitor-1 and estimates of tumor angiogenesis in early breast cancer

    DEFF Research Database (Denmark)

    Offersen, Birgitte Vrou; Riisbro, Rikke; Knoop, Ann;

    2007-01-01

    Plasminogen Activator Inhibitor type-1 (PAI-1) is involved in tumor invasion and progression. High levels of PAI-1 are associated with poor prognosis in breast cancer, and PAI-1 has been shown to play a role in angiogenic processes. Since estimates of tumor angiogenesis may predict poor prognosis...... we studied the relationship between PAI-1 and estimates of angiogenesis in breast cancer. Tumor tissue specimens from 438 breast cancer patients were included. Median follow-up was 10.3 years. Protein levels of PAI-1 were measured using an ELISA. Angiogenesis scores were performed using a Chalkley.......009) were independent markers of death from breast cancer. This study confirms high PAI-1 or high Chalkley counts as markers of poor prognosis in breast cancer patients, and suggests that the prognostic impact of PAI-1 is independent of its supposed involvement in tumor angiogenesis. Udgivelsesdato: 2007...

  15. Ovarian ascites-derived Hospicells promote angiogenesis via activation of macrophages.

    Science.gov (United States)

    Castells, Magali; Thibault, Benoît; Mery, Eliane; Golzio, Muriel; Pasquet, Marlene; Hennebelle, Isabelle; Bourin, Philippe; Mirshahi, Massoud; Delord, Jean Pierre; Querleu, Denis; Couderc, Bettina

    2012-12-29

    Within the microenvironment, Carcinoma-associated mesenchymal stem cells (Hospicells) are able to influence ovarian tumor development via, among others, the facilitation of angiogenesis in the tumor site allowing an accelerated tumor growth. We demonstrate the presence of a chemotactism between endothelial cells and Hospicells, and a cell line specific increased secretion of pro-angiogenic cytokines such as IL-6, IL-8 and VEGF from ovarian adenocarcinoma cells. Hospicells are also able to attract and activate macrophages to a M2 phenotype and allow them to secrete a huge quantity of pro-angiogenic cytokines, favorable to tumor progression of all the associated ovarian adenocarcinoma cells tested.

  16. [The characteristic of proliferative activity of thymocytes and peripheral blood lymphocytes in the offspring of females with experimental chronic liver diseases of various aetiology].

    Science.gov (United States)

    Briukhin, G V; Fedosov, A A

    2006-01-01

    The aim of the study was a comparative analysis of the proliferative activity of thymocytes and peripheral blood lymphocytes in the offspring of female rats with chronic liver pathology of various genesis. In adult female Wistar rats toxic and autoimmune forms of liver lesions were modeled. The offspring of these experimental animals was studied at different time points of postnatal ontogenesis. Proliferative activity of thymocytes and lymphocytes was estimated by counting the proportion of cells with multiple nucleolar organizing regions (AgNORs) and using the cytofluorometric method with acridine orange. In the offspring of experimental animals, the depression of proliferative activity of thymocytes as well as the increase of the proliferative activity of peripheral blood lymphocytes were found at all the time points studied. This was indicated by a change in a relative number of AgNORs-activated cells and a decrease of nucleic acid content in cortical thymocytes. PMID:17201321

  17. Suppression of pancreatic carcinoma growth by activating peroxisome proliferator-activated receptor γ involves angiogenesis inhibition

    Institute of Scientific and Technical Information of China (English)

    Yu-Wei Dong; Xing-Peng Wang; Kai Wu

    2009-01-01

    AIM: To study the possible actions and mechanisms of peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated transcription factor, in pancreatic carcinogenesis,especially in angiogenesis.METHODS: Expressions of PPARγ and retinoid acid receptor (RXRα) were examined by reverse-transcription polymerase chain reaction (RT-PCR) with immunocytochemical staining. Pancreatic carcinoma cells, PANC-1,were treated either with 9-cis-RA, a ligand of RXRα,or with 15-deoxy-Δ12,14 prostaglandin J2(15d-PGJ2), a ligand of PPARγ, or both. Antiproliferative effect was evaluated by cell viability using methyltetrazolium (MTT) assay. A pancreatic carcinoma xenograft tumor model of nude mice was established by inoculating PANC-1 cells subcutaneously. Rosiglitazone, a specific ligand of PPARγ, was administered via water drinking in experimental group of nude mice. After 75 d, all mice were sacrificed. Expression of proliferating cell nuclear antigen (PCNA) in tumor tissue was examined with immunohistochemical staining. Expression of vascular endothelial growth factor (VEGF) mRNA in PANC-1 cells, which were treated with 15d-PGJ2 or 9-cis-RA at variousconcentrations or different duration, was detected by semi-quantitative RT-PCR. Effects of Rosiglitazone on changes of microvascular density (MVD) and VEGF expression were investigated in xenograft tumor tissue. Neovasculature was detected with immunohistochemistry staining labeled with anti-Ⅳ collagen antibody, and indicated by MVD.RESULTS: RT-PCR and immunocytochemical staining showed that PPARγ and RXRα were expressed in PANC-1 cells at both transcription level and translation level. MTT assay demonstrated that 15d-PGJ2, 9-cis-RA and their combination inhibited the growth of PANC-1 cells in a dose-dependent manner. 9-cis-RA had a combined inhibiting action with 15d-PGJ2 on the growth of pancreatic carcinoma. In vivo studies revealed that Rosiglitazone significantly suppressed the growth of pancreatic carcinoma

  18. Regulation of Matrix Metalloproteinase-2 Activity by COX-2-PGE2-pAKT Axis Promotes Angiogenesis in Endometriosis

    Science.gov (United States)

    Ray, Amlan K.; DasMahapatra, Pramathes; Swarnakar, Snehasikta

    2016-01-01

    Endometriosis is characterized by the ectopic development of the endometrium which relies on angiogenesis. Although studies have identified the involvement of different matrix metalloproteinases (MMPs) in endometriosis, no study has yet investigated the role of MMP-2 in endometriosis-associated angiogenesis. The present study aims to understand the regulation of MMP-2 activity in endothelial cells and on angiogenesis during progression of ovarian endometriosis. Histological and biochemical data showed increased expressions of vascular endothelial growth factor (VEGF), VEGF receptor-2, cycloxygenase (COX)-2, von Willebrand factor along with angiogenesis during endometriosis progression. Women with endometriosis showed decreased MMP-2 activity in eutopic endometrium as compared to women without endometriosis. However, ectopic ovarian endometrioma showed significantly elevated MMP-2 activity with disease severity. In addition, increased MT1MMP and decreased tissue inhibitors of metalloproteinases (TIMP)-2 expressions were found in the late stages of endometriosis indicating more MMP-2 activation with disease progression. In vitro study using human endothelial cells showed that prostaglandin E2 (PGE2) significantly increased MMP-2 activity as well as tube formation. Inhibition of COX-2 and/or phosphorylated AKT suppressed MMP-2 activity and endothelial tube formation suggesting involvement of PGE2 in regulation of MMP-2 activity during angiogenesis. Moreover, specific inhibition of MMP-2 by chemical inhibitor significantly reduced cellular migration, invasion and tube formation. In ovo assay showed decreased angiogenic branching upon MMP-2 inhibition. Furthermore, a significant reduction of lesion numbers was observed upon inhibition of MMP-2 and COX-2 in mouse model of endometriosis. In conclusion, our study establishes the involvement of MMP-2 activity via COX-2-PGE2-pAKT axis in promoting angiogenesis during endometriosis progression. PMID:27695098

  19. Antinucleosome antibodies as a potential biomarker for the evaluation of renal pathological activity in patients with proliferative lupus nephritis.

    Science.gov (United States)

    Hung, W T; Chen, Y M; Lan, J L; Chen, H H; Chen, Y H; Chen, D Y; Hsieh, C W; Wen, M C

    2011-11-01

    The objective of this study is to evaluate the correlation between antinucleosome antibodies and renal pathological activity in patients with proliferative lupus nephritis (LN). We evaluated 36 patients with proliferative LN, 14 non-renal lupus patients and 10 healthy volunteers. Lupus activity was assessed using the British Isles Lupus Assessment Group 2004 (BILAG 2004) index, serum anti-double stranded DNA (anti-dsDNA) levels, serum complement levels and daily urinary protein levels. All 36 lupus nephritis patients received renal biopsy. Antinucleosome antibodies were detected by enzyme-linked immunosorbent assay (ELISA). Our results showed that levels of serum antinucleosome antibodies were significantly higher in LN patients (median 90.35 units/ml, interquartile range [IQR] 37.38-135.23) than in non-renal SLE patients (median 5.45 units/ml, IQR 2.6-28.93, p antibodies were positively correlated with BILAG index (Spearman's r = 0.645, p antibodies were negatively correlated with serum levels of C3 (r(s) = -0.400, p antibodies were positively correlated with the histological activity index of LN (r(s) = 0.368, p antibodies and the histological chronicity index. In conclusion, the serum level of antinucleosome antibodies is a potential biomarker for early recognition of renal involvement and evaluation of disease activity in SLE. Our preliminary results suggested that serum levels of antinucleosome antibodies might be a potential biomarker in evaluating pathological activity of LN.

  20. A time frame permissive for Protein Kinase D2 activity to direct angiogenesis in mouse embryonic stem cells.

    Science.gov (United States)

    Müller, Martin; Schröer, Jana; Azoitei, Ninel; Eiseler, Tim; Bergmann, Wendy; Köhntop, Ralf; Lin, Qiong; Costa, Ivan G; Zenke, Martin; Genze, Felicitas; Weidgang, Clair; Seufferlein, Thomas; Liebau, Stefan; Kleger, Alexander

    2015-01-01

    The protein kinase D isoenzymes PKD1/2/3 are prominent downstream targets of PKCs (Protein Kinase Cs) and phospholipase D in various biological systems. Recently, we identified PKD isoforms as novel mediators of tumour cell-endothelial cell communication, tumour cell motility and metastasis. Although PKD isoforms have been implicated in physiological/tumour angiogenesis, a role of PKDs during embryonic development, vasculogenesis and angiogenesis still remains elusive. We investigated the role of PKDs in germ layer segregation and subsequent vasculogenesis and angiogenesis using mouse embryonic stem cells (ESCs). We show that mouse ESCs predominantly express PKD2 followed by PKD3 while PKD1 displays negligible levels. Furthermore, we demonstrate that PKD2 is specifically phosphorylated/activated at the time of germ layer segregation. Time-restricted PKD2-activation limits mesendoderm formation and subsequent cardiovasculogenesis during early differentiation while leading to branching angiogenesis during late differentiation. In line, PKD2 loss-of-function analyses showed induction of mesendodermal differentiation in expense of the neuroectodermal germ layer. Our in vivo findings demonstrate that embryoid bodies transplanted on chicken chorioallantoic membrane induced an angiogenic response indicating that timed overexpression of PKD2 from day 4 onwards leads to augmented angiogenesis in differentiating ESCs. Taken together, our results describe novel and time-dependent facets of PKD2 during early cell fate determination. PMID:26148697

  1. Targeting CD9 produces stimulus-independent antiangiogenic effects predominantly in activated endothelial cells during angiogenesis: A novel antiangiogenic therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kamisasanuki, Taro [Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Tokushige, Saori [Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Terasaki, Hiroto [Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Khai, Ngin Cin; Wang, Yuqing [Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Sakamoto, Taiji [Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Kosai, Ken-ichiro, E-mail: kosai@m2.kufm.kagoshima-u.ac.jp [Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan)

    2011-09-16

    Highlights: {yields} CD9 plays stimulus-independent roles in angiogenesis in vitro and in vivo. {yields} Targeting CD9 expression is effective in an angiogenic disease model. {yields} Targeting CD9 expression predominantly affects activated endothelial cells. {yields} CD9 is involved in endothelial cell proliferation, but not survival. {yields} CD9 is part of angiogenic machinery in endothelial cells during angiogenesis. -- Abstract: The precise roles of tetraspanin CD9 are unclear. Here we show that CD9 plays a stimulus-independent role in angiogenesis and that inhibiting CD9 expression or function is a potential antiangiogenic therapy. Knocking down CD9 expression significantly inhibited in vitro endothelial cell migration and invasion induced by vascular endothelial growth factor (VEGF) or hepatocyte growth factor (HGF). Injecting CD9-specific small interfering RNA (siRNA-CD9) markedly inhibited HGF- or VEGF-induced subconjunctival angiogenesis in vivo. Both results revealed potent and stimulus-independent antiangiogenic effects of targeting CD9. Furthermore, intravitreous injections of siRNA-CD9 or anti-CD9 antibodies were therapeutically effective for laser-induced retinal and choroidal neovascularization in mice, a representative ocular angiogenic disease model. In terms of the mechanism, growth factor receptor and downstream signaling activation were not affected, whereas abnormal localization of integrins and membrane type-1 matrix metalloproteinase was observed during angiogenesis, by knocking down CD9 expression. Notably, knocking down CD9 expression did not induce death and mildly inhibited proliferation of quiescent endothelial cells under conditions without an angiogenic stimulus. Thus, CD9 does not directly affect growth factor-induced signal transduction, which is required in angiogenesis and normal vasculature, but is part of the angiogenesis machinery in endothelial cells during angiogenesis. In conclusion, targeting CD9 produced stimulus

  2. Targeting CD9 produces stimulus-independent antiangiogenic effects predominantly in activated endothelial cells during angiogenesis: A novel antiangiogenic therapy

    International Nuclear Information System (INIS)

    Highlights: → CD9 plays stimulus-independent roles in angiogenesis in vitro and in vivo. → Targeting CD9 expression is effective in an angiogenic disease model. → Targeting CD9 expression predominantly affects activated endothelial cells. → CD9 is involved in endothelial cell proliferation, but not survival. → CD9 is part of angiogenic machinery in endothelial cells during angiogenesis. -- Abstract: The precise roles of tetraspanin CD9 are unclear. Here we show that CD9 plays a stimulus-independent role in angiogenesis and that inhibiting CD9 expression or function is a potential antiangiogenic therapy. Knocking down CD9 expression significantly inhibited in vitro endothelial cell migration and invasion induced by vascular endothelial growth factor (VEGF) or hepatocyte growth factor (HGF). Injecting CD9-specific small interfering RNA (siRNA-CD9) markedly inhibited HGF- or VEGF-induced subconjunctival angiogenesis in vivo. Both results revealed potent and stimulus-independent antiangiogenic effects of targeting CD9. Furthermore, intravitreous injections of siRNA-CD9 or anti-CD9 antibodies were therapeutically effective for laser-induced retinal and choroidal neovascularization in mice, a representative ocular angiogenic disease model. In terms of the mechanism, growth factor receptor and downstream signaling activation were not affected, whereas abnormal localization of integrins and membrane type-1 matrix metalloproteinase was observed during angiogenesis, by knocking down CD9 expression. Notably, knocking down CD9 expression did not induce death and mildly inhibited proliferation of quiescent endothelial cells under conditions without an angiogenic stimulus. Thus, CD9 does not directly affect growth factor-induced signal transduction, which is required in angiogenesis and normal vasculature, but is part of the angiogenesis machinery in endothelial cells during angiogenesis. In conclusion, targeting CD9 produced stimulus-independent antiangiogenic effects

  3. Cancer Immunotherapy of Targeting Angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Jianmei Hou; Ling Tian; Yuquan Wei

    2004-01-01

    Tumor growth and metastasis are angiogenesis-dependent. Anti-angiogenic therapy may be a useful approach to cancer therapy. This review discussed tumor angiogenesis and immunotherapy of targeting tumor angiogenesis from two main aspects: (1) active vaccination to induce effective anti-angiogenesis immunity; (2) passive immunotherapy with anti-pro-angiogenic molecules relevant antibody. Evidence from the recent years suggested that anti-angiogenic therapy should be one of the most promising approaches to cancer therapy.

  4. GTP depletion synergizes the anti-proliferative activity of chemotherapeutic agents in a cell type-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tao; Meng, Lingjun [Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A and M Health Science Center, Houston, TX 77030 (United States); Tsai, Robert Y.L., E-mail: rtsai@ibt.tamhsc.edu [Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A and M Health Science Center, Houston, TX 77030 (United States)

    2011-10-22

    Highlights: {yields} Strong synergy between mycophenolic acid (MPA) and 5-FU in MDA-MB-231 cells. {yields} Cell type-dependent synergy between MPA and anti-proliferative agents. {yields} The synergy of MPA on 5-FU is recapitulated by RNA polymerase-I inhibition. {yields} The synergy of MPA on 5-FU requires the expression of nucleostemin. -- Abstract: Mycophenolic acid (MPA) depletes intracellular GTP by blocking de novo guanine nucleotide synthesis. GTP is used ubiquitously for DNA/RNA synthesis and as a signaling molecule. Here, we made a surprising discovery that the anti-proliferative activity of MPA acts synergistically with specific chemotherapeutic agents in a cell type-dependent manner. In MDA-MB-231 cells, MPA shows an extremely potent synergy with 5-FU but not with doxorubicin or etoposide. The synergy between 5-FU and MPA works most effectively against the highly tumorigenic mammary tumor cells compared to the less tumorigenic ones, and does not work in the non-breast cancer cell types that we tested, with the exception of PC3 cells. On the contrary, MPA shows the highest synergy with paclitaxel but not with 5-FU in SCC-25 cells, derived from oral squamous cell carcinomas. Mechanistically, the synergistic effect of MPA on 5-FU in MDA-MB-231 cells can be recapitulated by inhibiting the RNA polymerase-I activity and requires the expression of nucleostemin. This work reveals that the synergy between MPA and anti-proliferative agents is determined by cell type-dependent factors.

  5. ELK3 Suppresses Angiogenesis by Inhibiting the Transcriptional Activity of ETS-1 on MT1-MMP

    OpenAIRE

    Heo, Sun-Hee; Cho, Je-Yoel

    2014-01-01

    Ets transcription factors play important roles in vasculogenesis and angiogenesis. Knockout of the Ets gene family members in mice resulted in disrupted angiogenesis and malformed vascular systems. In this study, the role and mechanism of ELK3, an Ets factor, in angiogenesis was investigated using ELK3-specific siRNA in human vascular endothelial cells (HUVECs) and in vivo implantation assay. The suppression of ELK3 expression resulted in the reinforcement of VEGF-induced tube formation in HU...

  6. Urokinase plasminogen activator and plasminogen activator inhibitor type-1 in nonsmall-cell lung cancer: relation to prognosis and angiogenesis

    DEFF Research Database (Denmark)

    Offersen, Birgitte Vrou; Pfeiffer, Per; Andreasen, Peter;

    2007-01-01

    BACKGROUND: Urokinase plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) have previously been suggested as prognostic markers in nonsmall-cell lung carcinomas (NSCLC). We investigate whether uPA and PAI-1 are prognostic markers in NSCLC and whether they are related...... identified as non-angiogenic we found significantly lower contents of both uPA and PAI-1 as compared to angiogenic tumours, thus we hypothesize that uPA and PAI-1 stimulate angiogenesis in NSCLC. Udgivelsesdato: 2007-Apr...

  7. Independent prognostic value of angiogenesis and the level of plasminogen activator inhibitor type 1 in breast cancer patients

    DEFF Research Database (Denmark)

    Hansen, S.; Overgaard, Jens; Rose, C.;

    2003-01-01

    in breast cancer, we have evaluated the prognostic value of those factors in a total of 228 patients with primary, unilateral, invasive breast cancer, evaluated at a median follow-up time of 12 years. Microvessels were immunohistochemically stained by antibodies against CD34 and quantitated by the Chalkley......Tumour angiogenesis and the levels of plasminogen activator inhibitor type 1 (PAI-1) are both informative prognostic markers in breast cancer. In cell cultures and in animal model systems, PAI-1 has a proangiogenic effect. To evaluate the interrelationship of angiogenesis and the PAI-1 level...... and the Chalkley count are independent prognostic markers for recurrence-free survival in patients with primary breast cancer, suggesting that the prognostic impact of PAI-1 is not only based on its involvement in angiogenesis....

  8. In vitro antioxidant activities and anti-proliferative properties of the functional herb Abrus cantoniensis and its main alkaloid abrine.

    Science.gov (United States)

    Yang, Mei; Al Zaharna, Mazen; Chen, Yu-Shan; Li, Li; Cheung, Hon-Yeung

    2014-09-01

    Abrus cantoniensis is a common and popular vegetative food consumed as beverage, soup and folk medicine in the tropical and subtropical areas of Asia. It has been claimed valuable for cleansing toxicants in the liver. However, the functional effects of A. cantoniensis have not yet been scientifically explored. This study comprehensively evaluated the in vitro antioxidant and anti-proliferative capacities of the herbal extract and the main alkaloid abrine. Abrine was qualitatively and quantitatively determined in methanol extract (ME) using HPLC-DAD and LC-MS/MS. The results showed that ME, ethyl acetate fraction (EF) and abrine exhibited comparable ABTS radical cation scavenging activities and reducing power to two commercial antioxidants (BHT and Trolox). The EF exerted strong cellular antioxidant activity and selective cytotoxicity against three cancer cell lines in a dose-dependent manner. Biological assays revealed that the EF induced cell cycle arrest at G2/M and apoptosis in MCF-7 and Hep3B cells after 48 h of treatment. Thus, A. cantoniensis exerted potent cellular antioxidant and anti-proliferative properties, highlighting why it has been traditionally used as a functional food. PMID:25059572

  9. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Beom Su [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830 (Korea, Republic of); Park, Ji-Yun [Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830 (Korea, Republic of); Kang, Hyo-Jin [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kim, Hyung-Jin [Department of Microbiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Lee, Jun, E-mail: omslee@wku.ac.kr [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830 (Korea, Republic of)

    2014-08-08

    Graphical abstract: Schematic diagram of the angiogenic activity mechanism by FGF-2/fucoidan treatment in HUVECs. Fucoidan enhances the FGF-2-induced phosphorylation of p38, JNK, and ERK MAPKs. However, p38 and JNK were involved in AKT phosphorylation and MMP-2 activation and resulted in enhanced angiogenic activity, such as tube formation and migration, in HUVECs. - Highlights: • The angiogenic activity of fucoidan in HUVECs was explored. • Fucoidan enhanced HUVEC proliferation, migration, and tube formation. • Fucoidan enhanced angiogenesis through p38 and JNK but not ERK in HUVECs. • Fucoidan targeted angiogenesis-mediated AKT/MMP-2 signalling in HUVECs. - Abstract: Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK

  10. Chemical Composition, Antioxidant, Anti-Inflammatory and Anti-Proliferative Activities of Essential Oils of Plants from Burkina Faso

    Science.gov (United States)

    Bayala, Bagora; Bassole, Imaël Henri Nestor; Gnoula, Charlemagne; Nebie, Roger; Yonli, Albert; Morel, Laurent; Figueredo, Gilles; Nikiema, Jean-Baptiste; Lobaccaro, Jean-Marc A.; Simpore, Jacques

    2014-01-01

    This research highlights the chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils from leaves of Ocimum basilicum, Ocimum americanum, Hyptis spicigera, Lippia multiflora, Ageratum conyzoides, Eucalyptus camaldulensis and Zingiber officinale. Essential oils were analyzed by gas chromatography–mass spectrometry and gas chromatography–flame ionization detector. Major constituents were α-terpineol (59.78%) and β-caryophyllene (10.54%) for Ocimum basilicum; 1, 8-cineol (31.22%), camphor (12.730%), α-pinene (6.87%) and trans α-bergamotene (5.32%) for Ocimum americanum; β-caryophyllene (21%), α-pinene (20.11%), sabinene (10.26%), β-pinene (9.22%) and α-phellandrene (7.03%) for Hyptis spicigera; p-cymene (25.27%), β-caryophyllene (12.70%), thymol (11.88), γ-terpinene (9.17%) and thymyle acetate (7.64%) for Lippia multiflora; precocene (82.10%)for Ageratum conyzoides; eucalyptol (59.55%), α-pinene (9.17%) and limonene (8.76%) for Eucalyptus camaldulensis; arcurcumene (16.67%), camphene (12.70%), zingiberene (8.40%), β-bisabolene (7.83%) and β-sesquiphellandrène (5.34%) for Zingiber officinale. Antioxidant activities were examined using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. O. basilicum and L. multiflora exhibited the highest antioxidant activity in DPPH and ABTS tests, respectively. Anti-inflammatory properties were evaluated by measuring the inhibition of lipoxygenase activity and essential oil of Z. officinale was the most active. Anti-proliferative effect was assayed by the measurement of MTT on LNCaP and PC-3 prostate cancer cell lines, and SF-763 and SF-767 glioblastoma cell lines. Essential oils from A. conyzoides and L. multiflora were the most active on LNCaP and PC-3 cell lines, respectively. The SF-767 glioblastoma cell line was the most sensitive to O. basilicum and L. multiflora EOs while essential oil of A. conyzoides

  11. Chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils of plants from Burkina Faso.

    Science.gov (United States)

    Bayala, Bagora; Bassole, Imaël Henri Nestor; Gnoula, Charlemagne; Nebie, Roger; Yonli, Albert; Morel, Laurent; Figueredo, Gilles; Nikiema, Jean-Baptiste; Lobaccaro, Jean-Marc A; Simpore, Jacques

    2014-01-01

    This research highlights the chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils from leaves of Ocimum basilicum, Ocimum americanum, Hyptis spicigera, Lippia multiflora, Ageratum conyzoides, Eucalyptus camaldulensis and Zingiber officinale. Essential oils were analyzed by gas chromatography-mass spectrometry and gas chromatography-flame ionization detector. Major constituents were α-terpineol (59.78%) and β-caryophyllene (10.54%) for Ocimum basilicum; 1, 8-cineol (31.22%), camphor (12.730%), α-pinene (6.87%) and trans α-bergamotene (5.32%) for Ocimum americanum; β-caryophyllene (21%), α-pinene (20.11%), sabinene (10.26%), β-pinene (9.22%) and α-phellandrene (7.03%) for Hyptis spicigera; p-cymene (25.27%), β-caryophyllene (12.70%), thymol (11.88), γ-terpinene (9.17%) and thymyle acetate (7.64%) for Lippia multiflora; precocene (82.10%)for Ageratum conyzoides; eucalyptol (59.55%), α-pinene (9.17%) and limonene (8.76%) for Eucalyptus camaldulensis; arcurcumene (16.67%), camphene (12.70%), zingiberene (8.40%), β-bisabolene (7.83%) and β-sesquiphellandrène (5.34%) for Zingiber officinale. Antioxidant activities were examined using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. O. basilicum and L. multiflora exhibited the highest antioxidant activity in DPPH and ABTS tests, respectively. Anti-inflammatory properties were evaluated by measuring the inhibition of lipoxygenase activity and essential oil of Z. officinale was the most active. Anti-proliferative effect was assayed by the measurement of MTT on LNCaP and PC-3 prostate cancer cell lines, and SF-763 and SF-767 glioblastoma cell lines. Essential oils from A. conyzoides and L. multiflora were the most active on LNCaP and PC-3 cell lines, respectively. The SF-767 glioblastoma cell line was the most sensitive to O. basilicum and L. multiflora EOs while essential oil of A. conyzoides

  12. Chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils of plants from Burkina Faso.

    Directory of Open Access Journals (Sweden)

    Bagora Bayala

    Full Text Available This research highlights the chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils from leaves of Ocimum basilicum, Ocimum americanum, Hyptis spicigera, Lippia multiflora, Ageratum conyzoides, Eucalyptus camaldulensis and Zingiber officinale. Essential oils were analyzed by gas chromatography-mass spectrometry and gas chromatography-flame ionization detector. Major constituents were α-terpineol (59.78% and β-caryophyllene (10.54% for Ocimum basilicum; 1, 8-cineol (31.22%, camphor (12.730%, α-pinene (6.87% and trans α-bergamotene (5.32% for Ocimum americanum; β-caryophyllene (21%, α-pinene (20.11%, sabinene (10.26%, β-pinene (9.22% and α-phellandrene (7.03% for Hyptis spicigera; p-cymene (25.27%, β-caryophyllene (12.70%, thymol (11.88, γ-terpinene (9.17% and thymyle acetate (7.64% for Lippia multiflora; precocene (82.10%for Ageratum conyzoides; eucalyptol (59.55%, α-pinene (9.17% and limonene (8.76% for Eucalyptus camaldulensis; arcurcumene (16.67%, camphene (12.70%, zingiberene (8.40%, β-bisabolene (7.83% and β-sesquiphellandrène (5.34% for Zingiber officinale. Antioxidant activities were examined using 1,1-diphenyl-2-picryl-hydrazyl (DPPH and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS methods. O. basilicum and L. multiflora exhibited the highest antioxidant activity in DPPH and ABTS tests, respectively. Anti-inflammatory properties were evaluated by measuring the inhibition of lipoxygenase activity and essential oil of Z. officinale was the most active. Anti-proliferative effect was assayed by the measurement of MTT on LNCaP and PC-3 prostate cancer cell lines, and SF-763 and SF-767 glioblastoma cell lines. Essential oils from A. conyzoides and L. multiflora were the most active on LNCaP and PC-3 cell lines, respectively. The SF-767 glioblastoma cell line was the most sensitive to O. basilicum and L. multiflora EOs while essential oil of A. conyzoides showed the

  13. Biodegradable nanoassemblies of piperlongumine display enhanced anti-angiogenesis and anti-tumor activities

    Science.gov (United States)

    Liu, Yuanyuan; Chang, Ying; Yang, Chao; Sang, Zitai; Yang, Tao; Ang, Wei; Ye, Weiwei; Wei, Yuquan; Gong, Changyang; Luo, Youfu

    2014-03-01

    Piperlongumine (PL) shows an inhibitory effect on tumor growth; however, lipophilicity has restricted its further applications. Nanotechnology provides an effective method to overcome the poor water solubility of lipophilic drugs. Polymeric micelles with small particle size can passively target tumors by the enhanced permeability and retention (EPR) effect, thus improving their anti-tumor effects. In this study, to improve the water solubility and anti-tumor activity of PL, PL encapsulated polymeric micelles (PL micelles) were prepared by a solid dispersion method. The prepared PL micelles showed a small particle size and high encapsulation efficiency, which could be lyophilized into powder, and the re-dissolved PL micelles are homogenous and stable in water. In addition, a sustained release behavior of PL micelles was observed in vitro. Encapsulation of PL into polymeric micelles could increase the cytotoxicity, cellular uptake, reactive oxygen species (ROS) and oxidized glutathione (GSSG), and reduce glutathione (GSH) levels in vitro. Encapsulation of PL into polymeric micelles enhanced its inhibitory effect on neovascularization both in vitro and in vivo. Compared with free PL, PL micelles showed a stronger inhibitory effect on the proliferation, migration, invasion and tube formation of human umbilical vein endothelial cells (HUVECs). Additionally, in a transgenic zebrafish model, embryonic angiogenesis was inhibited by PL micelles. Furthermore, PL micelles were more effective in inhibiting tumor growth and prolonging survival in a subcutaneous CT-26 murine tumor model in vivo. Therefore, our data revealed that the encapsulation of PL into biodegradable polymeric micelles enhanced its anti-angiogenesis and anti-tumor activities both in vitro and in vivo.

  14. How phototherapy affects angiogenesis

    Science.gov (United States)

    Dyson, Mary

    2007-02-01

    Angiogenesis is essential for normal growth, tissue repair and regeneration. Its stimulation accelerates repair and regeneration including wound healing where these processes are delayed. Its inhibition can reduce the rate of growth of solid tumors. Phototherapy can accelerate the resolution of acute inflammation with the result that the proliferative phase of tissue repair, when angiogenesis occurs, begins earlier than in sham-irradiated controls. Evidence that angiogenesis is enhanced in dermal repair, tendon repair and bone regeneration in rodents is presented. The cellular mechanisms that control angiogenesis involve the interaction of endothelial cells, macrophages, pericytes and other cells in response, for example, to changes in the availability of oxygen in the local environment. Pericytes and macrophages modulate endothelial cell proliferation; pericytes guide endothelial cell migration. The stimulation of endothelial cell proliferation in vitro following exposure to red (660 nm) and infrared (820 nm) radiation, 15 mW, at 2-8 J/cm2 is presented. 1J/cm2 was ineffective. 820 nm irradiation, 15 mW, at 8 J/cm2 was observed to inhibit pericyte proliferation in vitro. Indirect effects on endothelial cell and pericyte proliferation followed stimulation of soluble mediator production by macrophages following exposure to red and infrared radiation. The potential clinical significance of the results obtained is discussed and the necessity of clinical trials emphasized.

  15. Novel angiogenesis inhibitory activity in cinnamon extract blocks VEGFR2 kinase and downstream signaling

    Science.gov (United States)

    VEGF is one of the most critical factors that induce angiogenesis, and has thus become an attractive target for anti-angiogenesis treatment. However, most of the current anti-VEGF agents that often cause side effects cannot be recommended for long term use. Identification of natural VEGF inhibitors...

  16. Calycosin promotes angiogenesis involving estrogen receptor and mitogen-activated protein kinase (MAPK signaling pathway in zebrafish and HUVEC.

    Directory of Open Access Journals (Sweden)

    Jing Yan Tang

    Full Text Available BACKGROUND: Angiogenesis plays an important role in a wide range of physiological processes, and many diseases are associated with the dysregulation of angiogenesis. Radix Astragali is a Chinese medicinal herb commonly used for treating cardiovascular disorders and has been shown to possess angiogenic effect in previous studies but its active constituent and underlying mechanism remain unclear. The present study investigates the angiogenic effects of calycosin, a major isoflavonoid isolated from Radix Astragali, in vitro and in vivo. METHODOLOGY: Tg(fli1:EGFP and Tg(fli1:nEGFP transgenic zebrafish embryos were treated with different concentrations of calycosin (10, 30, 100 microM from 72 hpf to 96 hpf prior morphological observation and angiogenesis phenotypes assessment. Zebrafish embryos were exposed to calycosin (10, 100 microM from 72 hpf to 78 hpf before gene-expression analysis. The effects of VEGFR tyrosine kinase inhibitor on calycosin-induced angiogenesis were studied using 72 hpf Tg(fli1:EGFP and Tg(fli1:nEGFP zebrafish embryos. The pro-angiogenic effects of calycosin were compared with raloxifene and tamoxifen in 72 hpf Tg(fli1:EGFP zebrafish embryos. The binding affinities of calycosin to estrogen receptors (ERs were evaluated by cell-free and cell-based estrogen receptor binding assays. Human umbilical vein endothelial cell cultures (HUVEC were pretreated with different concentrations of calycosin (3, 10, 30, 100 microM for 48 h then tested for cell viability and tube formation. The role of MAPK signaling in calycosin-induced angiogenesis was evaluated using western blotting. CONCLUSION: Calycosin was shown to induce angiogenesis in human umbilical vein endothelial cell cultures (HUVEC in vitro and zebrafish embryos in vivo via the up-regulation of vascular endothelial growth factor (VEGF, VEGFR1 and VEGFR2 mRNA expression. It was demonstrated that calycosin acted similar to other selective estrogen receptor modulators (SERMs, such

  17. Proliferative index activity in oral squamous cell carcinoma: indication for postoperative radiotherapy?

    Science.gov (United States)

    Gontarz, M; Wyszyńska-Pawelec, G; Zapała, J; Czopek, J; Lazar, A; Tomaszewska, R

    2014-10-01

    The predictive value of the Ki-67 labelling index and its relationship with radiosensitivity in oral squamous cell carcinoma (SCC) remains controversial. We sought to evaluate whether the expression of Ki-67 antigen found in SCC of the tongue and the floor of the mouth is an indication for postoperative radiotherapy (PORT). The first study group included 34 patients who were treated only with primary surgery, while the second group included 26 patients who underwent primary surgery combined with PORT. The correlation between Ki-67 expression and loco-regional recurrence, as well as the 5-year disease-specific survival, was assessed in the two groups. Cases of high-proliferative tumours showed a significantly higher risk of loco-regional recurrence (P=0.018) and a poorer prognosis (P=0.001) only in the 34 patients treated with surgery alone. In multivariate Cox regression analysis, high Ki-67 expression was an independent predictor of loco-regional recurrence (HR 5.42, P=0.029) and disease-specific survival (HR 9.02, P=0.004). The correlation between Ki-67 expression and the risk of loco-regional recurrence in SCC of the tongue and the floor of the mouth may be useful in the selection of patients at a higher risk of recurrence who would benefit from PORT, despite adequate margins of resection and early stage of the disease.

  18. Increased Stiffness in Aged Skeletal Muscle Impairs Muscle Progenitor Cell Proliferative Activity.

    Directory of Open Access Journals (Sweden)

    Grégory Lacraz

    Full Text Available Skeletal muscle aging is associated with a decreased regenerative potential due to the loss of function of endogenous stem cells or myogenic progenitor cells (MPCs. Aged skeletal muscle is characterized by the deposition of extracellular matrix (ECM, which in turn influences the biomechanical properties of myofibers by increasing their stiffness. Since the stiffness of the MPC microenvironment directly impacts MPC function, we hypothesized that the increase in muscle stiffness that occurs with aging impairs the behavior of MPCs, ultimately leading to a decrease in regenerative potential.We showed that freshly isolated individual myofibers from aged mouse muscles contain fewer MPCs overall than myofibers from adult muscles, with fewer quiescent MPCs and more proliferative and differentiating MPCs. We observed alterations in cultured MPC behavior in aged animals, where the proliferation and differentiation of MPCs were lower and higher, respectively. These alterations were not linked to the intrinsic properties of aged myofibers, as shown by the similar values for the cumulative population-doubling values and fusion indexes. However, atomic force microscopy (AFM indentation experiments revealed a nearly 4-fold increase in the stiffness of the MPC microenvironment. We further showed that the increase in stiffness is associated with alterations to muscle ECM, including the accumulation of collagen, which was correlated with higher hydroxyproline and advanced glycation end-product content. Lastly, we recapitulated the impaired MPC behavior observed in aging using a hydrogel substrate that mimics the stiffness of myofibers.These findings provide novel evidence that the low regenerative potential of aged skeletal muscle is independent of intrinsic MPC properties but is related to the increase in the stiffness of the MPC microenvironment.

  19. Evaluation of the proliferative activity of immunocompetent cells in the jejunal and iliac lymph nodes of prepubertal female wild boars diagnosed with mixed mycotoxicosis

    Directory of Open Access Journals (Sweden)

    Zielonka Łukasz

    2015-06-01

    Full Text Available The study evaluated the proliferative activity of immunocompetent cells in the jejunal and iliac lymph nodes of prepubertal female wild boars exposed to deoxynivalenol and zearalenone in naturally contaminated feed. The evaluation was performed with the use of the MTT assay and 2 mitogens: lipopolysaccharide (LPS and concanavalin A. Intensified proliferative processes in T and B lymphocytes were revealed. The mitogenic activity of LPS was more expressed in the lymphocytes of both iliac and jejunal lymph nodes in comparison with the control group. Proliferative activity was higher in iliac lymph nodes than in jejunal lymph nodes. A reverse trend was observed in the percentage of live cells, which was higher in jejunal lymph nodes during the evaluation of lymphocyte proliferation.

  20. Conformational study reveals amino acid residues essential for hemagglutinating and anti-proliferative activities of Clematis montana lectin.

    Science.gov (United States)

    Lu, Bangmin; Zhang, Bin; Qi, Wei; Zhu, Yanan; Zhao, Yan; Zhou, Nan; Sun, Rong; Bao, Jinku; Wu, Chuanfang

    2014-11-01

    Clematis montana lectin (CML), a novel mannose-binding lectin purified from C. montana Buch.-Ham stem (Ranunculaceae), has been proved to have hemagglutinating activity in rabbit erythrocytes and apoptosis-inducing activity in tumor cells. However, the biochemical properties of CML have not revealed and its structural information still needs to be elucidated. In this study, it was found that CML possessed quite good thermostability and alkaline resistance, and its hemagglutinating activity was bivalent metal cation dependent. In addition, hemagglutination test and fluorescence spectroscopy proved that GuHCl, urea, and sodium dodecyl sulfate could change the conformation of CML and further caused the loss of hemagglutination activity. Moreover, the changes of fluorescence spectrum indicated that the tryptophan (Trp) microenvironment conversion might be related to the conformation and bioactivities of CML. In addition, it was also found that Trp residues, arginine (Arg) residues, and sulfhydryl were important for the hemagglutinating activity of CML, but only Trp was proved to be crucial for the CML conformation. Furthermore, the Trp, Arg, and sulfhydryl-modified CML exhibited 97.17%, 76.99%, and 49.64% loss of its anti-proliferative activity, respectively, which was consistent with the alterations of its hemagglutinating activity. Given these findings, Trp residues on the surface of CML are essential for the active center to form substrate-accessible conformation and suitable environment for carbohydrate binding. PMID:25239139

  1. Proliferative and anti-proliferative effects of dietary levels of phytoestrogens in rat pituitary GH3/B6/F10 cells - the involvement of rapidly activated kinases and caspases

    Directory of Open Access Journals (Sweden)

    Watson Cheryl S

    2009-09-01

    Full Text Available Abstract Background Phytoestogens are a group of lipophillic plant compounds that can have estrogenic effects in animals; both tumorigenic and anti-tumorigenic effects have been reported. Prolactin-secreting adenomas are the most prevalent form of pituitary tumors in humans and have been linked to estrogen exposures. We examined the proliferative effects of phytoestrogens on a rat pituitary tumor cell line, GH3/B6/F10, originally subcloned from GH3 cells based on its ability to express high levels of the membrane estrogen receptor-α. Methods We measured the proliferative effects of these phytoestrogens using crystal violet staining, the activation of several mitogen-activated protein kinases (MAPKs and their downstream targets via a quantitative plate immunoassay, and caspase enzymatic activities. Results Four phytoestrogens (coumestrol, daidzein, genistein, and trans-resveratrol were studied over wide concentration ranges. Except trans-resveratrol, all phytoestrogens increased GH3/B6/F10 cell proliferation at some concentration relevant to dietary levels. All four phytoestrogens attenuated the proliferative effects of estradiol when administered simultaneously. All phytoestrogens elicited MAPK and downstream target activations, but with time course patterns that often differed from that of estradiol and each other. Using selective antagonists, we determined that MAPKs play a role in the ability of these phytoestrogens to elicit these responses. In addition, except for trans-resveratrol, a serum removal-induced extrinsic apoptotic pathway was blocked by these phytoestrogens. Conclusion Phytoestrogens can block physiological estrogen-induced tumor cell growth in vitro and can also stimulate growth at high dietary concentrations in the absence of endogenous estrogens; these actions are correlated with slightly different signaling response patterns. Consumption of these compounds should be considered in strategies to control endocrine tumor cell

  2. Relationship between proliferative activity of cancer cells and clinicopathological factors in patients with esophageal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Jun-Xing Huang; Wei Yan; Zheng-Xiang Song; Rong-Yu Qian; Ping Chen; Eeva Salminen; Jorma Toppari

    2005-01-01

    AIM: To assess whether the molecular markers of malignant tumors could improve the understanding of tumor characteristics, and to observe the characteristics of expression of cell cycle markers Ki-67 and cydin A in esophageal carcinoma and to analyze the relationship between proliferative activity of cancer cells and clinicopathological factors.METHODS: Seventy of surgically resected esophageal squamous cell carcinoma (SCC) were examined by immunohistochemistry utilizing commercially available antibodies. Nuclear staining was regarded as a positive result. At least 50 fields in each tumor and non-tumor section were evaluated at a medium power (x200) to determine the proportion of tumor cells and the staining intensity of nuclei in the entire sections.RESULTS: Ki-67 and cyclin A were only expressed in base cells of normal esophageal mucosa. The positive immunostaining of nuclei of SCC was significantly higher than that in normal esophageal mucosa (t= 13.32 and t= 7.52,respectively, P<0.01). The distribution of positively stained was more diffuse and stronger in poorly differentiated SCC. Both Ki-67 and cyclin A expressions were related to histological grades of tumors (t = 3.5675 and t = 3.916; t= 2.13, respectively, P<0.05) but not to the sex and age of the patients, tumor size, lymphatic invasion, location, or stage grouping.CONCLUSION: The proliferative activity of cancer cells may be understood by immunohistochemistry of Ki-67 and cyclin A in Chinese patients with esophageal SCC. These cell cycle markers may serve as an indicator of cancer cell proliferation rate. The overexpression of cell cycle markers Ki-67 and cyclin A suggests the poor SCC differentiation in patients with esophageal carcinoma.

  3. NPNT is Expressed by Osteoblasts and Mediates Angiogenesis via the Activation of Extracellular Signal-regulated Kinase

    Science.gov (United States)

    Kuek, Vincent; Yang, Zhifan; Chim, Shek Man; Zhu, Sipin; Xu, Huazi; Chow, Siu To; Tickner, Jennifer; Rosen, Vicki; Erber, Wendy; Li, Xiucheng; An, Qin; Qian, Yu; Xu, Jiake

    2016-01-01

    Angiogenesis plays an important role in bone development and remodeling and is mediated by a plethora of potential angiogenic factors. However, data regarding specific angiogenic factors that are secreted within the bone microenvironment to regulate osteoporosis is lacking. Here, we report that Nephronectin (NPNT), a member of the epidermal growth factor (EGF) repeat superfamily proteins and a homologue of EGFL6, is expressed in osteoblasts. Intriguingly, the gene expression of NPNT is reduced in the bone of C57BL/6J ovariectomised mice and in osteoporosis patients. In addition, the protein levels of NPNT and CD31 are also found to be reduced in the tibias of OVX mice. Exogenous addition of mouse recombinant NPNT on endothelial cells stimulates migration and tube-like structure formation in vitro. Furthermore, NPNT promotes angiogenesis in an ex vivo fetal mouse metatarsal angiogenesis assay. We show that NPNT stimulates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated kinase (MAPK) in endothelial cells. Inhibition of ERK1/2 impaired NPNT-induced endothelial cell migration, tube-like structure formation and angiogenesis. Taken together, these results demonstrate that NPNT is a paracrine angiogenic factor and may play a role in pathological osteoporosis. This may lead to new targets for treatment of bone diseases and injuries. PMID:27782206

  4. Furanodiene presents synergistic anti-proliferative activity with paclitaxel via altering cell cycle and integrin signaling in 95-D lung cancer cells.

    Science.gov (United States)

    Xu, Wen-Shan; Dang, Yuan-Ye; Chen, Xiu-Ping; Lu, Jin-Jian; Wang, Yi-Tao

    2014-02-01

    Furanodiene (FUR) is a natural terpenoid isolated from Rhizoma Curcumae, a well-known Chinese medicinal herb that presents anti-proliferative activities in several cancer cell lines. Recently, we found that the combined treatment of FUR with paclitaxel (TAX) showed synergetic anti-proliferative activities in 95-D lung cancer cells. Herein, we showed that FUR reduced the cell numbers distributed in mitosis phase induced by TAX while increased those in G1 phase. The protein levels of cyclin D1, cyclin B1, CDK6 and c-Myc were all down-regulated in the group of combined treatment. The dramatically down-regulated expression of integrin β4, focal adhesion kinase and paxillin might partially contribute to the synergic effect. Though FUR alone obviously induced endoplasmic reticulum stress, this signaling pathway may not contribute to the synergetic anti-proliferative effect as the protein expression of CHOP and BIP was similar in FUR alone and combined treatment group.

  5. Glypican-1 nanoliposomes for potentiating growth factor activity in therapeutic angiogenesis.

    Science.gov (United States)

    Monteforte, Anthony J; Lam, Brian; Das, Subhamoy; Mukhopadhyay, Somshuvra; Wright, Catherine S; Martin, Patricia E; Dunn, Andrew K; Baker, Aaron B

    2016-07-01

    Therapeutic angiogenesis is a highly appealing concept for treating tissues that become ischemic due to vascular disease. A major barrier to the clinical translation of angiogenic therapies is that the patients that are in the greatest need of these treatments often have long term disease states and co-morbidities, such as diabetes and obesity, that make them resistant to angiogenic stimuli. In this study, we identified that human patients with type 2 diabetes have reduced levels of glypican-1 in the blood vessels of their skin. The lack of this key co-receptor in the tissue may make the application of exogenous angiogenic growth factors or cell therapies ineffective. We created a novel therapeutic enhancer for growth factor activity consisting of glypican-1 delivered in a nanoliposomal carrier (a "glypisome"). Here, we demonstrate that glypisomes enhance FGF-2 mediated endothelial cell proliferation, migration and tube formation. In addition, glypisomes enhance FGF-2 trafficking by increasing both uptake and endosomal processing. We encapsulated FGF-2 or FGF-2 with glypisomes in alginate beads and used these to deliver localized growth factor therapy in a murine hind limb ischemia model. Co-delivery of glypisomes with FGF-2 markedly increased the recovery of perfusion and vessel formation in ischemic hind limbs of wild type and diabetic mice in comparison to mice treated with FGF-2 alone. Together, our findings support that glypisomes are effective means for enhancing growth factor activity and may improve the response to local angiogenic growth factor therapies for ischemia. PMID:27101205

  6. Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity.

    Science.gov (United States)

    Kontogianni, Vassiliki G; Tomic, Goran; Nikolic, Ivana; Nerantzaki, Alexandra A; Sayyad, Nisar; Stosic-Grujicic, Stanislava; Stojanovic, Ivana; Gerothanassis, Ioannis P; Tzakos, Andreas G

    2013-01-01

    The goal of this study was to monitor the anti-proliferative activity of Rosmarinus officinalis and Salvia officinalis extracts against cancer cells and to correlate this activity with their phytochemical profiles using liquid chromatography/diode array detection/electrospray ion trap tandem mass spectrometry (LC/DAD/ESI-MS(n)). For the quantitative estimation of triterpenic acids in the crude extracts an NMR based methodology was used and compared with the HPLC measurements, both applied for the first time, for the case of betulinic acid. Both extracts exerted cytotoxic activity through dose-dependent impairment of viability and mitochondrial activity of rat insulinoma m5F (RINm5F) cells. Decrease of RINm5F viability was mediated by nitric oxide (NO)-induced apoptosis. Importantly, these extracts potentiated NO and TNF-α release from macrophages therefore enhancing their cytocidal action. The rosemary extract developed more pronounced antioxidant, cytotoxic and immunomodifying activities, probably due to the presence of betulinic acid and a higher concentration of carnosic acid in its phytochemical profile.

  7. ADAMTS3 activity is mandatory for embryonic lymphangiogenesis and regulates placental angiogenesis.

    Science.gov (United States)

    Janssen, Lauriane; Dupont, Laura; Bekhouche, Mourad; Noel, Agnès; Leduc, Cédric; Voz, Marianne; Peers, Bernard; Cataldo, Didier; Apte, Suneel S; Dubail, Johanne; Colige, Alain

    2016-01-01

    The only documented activity of a subclass of ADAMTS proteases comprising ADAMTS2, 3 and 14 is the cleavage of the aminopropeptide of fibrillar procollagens. A limited number of in vitro studies suggested that ADAMTS3 is mainly responsible for procollagen II processing in cartilage. Here, we created an ADAMTS3 knockout mouse (Adamts3(-/-)) model to determine in vivo the actual functions of ADAMTS3. Heterozygous Adamts3(+/-) mice were viable and fertile, but their intercrosses demonstrated lethality of Adamts3(-/-) embryos after 15 days of gestation. Procollagens I, II and III processing was unaffected in these embryos. However, a massive lymphedema caused by the lack of lymphatics development, an abnormal blood vessel structure in the placenta and a progressive liver destruction were observed. These phenotypes are most probably linked to dysregulation of the VEGF-C pathways. This study is the first demonstration that an aminoprocollagen peptidase is crucial for developmental processes independently of its primary role in collagen biology and has physiological functions potentially involved in several human diseases related to angiogenesis and lymphangiogenesis. PMID:26446156

  8. Proliferative and inflammatory factors in the vitreous of patients with proliferative diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    V V Chernykh

    2015-01-01

    Full Text Available Purpose: The purpose was to measure the concentrations of various cytokines and growth factors (including vascular endothelial growth factor [VEGF] and pigment epithelium-derived factor [PEDF] in the vitreous of patients with proliferative diabetic retinopathy (PDR and to investigate interaction between inflammatory and proliferative factors in the genesis of PDR. Materials and Methods : Vitreous samples from 32 eyes with PDR and 25 eyes without diabetes mellitus and signs of DR (control were collected. Vitreous concentrations of VEGF, PEDF, monocyte chemotactic protein-1 (MCP-1, interleukin-4 (IL-4, IL-6, IL-8, IL-10, IL-17A, and secretory immunoglobulin A (sIgA were simultaneously measured using enzyme-linked immunoassay. Results : Vitreous levels of VEGF, PEDF, IL-17A, IL-6, IL-8, IL-4, and sIgA were significantly (Π < 0.05 higher in eyes with PDR compared to control. The concentration of VEGF was more than 17-times higher than in control, and the concentration of PEDF was not changed oppositely and was also higher (1.45-times compared to control, that may indicate disturbances of compensatory mechanisms in angiogenesis regulation in PDR. Significant (Π < 0.05 positive correlations were observed between vitreous concentrations of VEGF and IL-17ΐ (r = 0.45, VEGF and IL-8 (r = 0.48, VEGF and IL-4 (r = 0.51, PEDF and IL-17ΐ (r = 0.48, PEDF and IL-8 (r = 0.59, MCP-1 and PEDF (r = 0.72, MCP-1 and IL-8 (r0 = 0.45, IL-4 and IL-17ΐ (r = 0.65, IL-4 and IL-8 (r = 0.71, IL-8 and IL-17ΐ (r = 0.59. Conclusions: Significantly raised levels of inflammatory and proliferative factors and numerous positive correlations between them may demonstrate a significant role of activation of vascular proliferation and local inflammation in the pathogenesis of PDR.

  9. TU-F-12A-02: Quantitative Characterization of Normal Bone Marrow Proliferative Activity with FLT PET/CT

    International Nuclear Information System (INIS)

    Purpose: [F-18]FLT PET is a tool for assessing health of bone marrow by evaluating its proliferative activity. This study establishes a baseline quantitative characterization of healthy marrow proliferation to aid in diagnosis of hematological disease. Methods: 31 patients (20 male, 11 female, 41–76 years) being treated for solid cancers with no history of hematological disease, osseous metastatic disease, or radiation therapy received pre-treatment FLT PET/CT scans. Total bone marrow was isolated from whole body FLT PET images by manually removing organs and applying a standardize uptake value (SUV) threshold of 1.0. Because adult marrow is concentrated in the axial skeleton, quantitative total bone marrow analysis (QTBMA) was used to isolate marrow in the lumbar spine, thoracic spine, sacrum, and pelvis for analysis. SUVmean, SUVmax, and SUVCV were used to quantify bone marrow proliferation. Correlations were explored between SUV and patient characteristics including age, weight, height, and BMI using the Spearman coefficient (ρ). Results: The population-averaged whole-skeleton SUVmean, SUVmax, and SUVCV were 3.0±0.6, 18.4±5.7, and 0.6±0.1, respectively. Uptake values in the axial skeleton were similar to the whole-skeleton demonstrated by SUVmean in the thoracic spine (3.6±0.6), lumbar spine (3.3±0.5), sacrum (3.0±0.6), and pelvis regions (2.8±0.5). Whole-skeleton SUVmax correlated with patient weight (ρ=0.47, p<0.01) and BMI (ρ=0.60, p<0.01), suggesting marrow activity is related to the body's burden. SUV measures in the thoracic spine, lumbar spine, sacrum, and pelvis were negatively correlated with age (ρ:−0.41 to −0.46, p≤0.02). These negative correlations reflect the fact that active marrow in the adult skeleton is localized in the axial skeleton and decreases with age. Conclusions: Normal bone marrow characterizations were determined using FLT

  10. Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis

    OpenAIRE

    Battinelli, Elisabeth M.; Markens, Beth A.; Italiano, Joseph E.

    2011-01-01

    An association between platelets, angiogenesis, and cancer has long been recognized, but the mechanisms linking them remains unclear. Platelets regulate new blood vessel growth through numerous stimulators and inhibitors of angiogenesis by several pathways, including differential exocytosis of angiogenesis regulators. Herein, we investigated the differential release of angiogenesis stimulators and inhibitors from platelets. Activation of human platelets with adenosine diphosphate (ADP) stimul...

  11. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I.

    Science.gov (United States)

    Zhou, Z; Apte, S S; Soininen, R; Cao, R; Baaklini, G Y; Rauser, R W; Wang, J; Cao, Y; Tryggvason, K

    2000-04-11

    Membrane-type matrix metalloproteinase I (MT1-MMP)-deficient mice were found to have severe defects in skeletal development and angiogenesis. The craniofacial, axial, and appendicular skeletons were severely affected, leading to a short and domed skull, marked deceleration of postnatal growth, and death by 3 wk of age. Shortening of bones is a consequence of decreased chondrocyte proliferation in the proliferative zone of the growth plates. Defective vascular invasion of cartilage leads to enlargement of hypertrophic zones of growth plates and delayed formation of secondary ossification centers in long bones. In an in vivo corneal angiogenesis assay, null mice did not have angiogenic response to implanted FGF-2, suggesting that the defect in angiogenesis is not restricted to cartilage alone. In tissues from null mice, activation of latent matrix metalloproteinase 2 was deficient, suggesting that MT1-MMP is essential for its activation in vivo. PMID:10737763

  12. Proliferative activity (MIB-1 index) is an independent prognostic parameter in patients with high-grade soft tissue sarcomas of subtypes other than malignant fibrous histiocytomas

    DEFF Research Database (Denmark)

    Jensen, V; Sørensen, Flemming Brandt; Bentzen, S M;

    1998-01-01

    AIMS: To evaluate the prognostic value of tumour proliferative activity, p53 accumulation and bcl-2 expression in a retrospective series of 216 patients with soft tissue sarcomas (STS). METHODS AND RESULTS: The immunohistochemical analyses were performed on formalin-fixed, paraffin-embedded tissue...

  13. The prognostic value of oncogenic antigen 519 (OA-519) expression and proliferative activity detected by antibody MIB-1 in node-negative breast cancer

    DEFF Research Database (Denmark)

    Jensen, V; Ladekarl, M; Holm-Nielsen, P;

    1995-01-01

    of invasion of skin or deep fascia (= T1N0M0 and T2N0M0). The median follow-up time was 104 months (range 5-143 months). Immunohistochemical analysis of OA-519 expression was performed on formalin-fixed, paraffin-embedded tissue. The proliferative activity was estimated using a Ki-67 equivalent monoclonal...

  14. Prolonged effect of fluid flow stress on the proliferative activity of mesothelial cells after abrupt discontinuation of fluid streaming

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Shigehisa, E-mail: aokis@cc.saga-u.ac.jp [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan); Ikeda, Satoshi [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan); Takezawa, Toshiaki [Transgenic Animal Research Center, National Institute of Agrobiological Sciences, Ibaraki (Japan); Kishi, Tomoya [Department of Internal Medicine, Saga University, Saga (Japan); Makino, Junichi [Makino Clinic, Saga (Japan); Uchihashi, Kazuyoshi; Matsunobu, Aki [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan); Noguchi, Mitsuru [Department of Urology, Faculty of Medicine, Saga University, Saga (Japan); Sugihara, Hajime [Department of Physical Therapy, International University of Health and Welfare, Fukuoka (Japan); Toda, Shuji [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Late-onset peritoneal fibrosis leading to EPS remains to be elucidated. Black-Right-Pointing-Pointer Fluid streaming is a potent factor for peritoneal fibrosis in PD. Black-Right-Pointing-Pointer We focused on the prolonged effect of fluid streaming on mesothelial cell kinetics. Black-Right-Pointing-Pointer A history of fluid streaming exposure promoted mesothelial proliferative activity. Black-Right-Pointing-Pointer We have thus identified a potent new factor for late-onset peritoneal fibrosis. -- Abstract: Encapsulating peritoneal sclerosis (EPS) often develops after transfer to hemodialysis and transplantation. Both termination of peritoneal dialysis (PD) and transplantation-related factors are risks implicated in post-PD development of EPS, but the precise mechanism of this late-onset peritoneal fibrosis remains to be elucidated. We previously demonstrated that fluid flow stress induced mesothelial proliferation and epithelial-mesenchymal transition via mitogen-activated protein kinase (MAPK) signaling. Therefore, we speculated that the prolonged bioactive effect of fluid flow stress may affect mesothelial cell kinetics after cessation of fluid streaming. To investigate how long mesothelial cells stay under the bioactive effect brought on by fluid flow stress after removal of the stress, we initially cultured mesothelial cells under fluid flow stress and then cultured the cells under static conditions. Mesothelial cells exposed to fluid flow stress for a certain time showed significantly high proliferative activity compared with static conditions after stoppage of fluid streaming. The expression levels of protein phosphatase 2A, which dephosphorylates MAPK, in mesothelial cells changed with time and showed a biphasic pattern that was dependent on the duration of exposure to fluid flow stress. There were no differences in the fluid flow stress-related bioactive effects on mesothelial cells once a certain time had passed

  15. Fine-Tuning of Pten Localization and Phosphatase Activity Is Essential for Zebrafish Angiogenesis

    Science.gov (United States)

    Stumpf, Miriam; Blokzijl-Franke, Sasja; den Hertog, Jeroen

    2016-01-01

    The lipid- and protein phosphatase PTEN is an essential tumor suppressor that is highly conserved among all higher eukaryotes. As an antagonist of the PI3K/Akt cell survival and proliferation pathway, it exerts its most prominent function at the cell membrane, but (PIP3-independent) functions of nuclear PTEN have been discovered as well. PTEN subcellular localization is tightly controlled by its protein conformation. In the closed conformation, PTEN localizes predominantly to the cytoplasm. Opening up of the conformation of PTEN exposes N-terminal and C-terminal regions of the protein that are required for both interaction with the cell membrane and translocation to the nucleus. Lack of Pten leads to hyperbranching of the intersegmental vessels during zebrafish embryogenesis, which is rescued by expression of exogenous Pten. Here, we observed that expression of mutant PTEN with an open conformation rescued the hyperbranching phenotype in pten double homozygous embryos and suppressed the increased p-Akt levels that are characteristic for embryos lacking Pten. In addition, in pten mutant and wild type embryos alike, open conformation PTEN induced stalled intersegmental vessels, which fail to connect with the dorsal longitudinal anastomotic vessel. Functional hyperactivity of open conformation PTEN in comparison to wild type PTEN seems to result predominantly from its enhanced recruitment to the cell membrane. Enhanced recruitment of phosphatase inactive mutants to the membrane did not induce the stalled vessel phenotype nor did it rescue the hyperbranching phenotype in pten double homozygous embryos, indicating that PTEN phosphatase activity is indispensable for its regulatory function during angiogenesis. Taken together, our data suggest that PTEN phosphatase activity needs to be carefully fine-tuned for normal embryogenesis and that the control of its subcellular localization is a key mechanism in this process. PMID:27138341

  16. A novel microtubule inhibitor 4SC-207 with anti-proliferative activity in taxane-resistant cells.

    Directory of Open Access Journals (Sweden)

    Elena Bausch

    Full Text Available Microtubule inhibitors are invaluable tools in cancer chemotherapy: taxanes and vinca alkaloids have been successfully used in the clinic over the past thirty years against a broad range of tumors. However, two factors have limited the effectiveness of microtubule inhibitors: toxicity and resistance. In particular, the latter is highly unpredictable, variable from patient to patient and is believed to be the cause of treatment failure in most cases of metastatic cancers. For these reasons, there is an increasing demand for new microtubule inhibitors that can overcome resistance mechanisms and that, at the same time, have reduced side effects. Here we present a novel microtubule inhibitor, 4SC-207, which shows strong anti-proliferative activity in a large panel of tumor cell lines with an average GI50 of 11 nM. In particular, 4SC-207 is active in multi-drug resistant cell lines, such as HCT-15 and ACHN, suggesting that it is a poor substrate for drug efflux pumps. 4SC-207 inhibits microtubule growth in vitro and in vivo and promotes, in a dose dependent manner, a mitotic delay/arrest, followed by apoptosis or aberrant divisions due to chromosome alignment defects and formation of multi-polar spindles. Furthermore, preliminary data from preclinical studies suggest low propensity towards bone marrow toxicities at concentrations that inhibit tumor growth in paclitaxel-resistant xenograft models. In summary, our results suggest that 4SC-207 may be a potential anti-cancer agent.

  17. Astroglial Activation by an Enriched Environment after Transplantation of Mesenchymal Stem Cells Enhances Angiogenesis after Hypoxic-Ischemic Brain Injury.

    Science.gov (United States)

    Cho, Sung-Rae; Suh, Hwal; Yu, Ji Hea; Kim, Hyongbum Henry; Seo, Jung Hwa; Seo, Cheong Hoon

    2016-01-01

    Transplantation of mesenchymal stem cells (MSCs) has paracrine effects; however, the effects are known to be largely limited. Here we investigated the combination effects of cell transplantation and enriched environment (EE) in a model of hypoxic-ischemic brain injury. Brain damage was induced in seven-day-old mice by unilateral carotid artery ligation and exposure to hypoxia (8% O₂ for 90 min). At six weeks of age, the mice were randomly assigned to four groups: phosphate-buffered saline (PBS)-control (CON), PBS-EE, MSC-CON, and MSC-EE. Rotarod and grip strength tests were performed to evaluate neurobehavioral functions. Histologic evaluations were also performed to confirm the extent of astrocyte activation and endogenous angiogenesis. An array-based multiplex ELISA and Western blot were used to identify growth factors in vivo and in vitro. Two weeks after treatment, levels of astrocyte density and angiogenic factors were increased in MSC-EE mice, but glial scarring was not increased. Eight weeks after treatment, angiogenesis was increased, and behavioral outcomes were synergistically improved in the MSC-EE group. Astrocytes co-cultured with MSCs expressed higher levels of angiogenic factors than astrocytes cultured alone. The mechanisms of this synergistic effect included enhanced repair processes, such as increased endogenous angiogenesis and upregulation of angiogenic factors released from activated astrocytes. PMID:27649153

  18. Hybrid surfactants decorated with copper ions: aggregation behavior, antimicrobial activity and anti-proliferative effect.

    Science.gov (United States)

    Kaur, Gurpreet; Kumar, Sandeep; Dilbaghi, Neeraj; Bhanjana, Gaurav; Guru, Santosh Kumar; Bhushan, Shashi; Jaglan, Sundeep; Hassan, P A; Aswal, V K

    2016-09-14

    In the present study, the emphasis is laid on the self aggregation behavior of copper based inorganic-organic hybrids in aqueous media. The two complexes, cationic hexadecyl pyridinium trichloro cuprate (1 : 1), [Cp](+)[CuCl3](-), and bishexadecylpyridinium tetrachloro cuprate (2 : 1), [Cp2](2+)[CuCl4](2-), were synthesized using the ligand insertion method. The complexes were characterized using elemental analysis, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), nuclear magnetic resonance (NMR) and thermogravimetric analysis. The copper complexes were found to be thermally stable, and in the solid state, they possessed the perovskite arrangement with [Cp2](2+)[CuCl4](2-) exhibiting superior stability and crystallinity. The self aggregation behavior of the prepared complexes was analyzed in solution phase (in aqueous medium) using surface tension, conductivity, XRD and small angle neutron scattering (SANS). The results show that the presence of copper as a co-ion in both the stoichiometries results in lower critical micellization concentrations than their precursor. Micellization was thermodynamically spontaneous and micelles formed were ellipsoidal in shape and underwent a prolate ellipsoidal growth with an increase in the concentration of metallosurfactant, as estimated from the SANS. Furthermore, these metallosurfactants were investigated for biocompatibility (using hemolytic assay), antimicrobial activity (fungus and bacteria) and cytotoxicity using human cancerous cells. The hemolysis activity was found to depend on the aggregated state of the metallosurfactants, displaying the highest activity in the monomeric state, and the minimum for post micellar concentrations. The surfactants were found to enhance the antibacterial activity by twofold or more, with the addition of metal in both the stoichiometries. On the contrary, for anticancer and antifungal activities, barely any regular trend or generalization could be obtained

  19. Hybrid surfactants decorated with copper ions: aggregation behavior, antimicrobial activity and anti-proliferative effect.

    Science.gov (United States)

    Kaur, Gurpreet; Kumar, Sandeep; Dilbaghi, Neeraj; Bhanjana, Gaurav; Guru, Santosh Kumar; Bhushan, Shashi; Jaglan, Sundeep; Hassan, P A; Aswal, V K

    2016-09-14

    In the present study, the emphasis is laid on the self aggregation behavior of copper based inorganic-organic hybrids in aqueous media. The two complexes, cationic hexadecyl pyridinium trichloro cuprate (1 : 1), [Cp](+)[CuCl3](-), and bishexadecylpyridinium tetrachloro cuprate (2 : 1), [Cp2](2+)[CuCl4](2-), were synthesized using the ligand insertion method. The complexes were characterized using elemental analysis, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), nuclear magnetic resonance (NMR) and thermogravimetric analysis. The copper complexes were found to be thermally stable, and in the solid state, they possessed the perovskite arrangement with [Cp2](2+)[CuCl4](2-) exhibiting superior stability and crystallinity. The self aggregation behavior of the prepared complexes was analyzed in solution phase (in aqueous medium) using surface tension, conductivity, XRD and small angle neutron scattering (SANS). The results show that the presence of copper as a co-ion in both the stoichiometries results in lower critical micellization concentrations than their precursor. Micellization was thermodynamically spontaneous and micelles formed were ellipsoidal in shape and underwent a prolate ellipsoidal growth with an increase in the concentration of metallosurfactant, as estimated from the SANS. Furthermore, these metallosurfactants were investigated for biocompatibility (using hemolytic assay), antimicrobial activity (fungus and bacteria) and cytotoxicity using human cancerous cells. The hemolysis activity was found to depend on the aggregated state of the metallosurfactants, displaying the highest activity in the monomeric state, and the minimum for post micellar concentrations. The surfactants were found to enhance the antibacterial activity by twofold or more, with the addition of metal in both the stoichiometries. On the contrary, for anticancer and antifungal activities, barely any regular trend or generalization could be obtained

  20. Endothelial Progenitor Cells in Sprouting Angiogenesis: Proteases Pave the Way.

    Science.gov (United States)

    Laurenzana, A; Fibbi, G; Margheri, F; Biagioni, A; Luciani, C; Del Rosso, M; Chillà, A

    2015-01-01

    Sprouting angiogenesis consists of the expansion and remodelling of existing vessels, where the vascular sprouts connect each other to form new vascular loops. Endothelial Progenitor Cells (EPCs) are a subtype of stem cells, with high proliferative potential, able to differentiate into mature Endothelial Cells (ECs) during the neovascularization process. In addition to this direct structural role EPCs improve neovascularization, also secreting numerous pro-angiogenic factors able to enhance the proliferation, survival and function of mature ECs, and other surrounding progenitor cells. While sprouting angiogenesis by mature ECs involves resident ECs, the vasculogenic contribution of EPCs is a high hurdle race. Bone marrowmobilized EPCs have to detach from the stem cell niche, intravasate into bone marrow vessels, reach the hypoxic area or tumour site, extravasate and incorporate into the new vessel lumen, thus complementing the resident mature ECs in sprouting angiogenesis. The goal of this review is to highlight the role of the main protease systems able to control each of these steps. The pivotal protease systems here described, involved in vascular patterning in sprouting angiogenesis, are the matrix-metalloproteinases (MMPs), the serineproteinases urokinase-type plasminogen activator (uPA) associated with its receptor (uPAR) and receptorassociated plasminogen/plasmin, the neutrophil elastase and the cathepsins. Since angiogenesis plays a critical role not only in physiological but also in pathological processes, such as in tumours, controlling the contribution of EPCs to the angiogenic process, through the regulation of the protease systems involved, could yield new opportunities for the therapeutic prospect of efficient control of pathological angiogenesis. PMID:26321757

  1. Caveolin-1 is critical in the proliferative effect of leptin on osteoblasts through the activation of Akt.

    Science.gov (United States)

    Zou, Lin; Zhang, Guichun; Liu, Lifeng; Chen, Chen; Cao, Xuecheng; Cai, Jinfang

    2016-09-01

    Osteoblasts are critical in bone remodeling and the repair of bone fractures. Leptin is involved in bone metabolism and osteoblast survival through the downstream signaling pathway, however, the exact mechanism of the effect of leptin on osteoblasts remains to be fully elucidated. In the present study, hFOB 1.19 cells were used to observe the effects of leptin on cell proliferation and apoptosis, and to investigate the underlying mechanism. The results confirmed that treatment of hFOB 1.19 cells with leptin significantly induced cell proliferation. Western blot analysis showed that the expression of caveolin‑1 and the activation of Akt in the cells treated with leptin were significantly increased, compared with the control cells. Additionally, inhibiting Akt activation eliminated the effects on cell proliferation induced by leptin. The rates of cell apoptosis and cell cycle distribution were examined using flow cytometry, which revealed a decrease in the apoptotic rate and an increase in the proportion of cells in the S phase. This indicated that leptin was capable of inducing cell proliferation by inhibiting apoptosis and stimulating cell progression to the S phase. Transfection of the cells with caveolin‑1 small interfering RNA showed that the activation of Akt induced by leptin was significantly inhibited. Furthermore, caveolin‑1 knockdown and inhibiting Akt activation eliminated the increased proliferation, increased proportion of cells in the S phase and increased anti‑apoptotic effects induced by leptin. Taken together, the data obtained in the present study demonstrated that caveolin‑1 was critical in the proliferative effect of leptin on osteoblasts via the activation of Akt. PMID:27430651

  2. Oridonin inhibits tumor growth and metastasis through anti-angiogenesis by blocking the Notch signaling.

    Directory of Open Access Journals (Sweden)

    Yanmin Dong

    Full Text Available While significant progress has been made in understanding the anti-inflammatory and anti-proliferative effects of the natural diterpenoid component Oridonin on tumor cells, little is known about its effect on tumor angiogenesis or metastasis and on the underlying molecular mechanisms. In this study, Oridonin significantly suppressed human umbilical vascular endothelial cells (HUVECs proliferation, migration, and apillary-like structure formation in vitro. Using aortic ring assay and mouse corneal angiogenesis model, we found that Oridonin inhibited angiogenesis ex vivo and in vivo. In our animal experiments, Oridonin impeded tumor growth and metastasis. Immunohistochemistry analysis further revealed that the expression of CD31 and vWF protein in xenografts was remarkably decreased by the Oridonin. Furthermore, Oridonin reinforced endothelial cell-cell junction and impaired breast cancer cell transendothelial migration. Mechanistically, Oridonin not only down-regulated Jagged2 expression and Notch1 activity but also decreased the expression of their target genes. In conclusion, our results demonstrated an original role of Oridonin in inhibiting tumor angiogenesis and propose a mechanism. This study also provides new evidence supporting the central role of Notch in tumor angiogenesis and suggests that Oridonin could be a potential drug candidate for angiogenesis related diseases.

  3. Xanthones from Garcinia paucinervis with in vitro anti-proliferative activity against HL-60 cells.

    Science.gov (United States)

    Li, Da-Hong; Li, Chen-Xi; Jia, Cui-Cui; Sun, Ya-Ting; Xue, Chun-Mei; Bai, Jiao; Hua, Hui-Ming; Liu, Xiao-Qiu; Li, Zhan-Lin

    2016-02-01

    Three new xanthones, paucinervins H-J (1-3), as well as eleven known compounds (4-14), were isolated from the leaves of Garcinia paucinervis. The structures of the new compounds (1-3) were elucidated by 1D, 2D NMR spectra and HR ESIMS. In vitro antiproliferative activity against human promyelocytic leukemia HL-60 cells was tested, among which, compounds 2, 5, 6 and 7 exhibited strong growth inhibitory effects with GI50 values ranging from 1.30 to 9.08 μM, respectively. Preliminary SARs were also discussed. PMID:26659874

  4. Malignant Trigeminal Nerve Sheath Tumor and Anaplastic Astrocytoma Collision Tumor with High Proliferative Activity and Tumor Suppressor P53 Expression

    Directory of Open Access Journals (Sweden)

    Maher Kurdi

    2014-01-01

    Full Text Available Background. The synchronous development of two primary brain tumors of distinct cell of origin in close proximity or in contact with each other is extremely rare. We present the first case of collision tumor with two histological distinct tumors. Case Presentation. A 54-year-old woman presented with progressive atypical left facial pain and numbness for 8 months. MRI of the brain showed left middle cranial fossa heterogeneous mass extending into the infratemporal fossa. At surgery, a distinct but intermingled intra- and extradural tumor was demonstrated which was completely removed through left orbitozygomatic-temporal craniotomy. Histopathological examination showed that the tumor had two distinct components: malignant nerve sheath tumor of the trigeminal nerve and temporal lobe anaplastic astrocytoma. Proliferative activity and expressed tumor protein 53 (TP53 gene mutations were demonstrated in both tumors. Conclusions. We describe the first case of malignant trigeminal nerve sheath tumor (MTNST and anaplastic astrocytoma in collision and discuss the possible hypothesis of this rare occurrence. We propose that MTNST, with TP53 mutation, have participated in the formation of anaplastic astrocytoma, or vice versa.

  5. [Use of colchicine in studying the proliferative activity of chicken embryos].

    Science.gov (United States)

    Efremov, V I; El Zajat, M

    1977-07-01

    Manifestation of mitotic activity of colchicin in 4- and 5-day-old chick embryos was studied under different modes of colchicin injection into the eggs. Three methods were tested: colchicin solution was injected into the serous-amniotic cavity (1) and into the yolk sac (2) and also by dripping on the serous membrane over the enbryo (3). Perfect metastatic effect was observed only when colchicin was used in concentration of 1 X 10(-4) g/ml and injected by the third mehtod. Increase in the solution volume over 0.1 ml resulted in a greater percentage of embryo death. Lack of a definite inhibitory action after colchicin injection into the serous-amniotic cavity might be explained by decrease of the substance concentration as a result of its dilution by the cavity fluid. A complete lack of blocked mitoses in the embryo tissues after colchicin injection into the yolk sac can be explained, according to the authors, by the presence, in the yolk, of a great number of ovoflavins capable to inhibit mitotic activity of colchicin.

  6. Inhibition of APE1/Ref-1 redox activity with APX3330 blocks retinal angiogenesis in vitro and in vivo.

    Science.gov (United States)

    Jiang, Aihua; Gao, Hua; Kelley, Mark R; Qiao, Xiaoxi

    2011-01-01

    This study examines the role of APE1/Ref-1 in the retina and its potential as a therapeutic target for inhibiting retinal angiogenesis. APE1/Ref-1 expression was quantified by Western blot. The role of APE1/Ref-1 redox function in endothelial cell in vitro angiogenesis was examined by treating retinal vascular endothelial cells (RVECs) with APX3330, a small molecule inhibitor of APE1/Ref-1 redox activity. In vitro methods included a proliferation assay, a transwell migration assay, a Matrigel tube formation assay, and a Real-Time Cell Analysis (RTCA) using the xCELLigence System. In vivo functional studies of APE1/Ref-1 were carried out by treating very low density lipoprotein (VLDL) receptor knockout mice (Vldlr(-/-)) with intravitreal injection of APX3330, and subsequent measurement of retinal angiomatous proliferation (RAP)-like neovascularization for one week. APE1/Ref-1 was highly expressed in the retina and in RVECs and pericytes in mice. APX3330 (1-10 μM) inhibited proliferation, migration and tube formation of RVECs in vitro in a dose-dependent manner. Vldlr(-/-) RVECs were more sensitive to APX3330 than wild-type RVECs. In Vldlr(-/-) mice, a single intravitreal injection of APX3330 at the onset of RAP-like neovascularization significantly reduced RAP-like neovascularization development. APE1/Ref-1 is expressed in retinal vascular cells. APX3330 inhibits RVEC angiogenesis in vitro and significantly reduces RAP-like neovascularization in Vldlr(-/-) mice. These data support the conclusion that APE1/Ref-1 redox function is required for retinal angiogenesis. Thus, APE1/Ref-1 may have potential as a therapeutic target for treating neovascular age-related macular degeneration and other neovascular diseases.

  7. The Industrial Chemical Bisphenol A (BPA) Interferes with Proliferative Activity and Development of Steroidogenic Capacity in Rat Leydig Cells1

    Science.gov (United States)

    Nanjappa, Manjunatha K.; Simon, Liz; Akingbemi, Benson T.

    2012-01-01

    ABSTRACT The presence of bisphenol A (BPA) in consumer products has raised concerns about potential adverse effects on reproductive health. Testicular Leydig cells are the predominant source of the male sex steroid hormone testosterone, which supports the male phenotype. The present report describes the effects of developmental exposure of male rats to BPA by gavage of pregnant and lactating Long-Evans dams at 2.5 and 25 μg/kg body weight from Gestational Day 12 to Day 21 postpartum. This exposure paradigm stimulated Leydig cell division in the prepubertal period and increased Leydig cell numbers in the testes of adult male rats at 90 days. Observations from in vitro experiments confirmed that BPA acts directly as a mitogen in Leydig cells. However, BPA-induced proliferative activity in vivo is possibly mediated by several factors, such as 1) protein kinases (e.g., mitogen-activated protein kinases or MAPK), 2) growth factor receptors (e.g., insulin-like growth factor 1 receptor-beta and epidermal growth factor receptors), and 3) the Sertoli cell-secreted anti-Mullerian hormone (also called Mullerian inhibiting substance). On the other hand, BPA suppressed protein expression of the luteinizing hormone receptor (LHCGR) and the 17beta-hydroxysteroid dehydrogenase enzyme (HSD17B3), thereby decreasing androgen secretion by Leydig cells. We interpret these findings to mean that the likely impact of deficits in androgen secretion on serum androgen levels following developmental exposure to BPA is alleviated by increased Leydig cell numbers. Nevertheless, the present results reinforce the view that BPA causes biological effects at environmentally relevant exposure levels and its presence in consumer products potentially has implication for public health. PMID:22302688

  8. The Proliferative Activity of Mammary Epithelial Cells in Normal Tissue Predicts Breast Cancer Risk in Premenopausal Women.

    Science.gov (United States)

    Huh, Sung Jin; Oh, Hannah; Peterson, Michael A; Almendro, Vanessa; Hu, Rong; Bowden, Michaela; Lis, Rosina L; Cotter, Maura B; Loda, Massimo; Barry, William T; Polyak, Kornelia; Tamimi, Rulla M

    2016-04-01

    The frequency and proliferative activity of tissue-specific stem and progenitor cells are suggested to correlate with cancer risk. In this study, we investigated the association between breast cancer risk and the frequency of mammary epithelial cells expressing p27, estrogen receptor (ER), and Ki67 in normal breast tissue. We performed a nested case-control study of 302 women (69 breast cancer cases, 233 controls) who had been initially diagnosed with benign breast disease according to the Nurses' Health Studies. Immunofluorescence for p27, ER, and Ki67 was performed on tissue microarrays constructed from benign biopsies containing normal mammary epithelium and scored by computational image analysis. We found that the frequency of Ki67(+) cells was positively associated with breast cancer risk among premenopausal women [OR = 10.1, 95% confidence interval (CI) = 2.12-48.0]. Conversely, the frequency of ER(+) or p27(+) cells was inversely, but not significantly, associated with subsequent breast cancer risk (ER(+): OR = 0.70, 95% CI, 0.33-1.50; p27(+): OR = 0.89, 95% CI, 0.45-1.75). Notably, high Ki67(+)/low p27(+) and high Ki67(+)/low ER(+) cell frequencies were significantly associated with a 5-fold higher risk of breast cancer compared with low Ki67(+)/low p27(+) and low Ki67(+)/low ER(+) cell frequencies, respectively, among premenopausal women (Ki67(hi)/p27(lo): OR = 5.08, 95% CI, 1.43-18.1; Ki67(hi)/ER(lo): OR = 4.68, 95% CI, 1.63-13.5). Taken together, our data suggest that the fraction of actively cycling cells in normal breast tissue may represent a marker for breast cancer risk assessment, which may therefore impact the frequency of screening procedures in at-risk women. Cancer Res; 76(7); 1926-34. ©2016 AACR.

  9. Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis.

    Directory of Open Access Journals (Sweden)

    Pierre Sonveaux

    Full Text Available Switching to a glycolytic metabolism is a rapid adaptation of tumor cells to hypoxia. Although this metabolic conversion may primarily represent a rescue pathway to meet the bioenergetic and biosynthetic demands of proliferating tumor cells, it also creates a gradient of lactate that mirrors the gradient of oxygen in tumors. More than a metabolic waste, the lactate anion is known to participate to cancer aggressiveness, in part through activation of the hypoxia-inducible factor-1 (HIF-1 pathway in tumor cells. Whether lactate may also directly favor HIF-1 activation in endothelial cells (ECs thereby offering a new druggable option to block angiogenesis is however an unanswered question. In this study, we therefore focused on the role in ECs of monocarboxylate transporter 1 (MCT1 that we previously identified to be the main facilitator of lactate uptake in cancer cells. We found that blockade of lactate influx into ECs led to inhibition of HIF-1-dependent angiogenesis. Our demonstration is based on the unprecedented characterization of lactate-induced HIF-1 activation in normoxic ECs and the consecutive increase in vascular endothelial growth factor receptor 2 (VEGFR2 and basic fibroblast growth factor (bFGF expression. Furthermore, using a variety of functional assays including endothelial cell migration and tubulogenesis together with in vivo imaging of tumor angiogenesis through intravital microscopy and immunohistochemistry, we documented that MCT1 blockers could act as bona fide HIF-1 inhibitors leading to anti-angiogenic effects. Together with the previous demonstration of MCT1 being a key regulator of lactate exchange between tumor cells, the current study identifies MCT1 inhibition as a therapeutic modality combining antimetabolic and anti-angiogenic activities.

  10. Two-chain high molecular weight kininogen induces endothelial cell apoptosis and inhibits angiogenesis: partial activity within domain 5.

    Science.gov (United States)

    Zhang, J C; Claffey, K; Sakthivel, R; Darzynkiewicz, Z; Shaw, D E; Leal, J; Wang, Y C; Lu, F M; McCrae, K R

    2000-12-01

    We previously reported that the binding of two-chain high molecular weight kininogen (HKa) to endothelial cells may occur through interactions with endothelial urokinase receptors. Since the binding of urokinase to urokinase receptors activates signaling responses and may stimulate mitogenesis, we assessed the effect of HKa binding on endothelial cell proliferation. Unexpectedly, HKa inhibited proliferation in response to several growth factors, with 50% inhibition caused by approximately 10 nM HKa. This activity was Zn(2+) dependent and not shared by either single-chain high molecular weight kininogen (HK) or low molecular weight kininogen. HKa selectively inhibited the proliferation of human umbilical vein and dermal microvascular endothelial cells, but did not affect that of umbilical vein or human aortic smooth muscle cells, trophoblasts, fibroblasts, or carcinoma cells. Inhibition of endothelial proliferation by HKa was associated with endothelial cell apoptosis and unaffected by antibodies that block the binding of HK or HKa to any of their known endothelial receptors. Recombinant HK domain 5 displayed activity similar to that of HKa. In vivo, HKa inhibited neovascularization of subcutaneously implanted Matrigel plugs, as well as rat corneal angiogenesis. These results demonstrate that HKa is a novel inhibitor of angiogenesis, whose activity is dependent on the unique conformation of the two-chain molecule. PMID:11099478

  11. Experimental and theoretical study of possible correlation between the electrochemistry of canthin-6-one and the anti-proliferative activity against human cancer stem cells

    Science.gov (United States)

    Cebrián-Torrejón, G.; Doménech-Carbó, A.; Scotti, M. T.; Fournet, A.; Figadère, B.; Poupon, E.

    2015-12-01

    This work presents an approach to study the performance of novel targets able to overcome cancer stem cell chemoresistance, based on the voltammetric data for microparticulate films of natural or synthetic alkaloids from the canthin-6-one series. A comparison of this voltammetric technique with conventional solution phase electrochemistry suggests the differences in the anti-proliferative activity of canthin-6-ones could be tentatively correlated to their different capacity to generate semiquinone radical anions. These data also match theoretical calculations.

  12. ER Stress and Angiogenesis.

    Science.gov (United States)

    Binet, François; Sapieha, Przemyslaw

    2015-10-01

    Proper tissue vascularization is vital for cellular function as it delivers oxygen, nutrients, hormones, and immune cells and helps to clear cellular debris and metabolic waste products. Tissue angiogenesis occurs to satisfy energy requirements and cellular sensors of metabolic imbalance coordinate vessel growth. In this regard, the classical pathways of the unfolded protein response activated under conditions of ER stress have recently been described to generate angiomodulatory or angiostatic signals. This review elaborates on the link between angiogenesis and ER stress and discusses the implications for diseases characterized by altered vascular homeostasis, such as cancer, retinopathies, and atherosclerosis.

  13. Cytosol cathepsin-D content and proliferative activity of human breast cancer. The Comitato Italiano per il Controllo di Qualita del Laboratorio in Oncologia.

    Science.gov (United States)

    Paradiso, A; Mangia, A; Correale, M; Abbate, I; Ferri, G; Piffanelli, A; Catozzi, L; Amadori, D; Riccobon, A; De Lena, M

    1992-01-01

    Mitogenic properties have been demonstrated in vitro for the lysosomal acidic protease cathepsin-D (cath-D). We investigated possible relationships between cath-D cytosol cell content and tumor proliferative activity in a series of 129 operable breast cancer patients. For total cytosol cath-D evaluation, a solid phase two-site immunoradiometric assay was utilized on tumor cell cytosol obtained for hormone receptor assay (DCC method). The percentage of S-phase cells was analyzed by 3H-thymidine autoradiographic assay. Median 3H-thymidine Labeling Index (3H-Tdr-LI) of the series was 2.7%; median cath-D content resulted 57 pmol/mg of protein cytosol and was significantly higher in node-positive with respect to the node-negative subgroup (p < 0.03). When classified in low, intermediate or high tumor cath-D content and slow or fast proliferative activity (cut-off: median values of the series), no significant agreement was found between the two variables. Statistical analysis, however, showed that a significant inverse correlation existed in node positive tumors between cath-D and 3H-Tdr-LI values which was even more evident in N-positive high estrogen receptor-positive (ER+) cases (coefficient of correlation = 0.6828; p = 0.0001). Cytosol cath-D content cannot be generally proposed as a direct marker of proliferative activity for operable breast cancer.

  14. Fibroblast Growth Factor-9 Activates c-Kit Progenitor Cells and Enhances Angiogenesis in the Infarcted Diabetic Heart

    Directory of Open Access Journals (Sweden)

    Dinender Singla

    2016-01-01

    Full Text Available We hypothesized that fibroblast growth factor-9 (FGF-9 would enhance angiogenesis via activating c-kit positive stem cells in the infarcted nondiabetic and diabetic heart. In brief, animals were divided into three groups: Sham, MI, and MI+FGF-9. Two weeks following MI or sham surgery, our data suggest that treatment with FGF-9 significantly diminished vascular apoptosis compared to the MI group in both C57BL/6 and db/db mice (p<0.05. Additionally, the number of c-kit+ve/SM α-actin+ve cells and c-kit+ve/CD31+ve cells were greatly enhanced in the MI+FGF-9 groups relative to the MI suggesting FGF-9 enhances c-Kit cell activation and their differentiation into vascular smooth muscle cells and endothelial cells, respectively (p<0.05. Histology shows that the total number of vessels were quantified for all groups and our data suggest that the FGF-9 treated groups had significantly more vessels than their MI counterparts (p<0.05. Finally, echocardiographic data suggests a significant improvement in left ventricular output, as indicated by fractional shortening and ejection fraction in both nondiabetic and diabetic animals treated with FGF-9 (p<0.05. Overall, our data suggests FGF-9 has the potential to attenuate vascular cell apoptosis, activate c-Kit progenitor cells, and enhance angiogenesis and neovascularization in C57BL/6 and db/db mice leading to improved cardiac function.

  15. Angiogenesis Assays.

    Science.gov (United States)

    Nambiar, Dhanya K; Kujur, Praveen K; Singh, Rana P

    2016-01-01

    Neoangiogenesis constitutes one of the first steps of tumor progression beyond a critical size of tumor growth, which supplies a dormant mass of cancerous cells with the required nutrient supply and gaseous exchange through blood vessels essentially needed for their sustained and aggressive growth. In order to understand any biological process, it becomes imperative that we use models, which could mimic the actual biological system as closely as possible. Hence, finding the most appropriate model is always a vital part of any experimental design. Angiogenesis research has also been much affected due to lack of simple, reliable, and relevant models which could be easily quantitated. The angiogenesis models have been used extensively for studying the action of various molecules for agonist or antagonistic behaviour and associated mechanisms. Here, we have described two protocols or models which have been popularly utilized for studying angiogenic parameters. Rat aortic ring assay tends to bridge the gap between in vitro and in vivo models. The chorioallantoic membrane (CAM) assay is one of the most utilized in vivo model system for angiogenesis-related studies. The CAM is highly vascularized tissue of the avian embryo and serves as a good model to study the effects of various test compounds on neoangiogenesis. PMID:26608294

  16. PPAR-γ Activation Inhibits Angiogenesis by Blocking ELR+CXC Chemokine Production in Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Venkateshwar G. Keshamouni

    2005-03-01

    Full Text Available Activation of peroxisome proliferator-activated receptor-γ (PPAR-γ results in inhibition of tumor growth in various types of cancers, but the mechanism(s by which PPAR-γ induces growth arrest has not been completely defined. In a recent study, we demonstrated that treatment of A549 (human non small cell lung cancer cell line tumor-bearing SCID mice with PPAR-γ ligands troglitazone (Tro and pioglitazone significantly inhibits primary tumor growth. In this study, immunohistochemical analysis of Tro-treated and Pio-treated tumors with factor VIII antibody revealed a significant reduction in blood vessel density compared to tumors in control animals, suggesting inhibition of angiogenesis. Further analysis showed that treatment of A549 cells in vitro with Tro or transient transfection of A549 cells with constitutively active PPAR-γ (VP16-PPAR-γ construct blocked the production of the angiogenic ELR +CXC chemokines IL-8 (CXCL8, ENA-78 (CXCL5, Gro-α (CXCL1. Similarly, an inhibitor of NF-ΚB activation (PDTC also blocked CXCL8, CXCL5, CXCL1 production, consistent with their NF-ΚB-dependent regulation. Conditioned media from A549 cells induce human microvascular endothelial cell (HMVEC chemotaxis. However, conditioned media from Tro-treated A549 cells induced significantly less HMVEC chemotaxis compared to untreated A549 cells. Furthermore, PPAR-γ activation inhibited NF-ΚB transcriptional activity, as assessed by TransAM reporter gene assay. Collectively, our data suggest that PPAR-γ ligands can inhibit tumor-associated angiogenesis by blocking the production of ELR+CXC chemokines, which is mediated through antagonizing NF-ΚB activation. These antiangiogenic effects likely contribute to the inhibition of primary tumor growth by PPAR-γ ligands.

  17. Searching in mother nature for anti-cancer activity: anti-proliferative and pro-apoptotic effect elicited by green barley on leukemia/lymphoma cells.

    Directory of Open Access Journals (Sweden)

    Elisa Robles-Escajeda

    Full Text Available Green barley extract (GB was investigated for possible anti-cancer activity by examining its anti-proliferative and pro-apoptotic properties on human leukemia/lymphoma cell lines. Our results indicate that GB exhibits selective anti-proliferative activity on a panel of leukemia/lymphoma cells in comparison to non-cancerous cells. Specifically, GB disrupted the cell-cycle progression within BJAB cells, as manifested by G2/M phase arrest and DNA fragmentation, and induced apoptosis, as evidenced by phosphatidylserine (PS translocation to the outer cytoplasmic membrane in two B-lineage leukemia/lymphoma cell lines. The pro-apoptotic effect of GB was found to be independent of mitochondrial depolarization, thus implicating extrinsic cell death pathways to exert its cytotoxicity. Indeed, GB elicited an increase of TNF-α production, caspase-8 and caspase-3 activation, and PARP-1 cleavage within pre-B acute lymphoblastic leukemia Nalm-6 cells. Moreover, caspase-8 and caspase-3 activation and PARP-1 cleavage were strongly inhibited/blocked by the addition of the specific caspase inhibitors Z-VAD-FMK and Ac-DEVD-CHO. Furthermore, intracellular signaling analyses determined that GB treatment enhanced constitutive activation of Lck and Src tyrosine kinases in Nalm-6 cells. Taken together, these findings indicate that GB induced preferential anti-proliferative and pro-apoptotic signals within B-lineage leukemia/lymphoma cells, as determined by the following biochemical hallmarks of apoptosis: PS externalization, enhanced release of TNF-α, caspase-8 and caspase-3 activation, PARP-1 cleavage and DNA fragmentation Our observations reveal that GB has potential as an anti-leukemia/lymphoma agent alone or in combination with standard cancer therapies and thus warrants further evaluation in vivo to support these findings.

  18. Effect of Guibi-Tang, a Traditional Herbal Formula, on Retinal Neovascularization in a Mouse Model of Proliferative Retinopathy

    Directory of Open Access Journals (Sweden)

    Yun Mi Lee

    2015-12-01

    Full Text Available Ocular pathologic angiogenesis is an important causative risk factor of blindness in retinopathy of prematurity, proliferative diabetic retinopathy, and neovascular macular degeneration. Guibi-tang (GBT is a frequently used oriental herbal formula in East Asian countries, and is also called Qui-pi-tang in Chinese and Kihi-To in Japanese. In the present study, we investigated the preventive effect of GBT on retinal pathogenic neovascularization in a mouse model of oxygen-induced retinopathy (OIR. C57BL/6 mice were exposed to 75% hyperoxia for five days on postnatal day 7 (P7. The mice were then exposed to room air from P12 to P17 to induce ischemic proliferative retinopathy. GBT (50 or 100 mg/kg/day was intraperitoneally administered daily for five days (from P12 to P16. On P17, Retinal neovascularization was measured on P17, and the expression levels of 55 angiogenesis-related factors were analyzed using protein arrays. GBT significantly decreased retinal pathogenic angiogenesis in OIR mice, and protein arrays revealed that GBT decreased PAI-1 protein expression levels. Quantitative real-time PCR revealed that GBT reduced vascular endothelial growth factor (VEGF, fibroblast growth factor 2 (FGF2, and plasminogen activator inhibitor 1 (PAI-1 mRNA levels in OIR mice. GBT promotes potent inhibitory activity for retinal neovascularization by decreasing VEGF, FGF2, and PAI-1 levels.

  19. Low Concentration of S100A8/9 Promotes Angiogenesis-Related Activity of Vascular Endothelial Cells: Bridges among Inflammation, Angiogenesis, and Tumorigenesis?

    Directory of Open Access Journals (Sweden)

    Changyou Li

    2012-01-01

    Full Text Available Previous studies showed that several members of the S100A family are involved in neovascularization and tumor development. This study checked whether low concentrations of S100A8 or S100A9 has any effect on the behaviour of vascular endothelial cells. A human umbilical vascular endothelial cell (HUVEC line was used to measure vascular endothelial cell bioactivity related to angiogenesis, such as cell proliferation, migration, and vessel formation. In the low concentration range up to 10 μg/mL, either each alone or in combination, S100A8 and S100A9 proteins promoted proliferation of HUVEC cells in a dose-dependent manner. The presence of both proteins in culture showed additive effects over each single protein. Both proteins enhanced HUVEC cells to migrate across the transwell membrane and to form tube-like structures on the Matrigel surface. When mixed in Matrigel and injected subcutaneously in Balb/c mice, both proteins increased vessel development in the gel plugs. Microarray assay of HUVEC cells treated with 10 μg/mL S100A8 revealed that ribosome pathway, pathogenic Escherichia coli infection pathway, apoptosis, and stress response genes were modulated by S100A8 treatment. We propose that S100A8 and S100A9 proteins from either infiltrating inflammatory cells or tumor cells play an important role in the interplay among inflammation, angiogenesis, and tumorigenesis.

  20. Fibrosarcoma versus fibromatoses and cellular nodular fasciitis. A comparative study of their proliferative activity using proliferating cell nuclear antigen, DNA flow cytometry, and p53.

    Science.gov (United States)

    Oshiro, Y; Fukuda, T; Tsuneyoshi, M

    1994-07-01

    We analyzed the proliferative activities, immunoreactivity of the p53 protein, and aneuploidy in patients with benign and malignant fibrous lesions, including 19 with nodular fasciitis (cellular type) (6-88 years old, mean 42.9), 11 with abdominal fibromatoses (22-74 years old, mean 37.9), 13 with extraabdominal fibromatoses (2-38 years old, mean 19.5), and 23 with fibrosarcomas (adult type: 16-71 years old, mean 47.3; infantile type: 3 months to 9 years, mean 2.9) using immunohistochemistry to determine proliferating cell nuclear antigen (PC10) and p53 protein (CM1) as well as performing DNA flow cytometry. The proliferating cell nuclear antigen (PCNA) score was measured as the ratio of PCNA-positive nuclear size/total nuclear size determined by an image analysis computer system. The distribution pattern of the PCNA-positive cells was uneven in each instance of nodular fasciitis, in contrast to the distribution in abdominal fibromatosis, extraabdominal fibromatosis, and fibrosarcoma. Both fibrosarcoma (28.4 +/- 20.0) and nodular fasciitis (33.6 +/- 20.9) exhibited a larger value and a greater variation in the PCNA score than did either abdominal (13.5 +/- 14.5) or extraabdominal fibromatosis (19.9 +/- 21.5). Abdominal fibromatosis exhibited a smaller value and less variation in the score. In short, the PCNA score did not correlate with the malignant potential. The proliferative index (S + G2 + M fraction) in fibrosarcoma was significantly higher than in either nodular fasciitis or abdominal fibromatosis. Aneuploidy was detected in five cases (26%) of fibrosarcoma, while six (26%) fibrosarcomas showed p53 positivity. Furthermore, p53-positive patients had a worse survival (0.01 < p < 0.05), and p53 positivity correlated with the proliferative index (p < 0.01). In conclusion, the PCNA score simply indicates the proliferative activity independent of malignant potential. On the other hand, p53 positivity, proliferative index, and aneuploidy are all indicators of

  1. Effects of free amino acids on cytokine secretion and proliferative activity of feline T cells in an in vitro study using the cell line MYA-1.

    Science.gov (United States)

    Paßlack, Nadine; Doherr, Marcus G; Zentek, Jürgen

    2016-10-01

    In vitro studies might be an interesting screening method for targeted in vivo studies in the field of immunonutrition and help to reduce and refine animal studies. As the role of amino acids for immune function of cats has not been evaluated in detail so far, the present study aimed at investigating the effects of eight different amino acids (arginine, leucine, isoleucine, valine, glutamine, lysine, threonine and tryptophan) in six concentrations each (0, 0.25, 0.5, 1, 2 and 8x the cat blood level) on cytokine secretion and proliferative activity of feline T cells (MYA-1) in vitro. The results demonstrated that high doses of arginine increased IL-4, IL-10 and TNF-α secretion of T cells, while increasing concentrations of lysine increased IL-10 secretion and proliferative activity of the T cells. High doses of leucine enhanced GM-CSF and IL-10 secretion, while concentrations of threonine in the cell culture media greater than blood concentration also increased GM-CSF and additionally TNF-α secretion of the cells. The effects of glutamine and isoleucine on T cell function were only small. In conclusion, the present in vitro study could evaluate the immunomodulating potential of specific amino acids for feline T cell function. High doses of arginine, lysine, leucine and threonine had a significant impact on cytokine secretion and proliferative activity of the T cells. Targeted in vivo studies should investigate the clinical relevance of dietary supplementation of those amino acids in healthy and diseased cats as a next step. PMID:27510653

  2. Aplysinopsin Analogs: Synthesis and Anti-proliferative Activity of Substituted (Z)-5-(N-benzylindol-3-ylmethylene)imidazolidine-2,4-diones

    OpenAIRE

    Reddy, Y. Thirupathi; Reddy, P. Narsimha; Koduru, Srinivas; Damodaran, Chendil; Crooks, Peter A.

    2010-01-01

    A series of substituted (Z)-5-(N-benzylindol-3-ylmethylene)imidazolidine-2,4-dione (3) analogs structurally related to aplysinopsin, and that incorporate a variety of substituents in both the indole and N-benzyl moieties have been synthesized under microwave irradiation and conventional heating methods These analogs were evaluated for their anti-proliferative activity against MCF-7 and MDA-231 breast cancer cell lines, and A549 and H460 lung cancer cell lines. Two analogs, 3f and 3j had IC50 ...

  3. uPAR EXPRESSION IN CANINE NORMAL PROSTATE AND WITH PROLIFERATIVE DISORDERS

    Directory of Open Access Journals (Sweden)

    Mariana Rodrigues Faleiro

    2013-06-01

    Full Text Available Prostatic lesions such as prostatic intraepithelial neoplasia (PIN and proliferative inflammatory atrophy (PIA are studied in human and canine species due to their malignance potential. The plasminogen activator (PA system has been suggested to play a central role in cell adhesion, angiogenesis, inflammation, and tumor invasion. The urokinase-type plasminogen activator receptor (uPAR is a component of the PA, with a range of expression in tumor and stromal cells. In this study, uPAR expression in both canine normal prostates and with proliferative disorders (benign prostatic hyperplasia-BPH, proliferative inflammatory atrophy-PIA, prostatic intraepithelial neoplasia-PIN, and carcinoma-PC was evaluated by immunohistochemistry in a tissue microarray (TMA slide to establish the role of this enzyme in extracellular matrix (ECM remodeling and in the processes of tissue invasion. A total of 298 cores and 355 diagnoses were obtained, with 36 (10.1% normal prostates, 46 (13.0% with BPH, 128 (36.1% with PIA, 74 (20.8% with PIN and 71 (20.0% with PC. There is variation in the expression of uPAR in canine prostate according to the lesion, with lower expression in normal tissue and with BPH, and higher expression in tissue with PIA, PIN and PC. The high expression of uPAR in inflammatory and neoplastic microenvironment indicates increased proteolytic activity in canine prostates with PIA, PIN, and PC.

  4. Endostatin derivative angiogenesis inhibitors

    Institute of Scientific and Technical Information of China (English)

    ZHENG Meng-jie

    2009-01-01

    Objective To throw light on the superiority of the anti-angiogenesis activity of endostatin (ES) derivatives by reviewing the recent progress in the field of ES molecular structure modification.Data sources The data used in this article were mainly from PubMed with relevant English articles published from 1971 to May 2008.The search terms were "endostatin" and "angiothesis".Study selection Articles involved in the ES molecular structure modification and the original milestone articles were selected.Results A number of ES derivatives were designed and studied to improve its clinical relevance.The modified ES with polyethylene glycol (PEG),low molecular weight heparin (LMWH) and IgG Fc domain extended the circulation half-life.Meanwhile the recombinant ESs showed more potent anti-tumor activity than native ES in mouse xenografts.Mutated ES also changed its anti-angiogenesis activity.Conclusions The anti-angiogenesis treatment remains a promising tumor therapeutic strategy.New ES derivatives would be a good choice to meet the future challenge on clinical application of ES.

  5. Korean Ginseng Berry Fermented by Mycotoxin Non-producing Aspergillus niger and Aspergillus oryzae: Ginsenoside Analyses and Anti-proliferative Activities.

    Science.gov (United States)

    Li, Zhipeng; Ahn, Hyung Jin; Kim, Nam Yeon; Lee, Yu Na; Ji, Geun Eog

    2016-01-01

    To transform ginsenosides, Korean ginseng berry (KGB) was fermented by mycotoxin non-producing Aspergillus niger and Aspergillus oryzae. Changes of ginsenoside profile and anti-proliferative activities were observed. Results showed that A. niger tended to efficiently transform protopanaxadiol (PPD) type ginsenosides such as Rb1, Rb2, Rd to compound K while A. oryzae tended to efficiently transform protopanaxatriol (PPT) type ginsenoside Re to Rh1 via Rg1. Butanol extracts of fermented KGB showed high cytotoxicity on human adenocarcinoma HT-29 cell line and hepatocellular carcinoma HepG2 cell line while that of unfermented KGB showed little. The minimum effective concentration of niger-fermented KGB was less than 2.5 µg/mL while that of oryzae-fermented KGB was about 5 µg/mL. As A. niger is more inclined to transform PPD type ginsenosides, niger-fermented KGB showed stronger anti-proliferative activity than oryzae-fermented KGB. PMID:27582326

  6. Effect of Hedyotis Diffusa Willd extract on tumor angiogenesis.

    Science.gov (United States)

    Lin, Jiumao; Wei, Lihui; Xu, Wei; Hong, Zhenfeng; Liu, Xianxiang; Peng, Jun

    2011-01-01

    Inhibition of tumor angiogenesis has become an attractive target of anticancer chemotherapy. However, drug resistance and cytotoxicity against non-tumor associated endothelial cells limit the long-term use and the therapeutic effectiveness of angiogenesis inhibitors, thus increasing the necessity for the development of multi-target agents with minimal side effects. Traditional Chinese medicine (TCM) formulas, which have relatively fewer side effects and have been used clinically to treat various types of diseases, including cancer, for thousands of years, are considered to be multi-component and multi-target agents exerting their therapeutic function in a more holistic way. Hedyotis Diffusa Willd (EEHDW) has long been used as an important component in several TCM formulas to treat various types of cancer. Although recently we reported that EEHDW promotes cancer cell apoptosis via activation of the mitochondrial-dependent pathway, the precise mechanism of its tumoricidalactivity still remains to be clarified. In the present study, we investigated the angiogenic effects of the ethanol extract of EEHDW. Cell cycle analysis was perfomed using flow cytometry. Cell viability was analyzed using MTT assay. We found that EEHDW inhibited angiogenesis in vivo in chick embryo chorioallantoic membrane (CAM). In addition, we observed that EEHDW dose- and time-dependently inhibited the prolife-ration of human umbilical vein endothelial cells (HUVEC) by blocking the cell cycle G1 to S progression. Moreover, EEHDW inhibited the migration and tube formation of HUVECs. Furthermore, EEHDW treatment down-regulated the mRNA and protein expression levels of VEGF-A in HT-29 human colon carcinoma cells and HUVECs. Our findings suggest that inhibiting tumor angiogenesis is one of the mechanisms by which EEHDW is involved in cancer therapy. PMID:21887465

  7. Anti-cancer activity of an osthole derivative, NBM-T-BMX-OS01: targeting vascular endothelial growth factor receptor signaling and angiogenesis.

    Science.gov (United States)

    Yang, Hung-Yu; Hsu, Ya-Fen; Chiu, Pei-Ting; Ho, Shiau-Jing; Wang, Chi-Han; Chi, Chih-Chin; Huang, Yu-Han; Lee, Cheng-Feng; Li, Ying-Shiuan; Ou, George; Hsu, Ming-Jen

    2013-01-01

    Angiogenesis occurs during tissue growth, development and wound healing. It is also required for tumor progression and represents a rational target for therapeutic intervention. NBM-T-BMX-OS01 (BMX), derived from the semisynthesis of osthole, an active ingredient isolated from Chinese herb Cnidium monnieri (L.) Cuss., was recently shown to enhance learning and memory in rats. In this study, we characterized the anti-angiogenic activities of NBM-T-BMX-OS01 (BMX) in an effort to develop novel inhibitors to suppress angiogenesis and tumor growth. BMX inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration and endothelial tube formation in human umbilical endothelial cells (HUVECs). BMX also attenuated VEGF-induced microvessel sprouting from aortic rings ex vivo and reduced HCT116 colorectal cancer cells-induced angiogenesis in vivo. Moreover, BMX inhibited the phosphorylation of VEGFR2, FAK, Akt and ERK in HUVECs exposed to VEGF. BMX was also shown to inhibit HCT116 cell proliferation and to suppress the growth of subcutaneous xenografts of HCT116 cells in vivo. Taken together, this study provides evidence that BMX modulates vascular endothelial cell remodeling and leads to the inhibition of tumor angiogenesis. These results also support the role of BMX as a potential drug candidate and warrant the clinical development in the treatment of cancer. PMID:24312323

  8. In vivo evidence for platelet-induced physiological angiogenesis by a COX driven mechanism.

    Science.gov (United States)

    Packham, Ian M; Watson, Steve P; Bicknell, Roy; Egginton, Stuart

    2014-01-01

    We sought to determine a role for platelets in in vivo angiogenesis, quantified by changes in the capillary to fibre ratio (C:F) of mouse skeletal muscle, utilising two distinct forms of capillary growth to identify differential effects. Capillary sprouting was induced by muscle overload, and longitudinal splitting by chronic hyperaemia. Platelet depletion was achieved by anti-GPIbα antibody treatment. Sprouting induced a significant increase in C:F (1.42±0.02 vs. contralateral 1.29±0.02, Pplatelet depletion, while the significant C:F increase caused by splitting (1.40±0.03 vs. control 1.28±0.03, PVEGF overexpression failed to rescue angiogenesis following platelet depletion, suggesting the mechanism is not simply reliant on growth factor release. Sprouting occurred normally following antibody-induced GPVI shedding, suggesting platelet activation via collagen is not involved. BrdU pulse-labelling showed no change in the proliferative potential of cells associated with capillaries after platelet depletion. Inhibition of platelet activation by acetylsalicylic acid abolished sprouting, but not splitting angiogenesis, paralleling the response to platelet depletion. We conclude that platelets differentially regulate mechanisms of angiogenesis in vivo, likely via COX signalling. Since endothelial proliferation is not impaired, we propose a link between COX1 and induction of endothelial migration. PMID:25238071

  9. In vivo evidence for platelet-induced physiological angiogenesis by a COX driven mechanism.

    Directory of Open Access Journals (Sweden)

    Ian M Packham

    Full Text Available We sought to determine a role for platelets in in vivo angiogenesis, quantified by changes in the capillary to fibre ratio (C:F of mouse skeletal muscle, utilising two distinct forms of capillary growth to identify differential effects. Capillary sprouting was induced by muscle overload, and longitudinal splitting by chronic hyperaemia. Platelet depletion was achieved by anti-GPIbα antibody treatment. Sprouting induced a significant increase in C:F (1.42±0.02 vs. contralateral 1.29±0.02, P<0.001 that was abolished by platelet depletion, while the significant C:F increase caused by splitting (1.40±0.03 vs. control 1.28±0.03, P<0.01 was unaffected. Granulocyte/monocyte depletion showed this response was not immune-regulated. VEGF overexpression failed to rescue angiogenesis following platelet depletion, suggesting the mechanism is not simply reliant on growth factor release. Sprouting occurred normally following antibody-induced GPVI shedding, suggesting platelet activation via collagen is not involved. BrdU pulse-labelling showed no change in the proliferative potential of cells associated with capillaries after platelet depletion. Inhibition of platelet activation by acetylsalicylic acid abolished sprouting, but not splitting angiogenesis, paralleling the response to platelet depletion. We conclude that platelets differentially regulate mechanisms of angiogenesis in vivo, likely via COX signalling. Since endothelial proliferation is not impaired, we propose a link between COX1 and induction of endothelial migration.

  10. Long term effect of curcumin in regulation of glycolytic pathway and angiogenesis via modulation of stress activated genes in prevention of cancer.

    Directory of Open Access Journals (Sweden)

    Laxmidhar Das

    Full Text Available Oxidative stress, an important factor in modulation of glycolytic pathway and induction of stress activated genes, is further augmented due to reduced antioxidant defense system, which promotes cancer progression via inducing angiogenesis. Curcumin, a naturally occurring chemopreventive phytochemical, is reported to inhibit carcinogenesis in various experimental animal models. However, the underlying mechanism involved in anticarcinogenic action of curcumin due to its long term effect is still to be reported because of its rapid metabolism, although metabolites are accumulated in tissues and remain for a longer time. Therefore, the long term effect of curcumin needs thorough investigation. The present study aimed to analyze the anticarcinogenic action of curcumin in liver, even after withdrawal of treatment in Dalton's lymphoma bearing mice. Oxidative stress observed during lymphoma progression reduced antioxidant enzyme activities, and induced angiogenesis as well as activation of early stress activated genes and glycolytic pathway. Curcumin treatment resulted in activation of antioxidant enzyme super oxide dismutase and down regulation of ROS level as well as activity of ROS producing enzyme NADPH:oxidase, expression of stress activated genes HIF-1α, cMyc and LDH activity towards normal level. Further, it lead to significant inhibition of angiogenesis, observed via MMPs activity, PKCα and VEGF level, as well as by matrigel plug assay. Thus findings of this study conclude that the long term effect of curcumin shows anticarcinogenic potential via induction of antioxidant defense system and inhibition of angiogenesis via down regulation of stress activated genes and glycolytic pathway in liver of lymphoma bearing mice.

  11. [Autoradiographic investigations on postnatal proliferative activity of the telencephalic and diencephalic matrix-zones in the axolotl (Ambystoma mexicanum), with special references to the olfactory organ (author's transl)].

    Science.gov (United States)

    Richter, W; Kranz, D

    1981-01-01

    The localization and proliferative activity of the matrix-zones has been investigated in the telencephalon and in the diencephalon of 21 axolotls (Ambystoma mexicanum) by means of autoradiographs, after injection of tritiated thymidine at different stages of the postnatal life. There are no previous detailed autoradiographical reports on postnatal brain development in the axolotl. Matrix-zones (i.e. ventricular and subventricular zone) exist in the dorsal part and in the ventral part of the telencephalon, we have found these also in the diencephalon in the wall of the preoptic recessus and ventrally of the habenula. The quantitative part of this study indicates high values of the labeling-index in the early postnatal stages. Then, the labeling-index decreases, but also in 3 years old specimens labeled cells were observed in the matrix-zones of the telencephalon; therefore a few of proliferative capacity remains in the central nervous system of adult axolotls. Labeled cells were also found in the olfactory organ of early postnatal and adult axolotls; these are neuroblasts which have relevance for the regeneration of the forebrain.

  12. Angiogenesis in female reproductive system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Neovascularization, i.e. new blood vessels formation, can be divided into two different processes: vasculogenesis, whereby a primitive vascular network is established during embryogenesis from multipotential mesenchymal progenitors; and angiogenesis, which refers to the new blood vessels formation from pre-existing vessels[1,2]. Angiogenesis contributes to the most process throughout the whole life span from embryonic development to adult growth[2]. In this meaning, neovascularization is usually used to imply angiogenesis. Under physiological condi-tions, angiogenesis is a strictly regulated event and rarely happens in most adult tissues except for fracture or heal-ing of wounds[2,3]. However, a notable phenomenon is that the tissues of ovary and uterine endometrium are unique in the cycle-specific changes in vascularity that occur in each estrous/menstrual cycle. Active angiogenesis occurs in placenta to satisfy the needs of embryonic implantation and development. Defects in angiogenesis are associated with some gynecopathies including luteal phase defect, endometriosis, pregnancy loss and preeclampsia[4].

  13. Anti-Proliferative and Pro-Apoptotic Activities of 4-Methyl-2,6-bis(1-phenylethyl)phenol in Cancer Cells.

    Science.gov (United States)

    Sung, Nak Yoon; Kim, Seung Cheol; Kim, Yun Hwan; Kim, Gihyeon; Lee, Yunmi; Sung, Gi-Ho; Kim, Ji Hye; Yang, Woo Seok; Kim, Mi Seon; Baek, Kwang-Soo; Kim, Jong-Hoon; Cho, Jae Youl

    2016-07-01

    It has been found that 4-isopropyl-2,6-bis(1-phenylethyl)phenol (KTH-13), a novel compound isolated from Cordyceps bassiana, is able to suppress tumor cell proliferation by inducing apoptosis. To mass-produce this compound, we established a total synthesis method. Using those conditions, we further synthesized various analogs with structural similarity to KTH-13. In this study, we aimed to test their anti-cancer activity by measuring anti-proliferative and pro-apoptotic activities. Of 8 compounds tested, 4-methyl-2,6-bis(1-phenylethyl)phenol (KTH-13-Me) exhibited the strongest anti-proliferative activity toward MDA-MB 231 cells. KTH-13-Me also similarly suppressed the survival of various cancer cell lines, including C6 glioma, HCT-15, and LoVo cells. Treatment of KTH-13-Me induced several apoptotic signs in C6 glioma cells, such as morphological changes, induction of apoptotic bodies, and nuclear fragmentation and chromatin condensation. Concordantly, early-apoptotic cells were also identified by staining with FITC-Annexin V/PI. Moreover, KTH-13-Me highly enhanced the activation of caspase-3 and caspase-9, and decreased the protein level of Bcl-2. In addition, the phosphorylation levels of Src and STAT3 were diminished in KTH-13-Me-treated C6 cells. Therefore, these results suggest that KTH-13-Me can be developed as a novel anti-cancer drug capable of blocking proliferation, inducing apoptosis, and blocking cell survival signaling in cancer cells. PMID:27068261

  14. Anti-Proliferative and Pro-Apoptotic Activities of 4-Methyl-2,6-bis(1-phenylethyl)phenol in Cancer Cells

    Science.gov (United States)

    Sung, Nak Yoon; Kim, Seung Cheol; Kim, Yun Hwan; Kim, Gihyeon; Lee, Yunmi; Sung, Gi-Ho; Kim, Ji Hye; Yang, Woo Seok; Kim, Mi Seon; Baek, Kwang-Soo; Kim, Jong-Hoon; Cho, Jae Youl

    2016-01-01

    It has been found that 4-isopropyl-2,6-bis(1-phenylethyl)phenol (KTH-13), a novel compound isolated from Cordyceps bassiana, is able to suppress tumor cell proliferation by inducing apoptosis. To mass-produce this compound, we established a total synthesis method. Using those conditions, we further synthesized various analogs with structural similarity to KTH-13. In this study, we aimed to test their anti-cancer activity by measuring anti-proliferative and pro-apoptotic activities. Of 8 compounds tested, 4-methyl-2,6-bis(1-phenylethyl)phenol (KTH-13-Me) exhibited the strongest anti-proliferative activity toward MDA-MB 231 cells. KTH-13-Me also similarly suppressed the survival of various cancer cell lines, including C6 glioma, HCT-15, and LoVo cells. Treatment of KTH-13-Me induced several apoptotic signs in C6 glioma cells, such as morphological changes, induction of apoptotic bodies, and nuclear fragmentation and chromatin condensation. Concordantly, early-apoptotic cells were also identified by staining with FITC-Annexin V/PI. Moreover, KTH-13-Me highly enhanced the activation of caspase-3 and caspase-9, and decreased the protein level of Bcl-2. In addition, the phosphorylation levels of Src and STAT3 were diminished in KTH-13-Me-treated C6 cells. Therefore, these results suggest that KTH-13-Me can be developed as a novel anti-cancer drug capable of blocking proliferation, inducing apoptosis, and blocking cell survival signaling in cancer cells. PMID:27068261

  15. A time frame permissive for Protein Kinase D2 activity to direct angiogenesis in mouse embryonic stem cells

    OpenAIRE

    Müller, Martin; Schröer, Jana; Azoitei, Ninel; Eiseler, Tim; Bergmann, Wendy; Köhntop, Ralf; Lin, Qiong; Costa, Ivan G; Zenke, Martin; Genze, Felicitas; Weidgang, Clair; Seufferlein, Thomas; Liebau, Stefan; Kleger, Alexander

    2015-01-01

    The protein kinase D isoenzymes PKD1/2/3 are prominent downstream targets of PKCs (Protein Kinase Cs) and phospholipase D in various biological systems. Recently, we identified PKD isoforms as novel mediators of tumour cell-endothelial cell communication, tumour cell motility and metastasis. Although PKD isoforms have been implicated in physiological/tumour angiogenesis, a role of PKDs during embryonic development, vasculogenesis and angiogenesis still remains elusive. We investigated the rol...

  16. Proliferative retinopathy predicts nephropathy

    DEFF Research Database (Denmark)

    Karlberg, Charlotte; Falk, Christine; Green, Anders;

    2012-01-01

    We wanted to examine proliferative retinopathy as a marker of incident nephropathy in a 25-year follow-up study of a population-based cohort of Danish type 1 diabetic patients and to examine cross-sectional associations between nephropathy and retinopathy in long-term surviving patients of the sa...

  17. [Proliferative verrucous leukoplakia].

    Science.gov (United States)

    Lindenmüller, Irène Hitz; Lambrecht, J Thomas

    2006-01-01

    Proliferative verrucous leukoplakia (PVL) is a seldom form of oral leukoplakia (OL) with high transformation tendency. It starts as a bold hyperkeratosis changing into an exophytic verrucous form spreading in the oral cavity. The clinical diagnosis therefore is a retrospective one. PMID:16792055

  18. Unaltered Angiogenesis-Regulating Activities of Platelets in Mild Type 2 Diabetes Mellitus despite a Marked Platelet Hyperreactivity

    Science.gov (United States)

    Miao, Xinyan; Zhang, Wei; Huang, Zhangsen

    2016-01-01

    Type 2 diabetes mellitus (T2DM) is associated with platelet dysfunction and impaired angiogenesis. Aim of the study is to investigate if platelet dysfunction might hamper platelet angiogenic activities in T2DM patients. Sixteen T2DM patients and gender/age-matched non-diabetic controls were studied. Flow cytometry and endothelial colony forming cell (ECFC) tube formation on matrigel were used to assess platelet reactivity and angiogenic activity, respectively. Thrombin receptor PAR1-activating peptide (PAR1-AP) induced higher platelet P-selectin expression, and evoked more rapid and intense platelet annexin V binding in T2DM patients, seen as a more rapid increase of annexin V+ platelets (24.3±6.4% vs 12.6±3.8% in control at 2 min) and a higher elevation (30.9±5.1% vs 24.3±3.0% at 8 min). However, PAR1-AP and PAR4-AP induced similar releases of angiogenic regulators from platelets, and both stimuli evoked platelet release of platelet angiogenic regulators to similar extents in T2DM and control subjects. Thus, PAR1-stimulated platelet releasate (PAR1-PR) and PAR4-PR similarly enhanced capillary-like network/tube formation of ECFCs, and the enhancements did not differ between T2DM and control subjects. Direct supplementation of platelets to ECFCs at the ratio of 1:200 enhanced ECFC tube formation even more markedly, leading to approximately 100% increases of the total branch points of ECFC tube formation, for which the enhancements were also similar between patients and controls. In conclusion, platelets from T2DM subjects are hyperreactive. Platelet activation induced by high doses of PAR1-AP, however, results in similar releases of angiogenic regulators in mild T2DM and control subjects. Platelets from T2DM and control subjects also demonstrate similar enhancements on ECFC angiogenic activities. PMID:27612088

  19. Screening of medicinal and edible plants in Okinawa, Japan, for enhanced proliferative and collagen synthesis activities in NB1RGB human skin fibroblast cells.

    Science.gov (United States)

    Takahashi, Makoto; Asikin, Yonathan; Takara, Kensaku; Wada, Koji

    2012-01-01

    To identify plants with bioactive potential for skin care, methanol extracts of 56 plant parts from 47 medical and edible plants cultivated in Okinawa were tested for their proliferative effects on NB1RGB skin fibroblast cells. Extracts from six plants, Bischofia javanica, Colocasia esculenta, Melaleuca alternifolia, Piper angustifolia, Jasminum sambac, and Curcuma longa, showed higher NB1RGB cell proliferation activity (>10%) than the control, at various concentrations. Among the six extracts, only the C. longa extract caused an increase in collagen synthesis in NB1RGB cells, as compared to treatment with the positive control, ascorbic acid (AsA). Expression of the collagen synthesis marker, transforming growth factor-β1, was higher after treatment with the C. longa extract than with AsA. PMID:23221723

  20. Dual Anti-Metastatic and Anti-Proliferative Activity Assessment of Two Probiotics on HeLa and HT-29 Cell Lines

    Directory of Open Access Journals (Sweden)

    Nouri Zahra

    2016-07-01

    Full Text Available Objective Lactobacilli are a group of probiotics with beneficial effects on prevention of cancer. However, there is scant data in relation with the impacts of probiotics in late-stage cancer progration, especially metastasis. The present original work was aimed to evaluate the anti-metastatic and anti-proliferative activity of lactobacillus rhamnosus supernatant (LRS and lactobacillus crispatus supernatant (LCS on the human cervical and colon adenocarcinoma cell lines (HeLa and HT-29, respectively. Materials and Methods In this experimental study, the anti-proliferative activities of LRS and LCS were determined through MTT assay. MRC-5 was used as a normal cell line. Expression analysis of CASP3, MMP2, MMP9, TIMP1 and TIMP2 genes was performed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR, following the cell synchronization. Results Supernatants of these two lactobacilli had cytotoxic effect on HeLa, however LRS treatment was only effective on HT-29 cell line. In addition, LRS had no side-effect on normal cells. It was shown that CASP3 gene expression has been reduced after treatment with supernatants of two studied lactobacilli. According to our study, LRS and LCS are efficacious in the prevention of metastasis potency in HeLa cells with decreased expression of MMP2, MMP9 and increased expression of their inhibitors. In the case of HT-29 cells, only LRS showed this effect. Conclusion Herein, we have demonstrated two probiotics which have anti-metastatic effects on malignant cells and they can be administrated to postpone late-stage of cancer disease. LRS and LCS are effective on HeLa cell lines while only the effect of LRS is significant on HT-29, through cytotoxic and anti-metastatic mechanisms. Further assessments are required to evaluate our results on the other cancer cell lines, in advance to use these probiotics in other extensive trial studies.

  1. Inhibition of HMGB1-induced angiogenesis by cilostazol via SIRT1 activation in synovial fibroblasts from rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Hye Young Kim

    Full Text Available High mobility group box chromosomal protein 1 (HMGB-1 released from injured cells plays an important role in the development of arthritis. This study investigated the anti-angiogenic effects of cilostazol in collagen-induced arthritis (CIA of mice, and the underlying mechanisms involved. The expressions of HIF-1α, VEGF, NF-κB p65 and SIRT1 in synovial fibroblasts obtained from rheumatoid arthritis (RA patients were assessed by Western blotting, and in vitro and in vivo angiogenesis were analyzed. Tube formations by human microvascular endothelial cells (HMVECs were significantly increased by direct exposure to HMGB1 or to conditioned medium derived from HMGB1-stimulated RA fibroblasts, and these increases were attenuated by cilostazol, the latter of which was blocked by sirtinol. HMGB1 increased the expression of HIF-1α and VEGF and concomitantly increased nuclear NF-κB p65 and DNA binding activity, but these effects of HMGB1 were inhibited by cilostazol. SIRT1 protein expression was time-dependently decreased (3-24 hr by HMGB1, which was recovered by pretreatment with cilostazol (1-30 µM or resveratrol, accompanying with increased SIRT1 deacetylase activity. In the tibiotarsal joint tissues of CIA mice treated with vehicle, HIF-1α- and VEGF-positive spots and CD31 staining were markedly exaggerated, whereas SIRT1 immunofluorescence was diminished. These variables were wholly reversed in cilostazol (30 mg/kg/day-treated mice. Furthermore, number of blood vessels stained by von Willebrand factor antibody was significantly lower in cilostazol-treated CIA mice. Summarizing, cilostazol activated SIRT1 and inhibited NF-κB-mediated transcription, thereby suppressing the expression of HIF-1α and VEGF. In addition, cilostazol caused HIF-1α deacetylation by enhancing SIRT1 activity and reduced VEGF production, thereby had an anti-angiogenic effect in vitro studies and in CIA murine model.

  2. Suppressing Akt phosphorylation and activating Fas by safrole oxide inhibited angiogenesis and induced vascular endothelial cell apoptosis in the presence of fibroblast growth factor-2 and serum.

    Science.gov (United States)

    Zhao, Jing; Miao, Junying; Zhao, Baoxiang; Zhang, Shangli; Yin, Deling

    2006-01-01

    At present, vascular endothelial cell (VEC) apoptosis induced by deprivation of fibroblast growth factor-2 (FGF-2) and serum has been well studied. But how to trigger VEC apoptosis in the presence of FGF-2 and serum is not well known. To address this question, in this study, the effects of safrole oxide on angiogenesis and VEC growth stimulated by FGF-2 were investigated. The results showed that safrole oxide inhibited angiogenesis and induced VEC apoptosis in the presence of FGF-2 and serum. To understand the possible mechanism of safrole oxide acting, we first examined the phosphorylation of Akt and the activity of nitric oxide synthase (NOS); secondly, we analyzed the expressions and distributions of Fas and P53; then we measured the activity of phosphatidylcholine specific phospholipase C (PC-PLC) in the VECs treated with and without safrole oxide. The results showed that this small molecule obviously suppressed Akt phosphorylation and the activity of NOS, and promoted the expressions of Fas and P53 markedly. Simultaneously, Fas protein clumped on cell membrane, instead of homogenously distributed. The activity of PC-PLC was not changed obviously. The data suggested that safrole oxide effectively inhibited angiogenesis and triggered VEC apoptosis in the presence of FGF-2 and serum, and it might perform its functions by suppressing Akt/NOS signal pathway, upregulating the expressions of Fas and P53 and modifying the distributing pattern of Fas in VEC. This finding provided a powerful chemical probe for promoting VEC apoptosis during angiogenesis stimulated by FGF-2.

  3. c-Jun activation is associated with proliferation and angiogenesis in invasive breast cancer

    NARCIS (Netherlands)

    Vleugel, M.M.; Greijer, A.E.; Bos, R.; Wall, E. van der; Diest, P.J. van

    2006-01-01

    c-Jun is a component of the transcription factor activator protein 1 (AP-1), which binds and activates transcription at TRE/AP-1 elements. Extra- or intracellular signals, including growth factors, transforming oncoproteins, and UV irradiation, stimulate phosphorylation of c-Jun at serine 63/73 and

  4. Salinity-induced anti-angiogenesis activities and structural changes of the polysaccharides from cultured Cordyceps Militaris.

    Directory of Open Access Journals (Sweden)

    Yangyang Zeng

    Full Text Available Cordyceps is a rare and exotic mushroom that grows out of the head of a mummified caterpillar. Many companies are cultivating Cordyceps to meet the increased demand for its medicinal applications. However, the structures and functions of polysaccharides, one of the pharmaceutical active ingredients in Cordyceps, are difficult to reproduce in vitro. We hypothesized that mimicking the salty environment inside caterpillar bodies might make the cultured fungus synthesize polysaccharides with similar structures and functions to that of wild Cordyceps. By adding either sodium sulfate or sodium chloride into growth media, we observed the salinity-induced anti-angiogenesis activities of the polysaccharides purified from the cultured C. Militaris. To correlate the activities with the polysaccharide structures, we performed the (13C-NMR analysis and observed profound structural changes including different proportions of α and β glycosidic bonds and appearances of uronic acid signals in the polysaccharides purified from the culture after the salts were added. By coupling the techniques of stable (34S-sulfate isotope labeling, aniline- and D5-aniline tagging, and stable isotope facilitated uronic acid-reduction with LC-MS analysis, our data revealed for the first time the existence of covalently linked sulfate and the presence of polygalacuronic acids in the polysaccharides purified from the salt added C. Militaris culture. Our data showed that culturing C. Militaris with added salts changed the biosynthetic scheme and resulted in novel polysaccharide structures and functions. These findings might be insightful in terms of how to make C. Militaris cultures to reach or to exceed the potency of wild Cordyceps in future.

  5. Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8.

    Science.gov (United States)

    Ahn, G-One; Seita, Jun; Hong, Beom-Ju; Kim, Young-Eun; Bok, Seoyeon; Lee, Chan-Ju; Kim, Kwang Soon; Lee, Jerry C; Leeper, Nicholas J; Cooke, John P; Kim, Hak Jae; Kim, Il Han; Weissman, Irving L; Brown, J Martin

    2014-02-18

    Emerging evidence indicates that myeloid cells are essential for promoting new blood vessel formation by secreting various angiogenic factors. Given that hypoxia-inducible factor (HIF) is a critical regulator for angiogenesis, we questioned whether HIF in myeloid cells also plays a role in promoting angiogenesis. To address this question, we generated a unique strain of myeloid-specific knockout mice targeting HIF pathways using human S100A8 as a myeloid-specific promoter. We observed that mutant mice where HIF-1 is transcriptionally activated in myeloid cells (by deletion of the von Hippel-Lindau gene) resulted in erythema, enhanced neovascularization in matrigel plugs, and increased production of vascular endothelial growth factor (VEGF) in the bone marrow, all of which were completely abrogated by either genetic or pharmacological inactivation of HIF-1. We further found that monocytes were the major effector producing VEGF and S100A8 proteins driving neovascularization in matrigel. Moreover, by using a mouse model of hindlimb ischemia we observed significantly improved blood flow in mice intramuscularly injected with HIF-1-activated monocytes. This study therefore demonstrates that HIF-1 activation in myeloid cells promotes angiogenesis through VEGF and S100A8 and that this may become an attractive therapeutic strategy to treat diseases with vascular defects.

  6. Curcumin inhibition of angiogenesis and adipogenesis

    Science.gov (United States)

    The growth of new blood vessels or angiogenesis is necessary for the growth of adipose tissue. Adipokines produced by fat cells stimulate this process. Some dietary polyphenols with antiangiogenic activity may suppress adipose tissue growth not only by inhibiting angiogenesis, but also by interferin...

  7. Extract of Meretrix meretrix Linnaeus induces angiogenesis in vitro and activates endothelial nitric oxide synthase

    Science.gov (United States)

    Liu, Ming; Wei, Jianteng; Wang, Hui; Ding, Lili; Zhang, Yuyan; Lin, Xiukun

    2012-09-01

    Meretrix meretrix Linnaeus has long been used as traditional Chinese medicine in oriental medicine. The angiogentic activity of the extract of M. meretrix was investigated in this study, using human umbilical vein endothelial cells (HUVECs). Extract of M. meretrix Linnaeus (AFG-25) was prepared with acetone and ethanol precipitation, and further separated by Sephadex G-25 column. The results show that AFG-25 promoted proliferation, migration, and capillary-like tube formation in HUVECs, and in the presence of eNOS inhibitor NMA, the tube formation induced by AFG-25 is inhibited significantly. Moreover, AFG-25 could also promote the activation of endothelial nitric oxide synthase (eNOS) and the resultant elevation of nitric oxide (NO) production. The results suggested that M. meretrix contains active ingredients with angiogentic activity and eNOS/NO signal pathway is in part involved in the proangiogenesis effect induced by AFG-25.

  8. Inhibitory activity of the peptides derived from buffalo prolactin on angiogenesis

    Indian Academy of Sciences (India)

    Jaeok Lee; Syamantak Majumder; Suvro Chatterjee; Kambadur Muralidhar

    2011-06-01

    The peptide fragments obtained by cathepsin digestion of purified buffalo prolactin (buPRL) monomer have been characterized using SDS-PAGE and FPLC with regard to size and pI. Their antiangiogenic activity was tested in chick embryo chorioallantoic membrane (CAM) assay and the human endothelial cells wound healing assay. Antiangiogenic activity was observed in cathepsin-cleaved fragments from buPRL. Further, a peptide sequence 45A-46Q-47G-48K-49G-50F-51I-52T-53M-54A-55L-56N-57S-58C, which matched with human somatostatin (hSST), a known antiangiogenic factor, was located in the second loop between the first and second α-helices in the threedimensional structure of buPRL, obtained by homology modelling. The synthetic peptide matching with SST sequence was found to exhibit antiangiogenic activity in both in vitro and ex vivo assays. It was also observed that all the peptides related to buPRL could antagonize the vascular endothelial growth factor (VEGF) and bradykinin (BK)-dependent production of endothelial nitric oxide (NO), which is a pre-requisite for endothelial tube formation. It is concluded therefore that an internal sequence in buPRL and peptide fragments derived from cathepsin-digested buPRL exhibit antiangiogenic activities.

  9. ADAMTS3 activity is mandatory for embryonic lymphangiogenesis and regulates placental angiogenesis

    OpenAIRE

    Janssen, Lauriane; Dupont, Laura; Bekhouche, Mourad; Noel, Agnès; Leduc, Cédric; Voz, Marianne; Peers, Bernard; Cataldo, Didier; Apte, Suneel S.; Dubail, Johanne; Colige, Alain

    2015-01-01

    The only documented activity of a subclass of ADAMTS proteases comprising ADAMTS2, 3 and 14 is the cleavage of the aminopropeptide of fibrillar procollagens. A limited number of in vitro studies suggested that ADAMTS3 is mainly responsible for procollagen II processing in cartilage. Here, we created an ADAMTS3 knockout mouse (Adamts3−/−) model to determine in vivo the actual functions of ADAMTS3. Heterozygous Adamts3+/− mice were viable and fertile, but their intercrosses demonstrated lethali...

  10. Live imaging of cysteine-cathepsin activity reveals dynamics of focal inflammation, angiogenesis, and polyp growth.

    Directory of Open Access Journals (Sweden)

    Elias Gounaris

    Full Text Available It has been estimated that up to 30% of detectable polyps in patients regress spontaneously. One major challenge in the evaluation of effective therapy of cancer is the readout for tumor regression and favorable biological response to therapy. Inducible near infra-red (NIR fluorescent probes were utilized to visualize intestinal polyps of mice hemizygous for a novel truncation of the Adenomatous Polyposis coli (APC gene. Laser Scanning Confocal Microscopy in live mice allowed visualization of cathepsin activity in richly vascularized benign dysplastic lesions. Using biotinylated suicide inhibitors we quantified increased activities of the Cathepsin B & Z in the polyps. More than (3/4 of the probe signal was localized in CD11b(+Gr1(+ myeloid derived suppressor cells (MDSC and CD11b(+F4/80(+ macrophages infiltrating the lesions. Polyposis was attenuated through genetic ablation of cathepsin B, and suppressed by neutralization of TNFalpha in mice. In both cases, diminished probe signal was accounted for by loss of MDSC. Thus, in vivo NIR imaging of focal cathepsin activity reveals inflammatory reactions etiologically linked with cancer progression and is a suitable approach for monitoring response to therapy.

  11. Platelet activating factor produced in vitro by Kaposi's sarcoma cells induces and sustains in vivo angiogenesis.

    OpenAIRE

    Bussolino, F.; Arese, M; Montrucchio, G; Barra, L; Primo, L; Benelli, R; Sanavio, F; M. Aglietta; Ghigo, D; Rola-Pleszczynski, M R

    1995-01-01

    Imbalance in the network of soluble mediators may play a pivotal role in the pathogenesis of Kaposi's sarcoma (KS). In this study, we demonstrated that KS cells grown in vitro produced and in part released platelet activating factor (PAF), a powerful lipid mediator of inflammation and cell-to-cell communication. IL-1, TNF, and thrombin enhanced the synthesis of PAF. PAF receptor mRNA and specific, high affinity binding site for PAF were present in KS cells. Nanomolar concentration of PAF stim...

  12. A new anti-angiogenic small molecule, G0811, inhibits angiogenesis via targeting hypoxia inducible factor (HIF)-1α signal transduction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Hyun; Jung, Hye Jin; Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr

    2013-11-15

    Highlights: •G0811 suppresses HIF-1α expression without cell toxicity. •G0811 exhibits anti-angiogenic activity both in vitro and in vivo. •G0811 provides a new molecular scaffold for the development of therapeutics targeting angiogenesis. -- Abstract: Regulation of hypoxia inducible factor (HIF)-1α stabilization, which in turn contributes to adaptation of tumor cells to hypoxia has been highlighted as a promising therapeutic target in angiogenesis-related diseases. We have identified a new small molecule, G0811, as a potent angiogenesis inhibitor that targets HIF-1α signal transduction. G0811 suppressed HIF-1α stability in cancer cells and inhibited in vitro and in vivo angiogenesis, as validated by tube formation, chemoinvasion, and chorioallantoic membrane (CAM) assays. In addition, G0811 effectively decreased the expression of vascular endothelial growth factor (VEGF), which is one of target genes of HIF-1α. However, G0811 did not exhibit anti-proliferative activities or toxicity in human umbilical vein endothelial cells (HUVECs) at effective doses. These results demonstrate that G0811 could be a new angiogenesis inhibitor that acts by targeting HIF-1α signal transduction pathway.

  13. Anti-proliferative lichen compounds with inhibitory activity on 12(S)-HETE production in human platelets.

    Science.gov (United States)

    Bucar, F; Schneider, I; Ogmundsdóttir, H; Ingólfsdóttir, K

    2004-11-01

    Several lichen compounds, i.e. lobaric acid (1), a beta-orcinol depsidone from Stereocaulon alpinum L., (+)-protolichesterinic acid (2), an aliphatic alpha-methylene-gamma-lactone from Cetraria islandica Laur. (Parmeliaceae), (+)-usnic acid (3), a dibenzofuran from Cladonia arbuscula (Wallr.) Rabenh. (Cladoniaceae), parietin (4), an anthraquinone from Xanthoria elegans (Link) Th. Fr. (Calaplacaceae) and baeomycesic acid (5), a beta-orcinol depside isolated from Thamnolia vermicularis (Sw.) Schaer. var. subuliformis (Ehrh.) Schaer. were tested for inhibitory activity on platelet-type 12(S)-lipoxygenase using a cell-based in vitro system in human platelets. Lobaric acid (1) and (+)-protolichesterinic acid (2) proved to be pronounced inhibitors of platelet-type 12(S)-lipoxygenase, whereas baeomycesic acid (5) showed only weak activity (inhibitory activity at a concentration of 100 microg/ml: (1) 93.4+/-6.62%, (2) 98,5+/-1.19%, 5 14.7+/-2.76%). Usnic acid (3) and parietin (4) were not active at this concentration. 1 and 2 showed a clear dose-response relationship in the range of 3.33-100 microg/ml. According to the calculated IC50 values the highest inhibitory activity was observed for the depsidone 1 (IC50 = 28.5 microM) followed by 2 (IC50 = 77.0 microM). The activity of 1 was comparable to that of the flavone baicalein, which is known as a selective 12(S)-lipoxygenase inhibitor (IC50 = 24.6 microM).

  14. T11TS inhibits Angiopoietin-1/Tie-2 signaling, EGFR activation and Raf/MEK/ERK pathway in brain endothelial cells restraining angiogenesis in glioma model.

    Science.gov (United States)

    Bhattacharya, Debanjan; Chaudhuri, Suhnrita; Singh, Manoj Kumar; Chaudhuri, Swapna

    2015-06-01

    Malignant gliomas represent one of the most aggressive and hypervascular primary brain tumors. Angiopoietin-1, the peptide growth factor activates endothelial Tie-2 receptor promoting vessel maturation and vascular stabilization steps of angiogenesis in glioma. Epidermal growth factor receptor (EGFR) and Tie-2 receptor on endothelial cells once activated transmits signals through downstream Raf/MEK/ERK pathway promoting endothelial cell proliferation and migration which are essential for angiogenesis induction. The in vivo effect of sheep erythrocyte membrane glycopeptide T11-target structure (T11TS) on angiopoietin-1/Tie-2 axis, EGFR signaling and Raf/MEK/ERK pathway in glioma associated endothelial cells has not been investigated previously. The present study performed with rodent glioma model aims to investigate the effect of T11TS treatment on angiopoietin-1/Tie-2 signaling, EGFR activity and Raf/MEK/ERK pathway in glioma associated endothelial cells within glioma milieu. T11TS administration in rodent glioma model inhibited angiopoietin-1 expression and attenuated Tie-2 expression and activation in glioma associated brain endothelial cells. T11TS treatment also downregulated total and phosphorylated EGFR expression in glioma associated endothelial cells. Additionally T11TS treatment inhibited Raf-1 expression, MEK-1 and ERK-1/2 expression and phosphorylation in glioma associated brain endothelial cells. Thus T11TS therapy remarkably inhibits endothelial angiopoietin-1/Tie-2 signaling associated with vessel maturation and simultaneously antagonizes endothelial cell proliferation signaling by blocking EGFR activation and components of Raf/MEK/ERK pathway. Collectively, the findings demonstrate a multi-targeted anti-angiogenic activity of T11TS which augments the potential for clinical translation of T11TS as an effective angiogenesis inhibitor for glioma treatment.

  15. Estrogenic potency of benzophenone UV filters in breast cancer cells: proliferative and transcriptional activity substantiated by docking analysis.

    Directory of Open Access Journals (Sweden)

    Gwenneg Kerdivel

    Full Text Available The results from recent studies show that some benzophenones (BPs and their hydroxylated metabolites can function as weak estrogens (E2 in the environment. However, little is known about the structure-activity relationship of these molecules. We have examined the effects of exposure to ten different BPs on the proliferation of estrogen receptor (ER-positive breast cancer cells and on the transcriptional activity of E2-target genes. We analyzed two genes that are tightly linked with estrogen-mediated proliferation, the CXCL12 and amphiregulin genes and two classical estrogen-responsive genes, the pS2 and progesterone receptor. Significant differences in the BPs efficiency to induce cell proliferation and endogenous E2-target gene expressions were observed. Using ERE-, Sp1-, AP1- and C3-reporter genes that contain different ER-binding sites in their promoter, we also showed significant differences in the BPs efficiency in activation of the ER transactivation. Together, our analyzes showed that the most active molecule is 4-hydroxy-BP. Docking analysis of the interaction of BPs in the ligand-binding pocket of ERα suggests that the minimum structural requirement for the estrogenic activity of BPs is a hydroxyl (OH group in the phenyl A-ring that allows interaction with Glu-353, Arg-394 or Phe-404, which enhances the stability between BPs and ERα. Our modeling also indicates a loss of interaction between the OH groups of the phenyl B-ring and His-524. In addition, the presence of some OH groups in the phenyl B-ring can create repulsion forces, which may constrain helix 12 in an unfavorable position, explaining the differential estrogenic effects of BPs. These results, together with our analysis of BPs for their potency in activation of cell proliferation and ER-mediated transcription, report an improved understanding of the mechanism and structure-activity relationship of BPs.

  16. Quantitative analysis of the anti-proliferative activity of combinations of selected iron-chelating agents and clinically used anti-neoplastic drugs.

    Directory of Open Access Journals (Sweden)

    Eliska Potuckova

    Full Text Available Recent studies have demonstrated that several chelators possess marked potential as potent anti-neoplastic drugs and as agents that can ameliorate some of the adverse effects associated with standard chemotherapy. Anti-cancer treatment employs combinations of several drugs that have different mechanisms of action. However, data regarding the potential interactions between iron chelators and established chemotherapeutics are lacking. Using estrogen receptor-positive MCF-7 breast cancer cells, we explored the combined anti-proliferative potential of four iron chelators, namely: desferrioxamine (DFO, salicylaldehyde isonicotinoyl hydrazone (SIH, (E-N'-[1-(2-hydroxy-5-nitrophenylethyliden] isonicotinoyl hydrazone (NHAPI, and di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT, plus six selected anti-neoplastic drugs. These six agents are used for breast cancer treatment and include: paclitaxel, 5-fluorouracil, doxorubicin, methotrexate, tamoxifen and 4-hydroperoxycyclophosphamide (an active metabolite of cyclophosphamide. Our quantitative chelator-drug analyses were designed according to the Chou-Talalay method for drug combination assessment. All combinations of these agents yielded concentration-dependent, anti-proliferative effects. The hydrophilic siderophore, DFO, imposed antagonism when used in combination with all six anti-tumor agents and this antagonistic effect increased with increasing dose. Conversely, synergistic interactions were observed with combinations of the lipophilic chelators, NHAPI or Dp44mT, with doxorubicin and also the combinations of SIH, NHAPI or Dp44mT with tamoxifen. The combination of Dp44mT with anti-neoplastic agents was further enhanced following formation of its redox-active iron and especially copper complexes. The most potent combinations of Dp44mT and NHAPI with tamoxifen were confirmed as synergistic using another estrogen receptor-expressing breast cancer cell line, T47D, but not estrogen receptor

  17. Quantitative analysis of the anti-proliferative activity of combinations of selected iron-chelating agents and clinically used anti-neoplastic drugs.

    Science.gov (United States)

    Potuckova, Eliska; Jansova, Hana; Machacek, Miloslav; Vavrova, Anna; Haskova, Pavlina; Tichotova, Lucie; Richardson, Vera; Kalinowski, Danuta S; Richardson, Des R; Simunek, Tomas

    2014-01-01

    Recent studies have demonstrated that several chelators possess marked potential as potent anti-neoplastic drugs and as agents that can ameliorate some of the adverse effects associated with standard chemotherapy. Anti-cancer treatment employs combinations of several drugs that have different mechanisms of action. However, data regarding the potential interactions between iron chelators and established chemotherapeutics are lacking. Using estrogen receptor-positive MCF-7 breast cancer cells, we explored the combined anti-proliferative potential of four iron chelators, namely: desferrioxamine (DFO), salicylaldehyde isonicotinoyl hydrazone (SIH), (E)-N'-[1-(2-hydroxy-5-nitrophenyl)ethyliden] isonicotinoyl hydrazone (NHAPI), and di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), plus six selected anti-neoplastic drugs. These six agents are used for breast cancer treatment and include: paclitaxel, 5-fluorouracil, doxorubicin, methotrexate, tamoxifen and 4-hydroperoxycyclophosphamide (an active metabolite of cyclophosphamide). Our quantitative chelator-drug analyses were designed according to the Chou-Talalay method for drug combination assessment. All combinations of these agents yielded concentration-dependent, anti-proliferative effects. The hydrophilic siderophore, DFO, imposed antagonism when used in combination with all six anti-tumor agents and this antagonistic effect increased with increasing dose. Conversely, synergistic interactions were observed with combinations of the lipophilic chelators, NHAPI or Dp44mT, with doxorubicin and also the combinations of SIH, NHAPI or Dp44mT with tamoxifen. The combination of Dp44mT with anti-neoplastic agents was further enhanced following formation of its redox-active iron and especially copper complexes. The most potent combinations of Dp44mT and NHAPI with tamoxifen were confirmed as synergistic using another estrogen receptor-expressing breast cancer cell line, T47D, but not estrogen receptor-negative MDA

  18. In vitro antioxidant and anti-proliferative activities of seed extracts of Nymphaea mexicana in different solvents and GC-MS analysis

    Directory of Open Access Journals (Sweden)

    Umar Shah

    2014-12-01

    Full Text Available A first attempt was made for the GC-MS profiling, anti-oxidant analysis cum DNA protective properties and anti-proliferative activities of a wild aquatic plant, Nymphaea mexicana found in Himalayan region and consumed for its peculiar taste and aroma. Three different solvents were used viz; methanol, ethanol and water. Extracts showed a dose dependent relationship with highest antioxidant potential in ethanol, however highest TPC was found in methanol (0.110 ± 0.05 GAE/g as compared to ethanol (0.095 ± 0.05 GAE/g and water (0.073 ± 0.05 GAE/g. Plant extracts showed efficient DNA damage protection (at concentrations > 30 μg/mL and maximum efficiency against DNA damage was seen in ethanolic solvent. The antiproliferative activities of the plant were noteworthy at a concentration of 20 mg/ mL but were significantly lower than standard (5-flourouracil. The plant is known for its specific taste and aroma hence GC-MS profiling were carried out and relative percentage of important compounds found was determined. GC-MS analysis confirmed some major aroma rendering compounds along with some major anti-oxidants.

  19. Curcuma purpurascens BI. rhizome accelerates rat excisional wound healing: involvement of Hsp70/Bax proteins, antioxidant defense, and angiogenesis activity

    Directory of Open Access Journals (Sweden)

    Rouhollahi E

    2015-10-01

    by downregulating Bax and upregulating Hsp70 protein at the wound site. The formation of new blood vessel was observed in Masson’s trichrome staining of wounds treated with HECP (100 and 200 mg/kg. In addition, HECP administration caused a significant surge in enzymatic antioxidant activities and a decline in lipid peroxidation.Conclusion: These findings suggested that HECP accelerated wound-healing process in rats via antioxidant activity, angiogenesis effect and anti-inflammatory responses involving Hsp70/Bax. Keywords: Zingiberaceae, wound closure, immunohistochemistry, antioxidant enzyme activity, inflammatory cells

  20. Immunotherapy of tumor by targeting angiogenesis

    Institute of Scientific and Technical Information of China (English)

    HOU; Jianmei; TIAN; Ling; WEI; Yuquan

    2004-01-01

    Tumor growth and metastasis are angiogenesis-dependent. Anti-angiogenic therapy represents a new strategy for the development of anti-cancer therapies. In recent years, there has been made great progress in anti-angiogenic therapy. As far as the passive immunotherapy is concerned, a recombinant humanized antibody to vascular endothelial growth factor (VEGF)-Avastin has been approved by FDA as the first angiogenesis inhibitor to treat colorectal cancer. For active specific immunotherapy, various strategies for cancer vaccines, including whole endothelial cell vaccines, dendritic cell vaccines, DNA vaccines, and peptides or protein vaccines, have been developed to break immune tolerance against important molecules associated with tumor angiogenesis and induce angiogenesis-specific immune responses. This article reviews the angiogenesis-targeted immunotherapy of tumor from the above two aspects.

  1. Anti-Proliferative Activity of Meroditerpenoids Isolated from the Brown Alga Stypopodium flabelliforme against Several Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Patricia Valentao

    2011-05-01

    Full Text Available The sea constitutes one of the most promising sources of novel compounds with potential application in human therapeutics. In particular, algae have proved to be an interesting source of new bioactive compounds. In this work, six meroditerpenoids (epitaondiol, epitaondiol diacetate, epitaondiol monoacetate, stypotriol triacetate, 14-ketostypodiol diacetate and stypodiol isolated from the brown alga Stypopodium flabelliforme were tested for their cell proliferation inhibitory activity in five cell lines. Cell lines tested included human colon adenocarcinoma (Caco-2, human neuroblastoma (SH-SY5Y, rat basophilic leukemia (RBL-2H3, murine macrophages (RAW.267 and Chinese hamster fibroblasts (V79. Antimicrobial activity of the compounds was also evaluated against Staphylococcus aureus, Salmonella typhimurium, Proteus mirabilis, Bacillus cereus, Enterococcus faecalis and Micrococcus luteus. Overall, the compounds showed good activity against all cell lines, with SH-SY5Y and RAW.267 being the most susceptible. Antimicrobial capacity was observed for epitaondiol monoacetate, stypotriol triacetate and stypodiol, with the first being the most active. The results suggest that these molecules deserve further studies in order to evaluate their potential as therapeutic agents.

  2. Lasiodiplodan, an exocellular (1→6)-β-D: -glucan from Lasiodiplodia theobromae MMPI: production on glucose, fermentation kinetics, rheology and anti-proliferative activity.

    Science.gov (United States)

    Alves da Cunha, Mário A; Turmina, Janaína A; Ivanov, Raphael C; Barroso, Roney R; Marques, Patrícia T; Fonseca, Eveline A I; Fortes, Zuleica B; Dekker, Robert F H; Khaper, Neelam; Barbosa, Aneli M

    2012-08-01

    Lasiodiplodan, an exopolysaccharide of the (1→6)-β-D: -glucan type, is produced by Lasiodiplodia theobromae MMPI when grown under submerged culture on glucose. The objective of this study was to evaluate lasiodiplodan production by examining the effects of carbon (glucose, fructose, maltose, sucrose) and nitrogen sources (KNO(3), (NH(4))(2)SO(4), urea, yeast extract, peptone), its production in shake flasks compared to a stirred-tank bioreactor, and to study the rheology of lasiodiplodan, and lasiodiplodan's anti-proliferative effect on breast cancer MCF-7 cells. Although glucose (2.05 ± 0.05 g L(-1)), maltose (2.08 ± 0.04 g L(-1)) and yeast extract (2.46 ± 0.06 g L(-1)) produced the highest amounts of lasiodiplodan, urea as N source resulted in more lasiodiplodan per unit biomass than yeast extract (0.74 ± 0.006 vs. 0.22 ± 0.008 g g(-1)). A comparison of the fermentative parameters of L. theobromae MMPI in shake flasks and a stirred-tank bioreactor at 120 h on glucose as carbon source showed maximum lasiodiplodan production in agitated flasks (7.01 ± 0.07 g L(-1)) with a specific yield of 0.25 ± 0.57 g g(-1) and a volumetric productivity of 0.06 ± 0.001 g L(-1) h(-1). A factorial 2(2) statistical design developed to evaluate the effect of glucose concentration (20-60 g L(-1)) and impeller speed (100-200 rpm) on lasiodiplodan production in the bioreactor showed the highest production (6.32 g L(-1)) at 72 h. Lasiodiplodan presented pseudoplastic behaviour, and the apparent viscosity increased at 60°C in the presence of CaCl(2). Anti-proliferative activity of lasiodiplodan was demonstrated in MCF-7 cells, which was time- and dose-dependent with an IC(50) of 100 μg lasiodiplodan mL(-1). PMID:22399240

  3. Endothelin-1 activation of ETB receptors leads to a reduced cellular proliferative rate and an increased cellular footprint

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Jamie L.; Taylor, Linda; Polgar, Peter, E-mail: peterp@bu.edu

    2012-06-10

    Endothelin-1 (ET-1) is a vasoactive peptide which signals through two G-protein coupled receptors, endothelin receptor A (ETA) and B (ETB). We determined that ET-1 activation of its ETB receptor in stably cDNA transfected CHO cells leads to a 55% reduction in cell number by end-point cell counting and a 35% decrease in cell growth by a real-time cell-substrate impedance-based assay after 24 h of cell growth. When CHO ETB cells were synchronized in the late G1 cell cycle phase, ET-1 delayed their S phase progression compared to control by 30% as determined by [{sup 3}H]-thymidine incorporation. On the other hand, no such delay was observed during late G2/M to G1 transit when cells were treated with ET-1 after release from mitotic arrest. Using the cell-substrate impedance-based assay, we observed that ET-1 induces opposing morphological changes in CHO ETA and CHO ETB cells with ETB causing an increase in the cell footprint and ETA a decrease. Likewise, in pulmonary artery smooth muscle cells, which express both ETA and ETB receptors, ET-1 induces an ETA-dependent contraction and an ETB dependent dilation. These results are shedding light on a possible beneficial role for ETB in diseases involving ET-1 dysfunction such as pulmonary hypertension. -- Highlights: Black-Right-Pointing-Pointer ET- hinders cell proliferation in CHO cells transfected with ETB. Black-Right-Pointing-Pointer ET-1 also decreases the rate of DNA synthesis in CHO ETB cells. Black-Right-Pointing-Pointer JNK and PI3K appear to be involved in this reduction of DNA synthesis. Black-Right-Pointing-Pointer ETB activation in CHO ETB cells and hSMCs leads to dilatory morphological changes. Black-Right-Pointing-Pointer In CHO ETA and hSMCs, ETA activation leads to constrictive morphological changes.

  4. Synthesis, characterization, DNA interactions, DNA cleavage, radical scavenging activity, antibacterial, anti-proliferative and docking studies of new transition metal complexes.

    Science.gov (United States)

    Chennam, Kishan Prasad; Ravi, Mudavath; Ushaiah, B; Srinu, V; Eslavath, Ravi Kumar; Devi, Ch Sarala

    2016-01-01

    The compound N-(2-hydroxybenzylidene)-1-ethyl-1, 4-dihydro-7-methyl-4-oxo-1, 8 naphthyridine-3-carbohydrazide (LH) and its Cu (II), Co (II) and Zn (II) complexes were synthesized and characterized. The absorption spectral titrations and competitive DNA binding studies depicted those complexes of title compound bind to CT-DNA through intercalation. Interestingly [Cu (II)-(L2)] showed relatively high binding constant value (6.61 x 10(5) M(-1)) compared to [Co (II)-(L2)] (4.378× 10(5) M(-1)) and [Zn (II)-(L2)] (3.1x10(5) M(-1)). Ligand and its complexes were also examined for DNA nuclease activity against pBR-322 plasmid DNA, which showed that [Cu (II)-(L2)] had the best hydrolytic cleavage property displaying prominent double-strand DNA cleavage. In addition, antioxidant activities of the ligand and its metal complexes investigated through scavenging effects for DPPH radical in- vitro, indicated their potentiality as good antioxidants. The in vitro anti-bacterial study inferred the better anti-bacterial activity of [Cu (II)-(L2)] and this was also correlated theoretically by employing docking studies wherein [Cu (II)-(L2)] displayed good Gold score and Chem score. Finally the in vitro anti- proliferative activity of studied compounds was tested against HeLa and MCF-7 cell lines. Interestingly [Cu (II)-(L2)] displayed lower IC50 value and lower percentage of viability in both HeLa and MCF-7 cell lines.

  5. SMI of Bcl-2 TW-37 is active across a spectrum of B-cell tumors irrespective of their proliferative and differentiation status.

    Science.gov (United States)

    Al-Katib, Ayad M; Sun, Yuan; Goustin, Anton Scott; Azmi, Asfar Sohail; Chen, Ben; Aboukameel, Amro; Mohammad, Ramzi M

    2009-02-16

    The Bcl-2 family of proteins is critical to the life and death of malignant B-lymphocytes. Interfering with their activity using small-molecule inhibitors (SMI) is being explored as a new therapeutic strategy for treating B-cell tumors. We evaluated the efficacy of TW-37, a non-peptidic SMI of Bcl-2 against a range spectrum of human B-cell lines, fresh patient samples and animal xenograft models. Multiple cytochemical and molecular approaches such as acridine orange/ethidium bromide assay for apoptosis, co-immunoprecipitation of complexes and western blot analysis, caspase luminescent activity assay and apoptotic DNA fragmentation assay were used to demonstrate the effect of TW-37 on different B-cell lines, patient derived samples, as well as in animal xenograft models. Nanomolar concentrations of TW-37 were able to induce apoptosis in both fresh samples and established cell lines with IC50 in most cases of 165-320 nM. Apoptosis was independent of proliferative status or pathological classification of B-cell tumor. TW-37 was able to block Bim-Bcl-XL and Bim-Mcl-1 heterodimerization and induced apoptosis via activation of caspases -9, -3, PARP and DNA fragmentation. TW-37 administered to tumor-bearing SCID mice led to significant tumor growth inhibition (T/C), tumor growth delay (T-C) and Log10kill, when used at its maximum tolerated dose (40 mg/kg x 3 days) via tail vein. TW-37 failed to induce changes in the Bcl-2 proteins levels suggesting that assessment of baseline Bcl-2 family proteins can be used to predict response to the drug. These findings indicate activity of TW-37 across the spectrum of human B-cell tumors and support the concept of targeting the Bcl-2 system as a therapeutic strategy regardless of the stage of B-cell differentiation.

  6. Foodomics study on the effects of extracellular production of hydrogen peroxide by rosemary polyphenols on the anti-proliferative activity of rosemary polyphenols against HT-29 cells.

    Science.gov (United States)

    Valdés, Alberto; García-Cañas, Virginia; Koçak, Engin; Simó, Carolina; Cifuentes, Alejandro

    2016-07-01

    A number of studies have demonstrated a strong association between the antioxidant properties of rosemary polyphenols and their chemoprotective activity. However, the prooxidant effects of rosemary polyphenols have been rarely reported. In this work, a foodomics study is performed to investigate the in vitro autooxidation of carnosic acid (CA), carnosol (CS) and a polyphenol-enriched rosemary extract (SC-RE) in cell culture conditions. The results revealed that rosemary polyphenols autooxidation in culture medium generated H2 O2 at different rates. Generated H2 O2 levels by SC-RE and CA, but not CS, were correlated with intracellular reactive oxygen species (ROS) generation in HT-29 cells, and were partially involved in their anti-proliferative effect in this cell line. These compounds also induced different effects on glutathione metabolism. Results also indicated that high extracellular H2 O2 concentrations, resulting of using high (45 μg/mL) SC-RE concentration in culture media, exerted some artifactual effects related with cell cycle, but they did not influence the expression of relevant molecular biomarkers of stress. PMID:26842614

  7. Cytotoxic Compounds from Juglans sinensis Dode Display Anti-Proliferative Activity by Inducing Apoptosis in Human Cancer Cells.

    Science.gov (United States)

    Lee, Yoo Jin; Cui, Jun; Lee, Jun; Han, Ah-Reum; Lee, Eun Byul; Jang, Ho Hee; Seo, Eun Kyoung

    2016-01-01

    Phytochemical investigation of the bark of Juglans sinensis Dode (Juglandaceae) led to the isolation of two active compounds, 8-hydroxy-2-methoxy-1,4-naphthoquinone (1) and 5-hydroxy-2-methoxy-1,4-naphthoquinone (2), together with 15 known compounds 3-17. All compounds were isolated from this plant for the first time. The structures of 1 and 2 were elucidated by spectroscopic data analysis, including 1D and 2D NMR experiments. Compounds 1-17 were tested for their cytotoxicity against the A549 human lung cancer cell line; compounds 1 and 2 exhibited significant cytotoxicity and additionally had potent cytotoxicity against six human cancer cell lines, MCF7 (breast cancer), SNU423 (liver cancer), SH-SY5Y (neuroblastoma), HeLa (cervical cancer), HCT116 (colorectal cancer), and A549 (lung cancer). In particular, breast, colon, and lung cancer cells were more sensitive to the treatment using compound 1. In addition, compounds 1 and 2 showed strong cytotoxic activity towards human breast cancer cells MCF7, HS578T, and T47D, but not towards MCF10A normal-like breast cells. They also inhibited the colony formation of MCF7, A549, and HCT116 cells in a dose-dependent manner. Flow cytometry analysis revealed that the percentage of apoptotic cells significantly increased in MCF7 cells upon the treatment with compounds 1 and 2. The mechanism of cell death caused by compounds 1 and 2 may be attributed to the upregulation of Bax and downregulation of Bcl2. These findings suggest that compounds 1 and 2 may be regarded as potential therapeutic agents against cancer.

  8. Two New Oleanane-Type Saponins with Anti-Proliferative Activity from Camellia oleifera Abel. Seed Cake.

    Science.gov (United States)

    Zong, Jian-Fa; Peng, Yun-Ru; Bao, Guan-Hu; Hou, Ru-Yan; Wan, Xiao-Chun

    2016-01-01

    Two new oleanane-type saponins, named oleiferasaponins C₄ (1) and C₅ (2), were isolated from Camellia oleifera Abel. seed cake residue. Their respective structures were identified as 16α-hydroxy-22α-O-angeloyl-23α-aldehyde-28-dihydroxymethylene-olean-12-ene-3β-O-[β-d-galacto-pyranosyl-(1→2)]-[β-d-glucopyranosyl-(1→2)-β-d-galactopyranosy-(1→3)]-β-d-glucopyranosid-uronic acid methyl ester (1) and 16α-hydroxy-22α-O-angeloyl-23α-aldehyde-28-dihydroxy-methylene-olean-12-ene-3β-O-[β-d-galactopyranosyl-(1→2)]-[β-d-galactopyranosyl-(1→3)]-β-d-glucopyranosiduronic acid methyl ester (2) through 1D- and 2D-NMR, HR-ESI-MS, and GC-MS spectroscopic methods. The two compounds exhibited potent cytotoxic activities against five human tumor cell lines (BEL-7402, BGC-823, MCF-7, HL-60 and KB).

  9. Two New Oleanane-Type Saponins with Anti-Proliferative Activity from Camellia oleifera Abel. Seed Cake

    Directory of Open Access Journals (Sweden)

    Jian-Fa Zong

    2016-02-01

    Full Text Available Two new oleanane-type saponins, named oleiferasaponins C4 (1 and C5 (2, were isolated from Camellia oleifera Abel. seed cake residue. Their respective structures were identified as 16α-hydroxy-22α-O-angeloyl-23α-aldehyde-28-dihydroxymethylene-olean-12-ene-3β-O-[β-d-galacto-pyranosyl-(1→2]-[β-d-glucopyranosyl-(1→2-β-d-galactopyranosy-(1→3]-β-d-glucopyranosid-uronic acid methyl ester (1 and 16α-hydroxy-22α-O-angeloyl-23α-aldehyde-28-dihydroxy-methylene-olean-12-ene-3β-O-[β-d-galactopyranosyl-(1→2]-[β-d-galactopyranosyl-(1→3]-β-d-glucopyranosiduronic acid methyl ester (2 through 1D- and 2D-NMR, HR-ESI-MS, and GC-MS spectroscopic methods. The two compounds exhibited potent cytotoxic activities against five human tumor cell lines (BEL-7402, BGC-823, MCF-7, HL-60 and KB.

  10. BPR1K653, a novel Aurora kinase inhibitor, exhibits potent anti-proliferative activity in MDR1 (P-gp170-mediated multidrug-resistant cancer cells.

    Directory of Open Access Journals (Sweden)

    Chun Hei Antonio Cheung

    Full Text Available BACKGROUND: Over-expression of Aurora kinases promotes the tumorigenesis of cells. The aim of this study was to determine the preclinical profile of a novel pan-Aurora kinase inhibitor, BPR1K653, as a candidate for anti-cancer therapy. Since expression of the drug efflux pump, MDR1, reduces the effectiveness of various chemotherapeutic compounds in human cancers, this study also aimed to determine whether the potency of BPR1K653 could be affected by the expression of MDR1 in cancer cells. PRINCIPAL FINDINGS: BPR1K653 specifically inhibited the activity of Aurora-A and Aurora-B kinase at low nano-molar concentrations in vitro. Anti-proliferative activity of BPR1K653 was evaluated in various human cancer cell lines. Results of the clonogenic assay showed that BPR1K653 was potent in targeting a variety of cancer cell lines regardless of the tissue origin, p53 status, or expression of MDR1. At the cellular level, BPR1K653 induced endo-replication and subsequent apoptosis in both MDR1-negative and MDR1-positive cancer cells. Importantly, it showed potent activity against the growth of xenograft tumors of the human cervical carcinoma KB and KB-derived MDR1-positive KB-VIN10 cells in nude mice. Finally, BPR1K653 also exhibited favorable pharmacokinetic properties in rats. CONCLUSIONS AND SIGNIFICANCE: BPR1K653 is a novel potent anti-cancer compound, and its potency is not affected by the expression of the multiple drug resistant protein, MDR1, in cancer cells. Therefore, BPR1K653 is a promising anti-cancer compound that has potential for the management of various malignancies, particularly for patients with MDR1-related drug resistance after prolonged chemotherapeutic treatments.

  11. Activation of cord T lymphocytes. III. Role of LFA-1/ICAM-1 and CD2/LFA-3 adhesion molecules in CD3-induced proliferative response.

    Science.gov (United States)

    Gerli, R; Agea, E; Muscat, C; Tognellini, R; Fiorucci, G; Spinozzi, F; Cernetti, C; Bertotto, A

    1993-04-15

    As cord T cells, a model of antigen (Ag)-unprimed cell, display a functional defect when stimulated through the CD3 molecule, the role of lymphocyte function-associated antigen 1(LFA-1)/intercellular adhesion molecule 1 (ICAM-1) and CD2/lymphocyte function-associated antigen 3 (LFA-3) receptor-ligand pairs in cord CD3-triggered T-cell activation was analyzed using specific monoclonal antibodies (mAb) against each adhesion molecule. The addition of anti-CD11a, anti-CD18, or anti-CD2 to both adult and cord peripheral blood mononuclear cells (PBMC) cultures led to a decrease in CD3-induced proliferation. In contrast, CD3-stimulated cord, but not adult, PBMC proliferation was markedly enhanced when anti-CD54 or anti-CD58 were added. Despite the fact that ICAM-1 and LFA-3 molecules were virtually absent on cord resting T cells, mAb against these two molecules boosted both mitogenesis of and interleukin (IL)-2 production by purified cord T cells stimulated with plastic immobilized anti-CD3. Cord T-cell supernatant levels of interferon-gamma (IFN-gamma) were undetectable with CD3 stimulation, slightly raised with CD58/CD3 costimulation, but normal when T cells were preincubated with IL-2 for 24 hr before being costimulated with anti-CD3/CD58. Evidence that IL-2 and IFN-gamma play a pivotal role in fully activating cord T cells came from the demonstration that IL-2 and IFN-gamma are able to bypass the CD3-proliferative defect through differential up-regulation of the adhesion molecules. It would, therefore, seem that ICAM-1 and LFA-3 molecules are crucially implicated in the CD3-activation pathway of Ag-unprimed T cells. PMID:7684326

  12. SGR J1550-5418 BURSTS DETECTED WITH THE FERMI GAMMA-RAY BURST MONITOR DURING ITS MOST PROLIFIC ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Van der Horst, A. J.; Finger, M. H. [Universities Space Research Association, NSSTC, Huntsville, AL 35805 (United States); Kouveliotou, C. [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Gorgone, N. M. [Connecticut College, New London, CT 06320 (United States); Kaneko, Y.; Goegues, E.; Lin, L. [Sabanc Latin-Small-Letter-Dotless-I University, Orhanl Latin-Small-Letter-Dotless-I -Tuzla, Istanbul 34956 (Turkey); Baring, M. G. [Department of Physics and Astronomy, Rice University, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Guiriec, S.; Bhat, P. N.; Chaplin, V. L.; Goldstein, A. [University of Alabama, Huntsville, CSPAR, Huntsville, AL 35805 (United States); Granot, J. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Watts, A. L. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Bissaldi, E.; Gruber, D. [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, Postfach 1312, 85748 Garching (Germany); Gehrels, N.; Harding, A. K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gibby, M. H.; Giles, M. M., E-mail: A.J.VanDerHorst@uva.nl [Jacobs Technology, Inc., Huntsville, AL (United States); and others

    2012-04-20

    We have performed detailed temporal and time-integrated spectral analysis of 286 bursts from SGR J1550-5418 detected with the Fermi Gamma-ray Burst Monitor (GBM) in 2009 January, resulting in the largest uniform sample of temporal and spectral properties of SGR J1550-5418 bursts. We have used the combination of broadband and high time-resolution data provided with GBM to perform statistical studies for the source properties. We determine the durations, emission times, duty cycles, and rise times for all bursts, and find that they are typical of SGR bursts. We explore various models in our spectral analysis, and conclude that the spectra of SGR J1550-5418 bursts in the 8-200 keV band are equally well described by optically thin thermal bremsstrahlung (OTTB), a power law (PL) with an exponential cutoff (Comptonized model), and two blackbody (BB) functions (BB+BB). In the spectral fits with the Comptonized model, we find a mean PL index of -0.92, close to the OTTB index of -1. We show that there is an anti-correlation between the Comptonized E{sub peak} and the burst fluence and average flux. For the BB+BB fits, we find that the fluences and emission areas of the two BB functions are correlated. The low-temperature BB has an emission area comparable to the neutron star surface area, independent of the temperature, while the high-temperature BB has a much smaller area and shows an anti-correlation between emission area and temperature. We compare the properties of these bursts with bursts observed from other SGR sources during extreme activations, and discuss the implications of our results in the context of magnetar burst models.

  13. Adipose tissue-derived mesenchymal stem cells in long-term dialysis patients display downregulation of PCAF expression and poor angiogenesis activation.

    Directory of Open Access Journals (Sweden)

    Shuichiro Yamanaka

    Full Text Available We previously demonstrated that mesenchymal stem cells (MSCs differentiate into functional kidney cells capable of urine and erythropoietin production, indicating that they may be used for kidney regeneration. However, the viability of MSCs from dialysis patients may be affected under uremic conditions. In this study, we isolated MSCs from the adipose tissues of end-stage kidney disease (ESKD patients undergoing long-term dialysis (KD-MSCs; mean: 72.3 months and from healthy controls (HC-MSCs to compare their viability. KD-MSCs and HC-MSCs were assessed for their proliferation potential, senescence, and differentiation capacities into adipocytes, osteoblasts, and chondrocytes. Gene expression of stem cell-specific transcription factors was analyzed by PCR array and confirmed by western blot analysis at the protein level. No significant differences of proliferation potential, senescence, or differentiation capacity were observed between KD-MSCs and HC-MSCs. However, gene and protein expression of p300/CBP-associated factor (PCAF was significantly suppressed in KD-MSCs. Because PCAF is a histone acetyltransferase that mediates regulation of hypoxia-inducible factor-1α (HIF-1α, we examined the hypoxic response in MSCs. HC-MSCs but not KD-MSCs showed upregulation of PCAF protein expression under hypoxia. Similarly, HIF-1α and vascular endothelial growth factor (VEGF expression did not increase under hypoxia in KD-MSCs but did so in HC-MSCs. Additionally, a directed in vivo angiogenesis assay revealed a decrease in angiogenesis activation of KD-MSCs. In conclusion, long-term uremia leads to persistent and systematic downregulation of PCAF gene and protein expression and poor angiogenesis activation of MSCs from patients with ESKD. Furthermore, PCAF, HIF-1α, and VEGF expression were not upregulated by hypoxic stimulation of KD-MSCs. These results suggest that the hypoxic response may be blunted in MSCs from ESKD patients.

  14. Soliton driven angiogenesis

    Science.gov (United States)

    Bonilla, L. L.; Carretero, M.; Terragni, F.; Birnir, B.

    2016-08-01

    Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process.

  15. A novel dual-functioning ruthenium(II)-arene complex of an anti-microbial ciprofloxacin derivative - Anti-proliferative and anti-microbial activity.

    Science.gov (United States)

    Ude, Ziga; Romero-Canelón, Isolda; Twamley, Brendan; Fitzgerald Hughes, Deirdre; Sadler, Peter J; Marmion, Celine J

    2016-07-01

    7-(4-(Decanoyl)piperazin-1-yl)-ciprofloxacin, CipA, (1) which is an analogue of the antibiotic ciprofloxacin, and its ruthenium(II) complex [Ru(η(6)-p-cymene)(CipA-H)Cl], (2) have been synthesised and the x-ray crystal structures of 1·1.3H2O·0.6CH3OH and 2·CH3OH·0.5H2O determined. The complex adopts a typical pseudo-octahedral 'piano-stool' geometry, with Ru(II) π-bonded to the p-cymene ring and σ-bonded to a chloride and two oxygen atoms of the chelated fluoroquinolone ligand. The complex is highly cytotoxic in the low μM range and is as potent as the clinical drug cisplatin against the human cancer cell lines A2780, A549, HCT116, and PC3. It is also highly cytotoxic against cisplatin- and oxaliplatin-resistant cell lines suggesting a different mechanism of action. The complex also retained low μM cytotoxicity against the human colon cancer cell line HCT116p53 in which the tumour suppressor p53 had been knocked out, suggesting that the potent anti-proliferative properties associated with this complex are independent of the status of p53 (in contrast to cisplatin). The complex also retained moderate anti-bacterial activity in two Escherichia coli, a laboratory strain and a clinical isolate resistant to first, second and third generation β-lactam antibiotics.

  16. A novel dual-functioning ruthenium(II)-arene complex of an anti-microbial ciprofloxacin derivative - Anti-proliferative and anti-microbial activity.

    Science.gov (United States)

    Ude, Ziga; Romero-Canelón, Isolda; Twamley, Brendan; Fitzgerald Hughes, Deirdre; Sadler, Peter J; Marmion, Celine J

    2016-07-01

    7-(4-(Decanoyl)piperazin-1-yl)-ciprofloxacin, CipA, (1) which is an analogue of the antibiotic ciprofloxacin, and its ruthenium(II) complex [Ru(η(6)-p-cymene)(CipA-H)Cl], (2) have been synthesised and the x-ray crystal structures of 1·1.3H2O·0.6CH3OH and 2·CH3OH·0.5H2O determined. The complex adopts a typical pseudo-octahedral 'piano-stool' geometry, with Ru(II) π-bonded to the p-cymene ring and σ-bonded to a chloride and two oxygen atoms of the chelated fluoroquinolone ligand. The complex is highly cytotoxic in the low μM range and is as potent as the clinical drug cisplatin against the human cancer cell lines A2780, A549, HCT116, and PC3. It is also highly cytotoxic against cisplatin- and oxaliplatin-resistant cell lines suggesting a different mechanism of action. The complex also retained low μM cytotoxicity against the human colon cancer cell line HCT116p53 in which the tumour suppressor p53 had been knocked out, suggesting that the potent anti-proliferative properties associated with this complex are independent of the status of p53 (in contrast to cisplatin). The complex also retained moderate anti-bacterial activity in two Escherichia coli, a laboratory strain and a clinical isolate resistant to first, second and third generation β-lactam antibiotics. PMID:26993079

  17. p27 kip1 haplo-insufficiency improves cardiac function in early-stages of myocardial infarction by protecting myocardium and increasing angiogenesis by promoting IKK activation.

    Science.gov (United States)

    Zhou, Ningtian; Fu, Yuxuan; Wang, Yunle; Chen, Pengsheng; Meng, Haoyu; Guo, Shouyu; Zhang, Min; Yang, Zhijian; Ge, Yingbin

    2014-08-07

    p27(kip1) (p27) is widely known as a potent cell cycle inhibitor in several organs, especially in the heart. However, its role has not been fully defined during the early phase of myocardial infarction (MI). In this study, we investigated the relationships between p27, vascular endothelial growth factor/hepatocyte growth factor (VEGF/HGF) and NF-κB in post-MI cardiac function repair both in vivo and in the hypoxia/ischemia-induced rat myocardiocyte model. In vivo, haplo-insufficiency of p27 improved cardiac function, diminished the infarct zone, protected myocardiocytes and increased angiogenesis by enhancing the production of VEGF/HGF. In vitro, the presence of conditioned medium from hypoxia/ischemia-induced p27 knockdown myocardiocytes reduced the injury caused by hypoxia/ischemia in myocardiocytes, and this effect was reversed by VEGF/HGF neutralizing antibodies, consistent with the cardioprotection being due to VEGF/HGF secretion. We also observed that p27 bound to IKK and that p27 haplo-insufficiency promoted IKK/p65 activation both in vivo and in vitro, thereby inducing the NF-κB downstream regulator, VEGF/HGF. Furthermore, IKKi and IKK inhibitor negated the effect of VEGF/HGF. Therefore, we conclude that p27 haplo-insufficiency protects against heart injury by VEGF/HGF mediated cardioprotection and increased angiogenesis through promoting IKK activation.

  18. Pro-life role for c-Jun N-terminal kinase and p38 mitogen-activated protein kinase at rostral ventrolateral medulla in experimental brain stem death

    Directory of Open Access Journals (Sweden)

    Chang Alice YW

    2012-11-01

    Full Text Available Abstract Background Based on an experimental brain stem death model, we demonstrated previously that activation of the mitogen-activated protein kinase kinase 1/2 (MEK1/2/extracellular signal-regulated kinase 1/2 (ERK1/2/mitogen-activated protein kinase signal-interacting kinase 1/2 (MNK1/2 cascade plays a pro-life role in the rostral ventrolateral medulla (RVLM, the origin of a life-and-death signal detected from systemic arterial pressure, which sequentially increases (pro-life and decreases (pro-death to reflect progressive dysfunction of central cardiovascular regulation during the advancement towards brain stem death in critically ill patients. The present study assessed the hypothesis that, in addition to ERK1/2, c-Jun NH2-terminal kinase (JNK and p38 mitogen-activated protein kinase (p38MAPK, the other two mammalian members of MAPKs that are originally identified as stress-activated protein kinases, are activated specifically by MAPK kinase 4 (MAP2K4 or MAP2K6 and play a pro-life role in RVLM during experimental brain stem death. We further delineated the participation of phosphorylating activating transcriptional factor-2 (ATF-2 and c-Jun, the classical transcription factor activated by JNK or p38MAPK, in this process. Results An experimental model of brain stem death that employed microinjection of the organophosphate insecticide mevinphos (Mev; 10 nmol bilaterally into RVLM of Sprague–Dawley rats was used, alongside cardiovascular, pharmacological and biochemical evaluations. Results from ELISA showed that whereas the total JNK, p38MAPK, MAP2K4 and MAP2K6 were not affected, augmented phosphorylation of JNK at Thr183 and Tyr185 and p38MAPK at Thr180 and Tyr182, accompanied by phosphorylation of their upstream activators MAP2K4 at Ser257 and Thr261 and MAP2K6 at Ser207 and Thr211 in RVLM occurred preferentially during the pro-life phase of experimental brain stem death. Moreover, the activity of transcription factors ATF-2 at Thr71 and

  19. Proliferation, bcl-2 expression and angiogenesis in pituitary adenomas: relationship to tumour behaviour

    OpenAIRE

    Turner, H E; Nagy, Zs.; Gatter, K C; Esiri, M M; Wass, J A H; Harris, A. L.

    2000-01-01

    The prediction of pituitary tumour behaviour, in terms of response to treatment from which can be derived optimal management strategies, is a challenge that has been approached using several different means. Angiogenesis in other tumour types has been shown to be correlated with poor response to treatment and tumour recurrence. The aim of this paper is to assess the role of measurements of cell proliferation and angiogenesis in predicting pituitary tumour behaviour. The proliferative capacity...

  20. ARTEMIN promotes de novo angiogenesis in ER negative mammary carcinoma through activation of TWIST1-VEGF-A signalling.

    Directory of Open Access Journals (Sweden)

    Arindam Banerjee

    Full Text Available The neurotrophic factor ARTEMIN (ARTN has been reported to possess a role in mammary carcinoma progression and metastasis. Herein, we report that ARTN modulates endothelial cell behaviour and promotes angiogenesis in ER-mammary carcinoma (ER-MC. Human microvascular endothelial cells (HMEC-1 do not express ARTN but respond to exogenously added, and paracrine ARTN secreted by ER-MC cells. ARTN promoted endothelial cell proliferation, migration, invasion and 3D matrigel tube formation. Angiogenic behaviour promoted by ARTN secreted by ER-MC cells was mediated by AKT with resultant increased TWIST1 and subsequently VEGF-A expression. In a patient cohort of ER-MC, ARTN positively correlated with VEGF-A expression as measured by Spearman's rank correlation analysis. In xenograft experiments, ER-MC cells with forced expression of ARTN produced tumors with increased VEGF-A expression and increased microvessel density (CD31 and CD34 compared to tumors formed by control cells. Functional inhibition of ARTN by siRNA decreased the angiogenic effects of ER-MC cells. Bevacizumab (a humanized monoclonal anti-VEGF-A antibody partially inhibited the ARTN mediated angiogenic effects of ER-MC cells and combined inhibition of ARTN and VEGF-A by the same resulted in further significant decrease in the angiogenic effects of ER-MC cells. Thus, ARTN stimulates de novo tumor angiogenesis mediated in part by VEGF-A. ARTN therefore co-ordinately regulates multiple aspects of tumor growth and metastasis.

  1. Non-Proliferative Diabetic Retinopathy Vision Simulator

    Science.gov (United States)

    ... Retinopathy Vision Simulator Non-Proliferative Diabetic Retinopathy Vision Simulator Mar. 03, 2014 How does non-proliferative diabetic ... to form deposits. Previous Proliferative Diabetic Retinopathy Vision Simulator Related Ask an Ophthalmologist Answers Injection alternatives for ...

  2. Angiogenesis and liver fibrosis

    Institute of Scientific and Technical Information of China (English)

    Gülsüm ?zlem Elpek

    2015-01-01

    Recent data indicate that hepatic angiogenesis,regardless of the etiology, takes place in chronic liverdiseases (CLDs) that are characterized by inflammationand progressive fibrosis. Because antiangiogenictherapy has been found to be efficient inthe prevention of fibrosis in experimental models ofCLDs, it is suggested that blocking angiogenesis couldbe a promising therapeutic option in patients withadvanced fibrosis. Consequently, efforts are beingdirected to revealing the mechanisms involved inangiogenesis during the progression of liver fibrosis.Literature evidences indicate that hepatic angiogenesisand fibrosis are closely related in both clinical andexperimental conditions. Hypoxia is a major inducer ofangiogenesis together with inflammation and hepaticstellate cells. These profibrogenic cells stand at theintersection between inflammation, angiogenesis andfibrosis and play also a pivotal role in angiogenesis.This review mainly focuses to give a clear view on therelevant features that communicate angiogenesis withprogression of fibrosis in CLDs towards the-end point ofcirrhosis that may be translated into future therapies.The pathogenesis of hepatic angiogenesis associatedwith portal hypertension, viral hepatitis, non-alcoholicfatty liver disease and alcoholic liver disease are alsodiscussed to emphasize the various mechanisms involvedin angiogenesis during liver fibrogenesis.

  3. Aged B lymphocytes retain their ability to express surface markers but are dysfunctional in their proliferative capability during early activation events

    Directory of Open Access Journals (Sweden)

    McGlauchlen Kiley

    2008-11-01

    Full Text Available Abstract Background Ageing is associated with dysfunction in the humoral response leading to decreased protection against infectious diseases. Defects in T cell function due to age have been well characterized but it is unclear if dysfunctions in antibody responses are due to deficiencies in a helper environment or intrinsic B cell defects. Previous studies from our laboratory have shown that aged B lymphocytes are able to differentiate into high affinity antibody-secreting cells at a frequency similar to their young counterparts. However, expansion of B cells in vivo was reduced in aged animals when compared to young. Methods To further investigate the cause of this reduced expansion, we have now examined early activation events of aged B cells in response to anti-CD40 monoclonal antibody (mAb and lipopolysaccharide (LPS stimulation in vitro. To do this spleen cells were harvested from young, middle-aged and aged quasi-monoclonal (QM mice and cultured in complete RPMI for 24 and 48 hours. Cultures contained either LPS or anti-CD40 mAb and murine IL-4. Cells were collected and analyzed using flow cytometry. To examine the proliferative capacity of aged B cells spleen cells were collected as before and cultured in 96 well microtiter plates with either LPS or anti-CD40 mAb and murine IL-4 for 24 hours. Tritiated thymidine ([3H]-Tdr was added to each well and incubated for another 24 hours after which cells were collected and analyzed using a scintillation counter. Results Resting aged B cells exhibited similar levels of CD40 expression when compared to young cells and efficiently up-regulated CD86 and CD69 and also down-regulated CD38 upon stimulation. However, aged B cells proliferated less than young B cells and showed a consistent, but not statistically significant, reduction in their ability to form blast cells. Conclusion Aged B cells exhibited a reduced response in some early activation events but produced at least a partial response in all

  4. Angiogenesis and tumor

    Directory of Open Access Journals (Sweden)

    Kamran Mansouri

    2010-12-01

    Full Text Available Angiogenesis, the process of new blood vessel formation from existing ones, plays an important role in the physiologic circumstances such as embryonic development, placenta formation, and wound healing. It is also crucial to progress of pathogenic processes of a variety of disorders, including tumor growth and metastasis. In general, angiogenesis process is a multi-factorial and highly structured sequence of cellular events comprising migration, proliferation and differentiation of endothelial cells and finally vascular formation, maturation and remodeling.Thereby, angiogenesis inhibition as a helping agent to conventional therapies such as chemotherapy and radiation has attracted the scientists’ attentions studying in this field.

  5. Galectins in angiogenesis: consequences for gestation.

    Science.gov (United States)

    Blois, Sandra M; Conrad, Melanie L; Freitag, Nancy; Barrientos, Gabriela

    2015-04-01

    Members of the galectin family have been shown to exert several roles in the context of reproduction. They contribute to placentation, maternal immune regulation and facilitate angiogenesis encompassing decidualisation and placenta formation during pregnancy. In the context of neo-vascularisation, galectins have been shown to augment signalling pathways that lead to endothelial cell activation, cell proliferation, migration and tube formation in vitro in addition to angiogenesis in vivo. Angiogenesis during gestation ensures not only proper foetal growth and development, but also maternal health. Consequently, restriction of placental blood flow has major consequences for both foetus and mother, leading to pregnancy diseases. In this review we summarise both the established and the emerging roles of galectin in angiogenesis and discuss the possible implications during healthy and pathological gestation.

  6. The Hemostatic System and Angiogenesis in Malignancy

    Directory of Open Access Journals (Sweden)

    Marek Z. Wojtukiewicz

    2001-01-01

    Full Text Available Coagulopathy and angiogenesis are among the most consistent host responses associated with cancer. These two respective processes, hitherto viewed as distinct, may in fact be functionally inseparable as blood coagulation and fibrinolysis, in their own right, influence tumor angiogenesis and thereby contribute to malignant growth. In addition, tumor angiogenesis appears to be controlled through both standard and non-standard functions of such elements of the hemostatic system as tissue factor, thrombin, fibrin, plasminogen activators, plasminogen, and platelets. “Cryptic” domains can be released from hemostatic proteins through proteolytic cleavage, and act systemically as angiogenesis inhibitors (e.g., angiostatin, antiangiogenic antithrombin III aaATIII. Various components of the hemostatic system either promote or inhibit angiogenesis and likely act by changing the net angiogenic balance. However, their complex influences are far from being fully understood. Targeted pharmacological and/ or genetic inhibition of pro-angiogenic activities of the hemostatic system and exploitation of endogenous angiogenesis inhibitors of the angiostatin and aaATIII variety are under study as prospective anti-cancer treatments.

  7. EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression.

    Science.gov (United States)

    Gu, Jian-Wei; Makey, Kristina L; Tucker, Kevan B; Chinchar, Edmund; Mao, Xiaowen; Pei, Ivy; Thomas, Emily Y; Miele, Lucio

    2013-01-01

    The role of EGCG, a major green tea catechin in breast cancer therapy is poorly understood. The present study tests the hypothesis that EGCG can inhibit the activation of HIF-1α and NFκB, and VEGF expression, thereby suppressing tumor angiogenesis and breast cancer progression. Sixteen eight-wk-old female mice (C57BL/6 J) were inoculated with 10^6 E0771 (mouse breast cancer) cells in the left fourth mammary gland fat pad. Eight mice received EGCG at 50-100 mg/kg/d in drinking water for 4 weeks. 8 control mice received drinking water only. Tumor size was monitored using dial calipers. At the end of the experiment, blood samples, tumors, heart and limb muscles were collected for measuring VEGF expression using ELISA and capillary density (CD) using CD31 immunohistochemistry. EGCG treatment significantly reduced tumor weight over the control (0.37 ± 0.15 vs. 1.16 ± 0.30 g; P < 0.01), tumor CD (109 ± 20 vs. 156 ± 12 capillary #/mm^2; P < 0.01), tumor VEGF expression (45.72 ± 1.4 vs. 59.03 ± 3.8 pg/mg; P < 0.01), respectively. But, it has no effects on the body weight, heart weight, angiogenesis and VEGF expression in the heart and skeletal muscle of mice. EGCG at 50 μg/ml significantly inhibited the activation of HIF-1α and NFκB as well as VEGF expression in cultured E0771 cells, compared to the control, respectively. These findings support the hypothesis that EGCG, a major green tea catechin, directly targets both tumor cells and tumor vasculature, thereby inhibiting tumor growth, proliferation, migration, and angiogenesis of breast cancer, which is mediated by the inhibition of HIF-1α and NFκB activation as well as VEGF expression.

  8. A mutation in the mitochondrial protein UQCRB promotes angiogenesis through the generation of mitochondrial reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Junghwa [Chemical Genomics National Research Lab., Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Jung, Hye Jin [Department of Pharmaceutical Engineering, Sun Moon University, Asansi, Chungnam 330-150 (Korea, Republic of); Jeong, Seung Hun; Kim, Hyoung Kyu; Han, Jin [National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Department of Health Sciences and Technology, Cardiovascular and Metabolic Disease Center, Inje University, Busan (Korea, Republic of); Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr [Chemical Genomics National Research Lab., Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of)

    2014-12-12

    Highlights: • We constructed mitochondrial protein UQCRB mutant stable cell lines on the basis of a human case report. • These mutant cell lines exhibit pro-angiogenic activity with enhanced VEGF expression. • Proliferation of mutant cell lines was regulated by UQCRB inhibitors. • UQCRB may have a functional role in angiogenesis. - Abstract: Ubiquinol-cytochrome c reductase binding protein (UQCRB) is one of the subunits of mitochondrial complex III and is a target protein of the natural anti-angiogenic small molecule terpestacin. Previously, the biological role of UQCRB was thought to be limited to the maintenance of complex III. However, the identification and validation of UQCRB as a target protein of terpestacin enabled the role of UQCRB in oxygen sensing and angiogenesis to be elucidated. To explore the biological role of this protein further, UQCRB mutant stable cell lines were generated on the basis of a human case report. We demonstrated that these cell lines exhibited glycolytic and pro-angiogenic activities via mitochondrial reactive oxygen species (mROS)-mediated HIF1 signal transduction. Furthermore, a morphological abnormality in mitochondria was detected in UQCRB mutant stable cell lines. In addition, the proliferative effect of the UQCRB mutants was significantly regulated by the UQCRB inhibitors terpestacin and A1938. Collectively, these results provide a molecular basis for UQCRB-related biological processes and reveal potential key roles of UQCRB in angiogenesis and mitochondria-mediated metabolic disorders.

  9. A comparison of the effects of unfractionated heparin, dalteparin and danaparoid on vascular endothelial growth factor-induced tumour angiogenesis and heparanase activity.

    Science.gov (United States)

    Takahashi, Hidenori; Ebihara, Satoru; Okazaki, Tatsuma; Asada, Masanori; Sasaki, Hidetada; Yamaya, Mutsuo

    2005-10-01

    Disseminated intravascular coagulation (DIC) is the most common complication of solid tumours. In this study, the effectiveness of three polysaccharide anticoagulants (PSAs), at therapeutic doses, at inhibiting solid tumour growth was investigated. Mice with tumour xenografts were subcutaneously injected with either unfractionated heparin (UFH; 200 units kg(-1) day(-1)), dalteparin (75 units kg(-1) day(-1)) or danaparoid (50 units kg(-1) day(-1)). At these concentrations, these PSAs are equieffective at inhibiting blood coagulation activated factor X. In mice with Lewis lung carcinoma (LLC) tumours dalteparin and, to a lesser extent, UFH inhibited both tumour growth and angiogenesis, whereas danaparoid did not. In contrast, in mice with KLN205 tumours, all the PSAs inhibited tumour growth and angiogenesis. All the PSAs significantly inhibited proliferation, migration of endothelial cells and vessel formation in matrigel plugs containing vascular endothelial growth factor (VEGF) and there were no significant differences between these effects of the PSAs. The PSAs had no effect on endothelial cell tubular formation in vitro. Although all the PSAs inhibited VEGF production in KLN205 tumours in vivo and cells in vitro, in LLC tumours and cells only UFH and dalteparin inhibited VEGF production, whereas danaparoid did not. In both LLC and KLN205 tumours in vivo, heparanase activity was inhibited by UFH and dalteparin, but not by danaparoid. Hence, UFH and dalteparin may be more effective than danaparoid at inhibiting cancer progression in DIC patients with solid tumours, due at least in part to their ability to suppress VEGF and heparanase in tumours. PMID:16041398

  10. Increased Brain Perfusion Persists over the First Month of Life in Term Asphyxiated Newborns Treated with Hypothermia: Does it Reflect Activated Angiogenesis?

    Science.gov (United States)

    Shaikh, Henna; Lechpammer, Mirna; Jensen, Frances E; Warfield, Simon K; Hansen, Anne H; Kosaras, Bela; Shevell, Michael; Wintermark, Pia

    2015-06-01

    Many asphyxiated newborns still develop brain injury despite hypothermia therapy. The development of brain injury in these newborns has been related partly to brain perfusion abnormalities. The purposes of this study were to assess brain hyperperfusion over the first month of life in term asphyxiated newborns and to search for some histopathological clues indicating whether this hyperperfusion may be related to activated angiogenesis following asphyxia. In this prospective cohort study, regional cerebral blood flow was measured in term asphyxiated newborns treated with hypothermia around day 10 of life and around 1 month of life using magnetic resonance imaging (MRI) and arterial spin labeling. A total of 32 MRI scans were obtained from 24 term newborns. Asphyxiated newborns treated with hypothermia displayed an increased cerebral blood flow in the injured brain areas around day 10 of life and up to 1 month of life. In addition, we looked at the histopathological clues in a human asphyxiated newborn and in a rat model of neonatal encephalopathy. Vascular endothelial growth factor (VEGF) was expressed in the injured brain of an asphyxiated newborn treated with hypothermia in the first days of life and of rat pups 24-48 h after the hypoxic-ischemic event, and the endothelial cell count increased in the injured cortex of the pups 7 and 11 days after hypoxia-ischemia. Our data showed that the hyperperfusion measured by imaging persisted in the injured areas up to 1 month of life and that angiogenesis was activated in the injured brain of asphyxiated newborns. PMID:25620793

  11. Modulation of angiogenesis by tissue inhibitor of metalloproteinase-4

    International Nuclear Information System (INIS)

    Despite the importance of MMP activity in the regulation of angiogenesis, relatively little is known about the role of TIMP-4, the most recently discovered endogenous MMP inhibitor, in modulating neovascularization. It has largely been assumed that all TIMPs are capable of inhibiting angiogenesis in vivo. However, it is now widely appreciated that TIMPs-1, -2, and -3 differ significantly in their ability to modulate angiogenic processes in vitro and angiogenesis in vivo. In order to study the effect of TIMP-4 in controlling angiogenesis, we have cloned and expressed TIMP-4 in a Pichia pastoris expression system, purified it to homogeneity, and tested its ability to regulate angiogenesis in vivo and in vitro. Our studies demonstrate that TIMP-4 is an inhibitor of capillary endothelial cell migration, but not of proliferation or of angiogenesis in vivo

  12. Expression profiling of ETS and MMP factors in VEGF-activated endothelial cells: role of MMP-10 in VEGF-induced angiogenesis.

    Science.gov (United States)

    Heo, Sun-Hee; Choi, Young-Jin; Ryoo, Hyun-Mo; Cho, Je-Yoel

    2010-09-01

    In the process of angiogenesis, working of many transcription factors at the proper time is important to activate angiogenesis-related genes such as cytokine, matrix protease and adhesion molecules. In this study, we searched for Ets transcription factors and matrix metalloproteinases (MMPs) that respond to VEGF in endothelial cells. We first analyzed the expression of 27 human Ets factors and 15 human MMPs in VEGF-treated human umbilical vein endothelial cells (HUVEC) using quantitative RT-PCR. The most abundant Ets factors in HUVEC were ETS-1, Fli-1, ERP/NET/ELK3, and ERG. MMP-1, -2, -10, -11, -14, -15, and -16 were also detected in HUVEC. We also found that ETV-1, Fli-1, ERG, MMP-1, -3, -7, -8, -9, -10, -13, and -19 expression is up-regulated more than 1.5-fold in HUVEC after 2 h of VEGF treatment. In addition, the expression of MMP-10 induced by VEGF remained twofold higher for 24 h compared to non-treated control. The elevation of MMP10 mRNA and protein levels was confirmed to be both time- and dosage-dependent. In addition, MMP-10 transcription was mediated by Ets-1 but not ERP/NET/ELK3. The inhibition of PI3K and MAPK inhibited VEGF-induced MMP-10 expression. Furthermore, transfection of MMP-10 siRNA inhibited VEGF-induced migration and tube formation in HUVEC, and it also inhibited vessel formation in matrigel plugs in vivo. In conclusion, our study demonstrated induction of MMP-10 by VEGF in HUVEC and supports an angiogenic role for MMP-10 in response to VEGF stimulation in vitro and in vivo. PMID:20432469

  13. The expression of osteopontin and vascular endothelial growth factor in correlation with angiogenesis in monoclonal gammopathy of undetermined significance and multiple myeloma.

    Science.gov (United States)

    Babarović, Emina; Valković, Toni; Budisavljević, Ivana; Balen, Ivan; Štifter, Sanja; Duletić-Načinović, Antica; Lučin, Ksenija; Jonjić, Nives

    2016-06-01

    Several studies have shown a gradual increase in the extent of bone marrow angiogenesis in various stages of proliferative plasma cell disorders, from monoclonal gammopathy of undetermined significance (MGUS) to active multiple myeloma (MM). The main aim of this study was to evaluate tumor angiogenesis parameters in detail and to correlate them with the expression of osteopontin (OPN) and vascular endothelial growth factor (VEGF) in the bone marrow of patients with MGUS and MM. In addition, we wanted to determine their prognostic significance in active MM. Ninety-five patients were enrolled in the study: 14 diagnosed with MGUS, 13 with asymptomatic myeloma (AMM) and 68 with active MM. Computer assisted image analysis was used to determine the angiogenesis parameters, the quantity of microvessels per 1mm(2) (MVD), the area occupied by microvessels per 1mm(2) and the percentage of microvessel area in total section area (TVA). Double immunohistochemical methods CD138+VEGF and CD138+OPN were used to evaluate expression of these proteins in plasma cells, and OPN was also analyzed for its interstitial expression (iOPN). A significant positive correlation was determined between VEGF and iOPN with angiogenic parameters in the MGUS stage of the disease. In advanced stages of the disease, a significant negative correlation was recorded between OPN and iOPN with parameters of angiogenesis. Overall survival was significantly shorter for patients with negative iOPN (p=0.002) and higher angiogenic parameters, MVD (p=0.009), TVA (p=0.008) and area of microvessels per 1mm(2) (p=0.02). Positive VEGF expression in our model predicted a better three-year survival of patients with active MM (OR: 5.25, p=0.03; HR: 0.44, p=0.04). The results of our study suggested a possible key role of VEGF and OPN in the induction of angiogenesis in early-stage disease. PMID:26997492

  14. Phlorizin, an Active Ingredient of Eleutherococcus senticosus, Increases Proliferative Potential of Keratinocytes with Inhibition of MiR135b and Increased Expression of Type IV Collagen.

    Science.gov (United States)

    Choi, Hye-Ryung; Nam, Kyung-Mi; Lee, Hyun-Sun; Yang, Seung-Hye; Kim, Young-Soo; Lee, Jongsung; Date, Akira; Toyama, Kazumi; Park, Kyoung-Chan

    2016-01-01

    E. senticosus extract (ESE), known as antioxidant, has diverse pharmacologic effects. It is also used as an antiaging agent for the skin and phlorizin (PZ) is identified as a main ingredient. In this study, the effects of PZ on epidermal stem cells were investigated. Cultured normal human keratinocytes and skin equivalents are used to test whether PZ affects proliferative potential of keratinocytes and how it regulates these effects. Skin equivalents (SEs) were treated with ESE and the results showed that the epidermis became slightly thickened on addition of 0.002% ESE. The staining intensity of p63 as well as proliferating cell nuclear antigen (PCNA) is increased, and integrin α6 was upregulated. Analysis of ESE confirmed that PZ is the main ingredient. When SEs were treated with PZ, similar findings were observed. In particular, the expression of integrin α6, integrin β1, and type IV collagen was increased. Levels of mRNA for type IV collagen were increased and levels of miR135b were downregulated. All these findings suggested that PZ can affect the proliferative potential of epidermal cells in part by microenvironment changes via miR135b downregulation and following increased expression of type IV collagen. PMID:27042261

  15. Phlorizin, an Active Ingredient of Eleutherococcus senticosus, Increases Proliferative Potential of Keratinocytes with Inhibition of MiR135b and Increased Expression of Type IV Collagen

    Directory of Open Access Journals (Sweden)

    Hye-Ryung Choi

    2016-01-01

    Full Text Available E. senticosus extract (ESE, known as antioxidant, has diverse pharmacologic effects. It is also used as an antiaging agent for the skin and phlorizin (PZ is identified as a main ingredient. In this study, the effects of PZ on epidermal stem cells were investigated. Cultured normal human keratinocytes and skin equivalents are used to test whether PZ affects proliferative potential of keratinocytes and how it regulates these effects. Skin equivalents (SEs were treated with ESE and the results showed that the epidermis became slightly thickened on addition of 0.002% ESE. The staining intensity of p63 as well as proliferating cell nuclear antigen (PCNA is increased, and integrin α6 was upregulated. Analysis of ESE confirmed that PZ is the main ingredient. When SEs were treated with PZ, similar findings were observed. In particular, the expression of integrin α6, integrin β1, and type IV collagen was increased. Levels of mRNA for type IV collagen were increased and levels of miR135b were downregulated. All these findings suggested that PZ can affect the proliferative potential of epidermal cells in part by microenvironment changes via miR135b downregulation and following increased expression of type IV collagen.

  16. From angiogenesis to neuropathology

    Science.gov (United States)

    Greenberg, David A.; Jin, Kunlin

    2005-12-01

    Angiogenesis - the growth of new blood vessels - is a crucial force for shaping the nervous system and protecting it from disease. Recent advances have improved our understanding of how the brain and other tissues grow new blood vessels under normal and pathological conditions. Angiogenesis factors, especially vascular endothelial growth factor, are now known to have roles in the birth of new neurons (neurogenesis), the prevention or mitigation of neuronal injury (neuroprotection), and the pathogenesis of stroke, Alzheimer's disease and motor neuron disease. As our understanding of pathophysiology grows, these developments may point the way towards new molecular and cell-based therapies.

  17. Inhibitors of Angiogenesis.

    Science.gov (United States)

    Büning, H; Hacker, U T

    2016-01-01

    Angiogenesis plays a pivotal role in malignant, ischemic, inflammatory, infectious and immune disorders. The increasing molecular understanding of angiogenic processes fostered the development of strategies to induce or inhibit angiogenesis for therapeutic purposes. Here, we focus on anti-angiogenic therapies, which represent a standard of care in the treatment of different cancer types and in neovascular age-related macular degeneration. Specifically, strategies related to the blockade of angiogenic proteins and receptors will be outlined covering both preclinical and clinical aspects. Finally, examples of gene therapy based anti-angiogenic approaches are presented. PMID:27236560

  18. Impact of ABCB1 1236C > T-2677G > T-3435C > T polymorphisms on the anti-proliferative activity of imatinib, nilotinib, dasatinib and ponatinib

    Science.gov (United States)

    Dessilly, Géraldine; Panin, Nadtha; Elens, Laure; Haufroid, Vincent; Demoulin, Jean-Baptiste

    2016-01-01

    Overexpression of ABCB1 (also called P-glycoprotein) confers resistance to multiple anticancer drugs, including tyrosine kinase inhibitors (TKIs). Several ABCB1 single nucleotide polymorphisms affect the transporter activity. The most common ABCB1 variants are 1236C > T, 2677G > T, 3435C > T and have been associated with clinical response to imatinib in chronic myelogenous leukaemia (CML) in some studies. We evaluated the impact of these polymorphisms on the anti-proliferative effect and the intracellular accumulation of TKIs (imatinib, nilotinib, dasatinib and ponatinib) in transfected HEK293 and K562 cells. ABCB1 overexpression increased the resistance of cells to doxorubicin, vinblastine and TKIs. Imatinib anti-proliferative effect and accumulation were decreased to a larger extent in cells expressing the ABCB1 wild-type protein compared with the 1236T-2677T-3435T variant relatively to control cells. By contrast, ABCB1 polymorphisms influenced the activity of nilotinib, dasatinib and ponatinib to a much lesser extent. In conclusion, our data suggest that wild-type ABCB1 exports imatinib more efficiently than the 1236T-2677T-3435T variant protein, providing a molecular basis for the reported association between ABCB1 polymorphisms and the response to imatinib in CML. Our results also point to a weaker impact of ABCB1 polymorphisms on the activity of nilotinib, dasatinib and ponatinib. PMID:27405085

  19. New molecular connections in angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Qiling Xu; David Wilkinson

    2010-01-01

    @@ In vertebrates, oxygen and nutrients are delivered to tissues by the circula-tion of blood through vessels, comprised of a branched network of endothelial tubes termed the vasculature. Crucial for the formation of blood vessels during development is the process of angiogenesis, in which new sprouts form from pre-existing vessels in a complex cascade of cellular events. This involves the activation of an endothelial cell in the vessel to become a highly exploratory 'tip' cell that migrates to invade the surrounding tissues, while remaining tightly connected to the fol-lowing cells that subsequently generate the tubular structures of a new vessel.

  20. Effects of Blood-Activating and Stasis-Removing Drugs Combined with VEGF Gene Transfer on Angiogenesis in Ischemic Necrosis of the Femoral Head

    Institute of Scientific and Technical Information of China (English)

    LI Jun-hui; WU Ya-ling; YE Jian-hong; NING Ya-gong; YU Hai-ying; PENG Zhong-jie; LUAN Xiao-wen

    2009-01-01

    Objective:To observe the promoting effects of blood-activating and stasis-removing Chinese drugs combined with vascular endothelial growth factor (VEGF) gene transfer on angiogenesis in ischemic necrosis of the femoral head.Methods:Forty Japanese giant-ear rabbits were randomly divided into a control group, a model group, a Chinese drug group, a gene group, and a combined group.After 8 weeks of treatment, the rate of VEGF positive cell expression in the synovium of the femoral head was measured using the immunohistochemical method, and the number of blood vessels in the femoral head was measured by digital subtraction angiography.Results:The rate of VEGF positive cell expression in the model group was significantly lower than that in the Chinese drug group (P<0.05) and very significantly lower than those in other groups (P<0.01);but in the combined group it was significantly higher than in the Chinese drug group (P<0.05).The differences in the number of blood vessels in area A between the model group and other groups were not statistically significant.However, in area B, the number of blood vessels significantly increased in the control group, the gene group and the combined group as compared with the model group (P<0.05), and in the combined group the number of blood vessels was significantly more than in the gene group (P<0.05);but in the Chinese drug group it was not significantly different than the model group P>0.05).Conelusion:Either the blood-activating and stasis-removing Chinese drugs or VEGF gene transfer can promote the angiogenesis and building of collateral circulation for femoral head ischemic necrosis, and the combined therapy with Chinese drugs or VEGF gene transfer may show a better therapeutic effect.The present study provides an experimental basis for clinical application of the combined therapy with the blood-activating and stasis-removing Chinese drugs and VEGF gene transfer.

  1. Activation of Epidermal Growth Factor Receptor/p38/Hypoxia-inducible Factor-1α Is Pivotal for Angiogenesis and Tumorigenesis of Malignantly Transformed Cells Induced by Hexavalent Chromium.

    Science.gov (United States)

    Kim, Donghern; Dai, Jin; Park, Youn-Hee; Fai, Leonard Yenwong; Wang, Lei; Pratheeshkumar, Poyil; Son, Young-Ok; Kondo, Kazuya; Xu, Mei; Luo, Jia; Shi, Xianglin; Zhang, Zhuo

    2016-07-29

    Hexavalent chromium (Cr(VI))-containing compounds are well established environmental carcinogens. Most mechanistic investigations of Cr(VI)-induced carcinogenesis focus on oxidative stress and various cellular responses, leading to malignant cell transformation or the first stage of metal-induced carcinogenesis. The development of malignantly transformed cells into tumors that require angiogenesis is the second stage. This study focuses on the second stage, in particular, the role of EGF receptor (EGFR) signaling in angiogenesis and tumorigenesis of Cr(VI)-transformed cells. Our preliminary studies have shown that EGFR is constitutively activated in Cr(VI)-transformed cells, in lung tissue from Cr(VI)-exposed animals, and in lung tumor tissue from a non-smoking worker occupationally exposed to Cr(VI) for 19 years. Using in vitro and in vivo models, the present study has investigated the role of EGFR in angiogenesis of Cr(VI)-transformed cells. The results show that Cr(VI)-transformed cells are angiogenic. Hypoxia-inducible factor-1α, pro-angiogenic protein matrix metalloproteinase 1, and VEGF are all highly expressed in Cr(VI)-transformed cells, in lung tissue from animals exposed to Cr(VI), and in lung tumor tissue from a non-smoking worker occupationally exposed to Cr(VI) for 19 years. p38 MAPK is also activated in Cr(VI)-transformed cells and in human lung tumor tissue. Inhibition of EGFR reduces p38 MAPK, resulting in decreased expression of hypoxia-inducible factor-1α, metalloproteinase 1, and VEGF, leading to suppressions of angiogenesis and tumorigenesis. Overall, the present study has demonstrated that EGFR plays an important role in angiogenesis and tumorigenesis of Cr(VI)-transformed cells. PMID:27226640

  2. The Harvard angiogenesis story.

    Science.gov (United States)

    Miller, Joan W

    2014-01-01

    I shall discuss the work of researchers at Harvard Medical School who came together in the early 1990s. Scattered across various Harvard-affiliated hospitals and research centers, these individuals were unified by their interest in ocular neovascularization. Together and separately, they investigated models of ocular neovascularization, exploring tumor angiogenesis in eye development and disease.

  3. Angiogenesis in vestibular schwannomas

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Werther, Kim; Nalla, Amarnadh;

    2010-01-01

    Vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) are potent mediators of tumor angiogenesis. It has been demonstrated that vestibular schwannoma VEGF expression correlates with tumor growth pattern, whereas knowledge on the expression of MMPs is lacking. This study t...

  4. Evaluation of the effects of ethinylestradiol on sexual differentiation in the olvas-GFP/STII-YI medaka (transgenic Oryzias latipes) strain as estimated by proliferative activity of germ cells

    Energy Technology Data Exchange (ETDEWEB)

    Hano, Takeshi [National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452 (Japan); Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581 (Japan); Oshima, Yuji, E-mail: yoshima@agr.kyushu-u.ac.jp [Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581 (Japan); Kinoshita, Masato [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Tanaka, Minoru [Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585 Aichi (Japan); Mishima, Noriko; Wakamatsu, Yuko; Ozato, Kenjiro [Laboratory of Freshwater Fish Stocks, Bioscience and Biotechnology Center, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Shimasaki, Yohei; Honjo, Tsuneo [Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581 (Japan)

    2011-08-15

    We evaluated the effects of 17(-ethinylestradiol (EE{sub 2}) on sexual differentiation in transgenic olvas-GFP/STII-YI medaka (Oryzias latipes) in terms of the proliferative activity of germ cells. This strain contains the green fluorescent protein (GFP) gene fused to the regulatory region of the medaka vasa gene, and germ cell-specific expression of GFP can be visualized in living (transparent) individuals. From 0 days post-hatch (0 dph) onwards, juveniles were exposed to graded concentrations of EE{sub 2} (25.2-1710 ng/L) for 35 days. The gonads of live specimens were monitored by measuring their size and calculating their GFP-fluorescence area. GFP-fluorescent area in control females was about 10 times that in control males at 10 days posthatch (dph) whereas the gonadal size of 10 dph males that had been exposed to 158 ng/L of EE{sub 2} significantly increased up to twice the size of control males, indicating that abnormal sexual differentiation towards female might occur in these individuals. Histological examination and identification of the sex-linked marker SL1 indicated that male to female sex reversal occurred at EE{sub 2} exposure {>=}45.1 ng/L at 35 dph. These results suggest that observation of proliferative activity of germ cells in the olvas-GFP/STII-YI strain could be applied to facilitated screening fish model to detect adverse effects on sexual differentiation as early as 10 dph juveniles.

  5. Anti-proliferative effect of Ficus pumila Linn. on human leukemic cell lines

    Directory of Open Access Journals (Sweden)

    Christopher Larbie

    2015-04-01

    Conclusion: These findings suggest that crude extracts of FPS and FPL have anti-proliferative effect on the leukemia cells. The antioxidant properties of the plant including phenolics may be partly responsible for the anti-proliferative activity. Further studies are required to isolate chemical components of the plant and establish their anti-proliferative activities and mechanism of action. [Int J Basic Clin Pharmacol 2015; 4(2.000: 330-336

  6. Angiogenic and Vasculogenic Factors in the Vitreous from Patients with Proliferative Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Ahmed M. Abu El-Asrar

    2013-01-01

    Full Text Available This study was conducted to determine levels of angiogenic and endothelial progenitor cell mobilizing (vasculogenic factors in vitreous fluid from proliferative diabetic retinopathy (PDR patients and correlate their levels with clinical disease activity. Vascular endothelial growth factor (VEGF, soluble vascular endothelial growth factor receptor-2 (sVEGFR-2, stem cell factor (SCF, soluble c-kit (s-kit, endothelial nitric oxide synthase (eNOS, and prostaglandin E2 (PGE2 levels were measured by ELISA in vitreous samples from 34 PDR and 15 nondiabetic patients. eNOS was not detected. VEGF, sVEGFR-2, SCF, and s-kit levels were significantly higher in PDR with active neovascularization compared with quiescent PDR and nondiabetic patients (; 0.007; 0.001; , resp.. In contrast, PGE2 levels were significantly higher in nondiabetic patients compared with PDR patients (. There were significant correlations between levels of sVEGFR-2 versus SCF (, , sVEGFR-2 versus s-kit (, , and SCF versus s-kit (, . Our findings suggest that upregulation of VEGF, sVEGFR-2, SCF, and s-kit supports the contributions of angiogenesis and vasculogenesis in pathogenesis of PDR.

  7. KSHV-Mediated Angiogenesis in Tumor Progression

    Directory of Open Access Journals (Sweden)

    Pravinkumar Purushothaman

    2016-07-01

    Full Text Available Human herpesvirus 8 (HHV-8, also known as Kaposi’s sarcoma-associated herpesvirus (KSHV, is a malignant human oncovirus belonging to the gamma herpesvirus family. HHV-8 is closely linked to the pathogenesis of Kaposi’s sarcoma (KS and two other B-cell lymphoproliferative diseases: primary effusion lymphoma (PEL and a plasmablastic variant of multicentric Castleman’s disease (MCD. KS is an invasive tumor of endothelial cells most commonly found in untreated HIV-AIDS or immuno-compromised individuals. KS tumors are highly vascularized and have abnormal, excessive neo-angiogenesis, inflammation, and proliferation of infected endothelial cells. KSHV directly induces angiogenesis in an autocrine and paracrine fashion through a complex interplay of various viral and cellular pro-angiogenic and inflammatory factors. KS is believed to originate due to a combination of KSHV’s efficient strategies for evading host immune systems and several pro-angiogenic and pro-inflammatory stimuli. In addition, KSHV infection of endothelial cells produces a wide array of viral oncoproteins with transforming capabilities that regulate multiple host-signaling pathways involved in the activation of angiogenesis. It is likely that the cellular-signaling pathways of angiogenesis and lymph-angiogenesis modulate the rate of tumorigenesis induction by KSHV. This review summarizes the current knowledge on regulating KSHV-mediated angiogenesis by integrating the findings reported thus far on the roles of host and viral genes in oncogenesis, recent developments in cell-culture/animal-model systems, and various anti-angiogenic therapies for treating KSHV-related lymphoproliferative disorders.

  8. KSHV-Mediated Angiogenesis in Tumor Progression

    Science.gov (United States)

    Purushothaman, Pravinkumar; Uppal, Timsy; Sarkar, Roni; Verma, Subhash C.

    2016-01-01

    Human herpesvirus 8 (HHV-8), also known as Kaposi’s sarcoma-associated herpesvirus (KSHV), is a malignant human oncovirus belonging to the gamma herpesvirus family. HHV-8 is closely linked to the pathogenesis of Kaposi’s sarcoma (KS) and two other B-cell lymphoproliferative diseases: primary effusion lymphoma (PEL) and a plasmablastic variant of multicentric Castleman’s disease (MCD). KS is an invasive tumor of endothelial cells most commonly found in untreated HIV-AIDS or immuno-compromised individuals. KS tumors are highly vascularized and have abnormal, excessive neo-angiogenesis, inflammation, and proliferation of infected endothelial cells. KSHV directly induces angiogenesis in an autocrine and paracrine fashion through a complex interplay of various viral and cellular pro-angiogenic and inflammatory factors. KS is believed to originate due to a combination of KSHV’s efficient strategies for evading host immune systems and several pro-angiogenic and pro-inflammatory stimuli. In addition, KSHV infection of endothelial cells produces a wide array of viral oncoproteins with transforming capabilities that regulate multiple host-signaling pathways involved in the activation of angiogenesis. It is likely that the cellular-signaling pathways of angiogenesis and lymph-angiogenesis modulate the rate of tumorigenesis induction by KSHV. This review summarizes the current knowledge on regulating KSHV-mediated angiogenesis by integrating the findings reported thus far on the roles of host and viral genes in oncogenesis, recent developments in cell-culture/animal-model systems, and various anti-angiogenic therapies for treating KSHV-related lymphoproliferative disorders. PMID:27447661

  9. KSHV-Mediated Angiogenesis in Tumor Progression.

    Science.gov (United States)

    Purushothaman, Pravinkumar; Uppal, Timsy; Sarkar, Roni; Verma, Subhash C

    2016-01-01

    Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is a malignant human oncovirus belonging to the gamma herpesvirus family. HHV-8 is closely linked to the pathogenesis of Kaposi's sarcoma (KS) and two other B-cell lymphoproliferative diseases: primary effusion lymphoma (PEL) and a plasmablastic variant of multicentric Castleman's disease (MCD). KS is an invasive tumor of endothelial cells most commonly found in untreated HIV-AIDS or immuno-compromised individuals. KS tumors are highly vascularized and have abnormal, excessive neo-angiogenesis, inflammation, and proliferation of infected endothelial cells. KSHV directly induces angiogenesis in an autocrine and paracrine fashion through a complex interplay of various viral and cellular pro-angiogenic and inflammatory factors. KS is believed to originate due to a combination of KSHV's efficient strategies for evading host immune systems and several pro-angiogenic and pro-inflammatory stimuli. In addition, KSHV infection of endothelial cells produces a wide array of viral oncoproteins with transforming capabilities that regulate multiple host-signaling pathways involved in the activation of angiogenesis. It is likely that the cellular-signaling pathways of angiogenesis and lymph-angiogenesis modulate the rate of tumorigenesis induction by KSHV. This review summarizes the current knowledge on regulating KSHV-mediated angiogenesis by integrating the findings reported thus far on the roles of host and viral genes in oncogenesis, recent developments in cell-culture/animal-model systems, and various anti-angiogenic therapies for treating KSHV-related lymphoproliferative disorders. PMID:27447661

  10. Angiogenesis and Multiple Myeloma

    OpenAIRE

    Giuliani, Nicola; Storti, Paola; Bolzoni, Marina; Palma, Benedetta Dalla; Bonomini, Sabrina

    2011-01-01

    The bone marrow microenvironment in multiple myeloma is characterized by an increased microvessel density. The production of pro-angiogenic molecules is increased and the production of angiogenic inhibitors is suppressed, leading to an “angiogenic switch”. Here we present an overview of the role of angiogenesis in multiple myeloma, the pro-angiogenic factors produced by myeloma cells and the microenvironment, and the mechanisms involved in the myeloma-induced angiogenic switch. Current data s...

  11. Hydrogels for therapeutic cardiovascular angiogenesis.

    Science.gov (United States)

    Rufaihah, Abdul Jalil; Seliktar, Dror

    2016-01-15

    Acute myocardial infarction (MI) caused by ischemia is the most common cause of cardiac dysfunction. While growth factor or cell therapy is promising, the retention of bioactive agents in the highly vascularized myocardium is limited and prevents sustained activation needed for adequate cellular responses. Various types of biomaterials with different physical and chemical properties have been developed to improve the localized delivery of growth factor and/or cells for therapeutic angiogenesis in ischemic tissues. Hydrogels are particularly advantageous as carrier systems because they are structurally similar to the tissue extracellular matrix (ECM), they can be processed under relatively mild conditions and can be delivered in a minimally invasive manner. Moreover, hydrogels can be designed to degrade in a timely fashion that coincides with the angiogenic process. For these reasons, hydrogels have shown great potential as pro-angiogenic matrices. This paper reviews a few of the hydrogel systems currently being applied together with growth factor delivery and/or cell therapy to promote therapeutic angiogenesis in ischemic tissues, with emphasis on myocardial applications.

  12. Aspartame induces angiogenesis in vitro and in vivo models.

    Science.gov (United States)

    Yesildal, F; Aydin, F N; Deveci, S; Tekin, S; Aydin, I; Mammadov, R; Fermanli, O; Avcu, F; Acikel, C H; Ozgurtas, T

    2015-03-01

    Angiogenesis is the process of generating new blood vessels from preexisting vessels and is considered essential in many pathological conditions. The purpose of the present study is to evaluate the effect of aspartame on angiogenesis in vivo chick chorioallantoic membrane (CAM) and wound-healing models as well as in vitro 2,3-bis-2H-tetrazolium-5-carboxanilide (XTT) and tube formation assays. In CAM assay, aspartame increased angiogenesis in a concentration-dependent manner. Compared with the control group, aspartame has significantly increased vessel proliferation (p < 0.001). In addition, in vivo rat model of skin wound-healing study showed that aspartame group had better healing than control group, and this was statistically significant at p < 0.05. There was a slight proliferative effect of aspartame on human umbilical vein endothelial cells on XTT assay in vitro, but it was not statistically significant; and there was no antiangiogenic effect of aspartame on tube formation assay in vitro. These results provide evidence that aspartame induces angiogenesis in vitro and in vivo; so regular use may have undesirable effect on susceptible cases.

  13. Treponema pallidum (syphilis) antigen TpF1 induces angiogenesis through the activation of the IL-8 pathway

    OpenAIRE

    Tommaso Pozzobon; Nicola Facchinello; Fleur Bossi; Nagaja Capitani; Marisa Benagiano; Giulietta Di Benedetto; Cristina Zennaro; Nicole West; Gaia Codolo; Marialina Bernardini; Cosima Tatiana Baldari; Mario Milco D’Elios; Luca Pellegrini; Francesco Argenton; Marina de Bernard

    2016-01-01

    Over 10 million people every year become infected by Treponema pallidum and develop syphilis, a disease with broad symptomatology that, due to the difficulty to eradicate the pathogen from the highly vascularized secondary sites of infection, is still treated with injections of penicillin. Unlike most other bacterial pathogens, T. pallidum infection produces indeed a strong angiogenic response whose mechanism of activation, however, remains unknown. Here, we report that one of the major antig...

  14. Adiponectin Stimulates Angiogenesis by Promoting Cross-talk between AMP-activated Protein Kinase and Akt Signaling in Endothelial Cells*

    OpenAIRE

    Ouchi, Noriyuki; Kobayashi, Hideki; Kihara, Shinji; Kumada, Masahiro; Sato, Kaori; Inoue, Tatsuya; Funahashi, Tohru; Walsh, Kenneth

    2003-01-01

    Adiponectin is an adipocyte-specific adipocytokine with anti-atherogenic and anti-diabetic properties. Here, we investigated whether adiponectin regulates angiogenic processes in vitro and in vivo. Adiponectin stimulated the differentiation of human umbilical vein endothelium cells (HUVECs) into capillary-like structures in vitro and functioned as a chemoattractant in migration assays. Adiponectin promoted the phosphorylation of AMP-activated protein kinase (AMPK), protein kinase Akt/protein ...

  15. Marine-Derived Angiogenesis Inhibitors for Cancer Therapy

    OpenAIRE

    Ying-Qing Wang; Ze-Hong Miao

    2013-01-01

    Angiogenesis inhibitors have been successfully used for cancer therapy in the clinic. Many marine-derived natural products and their analogues have been reported to show antiangiogenic activities. Compared with the drugs in the clinic, these agents display interesting characteristics, including diverse sources, unique chemical structures, special modes of action, and distinct activity and toxicity profiles. This review will first provide an overview of the current marine-derived angiogenesis ...

  16. Proliferative verrucous leukoplakia: An update.

    Science.gov (United States)

    Munde, Anita; Karle, Ravindra

    2016-01-01

    Proliferative verrucous leukoplakia (PVL) is a rare form of oral leukoplakia, which was first described in 1985 by Hansen et al. Since then, various published case series have presented PVL as a disease with aggressive biological behavior due to its high probability of recurrence and a high rate of malignant transformation, usually higher than 70%. PVL is a long-term progressive condition, which is observed more frequently in elderly women, over 60 years at the time of diagnosis. The buccal mucosa and tongue are the most frequently involved sites. It develops initially as a white plaque of hyperkeratosis that eventually becomes a multifocal disease with confluent, exophytic and proliferative features with a progressive deterioration of the lesions, making it more and more difficult to control. Tobacco use does not seem to have a significant influence on the appearance or progression of PVL and may occur both in smokers and nonsmokers. Prognosis is poor for this seemingly harmless-appearing white lesion of the oral mucosa. At present, the etiology of PVL remains unclear as well as its management and diagnosis, which is still retrospective, late and poorly defined, lacking consensus criteria. This short review discusses the clinical and histopathological features, diagnosis, traditional treatment and the current management of the disease. PMID:27461595

  17. Long-Term Gene Therapy with Thrombospondin 2 Inhibits TGF-β Activation, Inflammation and Angiogenesis in Chronic Allograft Nephropathy

    Science.gov (United States)

    Daniel, Christoph; Vogelbacher, Regina; Stief, Andrea; Grigo, Christina; Hugo, Christian

    2013-01-01

    We recently identified Thrombospondin-2 (TSP-2) as a regulator of matrix remodelling and inflammation in experimental kidney disease by using TSP-2 null mice and successfully proved TSP-2 overexpression as a therapeutic concept in a short term glomerulonephritis model in the rat. In this current study, we investigated if long-term TSP-2 overexpression is also capable to ameliorate the progression of chronic kidney disease in the setting of the chronic allograft nephropathy F344-Lewis model in the rat. Two weeks after renal transplantation, two rat thigh muscles were transfected once only with either a TSP-2 overexpressing plasmid (n = 8) or a luciferase-expressing plasmid as control (n = 8). Rats were monitored for renal function, histological changes and gene expression in the graft for up to 30 weeks after transplantation. Unexpectedly, only in the TSP-2 treated group 2 rats died before the end of the experiment and renal function tended to be worsened in the TSP-2 group compared to the luciferase-treated controls. In addition, glomerular sclerosis and tubular interstitial injury as well as cortical fibronectin deposition was significantly increased in the TSP-2 treated kidneys despite reduced TGF-β activation and marked anti-inflammatory (macrophages, T-cells and B-cells) effects in this group. Long-term TSP-2 therapy impaired repair of renal endothelium, as demonstrated by significant higher glomerular and peritubular endothelial rarefaction and reduced endothelial cell proliferation in the transplanted kidneys from TSP-2 treated rats compared to controls. This TSP-2 effect was associated with decreased levels of renal VEGF but not VEGF1 receptor. In conclusion, despite its anti-inflammatory and TGF-β activation blocking effects, TSP-2 gene therapy did not ameliorate but rather worsened experimental chronic allograft nephropathy most likely via its anti-angiogenic properties on the renal microvasculature. PMID:24376766

  18. Long-term gene therapy with thrombospondin 2 inhibits TGF-β activation, inflammation and angiogenesis in chronic allograft nephropathy.

    Directory of Open Access Journals (Sweden)

    Christoph Daniel

    Full Text Available We recently identified Thrombospondin-2 (TSP-2 as a regulator of matrix remodelling and inflammation in experimental kidney disease by using TSP-2 null mice and successfully proved TSP-2 overexpression as a therapeutic concept in a short term glomerulonephritis model in the rat. In this current study, we investigated if long-term TSP-2 overexpression is also capable to ameliorate the progression of chronic kidney disease in the setting of the chronic allograft nephropathy F344-Lewis model in the rat. Two weeks after renal transplantation, two rat thigh muscles were transfected once only with either a TSP-2 overexpressing plasmid (n = 8 or a luciferase-expressing plasmid as control (n = 8. Rats were monitored for renal function, histological changes and gene expression in the graft for up to 30 weeks after transplantation. Unexpectedly, only in the TSP-2 treated group 2 rats died before the end of the experiment and renal function tended to be worsened in the TSP-2 group compared to the luciferase-treated controls. In addition, glomerular sclerosis and tubular interstitial injury as well as cortical fibronectin deposition was significantly increased in the TSP-2 treated kidneys despite reduced TGF-β activation and marked anti-inflammatory (macrophages, T-cells and B-cells effects in this group. Long-term TSP-2 therapy impaired repair of renal endothelium, as demonstrated by significant higher glomerular and peritubular endothelial rarefaction and reduced endothelial cell proliferation in the transplanted kidneys from TSP-2 treated rats compared to controls. This TSP-2 effect was associated with decreased levels of renal VEGF but not VEGF1 receptor. In conclusion, despite its anti-inflammatory and TGF-β activation blocking effects, TSP-2 gene therapy did not ameliorate but rather worsened experimental chronic allograft nephropathy most likely via its anti-angiogenic properties on the renal microvasculature.

  19. Estrogen signaling in the proliferative endometrium: implications in endometriosis

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Pereira da Costa e Silva

    2016-02-01

    Full Text Available SUMMARY Even though the physiological role of estrogen in the female reproductive cycle and endometrial proliferative phase is well established, the signaling pathways by which estrogen exerts its action in the endometrial tissue are still little known. In this regard, advancements in cell culture techniques and maintenance of endometrial cells in cultures enabled the discovery of new signaling mechanisms activated by estrogen in the normal endometrium and in endometriosis. This review aims to present the recent findings in the genomic and non-genomic estrogen signaling pathways in the proliferative human endometrium specifically associated with the pathogenesis and development of endometriosis.

  20. Activator of G-protein signaling 8 is involved in VEGF-mediated signal processing during angiogenesis.

    Science.gov (United States)

    Hayashi, Hisaki; Al Mamun, Abdullah; Sakima, Miho; Sato, Motohiko

    2016-03-15

    Activator of G-protein signaling 8 (AGS8, also known as FNDC1) is a receptor-independent accessory protein for the Gβγ subunit, which was isolated from rat heart subjected to repetitive transient ischemia with the substantial development of collaterals. Here, we report the role of AGS8 in vessel formation by endothelial cells. Knockdown of AGS8 by small interfering RNA (siRNA) inhibited vascular endothelial growth factor (VEGF)-induced tube formation, as well as VEGF-stimulated cell growth and migration. VEGF stimulated the phosphorylation of the VEGF receptor-2 (VEGFR-2, also known as KDR), ERK1/2 and p38 MAPK; however, knockdown of AGS8 inhibited these signaling events. Signal alterations by AGS8 siRNA were associated with a decrease of cell surface VEGFR-2 and an increase of VEGFR-2 in the cytosol. Endocytosis blockers did not influence the decrease of VEGFR-2 by AGS8 siRNA, suggesting the involvement of AGS8 in VEGFR-2 trafficking to the plasma membrane. VEGFR-2 formed a complex with AGS8 in cells, and a peptide designed to disrupt AGS8-Gβγ interaction inhibited VEGF-induced tube formation. These data suggest a potential role for AGS8-Gβγ in VEGF signal processing. AGS8 might play a key role in tissue adaptation by regulating angiogenic events.

  1. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous β-TCP ceramic scaffolds

    International Nuclear Information System (INIS)

    Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on combining gene transfer with tissue engineering techniques. Basic fibroblast growth factor (bFGF) is one of the most prominent osteogenic growth factors that has the potential to accelerate bone healing by promoting the proliferation and differentiation of mesenchymal stem cells (MSCs) and the regeneration of capillary vasculature. However, the short biological half-lives of growth factors may impose severe restraints on their clinical usefulness. Gene-based delivery systems provide a better way of achieving a sustained high concentration of growth factors locally in the defect and delivering a more biologically active product than that achieved by exogenous application of recombinant proteins. The objective of this experimental study was to investigate whether the bFGF gene modified MSCs could enhance the repair of large segmental bone defects. The pcDNA3-bFGF gene transfected MSCs were seeded on biodegradable porous β tricalcium phosphate (β-TCP) ceramics and allografted into the 15 mm critical-sized segmental bone defects in the radius of 18 New Zealand White rabbits. The pcDNA3 vector gene transfected MSCs were taken as the control. The follow-up times were 2, 4, 6, 8, 10 and 12 weeks. Scanning electron microscopic, roentgenographic, histologic and immunohistological studies were used to assess angiogenesis and bone regeneration. In vitro, the proliferation and differentiation of bFGF gene transfected MSCs were more active than that of the control groups. In vivo, significantly more new bone formation accompanied by abundant active capillary regeneration was observed in pores of the ceramics loaded with bFGF gene transfected MSCs, compared with control groups. Transfer of gene encoding bFGF to MSCs increases their osteogenic properties by enhancing capillary regeneration, thus providing a rich blood supply for new bone formation. This new b

  2. Tumor Angiogenesis: Insights and Innovations

    Directory of Open Access Journals (Sweden)

    Fernando Nussenbaum

    2010-01-01

    Full Text Available Angiogenesis is a vital process resulting in the formation of new blood vessels. It is normally a highly regulated process that occurs during human development, reproduction, and wound repair. However, angiogenesis can also become a fundamental pathogenic process found in cancer and several other diseases. To date, the inhibition of angiogenesis has been researched at both the bench and the bedside. While several studies have found moderate improvements when treating with angiogenesis inhibitors, greater success is being seen when the inhibition of angiogenesis is combined with other traditional forms of available therapy. This review summarizes several important angiogenic factors, examines new research and ongoing clinical trials for such factors, and attempts to explain how this new knowledge may be applied in the fight against cancer and other angiogenic-related diseases.

  3. Exogenous hydrogen sulfide exerts proliferation/anti-apoptosis/angiogenesis/migration effects via amplifying the activation of NF-κB pathway in PLC/PRF/5 hepatoma cells.

    Science.gov (United States)

    Zhen, Yulan; Pan, Wanying; Hu, Fen; Wu, Hongfu; Feng, Jianqiang; Zhang, Ying; Chen, Jingfu

    2015-05-01

    Hydrogen sulfide (H2S) takes part in a diverse range of intracellular pathways and hss physical and pathological properties in vitro and in vivo. However, the effects of H2S on cancer are controversial and remain unclear. The present study investigates the effects of H2S on liver cancer progression via activating NF-κB pathway in PLC/PRF/5 hepatoma cells. PLC/PRF/5 hepatoma cells were pretreated with 500 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of CSE, CBS, phosphosphorylate (p)-NF-κB p65, caspase-3, COX-2, p-IκB and MMP-2 were measured by western blot assay. Cell viability was detected by cell counter kit 8 (CCK-8). Apoptotic cells were observed by Hoechst 33258 staining assay. The production level of H2S in cell culture medium was measured by using the sulfur-sensitive electrode method. The production of vascular endothelial growth factor (VEGF) was tested by enzyme-linked immunosorbent assay (ELISA). Our results showed that the production of H2S was dramatically increased in the PLC/PRF/5 hepatoma cells, compared with human LO2 hepatocyte cells group, along with the overexpression levels of CSE and CBS. Treatment of PLC/PRF/5 hepatoma cells with 500 µmol/l NaHS (a donor of H2S) for 24 h markedly increased the expression levels of CSE, CBS, p-IκB and NF-κB activation, leading to COX-2 and MMP-2 overexpression, and decreased caspase-3 production, as well as increased cell viability and decreased number of apoptotic cells. Otherwise, the production level of H2S and VEGF were also significantly increased. Furthermore, co-treatment of PLC/PRF/5 hepatoma cells with 500 µmol/l NaHS and 200 µmol/l PDTC for 24 h significantly overturned these indexes. The findings of the present study provide evidence that the NF-κB is involved in the NaHS-induced cell proliferation, anti-apoptisis, angiogenesis, and migration in PLC/PRF/5 hepatoma cells, and that the PDTC against the NaHS-induced effects were by inhibition of the NF-κB pathway.

  4. Ferrite Nanoparticles in Pharmacological Modulation of Angiogenesis

    Science.gov (United States)

    Deshmukh, Aparna; Radha, S.; Khan, Y.; Tilak, Priya

    2011-07-01

    Nanoparticles are being explored in the targeted drug delivery of pharmacological agents : angiogenesis being one such novel application which involves formation of new blood vessels or branching of existing ones. The present study involves the use of ferrite nanoparticles for precise therapeutic modulation of angiogenesis. The ferrite nanoparticles synthesized by co-precipitation of ferrous and ferric salts by a suitable base, were found to be 10-20 nm from X-ray diffraction and TEM measurements. The magnetization measurements showed superparamagnetic behavior of the uncoated nanoparticles. These ferrite nanoparticles were found to be bio-compatible with lymphocytes and neural cell lines from the biochemical assays. The chick chorioallantoic membrane(CAM) from the shell of fertile white Leghorn eggs was chosen as a model to study angiogenic activity. An enhancement in the angiogenic activity in the CAM due to addition of uncoated ferrite nanoparticles was observed.

  5. Recent advances in angiogenesis, anti-angiogenesis and vascular targeting.

    Science.gov (United States)

    Bikfalvi, Andreas; Bicknell, Roy

    2002-12-01

    Angiogenesis, the development of new blood vessels, has become a major focus of research. This has been stimulated by the therapeutic opportunities offered by the ability to manipulate the vasculature in pathologies such as cancer. Here, we present an overview of recent advances in angiogenesis. Especially noteworthy is the large volume of information from developmental studies, particularly those that involve transgenic and gene knockout mice. We also discuss the increasing repertoire of drugs with which to manipulate angiogenesis and new endothelial-specific genes with which to target the vasculature. PMID:12457776

  6. Concanavalin A: A potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis for cancer therapeutics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wen-wen; Yu, Jia-ying; Xu, Huai-long [School of Life Sciences and State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610064 (China); Bao, Jin-ku, E-mail: jinkubao@yahoo.com [School of Life Sciences and State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610064 (China)

    2011-10-22

    Highlights: {yields} ConA induces cancer cell death targeting apoptosis and autophagy. {yields} ConA inhibits cancer cell angiogenesis. {yields} ConA is utilized in pre-clinical and clinical trials. -- Abstract: Concanavalin A (ConA), a Ca{sup 2+}/Mn{sup 2+}-dependent and mannose/glucose-binding legume lectin, has drawn a rising attention for its remarkable anti-proliferative and anti-tumor activities to a variety of cancer cells. ConA induces programmed cell death via mitochondria-mediated, P73-Foxo1a-Bim apoptosis and BNIP3-mediated mitochondrial autophagy. Through IKK-NF-{kappa}B-COX-2, SHP-2-MEK-1-ERK, and SHP-2-Ras-ERK anti-angiogenic pathways, ConA would inhibit cancer cell survival. In addition, ConA stimulates cell immunity and generates an immune memory, resisting to the same genotypic tumor. These biological findings shed light on new perspectives of ConA as a potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis in pre-clinical or clinical trials for cancer therapeutics.

  7. Modelling approaches for angiogenesis.

    Science.gov (United States)

    Taraboletti, G; Giavazzi, R

    2004-04-01

    The development of a functional vasculature within a tumour is a requisite for its growth and progression. This fact has led to the design of therapies directed toward the tumour vasculature, aiming either to prevent the formation of new vessels (anti-angiogenic) or to damage existing vessels (vascular targeting). The development of agents with different mechanisms of action requires powerful preclinical models for the analysis and optimization of these therapies. This review concerns 'classical' assays of angiogenesis in vitro and in vivo, recent approaches to target identification (analysis of gene and protein expression), and the study of morphological and functional changes in the vasculature in vivo (imaging techniques). It mainly describes assays designed for anti-angiogenic compounds, indicating, where possible, their application to the study of vascular-targeting agents. PMID:15120043

  8. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I

    OpenAIRE

    Zhou, Zhongjun; Apte, Suneel S.; Soininen, Raija; Cao, Renhai; Baaklini, George Y.; Rauser, Richard W.; Wang, Jianming; Cao, Yihai; Tryggvason, Karl

    2000-01-01

    Membrane-type matrix metalloproteinase I (MT1-MMP)-deficient mice were found to have severe defects in skeletal development and angiogenesis. The craniofacial, axial, and appendicular skeletons were severely affected, leading to a short and domed skull, marked deceleration of postnatal growth, and death by 3 wk of age. Shortening of bones is a consequence of decreased chondrocyte proliferation in the proliferative zone of the growth plates. Defective vascular invasion of cartilage leads to en...

  9. Prostanoids in tumor angiogenesis: therapeutic intervention beyond COX-2.

    Science.gov (United States)

    Salvado, M Dolores; Alfranca, Arántzazu; Haeggström, Jesper Z; Redondo, Juan Miguel

    2012-04-01

    Prostanoids regulate angiogenesis in carcinoma and chronic inflammatory disease progression. Although prostanoid biosynthetic enzymes and signaling have been extensively analyzed in inflammation, little is known about how prostanoids mediate tumor-induced angiogenesis. Targeted cyclooxygenase (COX)-2 inhibition in tumor, stromal and endothelial cells is an attractive antiangiogenic strategy; however, the associated cardiovascular side effects have led to the development of a new generation of nonsteroidal anti-inflammatory drugs (NSAIDs) acting downstream of COX. These agents target terminal prostanoid synthases and prostanoid receptors, which may also include several peroxisome proliferator-activated receptors (PPARs). Here, we discuss the role of prostanoids as modulators of tumor angiogenesis and how prostanoid metabolism reflects complex cell-cell crosstalk that determines tumor growth. Finally, we discuss the potential of new NSAIDs for the treatment of angiogenesis-dependent tumor development.

  10. Development of the Relationship between Angiogenesis and Tumor Dormancy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Tumor dormancy, a complex and still poorly understood phenomenon, has been defined by the long-term persistence of occult cancer cells during tumor progression. Recurrence and metastasis may occur just because of an activation of a small portion of the tumor cells. In our view, sustained angiogenesis is considered essential in triggering invasive tumor growth. Here we analyze the correlation between angiogenesis and tumor dormancy, the establishment of tumor dormancy models, the imaging strategies and the new biomarkers for dececting microscopic tumors before or during the angiogenic switch. It imperative to understand the role of angiogenesis in tumor dormancy, as this will accelerate the development of anti-angiogenesis techniques to induce dormancy and/or eradicate dormant disease.

  11. Low-molecular-weight heparins and angiogenesis.

    Science.gov (United States)

    Norrby, Klas

    2006-02-01

    The involvement of the vascular system in malignancy encompasses not only angiogenesis, but also systemic hypercoagulability and a pro-thrombotic state, and there is increasing evidence that pathways of blood coagulation and angiogenesis are reciprocally linked. In fact, cancer atients often display hypercoagulability resulting in markedly increased thromboembolism, which requires anti-coagulant treatment using heparins, for example. Clinical trials reveal that treatment with various low-molecular-weight heparins (LMWHs) improves the survival time in cancer patients receiving chemotherapy compared with those receiving unfractionated standard heparin (UFH) or no heparin treatment, as well as in cancer patients receiving LMWH as thrombosis prophylaxis during primary surgery. This anti-tumor effect of the heparins appears to be unrelated to their anti-coagulant activity, but the mechanisms involved are not fully understood. Tumor growth and spread are dependent on angiogenesis and it is noteworthy that the most potent endogenous pro- and anti-angiogenic factors are heparin-binding proteins that may be affected by systemic treatment with heparins. Heparin and other glycosaminoglycans play a role in vascular endothelial cell function, as they are able to modulate the activities of angiogenic growth factors by facilitating the interaction with their receptor and promoting receptor activation. To date, preclinical studies have demonstrated that only LMWH fragments produced by the heparinase digestion of UFH, i.e. tinzaparin, exert anti-angiogenic effects in any type of tissue in vivo. These effects are fragment-mass-specific and angiogenesis-type-specific. Data on the effect of various LMWHs and UFH on endothelial cell capillary tube formation and proliferation in vitro are also presented. We hope that this paper will stimulate and facilitate future research designed to elucidate whether the anti-angiogenic or anti-tumor effects of commercial LMWHs in their own right are

  12. Cerebral insulin, insulin signaling pathway, and brain angiogenesis.

    Science.gov (United States)

    Zeng, Yi; Zhang, Le; Hu, Zhiping

    2016-01-01

    Insulin performs unique non-metabolic functions within the brain. Broadly speaking, two major areas of these functions are those related to brain endothelial cells and the blood-brain barrier (BBB) function, and those related to behavioral effects, like cognition in disease states (Alzheimer's disease, AD) and in health. Recent studies showed that both these functions are associated with brain angiogenesis. These findings raise interesting questions such as how they are linked to each other and whether modifying brain angiogenesis by targeting certain insulin signaling pathways could be an effective strategy to treat dementia as in AD, or even to help secure healthy longevity. The two canonical downstream pathways involved in mediating the insulin signaling pathway, the phosphoinositide-3 kinase (PI3K), and mitogen-activated protein kinase (MAPK) cascades, in the brain are supposed to be similar to those in the periphery. PI3K and MAPK pathways play important roles in angiogenesis. Both are involved in stimulating hypoxia inducible factor (HIF) in angiogenesis and could be activated by the insulin signaling pathway. This suggests that PI3K and MAPK pathways might act as cross-talk between the insulin signaling pathway and the angiogenesis pathway in brain. But the cerebral insulin, insulin signaling pathway, and the detailed mechanism in the connection of insulin signaling pathway, brain angiogenesis pathway, and healthy aging or dementias are still mostly not clear and need further studies.

  13. Angiogenesis and Its Therapeutic Opportunities

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2013-01-01

    Full Text Available Angiogenesis plays critical roles in human physiology that range from reproduction and fetal growth to wound healing and tissue repair. The sophisticated multistep process is tightly regulated in a spatial and temporal manner by “on-off switch signals” between angiogenic factors, extracellular matrix components, and endothelial cells. Uncontrolled angiogenesis may lead to several angiogenic disorders, including vascular insufficiency (myocardial or critical limb ischemia and vascular overgrowth (hemangiomas, vascularized tumors, and retinopathies. Thus, numerous therapeutic opportunities can be envisaged through the successful understanding and subsequent manipulation of angiogenesis. Here, we review the clinical implications of angiogenesis and discuss pro- and antiangiogenic agents that offer potential therapy for cancer and other angiogenic diseases.

  14. Nuclease and anti-proliferative activities of copper(II) complexes of N3O tripodal ligands involving a sterically hindered phenolate.

    Science.gov (United States)

    Berthet, Nathalie; Martel-Frachet, Véronique; Michel, Fabien; Philouze, Christian; Hamman, Sylvain; Ronot, Xavier; Thomas, Fabrice

    2013-06-21

    Copper(II) complexes 1(2+)-6 of a series of tripodal ligands involving a N3O donor set, namely 2-[(bis-pyridin-2-ylmethyl-amino)-methyl]-4-methoxy-phenol (1L), 2-tert-butyl-4-methoxy-6-[bis-pyridin-2-ylmethyl-amino)-methyl]-phenol (2L), 2-tert-butyl-4-methoxy-6-{[(2-pyridin-2-yl-ethyl)-pyridin-2-ylmethyl-amino]-methyl}-phenol (3L), 2-tert-butyl-4-methoxy-6-{[(6-methyl-pyridin-2-ylmethyl)-pyridin-2-ylmethyl-amino]-methyl}-phenol (4L), 2-tert-butyl-4-fluoro-6-{[(6-methyl-pyridin-2-ylmethyl)-pyridin-2-ylmethyl-amino]-methyl}-phenol (5L) and 2-tert-butyl-4-methoxy-6-{bis[(6-methyl-pyridin-2-ylmethyl)-amino]-methyl}-phenol (6L), respectively, were synthesized. Complexes 1(2+), 3(+) and 4(+) were structurally characterized by X-ray diffraction. The structure of 1(2+) is dimeric, with an essentially trigonal bipyramidal geometry around the copper(II) ions and two bridging deprotonated phenolate moieties. The mononuclear complexes 3(+) and 4(+) contain a square pyramidal copper ion, coordinated in axial position by the phenol moiety. In the water-DMF (90 : 10) mixture at pH 7.3 all the copper(II) complexes are mononuclear, mainly under their phenolate neutral form (except 3(+)), with a coordinated solvent molecule. The DNA cleavage activity of the complexes was tested towards the ϕX174 DNA plasmid. In the absence of an exogenous agent 1(2+) does not show any cleavage activity, 2(+) and 3(+) are moderately active, while 4(+), 5(+) and 6(+) exhibit a high nuclease activity. Experiments in the presence of various scavengers reveal that reactive oxygen species (ROS) are not involved in the strand scission mechanism. The cytotoxicity of the complexes was evaluated on bladder cancer cell lines sensitive or resistant to cisplatin. The IC50 values of the complexes 2(+), 4(+), 5(+) and 6(+) are lower than that of cisplatin (range from 6.3 to 3.1 μM against 9.1 μM for cisplatin). Furthermore, complexes 2(+), 4(+), 5(+) and 6(+) are able to circumvent cisplatin cellular

  15. Synthesis, characterization and anti-proliferative activity of Cd(II) complexes with NNN type pyrazole-based ligand and pseudohalide ligands as coligand

    Science.gov (United States)

    Hopa, Cigdem; Yildirim, Hatice; Kara, Hulya; Kurtaran, Raif; Alkan, Mahir

    2014-03-01

    Cd(II) complexes of tridentate nitrogen donor ligand, 2,6-bis(3,4,5-trimethylpyrazolyl)pyridine (btmpp), Cd(btmpp)X2 (X:Cl, ONO or N(CN)2) have been synthesized and characterized by elemental and spectral (FT-IR, 1H NMR, 13C NMR, UV-Vis) analyses, differential thermal analysis and single crystal X-ray diffraction studies. The molecular structure of reported complex 1, revealed distorted square-pyramidal geometry around Cadmium. Complexes 1-3 and corresponding ligand were tested for cytotoxic activity against the human carcinoma cell lines HEP3B (hepatocellular carcinoma), PC3 (prostate adenocarcinoma), MCF7 (breast adenocarcinoma) and Saos2 (osteosarcoma). The results show that, complexes are more cytotoxic than the free ligand and complex 2 is the most cytotoxic complex for PC3.

  16. Toll-Like Receptors in Angiogenesis

    Directory of Open Access Journals (Sweden)

    Karsten Grote

    2011-01-01

    Full Text Available Toll-like receptors (TLRs are known as pattern-recognition receptors related to the Toll protein of Drosophila. After recognition of pathogen-associated molecular patterns of microbial origin, the TLRs alert the immune system, and initiate innate and adaptive immune responses. The TLR system, though, is not confined solely to the leukocyte-mediated immune defense against exogenous pathogens. Besides myeloid cells, TLR expression has been reported in multiple tissues and cell types, including epithelial and endothelial cells. Moreover, despite the microbial patterns that are commonly accepted as TLR ligands, there is increasing evidence that TLRs also recognize host-derived molecules. In this regard, recent studies point to an involvement of TLRs in various chronic inflammatory disorders and cardiovascular diseases, including atherosclerosis, rheumatoid arthritis, systemic lupus erythematosus, and even cancer. A common feature of these disorders is an enhanced so-called inflammation-induced angiogenesis. However, inflammation-induced angiogenesis is not solely a key component of pathogen defense during acute infection or chronic inflammatory disorders, but also plays a critical role in repair mechanisms, e.g., wound healing and subsequent tissue regeneration. Interestingly, the latest research could coincidentally demonstrate that TLR activation promotes angiogenesis in various inflammatory settings in response to both exogenous and endogenous ligands, although the precise mode of action of TLRs in this context still remains ambiguous. The objective of this review is to present evidence for the implication of TLRs in angiogenesis during physiological and pathophysiological processes, and the potential clinical relevance for new treatment regimes involving TLR modulation.

  17. [Proliferative diabetic retinopathy -- therapeutic approach (clinical case)].

    Science.gov (United States)

    Burcea, M; Muşat, Ovidiu; Mahdi, Labib; Gheorghe, Andreea; Spulbar, F; Gobej, I

    2014-01-01

    We present the case of a 54 year old pacient diagnosed with neglected insulin dependent diabetes and proliferative diabetic retinopathy. Surgery was recommended and we practiced posterior vitrectomy, endolaser and heavy silicone oil endotamponade. Post-operative evolution was favorable.

  18. Proliferative retinopathies: animal models and therapeutic opportunities.

    Science.gov (United States)

    Villacampa, Pilar; Haurigot, Virginia; Bosch, Fatima

    2015-01-01

    Proliferative retinopathies are the leading causes of blindness in Western societies. The development of new, more efficacious treatments that take advantage of recent advances in the fields of gene and cell therapy requires further investigations on the mechanisms underlying disease onset and progression, and adequate animal models that recapitulate the pathogenesis of human proliferative retinopathy and allow evaluation of the long-term therapeutic benefits that these therapies can offer. Unfortunately, most models of retinal neovascularization have short-term evolution and diabetic rodents show a very mild retinal phenotype, limited to non-proliferative changes, and do not develop proliferative retinopathy at all. Transgenic mice overexpressing Insulin-like Growth Factor-I (IGF-I) in the retina (TgIGF-I) constitute the only rodent model currently available that develops most of the retinal alterations observed in diabetic eyes, with a temporal evolution that resembles that of the human disease. TgIGF-I have retinal vascular alterations that progress as animals age from non-proliferative to proliferative disease, making these mice an excellent model of proliferative retinopathy that, due to its slow progression, allows long-term evaluation of novel antiangiogenic therapies. At the molecular level, transgenic retinas recapitulate a variety of changes that are also observed in diabetic retinas, which reinforces the validity of this model. In addition to vascular and glial alterations, Tg-IGF-I mice show progressive neurodegeneration that leads to blindness in old animals. Thus, TgIGF-I are a useful model for testing the long-term efficacy and safety of innovative antiangiogenic, glial-modulating and neuroprotective therapies for the treatment of diabetic retinopathy and other retinal proliferative disorders. PMID:25760215

  19. Borderline Personality Disorder: Are Proliferative Symptoms Characteristic?

    OpenAIRE

    Sansone, Randy A.; Sansone, Lori A.

    2008-01-01

    Borderline personality is an Axis II disorder that has historically encompassed a number of different psychiatric symptoms. In empirical studies, these multiple psychiatric symptoms appear to manifest as numerous comorbid Axis I and II diagnoses. In echoing these findings in primary care settings, individuals with borderline personality exhibit prolific somatic symptoms. Rather than the type of symptom, are the number of symptoms suggestive of this disorder, such that proliferative psychiatri...

  20. Heparins for proliferative nephritides? Short review on an advancing topic.

    Science.gov (United States)

    Wardle, E N

    1996-01-01

    The rationale behind a proposed use of heparins for the control of proliferative nephritides is presented. Heparins stop adhesion of leucocytes to endothelial cells, they are anti-complementary, they modulate the activities of phagocytes and they stop the proliferation of mesangial cells or vascular smooth muscle cells. Heparins prevent the release of endothelin-1 and potentiate the action of constitutive nitric oxide. Low-molecular-weight heparins or pentosan polysulphate are now favoured. PMID:8856244

  1. Differentiation-inducing and anti-proliferative activities of isoliquiritigenin and all-trans-retinoic acid on B16F0 melanoma cells: Mechanisms profiling by RNA-seq.

    Science.gov (United States)

    Chen, Xiaoyu; Yang, Ming; Hao, Wenjin; Han, Jichun; Ma, Jun; Wang, Caixia; Sun, Shiguo; Zheng, Qiusheng

    2016-10-30

    Melanoma is a cancer that arises from melanocytes, specialized pigmented cells that are found predominantly in the skin. The incidence of malignant melanoma has significantly increased over the last decade. With the development of therapy, the survival rate of some kind of cancer has been improved greatly. But the treatment of melanoma remains unsatisfactory. Much of melanoma's resistance to traditional chemotherapy is believed to arise intrinsically, by virtue of potent growth and cell survival-promoting genetic alteration. Therefore, significant attention has recently been focused on differentiation therapy, as well as differentiation inducer compounds. In previous study, we found isoliquiritigenin (ISL), a natural product extracted from licorice, could induce B16F0 melanoma cell differentiation. Here we investigated the transcriptional response of melanoma differentiation process induced by ISL and all-trans-retinoic acid (RA). Results showed that 390 genes involves in 201 biochemical pathways were differentially expressed in ISL treatment and 304 genes in 193 pathways in RA treatment. Differential expressed genes (DGEs, fold-change (FC)≥10) with the function of anti-proliferative and differentiation inducing indicated a loss of grade malignancy characteristic. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated glutathione metabolism, glycolysis/gluconeogenesis and pentose phosphate pathway were the top three relative pathway perturbed by ISL, and mitogen-activated protein kinase (MAPK) signaling pathway was the most important pathway in RA treatment. In the analysis of hierarchical clustering of DEGs, we discovered 72 DEGs involved in the process of drug action. We thought Cited1, Tgm2, Xaf1, Cd59a, Fbxo2, Adh7 may have critical role in the differentiation of melanoma. The evidence displayed herein confirms the critical role of reactive oxygen species (ROS) in melanoma pathobiology and provides evidence for future targets in the

  2. New steroidal 17β-carboxy derivatives present anti-5α-reductase activity and anti-proliferative effects in a human androgen-responsive prostate cancer cell line.

    Science.gov (United States)

    Amaral, Cristina; Varela, Carla; Correia-da-Silva, Georgina; Tavares da Silva, Elisiário; Carvalho, Rui A; Costa, Saul C P; Cunha, Sara C; Fernandes, José O; Teixeira, Natércia; Roleira, Fernanda M F

    2013-11-01

    The androgens testosterone (T) and dihydrotestosterone (DHT), besides playing an important role in prostate development and growth, are also responsible for the development and progression of benign prostate hyperplasia (BPH) and prostate cancer. Therefore, the actions of these hormones can be antagonized by preventing the irreversible conversion of T into DHT by inhibiting 5α-reductase (5α-R). This has been a useful therapeutic approach for the referred diseases and can be achieved by using 5α-reductase inhibitors (RIs). Steroidal RIs, finasteride and dutasteride, are used in clinic for BPH treatment and were also proposed for chemoprevention of prostate cancer. Nevertheless, due to the increase in bone and muscle loss, impotency and occurrence of high-grade prostate tumours, it is important to seek for other potent and specific molecules with lower side effects. In the present work, we designed and synthesized steroids with the 3-keto-Δ(4) moiety in the A-ring, as in the 5α-R substrate T, and with carboxamide, carboxyester or carboxylic acid functions at the C-17β position. The inhibitory 5α-R activity, in human prostate microsomes, as well as the anti-proliferative effects of the most potent compounds, in a human androgen-responsive prostate cancer cell line (LNCaP cells), were investigated. Our results showed that steroids 3, 4 and 5 are good RIs, which suggest that C-17β lipophylic amides favour 5α-R inhibition. Moreover, these steroids induce a decrease in cell viability of stimulated LNCaP cells, in a 5α-R dependent-manner, similarly to finasteride. PMID:23933094

  3. Discovery and characterization of a novel cyclic peptide that effectively inhibits ephrin binding to the EphA4 receptor and displays anti-angiogenesis activity.

    Directory of Open Access Journals (Sweden)

    Xiaofeng Han

    Full Text Available The EphA4 receptor tyrosine kinase regulates a variety of physiological and pathological processes during neural development and the formation of tumor blood vessels; thus, it represents a new and promising therapeutic target. We used a combination of phage peptide display and computer modeling/docking approaches and discovered a novel cyclic nonapeptide, now designated TYY. This peptide selectively inhibits the binding of the ephrinA5 ligand with EphA4 and significantly blocks angiogenesis in a 3D matrigel culture system. Molecular docking reveals that TYY recognizes the same binding pocket on EphA4 that the natural ephrin ligand binds to and that the Tyr3 and Tyr4 side chains of TYY are both critical for the TYY/EphA4 interaction. The discovery of TYY introduces a valuable probe of EphA4 function and a new lead for EphA4-targeted therapeutic development.

  4. Curcumin Inhibits Angiogenesis and Adipogenesis in Cell Culture System and in Mice Fed High Fat Diet

    Science.gov (United States)

    Angiogenesis is necessary for the growth of adipose tissue. Dietary polyphenols may suppress growth of adipose tissue through their antiangiogenic activity and by modulating adipocyte metabolism. In the present study, we examined the effect of curcumin on angiogenesis and adipocyte development in a ...

  5. The angio-fibrotic switch of VEGF and CTGF in proliferative diabetic retinopathy.

    Directory of Open Access Journals (Sweden)

    Esther J Kuiper

    Full Text Available BACKGROUND: In proliferative diabetic retinopathy (PDR, vascular endothelial growth factor (VEGF and connective tissue growth factor (CTGF cause blindness by neovascularization and subsequent fibrosis, but their relative contribution to both processes is unknown. We hypothesize that the balance between levels of pro-angiogenic VEGF and pro-fibrotic CTGF regulates angiogenesis, the angio-fibrotic switch, and the resulting fibrosis and scarring. METHODS/PRINCIPAL FINDINGS: VEGF and CTGF were measured by ELISA in 68 vitreous samples of patients with proliferative DR (PDR, N = 32, macular hole (N = 13 or macular pucker (N = 23 and were related to clinical data, including degree of intra-ocular neovascularization and fibrosis. In addition, clinical cases of PDR (n = 4 were studied before and after pan-retinal photocoagulation and intra-vitreal injections with bevacizumab, an antibody against VEGF. Neovascularization and fibrosis in various degrees occurred almost exclusively in PDR patients. In PDR patients, vitreous CTGF levels were significantly associated with degree of fibrosis and with VEGF levels, but not with neovascularization, whereas VEGF levels were associated only with neovascularization. The ratio of CTGF and VEGF was the strongest predictor of degree of fibrosis. As predicted by these findings, patients with PDR demonstrated a temporary increase in intra-ocular fibrosis after anti-VEGF treatment or laser treatment. CONCLUSIONS/SIGNIFICANCE: CTGF is primarily a pro-fibrotic factor in the eye, and a shift in the balance between CTGF and VEGF is associated with the switch from angiogenesis to fibrosis in proliferative retinopathy.

  6. Influence of Levamisole and Other Angiogenesis Inhibitors on Angiogenesis and Endothelial Cell Morphology in Vitro

    Directory of Open Access Journals (Sweden)

    Gunnar Houen

    2013-06-01

    Full Text Available Angiogenesis, the formation of new blood vessels from existing vessels is required for many physiological processes and for growth of solid tumors. Initiated by hypoxia, angiogenesis involves binding of angiogenic factors to endothelial cell (EC receptors and activation of cellular signaling, differentiation, migration, proliferation, interconnection and canalization of ECs, remodeling of the extracellular matrix and stabilization of newly formed vessels. Experimentally, these processes can be studied by several in vitro and in vivo assays focusing on different steps in the process. In vitro, ECs form networks of capillary-like tubes when propagated for three days in coculture with fibroblasts. The tube formation is dependent on vascular endothelial growth factor (VEGF and omission of VEGF from the culture medium results in the formation of clusters of undifferentiated ECs. Addition of angiogenesis inhibitors to the coculture system disrupts endothelial network formation and influences EC morphology in two distinct ways. Treatment with antibodies to VEGF, soluble VEGF receptor, the VEGF receptor tyrosine kinase inhibitor SU5614, protein tyrosine phosphatase inhibitor (PTPI IV or levamisole results in the formation of EC clusters of variable size. This cluster morphology is a result of inhibited EC differentiation and levamisole can be inferred to influence and block VEGF signaling. Treatment with platelet factor 4, thrombospondin, rapamycin, suramin, TNP-470, salubrinal, PTPI I, PTPI II, clodronate, NSC87877 or non-steriodal anti-inflammatory drugs (NSAIDs results in the formation of short cords of ECs, which suggests that these inhibitors have an influence on later steps in the angiogenic process, such as EC proliferation and migration. A humanized antibody to VEGF is one of a few angiogenesis inhibitors used clinically for treatment of cancer. Levamisole is approved for clinical treatment of cancer and is interesting with respect to anti

  7. Influence of Levamisole and Other Angiogenesis Inhibitors on Angiogenesis and Endothelial Cell Morphology in Vitro

    Energy Technology Data Exchange (ETDEWEB)

    Friis, Tina; Engel, Anne-Marie; Bendiksen, Christine D.; Larsen, Line S.; Houen, Gunnar, E-mail: gh@ssi.dk [Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen (Denmark)

    2013-06-24

    Angiogenesis, the formation of new blood vessels from existing vessels is required for many physiological processes and for growth of solid tumors. Initiated by hypoxia, angiogenesis involves binding of angiogenic factors to endothelial cell (EC) receptors and activation of cellular signaling, differentiation, migration, proliferation, interconnection and canalization of ECs, remodeling of the extracellular matrix and stabilization of newly formed vessels. Experimentally, these processes can be studied by several in vitro and in vivo assays focusing on different steps in the process. In vitro, ECs form networks of capillary-like tubes when propagated for three days in coculture with fibroblasts. The tube formation is dependent on vascular endothelial growth factor (VEGF) and omission of VEGF from the culture medium results in the formation of clusters of undifferentiated ECs. Addition of angiogenesis inhibitors to the coculture system disrupts endothelial network formation and influences EC morphology in two distinct ways. Treatment with antibodies to VEGF, soluble VEGF receptor, the VEGF receptor tyrosine kinase inhibitor SU5614, protein tyrosine phosphatase inhibitor (PTPI) IV or levamisole results in the formation of EC clusters of variable size. This cluster morphology is a result of inhibited EC differentiation and levamisole can be inferred to influence and block VEGF signaling. Treatment with platelet factor 4, thrombospondin, rapamycin, suramin, TNP-470, salubrinal, PTPI I, PTPI II, clodronate, NSC87877 or non-steriodal anti-inflammatory drugs (NSAIDs) results in the formation of short cords of ECs, which suggests that these inhibitors have an influence on later steps in the angiogenic process, such as EC proliferation and migration. A humanized antibody to VEGF is one of a few angiogenesis inhibitors used clinically for treatment of cancer. Levamisole is approved for clinical treatment of cancer and is interesting with respect to anti-angiogenic activity

  8. Influence of levamisole and other angiogenesis inhibitors on angiogenesis and endothelial cell morphology in vitro.

    Science.gov (United States)

    Friis, Tina; Engel, Anne-Marie; Bendiksen, Christine D; Larsen, Line S; Houen, Gunnar

    2013-01-01

    Angiogenesis, the formation of new blood vessels from existing vessels is required for many physiological processes and for growth of solid tumors. Initiated by hypoxia, angiogenesis involves binding of angiogenic factors to endothelial cell (EC) receptors and activation of cellular signaling, differentiation, migration, proliferation, interconnection and canalization of ECs, remodeling of the extracellular matrix and stabilization of newly formed vessels. Experimentally, these processes can be studied by several in vitro and in vivo assays focusing on different steps in the process. In vitro, ECs form networks of capillary-like tubes when propagated for three days in coculture with fibroblasts. The tube formation is dependent on vascular endothelial growth factor (VEGF) and omission of VEGF from the culture medium results in the formation of clusters of undifferentiated ECs. Addition of angiogenesis inhibitors to the coculture system disrupts endothelial network formation and influences EC morphology in two distinct ways. Treatment with antibodies to VEGF, soluble VEGF receptor, the VEGF receptor tyrosine kinase inhibitor SU5614, protein tyrosine phosphatase inhibitor (PTPI) IV or levamisole results in the formation of EC clusters of variable size. This cluster morphology is a result of inhibited EC differentiation and levamisole can be inferred to influence and block VEGF signaling. Treatment with platelet factor 4, thrombospondin, rapamycin, suramin, TNP-470, salubrinal, PTPI I, PTPI II, clodronate, NSC87877 or non-steriodal anti-inflammatory drugs (NSAIDs) results in the formation of short cords of ECs, which suggests that these inhibitors have an influence on later steps in the angiogenic process, such as EC proliferation and migration. A humanized antibody to VEGF is one of a few angiogenesis inhibitors used clinically for treatment of cancer. Levamisole is approved for clinical treatment of cancer and is interesting with respect to anti-angiogenic activity

  9. Influence of Levamisole and Other Angiogenesis Inhibitors on Angiogenesis and Endothelial Cell Morphology in Vitro

    International Nuclear Information System (INIS)

    Angiogenesis, the formation of new blood vessels from existing vessels is required for many physiological processes and for growth of solid tumors. Initiated by hypoxia, angiogenesis involves binding of angiogenic factors to endothelial cell (EC) receptors and activation of cellular signaling, differentiation, migration, proliferation, interconnection and canalization of ECs, remodeling of the extracellular matrix and stabilization of newly formed vessels. Experimentally, these processes can be studied by several in vitro and in vivo assays focusing on different steps in the process. In vitro, ECs form networks of capillary-like tubes when propagated for three days in coculture with fibroblasts. The tube formation is dependent on vascular endothelial growth factor (VEGF) and omission of VEGF from the culture medium results in the formation of clusters of undifferentiated ECs. Addition of angiogenesis inhibitors to the coculture system disrupts endothelial network formation and influences EC morphology in two distinct ways. Treatment with antibodies to VEGF, soluble VEGF receptor, the VEGF receptor tyrosine kinase inhibitor SU5614, protein tyrosine phosphatase inhibitor (PTPI) IV or levamisole results in the formation of EC clusters of variable size. This cluster morphology is a result of inhibited EC differentiation and levamisole can be inferred to influence and block VEGF signaling. Treatment with platelet factor 4, thrombospondin, rapamycin, suramin, TNP-470, salubrinal, PTPI I, PTPI II, clodronate, NSC87877 or non-steriodal anti-inflammatory drugs (NSAIDs) results in the formation of short cords of ECs, which suggests that these inhibitors have an influence on later steps in the angiogenic process, such as EC proliferation and migration. A humanized antibody to VEGF is one of a few angiogenesis inhibitors used clinically for treatment of cancer. Levamisole is approved for clinical treatment of cancer and is interesting with respect to anti-angiogenic activity

  10. Bidirectional regulation of angiogenesis by phytoestrogens through estrogen receptor-mediated signaling networks.

    Science.gov (United States)

    Liu, Hai-Xin; Wang, Yu; Lu, Qing; Yang, Ming-Zhu; Fan, Guan-Wei; Karas, Richard H; Gao, Xiu-Mei; Zhu, Yan

    2016-04-01

    Sex hormone estrogen is one of the most active intrinsic angiogenesis regulators; its therapeutic use has been limited due to its carcinogenic potential. Plant-derived phytoestrogens are attractive alternatives, but reports on their angiogenic activities often lack in-depth analysis and sometimes are controversial. Herein, we report a data-mining study with the existing literature, using IPA system to classify and characterize phytoestrogens based on their angiogenic properties and pharmacological consequences. We found that pro-angiogenic phytoestrogens functioned predominantly as cardiovascular protectors whereas anti-angiogenic phytoestrogens played a role in cancer prevention and therapy. This bidirectional regulation were shown to be target-selective and, for the most part, estrogen-receptor-dependent. The transactivation properties of ERα and ERβ by phytoestrogens were examined in the context of angiogenesis-related gene transcription. ERα and ERβ were shown to signal in opposite ways when complexed with the phytoestrogen for bidirectional regulation of angiogenesis. With ERα, phytoestrogen activated or inhibited transcription of some angiogenesis-related genes, resulting in the promotion of angiogenesis, whereas, with ERβ, phytoestrogen regulated transcription of angiogenesis-related genes, resulting in inhibition of angiogenesis. Therefore, the selectivity of phytoestrogen to ERα and ERβ may be critical in the balance of pro- or anti-angiogenesis process. PMID:27114311

  11. Anti-angiogenesis therapies: their potential in cancer management

    Directory of Open Access Journals (Sweden)

    Andrew Eichholz

    2010-05-01

    Full Text Available Andrew Eichholz, Shairoz Merchant, Andrew M GayaDepartment of Clinical Oncology, Guy’s and St. Thomas’ NHS Foundation Trust, London, United KingdomAbstract: Angiogenesis plays an important role in normal animal growth and development. This process is also vital for the growth of tumors. Angiogenesis inhibitors have a different mechanism of action to traditional chemotherapy agents and radiation therapy. The angiogenesis inhibitors can act synergistically with conventional treatments and tend to have non-overlapping toxicities. There are four drugs which have a proven role in treating cancer patients. Bevacizumab is a humanized monoclonal antibody that binds to and neutralizes vascular endothelial growth factor (VEGF. Sunitinib and sorafenib inhibit multiple tyrosine kinase receptors that are important for angiogenesis. Thalidomide inhibits the activity of basic fibroblast growth factor-2 (bFGF. The licensed indications and the supporting evidence are discussed. Other drugs are currently being tested in clinical trials and the most promising of these drugs are discussed. Aflibercept, also known as VEGF-trap, is a recombinant fusion protein that binds to circulating VEGF. The vascular disrupting agents act by targeting established blood vessels. These exciting new treatments have the potential to transform the management of cancer.Keywords: angiogenesis, bevacizumab, tyrosine kinase inhibitors, thalidomide, aflibercept, vascular disrupting agents

  12. Robo 4 Counteracts Angiogenesis in Herpetic Stromal Keratitis.

    Directory of Open Access Journals (Sweden)

    Fernanda Gimenez

    Full Text Available The cornea is a complex tissue that must preserve its transparency to maintain optimal vision. However, in some circumstances, damage to the eye can result in neovascularization that impairs vision. This outcome can occur when herpes simplex virus type 1 (HSV-1 causes the immunoinflammatory lesion stromal keratitis (SK. Potentially useful measures to control the severity of SK are to target angiogenesis which with herpetic SK invariably involves VEGF. One such way to control angiogenesis involves the endothelial receptor Robo4 (R4, which upon interaction with another protein activates an antiangiogenic pathway that counteracts VEGF downstream signaling. In this study we show that mice unable to produce R4 because of gene knockout developed significantly higher angiogenesis after HSV-1 ocular infection than did infected wild type (WT controls. Moreover, providing additional soluble R4 (sR4 protein by subconjunctival administration to R4 KO HSV-1 infected mice substantially rescued the WT phenotype. Finally, administration of sR4 to WT HSV-1 infected mice diminished the extent of corneal angiogenesis compared to WT control animals. Our results indicate that sR4 could represent a useful therapeutic tool to counteract corneal angiogenesis and help control the severity of SK.

  13. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet α granules and differentially released

    OpenAIRE

    Italiano, Joseph E.; Richardson, Jennifer L.; Patel-Hett, Sunita; Battinelli, Elisabeth; Zaslavsky, Alexander; Short, Sarah; Ryeom, Sandra; Folkman, Judah; Klement, Giannoula L.

    2008-01-01

    Platelets, in addition to their function in hemostasis, play an important role in wound healing and tumor growth. Because platelets contain angiogenesis stimulators and inhibitors, the mechanisms by which platelets regulate angiogenesis remain unclear. As platelets adhere to activated endothelium, their action can enhance or inhibit local angiogenesis. We therefore suspected a higher organization of angiogenesis regulators in platelets. Using double immunofluorescence and immunoelectron micro...

  14. Chemical approaches to angiogenesis in development and regeneration.

    Science.gov (United States)

    Zhao, H; Huang, H; Lin, S

    2016-01-01

    Vascular endothelial cells are essential building blocks of angiogenesis, which is required for normal embryonic development and tissue regeneration. In this chapter, we describe how to use transgenic zebrafish embryos expressing vascular-specific green fluorescent protein to evaluate differentiation, growth, and morphogenesis of endothelial cells. When combined with instrument automation and computational analysis, this method allows high-throughput screening for biologically active small chemical molecules that are effective in promoting angiogenesis. These molecules can be validated in mammalian endothelial cell differentiation and proliferation assays. These studies provide new reagents and therapeutic candidates for regenerative medicine studies. PMID:27312498

  15. Early pathogenesis in porcine proliferative enteropathy caused by Lawsonia intracellularis

    DEFF Research Database (Denmark)

    Boutrup, Torsten Snogdal; Boesen, H. T.; Boye, Mette;

    2010-01-01

    The intestinal bacterium Lawsonia intracellularis, the cause of proliferative enteropathy (PE) in pigs, is believed to infect mitotically active epithelial cells of the intestinal crypts and then multiply and spread in these cells as they divide. Further spread of infection is thought to occur by...... enterocytes. Furthermore, early invasion of the intestinal connective tissue was observed; with the presence of single bacteria in the lamina propria 12 hpi, and with a further spread of bacteria in the lamina propria observed at 5 dpi, suggesting an active role for the lamina propria in the course of...

  16. E series prostaglandins alter the proliferative, apoptotic and migratory properties of T98G human glioma cells in vitro

    Directory of Open Access Journals (Sweden)

    Gomes Renata N

    2012-12-01

    Full Text Available Abstract Background In many types of cancer, prostaglandin E2 (PGE2 is associated with tumour related processes including proliferation, migration, angiogenesis and apoptosis. However in gliomas the role of this prostanoid is poorly understood. Here, we report on the proliferative, migratory, and apoptotic effects of PGE1, PGE2 and Ibuprofen (IBP observed in the T98G human glioma cell line in vitro. Methods T98G human glioma cells were treated with IBP, PGE1 or PGE2 at varying concentrations for 24–72 hours. Cell proliferation, mitotic index and apoptotic index were determined for each treatment. Caspase-9 and caspase-3 activity was measured using fluorescent probes in live cells (FITC-LEHD-FMK and FITC-DEVD-FMK respectively. The migratory capacity of the cells was quantified using a scratch migration assay and a transwell migration assay. Results A significant decrease was seen in cell number (54% in the presence of 50 μM IBP. Mitotic index and bromodeoxyuridine (BrdU incorporation were also decreased 57% and 65%, respectively, by IBP. The apoptotic index was increased (167% and the in situ activity of caspase-9 and caspase-3 was evident in IBP treated cells. The inhibition of COX activity by IBP also caused a significant inhibition of cell migration in the monolayer scratch assay (74% and the transwell migration assay (36%. In contrast, the presence of exogenous PGE1 or PGE2 caused significant increases in cell number (37% PGE1 and 45% PGE2. When mitotic index was measured no change was found for either PG treatment. However, the BrdU incorporation rate was significantly increased by PGE1 (62% and to a greater extent by PGE2 (100%. The apoptotic index was unchanged by exogenous PGs. The addition of exogenous PGs caused an increase in cell migration in the monolayer scratch assay (43% PGE1 and 44% PGE2 and the transwell migration assay (28% PGE1 and 68% PGE2. Conclusions The present study demonstrated that treatments which alter PGE1 and PGE

  17. Targeting angiogenesis with integrative cancer therapies.

    Science.gov (United States)

    Yance, Donald R; Sagar, Stephen M

    2006-03-01

    An integrative approach for managing a patient with cancer should target the multiple biochemical and physiological pathways that support tumor development while minimizing normal tissue toxicity. Angiogenesis is a key process in the promotion of cancer. Many natural health products that inhibit angiogenesis also manifest other anticancer activities. The authors will focus on natural health products (NHPs) that have a high degree of antiangiogenic activity but also describe some of their many other interactions that can inhibit tumor progression and reduce the risk of metastasis. NHPs target various molecular pathways besides angiogenesis, including epidermal growth factor receptor (EGFR), the HER-2/neu gene, the cyclooxygenase-2 enzyme, the NF-kB transcription factor, the protein kinases, Bcl-2 protein, and coagulation pathways. The herbalist has access to hundreds of years of observational data on the anticancer activity of many herbs. Laboratory studies are confirming the knowledge that is already documented in traditional texts. The following herbs are traditionally used for anticancer treatment and are antiangiogenic through multiple interdependent processes that include effects on gene expression, signal processing, and enzyme activities: Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (turmeric), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinale (ginger), Panax ginseng, Rabdosia rubescens (rabdosia), and Chinese destagnation herbs. Quality assurance of appropriate extracts is essential prior to embarking on clinical trials. More data are required on dose response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations

  18. Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitro and in vivo anti-tumor activity.

    Science.gov (United States)

    Raimondi, Lavinia; Amodio, Nicola; Di Martino, Maria Teresa; Altomare, Emanuela; Leotta, Marzia; Caracciolo, Daniele; Gullà, Annamaria; Neri, Antonino; Taverna, Simona; D'Aquila, Patrizia; Alessandro, Riccardo; Giordano, Antonio; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2014-05-30

    Multiple myeloma (MM) cells induce relevant angiogenic effects within the human bone marrow milieu (huBMM) by the aberrant expression of angiogenic factors. Hypoxia triggers angiogenic events within the huBMM and the transcription factor hypoxia-inducible factor-1α (HIF-1α) is over-expressed by MM cells. Since synthetic miR-199a-5p mimics negatively regulates HIF-1α, we here investigated a miRNA-based therapeutic strategy against hypoxic MM cells. We indeed found that enforced expression of miR-199a-5p led to down-modulated expression of HIF-1α as well as of other pro-angiogenic factors such as VEGF-A, IL-8, and FGFb in hypoxic MM cells in vitro. Moreover, miR-199a-5p negatively affected MM cells migration, while it increased the adhesion of MM cells to bone marrow stromal cells (BMSCs) in hypoxic conditions. Furthermore, transfection of MM cells with miR-199a-5p significantly impaired also endothelial cells migration and down-regulated the expression of endothelial adhesion molecules such as VCAM-1 and ICAM-1. Finally, we identified a hypoxia\\AKT/miR-199a-5p loop as a potential molecular mechanism responsible of miR-199a-5p down-regulation in hypoxic MM cells. Taken together our results indicate that miR-199a-5p has an important role for the pathogenesis of MM and support the hypothesis that targeting angiogenesis via a miRNA/HIF-1α pathway may represent a novel potential therapeutical approach for this still lethal disease. PMID:24839982

  19. IMD-4690, a novel specific inhibitor for plasminogen activator inhibitor-1, reduces allergic airway remodeling in a mouse model of chronic asthma via regulating angiogenesis and remodeling-related mediators.

    Science.gov (United States)

    Tezuka, Toshifumi; Ogawa, Hirohisa; Azuma, Masahiko; Goto, Hisatsugu; Uehara, Hisanori; Aono, Yoshinori; Hanibuchi, Masaki; Yamaguchi, Yoichi; Fujikawa, Tomoyuki; Itai, Akiko; Nishioka, Yasuhiko

    2015-01-01

    Plasminogen activator inhibitor (PAI)-1 is the principal inhibitor of plasminogen activators, and is responsible for the degradation of fibrin and extracellular matrix. IMD-4690 is a newly synthesized inhibitor for PAI-1, whereas the effect on allergic airway inflammation and remodeling is still unclear. We examined the in vivo effects by using a chronic allergen exposure model of bronchial asthma in mice. The model was generated by an immune challenge for 8 weeks with house dust mite antigen, Dermatophagoides pteronyssinus (Dp). IMD-4690 was intraperitoneally administered during the challenge. Lung histopathology, hyperresponsiveness and the concentrations of mediators in lung homogenates were analyzed. The amount of active PAI-1 in the lungs was increased in mice treated with Dp. Administration with IMD-4690 reduced an active/total PAI-1 ratio. IMD-4690 also reduced the number of bronchial eosinophils in accordance with the decreased expressions of Th2 cytokines in the lung homogenates. Airway remodeling was inhibited by reducing subepithelial collagen deposition, smooth muscle hypertrophy, and angiogenesis. The effects of IMD-4690 were partly mediated by the regulation of TGF-β, HGF and matrix metalloproteinase. These results suggest that PAI-1 plays crucial roles in airway inflammation and remodeling, and IMD-4690, a specific PAI-1 inhibitor, may have therapeutic potential for patients with refractory asthma due to airway remodeling. PMID:25785861

  20. IMD-4690, a novel specific inhibitor for plasminogen activator inhibitor-1, reduces allergic airway remodeling in a mouse model of chronic asthma via regulating angiogenesis and remodeling-related mediators.

    Directory of Open Access Journals (Sweden)

    Toshifumi Tezuka

    Full Text Available Plasminogen activator inhibitor (PAI-1 is the principal inhibitor of plasminogen activators, and is responsible for the degradation of fibrin and extracellular matrix. IMD-4690 is a newly synthesized inhibitor for PAI-1, whereas the effect on allergic airway inflammation and remodeling is still unclear. We examined the in vivo effects by using a chronic allergen exposure model of bronchial asthma in mice. The model was generated by an immune challenge for 8 weeks with house dust mite antigen, Dermatophagoides pteronyssinus (Dp. IMD-4690 was intraperitoneally administered during the challenge. Lung histopathology, hyperresponsiveness and the concentrations of mediators in lung homogenates were analyzed. The amount of active PAI-1 in the lungs was increased in mice treated with Dp. Administration with IMD-4690 reduced an active/total PAI-1 ratio. IMD-4690 also reduced the number of bronchial eosinophils in accordance with the decreased expressions of Th2 cytokines in the lung homogenates. Airway remodeling was inhibited by reducing subepithelial collagen deposition, smooth muscle hypertrophy, and angiogenesis. The effects of IMD-4690 were partly mediated by the regulation of TGF-β, HGF and matrix metalloproteinase. These results suggest that PAI-1 plays crucial roles in airway inflammation and remodeling, and IMD-4690, a specific PAI-1 inhibitor, may have therapeutic potential for patients with refractory asthma due to airway remodeling.

  1. Angiogenesis in obesity and cancer

    OpenAIRE

    Bråkenhielm, Ebba

    2003-01-01

    Angiogenesis is the process of blood vessel growth from pre-existing vasculatures. In the adult, it is involved in certain physiological processes, such as in organ and tissue regeneration, wound healing, and in female reproductive cycles. Like during embryonic development, the growth and expansion of adult tissues is dependent on neovascularization. The adipose tissue has a unique capacity to substantially increase or decrease in size throughout adult life. This indicates t...

  2. Safrole oxide inhibits angiogenesis by inducing apoptosis.

    Science.gov (United States)

    Zhao, Jing; Miao, Junying; Zhao, Baoxiang; Zhang, Shangli; Yin, Deling

    2005-06-01

    Our previous studies indicate that 3, 4-(methylenedioxy)-1-(2', 3'-epoxypropyl)-benzene (safrole oxide), a newly synthesized compound, induces apoptosis in vascular endothelial cells (VECs) and A549 lung cancer cells. To our knowledge, the inhibition of angiogenesis by safrole oxide has not been reported yet. We report here that cultured rat aorta treated with safrole oxide exhibited a significant microvessel reduction as determined by counting the number of microvessels in a phase contrast microscope. There were more microvessels formed in the presence of A549 lung cancer cells in rat aorta model, while a dramatic inhibition of angiogenesis was obtained by adding 220-450 micromol l(-1) of safrole oxide to the growth medium (Psafrole oxide produced only some abortive endothelial cells but not microvessels. Furthermore, safrole oxide induced antiangiogenic effect in the chorioallantoic membranes (CAM) as a dose dependent manner. Eggs treated with 2-11 micromol 100 microl(-1) per egg of the safrole oxide for 48 h exhibited a significant reduction in blood vessel area of the CAM, a process likely mediated by apoptosis as demonstrated by DNA fragmentation. Our results suggest that safrole oxide has antiangiogenic activity and this effect might occur by induction of cellular apoptosis.

  3. Impaired Angiogenesis during Fracture Healing in GPCR Kinase 2 Interacting Protein-1 (GIT1) Knock Out Mice

    OpenAIRE

    Guoyong Yin; Tzong-Jen Sheu; Prashanthi Menon; Jinjiang Pang; Hsin-Chiu Ho; Shanshan Shi; Chao Xie; Elaine Smolock; Chen Yan; Zuscik, Michael J.; Berk, Bradford C.

    2014-01-01

    G protein coupled receptor kinase 2 (GRK2) interacting protein-1 (GIT1), is a scaffold protein that plays an important role in angiogenesis and osteoclast activity. We have previously demonstrated that GIT1 knockout (GIT1 KO) mice have impaired angiogenesis and dysregulated osteoclast podosome formation leading to a reduction in the bone resorbing ability of these cells. Since both angiogenesis and osteoclast-mediated bone remodeling are involved in the fracture healing process, we hypothesiz...

  4. MicroRNA-214 and MicroRNA-126 Are Potential Biomarkers for Malignant Endothelial Proliferative Diseases

    Directory of Open Access Journals (Sweden)

    Kazuki Heishima

    2015-10-01

    Full Text Available Malignant endothelial proliferative diseases including human angiosarcoma (AS and canine hemangiosarcoma (HSA are serious diseases with a grave prognosis. Establishing liquid biopsy-based biomarkers for screening has definite clinical utility; however, plasma miRNAs up- or down-regulated in these sarcomas have been unclear. For identifying possible diagnostic plasma miRNAs for these sarcomas, we investigated whether plasma miR-214 and miR-126, which miRNAs play important roles in angiogenesis and tumorigenesis, were elevated in malignant endothelial proliferative diseases. For this investigation, human angiosarcoma and canine hemangiosarcoma cell lines and clinical plasma samples of canine hemangiosarcoma were examined by performing miRNA qRT-PCR. We report here that human angiosarcoma and canine hemangiosarcoma cell lines over-secreted miR-214 and miR-126 via microvesicles; in addition, their levels in the plasma samples from canines with hemangiosarcoma were increased. Moreover, the surgical resection of primary tumors decreased the levels of plasma miR-214 and miR-126. Our findings suggest that these malignant endothelial proliferative diseases over-secreted miR-214 and miR-126, thus suggesting that these miRNAs have potential as diagnostic biomarkers for malignant endothelial proliferative diseases in canine and possible in human angiosarcoma.

  5. Angiogenesis and Anti-Angiogenic Treatments

    Directory of Open Access Journals (Sweden)

    Ersin Demirer

    2013-10-01

    Full Text Available Blood vessels in our body is developed by vasculogenesis and angiogenesis. There have been new advances in molecular pathology and tumor biology areas in recent years. Angiogenesis is modulated by the balance between angiogenic and anti-angiogenic factors. Angiogenesis plays a key role in tumor growth. Drugs inhibiting angiogenesis have been in use in various malign or non-malign diseases. Inhibition of angiogenesis in malign diseases is a very attractive subject in medicine and studies are going on about long term affects and toxicities. Inhibition of angiogenesis is not an only treatment choice alone. It is a supplemental treatment option applied with conventional chemotherapy, radiotherapy, surgery, immunotherapy and hormonal therapy. It has been used in colorectal carcinoma, renal cell carcinoma, non-small cell lung cancer, glioblastoma, heoatocellular carcinoma, pancreatic neuroendocrine tumor, tyroid medullary cancer.

  6. Chemokine Regulation of Angiogenesis During Wound Healing

    OpenAIRE

    Bodnar, Richard J.

    2015-01-01

    Significance: Angiogenesis plays a critical role in wound healing. A defect in the formation of a neovasculature induces ulcer formation. One of the challenges faced by the clinician when devising strategies to promote healing of chronic wounds is the initiation of angiogenesis and the formation of a stable vasculature to support tissue regeneration. Understanding the molecular factors regulating angiogenesis during wound healing will lead to better therapies for healing chronic wounds.

  7. Prothrombin kringle-2 domain has a growth inhibitory activity against basic fibroblast growth factor-stimulated capillary endothelial cells.

    Science.gov (United States)

    Lee, T H; Rhim, T; Kim, S S

    1998-10-30

    Recently, O'Reilly et al. (O'Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., Lane, W. S., Cao, Y., Sage, E. H., and Folkman, J. (1994) Cell 79, 315-328; O'Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., Flynn, E., Birkhead, J. R., Olsen, B. R., and Folkman, J. (1997) Cell 88, 277-285) developed a simple in vitro angiogenesis assay system using bovine capillary endothelial cell proliferation and purified potent angiogenic inhibitors, including angiostatin and endostatin. Using a simple in vitro assay for angiogenesis, we purified a protein molecule that showed anti-endothelial cell proliferative activity from the serum of New Zealand White rabbits, which was stimulated by lipopolysaccharide. The purified protein showed only bovine capillary endothelial cell growth inhibition and not any cytotoxicity. This molecule was identified as a prothrombin kringle-2 domain (fragment-2) using Edman degradation and the amino acid sequence deduced from the cloned cDNA. Both the prothrombin kringle-2 domain released from prothrombin by factor Xa cleavage and the angiogenic inhibitor purified from rabbit sera exhibited anti-endothelial cell proliferative activity. The recombinant rabbit prothrombin kringle-2 domain showed potent inhibitory activity with half-maximal concentrations (ED50) of 2 microg/ml media. As in angiostatin, the recombinant rabbit prothrombin kringle-2 domain also inhibited angiogenesis in the chorioallantoic membrane of chick embryos. PMID:9786880

  8. Proliferative histiocytic disorders of canine skin.

    Science.gov (United States)

    Middleton, D J

    1997-06-01

    Proliferative histiocytic disorders of canine skin present a clinical spectrum from the innocuous self-limiting solitary dermal lesion of cutaneous histiocytoma, through the recurrent deep dermal nodules of cutaneous histiocytosis to the generally fatal condition of Bernese Mountain Dogs termed systemic histiocytosis, in which visceral involvement is commonly encountered. Immunocytochemical characterization of the constituent histiocytic cells and accompanying lymphoid infiltrate using canine species specific reagents has elucidated considerably the mechanism by which these conditions exhibit their various biologic behaviours.

  9. Macrophages: An Inflammatory Link Between Angiogenesis and Lymphangiogenesis.

    Science.gov (United States)

    Corliss, Bruce A; Azimi, Mohammad S; Munson, Jennifer M; Peirce, Shayn M; Murfee, Walter L

    2016-02-01

    Angiogenesis and lymphangiogenesis often occur in response to tissue injury or in the presence of pathology (e.g., cancer), and it is these types of environments in which macrophages are activated and increased in number. Moreover, the blood vascular microcirculation and the lymphatic circulation serve as the conduits for entry and exit for monocyte-derived macrophages in nearly every tissue and organ. Macrophages both affect and are affected by the vessels through which they travel. Therefore, it is not surprising that examination of macrophage behaviors in both angiogenesis and lymphangiogenesis has yielded interesting observations that suggest macrophages may be key regulators of these complex growth and remodeling processes. In this review, we will take a closer look at macrophages through the lens of angiogenesis and lymphangiogenesis, examining how their dynamic behaviors may regulate vessel sprouting and function. We present macrophages as a cellular link that spatially and temporally connects angiogenesis with lymphangiogenesis, in both physiological growth and in pathological adaptations, such as tumorigenesis. As such, attempts to therapeutically target macrophages in order to affect these processes may be particularly effective, and studying macrophages in both settings will accelerate the field's understanding of this important cell type in health and disease. PMID:26614117

  10. Cancer gene therapy targeting angiogenesis: An updated review

    OpenAIRE

    Liu, Ching-Chiu; Shen, Zan; Kung, Hsiang-Fu; Lin, Marie CM

    2006-01-01

    Since the relationship between angiogenesis and tumor growth was established by Folkman in 1971, scientists have made efforts exploring the possibilities in treating cancer by targeting angiogenesis. Inhibition of angiogenesis growth factors and administration of angiogenesis inhibitors are the basics of anti-angiogenesis therapy. Transfer of anti-angiogenesis genes has received attention recently not only because of the advancement of recombinant vectors, but also because of the localized an...

  11. Complex role of matrix metalloproteinases in angiogenesis

    Institute of Scientific and Technical Information of China (English)

    SANGQINGXIANGAMY

    1998-01-01

    Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) play a significant role in regulating angiogenesis,the process of new blood vessel formation.Interstitial collagenase (MMP-1),72kDa gelatinase A/type IV collagenase (MMP-2),and 92 kDA gelatinase B/type IV collagenase (MMP-9) dissolve extracellular matrix (ECM) and may initiate and promote angiogenesis.TIMP-1,TIMP-2,TIMP-3,and possibly,TIMP-4 inhibit neovascularization.A new paradign is emerging that matrilysin (MMP-7),MMP-9,and metalloelastase (MMP-12) may block angiogenesis by converting plasminogen to angiostatin,which is one of the most potent angiogenesis antagonists.MMPs and TIMPs play a complex role in regulating angiogenesis.An understanding of the biochemical and cellular pathways and mechanisms of angiogenesis will provide important information to allow the control of angiogenesis,e.g.the stimulation of angiogenesis for coronary collateral circulation formation;while the inhibition for treating arthritis and cancer.

  12. Type I Collagen and Collagen Mimetics as Angiogenesis Promoting Superpolymers

    Energy Technology Data Exchange (ETDEWEB)

    Twardowski, T.; Fertala, A.; Orgel, J.P.R.O.; San Antonio, J.D. (TJU); (IIT); (Widener)

    2008-07-18

    Angiogenesis, the development of blood vessels from the pre-existing vasculature, is a key component of embryogenesis and tissue regeneration. Angiogenesis also drives pathologies such as tumor growth and metastasis, and hemangioma development in newborns. On the other hand, promotion of angiogenesis is needed in tissues with vascular insufficiencies, and in bioengineering, to endow tissue substitutes with appropriate microvasculatures. Therefore, much research has focused on defining mechanisms of angiogenesis, and identifying pro- and anti-angiogenic molecules. Type I collagen, the most abundant protein in humans, potently stimulates angiogenesis in vitro and in vivo. Crucial to its angiogenic activity appears to be ligation and possibly clustering of endothelial cell (EC) surface {alpha}1{beta}1/{alpha}2{beta}1 integrin receptors by the GFPGER502-507 sequence of the collagen fibril. However, additional aspects of collagen structure and function that may modulate its angiogenic properties are discussed. Moreover, type I collagen and fibrin, another angiogenic polymer, share several structural features. These observations suggest strategies for creating 'angiogenic superpolymers', including: modifying type I collagen to influence its biological half-life, immunogenicity, and integrin binding capacity; genetically engineering fibrillar collagens to include additional integrin binding sites or angiogenic determinants, and remove unnecessary or deleterious sequences without compromising fibril integrity; and exploring the suitability of poly(ortho ester), PEG-lysine copolymer, tubulin, and cholesteric cuticle as collagen mimetics, and suggesting means of modifying them to display ideal angiogenic properties. The collagenous and collagen mimetic angiogenic superpolymers described here may someday prove useful for many applications in tissue engineering and human medicine.

  13. Experimental proliferative glomerulonephritis in the cat.

    Science.gov (United States)

    Bishop, S A; Stokes, C R; Lucke, V M

    1992-01-01

    A model of chronic serum sickness was used to induce immune-complex glomerulonephritis in seven experimental cats, by daily intravenous inoculation of an increasing dose (5 to 35 mg) of human serum albumin (HSA). At week four, two of the seven animals developed anterior uveitis. At week 23, two different animals developed the subcutaneous oedema characteristic of the nephrotic syndrome (NS), whilst the other five cats appeared clinically normal. The kidneys were examined at necropsy by light microscopy and by transmission electron microscopy. The glomeruli of four animals (three with both proteinuria and uraemia, and one with proteinuria only) showed morphological changes under light microscopy. The abnormalities suggested that a diffuse mesangial proliferative glomerulonephritis (GN) had been induced in three cats and diffuse membranoproliferative GN induced in another. Ultrastructural studies revealed electron-dense deposits (immune-complexes) in six of the seven cats. Two cats without glomerular abnormalities by light microscopy had mesangial deposits and three cats with mesangial proliferative GN had deposits at mesangial, subendothelial and/or subepithelial sites. The single cat with membranoproliferative GN had deposits at mesangial, subendothelial, subepithelial and intramembranous sites. Immunohistological examination (peroxidase-antiperoxidase technique) showed that HSA and immunoglobulin (IgG and IgM) were deposited in the glomeruli of these cats. Deposits were the most dense in cats with more severe renal lesions. Deposits of IgM were most abundant. An extensive cellular infiltrate, comprising macrophages, neutrophils and plasma cells, was observed only in the four animals which showed abnormalities in glomerular ultrastructure. The disease induced in these cats thus appears to differ from the membranous nephropathy previously described in the cat and bears a close resemblance to immune complex (IC) disease in man. In view of the relatively few specific

  14. Proliferative glomerulonephritis and primary antiphospholipid syndrome

    International Nuclear Information System (INIS)

    Little is known regarding the association of primary antiphospholipid syndrome (APLS) and proliferative glomerulonephiritis (GN). We describe a biopsy-documented case with primary APLS and proliferative (GN) with no evidence of thrombotic microangiopathy (TMA), and in the absence of other manifestations of systematic lupus erythematosus (SLE). She presented initially with left popliteal deep venous thrombosis and nephrotic syndrome. Her first pregnancy at the age of 26 years resulted in the intra-uterine fetal death at term. Two subsequent pregnancies ended up with miscarriages at 3 and 4 months of gestation. Urinalysis revealed glomerular red blood cells of 1.0000.000/ml and granular cast; proteinuria of 13.4grams/24 hours, which was non-selective; hemoglobin 12 gm/dl, normal white blood cell and platelets; serum albumin 2.6gm/dl; anti-nuclear antibody (ANA) and anti DNA were negative and complement levels normal. Lupus anticoagulant was positive leading to a diagnosis of primary APLS. The biopsy findings were consistent with membranoproliferative GN. She continued to have steroid-resistant proteinuria, but stable renal function after a 12-year follow up period. She had 2 pregnancies during this period and was delivered at term using caesarian section. She received heparin during the pregnancies. Later she developed hypertension easily controlled by atenolol. This case provides evidence that primary APLS can be associated with proliferative GN due to immune deposits and not only TMA as previously reported, and in the complete absence of SLE. Performing more renal biopsies in this group of patients may disclose a greater prevalence of proleferative GN and may help in devising a rationale for treatment. (author)

  15. Proliferative diabetic retinopathy in typical retinitis pigmentosa.

    Science.gov (United States)

    Preethi, Srinivasaraghavan; Rajalakshmi, Adithyapuram Ramachandran

    2015-01-01

    A 39-year-old woman with typical retinitis pigmentosa (RP) for 9 years and a positive family history of night blindness was diagnosed with diabetes mellitus (DM). She developed proliferative diabetic retinopathy (PDR) during the course of disease. She was promptly managed with pan retinal photocoagulation (PRP). PDR developing in a case of typical RP is extremely rare and has not been reported in the literature to date. Recognition of this rare, vision threatening complication, points out a definite need to further look deep into the pathogenesis of diabetic retinopathy. PMID:26021380

  16. Targeting vascular NADPH oxidase 1 blocks tumor angiogenesis through a PPARα mediated mechanism.

    Directory of Open Access Journals (Sweden)

    Sarah Garrido-Urbani

    Full Text Available Reactive oxygen species, ROS, are regulators of endothelial cell migration, proliferation and survival, events critically involved in angiogenesis. Different isoforms of ROS-generating NOX enzymes are expressed in the vasculature and provide distinct signaling cues through differential localization and activation. We show that mice deficient in NOX1, but not NOX2 or NOX4, have impaired angiogenesis. NOX1 expression and activity is increased in primary mouse and human endothelial cells upon angiogenic stimulation. NOX1 silencing decreases endothelial cell migration and tube-like structure formation, through the inhibition of PPARα, a regulator of NF-κB. Administration of a novel NOX-specific inhibitor reduced angiogenesis and tumor growth in vivo in a PPARα dependent manner. In conclusion, vascular NOX1 is a critical mediator of angiogenesis and an attractive target for anti-angiogenic therapies.

  17. Proinflammatory mediators stimulate neutrophil-directed angiogenesis.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Vascular endothelial growth factor (VEGF; vascular permeability factor) is one of the most potent proangiogenic cytokines, and it plays a central role in mediating the process of angiogenesis or new blood vessel formation. Neutrophils (PMNs) recently have been shown to produce VEGF. HYPOTHESIS: The acute inflammatory response is a potent stimulus for PMN-directed angiogenesis. METHODS: Neutrophils were isolated from healthy volunteers and stimulated with lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6), and anti-human Fas monoclonal antibody. Culture supernatants were assayed for VEGF using enzyme-linked immunosorbent assays. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs were then added to human umbilical vein endothelial cells and human microvessel endothelial cells and assessed for endothelial cell proliferation using 5-bromodeoxyuridine labeling. Tubule formation was also assessed on MATRIGEL basement membrane matrix. Neutrophils were lysed to measure total VEGF release, and VEGF expression was detected using Western blot analysis. RESULTS: Lipopolysaccharide and TNF-alpha stimulation resulted in significantly increased release of PMN VEGF (532+\\/-49 and 484+\\/-80 pg\\/mL, respectively; for all, presented as mean +\\/- SEM) compared with control experiments (32+\\/-4 pg\\/mL). Interleukin 6 and Fas had no effect. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs also resulted in significant increases (P<.005) in macrovascular and microvascular endothelial cell proliferation and tubule formation. Adding anti-human VEGF-neutralizing polyclonal antibody to stimulated PMN supernatant inhibited these effects. Total VEGF release following cell lysis and Western blot analysis suggests that the VEGF is released from an intracellular store. CONCLUSION: Activated human PMNs are directly angiogenic by releasing VEGF, and this has important implications for inflammation, capillary leak syndrome

  18. SPARC is a source of copper-binding peptides that stimulate angiogenesis

    OpenAIRE

    1994-01-01

    SPARC is a transiently expressed extracellular matrix-binding protein that alters cell shape and regulates endothelial cell proliferation in vitro. In this study, we show that SPARC mRNA and protein are synthesized by endothelial cells during angiogenesis in vivo. SPARC and peptides derived from a cationic region of the protein (amino acids 113- 130) stimulated the formation of endothelial cords in vitro; moreover, these peptides stimulated angiogenesis in vivo. Mapping of the active domain d...

  19. Role of Chemokines in Non-Small Cell Lung Cancer: Angiogenesis and Inflammation

    OpenAIRE

    Rivas-Fuentes, Selma; Salgado-Aguayo, Alfonso; Pertuz Belloso, Silvana; Gorocica Rosete, Patricia; Alvarado-Vásquez, Noé; Aquino-Jarquin, Guillermo

    2015-01-01

    Non-small cell lung cancer (NSCLC) is one of the most common types of aggressive cancer. The tumor tissue, which shows an active angiogenesis, is composed of neoplastic and stromal cells, and an abundant inflammatory infiltrate. Angiogenesis is important to support tumor growth, while infiltrating cells contribute to the tumor microenvironment through the secretion of growth factors, cytokines and chemokines, important molecules in the progression of the disease. Chemokines are important in d...

  20. Platelet-Stored Angiogenesis Factors: Clinical Monitoring Is Prone to Artifacts

    OpenAIRE

    Patrick Starlinger; Lejla Alidzanovic; Dominic Schauer; Philipp Brugger; Silvia Sommerfeldt; Irene Kuehrer; Schoppmann, Sebastian F; Michael Gnant; Christine Brostjan

    2011-01-01

    Background: The analysis of angiogenesis factors in the blood of tumor patients has given diverse results on their prognostic or predictive value. Since mediators of angiogenesis are stored in platelets, their measurement in plasma is sensitive to inadvertent platelet activation during blood processing. Methods: Variants of blood withdrawal and plasma preparation were evaluated by ELISA for the detection of TSP-1, PF-4, VEGF and PD-ECGF. A total of 22 pancreatic cancer patients and 29 healthy...

  1. The transcriptional coactivator PGC-1α mediates exercise-induced angiogenesis in skeletal muscle

    OpenAIRE

    Chinsomboon, Jessica; Ruas, Jorge; Gupta, Rana K.; Thom, Robyn; Shoag, Jonathan; Rowe, Glenn C.; Sawada, Naoki; Raghuram, Srilatha; Arany, Zoltan

    2009-01-01

    Peripheral arterial disease (PAD) affects 5 million people in the US and is the primary cause of limb amputations. Exercise remains the single best intervention for PAD, in part thought to be mediated by increases in capillary density. How exercise triggers angiogenesis is not known. PPARγ coactivator (PGC)-1α is a potent transcriptional co-activator that regulates oxidative metabolism in a variety of tissues. We show here that PGC-1α mediates exercise-induced angiogenesis. Voluntary exercise...

  2. Marine-Derived Angiogenesis Inhibitors for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Ying-Qing Wang

    2013-03-01

    Full Text Available Angiogenesis inhibitors have been successfully used for cancer therapy in the clinic. Many marine-derived natural products and their analogues have been reported to show antiangiogenic activities. Compared with the drugs in the clinic, these agents display interesting characteristics, including diverse sources, unique chemical structures, special modes of action, and distinct activity and toxicity profiles. This review will first provide an overview of the current marine-derived angiogenesis inhibitors based on their primary targets and/or mechanisms of action. Then, the marine-derived antiangiogenic protein kinase inhibitors will be focused on. And finally, the clinical trials of the marine-derived antiangiogenic agents will be discussed, with special emphasis on their application potentials, problems and possible coping strategies in their future development as anticancer drugs.

  3. Antimyeloma effects of resveratrol through inhibition of angiogenesis

    Institute of Scientific and Technical Information of China (English)

    HU Yu; SUN Chun-yan; HUANG Jing; HONG Liu; ZHANG Lu; CHU Zhang-bo

    2007-01-01

    Background In multiple myeloma (MM), bone marrow angiogenesis parallels tumour progression and correlates with disease activity. Recent studies have proved resveratrol possesses antiangiogenic activity in vitro and in vivo. In this study, we examined the effects of resveratrol on myeloma cell dependent angiogenesis and the effects of resveratrol on some important angiogenic factors of RPMI 8226 cells.Methods RPMI 8226 cells were cocultured with human umbilical vein endothelial cells (HUVECs) to evaluate the effects of myeloma cells on angiogenesis. The RPMI 8226 cells were treated with various concentrations of resveratrol (6.25-50.00 μmol/L) for different times (12-72 hours). Reverse transcriptase polymerase chain reaction (RT-PCR) was used to assay vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), metalloproteinases (MMP)-2 and MMP-9 mRNA. Gelatin zymography was used to analyze MMP-2 and MMP-9 activity. VEGF and bFGF proteins secreted by the cells in the medium were quantified by enzyme linked immunosorbent assay (ELISA).Results Cell proliferation, migration and differentiation of HUVECs markedly increased by coculture with RPMI 8226 cells. Resveratrol inhibited proliferation, migration and tube formation of HUVECs cocultured with myeloma cells in a dose dependent manner. Treatment of RPMI 8226 cells with resveratrol caused a decrease in MMP-2 and MMP-9 activity.Resveratrol inhibited VEGF and bFGF protein expression in a dose and time dependent manner. Furthermore,decreased levels of VEGF, bFGF, MMP-2 and MMP-9 mRNA from cells treated with various concentrations of resveratrol confirmed its antiangiogenic action at the level of gene expression.Conclusions Resveratrol inhibits multiple myeloma angiogenesis by regulating expression and secretion of VEGF,bFGF, MMP-2 and MMP-9. Resveratrol may be a potential candidate for the treatment of multiple myeloma.

  4. Benign Proliferative Breast Lesions and Risk of Cancer

    OpenAIRE

    Serap Erel

    2010-01-01

    Benign breast lesions (BBL) includes a wide variety of histologic entities, which have been broadly classified into non-proliferative lesions, proliferative lesions without atypia, and hyperplasia with atypia. With the increased use of mammography, more benign lesions are being detected, and in order to estimate the risk of breast cancer for specific histologic categories is of great importance to guide clinical management. Women with proliferative lesions without atypia are at slightly incre...

  5. Welcome to Journal of Angiogenesis Research

    Directory of Open Access Journals (Sweden)

    Slevin Mark

    2009-09-01

    Full Text Available Abstract Angiogenesis is the growth of new blood vessels and is a key process which occurs during both physiological and pathological disease processes. Knowledge of the mechanisms through which this process is initiated and maintained will have a significant impact on the treatment of these diseases. Pathological angiogenesis occurs in major diseases such as cancer, diabetic retinopathies, age-related macular degeneration and atherosclerosis. In other diseases such as stroke and myocardial infarction, insufficient or improper angiogenesis results in tissue loss and ultimately higher morbidity and mortality.

  6. Mechanical and Chemical Signaling in Angiogenesis

    CERN Document Server

    2013-01-01

    This volume of Studies in Mechanobiology, Tissue Engineering and Biomaterials describes the most recent advances in angiogenesis research at all biological length scales: molecular, cellular and tissue, in both in vivo and in vitro settings.  Angiogenesis experts from diverse fields including engineering, cell and developmental biology, and chemistry have contributed chapters which focus on the mechanical and chemical signals which affect and promote blood vessel growth. Specific emphasis is given to novel methodologies and biomaterials that have been developed and applied to angiogenesis research. 

  7. Regulation of retinal angiogenesis by phospholipase C-β3 signaling pathway

    Science.gov (United States)

    Ha, Jung Min; Baek, Seung Hoon; Kim, Young Hwan; Jin, Seo Yeon; Lee, Hye Sun; Kim, Sun Ja; Shin, Hwa Kyoung; Lee, Dong Hyung; Song, Sang Heon; Kim, Chi Dae; Bae, Sun Sik

    2016-01-01

    Angiogenesis has an essential role in many pathophysiologies. Here, we show that phospholipase C-β3 (PLC-β3) isoform regulates endothelial cell function and retinal angiogenesis. Silencing of PLC-β3 in human umbilical vein endothelial cells (HUVECs) significantly delayed proliferation, migration and capillary-like tube formation. In addition, mice lacking PLC-β3 showed impaired retinal angiogenesis with delayed endothelial proliferation, reduced endothelial cell activation, abnormal vessel formation and hemorrhage. Finally, tumor formation was significantly reduced in mice lacking PLC-β3 and showed irregular size and shape of blood vessels. These results suggest that regulation of endothelial function by PLC-β3 may contribute to angiogenesis. PMID:27311705

  8. An IP-10 (CXCL10-derived peptide inhibits angiogenesis.

    Directory of Open Access Journals (Sweden)

    Cecelia C Yates-Binder

    Full Text Available Angiogenesis plays a critical role in processes such as organ development, wound healing, and tumor growth. It requires well-orchestrated integration of soluble and matrix factors and timely recognition of such signals to regulate this process. Previous work has shown that newly forming vessels express the chemokine receptor CXC receptor 3 (CXCR3 and, activation by its ligand IP-10 (CXCL10, both inhibits development of new vasculature and causes regression of newly formed vessels. To identify and develop new therapeutic agents to limit or reverse pathological angiogenesis, we identified a 21 amino acid fragment of IP-10, spanning the α-helical domain residues 77-98, that mimic the actions of the whole IP-10 molecule on endothelial cells. Treatment of the endothelial cells with the 22 amino acid fragment referred to as IP-10p significantly inhibited VEGF-induced endothelial motility and tube formation in vitro, properties critical for angiogenesis. Using a Matrigel plug assay in vivo, we demonstrate that IP-10p both prevented vessel formation and induced involution of nascent vessels. CXCR3 neutralizing antibody was able to block the inhibitory effects of the IP-10p, demonstrating specificity of the peptide. Inhibition of endothelial function by IP-10p was similar to that described for IP-10, secondary to CXCR3-mediated increase in cAMP production, activation of PKA inhibiting cell migration, and inhibition of VEGF-mediated m-calpain activation. IP-10p provides a novel therapeutic agent that inhibits endothelial cell function thus, allowing for the modulation of angiogenesis.

  9. Body linear traits for identifying prolific goats

    Directory of Open Access Journals (Sweden)

    Avijit Haldar

    2014-12-01

    Full Text Available Aim: The present study was conducted on prolific goat breed to identify body linear type traits that might be associated with prolificacy trait in goats. Materials and Methods: Two-stage stratified random sample survey based data were collected from 1427 non-pregnant goats with the history of single, twin and triplet litter sizes (LZ between January 2008 to February 2011 for 3 years in 68 villages located in East and North East India. Data on sixteen body linear traits were analyzed using logistic regression model to do the step-wise selection for identifying the body linear traits that could determine LZ. An average value for each identified body linear trait was determined for classifying the goats into three categories: Goats having the history of single LZ, goats having the history of twin LZ and goats having the history of triplet LZ. Results: The LZ proportions for single, twin and triplet, were 29.50, 59.14 and 11.36%, respectively, with the prolificacy rate of 181.85% in Indian Black Bengal goats. A total of eight body linear traits that could determine LZ in prolific goats were identified. Heart girth (HG measurement (>60.90 cm, paunch girth (PG (>70.22 cm, wither height (WH (>49.75 cm, neck length (>21.45 cm, ear length (>12.80 cm and distance between trochanter major (DTM bones (>12.28 cm, pelvic triangle area (PTA (>572.25 cm2 and clearance at udder (CU (>23.16 cm showed an increase likelihood of multiple LZ when compared to single LZ. Further, HG measurement (>62.29 cm, WH (>50.54 cm, PG (>71.85 cm and ear length (>13.00 cm, neck length (>22.01 cm, PTA (>589.64 cm2, CU (>23.20 cm and DTM bones (>12.47 cm were associated with increased likelihood of triplet LZ, when compared with that of twin LZ. Conclusion: HG measurement was the best discriminating factor, while PG, neck length, DTM bones, CU, PTA, WH and ear length measurements were other important factors that could be used for identifying prolific goats to achieve economic

  10. Neuritin expression and its relation with proliferation, apoptosis, and angiogenesis in human astrocytoma.

    Science.gov (United States)

    Zhang, Lei; Zhao, Yonggeng; Wang, Cheng-guo; Fei, Zhou; Wang, Yuan; Li, Lexiang; Li, Liang; Zhen, Hai-ning

    2011-09-01

    Neuritin, a new member of the neurotrophic factor family, plays an important role in promoting neuronal survival, differentiation, function, and repair. However, whether neuritin is expressed in human astrocytoma and involved in their proliferation, apoptosis, and angiogenesis remains unclear. The expression of neuritin messenger RNA, protein and the relationship with proliferation, apoptosis, and angiogenesis were examined in human astrocytoma samples and three glioma cell lines by immunohistochemistry, Western blot, and quantitative real-time RT-PCR and so on. And neuritin immunoreactivity score (IRS), proliferative index (PI), apoptotic index (AI), overall daily growth (ODG), and microvessel density (MVD) in brain astrocytoma were measured. The results showed that neuritin was overexpressed in human astrocytoma samples, and the overexpression correlated positively with the malignancy of astrocytomas as reflected by changes in proliferation, apoptosis, and angiogenesis markers. In our study, we found neuritin is overexpressed in astrocytoma, which may be an important factor in tumorigenesis and progression of astrocytoma, and can be used as a target for biological therapy. PMID:20405246

  11. Reconciling Faith and Fact: Pro-life Women Discuss Media, Science and the Abortion Debate.

    Science.gov (United States)

    Press, Andrea L.; Cole, Elizabeth R.

    1995-01-01

    Finds that pro-life women actively searched for authorities and authoritative information that were not "corrupted" by the values of secular society. Finds that, paradoxically, they drew on secular forms of argument, claiming scientific authenticity for their own sources, and that their selective viewing habits resulted in the construction of an…

  12. Toluhydroquinone, the secondary metabolite of marine algae symbiotic microorganism, inhibits angiogenesis in HUVECs.

    Science.gov (United States)

    Kim, Nan-Hee; Jung, Hyun-Il; Choi, Woo-Suk; Son, Byeng-Wha; Seo, Yong-Bae; Choi, Jae Sue; Kim, Gun-Do

    2015-03-01

    Angiogenesis, the growth of new blood vessels from the existing ones, occurs during embryo development and wound healing. However, most malignant tumors require angiogenesis for their growth and metastasis as well. Therefore, inhibition of angiogenesis has been focused as a new strategy of cancer therapies. To treat cancer, there are marine microorganism-derived secondary metabolites developed as chemotherapeutic agents. In this study, we used toluhydroquinone (2-methyl-1,4-hydroquinone), one of the secondary metabolites isolated from marine algae symbiotic fungus, Aspergillus sp. We examined the effects of toluhydroquinone on angiogenesis using HUVECs. We identified that toluhydroquinone inhibited the activity of β-catenin and down-regulated Ras/Raf/MEK/ERK signaling which are crucial components during angiogenesis. In addition, the expression and activity of MMPs are reduced by the treatment of toluhydroquinone. In conclusion, we confirmed that toluhydroquinone has inhibitory effects on angiogenic behaviors of human endothelial cells, HUVECs. Our findings suggest that toluhydroquinone can be proposed as a potent anti-angiogenesis drug candidate to treat cancers. PMID:25776491

  13. Regulation of Angiogenesis by Aminoacyl-tRNA Synthetases

    Directory of Open Access Journals (Sweden)

    Adam C. Mirando

    2014-12-01

    Full Text Available In addition to their canonical roles in translation the aminoacyl-tRNA synthetases (ARSs have developed secondary functions over the course of evolution. Many of these activities are associated with cellular survival and nutritional stress responses essential for homeostatic processes in higher eukaryotes. In particular, six ARSs and one associated factor have documented functions in angiogenesis. However, despite their connection to this process, the ARSs are mechanistically distinct and exhibit a range of positive or negative effects on aspects of endothelial cell migration, proliferation, and survival. This variability is achieved through the appearance of appended domains and interplay with inflammatory pathways not found in prokaryotic systems. Complete knowledge of the non-canonical functions of ARSs is necessary to understand the mechanisms underlying the physiological regulation of angiogenesis.

  14. Avaliação da Atividade Proliferativa no Epitélio Mamário Adjacente a Fibroadenoma em Mulheres Tratadas com Tamoxifeno Evaluation of Proliferative Activity in the Mammary Epithelium Adjacent to Fibroadenoma in Women Treated with Tamoxifen

    Directory of Open Access Journals (Sweden)

    Juarez Antônio de Sousa

    2000-08-01

    Full Text Available Objetivo: estudar a atividade proliferativa do epitélio mamário normal adjacente a fibroadenoma em mulheres na fase lútea do ciclo menstrual, tratadas com tamoxifeno. Pacientes e Métodos: estudou-se por técnica imuno-histoquímica, com o uso do anticorpo monoclonal MIB-1, a atividade proliferativa no epitélio mamário adjacente a fibroadenoma. O estudo foi randomizado e duplo-cego. As 44 mulheres com fibroadenoma foram divididas em 3 grupos: A (n = 16; placebo, B (n = 15; tamoxifeno, 10 mg e C (n = 13; tamoxifeno, 20 mg. O tamoxifeno foi utilizado por 22 dias, a partir do 2º dia do ciclo menstrual, e a biópsia realizada no 23º dia. Resultados: a porcentagem média de núcleos corados por 1000 células no grupo A foi 9,2, no grupo B, 4,5, e no grupo C, 3,2. O teste de Fisher revelou que o tamoxifeno reduziu de forma significante a imunoexpressão do MIB-1 nas doses de 10 e 20 mg em comparação com o grupo placebo (pPurpose: to study the monoclonal antibody MIB-1 in the normal breast epithelium adjacent to a fibroadenoma in women in the luteal phase of the menstrual cycle treated with tamoxifen. Patients and methods: the proliferative activity of the mammary epithelium adjacent to the fibroadenoma was studied by immunohistochemistry based on immunoexpression of the monoclonal antibody MIB-1. The study was randomized and double blind and was conducted on 44 women with fibroadenomas, divided into 3 groups: A (n = 16; placebo, B (n = 15; tamoxifen, 10 mg, and C (n = 13; tamoxifen, 20 mg. Tamoxifen was administered for 22 days starting on the 2nd day of the menstrual cycle and a biopsy was taken on the 23rd day. Results: the mean percentage of stained nuclei per 1000 cells was 9.2 in group A, 4.5 in group B, and 3.2 in group C. Fisher's test revealed that tamoxifen significantly reduced the immunoexpression of MIB-1 at the doses of 10 and 20 mg compared to the placebo group (p<0.0001, with no significant differences between doses in terms of

  15. Nanoparticles of copper stimulate angiogenesis at systemic and molecular level.

    Science.gov (United States)

    Mroczek-Sosnowska, Natalia; Sawosz, Ewa; Vadalasetty, Krishna Prasad; Łukasiewicz, Monika; Niemiec, Jan; Wierzbicki, Mateusz; Kutwin, Marta; Jaworski, Sławomir; Chwalibog, André

    2015-01-01

    Copper is a key element affecting blood vessel growth and muscle development. However, the ions released from Cu salts are toxic. Given their specific physicochemical properties, nanoparticles of Cu (NanoCu) may have different bioactivity and affect the development of blood vessel and muscles in a different manner than Cu salts. The objective of the study was to evaluate the influence of NanoCu on embryo development and angiogenesis at the systemic and molecular level, in experiments using a chick embryo model. Fertilized chicken eggs were divided into a control group, and groups injected with a placebo, CuSO4 or NanoCu. Embryo development at the whole body level and molecular indices using an embryo chorioallantoic membrane model were measured during embryogenesis. The present study indicated for the first time that NanoCu have pro-angiogenic properties at the systemic level, to a greater degree than CuSO4 salt. The properties of NanoCu were confirmed at the molecular level, demonstrating significant effects on mRNA concentration and on mRNA gene expression of all pro-angiogenic and pro-proliferative genes measured herein. PMID:25741768

  16. Nanoparticles of Copper Stimulate Angiogenesis at Systemic and Molecular Level

    Directory of Open Access Journals (Sweden)

    Natalia Mroczek-Sosnowska

    2015-03-01

    Full Text Available Copper is a key element affecting blood vessel growth and muscle development. However, the ions released from Cu salts are toxic. Given their specific physicochemical properties, nanoparticles of Cu (NanoCu may have different bioactivity and affect the development of blood vessel and muscles in a different manner than Cu salts. The objective of the study was to evaluate the influence of NanoCu on embryo development and angiogenesis at the systemic and molecular level, in experiments using a chick embryo model. Fertilized chicken eggs were divided into a control group, and groups injected with a placebo, CuSO4 or NanoCu. Embryo development at the whole body level and molecular indices using an embryo chorioallantoic membrane model were measured during embryogenesis. The present study indicated for the first time that NanoCu have pro-angiogenic properties at the systemic level, to a greater degree than CuSO4 salt. The properties of NanoCu were confirmed at the molecular level, demonstrating significant effects on mRNA concentration and on mRNA gene expression of all pro-angiogenic and pro-proliferative genes measured herein.

  17. Injectable fibroblast growth factor-2 coacervate for persistent angiogenesis.

    Science.gov (United States)

    Chu, Hunghao; Gao, Jin; Chen, Chien-Wen; Huard, Johnny; Wang, Yadong

    2011-08-16

    Enhancing the maturity of the newly formed blood vessels is critical for the success of therapeutic angiogenesis. The maturation of vasculature relies on active participation of mural cells to stabilize endothelium and a basal level of relevant growth factors. We set out to design and successfully achieved robust angiogenesis using an injectable polyvalent coacervate of a polycation, heparin, and fibroblast growth factor-2 (FGF2). FGF2 was loaded into the coacervate at nearly 100% efficiency. In vitro assays demonstrated that the matrix protected FGF2 from proteolytic degradations. FGF2 released from the coacervate was more effective in the differentiation of endothelial cells and chemotaxis of pericytes than free FGF2. One injection of 500 ng of FGF2 in the coacervate elicited comprehensive angiogenesis in vivo. The number of endothelial and mural cells increased significantly, and the local tissue contained more and larger blood vessels with increased circulation. Mural cells actively participated during the whole angiogenic process: Within 7 d of the injection, pericytes were recruited to close proximity of the endothelial cells. Mature vasculature stabilized by vascular smooth muscle cells persisted till at least 4 wk. On the other hand, bolus injection of an identical amount of free FGF2 induced weak angiogenic responses. These results demonstrate the potential of polyvalent coacervate as a new controlled delivery platform.

  18. Undermining tumor angiogenesis by gene therapy: an emerging field.

    Science.gov (United States)

    Indraccolo, S

    2004-09-01

    The recent discovery of several molecules that negatively modulate the migration and growth of endothelial cells, collectively referred to as inhibitors of angiogenesis, has made it possible to test the hypothesis that control of angiogenesis might be an effective strategy in controlling tumor growth, as well as ameliorating the course of other life-threatening diseases. Angiogenesis inhibitors are heterogeneous in origin and potency, and their growing list includes products of the proteolysis of larger molecules with a different function, such as angiostatin and endostatin, natural modulators of vascular endothelial growth factor activity, such as sFLT-1, and some cytokines with a marked anti-endothelial activity, such as IL-12 and interferon-alpha. Pre-clinical studies have clearly indicated that most of these factors exert cytostatic rather than cytotoxic effects, thus implying the need for long-term administration in order to obtain a prolonged therapeutic effect. This feature of angiostatic therapy and the difficulty in synthesizing large amounts of recombinant functional proteins have prompted several studies, which have investigated their delivery by a gene therapy approach. This review addresses the several experimental approaches attempted to date, points out the constraints that have delayed clinical application, and envisions possible areas of integration between antiangiogenic gene therapy and other established therapeutic options against cancer. PMID:15384943

  19. Methionine AminoPeptidase Type-2 Inhibitors Targeting Angiogenesis.

    Science.gov (United States)

    Ehlers, Tedman; Furness, Scott; Robinson, Thomas Philip; Zhong, Haizhen A; Goldsmith, David; Aribser, Jack; Bowen, J Phillip

    2016-01-01

    Angiogenesis has been identified as a crucial process in the development and spread of cancers. There are many regulators of angiogenesis which are not yet fully understood. Methionine aminiopeptidase is a metalloenzyme with two structurally distinct forms in humans, Type-1 (MetAP-1) and Type-2 (MetAP-2). It has been shown that small molecule inhibitors of MetAP-2 suppress endothelial cell proliferation. The initial discovery by Donald Ingber of MetAP-2 inhibition as a potential target in angiogenesis began with a fortuitous observation similar to the discovery of penicillin activity by Sir Alexander Fleming. From a drug design perspective, MetAP-2 is an attractive target. Fumagillin and ovalicin, known natural products, bind with IC50 values in low nanomolar concentrations. Crystal structures of the bound complexes provide 3-dimensional coordinates for advanced computational studies. More recent discoveries have shown other biological activities for MetAP-2 inhibition, which has generated new interests in the design of novel inhibitors. Semisynthetic fumagillin derivatives such as AGM-1470 (TNP-470) have been shown to have better drug properties, but have not been very successful in clinical trials. The rationale and development of novel multicyclic analogs of fumagillin are reviewed. PMID:26369821

  20. Matairesinol inhibits angiogenesis via suppression of mitochondrial reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Boram; Kim, Ki Hyun; Jung, Hye Jin [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Matairesinol suppresses mitochondrial ROS generation during hypoxia. Black-Right-Pointing-Pointer Matairesinol exhibits potent anti-angiogenic activity both in vitro and in vivo. Black-Right-Pointing-Pointer Matairesinol could be a basis for the development of novel anti-angiogenic agents. -- Abstract: Mitochondrial reactive oxygen species (mROS) are involved in cancer initiation and progression and function as signaling molecules in many aspects of hypoxia and growth factor-mediated signaling. Here we report that matairesinol, a natural small molecule identified from the cell-based screening of 200 natural plants, suppresses mROS generation resulting in anti-angiogenic activity. A non-toxic concentration of matairesinol inhibited the proliferation of human umbilical vein endothelial cells. The compound also suppressed in vitro angiogenesis of tube formation and chemoinvasion, as well as in vivo angiogenesis of the chorioallantoic membrane at non-toxic doses. Furthermore, matairesinol decreased hypoxia-inducible factor-1{alpha} in hypoxic HeLa cells. These results demonstrate that matairesinol could function as a novel angiogenesis inhibitor by suppressing mROS signaling.

  1. A comparison among HER2, TP53, PAI-1, angiogenesis, and proliferation activity as prognostic variables in tumours from 408 patients diagnosed with early breast cancer

    DEFF Research Database (Denmark)

    Offersen, Birgitte Vrou; Alsner, Jan; Olsen, Karen Ege;

    2008-01-01

    BACKGROUND: The prognostic potential of HER2, TP53 mutations, PAI-1 protein levels, angiogenesis and proliferation were investigated in tumours from 408 patients with early breast cancer followed >10 years. One hundred and sixty seven patients (41%) died from breast cancer. MATERIALS AND METHODS...

  2. Aberrant angiogenesis: The gateway to diabetic complications

    Directory of Open Access Journals (Sweden)

    Sunil K Kota

    2012-01-01

    Full Text Available Diabetes Mellitus is a metabolic cum vascular syndrome with resultant abnormalities in both micro- and macrovasculature. The adverse long-term effects of diabetes mellitus have been described to involve many organ systems. Apart from hyperglycemia, abnormalities of angiogenesis may cause or contribute toward many of the clinical manifestations of diabetes. These are implicated in the pathogenesis of vascular abnormalities of the retina, kidneys, and fetus, impaired wound healing, increased risk of rejection of transplanted organs, and impaired formation of coronary collaterals. A perplexing feature of the aberrant angiogenesis is that excessive and insufficient angiogenesis can occur in different organs in the same individual. The current article hereby reviews the molecular mechanisms including abnormalities in growth factors, cytokines, and metabolic derangements, clinical implications, and therapeutic options of dealing with abnormal angiogenesis in diabetes.

  3. Semaphorin signaling in angiogenesis, lymphangiogenesis and cancer

    Institute of Scientific and Technical Information of China (English)

    Atsuko Sakurai; Colleen Doci; J Silvio Gutkind

    2012-01-01

    Angiogenesis,the formation of new blood vessels from preexisting vasculature,is essential for many physiological processes,and aberrant angiogenesis contributes to some of the most prevalent human diseases,including cancer.Angiogenesis is controlled by delicate balance between pro- and anti-angiogenic signals.While pro-angiogenic signaling has been extensively investigated,how developmentally regulated,naturally occurring anti-angiogenic molecules prevent the excessive growth of vascular and lymphatic vessels is still poorly understood.In this review,we summarize the current knowledge on how semaphorins and their receptors,plexins and neuropilins,control normal and pathological angiogenesis,with an emphasis on semaphorin-regulated anti-angiogenic signaling circuitries in vascular and lymphatic endothelial cells.This emerging body of information may afford the opportunity to develop novel anti-angiogenic therapeutic strategies.

  4. Monitoring angiogenesis using magnetic resonance methods

    DEFF Research Database (Denmark)

    Holm, David Alberg

    2008-01-01

    -angiogenic treatment is presented in the first manuscript. In the second and third manuscript, two separate methods of quantifying perfusion, blood volume and vessel permeability are presented. The methods are used to show that drug delivery to a xenografted tumor is plausible and to show possible vascular maturation......When a tumor reaches a certain size it can no longer rely on passive perfusion for nutrition. The tumor therefore emits signaling molecules which stimulating surrounding vessels to divide and grow towards the tumor, a process known as angiogenesis. Very little angiogenesis is present in healthy...... and the involved signaling molecules. Subsequently, a short review of contrast agents and perfusion measurements is given. Finally, methods for monitoring angiogenesis using magnetic resonance imaging are reviewed. A method for monitoring early stages of angiogenesis as well as the effect of anti...

  5. Bach1 Represses Wnt/β-Catenin Signaling and Angiogenesis

    Science.gov (United States)

    Liu, Junxu; Wang, Xinhong; Niu, Cong; Kang, Xueling; Xu, Jie; Zhou, Zhongwei; Sun, Shaoyang; Wang, Xu; Zheng, Xiaojun; Duan, Shengzhong; Yao, Kang; Qian, Ruizhe; Sun, Ning; Chen, Alex; Wang, Rui; Zhang, Jianyi; Chen, Sifeng; Meng, Dan

    2015-01-01

    Rationale Wnt/β-catenin signaling has an important role in the angiogenic activity of endothelial cells (ECs). Bach1 is a transcription factor and is expressed in ECs, but whether Bach1 regulates angiogenesis is unknown. Objective This study evaluated the role of Bach1 in angiogenesis and Wnt/β-catenin signaling. Methods and Results Hind-limb ischemia was surgically induced in Bach1−/− mice and their wild-type littermates and in C57BL/6J mice treated with adenoviruses coding for Bach1 or GFP. Lack of Bach1 expression was associated with significant increases in perfusion and vascular density and in the expression of proangiogenic cytokines in the ischemic hindlimb of mice, with enhancement of the angiogenic activity of ECs (eg, tube formation, migration, and proliferation). Bach1 overexpression impaired angiogenesis in mice with hind-limb ischemia and inhibited Wnt3a-stimulated angiogenic response and the expression of Wnt/β-catenin target genes, such as interleukin-8 and vascular endothelial growth factor, in human umbilical vein ECs. Interleukin-8 and vascular endothelial growth factor were responsible for the antiangiogenic response of Bach1. Immunoprecipitation and GST pull-down assessments indicated that Bach1 binds directly to TCF4 and reduces the interaction of β-catenin with TCF4. Bach1 overexpression reduces the interaction between p300/CBP and β-catenin, as well as β-catenin acetylation, and chromatin immunoprecipitation experiments confirmed that Bach1 occupies the TCF4-binding site of the interleukin-8 promoter and recruits histone deacetylase 1 to the interleukin-8 promoter in human umbilical vein ECs. Conclusions Bach1 suppresses angiogenesis after ischemic injury and impairs Wnt/β-catenin signaling by disrupting the interaction between β-catenin and TCF4 and by recruiting histone deacetylase 1 to the promoter of TCF4-targeted genes. PMID:26123998

  6. Biomarkers of Angiogenesis in Colorectal Cancer

    OpenAIRE

    Luay Mousa; Salem, Mohamed E.; Sameh Mikhail

    2015-01-01

    Colorectal cancer (CRC) is the third most common cancer worldwide and accounts for 10% of all new cancer diagnoses. Angiogenesis is a tightly regulated process that is mediated by a group of angiogenic factors such as vascular endothelial growth factor and its receptors. Given the widespread use of antiangiogenic agents in CRC, there has been considerable interest in the development of methods to identify novel markers that can predict outcome in the treatment of this disease with angiogenesi...

  7. Homocysteine Serum Levels in Diabetic Patients with Non Proliferative, Proliferative and without Retinopathy

    Directory of Open Access Journals (Sweden)

    Giulia Malaguarnera

    2014-01-01

    Full Text Available Homocysteine has been associated with extracellular matrix changes. The diabetic retinopathy is a neurovascular complication of diabetes mellitus and it is the leading cause of vision loss among working adults worldwide. In this study, we evaluate the role of homocysteine in diabetic retinopathy analyzing the plasma levels of homocysteine in 63 diabetic type 2 patients with nonproliferative retinopathy (NPDR, 62 patients with proliferative diabetic retinopathy (PDR, 50 healthy subjects used as control group, and 75 randomly selected patients.

  8. Hypoxia and Angiogenesis in Endometrioid Endometrial Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Nicole Horrée

    2007-01-01

    Full Text Available Background: Hypoxia-inducible factor 1α (HIF-1α plays an essential role in the adaptive response of cells to hypoxia, triggering biologic events associated with aggressive tumor behavior. Methods: Expression of HIF-1α and proteins in the HIF-1α pathway (Glut-1, CAIX, VEGF in paraffin-embedded specimens of normal (n = 17, premalignant (n = 17 and endometrioid endometrial carcinoma (n = 39 was explored by immunohistochemistry, in relation to microvessel density (MVD. Results: HIF-1α overexpression was absent in inactive endometrium but present in hyperplasia (61% and carcinoma (87%, with increasing expression in a perinecrotic fashion pointing to underlying hypoxia. No membranous expression of Glut-1 and CAIX was noticed in inactive endometrium, in contrast with expression in hyperplasia (Glut-1 0%, CAIX 61%, only focal and diffuse and carcinoma (Glut-1 94.6%, CAIX 92%, both mostly perinecrotically. Diffuse HIF-1α was accompanied by activation of downstream targets. VEGF was significantly higher expressed in hyperplasias and carcinomas compared to inactive endometrium. MVD was higher in hyperplasias and carcinomas than in normal endometrium (p < 0.001. Conclusion: HIF-1α and its downstream genes are increasingly expressed from normal through premalignant to endometrioid adenocarcinoma of the endometrium, paralleled by activation of its downstream genes and increased angiogenesis. This underlines the potential importance of hypoxia and its key regulator HIF-1α in endometrial carcinogenesis.

  9. Spatiotemporal Analyses of Osteogenesis and Angiogenesis via Intravital Imaging in Cranial Bone Defect Repair.

    Science.gov (United States)

    Huang, Chunlan; Ness, Vincent P; Yang, Xiaochuan; Chen, Hongli; Luo, Jiebo; Brown, Edward B; Zhang, Xinping

    2015-07-01

    Osteogenesis and angiogenesis are two integrated components in bone repair and regeneration. A deeper understanding of osteogenesis and angiogenesis has been hampered by technical difficulties of analyzing bone and neovasculature simultaneously in spatiotemporal scales and in 3D formats. To overcome these barriers, a cranial defect window chamber model was established that enabled high-resolution, longitudinal, and real-time tracking of angiogenesis and bone defect healing via multiphoton laser scanning microscopy (MPLSM). By simultaneously probing new bone matrix via second harmonic generation (SHG), neovascular networks via intravenous perfusion of fluorophore, and osteoblast differentiation via 2.3-kb collagen type I promoter-driven GFP (Col2.3GFP), we examined the morphogenetic sequence of cranial bone defect healing and further established the spatiotemporal analyses of osteogenesis and angiogenesis coupling in repair and regeneration. We showed that bone defect closure was initiated in the residual bone around the edge of the defect. The expansion and migration of osteoprogenitors into the bone defect occurred during the first 3 weeks of healing, coupled with vigorous microvessel angiogenesis at the leading edge of the defect. Subsequent bone repair was marked by matrix deposition and active vascular network remodeling within new bone. Implantation of bone marrow stromal cells (BMSCs) isolated from Col2.3GFP mice further showed that donor-dependent bone formation occurred rapidly within the first 3 weeks of implantation, in concert with early angiogenesis. The subsequent bone wound closure was largely host-dependent, associated with localized modest induction of angiogenesis. The establishment of a live imaging platform via cranial window provides a unique tool to understand osteogenesis and angiogenesis in repair and regeneration, enabling further elucidation of the spatiotemporal regulatory mechanisms of osteoprogenitor cell interactions with host bone

  10. Functional role of inorganic trace elements in angiogenesis part III: (Ti, Li, Ce, As, Hg, Va, Nb and Pb).

    Science.gov (United States)

    Saghiri, Mohammad Ali; Orangi, Jafar; Asatourian, Armen; Sorenson, Christine M; Sheibani, Nader

    2016-02-01

    Many essential elements exist in nature with significant influence on human health. Angiogenesis is vital in developmental, repair, and regenerative processes, and its aberrant regulation contributes to pathogenesis of many diseases including cancer. Thus, it is of great importance to explore the role of these elements in such a vital process. This is third in a series of reviews that serve as an overview of the role of inorganic elements in regulation of angiogenesis and vascular function. Here we will review the roles of titanium, lithium, cerium, arsenic, mercury, vanadium, niobium, and lead in these processes. The roles of other inorganic elements in angiogenesis were discussed in part I (N, Fe, Se, P, Au, and Ca) and part II (Cr, Si, Zn, Cu, and S) of these series. The methods of exposure, structure, mechanisms, and potential activities of these elements are briefly discussed. An electronic search was performed on the role of these elements in angiogenesis from January 2005 to April 2014. These elements can promote and/or inhibit angiogenesis through different mechanisms. The anti-angiogenic effect of titanium dioxide nanoparticles comes from the inhibition of angiogenic processes, and not from its toxicity. Lithium affects vasculogenesis but not angiogenesis. Nanoceria treatment inhibited tumor growth by inhibiting angiogenesis. Vanadium treatment inhibited cell proliferation and induced cytotoxic effects through interactions with DNA. The negative impact of mercury on endothelial cell migration and tube formation activities was dose and time dependent. Lead induced IL-8 production, which is known to promote tumor angiogenesis. Thus, understanding the impact of these elements on angiogenesis will help in development of new modalities to modulate angiogenesis under various conditions. PMID:26638864

  11. Effect analysis of preoperative neoadjuvant chemotherapy combined with enteral nutrition to tu-mor cell proliferative activity for gastric cancer patients%术前新辅助化疗结合肠内营养对胃癌患者肿瘤细胞增殖活性的影响分析

    Institute of Scientific and Technical Information of China (English)

    裴进田; 卢芸; 阴炳侠

    2015-01-01

    目的 探讨术前新辅助化疗结合肠内营养对胃癌患者肿瘤细胞增殖活性的影响效果.方法 将2012年7月至2014年7月收治的132例进展期胃癌患者,随机分为观察组(术前新辅助化疗联合肠内营养)和对照组(单纯予以新辅助化疗),各66例,采用流式细胞仪检测两组患者肿瘤标本的细胞增殖情况,通过CD4、CD8、CD4/CD8、NK细胞的检测评价两组患者的免疫功能,检测血清学指标以及营养风险筛查(NRS评分)进行营养评价.结果 治疗前,两组患者的肿瘤细胞增殖活性、免疫指标、营养状况均差异无统计学意义.治疗后,观察组患者的CD4、CD4/CD8、NK、总蛋白、白蛋白、前白蛋白、转铁蛋白、血红蛋白均较对照组增加明显,DI、SPF、PI、CD8、NRS评分降低明显,差异有统计学意义(P<0.05).结论 术前新辅助化疗结合肠内营养可较好地降低肿瘤细胞的增殖活性,改善其免疫水平及营养状况.%Objective To discuss the effect of preoperative neoadjuvant chemotherapy combined with enteral nutrition for gastric cancer patientstumor cell proliferative activity. Methods One hundred and thirty-two gastric cancer patients in progressive stage were selected and divided randomly into obser-vation group (preoperative neoadjuvant chemotherapy combined with enteral nutrition), and control group (simply preoperative neoadjuvant chemotherapy). All patients were recorded for and compared in tumor cell proliferative activity, immunity level and nutrition improvement before and after therapy. Results Before therapy, there was no difference between two group in tumor cell proliferative activity, immunity index, and nutriture. After therapy, compared with control group, CD4, CD4/CD8, NK, total pro-tein, albumin, prealbumin, transferring, and hemoglobin all obviously increased in observation group, while DI, SPF, PI, CD8, NRS scores obviously decreased; the differences had statistical significance (P<0

  12. Ursolic acid-loaded chitosan nanoparticles induce potent anti-angiogenesis in tumor.

    Science.gov (United States)

    Jin, Hua; Pi, Jiang; Yang, Fen; Wu, Chaomin; Cheng, Xueli; Bai, Haihua; Huang, Dan; Jiang, Jinhuan; Cai, Jiye; Chen, Zheng W

    2016-08-01

    Angiogenesis provides necessary nutrients and oxygen for tumor growth and metastasis; thus, every stage of angiogenesis process is the potential target for cancer therapies. Ursolic acid (UA) is reported to decrease tumor burden through anti-angiogenesis pathway, but its poor water solubility greatly limits its efficiency and clinical application. Here, a simple method for preparing UA-loaded chitosan nanoparticles (CH-UA-NPs) with anti-angiogenesis and anti-tumor activity was demonstrated. In vitro, CH-UA-NPs could significantly inhibit the proliferation, migration, and tube formation of human umbilical vascular endothelial cells (HUVECs). After uptake by HUVECs, CH-UA-NPs were mainly localized in lysosomes and mitochondria, but not nuclei. CH-UA-NPs induced the destruction of lysosome membrane integrity, collapse of mitochondrial membrane potential, and reorganization of cell cytoskeleton. All these changes led to the apoptosis or necrosis in HUVECs. In vivo, CH-UA-NPs could inhibit the angiogenesis in chicken chorioallantoic membrane (CAM) model and H22 xenograft model. Notably, comparing with free UA, such synthesized CH-UA-NPs could save about tenfold of UA doses, implying that this could significantly decrease the side effects induced by high doses of UA in biological organism. Our data showed that CH-UA-NPs and this nanoparticle-based drug delivery system could be as a potential drug candidate for anti-angiogenesis treatment. PMID:26883344

  13. Effect of VEGF, P53 and telomerase on angiogenesis of gastric carcinoma tissue

    Institute of Scientific and Technical Information of China (English)

    Yan-Fang Yu; Yong Zhang; Na Shen; Rui-Ying Zhang; Xin-Qing Lu

    2014-01-01

    Objective: To investigate the effect of vascular endothelial growth factor (VEGF), P53 and telomerase on angiogenesis in gastric carcinoma tissue. Methods: A total of 95 surgical resection samples of gastric cancer tissue after pathological diagnosis are collected to observe the VEGF, P53 and telomerase expression using immunohistochemical methods. Relationship between their expression and its influence on angiogenesis in gastric carcinoma tissue were analyzed. Results:Microvascular density (MVD) and the expression of VEGF, P53 and telomerase were positively correlated. Expression of VEGF and P53 protein were related to tumor type and lymph metastasis, and also a correlation was observed between P53 and VEGF. The telomerase expression had no correlation with VEGF, and P53. Conclusions: VEGF angiogenesis has a angiogenesis promoting effect on gastric cancer tissue development and plays an important role in tumor generation and metastasis. Mutant P53 promotes the tumor angiogenesis generation by adjusting VEGF. Telomerase has a certain role in promoting activity of angiogenesis through different way rather than P53.

  14. Key role of microRNA-15a in the KLF4 suppressions of proliferation and angiogenesis in endothelial and vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Highlights: •This is the first demonstration that miR-15a is a novel target gene of KLF4. •A novel finding that KLF4 increases the expression of miR-15a in ECs and VSMCs. •The novel mechanism is that KLF4 inhibits the proliferation of ECs via miR-15a. •The novel mechanism is that KLF4 inhibits the proliferation of VSMCs via miR-15. •miR-15a mediates the anti-angiogenic activity of KLF4. -- Abstract: While recent insights indicate that the transcription factor Krüppel-like factor 4 (KLF4) is indispensable for vascular homeostasis, its exact role in proliferation and angiogenesis and how it functions remain unresolved. Thus, the aim of the present study was to evaluate the role of KLF4 in the proliferations of endothelial and vascular smooth muscle cells, as well as the angiogenesis. The overexpression of KLF4 in endothelial cells significantly impaired tube formation. KLF4 inhibited the formation of a vascular network in implanted Matrigel plugs in nude mice. Importantly, we found that KLF4 significantly upregulated the miR-15a expression in endothelial cells and vascular smooth muscle cells, and conversely, KLF4 depletion reduced the amount of miR-15a. Furthermore, KLF4 blocked cell cycle progression and decreased cyclin D1 expression in endothelial cells and vascular smooth muscle cells through the induction of miR-15a. Intriguingly, the delivery of a miR-15a antagomir to nude mice resulted in marked attenuation of the anti-angiogenic effect of KLF4. Collectively, our present study provide the first evidence that miR-15a as a direct transcriptional target of KLF4 that mediates the anti-proliferative and anti-angiogenic actions of KLF4, which indicates that KLF4 upregulation of miR-15a may represent a therapeutic option to suppress proliferative vascular disorders

  15. Key role of microRNA-15a in the KLF4 suppressions of proliferation and angiogenesis in endothelial and vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xuemei; Li, Aiqin; Zhao, Liang; Zhou, Tengfei; Shen, Qiang [Institute of Cardiovascular Science, Peking University Health Science Center, Beijing 100191 (China); Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University Health Science Center, Beijing 100191 (China); Cui, Qinghua [Department of Biomedical Informatics, Peking University Health Science Center, Beijing 100191 (China); Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University Health Science Center, Beijing 100191 (China); Qin, Xiaomei, E-mail: xmqin@bjmu.edu.cn [Institute of Cardiovascular Science, Peking University Health Science Center, Beijing 100191 (China); Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University Health Science Center, Beijing 100191 (China)

    2013-08-09

    Highlights: •This is the first demonstration that miR-15a is a novel target gene of KLF4. •A novel finding that KLF4 increases the expression of miR-15a in ECs and VSMCs. •The novel mechanism is that KLF4 inhibits the proliferation of ECs via miR-15a. •The novel mechanism is that KLF4 inhibits the proliferation of VSMCs via miR-15. •miR-15a mediates the anti-angiogenic activity of KLF4. -- Abstract: While recent insights indicate that the transcription factor Krüppel-like factor 4 (KLF4) is indispensable for vascular homeostasis, its exact role in proliferation and angiogenesis and how it functions remain unresolved. Thus, the aim of the present study was to evaluate the role of KLF4 in the proliferations of endothelial and vascular smooth muscle cells, as well as the angiogenesis. The overexpression of KLF4 in endothelial cells significantly impaired tube formation. KLF4 inhibited the formation of a vascular network in implanted Matrigel plugs in nude mice. Importantly, we found that KLF4 significantly upregulated the miR-15a expression in endothelial cells and vascular smooth muscle cells, and conversely, KLF4 depletion reduced the amount of miR-15a. Furthermore, KLF4 blocked cell cycle progression and decreased cyclin D1 expression in endothelial cells and vascular smooth muscle cells through the induction of miR-15a. Intriguingly, the delivery of a miR-15a antagomir to nude mice resulted in marked attenuation of the anti-angiogenic effect of KLF4. Collectively, our present study provide the first evidence that miR-15a as a direct transcriptional target of KLF4 that mediates the anti-proliferative and anti-angiogenic actions of KLF4, which indicates that KLF4 upregulation of miR-15a may represent a therapeutic option to suppress proliferative vascular disorders.

  16. Angiogenesis inhibitors under study for the treatment of lung cancer.

    Science.gov (United States)

    Shepherd, Frances A; Sridhar, Srikala S

    2003-08-01

    Several classes of agents now exist that target the different steps involved in angiogenesis. These include drugs inhibiting matrix breakdown, the matrix metalloproteinase inhibitors (MMPIs), such as marimastat, prinomastat, BMS275291, BAY12-9566, and neovastat. Trials of this class of agents have all been negative to date. Drugs that block endothelial cell signaling via vascular endothelial growth factor (VEGF) and its receptor (VEGFR) including rhuMAb VEGF, SU5416, SU6668, ZD6474, CP-547,632 and ZD4190 are all in earlier stages of clinical trial. Drugs that are similar to endogenous inhibitors of angiogenesis including interferons have also been evaluated without success. Endostatin has been shown to have an acceptable toxicity profile, but clinical evidence of activity has not yet been demonstrated. There has also been renewed interest in thalidomide. Drugs such as squalamine, celecoxib, ZD6126, TNP-470 and those targeting the integrins are also being evaluated in lung cancer. Despite early enthusiasm for many of these agents, Phase III trials have not yet demonstrated significant increases in overall survival and toxicity remains an issue. It is hoped that as our understanding of the complex process of angiogenesis increases, so will our ability to design more effective targeted therapies. PMID:12867064

  17. Dihydroartemisinin promotes angiogenesis during the early embryonic development of zebrafish

    Institute of Scientific and Technical Information of China (English)

    Qian BA; Juan DUAN; Jia-qiang TIAN; Zi-liang WANG; Tao CHEN; Xiao-guang LI; Pei-zhan CHEN

    2013-01-01

    Aim:To investigate the embryotoxicity of dihydroartemisinin (DHA),the main active metabolite of artemisinin,in zebrafish,and explore the corresponding mechanisms.Methods:The embryos of wild type and TG (flk1:GFP) transgenic zebrafish were exposed to DHA.Developmental phenotypes of the embryos were observed.Development of blood vessels was directly observed in living embryos of TG (flk1:GFP) transgenic zebrafish under fluorescence microscope.The expression of angiogenesis marker genes vegfa,flk1,and flt1 in the embryos was detected using real-time PCR and RNA in situ hybridization assays.Results:Exposure to DHA (1-10 mg/L) dose-dependently caused abnormal zebrafish embryonic phenotypes in the early developmental stage.Furthermore,exposure to DHA (10 mg/L) resulted in more pronounced embryonic angiogenesis in TG (flk1:GFP)zebrafish line.Exposure to DHA (10 mg/L) significantly increased the mRNA expression of vegfa,flk1,and flt1 in the embryos.Knockdown of the ilk1 protein partially blocked the effects of DHA on embryogenesis.Conclusion:DHA causes abnormal embryonic phenotypes and promotes angiogenesis in zebrafish early embryonic development,demonstrating the potential embryotoxicity of DHA.

  18. Digital Microscopy Assessment of Angiogenesis in Different Breast Cancer Compartments

    Directory of Open Access Journals (Sweden)

    Anca Haisan

    2013-01-01

    Full Text Available Background/Aim. Tumour angiogenesis defined by microvessel density (MVD is generally accepted as a prognostic factor in breast cancer. However, due to variability of measurement systems and cutoffs, it is questionable to date whether it contributes to predictive outline. Our study aims to grade vascular heterogeneity by comparing clear-cut compartments: tumour associated stroma (TAS, tumour parenchyma, and tumour invasive front. Material and Methods. Computerized vessel area measurement was performed using a tissue cytometry system (TissueFAXS on slides originated from 50 patients with breast cancer. Vessels were marked using immunohistochemistry with CD34. Regions of interest were manually defined for each tumour compartment. Results. Tumour invasive front vascular endothelia area was 2.15 times higher than that in tumour parenchyma and 4.61 times higher than that in TAS (P<0.002. Worth to mention that the lymph node negative subgroup of patients show a slight but constant increase of vessel index in all examined compartments of breast tumour. Conclusion. Whole slide digital examination and region of interest (ROI analysis are a valuable tool in scoring angiogenesis markers and disclosing their prognostic capacity. Our study reveals compartments’ variability of vessel density inside the tumour and highlights the propensity of invasive front to associate an active process of angiogenesis with potential implications in adjuvant therapy.

  19. Dysregulation of T lymphocyte proliferative responses in autoimmunity.

    Directory of Open Access Journals (Sweden)

    Sydney K Elizer

    Full Text Available T cells are critically dependent on cellular proliferation in order to carry out their effector functions. Autoimmune strains are commonly thought to have uncontrolled T cell proliferation; however, in the murine model of autoimmune diabetes, hypo-proliferation of T cells leading to defective AICD was previously uncovered. We now determine whether lupus prone murine strains are similarly hyporesponsive. Upon extensive characterization of T lymphocyte activation, we have observed a common feature of CD4 T cell activation shared among three autoimmune strains-NOD, MRL, and NZBxNZW F1s. When stimulated with a polyclonal mitogen, CD4 T cells demonstrate arrested cell division and diminished dose responsiveness as compared to the non-autoimmune strain C57BL/6, a phenotype we further traced to a reliance on B cell mediated costimulation, which underscores the success of B cell directed immune therapies in preventing T cell mediated tissue injury. In turn, the diminished proliferative capacity of these CD4 T cells lead to a decreased, but activation appropriate, susceptibility to activation induced cell death. A similar decrement in stimulation response was observed in the CD8 compartment of NOD mice; NOD CD8 T cells were distinguished from lupus prone strains by a diminished dose-responsiveness to anti-CD3 mediated stimulation. This distinction may explain the differential pathogenetic pathways activated in diabetes and lupus prone murine strains.

  20. Cancer gene therapy targeting angiogenesis: An updated review

    Institute of Scientific and Technical Information of China (English)

    Ching-Chiu Liu; Zan Shen; Hsiang-Fu Kung; Marie CM Lin

    2006-01-01

    Since the relationship between angiogenesis and tumor growth was established by Folkman in 1971,scientists have made efforts exploring the possibilities in treating cancer by targeting angiogenesis. Inhibition of angiogenesis growth factors and administration of angiogenesis inhibitors are the basics of antiangiogenesis therapy. Transfer of anti-angiogenesis genes has Received attention recently not only because of the advancement of recombinant vectors, but also because of the localized and sustained expression of therapeutic gene product inside the tumor after gene transfer. This review provides the up-to-date information about the strategies and the vectors studied in the field of anti-angiogenesis cancer gene therapy.

  1. Analysis on Pathogenesis of 50 Cases of Bladder Proliferative Lesions

    Institute of Scientific and Technical Information of China (English)

    陈志强; 蓝儒竹; 叶章群; 杨为民

    2003-01-01

    In order to study the pathogenesis, clinical and pathological characteristics of prolifera-tive lesions of the bladder, 50 cases of proliferative lesions of the bladder from 150 patients withcomplaints of frequency, urgency, hematuria and dysuria were subjected to cystoscopic biopsy ofthe suspicious foci in the bladder. In combination with the symptoms, urine routine and urodynam-ics, the relationship of proliferative lesions of the bladder to the inflammation and obstruction of thelower urinary tract was analyzed. Of the 50 cases of proliferative bladder lesions, 44 cases (88%)had lower urinary tract infection and 29 (58%) lower urinary tract obstruction. The patients withlower urinary tract obstruction were all complicated with infection. Three cases were associatedwith transitional cell carcinoma. Malignant cells were detected in 1 case by urinary cytologic exami-nation. Proliferative lesions of the bladder, especially those without other obvious mucosa changesunder cystoscopy, are common histological variants of urothelium in the patients with chronic in-flammation and obstruction of the lower urinary tract. Chronic inflammation and obstruction of thelower urinary tract might be the causes for proliferative lesions of the bladder. It is suggested thatdifferent treatments should be applied according to the scope and histological type of the prolifera-tive lesions.

  2. A rare case of transition to membranous lupus nephritis from diffuse proliferative lupus nephritis

    OpenAIRE

    Nishi, Hitomi; Sugimoto, Keisuke; FUJITA, Shinsuke; Miyazawa, Tomoki; Enya, Takuji; Izu, Akane; Wada, Norihisa; Okada, Mitsuru; Takemura, Tsukasa

    2014-01-01

    [Abstract] Lupus nephritis is an important complication of systemic lupus erythematosus (SLE) that affects the prognosis. A rare type of lupus nephritis, class V, shows histological findings resembling those of membranous nephropathy. While most diffuse proliferative lupus nephritis is associated with other SLE disease activity, class V lupus nephritis can occur without systemic activity. Furthermore, Class V is less responsive to steroid therapy than other forms of lupus nephritis. We treate...

  3. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer—Part 1

    OpenAIRE

    Sagar, S.M.; Yance, D.; Wong, R.K.

    2006-01-01

    An integrative approach for managing a patient with cancer should target the multiple biochemical and physiologic pathways that support tumour development and minimize normal-tissue toxicity. Angiogenesis is a key process in the promotion of cancer. Many natural health products that inhibit angiogenesis also manifest other anticancer activities. The present article focuses on products that have a high degree of anti-angiogenic activity, but it also describes some of the many other actions of ...

  4. HIF-2alpha-dependent PAI-1 induction contributes to angiogenesis in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Geis, Theresa, E-mail: geis@biochem.uni-frankfurt.de [Institute of Biochemistry I—Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Döring, Claudia, E-mail: C.Doering@em.uni-frankfurt.de [Dr. Senckenberg Institute of Pathology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Popp, Rüdiger, E-mail: popp@vrc.uni-frankfurt.de [Institute for Vascular Signalling, Centre for Molecular Medicine, Faculty of Medicine Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main (Germany); Grossmann, Nina, E-mail: grossmann@biochem.uni-frankfurt.de [Institute of Biochemistry I—Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Fleming, Ingrid, E-mail: fleming@vrc.uni-frankfurt.de [Institute for Vascular Signalling, Centre for Molecular Medicine, Faculty of Medicine Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main (Germany); Hansmann, Martin-Leo, E-mail: m.l.hansmann@em.uni-frankfurt.de [Dr. Senckenberg Institute of Pathology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Dehne, Nathalie, E-mail: dehne@biochem.uni-frankfurt.de [Institute of Biochemistry I—Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Brüne, Bernhard, E-mail: b.bruene@biochem.uni-frankfurt.de [Institute of Biochemistry I—Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany)

    2015-02-01

    Hypoxia promotes progression of hepatocellular carcinoma (HCC), not only affecting tumor cell proliferation and invasion, but also angiogenesis and thus, increasing the risk of metastasis. Hypoxia inducible factors (HIF)-1α and -2α cause adaptation of tumors to hypoxia, still with uncertainties towards the angiogenic switch. We created a stable knockdown of HIF-1α and HIF-2α in HepG2 cells and generated cocultures of HepG2 spheroids with embryonic bodies as an in vitro tumor model mimicking the cancer microenvironment. The naturally occuring oxygen and nutrient gradients within the cocultures allow us to question the role of distinct HIF isoforms in regulating HCC angiogenesis. In cocultures with a HIF-2α knockdown, angiogenesis was attenuated, while the knockdown of HIF-1α was without effect. Microarray analysis identified plasminogen activator inhibitor 1 (PAI-1) as a HIF-2α target gene in HepG2 cells. The knockdown of PAI-1 in HepG2 cells also lowered angiogenesis. Blocking plasmin, the downstream target of PAI-1, with aprotinin in HIF-2α knockdown (k/d) cells proved a cause–effect relation and restored angiogenesis, with no effect on control cocultures. Suggestively, HIF-2α increases PAI-1 to lower concentrations of active plasmin, thereby supporting angiogenesis. We conclude that the HIF-2α target gene PAI-1 favors the angiogenic switch in HCC. - Highlights: • HepG2 were cocultured with stem cells to mimic a cancer microenvironment in vitro. • A knockdown of HIF-2α reduces angiogenesis. • PAI-1 was identified as a HIF-2α target gene in HCC by microarray analysis. • HIF-2α induces the angiogenic switch via inhibition of plasmin.

  5. Erythropoietin blockade inhibits the induction of tumor angiogenesis and progression.

    Directory of Open Access Journals (Sweden)

    Matthew E Hardee

    Full Text Available BACKGROUND: The induction of tumor angiogenesis, a pathologic process critical for tumor progression, is mediated by multiple regulatory factors released by tumor and host cells. We investigated the role of the hematopoietic cytokine erythropoietin as an angiogenic factor that modulates tumor progression. METHODOLOGY/PRINCIPAL FINDINGS: Fluorescently-labeled rodent mammary carcinoma cells were injected into dorsal skin-fold window chambers in mice, an angiogenesis model that allows direct, non-invasive, serial visualization and real-time assessment of tumor cells and neovascularization simultaneously using intravital microscopy and computerized image analysis during the initial stages of tumorigenesis. Erythropoietin or its antagonist proteins were co-injected with tumor cells into window chambers. In vivo growth of cells engineered to stably express a constitutively active erythropoietin receptor EPOR-R129C or the erythropoietin antagonist R103A-EPO were analyzed in window chambers and in the mammary fat pads of athymic nude mice. Co-injection of erythropoietin with tumor cells or expression of EPOR-R129C in tumor cells significantly stimulated tumor neovascularization and growth in window chambers. Co-injection of erythropoietin antagonist proteins (soluble EPOR or anti-EPO antibody with tumor cells or stable expression of antagonist R103A-EPO protein secreted from tumor cells inhibited angiogenesis and impaired tumor growth. In orthotopic tumor xenograft studies, EPOR-R129C expression significantly promoted tumor growth associated with increased expression of Ki67 proliferation antigen, enhanced microvessel density, decreased tumor hypoxia, and increased phosphorylation of extracellular-regulated kinases ERK1/2. R103A-EPO antagonist expression in mammary carcinoma cells was associated with near-complete disruption of primary tumor formation in the mammary fat pad. CONCLUSIONS/SIGNIFICANCE: These data indicate that erythropoietin is an

  6. Pleiotrophin expression and role in physiological angiogenesis in vivo: potential involvement of nucleolin

    Directory of Open Access Journals (Sweden)

    Koutsioumpa Marina

    2012-03-01

    Full Text Available Abstract Background Pleiotrophin (PTN is a heparin-binding growth factor with significant role(s in tumour growth and angiogenesis. Although implication of endogenous PTN has been studied in several in vivo models of tumour angiogenesis, its role in physiological angiogenesis has not been addressed. In the present work, we studied expression and functional significance of endogenous PTN during angiogenesis in the chicken embryo chorioallantoic membrane (CAM. Methods Using molecular, cellular and biochemical assays, we studied the expression pattern of PTN in CAM and human endothelial cells and its possible interaction with nucleolin (NCL. CAM cells were transfected with a pCDNA3.1 vector, empty (PC or containing full length cDNA for PTN in antisense orientation (AS-PTN. Angiogenesis was estimated by measuring total vessel length. In vitro, human endothelial cells migration was studied by using a transwell assay, and down-regulation of NCL was performed by using a proper siRNA. Results Endogenous PTN mRNA and protein levels, as well as protein levels of its receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ were maximal at early stages, when CAM angiogenesis is active. Application of AS-PTN onto CAM at days of active angiogenesis was not toxic to the tissue and led to dose-dependent decreased expression of endogenous PTN, ERK1/2 activity and angiogenesis. Interestingly, endogenous PTN was also immunolocalized at the endothelial cell nucleus, possibly through interaction with NCL, a protein that has a significant role in the nuclear translocation of many proteins. Down-regulation of NCL by siRNA in human endothelial cells significantly decreased nuclear PTN, verifying this hypothesis. Moreover, it led to abolishment of PTN-induced endothelial cell migration, suggesting, for the first time, that PTN-NCL interaction has a functional significance. Conclusions Expression of endogenous PTN correlates with and seems to be involved in

  7. Cathepsin B and uPAR Knockdown Inhibits Tumor-induced Angiogenesis by Modulating VEGF Expression in Glioma

    OpenAIRE

    MALLA, RAMA RAO; Gopinath, Sreelatha; Christopher S Gondi; Alapati, Kiranmai; Dinh, Dzung H.; Gujrati, Meena; Rao, Jasti S.

    2011-01-01

    Angiogenesis, which is the process of sprouting of new blood vessels from pre-existing vessels, is vital for tumor progression. Proteolytic remodeling of extracellular matrix is a key event in vessel sprouting during angiogenesis. Urokinase plasminogen activator receptor (uPAR) and cathepsin B are both known to be overexpressed and implicated in tumor angiogenesis. In the present study, we observed that knockdown of uPAR and cathepsin B using puPAR (pU), pCathepsin B (pC), and a bicistronic c...

  8. Mesoscopic and continuum modelling of angiogenesis

    KAUST Repository

    Spill, F.

    2014-03-11

    Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. © 2014 Springer-Verlag Berlin Heidelberg.

  9. COX-2, VEGF and tumour angiogenesis.

    LENUS (Irish Health Repository)

    Toomey, D P

    2009-06-01

    Epidemiological evidence suggests a protective effective of regular NSAID use against developing cancer. Cyclooxygenase-2, a target of NSAIDs, is upregulated in many cancers and has been associated with increased VEGF production and angiogenesis. Angiogenesis is the formation of new vessels from existing vasculature and as an essential process for tumour development represents an important therapeutic target. Following an extensive review of the literature this article details the current knowledge on the role of COX-2 in tumorigenesis focusing on its relationship to angiogenesis and VEGF production by tumour cells. While COX-2 is clearly detrimental to prognosis and NSAIDs have a beneficial effect, the possibility of COX-2 independent effects being partly or wholly responsible for this benefit cannot be excluded.

  10. Non-proliferative and Proliferative Lesions of the Cardiovascular System of the Rat and Mouse

    Science.gov (United States)

    Berridge, Brian R.; Mowat, Vasanthi; Nagai, Hirofumi; Nyska, Abraham; Okazaki, Yoshimasa; Clements, Peter J.; Rinke, Matthias; Snyder, Paul W.; Boyle, Michael C.; Wells, Monique Y.

    2016-01-01

    The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic Pathology from Japan (JSTP), Europe (ESTP), Great Britain (BSTP) and North America (STP) to develop an internationally-accepted nomenclature for proliferative and non-proliferative lesions in laboratory animals. The primary purpose of this publication is to provide a standardized nomenclature for characterizing lesions observed in the cardiovascular (CV) system of rats and mice commonly used in drug or chemical safety assessment. The standardized nomenclature presented in this document is also available electronically for society members on the internet (http://goreni.org). Accurate and precise morphologic descriptions of changes in the CV system are important for understanding the mechanisms and pathogenesis of those changes, differentiation of natural and induced injuries and their ultimate functional consequence. Challenges in nomenclature are associated with lesions or pathologic processes that may present as a temporal or pathogenic spectrum or when natural and induced injuries share indistinguishable features. Specific nomenclature recommendations are offered to provide a consistent approach. PMID:27621537

  11. Non-proliferative and Proliferative Lesions of the Cardiovascular System of the Rat and Mouse.

    Science.gov (United States)

    Berridge, Brian R; Mowat, Vasanthi; Nagai, Hirofumi; Nyska, Abraham; Okazaki, Yoshimasa; Clements, Peter J; Rinke, Matthias; Snyder, Paul W; Boyle, Michael C; Wells, Monique Y

    2016-01-01

    The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic Pathology from Japan (JSTP), Europe (ESTP), Great Britain (BSTP) and North America (STP) to develop an internationally-accepted nomenclature for proliferative and non-proliferative lesions in laboratory animals. The primary purpose of this publication is to provide a standardized nomenclature for characterizing lesions observed in the cardiovascular (CV) system of rats and mice commonly used in drug or chemical safety assessment. The standardized nomenclature presented in this document is also available electronically for society members on the internet (http://goreni.org). Accurate and precise morphologic descriptions of changes in the CV system are important for understanding the mechanisms and pathogenesis of those changes, differentiation of natural and induced injuries and their ultimate functional consequence. Challenges in nomenclature are associated with lesions or pathologic processes that may present as a temporal or pathogenic spectrum or when natural and induced injuries share indistinguishable features. Specific nomenclature recommendations are offered to provide a consistent approach. PMID:27621537

  12. Functional inhibition of UQCRB suppresses angiogenesis in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yoon Sun; Jung, Hye Jin [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Seok, Seung Hyeok [Department of Microbiology and Immunology, Institute for Experimental Animals, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Payumo, Alexander Y.; Chen, James K. [Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305 (United States); Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2013-04-19

    Highlights: ► This is the first functional characterization of UQCRB in vivo model. ► Angiogenesis is inhibited with UQCRB loss of function in zebrafish. ► UQCRB is introduced as a prognostic marker for mitochondria- and angiogenesis-related diseases. -- Abstract: As a subunit of mitochondrial complex III, UQCRB plays an important role in complex III stability, electron transport, and cellular oxygen sensing. Herein, we report UQCRB function regarding angiogenesis in vivo with the zebrafish (Danio rerio). UQCRB knockdown inhibited angiogenesis in zebrafish leading to the suppression of VEGF expression. Moreover, the UQCRB-targeting small molecule terpestacin also inhibited angiogenesis and VEGF levels in zebrafish, supporting the role of UQCRB in angiogenesis. Collectively, UQCRB loss of function by either genetic and pharmacological means inhibited angiogenesis, indicating that UQCRB plays a key role in this process and can be a prognostic marker of angiogenesis- and mitochondria-related diseases.

  13. Angiogenesis and vascular targeting: Relevance for hyperthermia

    DEFF Research Database (Denmark)

    Horsman, Michael R

    2008-01-01

    The creation of a functional blood supply from the normal tissue vasculature via the process of angiogenesis is critical for the continued growth and development of solid tumours. This importance has led to the concept of targeting the tumour vasculature as a therapeutic strategy, and two major...... types of vascular targeting agents (VTAs) have developed; those that inhibit the angiogenic process-angiogenesis inhibiting agents (AIAs)-and those that specifically damage the already established neovasculature-vascular disrupting agents (VDAs). The tumour vasculature also plays a critical role...

  14. In Vivo Models of Muscle Angiogenesis.

    Science.gov (United States)

    Egginton, Stuart

    2016-01-01

    Angiogenesis is an important determinant of tissue function, from delivery of oxygen and other substrates to removal of waste products, in health and disease (e.g., adaptive or pathological remodelling). The phenotype and functional responses of endothelial cells are conditioned by systemic humoral signals and local environmental factors, including the haemodynamic forces that act upon them. Here we describe some interventions that have been helpful in unraveling the integrative nature of the complex in vivo response, and quantitative assessment of angiogenesis in muscle.

  15. Anti-angiogenesis properties of Crocus pallasii subsp. haussknechtii, a popular ethnic food

    Directory of Open Access Journals (Sweden)

    M. Mosaddegh

    2015-06-01

    Full Text Available Background and objectives: Angiogenesis is essential for tumor survival. Inhibiting angiogenesis could be a mechanism for hindering tumor development. Numerous studies have now been focused on agiogenesis inhibitors and many of such studies have targeted plant materials. In the present study, Crocus pallasii subsp. haussknechtii has been evaluated for anti-angiogenesis properties. Methods: Anti-angiogenesis activity of the plant extracts and fractions has been investigated through wound healing assay in HUV-EC-C cells. The cytotoxic activity has also been evaluated by MTT assay. Results: The methanol extract and the methanol fraction of the corm along with the chloroform fraction of the aerial parts demonstrated to be cytotoxic to HUV-EC-C cells with IC50 values of 27.2, 74.1 and 60.0 μg/mL, respectively while the chloroform fraction of the corm showed the most considerable anti-angiogenesis property among the samples in wound healing assay. Conclusion: Regarding the results of the present study, Crocus pallasii subsp. haussknechtii is suggested for further studies in cancer research evaluations.

  16. Role of Copper and Vascular Endothelial Growth Factor (VEGF on Endometrial Angiogenesis

    Directory of Open Access Journals (Sweden)

    Yousef Rezaei Chianeh

    2013-07-01

    Full Text Available The formation of new blood vessels is the ini-tial step in neovascularisation. The first stagein angiogenesis is the activation of endothelialcells. Copper ions stimulate proliferation andimmigration of endothelial cells. It has beenshown that serum copper concentration in-creases as the cancer disease progresses andcorrelates with tumour incidence and burden.Copper ions also activate several proangiogenicfactors, e.g., vascular endothelial growth fac-tor, basic fibroblast growth factor, andinterleukin 1. This review concerns a brief in-troduction into the basics of blood vessel de-velopment as well as the regulatory mecha-nisms of this process. The role of copper ionsin angiogenesis is discussed.

  17. KR-31831, benzopyran derivative, inhibits VEGF-induced angiogenesis of HUVECs through suppressing KDR expression.

    Science.gov (United States)

    Park, Shi-Young; Seo, Eun-Hee; Song, Hyun Seok; Jung, Seung-Youn; Lee, Young-Kyoung; Yi, Kyu-Yang; Yoo, Sung-Eun; Kim, Yung-Jin

    2008-06-01

    Angiogenesis is important in the development and progression of cancer, therefore the therapeutic approach based on anti-angiogenesis may represent a promising therapeutic option. KR-31831 is a novel anti-ischemic agent. Previously, we reported the anti-angiogenic activity of KR-31831. In the present study we investigated the molecular mechanisms underlying anti-angiogenic activity of KR-31831. We show that KR-31831 inhibits vascular endothelial growth factor (VEGF)-induced proliferation and tube formation via release of intracellular Ca2+ and phosphorylation of extra-cellular regulated kinase 1/2 (Erk 1/2) in human umbilical vein endothelial cells (HUVECs). Moreover, the expression of VEGF receptor 2 (VEGFR2, known as Flk-1 or KDR) was reduced by the treatment of KR-31831. These results suggest that KR-31831 may have inhibitory effects on tumor angiogenesis through down-regulation of KDR expression.

  18. Vascular endothelial growth factor and remedial angiogenesis%血管内皮生长因子与治疗性血管生成研究进展

    Institute of Scientific and Technical Information of China (English)

    郭敬; 王烈

    2008-01-01

    血管内皮生长因子(vascular endothelial growtll factor,VEGF)是内皮细胞特异的有丝分裂原,有促进内皮细胞增生、增强血管通透性、加速新血管形成的作用.血管生成是一个具有重要生理、病理意义的过程.在人体的创伤愈合、炎症反应、器官再生过程以及肿瘤生长转移、血管增生性疾病中,血管生成有重要作用.治疗性血管生成是指利用成血管诱导因子或内皮祖细胞,模拟体内血管生成机制,促进新生血管形成,改善侧支循环.本文就VEGF和治疗性血管生成研究进展做一综述.%Vascular endothelial growth factor (VEGF) is the endothelial cell-specific mitogen, facili-tates endothelial cell proliferation, increases vascular permeability and accelerates the formation of new blood vessels role. Angiogenesis is an important physiological and pathological significance of the process. In the human wound healing, inflammation, organ regeneration and tumor growth and metastasis, vascular prolifer-ative diseases, angiogenesis is an important role. Therapeutic angiogenesis is the use of inducible factor or vascular endothelial progenitor ceils, simulates in vivo angiogenesis mechanism, promotes angiogenesis and improves the collateral circulation. In this paper, VEGF and therapeutic ansiogenesis research progress were reviewed.

  19. Angiogênese e doenças da retina Angiogenesis and retinal diseases

    Directory of Open Access Journals (Sweden)

    Francisco Max Damico

    2007-06-01

    anos.Angiogenesis is the process involving the growth of new blood vessels from preexisting vessels which occurs in both physiologic and pathological settings. It is a complex process controlled by a large number of modulating factors, the pro-and antiangiogenic factors. The underlying cause of vision loss in proliferative retinal diseases, such as age-related macular degeneration and proliferative diabetic retinopathy, are increased vascular permeability and choroidal neovascularization, and vascular endothelial growth factor (VEGF plays a central role in this process. VEGF is produced in the eye by retinal pigment epithelium (RPE cells and is upregulated by hypoxia. There are four major biologically active human isoforms, of which VEGF165 is the predominant in the human eye and appears to be the responsible for pathological ocular neovascularization. Besides being a potent and specific mitogen for endothelial cells, VEGF increases vascular permeability, inhibits endothelial cells apoptosis, and is a chemoattractant for endothelial cell precursors. VEGF is not the only growth factor involved in ocular neovascularization. Basic fibroblast growth factor (bFGF, angiopoietins, pigment epithelium-derived factor (PEDF, and adhesion molecules also play a role in the pro- and antiangiogenic balance. Advances in the understanding of the bases of pathological ocular angiogenesis and identification of angiogenesis regulators have enabled the development of novel therapeutic agents. Anti-VEGF antibodies have been developed for intravitreal use, and other approaches are currently under investigation. These new drugs may be powerful tools for the treatment of the leading causes of irreversible blindness in people over age 65.

  20. Role of endogenous angiogenesis inhibitors in Down syndrome.

    Science.gov (United States)

    Ryeom, Sandra; Folkman, Judah

    2009-03-01

    New blood vessel growth via angiogenesis is a fundamental process in both physiological and pathological conditions. Physiological angiogenesis is critical during embryogenesis and placental development, whereas pathological angiogenesis plays an important role in the progression of many diseases, most notably tumor growth. Tumor angiogenesis is well accepted to be regulated by a balance of proangiogenic and antiangiogenic factors produced both by tumor cells and surrounding stromal cells. For many years, investigation of antiangiogenic therapies for cancer has focused on the proangiogenic cytokine, vascular endothelial growth factor; its receptors; or downstream signaling pathways. However, more recently with the identification of endogenous angiogenesis inhibitors, studies have turned toward understanding the role of endogenous antiangiogenic proteins in preventing disease progression. Clinical clues have suggested that specific populations may have dysregulated angiogenesis due to differential expression of endogenous angiogenesis regulators. For example, individuals with Down syndrome may possess a systemic antiangiogenic state with a significantly decreased incidence of angiogenesis-dependent diseases. Our work suggests that endogenous angiogenesis inhibitors may be the master regulators controlling progression of angiogenesis-dependent diseases such as vascular anomalies and cancer. The molecular regulation of angiogenesis is not yet fully understood; however, the Down syndrome population may give us insights toward novel therapies for controlling angiogenesis in disease.

  1. Benign Proliferative Breast Lesions and Risk of Cancer

    Directory of Open Access Journals (Sweden)

    Serap Erel

    2010-06-01

    Full Text Available Benign breast lesions (BBL includes a wide variety of histologic entities, which have been broadly classified into non-proliferative lesions, proliferative lesions without atypia, and hyperplasia with atypia. With the increased use of mammography, more benign lesions are being detected, and in order to estimate the risk of breast cancer for specific histologic categories is of great importance to guide clinical management. Women with proliferative lesions without atypia are at slightly increased risk of subsequent breast cancer, whereas women with proliferative lesions with atypia have a higher risk. The risk is 1.5- 2-fold in women with proliferative lesions without atypia, 4-5-fold in women with proliferative lesions with atypia, and 8-10 fold in women with ductal carcinoma in situ. Age at diagnosis of BBL, menopausal status, family history of breast cancer in a first-degree relative, and time since BBL diagnosis on risk of breast cancer are important for risk evaluation. [Archives Medical Review Journal 2010; 19(3.000: 155-167

  2. Quinazolinones-Phenylquinoxaline hybrids with unsaturation/saturation linkers as novel anti-proliferative agents.

    Science.gov (United States)

    Palem, Jyothsna Devi; Alugubelli, Gopi Reddy; Bantu, Rajashaker; Nagarapu, Lingaiah; Polepalli, Sowjanya; Jain, S Nishanth; Bathini, Raju; Manga, Vijjulatha

    2016-07-01

    A new series of novel quinazolinones with allylphenyl quinoxaline hybrids 9a-n were efficiently synthesized in good yields by the reaction of 3-allyl-2-methylquinazolin-4(3H)-one (5a-n) with bromophenyl)quinoxaline (8) utilizing Pd catalyzed Heck-cross coupling and evaluated for anti-proliferative activity against four cancer cell lines such as HeLa (cervical), MIAPACA (pancreatic), MDA-MB-231 (breast) and IMR32 (neuroblastoma). Compounds 9a, 9e, 9g and 9h exhibited promising anti-proliferative activity with GI50 values ranging from 0.06 to 0.2μM against four cell lines, while compounds 9e and 9k showed significant activity against HeLa and MIAPACA cell lines and compounds 9b, 9d, 9h and 9j showed selective potency against IMR32 and MDA-MB-231 cell lines. This is the first report on the synthesis and in vitro anti-proliferative evaluation of E-2-(4-substituted)-3-(3-(4-(quinoxalin-2-yl)phenyl)allyl)quinazolin-4(3H)-ones (9a-n). Docking results indicate a sign of good correlation between experimental activity and calculated binding affinity (dock score), suggesting that these compounds could act as promising DNA intercalates. PMID:27209232

  3. Quinazolinones-Phenylquinoxaline hybrids with unsaturation/saturation linkers as novel anti-proliferative agents.

    Science.gov (United States)

    Palem, Jyothsna Devi; Alugubelli, Gopi Reddy; Bantu, Rajashaker; Nagarapu, Lingaiah; Polepalli, Sowjanya; Jain, S Nishanth; Bathini, Raju; Manga, Vijjulatha

    2016-07-01

    A new series of novel quinazolinones with allylphenyl quinoxaline hybrids 9a-n were efficiently synthesized in good yields by the reaction of 3-allyl-2-methylquinazolin-4(3H)-one (5a-n) with bromophenyl)quinoxaline (8) utilizing Pd catalyzed Heck-cross coupling and evaluated for anti-proliferative activity against four cancer cell lines such as HeLa (cervical), MIAPACA (pancreatic), MDA-MB-231 (breast) and IMR32 (neuroblastoma). Compounds 9a, 9e, 9g and 9h exhibited promising anti-proliferative activity with GI50 values ranging from 0.06 to 0.2μM against four cell lines, while compounds 9e and 9k showed significant activity against HeLa and MIAPACA cell lines and compounds 9b, 9d, 9h and 9j showed selective potency against IMR32 and MDA-MB-231 cell lines. This is the first report on the synthesis and in vitro anti-proliferative evaluation of E-2-(4-substituted)-3-(3-(4-(quinoxalin-2-yl)phenyl)allyl)quinazolin-4(3H)-ones (9a-n). Docking results indicate a sign of good correlation between experimental activity and calculated binding affinity (dock score), suggesting that these compounds could act as promising DNA intercalates.

  4. Effects of Staphylococcus Aureus Infection on The Proliferative Activity of Implanted Tumor Induced by Nasopharyngeal Carcinoma Cells%金黄色葡萄球菌感染对鼻咽癌裸鼠移植瘤增殖活性的影响

    Institute of Scientific and Technical Information of China (English)

    黄水仙; 田道法; 李勇; 何迎春; 江志超

    2012-01-01

    目的 探讨金黄色葡萄球菌感染对鼻咽癌裸鼠移植瘤细胞增殖活性的影响及其可能机制.方法 24只BALB/c雌性裸鼠接种人鼻咽癌细胞HNE2,建立鼻咽癌裸鼠移植瘤模型.随机分成移植瘤模型对照组、移植瘤感染组和移植瘤治疗组,再从感染组裸鼠尾静脉注射金黄色葡萄球菌,制备鼻咽癌裸鼠移植瘤感染模型.造模后,每3天测量肿瘤大小,绘制生长曲线,15天后处死裸鼠,处死后称量瘤体重量,并对瘤体进行HE染色、增殖细胞核抗原(PCNA)及细胞凋亡检测.结果 感染组裸鼠感染金黄色葡萄球菌后,瘤体迅速增大,重量明显增加,瘤体内增殖细胞核抗原(PCNA)阳性细胞数明显增多,增殖指数(PI)升高.同时发现金黄色葡萄球菌感染鼠的瘤体内细胞凋亡指数明显下降.结论 金黄色葡萄球菌感染能增强鼻咽癌裸鼠移植瘤增殖活性.%Objective To investigate the effect of staphylococcus aureus infection on the proliferative activity of implanted tumor induced by nasopharyngeal carcinoma ( NPC) cells and its possible underlying mechanisms. Methods Cells of NPC cell line HNE - 2 were injected to 24 BALB/c female nude mice to prepare implanted tumor at first, and then, they were randomly divided into two groups, i. e. model controlling group (MCG) and experimental group (EG) when planted tumor grown, with 8 and 16 mice in MCG and EG respectively. Furthermore, the animals in EG was injected 0.2ml Staphylococcus aureus( 1.0 x 10 /ml) via tail venous to prepare bacteria infected implanting tumor model, and followed were the mice in EG divided into two sub - groups randomly, i. e. implanted tumor tumor infecting model group (ITIMG) and infecting implanted tumor treating group (IITTG) , with 8 mice in each group. Then, animals were treated with normal saline for those in MCG and ITIMG, and Ampicillin for those in IITTG respectively, all being lasted for 15 days. Fife-teen days later following the

  5. IL-1alpha induces angiogenesis in brain endothelial cells in vitro: implications for brain angiogenesis after acute injury.

    Science.gov (United States)

    Salmeron, Kathleen; Aihara, Takuma; Redondo-Castro, Elena; Pinteaux, Emmanuel; Bix, Gregory

    2016-02-01

    Inflammation is a major contributor to neuronal injury and is associated with poor outcome after acute brain injury such as stroke. The pro-inflammatory cytokine interleukin (IL)-1 is a critical regulator of cerebrovascular inflammation after ischemic injury, mainly through action of both of its isoforms, IL-1α and IL-1β, at the brain endothelium. In contrast, the differential action of these ligands on endothelial activation and post-stroke angiogenesis is largely unknown. Here, we demonstrate that IL-1α is chronically elevated in the brain after experimental stroke suggesting that it is present during post-stroke angiogenic periods. Furthermore, we demonstrate that IL-1α is a potent mediator of endothelial activation and inducer of angiogenic markers in endothelial cells in vitro. Using brain endothelial cell lines, we found that IL-1α was significantly more potent than IL-1β at inducing endothelial cell activation, as measured by expression of the pro-angiogenic chemokine CXCL-1. IL-1α also induced strong expression of the angiogenic mediator IL-6 in a concentration-dependent manner. Furthermore, IL-1α induced significant proliferation and migration of endothelial cells, and promoted formation of tube-like structures that are established key hallmarks of angiogenesis in vitro. Finally, all of those responses were blocked by the IL-1 receptor antagonist (IL-1RA). In conclusion, our data highlights a potential new role for IL-1 in brain repair mechanisms and identifies IL-1α as a potential new therapy to promote post-stroke angiogenesis. Inflammation is a major contributor to neuronal injury and is associated with poor outcome after neurotrauma. We demonstrate that cytokine IL-1α is chronically elevated in the brain after experimental stroke suggesting that it is present chronically post-stroke. We demonstrate that IL-1α is a potent mediator of endothelial activation and inducer of angiogenic markers in endothelial cells. Our data highlights a new

  6. The Orphan Receptor Tie1 Controls Angiogenesis and Vascular Remodeling by Differentially Regulating Tie2 in Tip and Stalk Cells

    OpenAIRE

    Soniya Savant; Silvia La Porta; Annika Budnik; Katrin Busch; Junhao Hu; Nathalie Tisch; Claudia Korn; Aida Freire Valls; Andrew V. Benest; Dorothee Terhardt; Xianghu Qu; Ralf H. Adams; H. Scott Baldwin; Carmen Ruiz de Almodóvar; Hans-Reimer Rodewald

    2015-01-01

    Tie1 is a mechanistically poorly characterized endothelial cell (EC)-specific orphan receptor. Yet, Tie1 deletion is embryonic lethal and Tie1 has been implicated in critical vascular pathologies, including atherosclerosis and tumor angiogenesis. Here, we show that Tie1 does not function independently but exerts context-dependent effects on the related receptor Tie2. Tie1 was identified as an EC activation marker that is expressed during angiogenesis by a subset of angiogenic tip and remodeli...

  7. Fibromodulin Enhances Angiogenesis during Cutaneous Wound Healing

    Directory of Open Access Journals (Sweden)

    Zhong Zheng, PhD

    2014-12-01

    Conclusions: Altogether, we demonstrated that in addition to reducing scar formation, FMOD also promotes angiogenesis. As blood vessels organize and regulate wound healing, its potent angiogenic properties will further expand the clinical application of FMOD for cutaneous healing of poorly vascularized wounds.

  8. Angiogenesis and the inception of pregnancy

    NARCIS (Netherlands)

    Kapiteijn, Kitty

    2006-01-01

    Vascular maladaptation prior and during implantation may lead to serious complications during pregnancy, perinatally, but also later in life (Barker hypothesis). The consequences later in life often appear to be related to endothelial dysfunction. Angiogenesis, the formation of new blood vessels fro

  9. Tumor growth and angiogenesis is impaired in CIB1 knockout mice

    Directory of Open Access Journals (Sweden)

    Zayed Mohamed A

    2010-08-01

    Full Text Available Abstract Background Pathological angiogenesis contributes to various ocular, malignant, and inflammatory disorders, emphasizing the need to understand this process more precisely on a molecular level. Previously we found that CIB1, a 22 kDa regulatory protein, plays a critical role in endothelial cell function, angiogenic growth factor-mediated cellular functions, PAK1 activation, MMP-2 expression, and in vivo ischemia-induced angiogenesis. Since pathological angiogenesis is highly dependent on many of these same processes, we hypothesized that CIB1 may also regulate tumor-induced angiogenesis. Methods To test this hypothesis, we allografted either murine B16 melanoma or Lewis lung carcinoma cells into WT and CIB1-KO mice, and monitored tumor growth, morphology, histology, and intra-tumoral microvessel density. Results Allografted melanoma tumors that developed in CIB1-KO mice were smaller in volume, had a distinct necrotic appearance, and had significantly less intra-tumoral microvessel density. Similarly, allografted Lewis lung carcinoma tumors in CIB1-KO mice were smaller in volume and mass, and appeared to have decreased perfusion. Intra-tumoral hemorrhage, necrosis, and perivascular fibrosis were also increased in tumors that developed in CIB1-KO mice. Conclusions These findings suggest that, in addition to its other functions, CIB1 plays a critical role in facilitating tumor growth and tumor-induced angiogenesis.

  10. Anti-angiogenesis in prostate cancer:knocked down but not out

    Institute of Scientific and Technical Information of China (English)

    Marijo Bilusic; Yu-Ning Wong

    2014-01-01

    Angiogenesis is a very complex physiological process, which involves multiple pathways that are dependent on the homeostatic balance between the growth factors (stimulators and inhibitors). This tightly controlled process is stimulated by angiogenic factors, which are present within the tumor and surrounding tumor-associated stromal cells. The dependence of tumor propagation, invasion and metastasis on angiogenesis makes the inhibitors of new blood vessel formation attractive drugs for treating the malignancies. Angiogenesis can be disrupted by several distinct mechanisms:by inhibiting endothelial cells, by interrupting the signaling pathways or by inhibiting other activators of angiogenesis. This strategy has shown therapeutic beneift in several types of solid tumors, leading to Food and Drug Administration (FDA) approval of anti-angiogenic agents in the treatment of kidney, non-small cell lung, colon and brain cancers. Although no angiogenesis inhibitors have been approved for patients with metastatic prostate cancer, therapies that target new blood vessel formation are still an emerging and promising area of prostate cancer research.

  11. The tetrapeptide Arg-Leu-Tyr-Glu inhibits VEGF-induced angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Yi-Yong; Lee, Dong-Keon [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); So, Ju-Hoon; Kim, Cheol-Hee [Department of Biology, Chungnam National University, Daejeon, 305-764 (Korea, Republic of); Jeoung, Dooil [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Lee, Hansoo [Department of Life Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Choe, Jongseon [Department of Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Won, Moo-Ho [Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Ha, Kwon-Soo [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Kwon, Young-Guen [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-752 (Korea, Republic of); Kim, Young-Myeong, E-mail: ymkim@kangwon.ac.kr [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of)

    2015-08-07

    Kringle 5, derived from plasminogen, is highly capable of inhibiting angiogenesis. Here, we have designed and synthesized 10 tetrapeptides, based on the amino acid properties of the core tetrapeptide Lys-Leu-Tyr-Asp (KLYD) originating from anti-angiogenic kringle 5 of human plasminogen. Of these, Arg-Leu-Tyr-Glu (RLYE) effectively inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation, migration and tube formation, with an IC{sub 50} of 0.06–0.08 nM, which was about ten-fold lower than that of the control peptide KLYD (0.79 nM), as well as suppressed developmental angiogenesis in a zebrafish model. Furthermore, this peptide effectively inhibited the cellular events that precede angiogenesis, such as ERK and eNOS phosphorylation and nitric oxide production, in endothelial cells stimulated with VEGF. Collectively, these data demonstrate that RLYE is a potent anti-angiogenic peptide that targets the VEGF signaling pathway. - Highlights: • The tetrapeptide RLYE inhibited VEGF-induced angiogenesis in vitro. • RLYE also suppressed neovascularization in a zebrafish model. • Its effect was correlated with inhibition of VEGF-induced ERK and eNOS activation. • RLYE may be used as a therapeutic drug for angiogenesis-related diseases.

  12. Anti-angiogenesis in prostate cancer: knocked down but not out

    Directory of Open Access Journals (Sweden)

    Marijo Bilusic

    2014-06-01

    Full Text Available Angiogenesis is a very complex physiological process, which involves multiple pathways that are dependent on the homeostatic balance between the growth factors (stimulators and inhibitors. This tightly controlled process is stimulated by angiogenic factors, which are present within the tumor and surrounding tumor-associated stromal cells. The dependence of tumor propagation, invasion and metastasis on angiogenesis makes the inhibitors of new blood vessel formation attractive drugs for treating the malignancies. Angiogenesis can be disrupted by several distinct mechanisms: by inhibiting endothelial cells, by interrupting the signaling pathways or by inhibiting other activators of angiogenesis. This strategy has shown therapeutic benefit in several types of solid tumors, leading to Food and Drug Administration (FDA approval of anti-angiogenic agents in the treatment of kidney, non-small cell lung, colon and brain cancers. Although no angiogenesis inhibitors have been approved for patients with metastatic prostate cancer, therapies that target new blood vessel formation are still an emerging and promising area of prostate cancer research.

  13. 鼻咽NK/T细胞淋巴瘤肿瘤相关巨噬细胞与其增殖活性的关系%The relation between tumor associated macrophages and the proliferative activity of tumor cells in nasopharyngeal NK/T cell lymphoma

    Institute of Scientific and Technical Information of China (English)

    刘一雄; 王映梅; 李培峰; 范林妮; 朱瑾; 王璐; 张微晨; 张月华; 黄高昇

    2012-01-01

    目的:研究鼻咽NK/T细胞淋巴瘤中肿瘤相关巨噬细胞(TAMs)数量与肿瘤增殖指数,以及2种巨噬细胞标志物(CD68与CD163)间的关系.方法:采用免疫组织化学染色法检测31例鼻咽NK/T细胞淋巴瘤和12例炎性反应病例的Ki67,CD68以及CD163.并对染色结果进行Pearson相关分析和t检验.结果:鼻咽NK/T细胞淋巴瘤中的TAMs数与肿瘤的增殖活性具有非常显著的正相关性(P=0.024),同时,CD163与CD68阳性细胞数密切相关(P =0.009),CD68的阳性率略高于CD163,但无统计学意义.鼻咽NK/T细胞淋巴瘤中TAMs的数量,与反应性病变相比具有明显差异(P<0.05).结论:鼻咽NK/T细胞淋巴瘤中的TAMs与肿瘤细胞增殖活性密切相关,表明TAMs可促进NK/T细胞淋巴瘤细胞的增殖.并且2种标志物(CD68及CD163)均可识别TAMs.而CD163为TAMs的标志物似乎更加准确.%Objective; To explore the relationship between the number of tumor - associated macrophages (TAMs) and proliferative activity of tumor cells and the relationship between two macrophage biomarkers CD68 and CD163 in nasopharyngeal NK/T cell lymphoma. Methods: Immunohistochemistry was used to reconfirm the diagnosis of nasal NK/T - cell lymphoma and detect the numbers of TAMs and the ki - 67 label index of the tumor cells in all 31 patients. In addition, 12 cases of inflammatory cases were collected as controls, for which the immunostaining of CD68 and CD163 were done as well. Results;The number of TAMs was positively correlated with tumor proliferative activity( P =0.024) in nasopharyngeal NK/T cell lymphoma. The expression of CD68 and CD163 were closely related (P = 0.009), and the positive rate of CD68 was generally higher than CD163,however there was no statistical significance. Conclusion:The increase in numbers of TAMs in nasopharyngeal NK/T cell lymphoma often relates with higher proliferative index,indicating the TAMs play an important role in tumor proliferation. Meanwhile both CD68 and CD

  14. Endogenous angiogenesis inhibitors and their therapeutic implications.

    Science.gov (United States)

    Cao, Y

    2001-04-01

    A number of endogenous inhibitors targeting the tumor vasculature have recently been identified using in vitro and in vivo antiangiogenesis models. While many of these angiogenesis inhibitors display a broad spectrum of biological actions on several systems in the body, several inhibitors including angiostatin, endostatin, and serpin antithrombin seem to act specifically on the proliferating endothelial cell compartment of the newly formed blood vessels. The discovery of these specific endothelial inhibitors not only increases our understanding of the functions of these molecules in the regulation of physiological and pathological angiogenesis, but may also provide an important therapeutic strategy for the treatment of cancer and other angiogenesis dependent diseases, including diabetic retinopathy and chronic inflammations. Systemic administration of these angiogenesis inhibitors in animals significantly suppresses the growth of a variety of tumors and their metastases. However, their production as functional recombinant proteins has been proven to be difficult. In addition, high dosages of these inhibitors are required to suppress tumor growth in animal studies. Other disadvantages of the antiangiogenic protein therapy include repeated injections, prolonged treatment, transmission of toxins and infectious particles, and high cost for manufacturing large amounts of protein molecules. Thus, alternative strategies need to be developed in order to improve the clinical settings of antiangiogenic therapy. Developments of these strategies are ongoing and they include identification of more potent inhibitors, antiangiogenic gene therapy, improvement of protein/compound half-lives in the circulation, increase of their concentrations at the disease location, and combinatorial therapies with approaches including chemotherapy, radiotherapy, and immunotherapy. Despite the above-mentioned disadvantages, a few inhibitors have entered into the early stages of clinical trials and

  15. Outcome of the acute glomerular injury in proliferative lupus nephritis

    Energy Technology Data Exchange (ETDEWEB)

    Chagnac, A.; Kiberd, B.A.; Farinas, M.C.; Strober, S.; Sibley, R.K.; Hoppe, R.; Myers, B.D. (Stanford Univ. Medical Center, CA (USA))

    1989-09-01

    Treatment with total lymphoid irradiation (TLI) and corticosteroids markedly reduced activity of systemic lupus erythematosis in 10 patients with diffuse proliferative lupus nephritis (DPLN) complicated by a nephrotic syndrome. Physiologic and morphometric techniques were used serially before, and 12 and 36 mo post-TLI to characterize the course of glomerular injury. Judged by a progressive reduction in the density of glomerular cells and immune deposits, glomerular inflammation subsided. A sustained reduction in the fractional clearance of albumin, IgG and uncharged dextrans of radius greater than 50 A, pointed to a parallel improvement in glomerular barrier size-selectivity. Corresponding changes in GFR were modest, however. A trend towards higher GFR at 12 mo was associated with a marked increase in the fraction of glomerular tuft area occupied by patent capillary loops as inflammatory changes receded. A late trend toward declining GFR beyond 12 mo was associated with progressive glomerulosclerosis, which affected 57% of all glomeruli globally by 36 mo post-TLI. Judged by a parallel increase in volume by 59%, remaining, patent glomeruli had undergone a process of adaptive enlargement. We propose that an increasing fraction of glomeruli continues to undergo progressive sclerosis after DPLN has become quiescent, and that the prevailing GFR depends on the extent to which hypertrophied remnant glomeruli can compensate for the ensuing loss of filtration surface area.

  16. Outcome of the acute glomerular injury in proliferative lupus nephritis

    International Nuclear Information System (INIS)

    Treatment with total lymphoid irradiation (TLI) and corticosteroids markedly reduced activity of systemic lupus erythematosis in 10 patients with diffuse proliferative lupus nephritis (DPLN) complicated by a nephrotic syndrome. Physiologic and morphometric techniques were used serially before, and 12 and 36 mo post-TLI to characterize the course of glomerular injury. Judged by a progressive reduction in the density of glomerular cells and immune deposits, glomerular inflammation subsided. A sustained reduction in the fractional clearance of albumin, IgG and uncharged dextrans of radius greater than 50 A, pointed to a parallel improvement in glomerular barrier size-selectivity. Corresponding changes in GFR were modest, however. A trend towards higher GFR at 12 mo was associated with a marked increase in the fraction of glomerular tuft area occupied by patent capillary loops as inflammatory changes receded. A late trend toward declining GFR beyond 12 mo was associated with progressive glomerulosclerosis, which affected 57% of all glomeruli globally by 36 mo post-TLI. Judged by a parallel increase in volume by 59%, remaining, patent glomeruli had undergone a process of adaptive enlargement. We propose that an increasing fraction of glomeruli continues to undergo progressive sclerosis after DPLN has become quiescent, and that the prevailing GFR depends on the extent to which hypertrophied remnant glomeruli can compensate for the ensuing loss of filtration surface area

  17. Synergistic anti-proliferative and pro-apoptotic activity of combined therapy with bortezomib, a proteasome inhibitor, with anti-epidermal growth factor receptor (EGFR) drugs in human cancer cells.

    Science.gov (United States)

    Cascone, Tina; Morelli, Maria Pia; Morgillo, Floriana; Kim, Woo-Young; Rodolico, Gabriella; Pepe, Stefano; Tortora, Giampaolo; Berrino, Liberato; Lee, Ho-Young; Heymach, John V; Ciardiello, Fortunato

    2008-09-01

    The proteasome plays a pivotal role in the turnover of regulatory transduction proteins induced by activated cell membrane growth factor receptors. The epidermal growth factor receptor (EGFR) pathway is crucial in the development and progression of human epithelial cancers. Proteasome inhibition may sensitize human cancer cell lines to EGFR inhibitors. We investigated the growth inhibitory and pro-apoptotic effects of the proteasome inhibitor bortezomib in combination with anti-EGFR drugs, such as gefitinib, vandetanib, and cetuximab in EGFR-expressing human cancer cell lines. Bortezomib determined dose-dependent growth inhibition in a nine cancer cell line panel (IC(50) values, range 6-42 nM). A significant synergistic growth inhibitory effect was observed with the combination of bortezomib and each EGFR inhibitor in all cell lines (combination index, CI, range 0.10-0.55), which was accompanied by a significant induction in apoptosis by the combined treatment with bortezomib, cetuximab and vandetanib. In HCT-116 colon cancer and A549 lung adenocarcinoma cells, bortezomib plus EGFR inhibitor treatment induced a more effective inhibition of EGFR-activated down-stream signals, including a marked suppression in activated, phosphorylated Akt (P-Akt). In contrast, overexpression of a constitutively active P-Akt protected A549 cells by cell growth inhibition and apoptosis following treatment with bortezomib and EGFR inhibitors. The combined treatment with bortezomib and EGFR inhibitors has a synergistic growth inhibitory and pro-apoptotic activity in different human cancer cells which possess a functional EGFR-dependent autocrine growth pathway through to a more efficient and sustained inhibition of Akt.

  18. Lysyl Oxidase Plays a Critical Role in Endothelial Cell Stimulation to Drive Tumor Angiogenesis

    DEFF Research Database (Denmark)

    Baker, Ann-Marie; Bird, Demelza; Welti, Jonathan C;

    2013-01-01

    for stimulating endothelial cells in vitro and angiogenesis in vivo. We show that LOX activates Akt through platelet-derived growth factor receptor ß (PDGFRß) stimulation, resulting in increased VEGF expression. LOX-driven angiogenesis can be abrogated through targeting LOX directly or using inhibitors of PDGFRß......, Akt, and VEGF signaling. Furthermore, we show that LOX is clinically correlated with VEGF expression and blood vessel formation in 515 colorectal cancer patient samples. Finally, we validate our findings in a breast cancer model, showing the universality of these observations. Taken together, our...

  19. Anti-Angiogenesis and Anti-Tumor Effect of Shark Cartilage Extract

    Institute of Scientific and Technical Information of China (English)

    王锋; 王漪涛; 谢莉萍; 张荣庆

    2001-01-01

    The effect of shark cartilage extract (SCE), purified in this laboratory, on angiogenesis in chick chorioallantoic membrane (CAM), on the activity of collagenase IV and on human umbilical vein endothelial cell (ECV-304) proliferation and apoptosis was investigated in vitro. The results showed that SCE caused a decline in CAM blood vessels and significantly prevented collagenase-induced collagenolysis. Moreover, SCE produced a dose-dependent decline in ECV-304 proliferation and altered its normal cell cycle. These results suggest that the anti-angiogenesis and anti-tumor effects of shark cartilage may be due to inhibition of endothelial cells as well as collagenolysis.

  20. Galectin-3 induces pulmonary artery endothelial cell morphogenesis and angiogenesis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; LI Yu-mei; WANG Xiao-yan; ZHU Da-ling

    2016-01-01

    AIM:Increasing evidence suggests that carbohydrate-binding proteins play an essential role in tumor growth and metastasis .Ga-lectin-3, a multifunctional protein of an expanding family of β-galactoside-binding animal lectins , is the major nonintegrin cellular laminin-binding protein , and is implicated in a variety of biologic events , such as inflammation and angiogenesis .Because galectin-3 expression was shown to participate in mediating tumor angiogenesis and initiate signaling cascades in several diseases .We hypothe-sized that galectin-3 may promote pulmonary vascular endothelial neovascularization .METHODS:Hypoxic and MCT rat model of pul-monary artery remodeling was used .The mRNA and protein levels of galectin-3 in rats were measured by in situ hybrization and West-ern blot analysis.Endothelial cell (EC) proliferation, migration and tube formation were measured using MTT , cell scratch and Matri-gel assays, respectively.Protein expression was quantitated by Western blot analysis .LC 3A/B staining was detected with cellular im-munofluorescence staining .RESULTS:We found that galectin-3 was localized on the intima and adventitial wall .Galectin-3 was in-creased after rat hypoxia and MCT administration .Galectin-3 promoted EC proliferation , migration and tube formation , while its roles were reversed by RNA interference.Galectin-3 induced Atg 5, Beclin-1, LAMP-2, and LC 3A/B expression increases.Galectin-3 al-so increased LC 3A/B staining in ECs.Akt/mTOR and GSK-3βsignaling pathways were activated after galectin-3 treated ECs using its specific phosphorylation antibodies , while blocked it with LY294002 inhibited cell autophagy and EC dynamic alterations induced by galectin-3.CONCLUSION:These findings demonstrate that galectin-3 can induce an Akt signaling cascade leading to cell autoph-agy, and then the differentiation and angiogenesis of pulmonary artery endothelial cells .

  1. Ets2 in tumor fibroblasts promotes angiogenesis in breast cancer.

    Directory of Open Access Journals (Sweden)

    Julie A Wallace

    Full Text Available Tumor fibroblasts are active partners in tumor progression, but the genes and pathways that mediate this collaboration are ill-defined. Previous work demonstrates that Ets2 function in stromal cells significantly contributes to breast tumor progression. Conditional mouse models were used to study the function of Ets2 in both mammary stromal fibroblasts and epithelial cells. Conditional inactivation of Ets2 in stromal fibroblasts in PyMT and ErbB2 driven tumors significantly reduced tumor growth, however deletion of Ets2 in epithelial cells in the PyMT model had no significant effect. Analysis of gene expression in fibroblasts revealed a tumor- and Ets2-dependent gene signature that was enriched in genes important for ECM remodeling, cell migration, and angiogenesis in both PyMT and ErbB2 driven-tumors. Consistent with these results, PyMT and ErbB2 tumors lacking Ets2 in fibroblasts had fewer functional blood vessels, and Ets2 in fibroblasts elicited changes in gene expression in tumor endothelial cells consistent with this phenotype. An in vivo angiogenesis assay revealed the ability of Ets2 in fibroblasts to promote blood vessel formation in the absence of tumor cells. Importantly, the Ets2-dependent gene expression signatures from both mouse models were able to distinguish human breast tumor stroma from normal stroma, and correlated with patient outcomes in two whole tumor breast cancer data sets. The data reveals a key function for Ets2 in tumor fibroblasts in signaling to endothelial cells to promote tumor angiogenesis. The results highlight the collaborative networks that orchestrate communication between stromal cells and tumor cells, and suggest that targeting tumor fibroblasts may be an effective strategy for developing novel anti-angiogenic therapies.

  2. Effect of the Piperazine Unit and Metal-Binding Site Position on the Solubility and Anti-Proliferative Activity of Ruthenium(II)- and Osmium(II)- Arene Complexes of Isomeric Indolo[3,2-c]quinoline—Piperazine Hybrids

    OpenAIRE

    Filak, Lukas K.; Kalinowski, Danuta S.; Bauer, Theresa J.; Richardson, Des R.; Arion, Vladimir B

    2014-01-01

    In this study, the indoloquinoline backbone and piperazine were combined to prepare indoloquinoline–piperazine hybrids and their ruthenium- and osmium-arene complexes in an effort to generate novel antitumor agents with improved aqueous solubility. In addition, the position of the metal-binding unit was varied, and the effect of these structural alterations on the aqueous solubility and antiproliferative activity of their ruthenium- and osmium-arene complexes was studied. The indoloquinoline–...

  3. 5-Substituted 3-isopropyl-7-[4-(2-pyridyl)benzyl]amino-1(2)H-pyrazolo[4,3-d]pyrimidines with anti-proliferative activity as potent and selective inhibitors of cyclin-dependent kinases.

    Science.gov (United States)

    Vymětalová, Ladislava; Havlíček, Libor; Šturc, Antonín; Skrášková, Zuzana; Jorda, Radek; Pospíšil, Tomáš; Strnad, Miroslav; Kryštof, Vladimír

    2016-03-01

    A series of 5-substituted 3-isopropyl-7-[4-(2-pyridyl)benzyl]amino-1(2)H-pyrazolo[4,3-d]pyrimidine derivatives was synthesized and evaluated for their cyclin-dependent kinase (CDK) inhibition activity. The most potent compounds contained various hydroxyalkylamines at the 5 position and possessed low nanomolar IC50 values for CDK2 and CDK5. Preliminary profiling of one of the most active compounds on a panel of 50 protein kinases revealed its high selectivity for CDKs. The compounds arrested cells in S and G2/M phases, and induced apoptosis in various cancer cell lines. Significant dephosphorylation of the C-terminus of RNA polymerase II and focal adhesion kinase (FAK), well-established substrates of CDKs, has been found in treated cells. Cleavage of PARP-1, down-regulation of Mcl-1 and activation of caspases correlated well with CDK inhibition and confirmed apoptosis as the primary type of cell death induced in cancer cells treated with the compounds in vitro. A comparison of known purine-based CDK inhibitor CR8 with its pyrazolo[4,3-d]pyrimidine bioisosteres confirmed that the novel compounds are more potent in cellular assays than purines. Therefore, pyrazolo[4,3-d]pyrimidine may emerge as a novel scaffold in medicinal chemistry and as a source of potent CDK inhibitors. PMID:26851505

  4. Study of the Anti-Proliferative Activity of 5-Substituted 4,7-Dimethoxy-1,3-Benzodioxole Derivatives of SY-1 from Antrodia camphorata on Human COLO 205 Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Hsiu-Man Lien

    2011-01-01

    Full Text Available A set of 10 4,7-dimethoxy-1,3-benzodioxole derivatives based on a lead compound previously discovered by our group, SY-1, which was isolated from Antrodia camphorata, were evaluated for their in vitro inhibitory activity on human colorectal carcinoma cells (COLO 205. Structure-activity relationship studies of the 10 compounds indicated the importance of the chain length of the alkyl group at the 5-position, and the 2-propenyl substituent named “apiole” exhibited the most potent inhibitory activity. In the present study, we demonstrate that the SY-1 analogue “apiole” decreased the proliferation of COLO 205 cells, but not that of normal human colonic epithelial cells (FHC. The G0/G1 cell cycle arrest induced by apiole (75–225 μM was associated with significantly increased levels of p53, p21 and p27 and decreased levels of cyclin D1. Concerning COLO 205 cell apoptosis, apiole (>150 μM treatment significantly increased the levels of cleaved caspases 3, 8, 9 and bax/bcl-2 ratio and induced ladder formation in DNA fragmentation assay and sub-G1 peak in flow cytometry analysis. These findings suggest that apiole can suppress COLO 205 cell growth; however, the detailed mechanisms of these processes require further investigation.

  5. Angiogenesis related gene expression profiles of EA.hy926 cells induced by irbesartan: a possible novel therapeutic approach

    Institute of Scientific and Technical Information of China (English)

    MA Cong; LU Xue-chun; LUO Yun; CAO Jian; YANG Bo; GAO Yan; LIU Xian-feng; FAN Li

    2012-01-01

    Background Angiogenesis occurs commonly in various physiological and pathological processes.Improving blood supply through promoting angiogenesis is a novel approach for treating ischemic diseases.Angiotensin Ⅱ type 1 receptor blockers (ARBs) dominate the management of hypertension,but evidence of their role in angiogenesis is contradictory.Here we explored the angiogenic effects of ARBs through characterizing gene expression of the human umbilical vein endothelial cell line EA.hy926 exposed to irbesartan.Methods The human umbilical vein endothelial cell line EA.hy926 was grown for 72 hours after treatment with different concentrations of irbesartan.The cell proliferative capacity was assessed by CCK8 assay at 24,48 and 72 hours.Gene expression levels in EA.hy926 cells responding to irbesartan were measured under optimal proliferation conditions by microarray analysis using Affymetrix U133 plus 2.0.The differential expression of genes involved in angiogenesis was identified through cluster analysis of the resulting microarray data.Quantitative RT-PCR and Western blotting analyses were used to validate differential gene expression related to the angiogenesis process.Results In the 10-4,10-5,10-6 mol/L treatment groups,cell proliferation studies revealed significantly increased proliferation in EA.hy926 cells after 24 hours of irbesartan treatment.However,after 48 and 72 hours of treatment with different concentrations of irbesartan,there was no significant difference in cell proliferation observed in any treatment group.We selected the group stimulated with irbersartan at a concentration of 10-6 mol/L for microarray experiments.Statistical analysis of the microarray data resulted in the identification of 56 gene transcripts whose expression patterns were significantly correlated,negatively or positively,with irbesartan treatment.Cluster analysis showed that these genes were involved in angiogenesis,extracellular stimulus,binding reactions and skeletal system

  6. Analysis of p53 expression and proliferative assessment using PCNA in localized prostate carcinoma

    Directory of Open Access Journals (Sweden)

    Leite K.R.M.

    1999-01-01

    Full Text Available The surgical specimens from 51 men submitted to radical prostatectomy for localized prostate cancer were examined by immunohistochemistry using proliferation cell nuclear antigen (PCNA monoclonal antibody to evaluate the proliferative index (PI. The relationship between PI, biological variables and p53 protein expression was evaluated by immunohistochemistry. PI was low in invasive localized prostate carcinoma (mean, 12.4% and the incidence of PCNA-positive cells was significantly higher in tumors with p53 expression (P = 0.0226. There was no statistical difference in PCNA values when biological parameters such as Gleason score, tumor volume, extraprostatic involvement, seminal vesicle infiltration or lymph node metastasis were considered. We conclude that proliferative activity is usually low in prostate carcinoma but is correlated with p53 immune staining, indicating that p53 is important in cell cycle control in this neoplasm.

  7. Possible mechanisms for arsenic-induced proliferative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Wetterhahn, K.E.; Dudek, E.J.; Shumilla, J.A. [Dartmouth College and Medical School, Hanover, NH (United States)] [and others

    1996-12-31

    Possible mechanisms for cardiovascular diseases and cancers which have been observed on chronic exposure to arsenic have been investigated. We tested the hypothesis that nonlethal levels of arsenic are mitogenic, cause oxidative stress, increase nuclear translocation of trans-acting factors, and increase expression of genes involved in proliferation. Cultured porcine vascular (from aorta) endothelial cells were used as a model cell system to study the effects of arsenic on the target cells for cardiovascular diseases. Treatment of postconfluent cell cultures with nonovertly toxic concentrations of arsenite increased DNA synthesis, similar to the mitogenic response observed with hydrogen peroxide. Within 1 hour of adding noncytotoxic concentrations of arsenite, cellular levels of oxidants increased relative to control levels, indicating that arsenite promotes cellular oxidations. Arsenite treatment increased nuclear translocation of NF-{kappa}B, an oxidative stress-responsive transcription factor, in a manner similar to that observed with hydrogen peroxide. Pretreatment of intact cells with the antioxidants N-acetylcysteine and dimethylfumarate prevented the arsenite-induced increases in cellular oxidant formation and NF-KB translocation. Arsenite had little or no effect on binding of NF-KB to its DNA recognition sequence in vitro, indicating that it is unlikely that arsenite directly affects NF-KB. The steady-state mRNA levels of intracellular adhesion molecule and urokinase-like plasminogen activator, genes associated with the active endothelial phenotype in arteriosclerosis and cancer metastasis, were increased by nontoxic concentrations of arsenite. These data suggest that arsenite promotes proliferative diseases like heart disease and cancer by activating oxidant-sensitive endothelial cell signaling and gene expression. It is possible that antioxidant therapy would be useful in preventing arsenic-induced cardiovascular disease and cancer.

  8. Effect of the piperazine unit and metal-binding site position on the solubility and anti-proliferative activity of ruthenium(II)- and osmium(II)- arene complexes of isomeric indolo[3,2-c]quinoline-piperazine hybrids.

    Science.gov (United States)

    Filak, Lukas K; Kalinowski, Danuta S; Bauer, Theresa J; Richardson, Des R; Arion, Vladimir B

    2014-07-01

    In this study, the indoloquinoline backbone and piperazine were combined to prepare indoloquinoline-piperazine hybrids and their ruthenium- and osmium-arene complexes in an effort to generate novel antitumor agents with improved aqueous solubility. In addition, the position of the metal-binding unit was varied, and the effect of these structural alterations on the aqueous solubility and antiproliferative activity of their ruthenium- and osmium-arene complexes was studied. The indoloquinoline-piperazine hybrids L(1-3) were prepared in situ and isolated as six ruthenium and osmium complexes [(η(6)-p-cymene)M(L(1-3))Cl]Cl, where L(1) = 6-(4-methylpiperazin-1-yl)-N-(pyridin-2-yl-methylene)-11H-indolo[3,2-c]quinolin-2-N-amine, M = Ru ([1a]Cl), Os ([1b]Cl), L(2) = 6-(4-methylpiperazin-1-yl)-N-(pyridin-2-yl-methylene)-11H-indolo[3,2-c]quinolin-4-N-amine, M = Ru ([2a]Cl), Os ([2b]Cl), L(3) = 6-(4-methylpiperazin-1-yl)-N-(pyridin-2-yl-methylene)-11H-indolo[3,2-c]quinolin-8-N-amine, M = Ru ([3a]Cl), Os ([3b]Cl). The compounds were characterized by elemental analysis, one- and two-dimensional NMR spectroscopy, ESI mass spectrometry, IR and UV-vis spectroscopy, and single-crystal X-ray diffraction. The antiproliferative activity of the isomeric ruthenium and osmium complexes [1a,b]Cl-[3a,b]Cl was examined in vitro and showed the importance of the position of the metal-binding site for their cytotoxicity. Those complexes containing the metal-binding site located at the position 4 of the indoloquinoline scaffold ([2a]Cl and [2b]Cl) demonstrated the most potent antiproliferative activity. The results provide important insight into the structure-activity relationships of ruthenium- and osmium-arene complexes with indoloquinoline-piperazine hybrid ligands. These studies can be further utilized for the design and development of more potent chemotherapeutic agents. PMID:24927493

  9. Differential regulation of angiogenesis using degradable VEGF-binding microspheres.

    Science.gov (United States)

    Belair, David G; Miller, Michael J; Wang, Shoujian; Darjatmoko, Soesiawati R; Binder, Bernard Y K; Sheibani, Nader; Murphy, William L

    2016-07-01

    Vascular endothelial growth factor (VEGF) spatial and temporal activity must be tightly controlled during angiogenesis to form perfusable vasculature in a healing wound. The native extracellular matrix (ECM) regulates growth factor activity locally via sequestering, and researchers have used ECM-mimicking approaches to regulate the activity of VEGF in cell culture and in vivo. However, the impact of dynamic, affinity-mediated growth factor sequestering has not been explored in detail with biomaterials. Here, we sought to modulate VEGF activity dynamically over time using poly(ethylene glycol) microspheres containing VEGF-binding peptides (VBPs) and exhibiting varying degradation rates. The degradation rate of VBP microspheres conferred a differential ability to up- or down-regulate VEGF activity in culture with primary human endothelial cells. VBP microspheres with fast-degrading crosslinks reduced VEGF activity and signaling, while VBP microspheres with no inherent degradability sequestered and promoted VEGF activity in culture with endothelial cells. VBP microspheres with degradable crosslinks significantly reduced neovascularization in vivo, but neither non-degradable VBP microspheres nor bolus delivery of soluble VBP reduced neovascularization. The covalent incorporation of VBP to degradable microspheres was required to reduce neovascularization in a mouse model of choroidal neovascularization in vivo, which demonstrates a potential clinical application of degradable VBP microspheres to reduce pathological angiogenesis. The results herein highlight the ability to modulate the activity of a sequestered growth factor by changing the crosslinker identity within PEG hydrogel microspheres. The insights gained here may instruct the design and translation of affinity-based growth factor sequestering biomaterials for regenerative medicine applications. PMID:27061268

  10. Comparison of methods for proliferative index analysis for grading pancreatic well-differentiated neuroendocrine tumors.

    Science.gov (United States)

    Goodell, Pamela P; Krasinskas, Alyssa M; Davison, Jon M; Hartman, Douglas J

    2012-04-01

    Assessment of proliferative activity is required for grading well-differentiated pancreatic neuroendocrine tumors. However, a standardized method for obtaining the Ki-67 proliferative index is lacking. This study compared proliferative activity obtained by 3 methods: single-field hot spot (Ki-67 HS) and 10 consecutive field average (Ki-67 CFA) using the Ventana image analysis system (Ventana Medical Systems, Tucson, AZ) and mitotic index (MI). These methods resulted in discrepant grades in 30 (67%) of our 45 cases. With the current Ki-67 cutoff of more than 2% for intermediate-grade tumors, MI, CFA, and HS resulted in specificities of 91%, 94%, and 31%, respectively, for detecting metastasis, with positive predictive values (PPVs) of 25%, 67%, and 31%, respectively. At a higher Ki-67 cutoff of 7.5%, HS analysis resulted in a specificity of 94% and PPV of 71% for predicting metastasis. While single-field HS analysis may be practical and reliable at a higher cutoff, this study emphasizes the variability that can exist when different methods of assessment are used.

  11. Tristetraprolin mediates the anti-proliferative effects of metformin in breast cancer cells.

    Science.gov (United States)

    Pandiri, Indira; Chen, Yingqing; Joe, Yeonsoo; Kim, Hyo Jeong; Park, Jeongmin; Chung, Hun Taeg; Park, Jeong Woo

    2016-02-01

    Metformin, which is a drug commonly prescribed to treat type 2 diabetes, has anti-proliferative effects in cancer cells; however, the molecular mechanisms underlying this effect remain largely unknown. The aim is to investigate the role of tristetraprolin (TTP), an AU-rich element-binding protein, in anti-proliferative effects of metformin in cancer cells. p53 wild-type and p53 mutant breast cancer cells were treated with metformin, and expression of TTP and c-Myc was analyzed by semi-quantitative RT-PCR, Western blots, and promoter activity assay. Breast cancer cells were transfected with siRNA against TTP to inhibit TTP expression or c-Myc and, after metformin treatment, analyzed for cell proliferation by MTS assay. Metformin induces the expression of tristetraprolin (TTP) in breast cancer cells in a p53-independent manner. Importantly, inhibition of TTP abrogated the anti-proliferation effect of metformin. We observed that metformin decreased c-Myc levels, and ectopic expression of c-Myc blocked the effect of metformin on TTP expression and cell proliferation. Our data indicate that metformin induces TTP expression by reducing the expression of c-Myc, suggesting a new model whereby TTP acts as a mediator of metformin's anti-proliferative activity in cancer cells. PMID:26956973

  12. Proliferative changes in nonpalpable breast lesions detected by mammography

    International Nuclear Information System (INIS)

    To analyze retrospectively the radiological findings in nonpalpable breast lesions detected by mammography that lead to the performance of surgical biopsy, resulting in a histological diagnosis of proliferative breast disease with and without atypia. From two Spanish hospitals, 421 women with 429 biopsies indicative of the presence of proliferative breast disease with and without atypia were selected out of a total of 1252 surgical biopsies in nonpalpable lesions that proved to be benign. Age, personal and familial history of breast cancer, reason for requesting the mammography and radiological findings that had indicated the need for surgical biopsy were recorded for each patient. The diagnosis was proliferative breast disease (epithelial hyperplasia) in 347 women with 354 biopsies and atypical hyperplasia in the remaining 74 women with 75 biopsies, representing 28% and 6%, respectively, of the 1252 biopsies of lesions found to be benign. In 221 of the 354 cases of epithelial hyperplasia (62%) and 45 of the 75 cases of atypical hyperplasia (60%), the presence of calcifications was the most common radiological findings leading to biopsy (p<0.05). Parenchymal distortion, with or without calcifications, was the second most common radiological sign. The histological study revealed a close relationship between these proliferative events and radial scars. Calcifications are the radiological finding that most frequently indicate the need for surgical biopsy in nonpalpable lesions that results in a diagnosis of proliferative breast disease with and without atypia. (Author) 12 refs

  13. Anti-proliferative activity and chemical characterization by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry of phlorotannins from the brown macroalga Sargassum muticum collected on North-Atlantic coasts.

    Science.gov (United States)

    Montero, Lidia; Sánchez-Camargo, Andrea P; García-Cañas, Virginia; Tanniou, Anaëlle; Stiger-Pouvreau, Valérie; Russo, Mariateresa; Rastrelli, Luca; Cifuentes, Alejandro; Herrero, Miguel; Ibáñez, Elena

    2016-01-01

    In the present work, the phlorotannin composition of different Sargassum muticum samples collected at different locations along the North Atlantic coasts as well as the bioactivities related to these components were investigated. After pressurized liquid extraction, the samples collected at the extreme locations of a latitudinal gradient from Portugal and Norway, were found to be the richest on total phenols and, particularly, on phlorotannins, containing up to 148.97 and 5.12mg phloroglucinol equivalents g(-1), respectively. The extracts obtained from these locations were further purified and chemically characterized using a modified HILIC×RP-DAD-MS/MS method. The application of this methodology allowed the tentative identification of a great variability of phlorotannins with different degrees of polymerization (from 3 to 11) and structures, determined for the first time in S. muticum. The most-abundant phlorotannins on these samples were fuhalols, hydroxyfuhalols and phlorethols, showing also particularities and important differences depending on the geographical location. Afterwards, the antiproliferative activity of these extracts against HT-29 adenocarcinoma colon cancer cells was studied. Results revealed that the richest S. muticum samples in terms of total phlorotannins, i.e., those from Norway, presented the highest activity, showing a good cytotoxic potential at concentrations in the medium micromolar range. PMID:26210109

  14. Lipo-chitin oligosaccharides, plant symbiosis signalling molecules that modulate mammalian angiogenesis in vitro.

    Directory of Open Access Journals (Sweden)

    Michael A Djordjevic

    Full Text Available Lipochitin oligosaccharides (LCOs are signaling molecules required by ecologically and agronomically important bacteria and fungi to establish symbioses with diverse land plants. In plants, oligo-chitins and LCOs can differentially interact with different lysin motif (LysM receptors and affect innate immunity responses or symbiosis-related pathways. In animals, oligo-chitins also induce innate immunity and other physiological responses but LCO recognition has not been demonstrated. Here LCO and LCO-like compounds are shown to be biologically active in mammals in a structure dependent way through the modulation of angiogenesis, a tightly-regulated process involving the induction and growth of new blood vessels from existing vessels. The testing of 24 LCO, LCO-like or oligo-chitin compounds resulted in structure-dependent effects on angiogenesis in vitro leading to promotion, or inhibition or nil effects. Like plants, the mammalian LCO biological activity depended upon the presence and type of terminal substitutions. Un-substituted oligo-chitins of similar chain lengths were unable to modulate angiogenesis indicating that mammalian cells, like plant cells, can distinguish between LCOs and un-substituted oligo-chitins. The cellular mode-of-action of the biologically active LCOs in mammals was determined. The stimulation or inhibition of endothelial cell adhesion to vitronectin or fibronectin correlated with their pro- or anti-angiogenic activity. Importantly, novel and more easily synthesised LCO-like disaccharide molecules were also biologically active and de-acetylated chitobiose was shown to be the primary structural basis of recognition. Given this, simpler chitin disaccharides derivatives based on the structure of biologically active LCOs were synthesised and purified and these showed biological activity in mammalian cells. Since important chronic disease states are linked to either insufficient or excessive angiogenesis, LCO and LCO

  15. Hedyotis diffusa Willd extract suppresses Sonic hedgehog signaling leading to the inhibition of colorectal cancer angiogenesis.

    Science.gov (United States)

    Lin, Jiumao; Wei, Lihui; Shen, Aling; Cai, Qiaoyan; Xu, Wei; Li, Huang; Zhan, Youzhi; Hong, Zhenfeng; Peng, Jun

    2013-02-01

    Sonic hedgehog (SHH) signaling pathway promotes the process of angiogenesis, contributing to the growth and progression of many human malignancies including colorectal cancer (CRC), which therefore has become a promising target for cancer chemotherapy. Hedyotis diffusa Willd (HDW), as a well-known traditional Chinese herbal medicine, has long been used in China for the clinic treatment of various cancers. Recently, we reported that HDW can inhibit colorectal cancer growth in vivo and in vitro via suppression of the STAT3 pathway. In addition, we demonstrated the anti-angiogenic activity of HDW in vitro. To further elucidate the mechanism of the tumoricidal activity of HDW, by using a CRC mouse xenograft model we evaluated the in vivo effect of the ethanol extract of HDW (EEHDW) on tumor angiogenesis, and investigated the underlying molecular mechanisms. We found that EEHDW could significantly reduce intratumoral microvessel density (MVD), indicating its activity of antitumor angiogenesis in vivo. EEHDW suppressed the activation of SHH signaling in CRC xenograft tumors since it significantly decreased the expression of key mediators of SHH pathway. EEHDW treatment inhibited the expression of the critical SHH signaling target gene VEGF-A as well as its specific receptor VEGFR2. Taken together, we propose for the first time that Hedyotis diffusa Willd inhibits colorectal cancer growth in vivo via inhibition of SHH-mediated tumor angiogenesis. PMID:23291612

  16. Heparanase—A Link between Coagulation, Angiogenesis, and Cancer

    Directory of Open Access Journals (Sweden)

    Yona Nadir

    2012-01-01

    Full Text Available Heparanase that was cloned from and is abundant in the placenta is implicated in cell invasion, tumor metastasis, and angiogenesis. Recently we have demonstrated that heparanase may also affect the hemostatic system in a non-enzymatic manner. Heparanase was shown to up-regulate tissue factor (TF expression and interact with tissue factor pathway inhibitor (TFPI on the cell surface, leading to dissociation of TFPI from the cell membrane of endothelial and tumor cells, resulting in increased cell surface coagulation activity. More recently, we have shown that heparanase directly enhances TF activity, resulting in increased factor Xa production and activation of the coagulation system. Data indicate increased levels and possible involvement of heparanase in vascular complications in pregnancy. Taking into account the prometastatic and proangiogenic functions of heparanase, overexpression in human malignancies, and abundance in platelets and placenta, its involvement in the coagulation machinery is an intriguing novel arena for further research.

  17. Lysosomal membrane stability plays a major role in the cytotoxic activity of the anti-proliferative agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT).

    Science.gov (United States)

    Gutierrez, Elaine M; Seebacher, Nicole A; Arzuman, Laila; Kovacevic, Zaklina; Lane, Darius J R; Richardson, Vera; Merlot, Angelica M; Lok, Hiu; Kalinowski, Danuta S; Sahni, Sumit; Jansson, Patric J; Richardson, Des R

    2016-07-01

    The potent and selective anti-tumor agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), localizes in lysosomes and forms cytotoxic copper complexes that generate reactive oxygen species (ROS), resulting in lysosomal membrane permeabilization (LMP) and cell death. Herein, the role of lysosomal membrane stability in the anti-tumor activity of Dp44mT was investigated. Studies were performed using molecules that protect lysosomal membranes against Dp44mT-induced LMP, namely heat shock protein 70 (HSP70) and cholesterol. Up-regulation or silencing of HSP70 expression did not affect Dp44mT-induced LMP in MCF7 cells. In contrast, cholesterol accumulation in lysosomes induced by the well characterized cholesterol transport inhibitor, 3-β-[2-(diethyl-amino)ethoxy]androst-5-en-17-one (U18666A), inhibited Dp44mT-induced LMP and markedly and significantly (pstrategy. These results are important for comprehensively understanding the mechanism of action of Dp44mT. PMID:27102538

  18. Breast cancers from black women exhibit higher numbers of immunosuppressive macrophages with proliferative activity and of crown-like structures associated with lower survival compared to non-black Latinas and Caucasians.

    Science.gov (United States)

    Koru-Sengul, Tulay; Santander, Ana M; Miao, Feng; Sanchez, Lidia G; Jorda, Merce; Glück, Stefan; Ince, Tan A; Nadji, Mehrad; Chen, Zhibin; Penichet, Manuel L; Cleary, Margot P; Torroella-Kouri, Marta

    2016-07-01

    Racial disparities in breast cancer incidence and outcome are a major health care challenge. Patients in the black race group more likely present with an early onset and more aggressive disease. The occurrence of high numbers of macrophages is associated with tumor progression and poor prognosis in solid malignancies. Macrophages are observed in adipose tissues surrounding dead adipocytes in "crown-like structures" (CLS). Here we investigated whether the numbers of CD163+ tumor-associated macrophages (TAMs) and/or CD163+ CLS are associated with patient survival and whether there are significant differences across blacks, non-black Latinas, and Caucasians. Our findings confirm that race is statistically significantly associated with the numbers of TAMs and CLS in breast cancer, and demonstrate that the highest numbers of CD163+ TAM/CLS are found in black breast cancer patients. Our results reveal that the density of CD206 (M2) macrophages is a significant predictor of progression-free survival univariately and is also significant after adjusting for race and for HER2, respectively. We examined whether the high numbers of TAMs detected in tumors from black women were associated with macrophage proliferation, using the Ki-67 nuclear proliferation marker. Our results reveal that TAMs actively divide when in contact with tumor cells. There is a higher ratio of proliferating macrophages in tumors from black patients. These findings suggest that interventions based on targeting TAMs may not only benefit breast cancer patients in general but also serve as an approach to remedy racial disparity resulting in better prognosis patients from minority racial groups. PMID:27283835

  19. Primary xenografts of human prostate tissue as a model to study angiogenesis induced by reactive stroma.

    Directory of Open Access Journals (Sweden)

    Viviana P Montecinos

    Full Text Available Characterization of the mechanism(s of androgen-driven human angiogenesis could have significant implications for modeling new forms of anti-angiogenic therapies for CaP and for developing targeted adjuvant therapies to improve efficacy of androgen-deprivation therapy. However, models of angiogenesis by human endothelial cells localized within an intact human prostate tissue architecture are until now extremely limited. This report characterizes the burst of angiogenesis by endogenous human blood vessels in primary xenografts of fresh surgical specimens of benign prostate or prostate cancer (CaP tissue that occurs between Days 6-14 after transplantation into SCID mice pre-implanted with testosterone pellets. The wave of human angiogenesis was preceded by androgen-mediated up-regulation of VEGF-A expression in the stromal compartment. The neo-vessel network anastomosed to the host mouse vascular system between Days 6-10 post-transplantation, the angiogenic response ceased by Day 15, and by Day 30 the vasculature had matured and stabilized, as indicated by a lack of leakage of serum components into the interstitial tissue space and by association of nascent endothelial cells with mural cells/pericytes. The angiogenic wave was concurrent with the appearance of a reactive stroma phenotype, as determined by staining for α-SMA, Vimentin, Tenascin, Calponin, Desmin and Masson's trichrome, but the reactive stroma phenotype appeared to be largely independent of androgen availability. Transplantation-induced angiogenesis by endogenous human endothelial cells present in primary xenografts of benign and malignant human prostate tissue was preceded by induction of androgen-driven expression of VEGF by the prostate stroma, and was concurrent with and the appearance of a reactive stroma phenotype. Androgen-modulated expression of VEGF-A appeared to be a causal regulator of angiogenesis, and possibly of stromal activation, in human prostate xenografts.

  20. Endogenous LXA4 circuits are determinants of pathological angiogenesis in response to chronic injury.

    Science.gov (United States)

    Leedom, Alexander J; Sullivan, Aaron B; Dong, Baiyan; Lau, Denise; Gronert, Karsten

    2010-01-01

    Inflammation and angiogenesis are intimately linked, and their dysregulation leads to pathological angiogenesis in human diseases. 15-lipoxygenase (15-LOX) and lipoxin A(4) receptors (ALX) constitute a LXA(4) circuit that is a key feature of inflammatory resolution. LXA(4) analogs have been shown to regulate vascular endothelial growth factor (VEGF)-A-induced angiogenic response in vitro. 15-LOX and ALX are highly expressed in the avascular and immune-privileged cornea. However, the role of this endogenous LXA(4) circuit in pathological neovascularization has not been determined. We report that suture-induced chronic injury in the cornea triggered polymorphonuclear leukocytes (PMN) infiltration, pathological neovascularization, and up-regulation of mediators of inflammatory angiogenesis, namely VEGF-A and the VEGF-3 receptor (FLT4). Up-regulation of the VEGF circuit and neovascularization correlated with selective changes in both 15-LOX (Alox15) and ALX (Fpr-rs2) expression and a temporally defined increase in basal 15-LOX activity. More importantly, genetic deletion of 15-LOX or 5-LOX, key and obligatory enzymes in the formation of LXA(4), respectively, led to exacerbated inflammatory neovascularization coincident with increased VEGF-A and FLT4 expression. Direct topical treatment with LXA(4), but not its metabolic precursor 15-hydroxyeicosatetraenoic acid, reduced expression of VEGF-A and FLT4 and inflammatory angiogenesis and rescued 15-LOX knockout mice from exacerbated angiogenesis. In summary, our findings and the prominent expression of 15-LOX and ALX in epithelial cells and macrophages place the LXA(4) circuit as an endogenous regulator of pathological angiogenesis.

  1. Targeting angiogenesis: a review of angiogenesis inhibitors in the treatment of lung cancer.

    Science.gov (United States)

    Sridhar, Srikala S; Shepherd, Frances A

    2003-12-01

    It has now been almost 30 years since Dr J. Folkman first proposed that inhibition of angiogenesis could play a key role in treating cancer; however, it is only recently that anti-angiogenesis agents have entered the clinical setting. The search for novel therapies is particularly important in lung cancer, where the majority of patients succumb to their disease despite aggressive treatments. Several classes of agents now exist that target the different steps involved in angiogenesis. These include drugs inhibiting matrix breakdown, the matrix metalloproteinase inhibitors (MMPIs), such as marimastat, prinomastat, BMS275291, BAY12-9566, and neovastat drugs that block endothelial cell signaling via vascular endothelial growth factor (VEGF) and its receptor (VEGFR) including rhuMAb VEGF, SU5416, SU6668, ZD6474, CP-547,632 and ZD4190. Drugs that are similar to endogenous inhibitors of angiogenesis including endostatin, angiostatin and interferons. There has also been renewed interest in thalidomide. Drugs such as squalamine, celecoxib, ZD6126, TNP-470 and those targeting the integrins are also being evaluated in lung cancer. Despite early enthusiasm for many of these agents, Phase III trials have not yet demonstrated significant increases in overall survival and toxicity remains an issue. It is hoped that as our understanding of the complex process of angiogenesis increases, so will our ability to design more effective targeted therapies. PMID:14611919

  2. Improvement in retinal venous oxygen saturation after panretinal photocoagulation is predictive of progression of proliferative diabetic retinopathy

    DEFF Research Database (Denmark)

    Torp, Thomas Lee; Kawasaki, Ryo; Wong, Tien Yin;

    We performed a prospective, interventional clinical study on patients with proliferative diabetic retinopathy (PDR) in order to investigate changes in retinal oximetry before and three months after panretinal photocoagulation (PRP) and to correlate this to PDR-activity. Thirty-nine eyes from 34 p...

  3. Peptide-coated gold nanoparticles for modulation of angiogenesis in vivo

    Science.gov (United States)

    Roma-Rodrigues, Catarina; Heuer-Jungemann, Amelie; Fernandes, Alexandra R; Kanaras, Antonios G; Baptista, Pedro V

    2016-01-01

    In this work, peptides designed to selectively interact with cellular receptors involved in the regulation of angiogenesis were anchored to oligo-ethylene glycol-capped gold nanoparticles (AuNPs) and used to evaluate the modulation of vascular development using an ex ovo chick chorioallantoic membrane assay. These nanoparticles alter the balance between naturally secreted pro- and antiangiogenic factors, under various biological conditions, without causing toxicity. Exposure of chorioallantoic membranes to AuNP–peptide activators of angiogenesis accelerated the formation of new arterioles when compared to scrambled peptide-coated nanoparticles. On the other hand, antiangiogenic AuNP–peptide conjugates were able to selectively inhibit angiogenesis in vivo. We demonstrated that AuNP vectorization is crucial for enhancing the effect of active peptides. Our data showed for the first time the effective control of activation or inhibition of blood vessel formation in chick embryo via AuNP-based formulations suitable for the selective modulation of angiogenesis, which is of paramount importance in applications where promotion of vascular growth is desirable (eg, wound healing) or ought to be contravened, as in cancer development. PMID:27354794

  4. Tryptanthrin inhibits angiogenesis by targeting the VEGFR2-mediated ERK1/2 signalling pathway.

    Directory of Open Access Journals (Sweden)

    Xuemei Liao

    Full Text Available Angiogenesis is a key step for tumour growth and metastasis, and anti-angiogenesis has been proposed as an important strategy for cancer therapy. Tryptanthrin is a weakly basic alkaloid isolated from the dried roots of medicinal indigo plants and has been shown to possess anti-tumour activities on various cancer cell types. This study aims to investigate the in vitro and in vivo anti-angiogenic activities of tryptanthrin and to unravel its underlying molecular action mechanisms. Our results show that tryptanthrin inhibited the in vitro proliferation, migration, and tube formation of the human microvascular endothelial cells (HMEC-1 in a concentration-dependent manner and significantly suppressed angiogenesis in Matrigel plugs in mice. Mechanistic studies indicated that tryptanthrin reduced the expression of several pro-angiogenic factors (Ang-1, PDGFB and MMP2. Tryptanthrin was also found to suppress the VEGFR2-mediated ERK1/2 signalling pathway in HMEC-1 cells and molecular docking simulation indicated that tryptanthrin could bound to the ATP-binding site of VEGFR2. Collectively, the present study demonstrated that tryptanthrin exhibited both in vitro and in vivo anti-angiogenic activities by targeting the VEGFR2-mediated ERK1/2 signalling pathway and might have therapeutic potential for the treatment of angiogenesis-related diseases.

  5. Advances and challenges in skeletal muscle angiogenesis

    DEFF Research Database (Denmark)

    Olfert, I Mark; Baum, Oliver; Hellsten, Ylva;

    2016-01-01

    during health, but poorly controlled in disease - resulting in either excessive capillary growth (pathological angiogenesis) or losses in capillarity (rarefaction). Given that skeletal muscle comprises nearly 40% of body mass in humans, skeletal muscle capillary density has a significant impact...... on 1) the methodological concerns that have arisen in determining skeletal muscle capillarity, and 2) highlight the concepts that are reshaping our understanding of the angio-adaptation process. We also summarize selected new findings (physical influences, molecular changes and ultrastructural...

  6. Class 3 semaphorin in angiogenesis and lymphangiogenesis.

    Science.gov (United States)

    Bussolino, Federico; Giraudo, Enrico; Serini, Guido

    2014-01-01

    Semaphorins were originally identified as axon guidance molecules involved in the development of the neuronal system. However, accumulating evidences have clearly demonstrated that the semaphorin system is not restricted to the brain but supports functions of other organs. Here, we review the rapidly emerging functions of sempahorins and, in particular class 3 semaphorin, in vascular and lymphatic systems during the development, tumor angiogenesis and ischemic revascularization. PMID:24217603

  7. Trisubstituted pyrazolopyrimidines as novel angiogenesis inhibitors.

    Directory of Open Access Journals (Sweden)

    Sabine B Weitensteiner

    Full Text Available Current inhibitors of angiogenesis comprise either therapeutic antibodies (e.g. bevacicumab binding to VEGF-A or small molecular inhibitors of receptor tyrosin kinases like e.g. sunitinib, which inhibits PDGFR and VEGFR. We have recently identified cyclin-dependent kinase 5 (Cdk5 as novel alternative and pharmacologically accessible target in the context of angiogenesis. In the present work we demonstrate that trisubstituted pyrazolo[4,3-d]pyrimidines constitute a novel class of compounds which potently inhibit angiogenesis. All seven tested compounds inhibited endothelial cell proliferation with IC(50 values between 1 and 18 µM. Interestingly, this seems not to be due to cytotoxicity, since none of them showed acute cytotoxic effects on endothelial cells at a concentration of 10 µM,. The three most potent compounds (LGR1404, LGR1406 and LGR1407 also inhibited cell migration (by 27, 51 and 31%, resp., chemotaxis (by 50, 70 and 60% in accumulative distance, resp., and tube formation (by 25, 60 and 30% of total tube length, resp. at the non-toxic concentration of 10 µM. Furthermore, angiogenesis was reduced in vivo in the CAM assay by these three compounds. A kinase selectivity profiling revealed that the compounds prevalently inhibit Cdk2, Cdk5 and Cdk9. The phenotype of the migrating cells (reduced formation of lamellipodia, loss of Rac-1 translocation to the membrane resembles the previously described effects of silencing of Cdk5 in endothelial cells. We conclude that especially LGR1406 and LGR1407 are highly attractive anti-angiogenic compounds, whose effects seem to largely depend on their Cdk5 inhibiting properties.

  8. Automated angiogenesis quantification through advanced image processing techniques.

    Science.gov (United States)

    Doukas, Charlampos N; Maglogiannis, Ilias; Chatziioannou, Aristotle; Papapetropoulos, Andreas

    2006-01-01

    Angiogenesis, the formation of blood vessels in tumors, is an interactive process between tumor, endothelial and stromal cells in order to create a network for oxygen and nutrients supply, necessary for tumor growth. According to this, angiogenic activity is considered a suitable method for both tumor growth or inhibition detection. The angiogenic potential is usually estimated by counting the number of blood vessels in particular sections. One of the most popular assay tissues to study the angiogenesis phenomenon is the developing chick embryo and its chorioallantoic membrane (CAM), which is a highly vascular structure lining the inner surface of the egg shell. The aim of this study was to develop and validate an automated image analysis method that would give an unbiased quantification of the micro-vessel density and growth in angiogenic CAM images. The presented method has been validated by comparing automated results to manual counts over a series of digital chick embryo photos. The results indicate the high accuracy of the tool, which has been thus extensively used for tumor growth detection at different stages of embryonic development. PMID:17946107

  9. Proliferative Trichilemmal Tumor in the Axillary Site: Case Report

    Directory of Open Access Journals (Sweden)

    Evren Fidan

    2011-03-01

    Full Text Available Proliferative trichilemmal tumor is a skin neoplasm derived from a hair follicle. It is more frequent in women and its prevalance increases after the 6th decade. Although the most frequent site is mentioned as hairy skin, it can also be detected on the neck, face, ear, hand and vulva. In this case, we discussed a 49 year old female patient presenting with a mass at right axillary region. The result of biopsy demonstrated that it was a proliferative trichilemmal tumor. The patient was re-operated due to the presence of surgical border positivity. The patient, who had no adjuvant treatment, is under follow-up and in remission.

  10. Molecular Therapeutic Targets for Glioma Angiogenesis

    Directory of Open Access Journals (Sweden)

    Shingo Takano

    2010-01-01

    Full Text Available Due to the prominent angiogenesis that occurs in malignant glioma, antiangiogenic therapy has been attempted. There have been several molecular targets that are specific to malignant gliomas, as well as more broadly in systemic cancers. In this review, I will focus on some topics related to molecular therapeutic targets for glioma angiogenesis. First, important angiogenic factors that could be considered molecular targets are VEGF, VEGF-induced proteins on endothelial cells, tissue factor, osteopontin, v3 integrin, and thymidine phosphorylase as well as endogenous inhibitors, soluble Flt1, and thrombospondin 1. Second, hypoxic areas are also decreased by metronomic CPT11 treatment as well as temozolomide. Third, glioma-derived endothelial cells that are genetically and functionally distinct from normal endothelial cells should be targeted, for example, with SDF-1 and CXCR7 chemokine. Fourth, endothelial progenitor cells (EPCs likely contribute towards glioma angiogenesis in the brain and could be useful as a drug delivery tool. Finally, blockade of delta-like 4 (Dll4 results in a nonfunctioning vasculature and could be another important target distinct from VEGF.

  11. Pathophysiological mechanisms of angiogenesis in atherogenesis

    Directory of Open Access Journals (Sweden)

    Vučević Danijela

    2013-01-01

    Full Text Available Introduction. Atherosclerosis is a progressive, multifactorial, diffuse, multisystemic, chronic, inflammatory disease, which is manifested by disorders of vascular, immune and metabolic system. Pathogenesis of this disease is not fully understood. Accordingly, angiogenesis represents a special field of research due to its role in atherogenesis. Steps of Angiogenesis. Angiogenesis is a complex biological process, which requires the precise coordination of its four steps (vasodilatation and permeability, vessel destabilization and matrix degradation, endothelial cell proliferation and migration, and lumen formation and vessel stabilization. Mediators of Angiogenic Process. The process of forming new blood vessels is regulated by a delicate balance between proangiogenic and antiangiogenic molecules. Numerous soluble growth factors and inhibitors, cytokines, proteases, extracellular matrix proteins and adhesion molecules, as well as hypoxia, inflammatory process, shear stress, hypertension and interaction between cells and extracellular matrix strictly control the angiogenic process. Neovascularization is halted due to the downregulation of angiogenic factors or the increase of inhibitors of this process. Tumor Vascularization. In the asymptomatic phase of cancerogenesis, cancer rarely exceeds the diameter of 1-2 millimeters. However, when the metabolic demand increases, it leads to tumor vascularization. In this way, tumor switches to an angiogenic phenotype. The molecular basis of angiogenic switch refers to increased production of angiogenic factors and/or loss of angiogenic inhibitors. Conclusion. The contribution of angiogenic process has become increasingly meaningful in understanding the pathogenesis of atherosclerosis. [Projekat Ministarstva nauke Republike Srbije, br. 175015

  12. Severe proliferative congenital temporomandibular joint ankylosis: a proposed treatment protocol utilizing distraction osteogenesis.

    Science.gov (United States)

    Bartlett, Scott P; Reid, Russell R; Losee, Joseph E; Quinn, Peter D

    2006-05-01

    The classical treatment for temporomandibular joint (TMJ) ankylosis in children: 1) joint release; 2) arthroplasty; 3) reconstruction; and 4) postoperative physical therapy (PT), is often unsuccessful. Postoperative physical therapy is difficult in the young patient due to poor cooperation. Moreover, there is a subgroup of patients who have a refractory congenital proliferative bony process that is the cause of their disease. In these patients, a role for distraction osteogenesis (DO) has been defined. We present a series of young patients with congenital proliferative TMJ ankylosis. Some have failed classic treatment. In such cases, DO is used to expand the mandibular size and soft tissue matrix. This creates a static open bite, facilitates mid-facial growth, and avoids compromise of the airway, speech, nutrition, and oral hygiene. To maintain these objectives, mandibular DO may be repeated as the child matures. Once skeletal maturity is reached, DO is used to normalize occlusion and further expand the soft tissue envelope prior to definitive reconstruction and aggressive post-op PT. In seven patients, this protocol has been used. Five patients are currently in the active phase of growth and undergoing interim treatment with mandibular DO. Two patients have reached skeletal maturity and have completed the protocol of DO with definitive arthroplasty and reconstruction. DO is a valuable aid in the treatment of the problematic child with congenital proliferative TMJ ankylosis. Interim DO, prior to definitive arthroplasty and reconstruction, can provide a static open bite that prevents progressive deformity and its associated functional disturbances. PMID:16770209

  13. Angiogenesis PET Tracer Uptake (68Ga-NODAGA-E[(cRGDyK]2 in Induced Myocardial Infarction in Minipigs

    Directory of Open Access Journals (Sweden)

    Thomas Rasmussen

    2016-06-01

    Full Text Available Angiogenesis is part of the healing process following an ischemic injury and is vital for the post-ischemic repair of the myocardium. Therefore, it is of particular interest to be able to noninvasively monitor angiogenesis. This might, not only permit risk stratification of patients following myocardial infarction, but could also facilitate development and improvement of new therapies directed towards stimulation of the angiogenic response. During angiogenesis endothelial cells must adhere to one another to form new microvessels. αvβ3 integrin has been found to be highly expressed in activated endothelial cells and has been identified as a critical modulator of angiogenesis. 68Ga-NODAGA-E[c(RGDyK]2 (RGD has recently been developed by us as an angiogenesis positron-emission-tomography (PET ligand targeted towards αvβ3 integrin. In the present study, we induced myocardial infarction in Göttingen minipigs. Successful infarction was documented by 82Rubidium-dipyridamole stress PET and computed tomography. RGD uptake was demonstrated in the infarcted myocardium one week and one month after induction of infarction by RGD-PET. In conclusion, we demonstrated angiogenesis by noninvasive imaging using RGD-PET in minipigs hearts, which resemble human hearts. The perspectives are very intriguing and might permit the evaluation of new treatment strategies targeted towards increasing the angiogenetic response, e.g., stem-cell treatment.

  14. Angiogenesis PET Tracer Uptake ((68)Ga-NODAGA-E[(cRGDyK)]₂) in Induced Myocardial Infarction in Minipigs.

    Science.gov (United States)

    Rasmussen, Thomas; Follin, Bjarke; Kastrup, Jens; Brandt-Larsen, Malene; Madsen, Jacob; Emil Christensen, Thomas; Pharao Hammelev, Karsten; Hasbak, Philip; Kjær, Andreas

    2016-01-01

    Angiogenesis is part of the healing process following an ischemic injury and is vital for the post-ischemic repair of the myocardium. Therefore, it is of particular interest to be able to noninvasively monitor angiogenesis. This might, not only permit risk stratification of patients following myocardial infarction, but could also facilitate development and improvement of new therapies directed towards stimulation of the angiogenic response. During angiogenesis endothelial cells must adhere to one another to form new microvessels. αvβ₃ integrin has been found to be highly expressed in activated endothelial cells and has been identified as a critical modulator of angiogenesis. (68)Ga-NODAGA-E[c(RGDyK)]₂ (RGD) has recently been developed by us as an angiogenesis positron-emission-tomography (PET) ligand targeted towards αvβ₃ integrin. In the present study, we induced myocardial infarction in Göttingen minipigs. Successful infarction was documented by (82)Rubidium-dipyridamole stress PET and computed tomography. RGD uptake was demonstrated in the infarcted myocardium one week and one month after induction of infarction by RGD-PET. In conclusion, we demonstrated angiogenesis by noninvasive imaging using RGD-PET in minipigs hearts, which resemble human hearts. The perspectives are very intriguing and might permit the evaluation of new treatment strategies targeted towards increasing the angiogenetic response, e.g., stem-cell treatment. PMID:27322329

  15. Synthesis and preliminary evaluation of 5,7-dimethyl-2-aryl-3H-pyrrolizin-3-ones as angiogenesis inhibitors.

    Science.gov (United States)

    Kirk, Nicholas S; Bezos, Anna; Willis, Anthony C; Sudta, Pichit; Suksamrarn, Sunit; Parish, Christopher R; Ranson, Marie; Kelso, Michael J

    2016-04-01

    Sunitinib (Sutent®) is a receptor tyrosine kinase (RTK) and angiogenesis inhibitor approved for the treatment of renal cell carcinomas, gastrointestinal stromal tumours and pancreatic neuroendocrine tumours. A key structural motif retained throughout medicinal chemistry efforts during sunitinib's development was the indoline-2-one group. In the search for new anti-angiogenic scaffolds, we previously reported that non-indoline-2-one-based derivatives of semaxanib (SU5416, a structurally simpler sunitinib predecessor that underwent Phase III trials) are active as angiogenesis inhibitors, indicating that the group is not essential for activity. This Letter describes the synthesis and structure-activity relationships of another class of non-indoline-2-one angiogenesis inhibitors related to sunitinib/semaxanib; the 5,7-dimethyl-2-aryl-3H-pyrrolizin-3-ones. A focussed library of 19 analogues was prepared using a simple novel process, wherein commercially available substituted arylacetic acids activated with an amide coupling reagent (HBTU) were reacted with the potassium salt of 3,5-dimethyl-1H-pyrrole-2-carbaldehyde in one-pot. Screening of the library using a cell-based endothelial tube formation assay identified 6 compounds with anti-angiogenesis activity. Two of the compounds were advanced to the more physiologically relevant rat aortic ring assay, where they showed similar inhibitory effects to semaxanib at 10μg/mL, confirming that 5,7-dimethyl-2-aryl-3H-pyrrolizin-3-ones represent a new class of angiogenesis inhibitors. PMID:26912111

  16. Proliferative signaling initiated in ACTH receptors

    Directory of Open Access Journals (Sweden)

    C.F.P. Lotfi

    2000-10-01

    Full Text Available This article reviews recent results of studies aiming to elucidate modes of integrating signals initiated in ACTH receptors and FGF2 receptors, within the network system of signal transduction found in Y1 adrenocortical cells. These modes of signal integration should be central to the mechanisms underlying the regulation of the G0->G1->S transition in the adrenal cell cycle. FGF2 elicits a strong mitogenic response in G0/G1-arrested Y1 adrenocortical cells, that includes a rapid and transient activation of extracellular signal-regulated kinases-mitogen-activated protein kinases (ERK-MAPK (2 to 10 min, b transcription activation of c-fos, c-jun and c-myc genes (10 to 30 min, c induction of c-Fos and c-Myc proteins by 1 h and cyclin D1 protein by 5 h, and d onset of DNA synthesis stimulation within 8 h. ACTH, itself a weak mitogen, interacts with FGF2 in a complex manner, blocking the FGF2 mitogenic response during the early and middle G1 phase, keeping ERK-MAPK activation and c-Fos and cyclin D1 induction at maximal levels, but post-transcriptionally inhibiting c-Myc expression. c-Fos and c-Jun proteins are mediators in both the strong and the weak mitogenic responses respectively triggered by FGF2 and ACTH. Induction of c-Fos and stimulation of DNA synthesis by ACTH are independent of PKA and are inhibited by the PKC inhibitor GF109203X. In addition, ACTH is a poor activator of ERK-MAPK, but c-Fos induction and DNA synthesis stimulation by ACTH are strongly inhibited by the inhibitor of MEK1 PD98059.

  17. Treatment of severe proliferative lupus nephritis: The current state

    OpenAIRE

    Mok, C; Wong, R; Lai, K.

    2003-01-01

    Despite the development of new modalities, cyclophosphamide (CYC) remains the preferred initial treatment for severe proliferative lupus nephritis. Controversies continue about the best route, dosage, and duration of CYC treatment. For recalcitrant disease, new immunosuppressive and immunomodulating agents, immunoablative high dose CYC, nucleoside analogues, apheresis, and the biological response modifiers can be considered.

  18. Dutch guidelines for diagnosis and therapy of proliferative lupus nephritis.

    NARCIS (Netherlands)

    Tellingen, A. van; Voskuyl, A.E.; Vervloet, M.G.; Bijl, M. van der; Sevaux, R.G.L. de; Berger, S.P.; Derksen, R.H.W.M.; Berden, J.H.M.

    2012-01-01

    Proliferative lupus nephritis is a strong predictor of morbidity and mortality in patients with systemic lupus erythematosus. Despite improvements in the management of lupus nephritis, a significant number of the patients do not respond to immunosuppressive therapy and progress to end-stage renal fa

  19. Dutch guidelines for diagnosis and therapy of proliferative lupus nephritis

    NARCIS (Netherlands)

    van Tellingen, A.; Voskuyl, A. E.; Vervloet, M. G.; Bijl, M.; de Sevaux, R. G. L.; Berger, S. P.; Derksen, R. H. W. M.; Berden, J. H. M.

    2012-01-01

    Proliferative lupus nephritis is a strong predictor of morbidity and mortality in patients with systemic lupus erythematosus. Despite improvements in the management of lupus nephritis, a significant number of the patients do not respond to immunosuppressive therapy and progress to end-stage renal fa

  20. Proliferative verrucous leukoplakia; a critical appraisal of the diagnostic criteria

    NARCIS (Netherlands)

    V.C. Carrard; E.R.E.A. Brouns; I. van der Waal

    2013-01-01

    Since its introduction in the literature in 1985, the term proliferative verrucous leukoplakia (PVL) has been the subject of an ongoing discussion with regard to its definition. Widespread or multifocal occurrence of oral leukoplakia is not just synonymous to PVL. In the present treatise the proposa

  1. Mechanisms of immunosuppression by organotins : apoptosis vs. proliferative arrest

    NARCIS (Netherlands)

    Gennari, Alessandra

    2001-01-01

    Mechanisms of immunosuppression by organotins-apoptosis vs. proliferative arrest. The organotin compounds di-n-butyltin dichloride (DBTC) and trin-butyltin chloride (TBTC), used as stabilizers and biocides respectively, induce thymus atrophy inhibiting immature thymocyte proliferation. The aim of

  2. Anti-angiogenesis therapies: their potential in cancer management

    OpenAIRE

    Andrew Eichholz; Shairoz Merchant; Gaya, Andrew M

    2010-01-01

    Andrew Eichholz, Shairoz Merchant, Andrew M GayaDepartment of Clinical Oncology, Guy’s and St. Thomas’ NHS Foundation Trust, London, United KingdomAbstract: Angiogenesis plays an important role in normal animal growth and development. This process is also vital for the growth of tumors. Angiogenesis inhibitors have a different mechanism of action to traditional chemotherapy agents and radiation therapy. The angiogenesis inhibitors can act synergistically with conventional ...

  3. Angiogenesis in Chronic Obstructive Pulmonary Disease: A Translational Appraisal

    OpenAIRE

    Matarese, Alessandro; Santulli, Gaetano

    2012-01-01

    Angiogenesis is a crucial component of lung pathophysiology, not only in cancer but also in other disorders, such as chronic obstructive pulmonary disease (COPD). In COPD angiogenesis is definitely able to control and orchestrate the progression of airway remodeling. Herein, we provide several remarkable translational aspects of angiogenesis in COPD, exploring both basic and clinical research in this field. Indeed, we present a number of pro- and anti-angiogenic factors, which can be also use...

  4. Proliferative activity in the juxtaradicular human periodontal ligament.

    Science.gov (United States)

    Sayaniwas, M; Hilliges, M; Lindskog, S

    1999-08-01

    The aim of the present study was to evaluate cell proliferation, assessed by MIB 1, with respect to the type and the distribution of proliferating cells in the healthy juxtaradicular periodontal ligament (PDL) from completely formed human teeth. Immunohistochemical markers against vimentin, CD68 and S-100 were used to characterize cell type. The applicability of the immunohistochemical method on explants of human PDL was also evaluated. The results indicated that under physiological conditions, the majority of the proliferating cells in the PDL were mesenchymal cells predominantly located paravascularly in the middle third of the PDL. Furthermore, MIB 1 reacting with the Ki-67 antigen together with the avidin-biotin-complex technique was proved to be an efficient marker of cell proliferation in explants of human PDL. PMID:10815567

  5. Clinical relevance of imaging proliferative activity in lung nodules

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Andreas K.; Schirrmeister, Holger; Kratochwil, Clemens; Wahl, Andreas; Glatting, Gerhard; Mottaghy, Felix M.; Neumaier, Bernd; Reske, Sven N. [University of Ulm, Department of Nuclear Medicine, Ulm (Germany); Hetzel, Martin [University of Ulm, Department of Internal Medicine II - Pulmonary Medicine, Ulm (Germany); Halter, Gisela [University of Ulm, Department of Thoracic Surgery, Ulm (Germany); Moeller, Peter; Mattfeldt, Torsten [University of Ulm, Department of Pathology, Ulm (Germany)

    2005-04-01

    Recently, the thymidine analogue 3'-deoxy-3'[{sup 18}F]fluorothymidine (FLT) has been introduced for imaging proliferation with positron emission tomography (PET). In this prospective study, we examined the accuracy of FLT for differentiation of benign from malignant lung lesions and for tumour staging. A total of 47 patients with newly diagnosed pulmonary nodules on chest CT suspicious for malignancy were examined with FLT-PET in addition to routine staging procedures. A total of 43 patients also underwent 2-[{sup 18}F]fluoro-2-deoxy-D-glucose (FDG) PET imaging. Within 2 weeks, patients underwent resective surgery or core biopsy of the pulmonary lesion. Histopathology revealed malignant lung tumours in 32 patients (20 non-small cell lung cancer, 1 small cell lung cancer, 1 pulmonary carcinoid, 1 non-Hodgkin's lymphoma, nine metastases from extrapulmonary tumours) and benign lesions in 15 patients. Increased FLT uptake was exclusively related to malignant tumours. FLT-PET was false negative in two patients with non-small cell lung cancer, in the patient with a pulmonary carcinoid and in three patients with lung metastases. The sensitivity of FLT-PET for detection of lung cancer was 90%, the specificity 100% and the accuracy 94%. Fifteen out of 21 patients with lung cancer had mediastinal lymph node metastases. FLT-PET was true positive in 7/15 patients, resulting in a sensitivity of 53% for N-staging (specificity 100%, accuracy 67%). Clinical TNM stage was correctly identified in 67% (20/30) patients, compared to 85% (23/27) with FDG-PET. FLT-PET has a high specificity for the detection of malignant lung tumours. Compared with FDG, FLT-PET is less accurate for N-staging in patients with lung cancer and for detection of lung metastases. FLT-PET therefore cannot be recommended for staging of lung cancer. (orig.)

  6. New cyclic peptides with osteoblastic proliferative activity from Dianthus superbus.

    Science.gov (United States)

    Tong, Yun; Luo, Jian-Guang; Wang, Rui; Wang, Xiao-Bing; Kong, Ling-Yi

    2012-03-01

    Two new cyclic peptides, dianthins G-H (1 and 2), together with the known dianthin E (3), were isolated from the traditional Chinese medicinal plant Dianthus superbus. The sequences of cyclic peptides 1 and 2 were elucidated as cyclo (-Gly(1)-Pro(2)-Leu(3)-Thr(4)-Leu(5)-Phe(6)-) and cyclo (-Gly(1)-Pro(2)-Val(3)-Thr(4)-Ile(5)-Phe(6)-), on the basis of ESI tandem mass fragmentation analysis, extensive 2D NMR methods and X-ray diffraction. The isolated three compounds all increase proliferation of MC3T3-E1 cells in vitro using MTT method.

  7. Targeting angiogenesis-dependent calcified neoplasms using combined polymer therapeutics.

    Directory of Open Access Journals (Sweden)

    Ehud Segal

    Full Text Available BACKGROUND: There is an immense clinical need for novel therapeutics for the treatment of angiogenesis-dependent calcified neoplasms such as osteosarcomas and bone metastases. We developed a new therapeutic strategy to target bone metastases and calcified neoplasms using combined polymer-bound angiogenesis inhibitors. Using an advanced "living polymerization" technique, the reversible addition-fragmentation chain transfer (RAFT, we conjugated the aminobisphosphonate alendronate (ALN, and the potent anti-angiogenic agent TNP-470 with N-(2-hydroxypropylmethacrylamide (HPMA copolymer through a Glycine-Glycine-Proline-Norleucine linker, cleaved by cathepsin K, a cysteine protease overexpressed at resorption sites in bone tissues. In this approach, dual targeting is achieved. Passive accumulation is possible due to the increase in molecular weight following polymer conjugation of the drugs, thus extravasating from the tumor leaky vessels and not from normal healthy vessels. Active targeting to the calcified tissues is achieved by ALN's affinity to bone mineral. METHODS AND FINDING: The anti-angiogenic and antitumor potency of HPMA copolymer-ALN-TNP-470 conjugate was evaluated both in vitro and in vivo. We show that free and conjugated ALN-TNP-470 have synergistic anti-angiogenic and antitumor activity by inhibiting proliferation, migration and capillary-like tube formation of endothelial and human osteosarcoma cells in vitro. Evaluation of anti-angiogenic, antitumor activity and body distribution of HPMA copolymer-ALN-TNP-470 conjugate was performed on severe combined immunodeficiency (SCID male mice inoculated with mCherry-labeled MG-63-Ras human osteosarcoma and by modified Miles permeability assay. Our targeted bi-specific conjugate reduced VEGF-induced vascular hyperpermeability by 92% and remarkably inhibited osteosarcoma growth in mice by 96%. CONCLUSIONS: This is the first report to describe a new concept of a narrowly-dispersed combined

  8. Opposing actions of intact and N-terminal fragments of the human prolactin/growth hormone family members on angiogenesis: An efficient mechanism for the regulation of angiogenesis

    OpenAIRE

    Struman, Ingrid; Bentzien, Frauke; Lee, Hsinyu; Mainfroid, Véronique; D’Angelo, Gisela; Goffin, Vincent; Weiner, Richard I.; Martial, Joseph A.

    1999-01-01

    Angiogenesis, the process of development of a new microvasculature, is regulated by a balance of positive and negative factors. We show both in vivo and in vitro that the members of the human prolactin/growth hormone family, i.e., human prolactin, human growth hormone, human placental lactogen, and human growth hormone variant are angiogenic whereas their respective 16-kDa N-terminal fragments are antiangiogenic. The opposite actions are regulated in part via activ...

  9. Interleukin-19 induces angiogenesis in the absence of hypoxia by direct and indirect immune mechanisms.

    Science.gov (United States)

    Kako, Farah; Gabunia, Khatuna; Ray, Mitali; Kelemen, Sheri E; England, Ross N; Kako, Bashar; Scalia, Rosario G; Autieri, Michael V

    2016-06-01

    Neovascularization and inflammation are independent biological processes but are linked in response to injury. The role of inflammation-dampening cytokines in the regulation of angiogenesis remains to be clarified. The purpose of this work was to test the hypothesis that IL-19 can induce angiogenesis in the absence of tissue hypoxia and to identify potential mechanisms. Using the aortic ring model of angiogenesis, we found significantly reduced sprouting capacity in aortic rings from IL-19(-/-) compared with wild-type mice. Using an in vivo assay, we found that IL-19(-/-) mice respond to vascular endothelial growth factor (VEGF) significantly less than wild-type mice and demonstrate decreased capillary formation in Matrigel plugs. IL-19 signals through the IL-20 receptor complex, and IL-19 induces IL-20 receptor subunit expression in aortic rings and cultured human vascular smooth muscle cells, but not endothelial cells, in a peroxisome proliferator-activated receptor-γ-dependent mechanism. IL-19 activates STAT3, and IL-19 angiogenic activity in aortic rings is STAT3-dependent. Using a quantitative RT-PCR screening assay, we determined that IL-19 has direct proangiogenic effects on aortic rings by inducing angiogenic gene expression. M2 macrophages participate in angiogenesis, and IL-19 has indirect angiogenic effects, as IL-19-stimulated bone marrow-derived macrophages secrete proangiogenic factors that induce greater sprouting of aortic rings than unstimulated controls. Using a quantitative RT-PCR screen, we determined that IL-19 induces expression of angiogenic cytokines in bone marrow-derived macrophages. Together, these data suggest that IL-19 can promote angiogenesis in the absence of hypoxia by at least two distinct mechanisms: 1) direct effects on vascular cells and 2) indirect effects by stimulation of macrophages. PMID:27053520

  10. Tpl2 Inhibitors Thwart Endothelial Cell Function in Angiogenesis and Peritoneal Dissemination

    Directory of Open Access Journals (Sweden)

    Wen-Jane Lee

    2013-09-01

    Full Text Available Angiogenesis is critical in the development of cancer, which involves several angiogenic factors in its peritoneal dissemination. The role of protein tumor progression locus 2 (Tpl2 in angiogenic factor-related endothelial cell angiogenesis is still unclear. To understand the precise mechanism(s of Tpl2 inhibition in endothelial cells, this study investigated the role of Tpl2 in mediating angiogenic signals using in vitro, in vivo, and ex vivo models. Results showed that inhibition of Tpl2 inhibitor significantly reduced peritoneal dissemination in a mouse model by positron emission tomography/computed tomography imaging. Simultaneously, inhibiting Tpl2 blocked angiogenesis in tumor nodules and prevented angiogenic factor-induced proliferating cell nuclear antigen (PCNA in endothelial cells. Vascular endothelial growth factor (VEGF or chemokine (C-X-C motif ligand 1 (CXCL1 increased Tpl2 kinase activity and phosphorylation in a dose- and time-dependent manner. Furthermore, Tpl2 inhibition or ablation by siRNA prevented the angiogenic signal-induced tube formation in Matrigel plug assay or aortic ring assay. Inhibiting Tpl2 also prevented the angiogenic factor-induced chemotactic motility and migration of endothelial cells. Tpl2 inhibition by CXCL1 or epidermal growth factor in endothelial cells was associated with inactivation of CCAAT/enhancer binding protein β, nuclear factor κ light-chain enhancer of activated B cells, and activating protein 1 and suppression of VEGF expression. Thus, Tpl2 inhibitors thwart Tpl2-regulated VEGF by inactivating transcription factors involved in angiogenic factor-triggered endothelial cell angiogenesis. These results suggest that the therapeutic inhibition of Tpl2 may extend beyond cancer and include the treatment of other diseases involving pathologic angiogenesis.

  11. Effects of GLO-I gene overexpression on proliferative and apoptotic activity in endometri- al cancer cell induced by progestin.%乙二醛酶 I 过表达对孕激素调控子宫内膜癌细胞株Ishikawa增殖和凋亡活性的影响

    Institute of Scientific and Technical Information of China (English)

    王倩倩; 王亮; 祝亚平; 张箴波; 丰有吉

    2015-01-01

    目的:探讨乙二醛酶I( GLO-I)过表达对孕激素调控子宫内膜癌细胞增殖和凋亡活性的影响. 方法:采用脂质体将GLO-I基因真核表达载体pcDNA GLO-I及空白载体pcDNA转染子宫内膜癌细胞株Ishikawa,G418 筛选获得抗性亚克隆细胞株. RT-PCR和Western blot法检测子宫内膜癌细胞中GLO-I表达,Western blot法检测未转染组、转染pcDNA-GLO-I组及转染pcDNA组的caspase 3、cyclin D1凋亡和增殖分子的表达. 用DM-SO和10μmol/L甲羟孕酮( MPA)分别刺激转染pcDNA-GLO-I组和未转染Ishikawa细胞, Western blot法检测增殖和凋亡分子表达. 结果:转染pcDNA-GLO-I组细胞中GLO-I mR-NA、蛋白水平均显著高于未转染组( P0 . 05 ). 结论:GLO-I高表达影响子宫内膜癌细胞的增殖和凋亡,并影响孕激素对肿瘤细胞的增殖和调控.%Objective:To investigate the effects of GLO-I gene overexpression on prolif-erative and apoptotic activity in endometrial cancer cell induced Progestin. Methods:After GLOI gene was transferred into cells of Ishikawa cancer cell line,the subclone cells were ob-tained by pemistent G418 selection. Cellular GLOI gene expression was determinated by RT-PCR and Western blot. Western blot was used to detect the expressions of caspase 3,cyclin D in the three groups of untransferred、transferred pc-DNA-GLO-I and transferred pc-DNA. Then treatment with DMSO and MPA in the subclone cells and Ishikawa cell line,and western blot was used to detect the expression of caspase 3. Results:The groups of Ishikawa,stable express-ing GLOI and neo gene respectively were successfully selected, named as Ishikawa/pc-DNA-GLOI and Ishikawa/pc-DNA. RT-PCR and Western blot results demonstrated GLOI mRNA and protein levels of Ishikawa/pc-DNA-GLOI cells were significantly higher than those of Ishikawa and Ishikawa/pc-DNA ( P 0. 05). Conclusion:The overexpression of GLO-I can influence the proliferation and apoptosis of cancer cells,and further affect the treatment of

  12. Targeting p35/Cdk5 Signalling via CIP-Peptide Promotes Angiogenesis in Hypoxia

    Science.gov (United States)

    Bosutti, Alessandra; Qi, Jie; Pennucci, Roberta; Bolton, David; Matou, Sabine; Ali, Kamela; Tsai, Li-Huei; Krupinski, Jerzy; Petcu, Eugene B.; Montaner, Joan; Al Baradie, Raid; Caccuri, Francesca; Caruso, Arnaldo; Alessandri, Giulio; Kumar, Shant; Rodriguez, Cristina; Martinez-Gonzalez, Jose; Slevin, Mark

    2013-01-01

    Cyclin-dependent kinase-5 (Cdk5) is over-expressed in both neurons and microvessels in hypoxic regions of stroke tissue and has a significant pathological role following hyper-phosphorylation leading to calpain-induced cell death. Here, we have identified a critical role of Cdk5 in cytoskeleton/focal dynamics, wherein its activator, p35, redistributes along actin microfilaments of spreading cells co-localising with p(Tyr15)Cdk5, talin/integrin beta-1 at the lamellipodia in polarising cells. Cdk5 inhibition (roscovitine) resulted in actin-cytoskeleton disorganisation, prevention of protein co-localization and inhibition of movement. Cells expressing Cdk5 (D144N) kinase mutant, were unable to spread, migrate and form tube-like structures or sprouts, while Cdk5 wild-type over-expression showed enhanced motility and angiogenesis in vitro, which was maintained during hypoxia. Gene microarray studies demonstrated myocyte enhancer factor (MEF2C) as a substrate for Cdk5-mediated angiogenesis in vitro. MEF2C showed nuclear co-immunoprecipitation with Cdk5 and almost complete inhibition of differentiation and sprout formation following siRNA knock-down. In hypoxia, insertion of Cdk5/p25-inhibitory peptide (CIP) vector preserved and enhanced in vitro angiogenesis. These results demonstrate the existence of critical and complementary signalling pathways through Cdk5 and p35, and through which coordination is a required factor for successful angiogenesis in sustained hypoxic condition. PMID:24098701

  13. Targeting p35/Cdk5 signalling via CIP-peptide promotes angiogenesis in hypoxia.

    Directory of Open Access Journals (Sweden)

    Alessandra Bosutti

    Full Text Available Cyclin-dependent kinase-5 (Cdk5 is over-expressed in both neurons and microvessels in hypoxic regions of stroke tissue and has a significant pathological role following hyper-phosphorylation leading to calpain-induced cell death. Here, we have identified a critical role of Cdk5 in cytoskeleton/focal dynamics, wherein its activator, p35, redistributes along actin microfilaments of spreading cells co-localising with p(Tyr15Cdk5, talin/integrin beta-1 at the lamellipodia in polarising cells. Cdk5 inhibition (roscovitine resulted in actin-cytoskeleton disorganisation, prevention of protein co-localization and inhibition of movement. Cells expressing Cdk5 (D144N kinase mutant, were unable to spread, migrate and form tube-like structures or sprouts, while Cdk5 wild-type over-expression showed enhanced motility and angiogenesis in vitro, which was maintained during hypoxia. Gene microarray studies demonstrated myocyte enhancer factor (MEF2C as a substrate for Cdk5-mediated angiogenesis in vitro. MEF2C showed nuclear co-immunoprecipitation with Cdk5 and almost complete inhibition of differentiation and sprout formation following siRNA knock-down. In hypoxia, insertion of Cdk5/p25-inhibitory peptide (CIP vector preserved and enhanced in vitro angiogenesis. These results demonstrate the existence of critical and complementary signalling pathways through Cdk5 and p35, and through which coordination is a required factor for successful angiogenesis in sustained hypoxic condition.

  14. The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle.

    Science.gov (United States)

    Chinsomboon, Jessica; Ruas, Jorge; Gupta, Rana K; Thom, Robyn; Shoag, Jonathan; Rowe, Glenn C; Sawada, Naoki; Raghuram, Srilatha; Arany, Zoltan

    2009-12-15

    Peripheral arterial disease (PAD) affects 5 million people in the US and is the primary cause of limb amputations. Exercise remains the single best intervention for PAD, in part thought to be mediated by increases in capillary density. How exercise triggers angiogenesis is not known. PPARgamma coactivator (PGC)-1alpha is a potent transcriptional co-activator that regulates oxidative metabolism in a variety of tissues. We show here that PGC-1alpha mediates exercise-induced angiogenesis. Voluntary exercise induced robust angiogenesis in mouse skeletal muscle. Mice lacking PGC-1alpha in skeletal muscle failed to increase capillary density in response to exercise. Exercise strongly induced expression of PGC-1alpha from an alternate promoter. The induction of PGC-1alpha depended on beta-adrenergic signaling. beta-adrenergic stimulation also induced a broad program of angiogenic factors, including vascular endothelial growth factor (VEGF). This induction required PGC-1alpha. The orphan nuclear receptor ERRalpha mediated the induction of VEGF by PGC-1alpha, and mice lacking ERRalpha also failed to increase vascular density after exercise. These data demonstrate that beta-adrenergic stimulation of a PGC-1alpha/ERRalpha/VEGF axis mediates exercise-induced angiogenesis in skeletal muscle.

  15. Upregulation of HYAL1 expression in breast cancer promoted tumor cell proliferation, migration, invasion and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Jin-Xiang Tan

    Full Text Available Hyaluronic acid (HA is a component of the Extra-cellular matrix (ECM, it is closely correlated with tumor cell growth, proliferation, metastasis and angiogenesis, etc. Hyaluronidase (HAase is a HA-degrading endoglycosidase, levels of HAase are elevated in many cancers. Hyaluronidase-1 (HYAL1 is the major tumor-derived HAase. We previously demonstrated that HYAL1 were overexpression in human breast cancer. Breast cancer cells with higher HAase expression, exhibited significantly higher invasion ability through matrigel than those cells with lower HAase expression, and knockdown of HYAL1 expression in breast cancer cells resulted in decreased cell growth, adhesion, invasion and angiogenesis. Here, to further elucidate the function of HYAL1 in breast cancer, we investigated the consequences of forcing HYAL1 expression in breast cancer cells by transfection of expression plasmid. Compared with control, HYAL1 up-regulated cells showed increased the HAase activity, and reduced the expression of HA in vitro. Meantime, upregulation of HYAL1 promoted the cell growth, migration, invasion and angiogenesis in vitro. Moreover, in nude mice model, forcing HYAL1 expression induced breast cancer cell xenograft tumor growth and angiogenesis. Interestingly, the HA expression was upregulated by forcing HYAL1 expression in vivo. These findings suggested that HYAL1-HA system is correlated with the malignant behavior of breast cancer.

  16. Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects.

    Science.gov (United States)

    Liu, Chen; Fu, Xuekun; Pan, Haobo; Wan, Peng; Wang, Lei; Tan, Lili; Wang, Kehong; Zhao, Ying; Yang, Ke; Chu, Paul K

    2016-06-07

    A series of biodegradable Mg-Cu alloys is designed to induce osteogenesis, stimulate angiogenesis, and provide long-lasting antibacterial performance at the same time. The Mg-Cu alloys with precipitated Mg2Cu intermetallic phases exhibit accelerated degradation in the physiological environment due to galvanic corrosion and the alkaline environment combined with Cu release endows the Mg-Cu alloys with prolonged antibacterial effects. In addition to no cytotoxicity towards HUVECs and MC3T3-E1 cells, the Mg-Cu alloys, particularly Mg-0.03Cu, enhance the cell viability, alkaline phosphatase activity, matrix mineralization, collagen secretion, osteogenesis-related gene and protein expressions of MC3T3-E1 cells, cell proliferation, migration, endothelial tubule forming, angiogenesis-related gene, and protein expressions of HUVECs compared to pure Mg. The favorable osteogenesis and angiogenesis are believed to arise from the release of bioactive Mg and Cu ions into the biological environment and the biodegradable Mg-Cu alloys with osteogenesis, angiogenesis, and long-term antibacterial ability are very promising in orthopedic applications.

  17. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis

    International Nuclear Information System (INIS)

    The VEGF/VPF (vascular endothelial growth factor/vascular permeability factor) ligands and receptors are crucial regulators of vasculogenesis, angiogenesis, lymphangiogenesis and vascular permeability in vertebrates. VEGF-A, the prototype VEGF ligand, binds and activates two tyrosine kinase receptors: VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). VEGFR1, which occurs in transmembrane and soluble forms, negatively regulates vasculogenesis and angiogenesis during early embryogenesis, but it also acts as a positive regulator of angiogenesis and inflammatory responses, playing a role in several human diseases such as rheumatoid arthritis and cancer. The soluble VEGFR1 is overexpressed in placenta in preeclampsia patients. VEGFR2 has critical functions in physiological and pathological angiogenesis through distinct signal transduction pathways regulating proliferation and migration of endothelial cells. VEGFR3, a receptor for the lymphatic growth factors VEGF-C and VEGF-D, but not for VEGF-A, regulates vascular and lymphatic endothelial cell function during embryogenesis. Loss-of-function variants of VEGFR3 have been identified in lymphedema. Formation of tumor lymphatics may be stimulated by tumor-produced VEGF-C, allowing increased spread of tumor metastases through the lymphatics. Mapping the signaling system of these important receptors may provide the knowledge necessary to suppress specific signaling pathways in major human diseases

  18. Synthesis of specific nanoparticles for targeting tumor angiogenesis using electron-beam irradiation

    Science.gov (United States)

    Deshayes, Stéphanie; Maurizot, Victor; Clochard, Marie-Claude; Berthelot, Thomas; Baudin, Cécile; Déléris, Gérard

    2010-03-01

    Angiogenesis plays a critical role in both growth and metastasis of tumors. Vascular endothelial growth factor (VEGF) is an endogenous mediator of tumor angiogenesis. Blocking associations of the VEGF with its corresponding receptors (KDR) have become critical for anti-tumor therapy. A cyclo-peptide (CBO-P11), derived from VEGF, able to inhibit the interaction between the growth factor and its receptor, was synthesized in our laboratory to provide a target for angiogenesis. We have prepared biocompatible poly(vinylidene fluoride) (PVDF) nanoparticles in order to obtain long blood circulating systems. Electron-beam (EB) irradiation was used to activate the PVDF nanoparticles. From electron paramagnetic resonance (EPR) measurements, we studied the radical stability in order to optimize the radio-grafting of acrylic acid (AA). Further functionalization of PVDF-g-PAA nanoparticles with the cyclo-peptide via a spacer arm was also possible by performing coupling reactions. High resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) and MALDI mass spectrometry allowed us to follow each chemical step of this peptide immobilization. We designed a new nanodevice suggesting a great potential for targeting angiogenesis. 7727-21-1

  19. Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects

    Science.gov (United States)

    Liu, Chen; Fu, Xuekun; Pan, Haobo; Wan, Peng; Wang, Lei; Tan, Lili; Wang, Kehong; Zhao, Ying; Yang, Ke; Chu, Paul K.

    2016-01-01

    A series of biodegradable Mg-Cu alloys is designed to induce osteogenesis, stimulate angiogenesis, and provide long-lasting antibacterial performance at the same time. The Mg-Cu alloys with precipitated Mg2Cu intermetallic phases exhibit accelerated degradation in the physiological environment due to galvanic corrosion and the alkaline environment combined with Cu release endows the Mg-Cu alloys with prolonged antibacterial effects. In addition to no cytotoxicity towards HUVECs and MC3T3-E1 cells, the Mg-Cu alloys, particularly Mg-0.03Cu, enhance the cell viability, alkaline phosphatase activity, matrix mineralization, collagen secretion, osteogenesis-related gene and protein expressions of MC3T3-E1 cells, cell proliferation, migration, endothelial tubule forming, angiogenesis-related gene, and protein expressions of HUVECs compared to pure Mg. The favorable osteogenesis and angiogenesis are believed to arise from the release of bioactive Mg and Cu ions into the biological environment and the biodegradable Mg-Cu alloys with osteogenesis, angiogenesis, and long-term antibacterial ability are very promising in orthopedic applications. PMID:27271057

  20. Angiogenesis in liver cirrhosis and hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Amarapurkar Anjali

    2008-07-01

    Full Text Available Background: Angiogenesis has been well documented in hepatocellular carcinoma (HCC. As liver cirrhosis is considered preneoplastic condition, the aim of this study was to evaluate the process of angiogenesis using CD 34 as an endothelial cell marker in normal liver, cirrhosis and HCC. Materials and Methods: A total of 111 cases were included in this study, which consisted of 30 cases each of normal liver and cirrhosis that were all autopsy cases. Twenty-one cases of HCC included 10 autopsy specimens, nine surgically resected specimens and two liver biopsies. Remaining were 30 cases of metastasis to the liver, which included 20 autopsy specimens, one surgically resected specimen and nine liver biopsies. The patients were between the age range from 17 to 80 years with 70 males and 11 females. Paraffin-embedded liver sections of all these cases were stained routinely by hematoxylin-eosin stain, while immunohistochemistry for CD 34 was performed for expression of endothelial cells. The positivity of CD 34 staining was evaluated by counting in 10 high-power field, grading was done from 0 to 4 and compared between normal liver, cirrhosis and HCC and metastasis. Results: CD 34 was positive in 16/30 (53.3% cases of cirrhosis, 18/21 (85% cases of HCC and 26 (86.6% of metastasis to the liver. None of the normal liver showed any positivity. Grade 3 to 4 positivity was seen in 4/16 (25% and 13/18 (72% cases of cirrhosis and HCC, respectively. Amongst these, 10 were moderately differentiated, one well differentiated and rest two were fibrolamellar and sarcomatoid variants of HCC. Conclusion: Over expression of endothelial cell marker CD 34 with gradual progression was found from normal liver to cirrhosis to HCC and metastasis. Understanding of this process of angiogenesis might help in the design of efficient and safe antiangiogenic therapy for these liver disorders.

  1. Inhibition of endothelial cell apoptosis by netrin-1 during angiogenesis.

    Science.gov (United States)

    Castets, Marie; Coissieux, Marie-May; Delloye-Bourgeois, Céline; Bernard, Laure; Delcros, Jean-Guy; Bernet, Agnès; Laudet, Vincent; Mehlen, Patrick

    2009-04-01

    Netrin-1 was recently proposed to play an important role in embryonic and pathological angiogenesis. However, data reported led to the apparently contradictory conclusions that netrin-1 is either a pro- or an antiangiogenic factor. Here, we reconcile these opposing observations by demonstrating that netrin-1 acts as a survival factor for endothelial cells, blocking the proapoptotic effect of the dependence receptor UNC5B and its downstream death signaling effector, the serine/threonine kinase DAPK. The netrin-1 effect on blood vessel development is mimicked by caspase inhibitors in ex vivo assays, and the inhibition of caspase activity, the silencing of the UNC5B receptor, and the silencing of DAPK are each sufficient to rescue the vascular sprouting defects induced by netrin-1 silencing in zebrafish. Thus, the proapoptotic effect of unbound UNC5B and the survival effect of netrin-1 on endothelial cells finely tune the angiogenic process. PMID:19386270

  2. Role of Copper and Vascular Endothelial Growth Factor (VEGF) on Endometrial Angiogenesis

    OpenAIRE

    Yousef Rezaei Chianeh; Pragna Rao

    2013-01-01

    The formation of new blood vessels is the ini-tial step in neovascularisation. The first stagein angiogenesis is the activation of endothelialcells. Copper ions stimulate proliferation andimmigration of endothelial cells. It has beenshown that serum copper concentration in-creases as the cancer disease progresses andcorrelates with tumour incidence and burden.Copper ions also activate several proangiogenicfactors, e.g., vascular endothelial growth fac-tor, basic fibroblast growth factor, andi...

  3. Involvement of Heme Oxygenase-1 in Orexin-A-induced Angiogenesis in Vascular Endothelial Cells

    OpenAIRE

    Kim, Mi-Kyoung; Park, Hyun-Joo; Kim, Su-Ryun; Choi, Yoon Kyung; Bae, Soo-Kyung; Bae, Moon-Kyoung

    2015-01-01

    The cytoprotective enzyme heme oxygenase-1 (HO-1) influences endothelial cell survival, proliferation, inflammatory response, and angiogenesis in response to various angiogenic stimuli. In this study, we investigate the involvement of HO-1 in the angiogenic activity of orexin-A. We showed that orexin-A stimulates expression and activity of HO-1 in human umbilical vein endothelial cells (HUVECs). Furthermore, we showed that inhibition of HO-1 by tin (Sn) protoporphryin-IX (SnPP) reduced orexin...

  4. Molecular profiling of angiogenesis in hypericin mediated photodynamic therapy

    Directory of Open Access Journals (Sweden)

    Ali Seyed M

    2008-06-01

    Full Text Available Abstract Background Photodynamic therapy (PDT involves the administration of a tumor-localizing photosensitizing drug, which is activated by light of specific wavelength in the presence of molecular oxygen thus generating reactive oxygen species that is toxic to the tumor cells. PDT selectively destroys photosensitized tissue leading to various cellular and molecular responses. The present study was designed to examine the angiogenic responses at short (0.5 h and long (6 h drug light interval (DLI hypericin-PDT (HY-PDT treatment at 24 h and 30 days post treatment in a human bladder carcinoma xenograft model. As short DLI targets tumor vasculature and longer DLI induces greater cellular damage, we hypothesized a differential effect of these treatments on the expression of angiogenic factors. Results Immunohistochemistry (IHC results showed minimal CD31 stained endothelium at 24 h post short DLI PDT indicating extensive vascular damage. Angiogenic proteins such as vascular endothelial growth factor (VEGF, tumor necrosis growth factor-α (TNF-α, interferon-α (IFN-α and basic fibroblast growth factor (bFGF were expressed to a greater extent in cellular targeting long DLI PDT compared to vascular mediated short DLI PDT. Gene expression profiling for angiogenesis pathway demonstrated downregulation of adhesion molecules – cadherin 5, collagen alpha 1 and 3 at 24 h post treatment. Hepatocyte growth factor (HGF and Ephrin-A3 (EFNA3 were upregulated in all treatment groups suggesting a possible activation of c-Met and Ephrin-Eph signaling pathways. Conclusion In conclusion, long DLI HY-PDT induces upregulation of angiogenic proteins. Differential expression of genes involved in the angiogenesis pathway was observed in the various groups treated with HY-PDT.

  5. Control of Angiogenesis by AIBP-mediated Cholesterol Efflux

    Science.gov (United States)

    Fang, Longhou; Choi, Soo-Ho; Baek, Ji Sun; Liu, Chao; Almazan, Felicidad; Ulrich, Florian; Wiesner, Philipp; Taleb, Adam; Deer, Elena; Pattison, Jennifer; Torres-Vázquez, Jesús; Li, Andrew C.; Miller, Yury I.

    2013-01-01

    Cholesterol is a structural component of the cell, indispensable for normal cellular function, but its excess often leads to abnormal proliferation, migration, inflammatory responses and/or cell death. To prevent cholesterol overload, ATP-binding cassette (ABC) transporters mediate cholesterol efflux from the cells to apolipoprotein A-I (ApoA-I) and to the ApoA-I-containing high-density lipoprotein (HDL)1-3. Maintaining efficient cholesterol efflux is essential for normal cellular function4-6. However, the role of cholesterol efflux in angiogenesis and the identity of its local regulators are poorly understood. Here we show that ApoA-I binding protein (AIBP) accelerates cholesterol efflux from endothelial cells (EC) to HDL and thereby regulates angiogenesis. AIBP/HDL-mediated cholesterol depletion reduces lipid rafts, interferes with VEGFR2 dimerization and signaling, and inhibits VEGF-induced angiogenesis in vitro and mouse aortic neovascularization ex vivo. Remarkably, Aibp regulates the membrane lipid order in embryonic zebrafish vasculature and functions as a non-cell autonomous regulator of zebrafish angiogenesis. Aibp knockdown results in dysregulated sprouting/branching angiogenesis, while forced Aibp expression inhibits angiogenesis. Dysregulated angiogenesis is phenocopied in Abca1/Abcg1-deficient embryos, and cholesterol levels are increased in Aibp-deficient and Abca1/Abcg1-deficient embryos. Our findings demonstrate that secreted AIBP positively regulates cholesterol efflux from EC and that effective cholesterol efflux is critical for proper angiogenesis. PMID:23719382

  6. The thin red line: angiogenesis in normal and malignant hematopoiesis.

    Science.gov (United States)

    Bertolini, F; Mancuso, P; Gobbi, A; Pruneri, G

    2000-09-01

    This review describes the current knowledge about cell subsets involved in vasculogenesis (i.e., differentiation of endothelial cells from mesodermal precursors) and angiogenesis (i.e., blood vessel generation from pre-existing vessels), together with recent findings about angiogenesis and antiangiogenic therapies in hematopoietic malignancies such as leukemia, lymphoma, myeloma, and myelodysplastic syndromes. PMID:11008011

  7. Panretinal photocoagulation versus intravitreal injection retreatment pain in high-risk proliferative diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Célia Regina Farias de Araújo Lucena

    2013-02-01

    Full Text Available PURPOSE: To compare pain related to intravitreal injection and panretinal photocoagulation in the management of patients with high-risk proliferative diabetic retinopathy. METHODS: Prospective study including patients with high-risk proliferative diabetic retinopathy and no prior laser treatment randomly assigned to receive panretinal photocoagulation (PRP group or panretinal photocoagulation plus intravitreal ranibizumab (PRPplus group. In all patients, panretinal photocoagulation was administered in two sessions (weeks 0 and 2, and intravitreal ranibizumab was administered at the end of the first laser session in the PRPplus group. Retreatment was performed at weeks 16 and 32 if active new vessels were detected at fluorescein angiography. Patients in the PRPplus group received intravitreal ranibizumab and patients in the PRP group received 500-µm additional spots per quadrant of active new vessels. After the end of retreatment, a 100-degree Visual Analog Scale was used for pain score estimation. The patient was asked about the intensity of pain during the whole procedure (retinal photocoagulation session or intravitreal ranibizumab injection. Statistics for pain score comparison were performed using a non-parametric test (Wilcoxon rank sums. RESULTS: Seventeen patients from PRPplus and 14 from PRP group were evaluated for pain scores. There were no significant differences between both groups regarding gender, glycosylated hemoglobin and disease duration. Mean intravitreal injection pain (±SEM was 4.7 ± 2.1 and was significantly lower (p<0.0001 than mean panretinal photocoagulation pain (60.8 ± 7.8. Twelve out of 17 patients from the PRPplus group referred intensity pain score of zero, while the minimal score found in PRP group was found in one patient with 10.5. CONCLUSION: In patients with high-risk proliferative diabetic retinopathy who needed retreatment for persistent new vessels, there was more comfort for the patient when retreatment

  8. Postvitrectomy diabetic vitreous hemorrhage in proliferative diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Lei Shi

    2012-01-01

    Full Text Available Background: To investigate the reasons for postvitrectomy diabetic vitreous hemorrhage (PDVH, and to analyze the time of PDVH onset, the treatment of PDVH, the visual outcome of the treatment, and factors that affect visual acuity after treatment. Materials and Methods: Overall, 292 eyes from 236 patients with proliferative diabetic retinopathy (PDR underwent vitrectomy from 2006 to 2010. Fifty eyes out of 43 patients had severe postoperative vitreous hemorrhage. The average follow-up duration was 6.8 ± 3.8 months (range, 2-12 months. Results: Recurrent vitreous hemorrhage (VH after primary vitrectomy occurred in 40 eyes (80% with an average time of VH onset of 62.5 ± 32.8 days (range, 3-170 days. VH occurred after silicone oil removal occurred in 10 eyes (20%, with an average time of VH onset of 27.4 ± 20.3 days (range, 1-60 days. The reasons for PDVH included chronic errhysis from retinal neovessels (47.1% of the eyes, residual fibrous vascular membrane (12.8% of the eyes, fibrovascular ingrowth at sclerotomy sites (4.3% of the eyes, iris neovessels and neovascular glaucoma (4.3% of the eyes, retinal vein occlusion (2.8% of the eyes, retinal tears (8.1% of the eyes, retinotomy (1.4% of the eyes, epichoroidal bleeding (1.4% of the eyes, polycythemia rubra vera (1.4% of the eyes, hypoperfusional retinopathy (4.3% of the eyes, and unknown reasons (12.8% of the eyes. Visual acuity increased in 43 eyes (86% after surgical or nonsurgical treatment. The improvement in visual acuity after treatment was not affected by age, sex, duration of diabetes, time of PDVH onset, frequency of surgery, or treatment methods. Conclusion: Postvitrectomy diabetic vitreous hemorrhage commonly occurs two months after vitrectomy. Residual epiretinal neovascularization is the most common cause of PDVH. Active surgical or nonsurgical treatment for severe vitreous hemorrhage can obviously improve the patients′ visual prognosis.

  9. PROLIFERATIVE INFLAMMATORY ATROPHY: POTENTIAL PRECURSOR LESION FOR PROSTATIC ADENOCARCINOMA

    Directory of Open Access Journals (Sweden)

    Benedetti-Padrón Inés

    2014-01-01

    Full Text Available Introduction: Prostatic Intraepithelial neoplasia (PIN is currently considered as the only precursor lesion of prostate cancer (PCa; nevertheless, some years ago, it has been suspected that the atrophic lesions also might be involved in its carcinogenesis. In 1999, De Marzo prospered, the expression Proliferative Inflammatory Atrophy (PIA to denominate a lesion located in the peripheral area of the gland, with epithelial cells with high proliferative potential, frequently accompanied of inflammation that has been postulated as possible precursor lesion of PIN and PCa. Objective: To review the concepts about Proliferative Inflammatory Atrophy (PIA, its morphological, genetics and molecular characteristics and to explain the precursor capacity of PIN and PCa. Methods: Databases Pubmed, Sciencedirect, EBSCOhost and OvidSP were reviewed in search of studies, systematic reviews, consensus and meta-analyses with keywords: Proliferative Inflammatory Atrophy, Prostatic Atrophy, Prostatic Carcinoma, using as due date December of 2012. Results: Molecular disorders described in PIA support the beginning of these lesions in a context of oxidative stress, possibly caused by the surrounding inflammatory cells, which induce the expression of defense gene against the oxidative damage of the genome in some epithelial cells, while those that fail in the expression of these gene become vulnerable to oxidants and electrophiles, which do them prone to develop genetic disorders that will benefit their transformation in cells of PIN and PCa. The morphological association PIA-PIN/PCa points to a progressive relationship between these lesions.Conclusion: Topographic association and morphological transition of PIA with PIN and PCa have been observed. Besides, genetic, somatic and molecular disorders have been reported in PIA, similar to those observed in PIN and PCa due to it has been postulated as possible precursor lesion of both. Nevertheless, this approach is

  10. Intense Pulsed-Light Therapy for Proliferative Haemangiomas of Infancy

    OpenAIRE

    Marie Caucanas; Philippe Paquet; Frédérique Henry; Claudine Piérard-Franchimont; Marie-Annick Reginster; Gérald E. Piérard

    2011-01-01

    Infantile haemangioma therapy has long been a wait-and-see policy. Since recent development of laser and light therapy, pulsed dye laser has been successfully used for treating superficial haemangiomas. Few studies have been published about treatment with intense pulsed light (IPL) to assess the risk/benefit of IPL in the treatment of infantile haemangiomas during their early proliferative phase. In the present retrospective cohort study, we retrieved data about a series of 14 Caucasian child...

  11. Hypoxia-inducible factor-1 in tumour angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Yong-Hong Shi; Wei-Gang Fang

    2004-01-01

    Hypoxia-inducible factor-1 (HIF-1), composed of HIF-α and HIF-β subunits, is a heterodimeric transcriptional activator.In response to hypoxia, stimulation of growth factors, and activation of oncogenes as well as carcinogens, HIF-1α is overexpressed and/or activated and targets those genes which are required for angiogenesis, metabolic adaptation to low oxygen and promotes survival. HIF-1 is critical for both physiological and pathological processes. Several dozens of putative direct HIF-1 target genes have been identified on the basis of one or more cis-acting hypoxia-response elements that contain an HIF-1 binding site. A variety of regulators including growth factors, genetic alterations, stress activators, and some carcinogens have been documented for regulation of HIF-1 in which several signaling pathways are involved depending on the stimuli and cell types.Activation of HIF-1 in combination with activated signaling pathways and regulators is implicated in tumour progression and prognosis. This review presents a summary of the structure and function of HIF-1α, and correlation among specific regulators and their signaling pathways.

  12. Laminins Expression in Children with Mesangial Proliferative Glomerulonephritis

    Institute of Scientific and Technical Information of China (English)

    赵非; 黄松明; 陈荣华; 费莉; 郭梅; 黄文彦

    2003-01-01

    Objective: To investigate the role of laminins in the pathogensis of mesangial praliferalive glomeruonephritis (MsPGN ) in children. Methods: Eighteen renal biopsy specimens of MsPGN and 6 normal kidneys were studied by means of immunohistochemistry and in situ hybridization.Results: ① Protein of α1 chain and γ1 chain of laminin increased around the segments of proliferative mesangium. Increased expression of α2 and βl proteins was found in the segments with mesangial proliferation whereas the β2 chain expression decreased in these areas. ② The mRNA expression of αl,α2,β1 and γ1 increased to different degrees in glomeeruli with mesangial proliferation. But no difference was detected among Mild, Moderate, and Severe MsPGN. Conclusion:①The quantitative and qualitative alterations of laminin chains’ distribution were found in the measngial proliferative glomeruli. The proliferative mesougial cells were the origins of abnormal accumulation and expression of laminins.③ These changes may be the basis of the progresses of MsPGN.

  13. Comparison of Anti-inflammatory,Immunoregulatory and Chondrocyte-proliferative Activities of Chinese Medicine Volatile Oil/Aqueous Extracts%中药挥发油/水提物的细胞抗炎、免疫及骨细胞修复活性的比较

    Institute of Scientific and Technical Information of China (English)

    张立国; 马东升; 程佳佳; 倪力军

    2015-01-01

    目的:以腰痛宁衍生方为基础比较桂枝、土鳖虫等6类中药挥发油/水提物有效部位对细胞抗炎、免疫及骨细胞修复的影响,为风湿骨病处方候选药物筛选有效部位提供依据。方法在马钱子、麻黄生物碱+甘草等5种药材和黄酮+甘草等4种药材皂苷混合物的基础上,分别加入50%的苍术、乳香+没药、独活、桂枝挥发油、50%的土鳖虫、全蝎+僵蚕水提液组成新的中药有效部位组方。测定各样品抑制小鼠巨噬细胞(Ana-1)中前列腺素E2(PGE2)增殖的半数抑制浓度(IC50)及促进白细胞介素-1β(IL-1β)、白细胞介素-6(IL-6)、肿瘤坏死因子(TNF-α)因子增殖和促进IL-1β诱导的软骨细胞增殖的半数有效浓度(EC50)。同时采用最小二乘优化方法,计算各样品的EC50或IC50叠加值,根据EC50或IC50叠加值与实验值之间的差异分析各有效部位间的相互作用关系。结果在6类中药挥发油/水提物有效部位中,桂枝挥发油抑制Ana-1分泌PGE2及促进Ana-1分泌IL-1β、IL-6的活性最强;土鳖虫、僵蚕+全蝎水提液促进Ana-1分泌TNF-α的作用最佳,并在细胞抗炎、促进软骨细胞增殖活性和其他细胞免疫模型中表现出较好的活性。各挥发油/水提物有效部位促进IL-1β诱导的软骨细胞增殖的活性相当。结论桂枝挥发油具有良好的抗炎、免疫及促软骨细胞增殖等综合药理活性,可作为风湿骨病处方的优选有效部位并用其替代腰痛宁处方中的乳香+没药挥发油以降低乳香+没药引起的不良反应。腰痛宁组方药材中虫类药材的水提物也可作为风湿骨病处方的候选有效部位。%Objective To compare the effects of six Chinese medicine effective fractions of volatile oils and aqueous extracts on cell anti-inflammation, immunoregulatory and proliferative activities based on a Yaotongning(YTN) derivative formula, thus to supply

  14. The regulatory mechanism of Hsp90α secretion from endothelial cells and its role in angiogenesis during wound healing

    International Nuclear Information System (INIS)

    Research highlights: → Growth factors such as bFGF, VEGF, PDGF and SDF-1 stimulate Hsp90α secretion from endothelial cells. → Secreted Hsp90α localizes on the leading edge of activated endothelial cells. → Secreted Hsp90α promotes angiogenesis in wound healing. -- Abstract: Heat shock protein 90α (Hsp90α) is a ubiquitously expressed molecular chaperone, which is essential for the maintenance of eukaryote homeostasis. Hsp90α can also be secreted extracellularly and is associated with several physiological and pathological processes including wound healing, cancer, infectious diseases and diabetes. Angiogenesis, defined as the sprouting of new blood vessels from pre-existing capillaries via endothelial cell proliferation and migration, commonly occurs in and contributes to the above mentioned processes. However, the secretion of Hsp90α from endothelial cells and also its function in angiogenesis are still unclear. Here we investigated the role of extracellular Hsp90α in angiogenesis using dermal endothelial cells in vitro and a wound healing model in vivo. We find that the secretion of Hsp90α but not Hsp90β is increased in activated endothelial cells with the induction of angiogenic factors and matrix proteins. Secreted Hsp90α localizes on the leading edge of endothelial cells and promotes their angiogenic activities, whereas Hsp90α neutralizing antibodies reverse the effect. Furthermore, using a mouse skin wound healing model in vivo, we demonstrate that extracellular Hsp90α localizes on blood vessels in granulation tissues of wounded skin and promotes angiogenesis during wound healing. Taken together, our study reveals that Hsp90α can be secreted by activated endothelial cells and is a positive regulator of angiogenesis, suggesting the potential application of Hsp90α as a stimulator for wound repair.

  15. The regulatory mechanism of Hsp90{alpha} secretion from endothelial cells and its role in angiogenesis during wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiaomin [National Engineering Laboratory for Anti-tumor Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084 (China); Luo, Yongzhang, E-mail: yluo@tsinghua.edu.cn [National Engineering Laboratory for Anti-tumor Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084 (China)

    2010-07-16

    Research highlights: {yields} Growth factors such as bFGF, VEGF, PDGF and SDF-1 stimulate Hsp90{alpha} secretion from endothelial cells. {yields} Secreted Hsp90{alpha} localizes on the leading edge of activated endothelial cells. {yields} Secreted Hsp90{alpha} promotes angiogenesis in wound healing. -- Abstract: Heat shock protein 90{alpha} (Hsp90{alpha}) is a ubiquitously expressed molecular chaperone, which is essential for the maintenance of eukaryote homeostasis. Hsp90{alpha} can also be secreted extracellularly and is associated with several physiological and pathological processes including wound healing, cancer, infectious diseases and diabetes. Angiogenesis, defined as the sprouting of new blood vessels from pre-existing capillaries via endothelial cell proliferation and migration, commonly occurs in and contributes to the above mentioned processes. However, the secretion of Hsp90{alpha} from endothelial cells and also its function in angiogenesis are still unclear. Here we investigated the role of extracellular Hsp90{alpha} in angiogenesis using dermal endothelial cells in vitro and a wound healing model in vivo. We find that the secretion of Hsp90{alpha} but not Hsp90{beta} is increased in activated endothelial cells with the induction of angiogenic factors and matrix proteins. Secreted Hsp90{alpha} localizes on the leading edge of endothelial cells and promotes their angiogenic activities, whereas Hsp90{alpha} neutralizing antibodies reverse the effect. Furthermore, using a mouse skin wound healing model in vivo, we demonstrate that extracellular Hsp90{alpha} localizes on blood vessels in granulation tissues of wounded skin and promotes angiogenesis during wound healing. Taken together, our study reveals that Hsp90{alpha} can be secreted by activated endothelial cells and is a positive regulator of angiogenesis, suggesting the potential application of Hsp90{alpha} as a stimulator for wound repair.

  16. Relação entre a quantidade de AgNORS, atividade proliferativa e o estágio de desenvolvimento placentário em equinos Relationship between the amount of AgNORs, proliferative activity and stage of placental development in horses

    Directory of Open Access Journals (Sweden)

    Ana C.F. Mançanares

    2012-12-01

    silver nitrate and are related to the activity of rRNA synthesis and to the agility and speed of cell proliferation in the tissues studied. The objective of this study was to relate the amount of AgNORs, proliferative activity and stage of pregnancy in horses, using the coloring of Silver Nitrate. The embryonic attachments were collected, fixed in 10% buffered formaldehyde, embedded in paraplast and stained by silver nitrate. The groups were determined according to the gestational age. The amount of the corium NOR found in early pregnancy indicates the onset of cell activity, and in that the pregnancy progresses, the amount of NOR increases, suggesting higher activity and increased synthesis of their importance in maintaining the fetus. Contrary to what occurs in the corium, the quantification of NORs was higher in late pregnancy than in the beginning, suggesting the stabilization of these membranes in late pregnancy. The chorionic girdle and the yolk sac were found in early pregnancy and had lots of NORs, suggesting synthesis function and proliferation in early pregnancy, since their functions is maintenance of the embryo until the complete formation of the true placenta (chorio-allantoic membranes. We conclude that the membranes that develop in a progressive manner in accordance with the growing embryo/fetal (chorion, amnion and allantoic membranes have an increased number of NORs and the membranes that involute after the formation of the embryo/fetus (yolk sac and chorionic girdle have a decrease in number, suggesting a reduction in proliferative activity in these membranes.

  17. Reduction of Adipose Tissue Mass by the Angiogenesis Inhibitor ALS-L1023 from Melissa officinalis.

    Directory of Open Access Journals (Sweden)

    Byung Young Park

    Full Text Available It has been suggested that angiogenesis modulates adipogenesis and obesity. This study was undertaken to determine whether ALS-L1023 (ALS prepared by a two-step organic solvent fractionation from Melissa leaves, which exhibits antiangiogenic activity, can regulate adipose tissue growth. The effects of ALS on angiogenesis and extracellular matrix remodeling were measured using in vitro assays. The effects of ALS on adipose tissue growth were investigated in high fat diet-induced obese mice. ALS inhibited VEGF- and bFGF-induced endothelial cell proliferation and suppressed matrix metalloproteinase (MMP activity in vitro. Compared to obese control mice, administration of ALS to obese mice reduced body weight gain, adipose tissue mass and adipocyte size without affecting appetite. ALS treatment decreased blood vessel density and MMP activity in adipose tissues. ALS reduced the mRNA levels of angiogenic factors (VEGF-A and FGF-2 and MMPs (MMP-2 and MMP-9, whereas ALS increased the mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2 in adipose tissues. The protein levels of VEGF, MMP-2 and MMP-9 were also decreased by ALS in adipose tissue. Metabolic changes in plasma lipids, liver triglycerides, and hepatic expression of fatty acid oxidation genes occurred during ALS-induced weight loss. These results suggest that ALS, which has antiangiogenic and MMP inhibitory activities, reduces adipose tissue mass in nutritionally obese mice, demonstrating that adipose tissue growth can be regulated by angiogenesis inhibitors.

  18. Reduction of Adipose Tissue Mass by the Angiogenesis Inhibitor ALS-L1023 from Melissa officinalis.

    Science.gov (United States)

    Park, Byung Young; Lee, Hyunghee; Woo, Sangee; Yoon, Miso; Kim, Jeongjun; Hong, Yeonhee; Lee, Hee Suk; Park, Eun Kyu; Hahm, Jong Cheon; Kim, Jin Woo; Shin, Soon Shik; Kim, Min-Young; Yoon, Michung

    2015-01-01

    It has been suggested that angiogenesis modulates adipogenesis and obesity. This study was undertaken to determine whether ALS-L1023 (ALS) prepared by a two-step organic solvent fractionation from Melissa leaves, which exhibits antiangiogenic activity, can regulate adipose tissue growth. The effects of ALS on angiogenesis and extracellular matrix remodeling were measured using in vitro assays. The effects of ALS on adipose tissue growth were investigated in high fat diet-induced obese mice. ALS inhibited VEGF- and bFGF-induced endothelial cell proliferation and suppressed matrix metalloproteinase (MMP) activity in vitro. Compared to obese control mice, administration of ALS to obese mice reduced body weight gain, adipose tissue mass and adipocyte size without affecting appetite. ALS treatment decreased blood vessel density and MMP activity in adipose tissues. ALS reduced the mRNA levels of angiogenic factors (VEGF-A and FGF-2) and MMPs (MMP-2 and MMP-9), whereas ALS increased the mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2) in adipose tissues. The protein levels of VEGF, MMP-2 and MMP-9 were also decreased by ALS in adipose tissue. Metabolic changes in plasma lipids, liver triglycerides, and hepatic expression of fatty acid oxidation genes occurred during ALS-induced weight loss. These results suggest that ALS, which has antiangiogenic and MMP inhibitory activities, reduces adipose tissue mass in nutritionally obese mice, demonstrating that adipose tissue growth can be regulated by angiogenesis inhibitors.

  19. A critical role of CXCR2 PDZ-mediated interactions in endothelial progenitor cell homing and angiogenesis

    Directory of Open Access Journals (Sweden)

    Yuning Hou

    2015-03-01

    Full Text Available Bone marrow-derived endothelial progenitor cells (EPCs contribute to neovessel formation in response to growth factors, cytokines, and chemokines. Chemokine receptor CXCR2 and its cognate ligands are reported to mediate EPC recruitment and angiogenesis. CXCR2 possesses a consensus PSD-95/DlgA/ZO-1 (PDZ motif which has been reported to modulate cellular signaling and functions. Here we examined the potential role of the PDZ motif in CXCR2-mediated EPC motility and angiogenesis. We observed that exogenous CXCR2 C-tail significantly inhibited in vitro EPC migratory responses and angiogenic activities, as well as in vivo EPC angiogenesis. However, the CXCR2 C-tail that lacks the PDZ motif (ΔTTL did not cause any significant changes of these functions in EPCs. In addition, using biochemical assays, we demonstrated that the PDZ scaffold protein NHERF1 specifically interacted with CXCR2 and its downstream effector, PLC-β3, in EPCs. This suggests that NHERF1 might cluster CXCR2 and its relevant signaling molecules into a macromolecular signaling complex modulating EPC cellular functions. Taken together, our data revealed a critical role of a PDZ-based CXCR2 macromolecular complex in EPC homing and angiogenesis, suggesting that targeting this complex might be a novel and effective strategy to treat angiogenesis-dependent diseases.

  20. A novel peptide derived from human apolipoprotein E is an inhibitor of tumor growth and ocular angiogenesis.

    Directory of Open Access Journals (Sweden)

    Partha S Bhattacharjee

    Full Text Available Angiogenesis is a hallmark of tumor development and metastasis and now a validated target for cancer treatment. We previously reported that a novel dimer peptide (apoEdp derived from the receptor binding region of human apolipoprotein E (apoE inhibits virus-induced angiogenesis. However, its role in tumor anti-angiogenesis is unknown. This study demonstrates that apoEdp has anti-angiogenic property in vivo through reduction of tumor growth in a mouse model and ocular angiogenesis in a rabbit eye model. Our in vitro studies show that apoEdp inhibits human umbilical vein endothelial cell proliferation, migration, invasion and capillary tube formation. We document that apoEdp inhibits vascular endothelial growth factor-induced Flk-1 activation as well as downstream signaling pathways that involve c-Src, Akt, eNOS, FAK, and ERK1/2. These in vitro data suggest potential sites of the apoE dipeptide inhibition that could occur in vivo.This is the first evidence that a synthetic dimer peptide mimicking human apoE has anti-angiogenesis functions and could be an anti-tumor drug candidate.

  1. Monomeric C-reactive protein and Notch-3 co-operatively increase angiogenesis through PI3K signalling pathway.

    Science.gov (United States)

    Boras, Emhamed; Slevin, Mark; Alexander, M Yvonne; Aljohi, Ali; Gilmore, William; Ashworth, Jason; Krupinski, Jerzy; Potempa, Lawrence A; Al Abdulkareem, Ibrahim; Elobeid, Adila; Matou-Nasri, Sabine

    2014-10-01

    C-reactive protein (CRP) is the most acute-phase reactant serum protein of inflammation and a strong predictor of cardiovascular disease. Its expression is associated with atherosclerotic plaque instability and the formation of immature micro-vessels. We have previously shown that CRP upregulates endothelial-derived Notch-3, a key receptor involved in vascular development, remodelling and maturation. In this study, we investigated the links between the bioactive monomeric CRP (mCRP) and Notch-3 signalling in angiogenesis. We used in vitro (cell counting, wound-healing and tubulogenesis assays) and in vivo (chorioallantoic membrane) angiogenic assays and Western blotting to study the angiogenic signalling pathways induced by mCRP and Notch-3 activator chimera protein (Notch-3/Fc). Our results showed an additive effect on angiogenesis of mCRP stimulatory effect combined with Notch-3/Fc promoting bovine aortic endothelial cell (BAEC) proliferation, migration, tube formation in Matrigel(TM) with up-regulation of phospho-Akt expression. The pharmacological blockade of PI3K/Akt survival pathway by LY294002 fully inhibited in vitro and in vivo angiogenesis induced by mCRP/Notch-3/Fc combination while blocking Notch signalling by gamma-secretase inhibitor (DAPT) partially inhibited mCRP/Notch-3/Fc-induced angiogenesis. Using a BAEC vascular smooth muscle cell co-culture sprouting angiogenesis assay and transmission electron microscopy, we showed that activation of both mCRP and Notch-3 signalling induced the formation of thicker sprouts which were shown later by Western blotting to be associated with an up-regulation of N-cadherin expression and a down-regulation of VE-cadherin expression. Thus, mCRP combined with Notch-3 activator promote angiogenesis through the PI3K/Akt pathway and their therapeutic combination has potential to promote and stabilize vessel formation whilst reducing the risk of haemorrhage from unstable plaques. PMID:24972386

  2. Blockade of Wnt signaling inhibits angiogenesis and tumor growth in hepatocellular carcinoma

    OpenAIRE

    J. Hu; Dong, A.; Fernandez-Ruiz, V. (Verónica); Shan, J.; Kawa, M. (Milosz); Martinez-Anso, E. (Eduardo); J. Prieto; Qian, C

    2009-01-01

    Aberrant activation of Wnt signaling plays an important role in hepatocarcinogenesis. In addition to direct effects on tumor cells, Wnt signaling might be involved in the organization of tumor microenvironment. In this study, we have explored whether Wnt signaling blockade by exogenous expression of Wnt antagonists could inhibit tumor angiogenesis and control tumor growth. Human Wnt inhibitory factor 1 (WIF1) and secreted frizzled-related protein 1 (sFRP1) were each fused with Fc fragment of ...

  3. Conditioned Medium From Human Amniotic Mesenchymal Stromal Cells Limits Infarct Size and Enhances Angiogenesis

    OpenAIRE

    Danieli, Patrizia; Malpasso, Giuseppe; Ciuffreda, Maria Chiara; Cervio, Elisabetta; Calvillo, Laura; Copes, Francesco; Pisano, Federica; Mura, Manuela; Kleijn, Lennaert; De Boer, Rudolf A.; Viarengo, Gianluca; Rosti, Vittorio; Spinillo, Arsenio; Roccio, Marianna; Gnecchi, Massimiliano

    2015-01-01

    The goal of this study was to elucidate whether human amniotic membrane-derived mesenchymal stromal cells (hAMCs) can exert beneficial paracrine effects on infarcted rat hearts. In particular, the administration of hAMC-conditioned medium repaired ischemic damage through cardioprotection and angiogenesis. Finally, several putative active paracrine mediators that might account for the effects observed were identified by gene and protein arrays.

  4. P70S6K 1 regulation of angiogenesis through VEGF and HIF-1{alpha} expression

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Chuan-Xiu; Shi, Zhumei [Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing 210029 (China); Meng, Qiao; Jiang, Yue; Liu, Ling-Zhi [Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Jiang, Bing-Hua, E-mail: binghjiang@yahoo.com [Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing 210029 (China); Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States)

    2010-07-30

    Research highlights: {yields} P70S6K1 regulates VEGF expression; {yields} P70S6K1 induces transcriptional activation through HIF-1{alpha} binding site; {yields} P70S6K1 regulates HIF-1{alpha}, but not HIF-1{beta} protein expression; {yields} P70S6K1 mediates tumor growth and angiogenesis through HIF-1{alpha} and VEGF expression. -- Abstract: The 70 kDa ribosomal S6 kinase 1 (p70S6K1), a downstream target of phosphoinositide 3-kinase (PI3K) and ERK mitogen-activated protein kinase (MAPK), is an important regulator of cell cycle progression, and cell proliferation. Recent studies indicated an important role of p70S6K1 in PTEN-negative and AKT-overexpressing tumors. However, the mechanism of p70S6K1 in tumor angiogenesis remains to be elucidated. In this study, we specifically inhibited p70S6K1 activity in ovarian cancer cells using vector-based small interfering RNA (siRNA) against p70S6K1. We found that knockdown of p70S6K1 significantly decreased VEGF protein expression and VEGF transcriptional activation through the HIF-1{alpha} binding site at its enhancer region. The expression of p70S6K1 siRNA specifically inhibited HIF-1{alpha}, but not HIF-1{beta} protein expression. We also found that p70S6K1 down-regulation inhibited ovarian tumor growth and angiogenesis, and decreased cell proliferation and levels of VEGF and HIF-1{alpha} expression in tumor tissues. Our results suggest that p70S6K1 is required for tumor growth and angiogenesis through HIF-1{alpha} and VEGF expression, providing a molecular mechanism of human ovarian cancer mediated by p70S6K1 signaling.

  5. Differential effects of angiostatic steroids and dexamethasone on angiogenesis and cytokine levels in rat sponge implants.

    OpenAIRE

    Hori, Y.(University of Tokyo, Tokyo, Japan); Hu, D. E.; Yasui, K; Smither, R. L.; Gresham, G. A.; Fan, T. P.

    1996-01-01

    1. Subcutaneous implantation of sterile polyether sponges elicited a reproducible neovascular response in rats, as determined by blood flow measurement with a 133Xe clearance technique and confirmed histologically. This model was used to monitor the levels of two cytokines during angiogenesis and to compare the activities of angiostatic steroids and anti-inflammatory steroids. 2. Initial experiments followed the neovascular development over a 20-day period. Daily local injection of hydrocorti...

  6. Vascular endothelial growth factor regulates angiogenesis and vascular permeability in Kaposi's sarcoma.

    OpenAIRE

    Cornali, E.; Zietz, C; Benelli, R; Weninger, W.; Masiello, L.; Breier, G; Tschachler, E; Albini, A; Stürzl, M

    1996-01-01

    Abundant vasculature with increased permeability is a prominent histological feature of Kaposi's sarcoma (KS), a multifocal, cytokine-regulated tumor. Here we report on the role of vascular endothelial growth factor (VEGF) in AIDS-KS angiogenesis and vascular permeability. We demonstrate that different cytokines, which were previously shown to be active in KS development, modulate VEGF expression in KS spindle cells and cooperate with VEGF on the functional level. Northern blot analysis as we...

  7. Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle

    OpenAIRE

    Yan, Zhen; Okutsu, Mitsuharu; Akhtar, Yasir N.; Lira, Vitor A.

    2010-01-01

    Skeletal muscle exhibits superb plasticity in response to changes in functional demands. Chronic increases of skeletal muscle contractile activity, such as endurance exercise, lead to a variety of physiological and biochemical adaptations in skeletal muscle, including mitochondrial biogenesis, angiogenesis, and fiber type transformation. These adaptive changes are the basis for the improvement of physical performance and other health benefits. This review focuses on recent findings in genetic...

  8. Positron emission tomography tracers for imaging angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Haubner, Roland [Medical University Innsbruck, Department of Nuclear Medicine, Innsbruck (Austria); Beer, Ambros J. [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Wang, Hui [Sichuan University, Department of Radiology, West China Hospital, Chengdu (China); Chen, Xiaoyuan [National Institutes of Health, Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD (United States)

    2010-08-15

    Position emission tomography imaging of angiogenesis may provide non-invasive insights into the corresponding molecular processes and may be applied for individualized treatment planning of antiangiogenic therapies. At the moment, most strategies are focusing on the development of radiolabelled proteins and antibody formats targeting VEGF and its receptor or the ED-B domain of a fibronectin isoform as well as radiolabelled matrix metalloproteinase inhibitors or {alpha}{sub v}{beta}{sub 3} integrin antagonists. Great efforts are being made to develop suitable tracers for different target structures. All of the major strategies focusing on the development of radiolabelled compounds for use with positron emission tomography are summarized in this review. However, because the most intensive work is concentrated on the development of radiolabelled RGD peptides for imaging {alpha}{sub v}{beta}{sub 3} expression, which has successfully made its way from bench to bedside, these developments are especially emphasized. (orig.)

  9. Tumor angiogenesis in mice and men.

    Science.gov (United States)

    Alani, Rhoda M; Silverthorn, Courtney F; Orosz, Kate

    2004-06-01

    Over the past decade much research has focused on understanding the molecular pathways that regulate the development of a tumor-associated vasculature. In 1999, Lyden and colleagues showed that mice deficient in one to three Id1 or Id3 alleles could not support the growth of tumor xenografts due to defects in tumor-associated angiogenesis. Three recently published manuscripts have now re-examined the role of Id genes in the development of a tumor-associated vasculature using more clinically relevant tumor model systems. Remarkably, all three studies have found strikingly different results compared to the original xenograft data published in 1999. Below we review the current understanding of the role of Id genes in the development of a tumor-associated vasculature given the most recent data and suggest ways in which animal tumor model systems might be put to better use to provide more clinically relevant information.

  10. Assessment methods for angiogenesis and current approaches for its quantification

    Directory of Open Access Journals (Sweden)

    Waleed Hassan AlMalki

    2014-01-01

    Full Text Available Angiogenesis is a physiological process which describes the development of new blood vessels from the existing vessels. It is a common and the most important process in the formation and development of blood vessels, so it is supportive in the healing of wounds and granulation of tissues. The different assays for the evaluation of angiogenesis have been described with distinct advantages and some limitations. In order to develop angiogenic and antiangiogenic techniques, continuous efforts have been resulted to give animal models for more quantitative analysis of angiogenesis. Most of the studies on angiogenic inducers and inhibitors rely on various models, both in vitro, in vivo and in ova, as indicators of efficacy. The angiogenesis assays are very much helpful to test efficacy of both pro- and anti- angiogenic agents. The development of non-invasive procedures for quantification of angiogenesis will facilitate this process significantly. The main objective of this review article is to focus on the novel and existing methods of angiogenesis and their quantification techniques. These findings will be helpful to establish the most convenient methods for the detection, quantification of angiogenesis and to develop a novel, well tolerated and cost effective anti-angiogenic treatment in the near future.

  11. Potential of dietary nitrate in angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Christos; Rammos; Peter; Luedike; Ulrike; Hendgen-Cotta; Tienush; Rassaf

    2015-01-01

    Endothelial dysfunction with impaired bioavailability of nitric oxide(NO) is the hallmark in the development of cardiovascular disease. Endothelial dysfunction leads to atherosclerosis, characterized by chronic inflammation of the arterial wall and stepwise narrowing of the vessel lumen. Atherosclerosis causes deprivation of adequate tissue blood flow with compromised oxygen supply. To overcome this undersupply, remodeling of the vascular network is necessary to reconstitute and sustain tissue viability. This physiological response is often not sufficient and therapeutic angiogenesis remains an unmet medical need in critical limb ischemia or coronary artery disease. Feasible approaches to promote blood vessel formation are sparse. Administration of pro-angiogenic factors, gene therapy, or targeting of micro RNAs has not yet entered the daily practice. Nitric oxide is an important mediator of angiogenesis that becomes limited under ischemic conditions and the maintenance of NO availability might constitute an attractive therapeutic target. Until recently it was unknown how the organism provides NO under ischemia. In recent years it could be demonstrated that NO can be formed independently of its enzymatic synthesis in the endothelium by reduction of inorganic nitrite under hypoxic conditions. Circulating nitrite derives from oxidation of NO or reduction of inorganic nitrate by commensal bacteria in the oral cavity. Intriguingly, nitrate is a common constituent of our everyday diet and particularly high concentrations are found in leafy green vegetables such as spinach, lettuce, or beetroot. Evidence suggests that dietary nitrate supplementation increases the regenerative capacity of ischemic tissue and that this effect may offer an attractive nutrition-based strategy to improve ischemia-induced revascularization. We here summarize and discuss the regenerative capacity of dietary nitrate on the vascular system.

  12. hERG1 channels modulate integrin signaling to trigger angiogenesis and tumor progression in colorectal cancer

    OpenAIRE

    Crociani, Olivia; Zanieri, Francesca; Pillozzi, Serena; Lastraioli, Elena; Stefanini, Matteo; Fiore, Antonella; Fortunato, Angelo; D'Amico, Massimo; Masselli, Marika; De Lorenzo, Emanuele; Gasparoli, Luca; Chiu, Martina; Bussolati, Ovidio; Becchetti, Andrea; Arcangeli, Annarosa

    2013-01-01

    Angiogenesis is a potential target for cancer therapy. We identified a novel signaling pathway that sustains angiogenesis and progression in colorectal cancer (CRC). This pathway is triggered by β1 integrin-mediated adhesion and leads to VEGF-A secretion. The effect is modulated by the human ether-à-go-go related gene 1 (hERG1) K+ channel. hERG1 recruits and activates PI3K and Akt. This in turn increases the Hypoxia Inducible Factor (HIF)-dependent transcription of VEGF-A and other tumour pro...

  13. Poly-γ-Glutamic Acid Attenuates Angiogenesis and Inflammation in Experimental Colitis

    Directory of Open Access Journals (Sweden)

    Munkhtugs Davaatseren

    2013-01-01

    Full Text Available Poly-γ-glutamic acid (γ-PGA, naturally secreted from various strains of Bacillus, has anti-inflammatory activity. In inflammatory bowel disease (IBD, inflammation is promoted and sustained by angiogenesis; however, the role played by γ-PGA in this condition is unclear. Therefore, we evaluated γ-PGA effects on angiogenesis and inflammation in a dextran sulfate sodium- (DSS- induced mouse colitis model. Experimental colitis was induced in male C57BL/6 mice by administering 3% DSS. Disease activity index (DAI, histopathological scores, microvascular density, myeloperoxidase activity, and VEGF-A and VEGFR2 expression were compared among control mice, DSS-treated mice, and mice receiving 3% DSS along with γ-PGA at 50 mg/kg body weight per day or 3% DSS with γ-PGA at 200 mg/kg body weight per day. We found that γ-PGA significantly attenuated weight loss, DAI, and colon shortening. γ-PGA also significantly reduced histopathological evidence of injury. Moreover, γ-PGA significantly attenuated DSS-induced blood vessel densities. Furthermore, γ-PGA attenuated DSS-induced expression of VEGF-A and its receptor, VEGFR2. In addition, γ-PGA treatment led to reduced recruitment of leukocytes to the inflamed colon. Therefore, our results indicate that γ-PGA has potential application in conditions marked by inflammatory-driven angiogenesis and mucosal inflammation.

  14. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yang, Guifang [Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Cai, Xiaojun [Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Falck, John R. [Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 (United States); Yang, Jing, E-mail: yangjingliu@yahoo.com.cn [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  15. Hepatic proliferation and angiogenesis markers are increased after portal deprivation in rats: a study of molecular, histological and radiological changes.

    Directory of Open Access Journals (Sweden)

    Florent Guérin

    Full Text Available To determine the pathogenesis of liver nodules, and lesions similar to obliterative portal venopathy, observed after portosystemic shunts or portal vein thrombosis in humans.We conducted an experimental study comparing portacaval shunt (PCS, total portal vein ligation (PVL, and sham (S operated rats. Each group were either sacrificed at 6 weeks (early or 6 months (late. Arterial liver perfusion was studied in vivo using CT, and histopathological changes were noted. Liver mRNA levels were quantified by RT-QPCR for markers of inflammation (Il10, Tnfa, proliferation (Il6st, Mki67, Hgf, Hnf4a, angiogenesis: (Vegfa, Vegfr 1, 2 and 3; Pgf, oxidative stress (Nos2, and 3, Hif1a, and fibrosis (Tgfb. PCS and PVL were compared to the S group.Periportal fibrosis and arterial proliferation was observed in late PCS and PVL groups. CT imaging demonstrated increased arterial liver perfusion in the PCS group. RT-QPCR showed increased inflammatory markers in PCS and PVL early groups. Tnfa and Il10 were increased in PCS and PVL late groups respectively. All proliferative markers increased in the PCS, and Hnf4a in the PVL early groups. Mki67 and Hnf4a were increased in the PCS late group. Nos3 was increased in the early and late PCS groups, and Hif1a was decreased in the PVL groups. Markers of angiogenesis were all increased in the early PCS group, and Vegfr3 and Pgf in the late PCS group. Only Vegfr3 was increased in the PVL groups. Tgf was increased in the PCS groups.Portal deprivation in rats induces a sustained increase in intrahepatic markers of inflammation, angiogenesis, proliferation, and fibrosis.

  16. Insulin-sensitizing and Anti-proliferative Effects of Argania spinosa Seed Extracts

    Directory of Open Access Journals (Sweden)

    Samira Samane

    2006-01-01

    Full Text Available Argania spinosa is an evergreen tree endemic of southwestern Morocco. Many preparations have been used in traditional Moroccan medicine for centuries to treat several illnesses including diabetes. However, scientific evidence supporting these actions is lacking. Therefore, we prepared various extracts of the argan fruit, namely keel, cake and argan oil extracts, which we tested in the HTC hepatoma cell line for their potential to affect cellular insulin responses. Cell viability was measured by Trypan Blue exclusion and the response to insulin evaluated by the activation of the extracellular regulated kinase (ERK1/2, ERK kinase (MEK1/2 and protein kinase B (PKB/Akt signaling components. None of the extracts demonstrated significant cytotoxic activity. Certain extracts demonstrated a bi-phasic effect on ERK1/2 activation; low doses of the extract slightly increased ERK1/2 activation in response to insulin, whereas higher doses completely abolished the response. In contrast, none of the extracts had any significant effect on MEK whereas only a cake saponin subfraction enhanced insulin-induced PKB/Akt activation. The specific action of argan oil extracts on ERK1/2 activation made us consider an anti-proliferative action. We have thus tested other transformed cell lines (HT-1080 and MSV-MDCK-INV cells and found similar results. Inhibition of ERK1/2 activation was also associated with decreased DNA synthesis as evidenced by [3H]thymidine incorporation experiments. These results suggest that the products of Argania spinosa may provide a new therapeutic avenue against proliferative diseases.

  17. Insulin-sensitizing and anti-proliferative effects of Argania spinosa seed extracts.

    Science.gov (United States)

    Samane, Samira; Noël, Josette; Charrouf, Zoubida; Amarouch, Hamid; Haddad, Pierre Selim

    2006-09-01

    Argania spinosa is an evergreen tree endemic of southwestern Morocco. Many preparations have been used in traditional Moroccan medicine for centuries to treat several illnesses including diabetes. However, scientific evidence supporting these actions is lacking. Therefore, we prepared various extracts of the argan fruit, namely keel, cake and argan oil extracts, which we tested in the HTC hepatoma cell line for their potential to affect cellular insulin responses. Cell viability was measured by Trypan Blue exclusion and the response to insulin evaluated by the activation of the extracellular regulated kinase (ERK1/2), ERK kinase (MEK1/2) and protein kinase B (PKB/Akt) signaling components. None of the extracts demonstrated significant cytotoxic activity. Certain extracts demonstrated a bi-phasic effect on ERK1/2 activation; low doses of the extract slightly increased ERK1/2 activation in response to insulin, whereas higher doses completely abolished the response. In contrast, none of the extracts had any significant effect on MEK whereas only a cake saponin subfraction enhanced insulin-induced PKB/Akt activation. The specific action of argan oil extracts on ERK1/2 activation made us consider an anti-proliferative action. We have thus tested other transformed cell lines (HT-1080 and MSV-MDCK-INV cells) and found similar results. Inhibition of ERK1/2 activation was also associated with decreased DNA synthesis as evidenced by [(3)H]thymidine incorporation experiments. These results suggest that the products of Argania spinosa may provide a new therapeutic avenue against proliferative diseases.

  18. Insulin-sensitizing and anti-proliferative effects of Argania spinosa seed extracts.

    Science.gov (United States)

    Samane, Samira; Noël, Josette; Charrouf, Zoubida; Amarouch, Hamid; Haddad, Pierre Selim

    2006-09-01

    Argania spinosa is an evergreen tree endemic of southwestern Morocco. Many preparations have been used in traditional Moroccan medicine for centuries to treat several illnesses including diabetes. However, scientific evidence supporting these actions is lacking. Therefore, we prepared various extracts of the argan fruit, namely keel, cake and argan oil extracts, which we tested in the HTC hepatoma cell line for their potential to affect cellular insulin responses. Cell viability was measured by Trypan Blue exclusion and the response to insulin evaluated by the activation of the extracellular regulated kinase (ERK1/2), ERK kinase (MEK1/2) and protein kinase B (PKB/Akt) signaling components. None of the extracts demonstrated significant cytotoxic activity. Certain extracts demonstrated a bi-phasic effect on ERK1/2 activation; low doses of the extract slightly increased ERK1/2 activation in response to insulin, whereas higher doses completely abolished the response. In contrast, none of the extracts had any significant effect on MEK whereas only a cake saponin subfraction enhanced insulin-induced PKB/Akt activation. The specific action of argan oil extracts on ERK1/2 activation made us consider an anti-proliferative action. We have thus tested other transformed cell lines (HT-1080 and MSV-MDCK-INV cells) and found similar results. Inhibition of ERK1/2 activation was also associated with decreased DNA synthesis as evidenced by [(3)H]thymidine incorporation experiments. These results suggest that the products of Argania spinosa may provide a new therapeutic avenue against proliferative diseases. PMID:16951716

  19. Inhibition of VEGF-dependent angiogenesis by the anti-CD82 monoclonal antibody 4F9 through regulation of lipid raft microdomains.

    Science.gov (United States)

    Nomura, Sayaka; Iwata, Satoshi; Hatano, Ryo; Komiya, Eriko; Dang, Nam H; Iwao, Noriaki; Ohnuma, Kei; Morimoto, Chikao

    2016-05-20

    CD82 (also known as KAI1) belongs to the tetraspanin superfamily of type III transmembrane proteins, and is involved in regulating cell adhesion, migration and proliferation. In contrast to these well-established roles of CD82 in tumor biology, its function in endothelial cell (EC) activity and tumor angiogenesis is yet to be determined. In this study, we show that suppression of CD82 negatively regulates vascular endothelial growth factor (VEGF)-induced angiogenesis. Moreover, we demonstrate that the anti-CD82 mAb 4F9 effectively inhibits phosphorylation of VEGF receptor 2 (VEGFR2), which is the principal mediator of the VEGF-induced angiogenic signaling process in tumor angiogenesis, by regulating the organization of the lipid raft microdomain signaling platform in human EC. Our present work therefore suggests that CD82 on EC is a potential target for anti-angiogenic therapy in VEGFR2-dependent tumor angiogenesis.

  20. Evaluation of the Anti-proliferative Effects of Ophiocoma erinaceus Methanol Extract Against Human Cervical Cancer Cells

    OpenAIRE

    Baharara, Javad; Amini, Elaheh; Namvar, Farideh

    2016-01-01

    Background: Marine organisms provide appreciable source of novel bioactive compounds with pharmacological potential. There is little information in correlation with anti-cancer activities of brittle star. In the present study, anti-neoplastic efficacy of Ophiocoma erinaceus methanol extract against human cervical cancer cells was investigated. Methods: The HeLa cells were cultured and exposed to brittle star methanol extract for 24 and 48 hr. The anti-proliferative properties were examined by...

  1. Estrogen Receptor-Negative Breast Ductal Carcinoma: Clinicopathological Features and Mib-1 (Ki-67) Proliferative Index Association

    OpenAIRE

    Noorasmaliza Mdpaiman; Siti Aishah Md Ali; Reena Mdzin; Meor Zamari Meor Kamal; Wan Anna Md Amin; Mohan Nallusamy; Pavitratha Puspanathan; Rohaizak Muhammad; Sharifa Ezat Wan Puteh; Srijit Das

    2014-01-01

    Breast cancer estrogen receptor (ER) status is one of the strong additional factors in predicting response of patients towards hormonal treatment. The main aim of this study was to assess the morphological characteristics and proliferative activity using MIB-1(Ki-67) of estrogen receptor negative invasive breast ductal carcinoma (NOS type) as well as to correlate these features with clinicopathological data. We also aim to study the expression of c-erbB2 in ER negative breast tumors. High pro...

  2. One-Pot Ugi/Aza-Michael Synthesis of Highly Substituted 2,5-Diketopiperazines with Anti-Proliferative Properties

    OpenAIRE

    Ulrike Holzgrabe; Gessner, Viktoria H.; Florian Seufert; Carsten Berges; Andreas Hartung

    2012-01-01

    The well-known Ugi reaction of aldehydes with amines, carboxylic acids and isocyanides leads to the formation of acyclic α-acylaminocarboxamides. Replacement of the carboxylic acid derivatives with β-acyl substituted acrylic acids gives access to highly substituted 2,5-diketopiperazines in one single reaction-step without additives or complex reaction procedures. The obtained diketopiperazines show anti-proliferative effects on activated T cells and represent therefore poten...

  3. Low-dose radiation pretreatment improves survival of human ceiling culture-derived proliferative adipocytes (ccdPAs) under hypoxia via HIF-1 alpha and MMP-2 induction

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Naoki [Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677 (Japan); Kubota, Yoshitaka, E-mail: kubota-cbu@umin.ac.jp [Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677 (Japan); Kosaka, Kentarou; Akita, Shinsuke; Sasahara, Yoshitarou; Kira, Tomoe [Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677 (Japan); Kuroda, Masayuki [Center for Advanced Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677 (Japan); Mitsukawa, Nobuyuki [Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677 (Japan); Bujo, Hideaki [Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University, Sakura Medical Center, 564-1 Shimoshizu, Sakura-shi, Chiba, #285-8741 (Japan); Satoh, Kaneshige [Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677 (Japan)

    2015-08-07

    Poor survival is a major problem of adipocyte transplantation. We previously reported that VEGF and MMPs secreted from transplanted adipocytes are essential for angiogenesis and adipogenesis. Pretreatment with low-dose (5 Gy) radiation (LDR) increased VEGF, MMP-2, and HIF-1 alpha mRNA expression in human ceiling culture-derived proliferative adipocytes (hccdPAs). Gene expression after LDR differed between adipose-derived stem cells (hASCs) and hccdPAs. Pretreatment with LDR improved the survival of hccdPAs under hypoxia, which is inevitable in the early stages after transplantation. Upregulation of VEGF and MMP-2 after LDR in hccdPAs is mediated by HIF-1 alpha expression. Our results suggest that pretreatment with LDR may improve adipocyte graft survival in a clinical setting through upregulation of VEGF and MMP-2 via HIF-1 alpha. - Highlights: • Ceiling culture-derived proliferative adipocytes (ccdPAs) react to radiation. • Low-dose radiation (LDR) pretreatment improves survival of ccdPAs under hypoxia. • Gene expression after LDR differs between ccdPAs and adipose-derived stem cells. • LDR-induced increase in MMP-2 and VEGF is dependent on HIF-1 alpha induction. • LDR pretreatment may improve the adipocyte graft survival rate in clinical settings.

  4. Low-dose radiation pretreatment improves survival of human ceiling culture-derived proliferative adipocytes (ccdPAs) under hypoxia via HIF-1 alpha and MMP-2 induction

    International Nuclear Information System (INIS)

    Poor survival is a major problem of adipocyte transplantation. We previously reported that VEGF and MMPs secreted from transplanted adipocytes are essential for angiogenesis and adipogenesis. Pretreatment with low-dose (5 Gy) radiation (LDR) increased VEGF, MMP-2, and HIF-1 alpha mRNA expression in human ceiling culture-derived proliferative adipocytes (hccdPAs). Gene expression after LDR differed between adipose-derived stem cells (hASCs) and hccdPAs. Pretreatment with LDR improved the survival of hccdPAs under hypoxia, which is inevitable in the early stages after transplantation. Upregulation of VEGF and MMP-2 after LDR in hccdPAs is mediated by HIF-1 alpha expression. Our results suggest that pretreatment with LDR may improve adipocyte graft survival in a clinical setting through upregulation of VEGF and MMP-2 via HIF-1 alpha. - Highlights: • Ceiling culture-derived proliferative adipocytes (ccdPAs) react to radiation. • Low-dose radiation (LDR) pretreatment improves survival of ccdPAs under hypoxia. • Gene expression after LDR differs between ccdPAs and adipose-derived stem cells. • LDR-induced increase in MMP-2 and VEGF is dependent on HIF-1 alpha induction. • LDR pretreatment may improve the adipocyte graft survival rate in clinical settings

  5. The effects of ethanol on angiogenesis after myocardial infarction, and preservation of angiogenesis with rosuvastatin after heavy drinking.

    Science.gov (United States)

    Zhang, Yuying; Yuan, Haitao; Sun, Yongle; Wang, Yong; Wang, Aihong

    2016-08-01

    The cardioprotective effects of moderate alcohol consumption and statins have been known for years. However, heavy or binge drinking confers a high risk of cardiovascular disease. This study aimed to investigate the effects of different levels of alcohol consumption on acute myocardial infarction that was induced experimentally in rats, with a focus on the potential mechanism of angiogenesis and the effects of statins on heavy drinking. The experimental rats were fed low-dose ethanol (0.5 g/kg/day), high-dose ethanol (5 g/kg/day), and high-dose ethanol with rosuvastatin (10 mg/kg/day) during the entire experiment. Acute myocardial infarctions were induced 4 weeks after the beginning of the experiment. We assessed the capillary density in the myocardium via immunohistochemistry and quantified the expression of vascular endothelial growth factor (VEGF) and endostatin via enzyme-linked immunosorbent assay kits on the 4th day after myocardial infarction. The results revealed that low ethanol consumption promoted angiogenesis in association with higher VEGF and lower endostatin. High ethanol intake suppressed angiogenesis with unchanged VEGF and elevated endostatin. Treatment with rosuvastatin preserved angiogenesis following high ethanol intake, with an upregulation of VEGF. This study highlights that low ethanol consumption obviously promotes angiogenesis in myocardial-infarction rats while increasing the expression of VEGF, whereas high ethanol consumption inhibits ischemia-induced angiogenesis. This study also provides evidence that rosuvastatin alleviates the inhibitory effects of heavy drinking on angiogenesis. PMID:27565753

  6. Synthesis of novel furozan-based nitric oxide-releasing derivatives of 1-oxo-oridonin with anti-proliferative activity%NO供体型呋咱类1-位氧代冬凌草甲素衍生物的合成及抗增殖活性

    Institute of Scientific and Technical Information of China (English)

    李达翃; 王磊; 蔡浩; 蒋博文; 张奕华; 孙益军; 徐进宜

    2012-01-01

    目的:为寻找新型一氧化氮(NO)供体型抗肿瘤候选药物,设计合成了一系列新型呋咱类1-位氧代冬凌草甲素衍生物.方法:首先合成不同呋咱类NO供体中间体(9a-i),再将它们与1-位氧代冬凌草甲素(2)的14-位羟基进行缩合,得到一系列NO供体型呋咱类1-位氧代冬凌草甲素衍生物;用Griess实验测试硝酸盐/亚硝酸盐的含量,从而间接测试了NO释放量;同时采用MTT法测定了目标化合物对4种人肿瘤细胞株增殖的抑制活性.结果:所有呋咱类NO供体衍生物在体外60 min时间点上都能释放大于19 μmol·L-1的NO.活性最好的目标化合物10h对Bel-7402细胞的增殖抑制活性IC50值达到0.74 μmol.L-1,优于阳性对照药紫杉醇;获得了初步构效关系信息.结论:利用NO供体和活性天然产物形成孪药分子有望成为发现新型抗肿瘤药物的途径之一.%AIM:To search for novel nitric oxide (NO) releasing anti-tumor agents,a series of furoxan-based nitric oxide-releasing derivatives of 1-oxo-oridonin were designed and synthesized.METHOD:Different furozan-based NO donors (ga-i) were synthesized and conjugated with the 14-hydroxyl of 1-oxo-oridonin (2).The level of nitrate/nitrite in the cell lysates was tested by Griess assay and the anti-proliferative activity of these derivatives against four human cancer cell lines was also determined.RESULTS:These furoxan-based NO-releasing derivatives could produce more than 19 μmol·L-1 of NO in vitro at the time point of 60 min.The most promising compound 10 h exhibited stronger activity than the positive control Taxol against the Bel-7402 cell line with an IC50 value 0.74 μmol.L-1.The structure-activity relationships were concluded based on the derived experimental data.CONCLUSION:These results suggested that NO-donor/natural product hybrids may provide a promising approach for the discovery of novel anti-tumor agents.

  7. Epidermal growth factor receptor inhibition reduces angiogenesis via hypoxia-inducible factor-1α and Notch1 in head neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Wei-Ming Wang

    Full Text Available Angiogenesis, a marker of cancer development, affects response to radiotherapy sensibility. This preclinical study aims to understand the receptor tyrosine kinase-mediated angiogenesis in head neck squamous cell carcinoma (HNSCC. The receptor tyrosine kinase activity in a transgenic mouse model of HNSCC was assessed. The anti-tumorigenetic and anti-angiogenetic effects of cetuximab-induced epidermal growth factor receptor (EGFR inhibition were investigated in xenograft and transgenic mouse models of HNSCC. The signaling transduction of Notch1 and hypoxia-inducible factor-1α (HIF-1α was also analyzed. EGFR was overexpressed and activated in the Tgfbr1/Pten deletion (2cKO mouse model of HNSCC. Cetuximab significantly delayed tumor onset by reducing tumor angiogenesis. This drug exerted similar effects on heterotopic xenograft tumors. In the human HNSCC tissue array, increased EGFR expression correlated with increased HIF-1α and micro vessel density. Cetuximab inhibited tumor-induced angiogenesis in vitro and in vivo by significantly downregulating HIF-1α and Notch1. EGFR is involved in the tumor angiogenesis of HNSCC via the HIF-1α and Notch1 pathways. Therefore, targeting EGFR by suppressing hypoxia- and Notch-induced angiogenesis may benefit HNSCC therapy.

  8. Cooperative signaling between Slit2 and Ephrin-A1 regulates a balance between angiogenesis and angiostasis.

    Science.gov (United States)

    Dunaway, Charlene M; Hwang, Yoonha; Lindsley, Craig W; Cook, Rebecca S; Wu, Jane Y; Boothby, Mark; Chen, Jin; Brantley-Sieders, Dana M

    2011-02-01

    Slit proteins induce cytoskeletal remodeling through interaction with roundabout (Robo) receptors, regulating migration of neurons and nonneuronal cells, including leukocytes, tumor cells, and endothelium. The role of Slit2 in vascular remodeling, however, remains controversial, with reports of both pro- and antiangiogenic activity. We report here that cooperation between Slit2 and ephrin-A1 regulates a balance between the pro- and antiangiogenic functions of Slit2. While Slit2 promotes angiogenesis in culture and in vivo as a single agent, Slit2 potently inhibits angiogenic remodeling in the presence of ephrin-A1. Slit2 stimulates angiogenesis through mTORC2-dependent activation of Akt and Rac GTPase, the activities of which are inhibited in the presence of ephrin-A1. Activated Rac or Akt partially rescues vascular assembly and motility in costimulated endothelium. Taken together, these data suggest that Slit2 differentially regulates angiogenesis in the context of ephrin-A1, providing a plausible mechanism for the pro- versus antiangiogenic functions of Slit2. Our results suggest that the complex roles of Slit-Robo signaling in angiogenesis involve context-dependent mechanisms.

  9. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice

    Science.gov (United States)

    The growth of new blood vessels or angiogenesis is necessary for the growth of adipose tissue. Dietary polyphenols may suppress growth of adipose tissue through their antiangiogenic activity and by modulating adipocyte metabolism. In the present study, we examined the effect of curcumin, a polyphen...

  10. Endothelial PDGF-CC regulates angiogenesis-dependent thermogenesis in beige fat

    Science.gov (United States)

    Seki, Takahiro; Hosaka, Kayoko; Lim, Sharon; Fischer, Carina; Honek, Jennifer; Yang, Yunlong; Andersson, Patrik; Nakamura, Masaki; Näslund, Erik; Ylä-Herttuala, Seppo; Sun, Meili; Iwamoto, Hideki; Li, Xuri; Liu, Yizhi; Samani, Nilesh J.; Cao, Yihai

    2016-01-01

    Cold- and β3-adrenoceptor agonist-induced sympathetic activation leads to angiogenesis and UCP1-dependent thermogenesis in mouse brown and white adipose tissues. Here we show that endothelial production of PDGF-CC during white adipose tissue (WAT) angiogenesis regulates WAT browning. We find that genetic deletion of endothelial VEGFR2, knockout of the Pdgf-c gene or pharmacological blockade of PDGFR-α impair the WAT-beige transition. We further show that PDGF-CC stimulation upregulates UCP1 expression and acquisition of a beige phenotype in differentiated mouse WAT-PDGFR-α+ progenitor cells, as well as in human WAT-PDGFR-α+ adipocytes, supporting the physiological relevance of our findings. Our data reveal a paracrine mechanism by which angiogenic endothelial cells modulate adipocyte metabolism, which may provide new targets for the treatment of obesity and related metabolic diseases. PMID:27492130

  11. Angiogenesis inhibition causes hypertension and placental dysfunction in a rat model of preeclampsia

    DEFF Research Database (Denmark)

    Carlström, Mattias; Wentzel, Parri; Skøtt, Ole;

    2009-01-01

    and placentae were smaller (2.8 g and 0.51 g) than the pregnant controls rats' fetuses and placentae (3.5 g and 0.56 g). Resorptions tended to be higher in the pregnant Suramin-treated rat litters compared with the pregnant control rat litters (P = 0.08). The area of the maternal blood vessels...... and fetal outcome exerted by the angiogenesis inhibitor Suramin (100 mg/kg i.p.) during early placentation. Blood pressure and heart rate were measured continuously with telemetry in Sprague-Dawley rats of four experimental groups: nonpregnant controls, Suramin-treated nonpregnant rats, pregnant controls...... in the mesometrial triangle was smaller in the pregnant Suramin-treated rats group than in the pregnant control rats group. CONCLUSION: The inhibition of uterine angiogenesis increases maternal blood pressure and compromises fetal and placental development. Placental hypoxia and subsequent activation of the renin...

  12. Arctigenin in combination with quercetin synergistically enhances the anti-proliferative effect in prostate cancer cells

    Science.gov (United States)

    Wang, Piwen; Phan, Tien; Gordon, David; Chung, Seyung; Henning, Susanne M.; Vadgama, Jaydutt V.

    2014-01-01

    Scope We investigated whether a combination of two promising chemopreventive agents arctigenin and quercetin increases the anti-carcinogenic potency at lower concentrations than necessary when used individually in prostate cancer. Methods and results Androgen-dependent LAPC-4 and LNCaP prostate cancer cells were treated with low doses of arctigenin and quercetin alone or in combination for 48h. The anti-proliferative activity of arctigenin was 10-20 fold stronger than quercetin in both cell lines. Their combination synergistically enhanced the anti-proliferative effect, with a stronger effect in androgen receptor (AR) wild-type LAPC-4 cells than in AR mutated LNCaP cells. Arctigenin demonstrated a strong ability to inhibit AR protein expression in LAPC-4 cells. The combination treatment significantly inhibited both AR and PI3K/Akt pathways compared to control. A protein array analysis revealed that the mixture targets multiple pathways particularly in LAPC-4 cells including Stat3 pathway. The mixture significantly inhibited the expression of several oncogenic microRNAs including miR-21, miR-19b, and miR-148a compared to control. The mixture also enhanced the inhibition of cell migration in both cell lines compared to individual compounds tested. Conclusion The combination of arctigenin and quercetin, that target similar pathways, at low physiological doses, provides a novel regimen with enhanced chemoprevention in prostate cancer. PMID:25380086

  13. Butein Inhibits Angiogenesis of Human Endothelial Progenitor Cells via the Translation Dependent Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ching-Hu Chung

    2013-01-01

    Full Text Available Compelling evidence indicates that bone marrow-derived endothelial progenitor cells (EPCs can contribute to postnatal neovascularization and tumor angiogenesis. EPCs have been shown to play a “catalytic” role in metastatic progression by mediating the angiogenic switch. Understanding the pharmacological functions and molecular targets of natural products is critical for drug development. Butein, a natural chalcone derivative, has been reported to exert potent anticancer activity. However, the antiangiogenic activity of butein has not been addressed. In this study, we found that butein inhibited serum- and vascular endothelial growth factor- (VEGF- induced cell proliferation, migration, and tube formation of human EPCs in a concentration dependent manner without cytotoxic effect. Furthermore, butein markedly abrogated VEGF-induced vessels sprouting from aortic rings and suppressed microvessel formation in the Matrigel implant assay in vivo. In addition, butein concentration-dependently repressed the phosphorylation of Akt, mTOR, and the major downstream effectors, p70S6K, 4E-BP1, and eIF4E in EPCs. Taken together, our results demonstrate for the first time that butein exhibits the antiangiogenic effect both in vitro and in vivo by targeting the translational machinery. Butein is a promising angiogenesis inhibitor with the potential for treatment of cancer and other angiogenesis-related diseases.

  14. Ginsenoside-Rg1 induces angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a

    International Nuclear Information System (INIS)

    Therapeutic angiogenesis has been implicated in ischemic diseases and wound healing. Ginsenoside-Rg1 (Rg1), one of the most abundant active components of ginseng, has been demonstrated as an angiogenesis-stimulating compound in different models. There is increasing evidence implicating microRNAs (miRNAs), a group of non-coding RNAs, as important regulators of angiogenesis, but the role of microRNAs in Rg1-induced angiogenesis has not been fully explored. In this report, we found that stimulating endothelial cells with Rg1 could reduce miR-23a expression. In silico experiments predicted hepatocyte growth factor receptor (MET), a well-established mediator of angiogenesis, as the target of miR-23a. Transfection of the miR-23a precursor or inhibitor oligonucleotides validated the inverse relationship of miR-23a and MET expression. Luciferase reporter assays further confirmed the interaction between miR-23a and the MET mRNA 3′-UTR. Intriguingly, ginsenoside-Rg1 was found to increase MET protein expression in a time-dependent manner. We further demonstrated that ginsenoside-Rg1-induced angiogenic activities were indeed mediated through the down-regulation of miR-23a and subsequent up-regulation of MET protein expression, as confirmed by gain- and loss-of-function angiogenic experiments. In summary, our results demonstrated that ginsenoside-Rg1 could induce angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a. This study has broadened our understanding of the non-genomic effects of ginsenoside-Rg1, and provided molecular evidence that warrant further development of natural compound as novel angiogenesis-promoting therapy. - Highlights: • Therapeutic angiogenesis has been implicated in ischemic diseases and wound healing. • Ginsenoside-Rg1 (Rg1) has been demonstrated as an angiogenesis-stimulating compound. • We found that Rg1 induces angiogenesis by decreasing miR-23a expression. • Hepatocyte growth factor receptor

  15. Ginsenoside-Rg{sub 1} induces angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, Hoi-Hin [Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR (China); Chan, Lai-Sheung [Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR (China); Poon, Po-Ying [Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR (China); Yue, Patrick Ying-Kit [Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR (China); Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR (China); Wong, Ricky Ngok-Shun, E-mail: rnswong@hkbu.edu.hk [Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR (China); Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR (China)

    2015-09-15

    Therapeutic angiogenesis has been implicated in ischemic diseases and wound healing. Ginsenoside-Rg{sub 1} (Rg{sub 1}), one of the most abundant active components of ginseng, has been demonstrated as an angiogenesis-stimulating compound in different models. There is increasing evidence implicating microRNAs (miRNAs), a group of non-coding RNAs, as important regulators of angiogenesis, but the role of microRNAs in Rg{sub 1}-induced angiogenesis has not been fully explored. In this report, we found that stimulating endothelial cells with Rg{sub 1} could reduce miR-23a expression. In silico experiments predicted hepatocyte growth factor receptor (MET), a well-established mediator of angiogenesis, as the target of miR-23a. Transfection of the miR-23a precursor or inhibitor oligonucleotides validated the inverse relationship of miR-23a and MET expression. Luciferase reporter assays further confirmed the interaction between miR-23a and the MET mRNA 3′-UTR. Intriguingly, ginsenoside-Rg{sub 1} was found to increase MET protein expression in a time-dependent manner. We further demonstrated that ginsenoside-Rg{sub 1}-induced angiogenic activities were indeed mediated through the down-regulation of miR-23a and subsequent up-regulation of MET protein expression, as confirmed by gain- and loss-of-function angiogenic experiments. In summary, our results demonstrated that ginsenoside-Rg{sub 1} could induce angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a. This study has broadened our understanding of the non-genomic effects of ginsenoside-Rg{sub 1,} and provided molecular evidence that warrant further development of natural compound as novel angiogenesis-promoting therapy. - Highlights: • Therapeutic angiogenesis has been implicated in ischemic diseases and wound healing. • Ginsenoside-Rg{sub 1} (Rg{sub 1}) has been demonstrated as an angiogenesis-stimulating compound. • We found that Rg{sub 1} induces angiogenesis by

  16. The acute phase reactant orosomucoid-1 is a bimodal regulator of angiogenesis with time- and context-dependent inhibitory and stimulatory properties.

    Directory of Open Access Journals (Sweden)

    Giovanni Ligresti

    Full Text Available BACKGROUND: Tissues respond to injury by releasing acute phase reaction (APR proteins which regulate inflammation and angiogenesis. Among the genes upregulated in wounded tissues are tumor necrosis factor-alpha (TNFα and the acute phase reactant orosomucoid-1 (ORM1. ORM1 has been shown to modulate the response of immune cells to TNFα, but its role on injury- and TNFα-induced angiogenesis has not been investigated. This study was designed to characterize the role of ORM1 in the angiogenic response to injury and TNFα. METHODS AND RESULTS: Angiogenesis was studied with in vitro, ex vivo, and in vivo angiogenesis assays. Injured rat aortic rings cultured in collagen gels produced an angiogenic response driven by macrophage-derived TNFα. Microarray analysis and qRT-PCR showed that TNFα and ORM1 were upregulated prior to angiogenic sprouting. Exogenous ORM1 delayed the angiogenic response to injury and inhibited the proangiogenic effect of TNFα in cultures of aortic rings or isolated endothelial cells, but stimulated aortic angiogenesis over time while promoting VEGF production and activity. ORM1 inhibited injury- and TNFα-induced phosphorylation of MEK1/2 and p38 MAPK in aortic rings, but not of NFκB. This effect was injury/TNFα-specific since ORM1 did not inhibit VEGF-induced signaling, and cell-specific since ORM1 inhibited TNFα-induced phosphorylation of MEK1/2 and p38 MAPK in macrophages and endothelial cells, but not mural cells. Experiments with specific inhibitors demonstrated that the MEK/ERK pathway was required for angiogenesis. ORM1 inhibited angiogenesis in a subcutaneous in vivo assay of aortic ring-induced angiogenesis, but stimulated developmental angiogenesis in the chorioallantoic membrane (CAM assay. CONCLUSION: ORM1 regulates injury-induced angiogenesis in a time- and context-dependent manner by sequentially dampening the initial TNFα-induced angiogenic response and promoting the downstream stimulation of the angiogenic

  17. Microenvironmental Regulation of Tumor Angiogenesis: Biological and Engineering Considerations

    Science.gov (United States)

    Infanger, David W.; Pathi, Siddharth P.; Fischbach, Claudia

    Tumor angiogenesis is fundamental to tumor growth and metastasis, and antiangiogenic therapies have been developed to target this process. However, the clinical success of these treatments has been limited, which may be due, in part, to an incomplete understanding of cell-microenvironment interactions and their role in tumor angiogenesis. Traditionally, two-dimensional (2D) culture approaches have been used to study tumor progression in vitro, but these systems fail to faithfully recreate tumor microenvironmental conditions contributing to tumor angiogenesis in vivo. By integrating cancer biology with tissue engineering and drug delivery approaches, the development of biologically inspired tumor models has emerged. Such 3D model systems allow studying the specific role of soluble factor signaling, cell-extracellular matrix (ECM) interactions, cell-cell interactions, mechanical cues, and metabolic stress. This chapter discusses specific biological and engineering design considerations for tissue-engineered tumor models and highlights their application for defining the underpinnings of tumor angiogenesis.

  18. Tumor-induced remote ECM network orientation steers angiogenesis

    NARCIS (Netherlands)

    Balcioglu, H.E.; Water, van de B.; Danen, E.H.

    2016-01-01

    Tumor angiogenesis promotes tumor growth and metastasis. Here, we use automated sequential microprinting of tumor and endothelial cells in extracellular matrix (ECM) scaffolds to study its mechanical aspects. Quantitative reflection microscopy shows that tumor spheroids induce radial orientation of

  19. Molecular targeting of angiogenesis for imaging and therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brack, Simon S.; Neri, Dario [Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology Zurich (Switzerland); Dinkelborg, Ludger M. [Research Laboratories of Schering AG, Berlin (Germany)

    2004-09-01

    Angiogenesis, i.e. the proliferation of new blood vessels from pre-existing ones, is an underlying process in many human diseases, including cancer, blinding ocular disorders and rheumatoid arthritis. The ability to selectively target and interfere with neovascularisation would potentially be useful in the diagnosis and treatment of angiogenesis-related diseases. This review presents the authors' views on some of the most relevant markers of angiogenesis described to date, as well as on specific ligands which have been characterised in pre-clinical animal models and/or clinical studies. Furthermore, we present an overview on technologies which are likely to have an impact on the way molecular targeting of angiogenesis is performed in the future. (orig.)

  20. Welcome to Journal of Angiogenesis Research

    OpenAIRE

    Slevin Mark; Cao Yihai; Kitajewski Jan

    2009-01-01

    Abstract Angiogenesis is the growth of new blood vessels and is a key process which occurs during both physiological and pathological disease processes. Knowledge of the mechanisms through which this process is initiated and maintained will have a significant impact on the treatment of these diseases. Pathological angiogenesis occurs in major diseases such as cancer, diabetic retinopathies, age-related macular degeneration and atherosclerosis. In other diseases such as stroke and myocardial i...

  1. Leptin and its cardiovascular effects: Focus on angiogenesis

    Directory of Open Access Journals (Sweden)

    Zoya Tahergorabi

    2015-01-01

    Full Text Available Leptin is an endocrine hormone synthesized by adipocytes. It plays a key role in the energy homeostasis in central and peripheral tissues and has additional roles are attributed to it, such as the regulation of reproduction, immune function, bone homeostasis, and angiogenesis. The plasma concentration of leptin significantly increases in obese individuals. In the present review, we give an introduction concerning leptin, its receptors, signaling pathways, and its effect on cardiovascular system, especially on angiogenesis.

  2. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium

    OpenAIRE

    Fan, Xiujun; Krieg, Sacha; Kuo, Calvin J.; Wiegand, Stanley J; Rabinovitch, Marlene; Druzin, Maurice L.; Brenner, Robert M.; Giudice, Linda C.; Nayak, Nihar R.

    2008-01-01

    Despite extensive literature on vascular endothelial growth factor (VEGF) expression and regulation by steroid hormones, the lack of clear understanding of the mechanisms of angiogenesis in the endometrium is a major limitation for use of antiangiogenic therapy targeting endometrial vessels. In the current work, we used the rhesus macaque as a primate model and the decidualized mouse uterus as a murine model to examine angiogenesis during endometrial breakdown and regeneration. We found that ...

  3. Proliferative and nonproliferative breast disease in atomic-bomb survivors

    International Nuclear Information System (INIS)

    The risk of female breast cancer in association with radiation exposure is well established, on the basis of follow-up studies of the atomic-bomb survivors and other exposed popul