WorldWideScience

Sample records for andrographolide inhibit growth

  1. Andrographolide inhibits arrhythmias and is cardioprotective in rabbits.

    Science.gov (United States)

    Zeng, Mengliu; Jiang, Wanzhen; Tian, Youjia; Hao, Jie; Cao, Zhenzhen; Liu, Zhipei; Fu, Chen; Zhang, Peihua; Ma, Jihua

    2017-09-22

    Andrographolide has a protective effect on the cardiovascular system. To study its cardic-electrophysiological effects, action potentials and voltage-gated Na + (I Na ), Ca 2+ (I CaL ), and K + (I K1 , I Kr , I to and I Kur ) currents were recorded using whole-cell patch clamp and current clamp techniques. Additionally, the effects of andrographolide on aconitine-induced arrhythmias were assessed on electrocardiograms in vivo . We found that andrographolide shortened action potential duration and reduced maximum upstroke velocity in rabbit left ventricular and left atrial myocytes. Andrographolide attenuated rate-dependence of action potential duration, and reduced or abolished delayed afterdepolarizations and triggered activities induced by isoproterenol (1 μM) and high calcium ([Ca 2+ ] o =3.6 mM) in left ventricular myocytes. Andrographolide also concentration-dependently inhibited I Na and I CaL , but had no effect on I to , I Kur , I K1 , or I Kr in rabbit left ventricular and left atrial myocytes. Andrographolide treatment increased the time and dosage thresholds of aconitine-induced arrhythmias, and reduced arrhythmia incidence and mortality in rabbits. Our results indicate that andrographolide inhibits cellular arrhythmias (delayed afterdepolarizations and triggered activities) and aconitine-induced arrhythmias in vivo , and these effects result from I Na and I CaL inhibition. Andrographolide may be useful as a class I and IV antiarrhythmic therapeutic.

  2. Andrographolide suppresses epithelial mesenchymal transition by inhibition of MAPK signalling pathway in lens epithelial cells.

    Science.gov (United States)

    Kayastha, Forum; Johar, Kaid; Gajjar, Devarshi; Arora, Anshul; Madhu, Hardik; Ganatra, Darshini; Vasavada, Abhay

    2015-06-01

    Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) may contribute to the development of posterior capsular opacification (PCO), which leads to visual impairment. Andrographolide has been shown to have therapeutic potential against various cancers. However, its effect on human LECs is still unknown. The purpose of this study is to evaluate the effect of andrographolide on EMT induced by growth factors in the fetal human lens epithelial cell line (FHL 124). Initially the LECs were treated with growth factors (TGF-beta 2 and bFGF) to induce EMT. Subsequently these EMT-induced cells were treated with andrographolide at 100 and 500 nM concentrations for 24 h. Our results showed that FHL 124 cells treated with growth factors had a significant decrease in protein and m-RNA levels of epithelial markers pax6 and E-Cadherin. After administering andrographolide, these levels significantly increased. It was noticed that EMT markers alpha-SMA, fibronectin and collagen IV significantly decreased after treatment with andrographolide when compared to the other group. Treatment with andrographolide significantly inhibited phosphorylation of ERK and JNK. Cell cycle analysis showed that andrographolide did not arrest cells at G0/G1 or G2/M at tested concentrations. Our findings suggest that andrographolide helps sustain epithelial characteristics by modulating EMT markers and inhibiting the mitogen-activated protein kinase (MAPK) signalling pathway in LECs. Hence it can prove to be useful in curbing EMT-mediated PCO.

  3. Andrographolide inhibits multiple myeloma cells by inhibiting the TLR4/NF-κB signaling pathway.

    Science.gov (United States)

    Gao, Hui; Wang, Jianrong

    2016-02-01

    Andrographolide is an active component from the extract of Andrographis paniculata [(Burm.f) Nees], a medicinal plant from the Acanthaceae family. Pharmacological studies have revealed that andrographolide possesses anti-bacterial, anti-inflammatory, anti-viral, immune regulatory and hepatoprotective properties, and is efficacious in the treatment of cardiovascular diseases, while exhibiting low toxicity and low cost. The present study aimed to determine the inhibitory effects of andrographolide on the growth of multiple myeloma (MM) cells and its possible impact on the Toll-like receptor (TLR)4/nuclear factor (NF)-κB signaling pathway. Cell proliferation was detected using an MTT assay, cellular apoptosis was measured using flow cytometry, and caspase-9/3 activation were assessed using colorimetric assay kits. Furthermore, TLR4 and NF-κB protein expression was determined by western blot analysis. The results revealed that andrographolide reduced the proliferation, while increasing cellular apoptosis and caspase-9/3 activation of MM cells, in addition to downregulating the expression of TLR4 and NF-κB protein. Of note, TLR4- or NF-κB-targeting small-interfering (si)RNA enhanced the andrographolide-induced inhibition of cell proliferation and induction of apoptosis of MM cells. The results of the present study therefore suggested that andrographolide inhibited multiple myeloma cells via the TLR4/NF-κB signaling pathway.

  4. Benzylidene derivatives of andrographolide inhibit growth of breast and colon cancer cells in vitro by inducing G1 arrest and apoptosis

    Science.gov (United States)

    Jada, S R; Matthews, C; Saad, M S; Hamzah, A S; Lajis, N H; Stevens, M F G; Stanslas, J

    2008-01-01

    Background and purpose: Andrographolide, the major phytoconstituent of Andrographis paniculata, was previously shown by us to have activity against breast cancer. This led to synthesis of new andrographolide analogues to find compounds with better activity than the parent compound. Selected benzylidene derivatives were investigated for their mechanisms of action by studying their effects on the cell cycle progression and cell death. Experimental approach: Microculture tetrazolium, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and sulphorhodamine B (SRB) assays were utilized in assessing the in vitro growth inhibition and cytotoxicity of compounds. Flow cytometry was used to analyse the cell cycle distribution of control and treated cells. CDK1 and CDK4 levels were determined by western blotting. Apoptotic cell death was assessed by fluorescence microscopy and flow cytometry. Key results: Compounds, in nanomolar to micromolar concentrations, exhibited growth inhibition and cytotoxicity in MCF-7 (breast) and HCT-116 (colon) cancer cells. In the NCI screen, 3,19-(2-bromobenzylidene) andrographolide (SRJ09) and 3,19-(3-chloro-4-fluorobenzylidene) andrographolide (SRJ23) showed greater cytotoxic potency and selectivity than andrographolide. SRJ09 and SRJ23 induced G1 arrest and apoptosis in MCF-7 and HCT-116 cells, respectively. SRJ09 downregulated CDK4 but not CDK1 level in MCF-7 cells. Apoptosis induced by SRJ09 and SRJ23 in HCT-116 cells was confirmed by annexin V-FITC/PI flow cytometry analysis. Conclusion and implications: The new benzylidene derivatives of andrographolide are potential anticancer agents. SRJ09 emerged as the lead compound in this study, exhibiting anticancer activity by downregulating CDK4 to promote a G1 phase cell cycle arrest, coupled with induction of apoptosis. PMID:18806812

  5. Andrographolide and analogues in cancer prevention.

    Science.gov (United States)

    Mishra, Siddhartha Kumar; Tripathi, Swati; Shukla, Archana; Oh, Seung Hyun; Kim, Hwan Mook

    2015-01-01

    Andrographis paniculata is a medicinal plant traditionally used for treatment of cough and cold, fever, laryngitis, and several infectious diseases. Extracts of A. paniculata have shown versatile potency against various diseases including cancer. The active biomolecules of A. paniculata mainly are lactone and diterpene. Andrographolide and analogues have been widely used for prevention of different diseases. Andrographolides have shown potent antiinflammatory and anticancer activities. It showed potentials as chemopreventive agents by suppressing growth of cancer cells by inhibiting NF-kappaB, PI3K/AKT and other kinase pathways and by inducing apoptosis. Andrographolide induced both intrinsic and extrinsic apoptosis pathway in different cancer cells via expression of different anti-apoptotic protein like Bax, p53, and activated caspases. Andrographolide was successfully used as an antineoplastic drug in cancer chemotherapy. Andrographolide inhibited the growth of human breast, prostate, and hepatoma tumors. Andrographolide and analogues need to be subjected to further clinical and biomedical studies in cancer chemoprevention. Andrographolide could be potent anticancer agent when used in combination with other chemotherapeutic agents.

  6. Andrographolide inhibits hypoxia-inducible factor-1 through phosphatidylinositol 3-kinase/AKT pathway and suppresses breast cancer growth

    Directory of Open Access Journals (Sweden)

    Li J

    2015-02-01

    Full Text Available Jie Li,1 Chao Zhang,1 Hongchuan Jiang,1 Jiao Cheng21Department of General Surgery, 2Department of Gynaecology and Obstetrics, Beijing Chao-Yang Hospital, Beijing, People’s Republic of ChinaAbstract: Hypoxia-inducible factor-1 (HIF-1 is a master regulator of the transcriptional response to hypoxia. HIF-1α is one of the most compelling anticancer targets. Andrographolide (Andro was newly identified to inhibit HIF-1 in T47D cells (a half maximal effective concentration [EC50] of 1.03×10-7 mol/L, by a dual-luciferase reporter assay. It suppressed HIF-1α protein and gene accumulation, which was dependent on the inhibition of upstream phosphatidylinositol 3-kinase (PI3K/AKT pathway. It also abrogated the expression of HIF-1 target vascular endothelial growth factor (VEGF gene and protein. Further, Andro inhibited T47D and MDA-MB-231 cell proliferation and colony formation. In addition, it exhibited significant in vivo efficacy and antitumor potential against the MDA-MB-231 xenograft in nude mice. In conclusion, these results highlighted the potential effects of Andro, which inhibits HIF-1, and hence may be developed as an antitumor agent for breast cancer therapy in future.Keywords: Andrographolide (Andro, HIF-1α, inhibit, breast cancer, hypoxia, PI3k/AKT/mTOR pathway

  7. Andrographolide regulates epidermal growth factor receptor and transferrin receptor trafficking in epidermoid carcinoma (A-431) cells

    Science.gov (United States)

    Tan, Y; Chiow, KH; Huang, D; Wong, SH

    2010-01-01

    Background and purpose: Andrographolide is the active component of Andrographis paniculata, a plant used in both Indian and Chinese traditional medicine, and it has been demonstrated to induce apoptosis in different cancer cell lines. However, not much is known about how it may affect the key receptors implicated in cancer. Knowledge of how andrographolide affects receptor trafficking will allow us to better understand new mechanisms by which andrographolide may cause death in cancer cells. Experimental approach: We utilized the well-characterized epidermal growth factor receptor (EGFR) and transferrin receptor (TfR) expressed in epidermoid carcinoma (A-431) cells as a model to study the effect of andrographolide on receptor trafficking. Receptor distribution, the total number of receptors and surface receptors were analysed by immunofluorescence, Western blot as well as flow-cytometry respectively. Key results: Andrographolide treatment inhibited cell growth, down-regulated EGFRs on the cell surface and affected the degradation of EGFRs and TfRs. The EGFR was internalized into the cell at an increased rate, and accumulated in a compartment that co-localizes with the lysosomal-associated membrane protein in the late endosomes. Conclusion and implications: This study sheds light on how andrographolide may affect receptor trafficking by inhibiting receptor movement from the late endosomes to lysosomes. The down-regulation of EGFR from the cell surface also indicates a new mechanism by which andrographolide may induce cancer cell death. PMID:20233216

  8. Andrographolide Inhibits Oxidized LDL-Induced Cholesterol Accumulation and Foam Cell Formation in Macrophages.

    Science.gov (United States)

    Lin, Hung-Chih; Lii, Chong-Kuei; Chen, Hui-Chun; Lin, Ai-Hsuan; Yang, Ya-Chen; Chen, Haw-Wen

    2018-01-01

    oxLDL is involved in the pathogenesis of atherosclerotic lesions through cholesterol accumulation in macrophage foam cells. Andrographolide, the bioactive component of Andrographis paniculata, possesses several biological activities such as anti-inflammatory, anti-oxidant, and anticancer functions. Scavenger receptors (SRs), including class A SR (SR-A) and CD36, are responsible for the internalization of oxLDL. In contrast, receptors for reverse cholesterol transport, including ABCA1 and ABCG1, mediate the efflux of cholesterol from macrophage foam cells. Transcription factor liver X receptor [Formula: see text] (LXR[Formula: see text] plays a key role in lipid metabolism and inflammation as well as in the regulation of ABCA1 and ABCG1 expression. Because of the contribution of inflammation to macrophage foam cell formation and the potent anti-inflammatory activity of andrographolide, we hypothesized that andrographolide might inhibit oxLDL-induced macrophage foam cell formation. The results showed that andrographolide reduced oxLDL-induced lipid accumulation in macrophage foam cells. Andrographolide decreased the mRNA and protein expression of CD36 by inducing the degradation of CD36 mRNA; however, andrographolide had no effect on SR-A expression. In contrast, andrographolide increased the mRNA and protein expression of ABCA1 and ABCG1, which were dependent on LXR[Formula: see text]. Andrographolide enhanced LXR[Formula: see text] nuclear translocation and DNA binding activity. Treatment with the LXR[Formula: see text] antagonist GGPP and transfection with LXR[Formula: see text] siRNA reversed the ability of andrographolide to stimulate ABCA1 and ABCG1 protein expression. In conclusion, inhibition of CD36-mediated oxLDL uptake and induction of ABCA1- and ABCG1-dependent cholesterol efflux are two working mechanisms by which andrographolide inhibits macrophage foam cell formation, which suggests that andrographolide could be a potential candidate to prevent

  9. Andrographolide inhibits adipogenesis of 3T3-L1 cells by suppressing C/EBPβ expression and activation

    International Nuclear Information System (INIS)

    Chen, Ching-Chu; Chuang, Wei-Ting; Lin, Ai-Hsuan; Tsai, Chia-Wen; Huang, Chin-Shiu; Chen, Yun-Ting; Chen, Haw-Wen; Lii, Chong-Kuei

    2016-01-01

    Andrographolide, a diterpenoid, is the most abundant terpenoid in Andrographis paniculata, a popular Chinese herbal medicine. Andrographolide displays diverse biological activities including hypoglycemia, hypolipidemia, anti-inflammation, and anti-tumorigenesis. Recent evidence indicates that andrographolide displays anti-obesity property by inhibiting lipogenic gene expression, however, the underlying mechanisms remain to be elucidated. In this study, the effects of andrographolide on transcription factor cascade and mitotic clonal expansion in 3T3-L1 preadipocyte differentiation into adipocyte were determined. Andrographolide dose-dependently (0–15 μM) inhibited CCAAT/enhancer-binding protein α (C/EBPα) and C/EBPβ mRNA and protein expression as well as peroxisome proliferator-activated receptor γ (PPARγ) protein level during the adipogenesis of 3T3-L1 cells. Concomitantly, fatty acid synthase and stearoyl-CoA desaturase expression and lipid accumulation were attenuated by andrographolide. Oil-red O staining further showed that the first 48 h after the initiation of differentiation was critical for andrographolide inhibition of adipocyte formation. Andrographolide inhibited the phosphorylation of PKA and the activation of cAMP response element-binding protein (CREB) in response to a differentiation cocktail, which led to attenuated C/EBPβ expression. In addition, ERK and GSK3β-dependent C/EBPβ phosphorylation was attenuated by andrographolide. Moreover, andrographolide suppressed cyclin A, cyclin E, and CDK2 expression and impaired the progression of mitotic clonal expansion (MCE) by arresting the cell cycle at the Go/G1 phase. Taken together, these results indicate that andrographolide has a potent anti-obesity action by inhibiting PKA-CREB-mediated C/EBPβ expression as well as C/EBPβ transcriptional activity, which halts MCE progression and attenuates C/EBPα and PPARγ expression. - Highlights: • Andrographolide is a diterpenoid phytochemical.

  10. Andrographolide inhibits adipogenesis of 3T3-L1 cells by suppressing C/EBPβ expression and activation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ching-Chu [Division of Endocrinology and Metabolism, Department of Medicine, China Medical University Hospital, Taichung, Taiwan (China); Division of Endocrinology and Metabolism, Department of Chinese Medicine, China Medical University, China Medical University, Taichung, Taiwan (China); Chuang, Wei-Ting; Lin, Ai-Hsuan; Tsai, Chia-Wen [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Huang, Chin-Shiu [Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung, Taiwan (China); Chen, Yun-Ting [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Chen, Haw-Wen, E-mail: chenhw@mail.cmu.edu.tw [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Lii, Chong-Kuei, E-mail: cklii@mail.cmu.edu.tw [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (China)

    2016-09-15

    Andrographolide, a diterpenoid, is the most abundant terpenoid in Andrographis paniculata, a popular Chinese herbal medicine. Andrographolide displays diverse biological activities including hypoglycemia, hypolipidemia, anti-inflammation, and anti-tumorigenesis. Recent evidence indicates that andrographolide displays anti-obesity property by inhibiting lipogenic gene expression, however, the underlying mechanisms remain to be elucidated. In this study, the effects of andrographolide on transcription factor cascade and mitotic clonal expansion in 3T3-L1 preadipocyte differentiation into adipocyte were determined. Andrographolide dose-dependently (0–15 μM) inhibited CCAAT/enhancer-binding protein α (C/EBPα) and C/EBPβ mRNA and protein expression as well as peroxisome proliferator-activated receptor γ (PPARγ) protein level during the adipogenesis of 3T3-L1 cells. Concomitantly, fatty acid synthase and stearoyl-CoA desaturase expression and lipid accumulation were attenuated by andrographolide. Oil-red O staining further showed that the first 48 h after the initiation of differentiation was critical for andrographolide inhibition of adipocyte formation. Andrographolide inhibited the phosphorylation of PKA and the activation of cAMP response element-binding protein (CREB) in response to a differentiation cocktail, which led to attenuated C/EBPβ expression. In addition, ERK and GSK3β-dependent C/EBPβ phosphorylation was attenuated by andrographolide. Moreover, andrographolide suppressed cyclin A, cyclin E, and CDK2 expression and impaired the progression of mitotic clonal expansion (MCE) by arresting the cell cycle at the Go/G1 phase. Taken together, these results indicate that andrographolide has a potent anti-obesity action by inhibiting PKA-CREB-mediated C/EBPβ expression as well as C/EBPβ transcriptional activity, which halts MCE progression and attenuates C/EBPα and PPARγ expression. - Highlights: • Andrographolide is a diterpenoid phytochemical.

  11. Andrographolide Inhibits Proliferation and Metastasis of SGC7901 Gastric Cancer Cells.

    Science.gov (United States)

    Dai, Lei; Wang, Gang; Pan, Wensheng

    2017-01-01

    To explore the mechanisms by which andrographolide inhibits gastric cancer cell proliferation and metastasis, we employed the gastric cell line SGC7901 to investigate the anticancer effects of andrographolide. The cell survival ratio, cell migration and invasion, cell cycle, apoptosis, and matrix metalloproteinase activity were assessed. Moreover, western blotting and real-time PCR were used to examine the protein expression levels and the mRNA expression levels, respectively. The survival ratio of cells decreased with an increasing concentration of andrographolide in a dose-dependent manner. Consistent results were also obtained using an apoptosis assay, as detected by flow cytometry. The cell cycle was blocked at the G2/M2 phase by andrographolide treatment, and the proportion of cells arrested at G1/M was enhanced as the dose increased. Similarly, wound healing and Transwell assays showed reduced migration and invasion of the gastric cancer cells at various concentrations of andrographolide. Andrographolide can inhibit cell proliferation, invasion, and migration, block the cell cycle, and promote apoptosis in SGC7901 cells. The mechanisms may include upregulated expression of Timp-1/2, cyclin B1, p-Cdc2, Bax, and Bik and downregulated expression of MMP-2/9 and antiapoptosis protein Bcl-2.

  12. Andrographolide Inhibits Proliferation and Metastasis of SGC7901 Gastric Cancer Cells

    Directory of Open Access Journals (Sweden)

    Lei Dai

    2017-01-01

    Full Text Available To explore the mechanisms by which andrographolide inhibits gastric cancer cell proliferation and metastasis, we employed the gastric cell line SGC7901 to investigate the anticancer effects of andrographolide. The cell survival ratio, cell migration and invasion, cell cycle, apoptosis, and matrix metalloproteinase activity were assessed. Moreover, western blotting and real-time PCR were used to examine the protein expression levels and the mRNA expression levels, respectively. The survival ratio of cells decreased with an increasing concentration of andrographolide in a dose-dependent manner. Consistent results were also obtained using an apoptosis assay, as detected by flow cytometry. The cell cycle was blocked at the G2/M2 phase by andrographolide treatment, and the proportion of cells arrested at G1/M was enhanced as the dose increased. Similarly, wound healing and Transwell assays showed reduced migration and invasion of the gastric cancer cells at various concentrations of andrographolide. Andrographolide can inhibit cell proliferation, invasion, and migration, block the cell cycle, and promote apoptosis in SGC7901 cells. The mechanisms may include upregulated expression of Timp-1/2, cyclin B1, p-Cdc2, Bax, and Bik and downregulated expression of MMP-2/9 and antiapoptosis protein Bcl-2.

  13. Andrographolide inhibits adipogenesis of 3T3-L1 cells by suppressing C/EBPβ expression and activation.

    Science.gov (United States)

    Chen, Ching-Chu; Chuang, Wei-Ting; Lin, Ai-Hsuan; Tsai, Chia-Wen; Huang, Chin-Shiu; Chen, Yun-Ting; Chen, Haw-Wen; Lii, Chong-Kuei

    2016-09-15

    Andrographolide, a diterpenoid, is the most abundant terpenoid in Andrographis paniculata, a popular Chinese herbal medicine. Andrographolide displays diverse biological activities including hypoglycemia, hypolipidemia, anti-inflammation, and anti-tumorigenesis. Recent evidence indicates that andrographolide displays anti-obesity property by inhibiting lipogenic gene expression, however, the underlying mechanisms remain to be elucidated. In this study, the effects of andrographolide on transcription factor cascade and mitotic clonal expansion in 3T3-L1 preadipocyte differentiation into adipocyte were determined. Andrographolide dose-dependently (0-15μM) inhibited CCAAT/enhancer-binding protein α (C/EBPα) and C/EBPβ mRNA and protein expression as well as peroxisome proliferator-activated receptor γ (PPARγ) protein level during the adipogenesis of 3T3-L1 cells. Concomitantly, fatty acid synthase and stearoyl-CoA desaturase expression and lipid accumulation were attenuated by andrographolide. Oil-red O staining further showed that the first 48h after the initiation of differentiation was critical for andrographolide inhibition of adipocyte formation. Andrographolide inhibited the phosphorylation of PKA and the activation of cAMP response element-binding protein (CREB) in response to a differentiation cocktail, which led to attenuated C/EBPβ expression. In addition, ERK and GSK3β-dependent C/EBPβ phosphorylation was attenuated by andrographolide. Moreover, andrographolide suppressed cyclin A, cyclin E, and CDK2 expression and impaired the progression of mitotic clonal expansion (MCE) by arresting the cell cycle at the Go/G1 phase. Taken together, these results indicate that andrographolide has a potent anti-obesity action by inhibiting PKA-CREB-mediated C/EBPβ expression as well as C/EBPβ transcriptional activity, which halts MCE progression and attenuates C/EBPα and PPARγ expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Andrographolide sulfonate ameliorates experimental colitis in mice by inhibiting Th1/Th17 response.

    Science.gov (United States)

    Liu, Wen; Guo, Wenjie; Guo, Lele; Gu, Yanhong; Cai, Peifen; Xie, Ning; Yang, Xiaoling; Shu, Yongqian; Wu, Xuefeng; Sun, Yang; Xu, Qiang

    2014-06-01

    Inflammatory bowel disease (IBD) is a chronic, relapsing and remitting condition of inflammation involves overproduction of pro-inflammatory cytokines and excessive functions of inflammatory cells. However, current treatments for IBD may have potential adverse effects including steroid dependence, infections and lymphoma. Therefore new therapies for the treatment of IBD are desperately needed. In the present study, we aimed to examine the effect of andrographolide sulfonate, a water-soluble form of andrographolide (trade name: Xi-Yan-Ping Injection), on murine experimental colitis induced by 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). Andrographolide sulfonate was administrated through intraperitoneal injection to mice with TNBS-induced colitis. TNBS-induced body weight loss, myeloperoxidase activity, shortening of the colon and colonic inflammation were significantly ameliorated by andrographolide sulfonate. Both the mRNA and protein levels of pro-inflammatory cytokines were reduced by andrographolide sulfonate administration. Moreover, andrographolide sulfonate markedly suppressed the activation of p38 mitogen-activated protein kinase as well as p65 subunit of nuclear factor-κB (NF-κB). Furthermore, CD4(+) T cell infiltration as well as the differentiation of Th1 (CD4(+)IFN-γ(+)) and Th17 (CD4(+)IL17A(+)) subset were inhibited by andrographolide sulfonate. In summary, these results suggest that andrographolide sulfonate ameliorated TNBS-induced colitis in mice through inhibiting Th1/Th17 response. Our study shows that water-soluble andrographolide sulfonate may represent a new therapeutic approach for treating gastrointestinal inflammatory disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Andrographolide Suppress Tumor Growth by Inhibiting TLR4/NF-κB Signaling Activation in Insulinoma

    Science.gov (United States)

    Zhang, Qian-Qian; Ding, Yi; Lei, Yan; Qi, Cui-Ling; He, Xiao-Dong; Lan, Tian; Li, Jiang-Chao; Gong, Ping; Yang, Xuesong; Geng, Jian-Guo; Wang, Li-Jing

    2014-01-01

    Insulinomas are rare tumors, and approximately 10% of insulinomas are malignant. Accumulating evidence has implicated that we still lack effective therapy to treat the patients who are diagnosed with rare malignant insulinoma. Previous studies have reported that Andrographolide (Andro) could inhibit cell cycle progression, reduce cell invasion and induce cell apoptosis in many common cancer cells. However, the effects of andro are cell type-dependent. So we emplored the β-TC-6 cells and the RIP1-Tag2 transgenic mouse model of endogenously growing insulinoma model to elucidate the possible anti-cancer effect of Andro on insulinoma, an uncommon type of malignant cancers in this study. Our experiments revealed that Andro significantly inhibited tumor growth at both the early-stage and the advanced-stage of insulinoma through targeting the TLR4/NF-κB signaling pathway. This work initially provides the evidence that the TLR4/NF-κB signaling pathway might be vital as a potential therapeutic target, and also indispensable in Andro-mediated anti-cancer effect in insulinoma. PMID:24719558

  16. Herb–drug interaction prediction based on the high specific inhibition of andrographolide derivatives towards UDP-glucuronosyltransferase (UGT) 2B7

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hai-Ying [The Fourth Affiliated Hospital of China Medical University, Shenyang 110032 (China); Sun, Dong-Xue [School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016 (China); Cao, Yun-Feng [The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Ai, Chun-Zhi [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Qu, Yan-Qing [Thyroid Surgery, Yantaishan Hospital, Yantai, Shandong (China); Hu, Cui-Min [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057 (United States); Jiang, Changtao [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 (United States); Dong, Pei-Pei [Academy of Integrative Medicine, Dalian Medical University, Dalian 116044 (China); Sun, Xiao-Yu; Hong, Mo [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Tanaka, Naoki; Gonzalez, Frank J. [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 (United States); others, and

    2014-05-15

    Herb–drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (K{sub i}) were determined for the compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (K{sub i}) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb–drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7. - Highlights: • Specific inhibition of andrographolide derivatives towards UGT2B7. • Herb-drug interaction related withAndrographis paniculata. • Guidance for design of UGT2B7 specific inhibitors.

  17. Herb–drug interaction prediction based on the high specific inhibition of andrographolide derivatives towards UDP-glucuronosyltransferase (UGT) 2B7

    International Nuclear Information System (INIS)

    Ma, Hai-Ying; Sun, Dong-Xue; Cao, Yun-Feng; Ai, Chun-Zhi; Qu, Yan-Qing; Hu, Cui-Min; Jiang, Changtao; Dong, Pei-Pei; Sun, Xiao-Yu; Hong, Mo; Tanaka, Naoki; Gonzalez, Frank J.

    2014-01-01

    Herb–drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (K i ) were determined for the compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (K i ) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb–drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7. - Highlights: • Specific inhibition of andrographolide derivatives towards UGT2B7. • Herb-drug interaction related withAndrographis paniculata. • Guidance for design of UGT2B7 specific inhibitors

  18. Herb–drug interaction prediction based on the high specific inhibition of andrographolide derivatives towards UDP-glucuronosyltransferase (UGT) 2B7

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hai-Ying, E-mail: cmu4h-mhy@126.com [The Fourth Affiliated Hospital of China Medical University, Shenyang 110032 (China); Sun, Dong-Xue [School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016 (China); Cao, Yun-Feng [The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Ai, Chun-Zhi [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Qu, Yan-Qing [Thyroid Surgery, Yantaishan Hospital, Yantai, Shandong (China); Hu, Cui-Min [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057 (United States); Jiang, Changtao [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 (United States); Dong, Pei-Pei [Academy of Integrative Medicine, Dalian Medical University, Dalian 116044 (China); Sun, Xiao-Yu; Hong, Mo [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Tanaka, Naoki; Gonzalez, Frank J. [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 (United States); and others

    2014-05-15

    Herb–drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (K{sub i}) were determined for the compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (K{sub i}) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb–drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7. - Highlights: • Specific inhibition of andrographolide derivatives towards UGT2B7. • Herb-drug interaction related withAndrographis paniculata. • Guidance for design of UGT2B7 specific inhibitors.

  19. Herb-drug interaction prediction based on the high specific inhibition of andrographolide derivatives towards UDP-glucuronosyltransferase (UGT) 2B7.

    Science.gov (United States)

    Ma, Hai-Ying; Sun, Dong-Xue; Cao, Yun-Feng; Ai, Chun-Zhi; Qu, Yan-Qing; Hu, Cui-Min; Jiang, Changtao; Dong, Pei-Pei; Sun, Xiao-Yu; Hong, Mo; Tanaka, Naoki; Gonzalez, Frank J; Ma, Xiao-Chi; Fang, Zhong-Ze

    2014-05-15

    Herb-drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (Ki) were determined for the compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (Ki) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb-drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Andrographolide suppresses high glucose-induced fibronectin expression in mesangial cells via inhibiting the AP-1 pathway.

    Science.gov (United States)

    Lan, Tian; Wu, Teng; Gou, Hongju; Zhang, Qianqian; Li, Jiangchao; Qi, Cuiling; He, Xiaodong; Wu, Pingxiang; Wang, Lijing

    2013-11-01

    Mesangial cells (MCs) proliferation and accumulation of glomerular matrix proteins such as fibronectin (FN) are the early features of diabetic nephropathy, with MCs known to upregulate matrix protein synthesis in response to high glucose. Recently, it has been found that andrographolide has renoprotective effects on diabetic nephropathy. However, the molecular mechanism underlying these effects remains unclear. Cell viability and proliferation was evaluated by MTT. FN expression was examined by immunofluorescence and immunoblotting. Activator protein-1 (AP-1) activation was assessed by immunoblotting, luciferase reporter and electrophoretic mobility shift assays. Andrographolide significantly decreased high glucose-induced cell proliferation and FN expression in MCs. Exposure of MCs to high glucose markedly stimulated the expression of phosphorylated c-jun, whereas the stimulation was inhibited by andrographolide. Plasmid pAP-1-Luc luciferase reporter assay showed that andrographolide blocked high glucose-induced AP-1 transcriptional activity. EMSA assay demonstrated that increased AP-1 binding to an AP-1 binding site at -1,029 in the FN gene promoter upon high glucose stimulation, and the binding were disrupted by andrographolide treatment. These data indicate that andrographolide suppresses high glucose-induced FN expression by inhibiting AP-1-mediated pathway. © 2013 Wiley Periodicals, Inc.

  1. Inhibition of autophagy by andrographolide resensitizes cisplatin-resistant non-small cell lung carcinoma cells via activation of the Akt/mTOR pathway

    International Nuclear Information System (INIS)

    Mi, Shanwei; Xiang, Gang; Yuwen, Daolu; Gao, Jian; Guo, Wenjie; Wu, Xuefeng; Wu, Xudong; Sun, Yang; Su, Yongqian; Shen, Yan; Xu, Qiang

    2016-01-01

    Resistance to cisplatin is a major obstacle for the success of non-small cell lung cancer therapy. The mechanisms underlying cisplatin resistance are not fully understood. In this study, we found that the increase of basal auotophagy accompanied the development of cisplatin resistance. Meanwhile the blockade of the Akt/mTOR pathway occurred in the process. Inhibition of this pathway was induced by cisplatin treatment in the resistant non-small cell lung carcinoma cells. Andrographolide, a natural diterpenoid, promoted the activation of the Akt/mTOR signaling by downregulating PTEN and suppressed autophagy, which subsequently resensitized the resistant cells to cisplatin-mediated apoptosis. Cisplatin treatment in combination with andrographolide significantly prevented the growth of the resistant cells in vivo. These results highlight the involvement of autophagy in cisplatin-resistance development and suggest that inhibition of autophagy via tuning the Akt/mTOR signaling could be a promising strategy in the therapy for cisplatin-resistant non-small cell lung cancer. - Highlights: • The increase of basal auotophagy accompanied the development of cisplatin resistance in NSCLC cells. • Cisplatin induced the blockade of the Akt/mTOR pathway. • Andrographolide promoted the activation of the Akt/mTOR signaling. • Andrographolide downregulated PTEN expression. • Cisplatin treatment in combination with andrographolide resensitized the resistant cells to cisplatin.

  2. Inhibition of autophagy by andrographolide resensitizes cisplatin-resistant non-small cell lung carcinoma cells via activation of the Akt/mTOR pathway

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Shanwei; Xiang, Gang [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Yuwen, Daolu [Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 (China); Gao, Jian; Guo, Wenjie; Wu, Xuefeng; Wu, Xudong; Sun, Yang [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Su, Yongqian [Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 (China); Shen, Yan, E-mail: shenyan@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Xu, Qiang, E-mail: molpharm@163.com [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China)

    2016-11-01

    Resistance to cisplatin is a major obstacle for the success of non-small cell lung cancer therapy. The mechanisms underlying cisplatin resistance are not fully understood. In this study, we found that the increase of basal auotophagy accompanied the development of cisplatin resistance. Meanwhile the blockade of the Akt/mTOR pathway occurred in the process. Inhibition of this pathway was induced by cisplatin treatment in the resistant non-small cell lung carcinoma cells. Andrographolide, a natural diterpenoid, promoted the activation of the Akt/mTOR signaling by downregulating PTEN and suppressed autophagy, which subsequently resensitized the resistant cells to cisplatin-mediated apoptosis. Cisplatin treatment in combination with andrographolide significantly prevented the growth of the resistant cells in vivo. These results highlight the involvement of autophagy in cisplatin-resistance development and suggest that inhibition of autophagy via tuning the Akt/mTOR signaling could be a promising strategy in the therapy for cisplatin-resistant non-small cell lung cancer. - Highlights: • The increase of basal auotophagy accompanied the development of cisplatin resistance in NSCLC cells. • Cisplatin induced the blockade of the Akt/mTOR pathway. • Andrographolide promoted the activation of the Akt/mTOR signaling. • Andrographolide downregulated PTEN expression. • Cisplatin treatment in combination with andrographolide resensitized the resistant cells to cisplatin.

  3. The HLJ1-targeting drug screening identified Chinese herb andrographolide that can suppress tumour growth and invasion in non-small-cell lung cancer.

    Science.gov (United States)

    Lai, Yi-Hua; Yu, Sung-Liang; Chen, Hsuan-Yu; Wang, Chi-Chung; Chen, Huei-Wen; Chen, Jeremy J W

    2013-05-01

    HLJ1 is a novel tumour suppressor and is a potential druggable target for non-small-cell lung cancer (NSCLC). In this report, using a promoter-containing enhancer region as the HLJ1-targeting drug-screening platform, we identified several herbal compounds from a Chinese herbal bank with the capacity to enhance HLJ1 promoter activity and suppress tumour growth and invasion of NSCLC. Among the herbal drugs identified, the andrographolide (from Andrographis paniculata [Burm. f.] Nees.) most significantly induced HLJ1 expression and suppressed tumorigenesis both in vitro and in vivo. The andrographolide upregulates HLJ1 via JunB activation, which modulates AP-2α binding at the MMP-2 promoter and represses the expression of MMP-2. In addition, silencing of HLJ1 partially reverses the inhibition of cancer-cell invasion by andrographolide. Microarray transcriptomic analysis was performed to comprehensively depict the andrographolide-regulated signalling pathways. We showed that andrographolide can affect 939 genes (analysis of variance, false discovery rate andrographolide on anticancer invasion and proliferation. In conclusion, the HLJ1-targeting drug-screening platform is useful for screening of novel anticancer compounds. Using this platform, we identified andrographolide is a promising new anticancer agent that could suppress tumour growth and invasion in NSCLC.

  4. Andrographolide inhibits the migration, invasion and matrix metalloproteinase expression of rheumatoid arthritis fibroblast-like synoviocytes via inhibition of HIF-1α signaling.

    Science.gov (United States)

    Li, Guo-feng; Qin, Yu-hua; Du, Peng-qiang

    2015-09-01

    Hypoxia is implicated in the pathogenesis of rheumatoid arthritis (RA), contributing to the tumor-like phenotypes of RA fibroblast-like synoviocytes (RA-FLSs). Andrographolide is the main bioactive component of Andrographis paniculata, an herbal medicine that shows therapeutic benefits in RA patients. Here, we explored the effects of andrographolide on hypoxia-induced migration and invasion of RA-FLSs. RA-FLSs were exposed to hypoxia in the presence or absence of andrographolide and cell migration and invasion were tested by Transwell assays. The expression of hypoxia-inducible factor-1 alpha (HIF-1α), matrix metalloproteinase (MMP)-1, MMP-3 and MMP-9 was measured by semi-quantitative reverse transcription polymerase chain reaction and Western blot analysis. HIF-1α DNA binding activity was assessed by electrophoretic mobility shift assay. The effects of overexpression of exogenous HIF-1α on the action of andrographolide in RA-FLSs were investigated. Andrographolide inhibited FLS migration and invasion under hypoxic conditions in a dose-dependent manner. The upregulation of MMP-1, MMP-3 and MMP-9 in response to hypoxia was significantly (Pandrographolide. Moreover, the expression and DNA binding activity of HIF-1α were dose-dependently decreased in andrographolide-treated cells under hypoxic conditions. Overexpression of HIF-1α almost completely reversed the suppressive effects of andrographolide on the migration, invasion and MMP expression of hypoxic RA-FLSs. These results indicate the ability of andrographolide to attenuate hypoxia-induced invasiveness of RA-FLSs via inhibition of HIF-1α signaling, and warrant further exploration of andrographolide for the treatment of RA. Copyright © 2015. Published by Elsevier Inc.

  5. STRUCTURE MODIFICATION OF ANDROGRAPHOLIDE TO IMPROVE ITS POTENCY AS ANTICANCER

    Directory of Open Access Journals (Sweden)

    Hadi Poerwono

    2010-06-01

    Full Text Available Andrographolide, a diterpenoid lactone isolated from the herb of Andrographis paniculata and known to possess antitumor activity in breast cancer models was subjected to semisynthesis leading to the preparation of a number of derivatives. After protection of the two hydroxyl groups present at C-3 and C-19 to give 3,19-isopropylidene and 3,19-benzylidene andrographolides, the remaining hydroxyl group at C-14 of andrographolide was treated with acid anhydride or acid chloride under base condition. Unfortunately, the reactions gave only 14-dehydroandrographolide as well as unidentified diacyl compounds in replace of the target molecule 14-O-acyl andrographolide. An alternative procedure using neat acetic anhydride under reflux gave the acetyl derivatives. The resulted compounds exhibited cytotoxic activity against MCF-7 breast cancer cells with better growth inhibition than the parent compound andrographolide.   Keywords: andrographolide, acylation, anticancer, cytotoxic, breast cancer cells.

  6. Andrographolide suppresses the migratory ability of human glioblastoma multiforme cells by targeting ERK1/2-mediated matrix metalloproteinase-2 expression.

    Science.gov (United States)

    Yang, Shih-Liang; Kuo, Fu-Hsuan; Chen, Pei-Ni; Hsieh, Yi-Hsien; Yu, Nuo-Yi; Yang, Wei-En; Hsieh, Ming-Ju; Yang, Shun-Fa

    2017-12-01

    Glioblastoma multiforme (GBM) can be a fatal tumor because of difficulties in treating the related metastasis. Andrographolide is the bioactive component of the Andrographis paniculata . Andrographolide possesses the anti-inflammatory activity and inhibits the growth of various cancers; however, its effect on GBM cancer motility remains largely unknown. In this study, we examined the antimetastatic properties of andrographolide in human GBM cells. Our results revealed that andrographolide inhibited the invasion and migration abilities of GBM8401 and U251 cells. Furthermore, andrographolide inhibited matrix metalloproteinase (MMP)-2 activity and expression. Real-time PCR and promoter activity assays indicated that andrographolide inhibited MMP-2 expression at the transcriptional level. Such inhibitory effects were associated with the suppression of CREB DNA-binding activity and CREB expression. Mechanistically, andrographolide inhibited the cell motility of GBM8401 cells through the extracellular-regulated kinase (ERK) 1/2 pathway, and the blocking of the ERK 1/2 pathway could reverse MMP-2-mediated cell motility. In conclusion, CREB is a crucial target of andrographolide for suppressing MMP-2-mediated cell motility in GBM cells. Therefore, a combination of andrographolide and an ERK inhibitor might be a good strategy for preventing GBM metastasis.

  7. Inhibition of NF-κB Expression and Allergen-induced Airway Inflammation in a Mouse Allergic Asthma Model by Andrographolide

    OpenAIRE

    Li, Jing; Luo, Li; Wang, Xiaoyun; Liao, Bin; Li, Guoping

    2009-01-01

    Andrographolide from traditional Chinese herbal medicines previously showed it possesses a strong anti-inflammatory activity. In present study, we investigated whether Andrographolide could inhibit allergen-induced airway inflammation and airways hyper-responsiveness and explored the mechanism of Andrographolide on allergen-induced airway inflammation and airways hyper-responsiveness. After sensitized and challenged by ovalbumin, the BALB/c mice were administered intraperitoneally with Androg...

  8. Andrographolide inhibits arrhythmias and is cardioprotective in rabbits

    OpenAIRE

    Zeng, Mengliu; Jiang, Wanzhen; Tian, Youjia; Hao, Jie; Cao, Zhenzhen; Liu, Zhipei; Fu, Chen; Zhang, Peihua; Ma, Jihua

    2017-01-01

    Andrographolide has a protective effect on the cardiovascular system. To study its cardic-electrophysiological effects, action potentials and voltage-gated Na+ (INa), Ca2+ (ICaL), and K+ (IK1, IKr, Ito and IKur) currents were recorded using whole-cell patch clamp and current clamp techniques. Additionally, the effects of andrographolide on aconitine-induced arrhythmias were assessed on electrocardiograms in vivo. We found that andrographolide shortened action potential duration and reduced ma...

  9. Andrographolide presents therapeutic effect on ulcerative colitis through the inhibition of IL-23/IL-17 axis.

    Science.gov (United States)

    Zhu, Qin; Zheng, Peifen; Chen, Xinyu; Zhou, Feng; He, Qiaona; Yang, Yuefeng

    2018-01-01

    Ulcerative colitis (UC) is a chronic and nonspecific intestinal inflammatory disease, which may increase the risk of colon cancer. Andrographolide is a main active component of Andrographis paniculata . The anti-inflammatory ability of andrographolide suggested its potential therapeutic effect against UC. In the present study, elevated serum concentrations of proinflammatory factors, including (TNF)-α, interleukin (IL)-1β, IL-6 and IL-23, as well as increased percentages of Th17 cells (IL-17+CD4+ cells) in CD4+ cells were detected in UC patients compared to that in healthy donors. These data suggested that Th17 immune responses may involve in the pathogenesis of UC. Experimental colitis mouse model was then established. The results of hematoxylin and eosin staining demonstrated the therapeutic effect of andrographolide on colitis. Enzyme-linked immunosorbent assay (ELISA), flow cytometry and western blotting analyses showed that andrographolide could decreased the levels of proinflammatory factors TNF-α, IL-1β, IL-6 and IL-17A in the serum and in the colon tissues, reduced the percentages of Th17 cells in CD4+ cells, and suppressed the levels of IL-23, IL-17A, ROR-γt (key transcription factor of Th17 cells) and p-STAT3 in the colon tissues. Further, peripheral blood mononuclear cells (PBMCs) were isolated from UC patients and treated with various concentrations of andrographolide (0, 10, 20 and 30 μg/ml). Andrographolide also showed inhibitory effects on the levels of proinflammatory factors, the percentages of Th17 cells and the expression of relative proteins. Similar results were obtained in lipopolysaccharide-treated normal PBMCs. These data suggested that andrographolide may inhibit Th17 immune response via STAT3 signaling. In conclusion, we demonstrated that andrographolide inhibited the activity of IL-23/IL-17 axis and down-stream pro-inflammatory factors so as to suppress inflammation response, resulting in the relieving of UC.

  10. Andrographolide suppresses the migratory ability of human glioblastoma multiforme cells by targeting ERK1/2-mediated matrix metalloproteinase-2 expression

    OpenAIRE

    Yang, Shih-Liang; Kuo, Fu-Hsuan; Chen, Pei-Ni; Hsieh, Yi-Hsien; Yu, Nuo-Yi; Yang, Wei-En; Hsieh, Ming-Ju; Yang, Shun-Fa

    2017-01-01

    Glioblastoma multiforme (GBM) can be a fatal tumor because of difficulties in treating the related metastasis. Andrographolide is the bioactive component of the Andrographis paniculata. Andrographolide possesses the anti-inflammatory activity and inhibits the growth of various cancers; however, its effect on GBM cancer motility remains largely unknown. In this study, we examined the antimetastatic properties of andrographolide in human GBM cells. Our results revealed that andrographolide inhi...

  11. Andrographolide reduces proliferation and migration of lens epithelial cells by modulating PI3K/Akt pathway.

    Science.gov (United States)

    Kayastha, Forum; Madhu, Hardik; Vasavada, Abhay; Johar, Kaid

    2014-11-01

    Lens epithelial cell proliferation, migration, and transdifferentiation are involved in the development of subcapsular cataracts and postoperative capsular opacification (PCO). PI3K/Akt pathway is involved in the proliferation and migration of lens epithelial cells. Andrographolide is the main bioactive component of Andrographis paniculata and is known to possess anti-proliferative and anti-migratory activities. The purpose of this study is to evaluate the effect of andrographolide on proliferation and migration induced by growth factors (TGF-β and bFGF) in the lens epithelial cell line, FHL 124. We have also evaluated the role of the PI3K/Akt pathway and its alteration by andrographolide during proliferation and migration of lens epithelial cells. The results showed that andrographolide significantly inhibited proliferation in a dose and time dependent manner. The growth factors, TGF-β and bFGF, induced migration of lens epithelial cells, which was lowered by andrographolide. The growth factors also up regulated phosphorylated Akt (Ser473) and Akt (Thr308), which was abolished by simultaneous treatment of andrographolide. Similar changes were also observed with the PI3K inhibitor, LY290042. Our findings suggest that andrographolide reduces proliferation, migration, and phosphorylated Akt levels in lens epithelial cells. Hence andrographolide can be utilized for the prevention of PCO. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Andrographolide suppresses melanin synthesis through Akt/GSK3β/β-catenin signal pathway.

    Science.gov (United States)

    Zhu, Ping-Ya; Yin, Wei-Han; Wang, Meng-Ran; Dang, Yong-Yan; Ye, Xi-Yun

    2015-07-01

    Tyrosinase (TYR) is the key enzyme controlling the production of melanin. Very few papers have reported that andrographolide can inhibit melanin content. To investigate the effects of andrographolide on melanin synthesis. Cell viability, melanin content, TYR activity, transcriptional and protein expression levels of TYR family and other kinds of proteins involved in melanogenesis were measured after the treatments of andrographolide. It was found that andrographolide decreased melanin content, TYR activity and transcriptional and protein expression of TYR family and microphthalmia-associated transcription factor (MITF) in B16F10 melanoma cells. Data showed andrographolide also decreased melanin content and TYR content in ultraviolet B (UVB) irradiation induced brown guinea pigs. Moreover, we found that melanin content and TYR activity were effectively inhibited in Human Epidermis Melanocyte (HEM) treated with andrographolide at the medium concentrations without apparent effect on cell viability. Results in experiments treated with MG-132 or cycloheximide (CHX) showed that andrographolide lowered the content of β-catenin in cell nucleus resulting from accelerating the degradation of β-catenin. Phosphorylation of glycogen synthase kinase 3β (GSK3β) and Akt decreased simultaneously. 6-Bromoindirubin-3'-oxime (BIO, inhibitor of GSK3β) and insulin-like growth factors-1 (IGF-1, activator of Akt) could reverse the decline of β-catenin in B16F10 cells induced by andrographolide. These results demonstrate that andrographolide can effectively suppress melanin content and TYR activity in B16F10 cells, HEM cells and UVB-induced brown guinea pig skin by decreasing phosphorylation of GSK3β dependent on Akt, promoting the degradation of β-catenin, inhibiting β-catenin into the nucleus and decreasing the expression of MITF and TYR family. Data indicate that andrographolide may be a potential whiting agent which can have great market in cosmetics and in clinical such as

  13. Andrographolide Inhibits Inflammatory Cytokines Secretion in LPS-Stimulated RAW264.7 Cells through Suppression of NF-κB/MAPK Signaling Pathway.

    Science.gov (United States)

    Li, Yu; He, Shengnan; Tang, Jishun; Ding, Nana; Chu, Xiaoyan; Cheng, Lianping; Ding, Xuedong; Liang, Ting; Feng, Shibin; Rahman, Sajid Ur; Wang, Xichun; Wu, Jinjie

    2017-01-01

    Andrographolide, the main active component extracted from Andrographis paniculata (Burm.f.) Wall. ex Nees, exerts anti-inflammatory effects; however, the principal molecular mechanisms remain unclear. The objective of this study was to investigate the molecular mechanisms of Andrographolide in modifying lipopolysaccharide- (LPS-) induced signaling pathway in RAW264.7 cells. An in vitro model of inflammation was induced by LPS in mouse RAW264.7 cells in the presence of Andrographolide. The concentration and expression levels of proinflammatory cytokines were determined by an enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. The nuclear level of NF- κ B was measured by an electrophoretic mobility shift assay (EMSA). The expression levels of NF- κ B, p38, ERK, and JNK were determined by western blot. Andrographolide dose-dependently inhibited the release and mRNA expression of TNF- α , IL-6, and IL-1 β in LPS-stimulated RAW264.7 cells. The nuclear level of p65 protein was decreased in Andrographolide treatment group. Western blot analysis showed that Andrographolide suppressed LPS-induced NF- κ B activation and the phosphorylation of IkBa, ERK1/2, JNK, and p38. These results suggest that Andrographolide exerts an anti-inflammatory effect by inhibiting the activation of NF- κ B/MAPK signaling pathway and the induction of proinflammatory cytokines.

  14. Andrographolide Inhibits Inflammatory Cytokines Secretion in LPS-Stimulated RAW264.7 Cells through Suppression of NF-κB/MAPK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yu Li

    2017-01-01

    Full Text Available Andrographolide, the main active component extracted from Andrographis paniculata (Burm.f. Wall. ex Nees, exerts anti-inflammatory effects; however, the principal molecular mechanisms remain unclear. The objective of this study was to investigate the molecular mechanisms of Andrographolide in modifying lipopolysaccharide- (LPS- induced signaling pathway in RAW264.7 cells. An in vitro model of inflammation was induced by LPS in mouse RAW264.7 cells in the presence of Andrographolide. The concentration and expression levels of proinflammatory cytokines were determined by an enzyme-linked immunosorbent assay (ELISA and quantitative real-time polymerase chain reaction (qRT-PCR, respectively. The nuclear level of NF-κB was measured by an electrophoretic mobility shift assay (EMSA. The expression levels of NF-κB, p38, ERK, and JNK were determined by western blot. Andrographolide dose-dependently inhibited the release and mRNA expression of TNF-α, IL-6, and IL-1β in LPS-stimulated RAW264.7 cells. The nuclear level of p65 protein was decreased in Andrographolide treatment group. Western blot analysis showed that Andrographolide suppressed LPS-induced NF-κB activation and the phosphorylation of IkBa, ERK1/2, JNK, and p38. These results suggest that Andrographolide exerts an anti-inflammatory effect by inhibiting the activation of NF-κB/MAPK signaling pathway and the induction of proinflammatory cytokines.

  15. Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells.

    Science.gov (United States)

    Lim, Sung-Chul; Jeon, Ho Jong; Kee, Keun Hong; Lee, Mi Ja; Hong, Ran; Han, Song Iy

    2017-05-01

    Andrographolide, a natural compound isolated from Andrographis paniculata , has been reported to possess antitumor activity. In the present study, the effect of andrographolide in human gastric cancer (GC) cells was investigated. Andrographolide induced cell death with apoptotic and non-apoptotic features. At a low concentration, andrographolide potentiated apoptosis and reduction of clonogenicity triggered by recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL). Exposure of GC cells to andrographolide altered the expression level of several growth-inhibiting and apoptosis-regulating proteins, including death receptors. It was demonstrated that activity of the TRAIL-R2 (DR5) pathway was critical in the development of andrographolide-mediated rhTRAIL sensitization, since its inhibition significantly reduced the extent of apoptosis induced by the combination of rhTRAIL and andrographolide. In addition, andrographolide increased reactive oxygen species (ROS) generation in a dose-dependent manner. N-acetyl cysteine prevented andrographolide-mediated DR5 induction and the apoptotic effect induced by the combination of rhTRAIL and andrographolide. Collectively, the present study demonstrated that andrographolide enhances TRAIL-induced apoptosis through induction of DR5 expression. This effect appears to involve ROS generation in GCs.

  16. Effect of dietary supplemented andrographolide on growth, non-specific immune parameters and resistance against Aeromonas hydrophila in Labeo rohita (Hamilton).

    Science.gov (United States)

    Basha, Kusunur Ahamed; Raman, Ram Prakash; Prasad, Kurcheti Pani; Kumar, Kundan; Nilavan, Ezhil; Kumar, Saurav

    2013-11-01

    The present study evaluated the effect of dietary andrographolide (EC 50%) on growth, non-specific immune parameters and disease resistance against Aeromonas hydrophila infection in Indian major carp, Labeo rohita fingerlings. Fishes were fed with formulated diet containing andrographolide as T0 (0.00%), T1 (0.05%), T2 (0.10%), T3 (0.20%), T4 (0.40%) and T5 (0.80%) for 42 days. Fishes were challenged with A. hydrophila 42 days post feeding and relative percentage survival (RPS) was recorded over 14 days post challenge. Blood and serum samples were collected for nonspecific immune parameters on 14, 28 and 42 days of feeding and growth performance was evaluated at the end of experiment. The results revealed that fishes fed with andrographolide showed significant (p andrographolide were found to be significantly (p andrographolide at the level of 0.10% showed significantly (P andrographolide supplemented diet has a stimulatory effect on non-specific immune parameters along with improved growth performance and increased disease resistance against A. hydrophila infection in L. rohita fingerlings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Inhibitory effects of andrographolide on activated macrophages and adjuvant-induced arthritis.

    Science.gov (United States)

    Gupta, Swati; Mishra, Kamla Prasad; Singh, Shashi Bala; Ganju, Lilly

    2018-04-01

    Andrographolide, a diterpenoid lactone obtained from plant Andrographis paniculata, is used in South Asian countries to relieve various inflammatory symptoms. To study the effects of this agent, the impact of andrographolide on production of inflammatory mediators were delineated in mouse peritoneal macrophages (PMϕ). Inflammatory mediators like nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin-6 and related molecular mechanisms of andrographolide-mediated inhibition of enzymes/transcription factors were studied. In addition, the in vivo anti-inflammatory activity of andrographolide was evaluated in an adjuvant-induced arthritis rat model. The results indicated that andrographolide clearly inhibited the production of NO and TNF-α in lipopolysaccharide-activated PMϕ in a dose-related manner. Immunoblot analyses revealed that andrographolide suppressed activation of both inducible NO synthase and cyclo-oxygenase-2 by directly targeting nuclear transcription factor (NF)-κB. Complete Freund's Adjuvant-induced paw edema in rats was also significantly inhibited by andrographolide treatment. From the data, we concluded that andrographolide imparted anti-inflammatory effects by suppressing two key inflammatory enzymes and a signaling pathway that mediates expression of variety of inflammatory cytokines/agents in situ. It is plausible that eventually, after further toxicologic characterization, andrographolide might be useful as a drug for the clinical treatment of various inflammatory diseases like rheumatoid arthritis or diseases associated with joint pain.

  18. Andrographolide suppresses preadipocytes proliferation through glutathione antioxidant systems abrogation.

    Science.gov (United States)

    Chen, Wei; Su, Hongming; Feng, Lina; Zheng, Xiaodong

    2016-07-01

    Oxidative stress is considered to play a profound role in lipid storage and whole-body energy homeostasis. Inhibition of preadipocytes proliferation by natural products is one of the strategies to prevent obesity. Andrographolide, a small molecule, has been reported to possess versatile bioactivities. However, molecular mechanism underlying the potential effect of andrographolide on preadipocytes proliferation remains obscure. In the present study, 3T3-L1 preadipocytes were employed to determine whether andrographolide could affect the proliferation of preadipocytes. Our results demonstrated andrographolide suppressed 3T3-L1 preadipocytes proliferation. The casual relationship analysis indicated that andrographolide (10 and 20μg/ml) appeared to exert the proliferation inhibitory effect through suppression of glutathione peroxidase 1 (GPX1) activity and depleting GSH by promoting its efflux in 3T3-L1 preadipocytes, which subsequently resulted in 2.06-2.41 fold increase in ROS accumulation. Excessive ROS eruption could account for oxidative damage to mitochondrial membranes as well as ultimately inhibition of cell proliferation. Taken together, our study reveals that suppression of GPX1 and GSH depletion by andrographolide seems to play a critical role in the inhibition of 3T3-L1 preadipocytes proliferation, which might have implication for obesity prevention and treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Inhibition of Topoisomerase IIα and Induction of Apoptosis in Gastric Cancer Cells by 19-Triisopropyl Andrographolide

    Science.gov (United States)

    Monger, Adeep; Boonmuen, Nittaya; Suksen, Kanoknetr; Saeeng, Rungnapha; Kasemsuk, Teerapich; Piyachaturawat, Pawinee; Saengsawang, Witchuda; Chairoungdua, Arthit

    2017-10-26

    Gastric cancer is the most common cancer in Eastern Asia. Increasing chemoresistance and general systemic toxicities have complicated the current chemotherapy leading to an urgent need of more effective agents. The present study reported a potent DNA topoisomerase IIα inhibitory activity of an andrographolide analogue (19-triisopropyl andrographolide, analogue-6) in gastric cancer cells; MKN-45, and AGS cells. The analogue was potently cytotoxic to both gastric cancer cell lines with the half maximal inhibitory concentration (IC50 values) of 6.3±0.7 μM, and 1.7±0.05 μM at 48 h for MKN-45, and AGS cells, respectively. It was more potent than the parent andrographolide and the clinically used, etoposide with the IC50 values of >50 μM in MKN-45 and 11.3±2.9 μM in AGS cells for andrographolide and 28.5±4.4 μM in MKN-45 and 4.08±0.5 μM in AGS cells for etoposide. Analogue-6 at 2 μM significantly inhibited DNA topoisomerase IIα enzyme in AGS cells, induced DNA damage, activated cleaved PARP-1, and Caspase3 leading to late cellular apoptosis. Interestingly, the expression of tumor suppressor p53 was not activated. These results show the importance of 19-triisopropyl-andrographolide in its emerging selectivity to primary target on topoisomerase IIα enzyme, inducing DNA damage and apoptosis by p53- independent mechanism. Thereby, the results provide insights of the potential of 19-triisopropyl andrographolide as an anticancer agent for gastric cancer. The chemical transformation of andrographolide is a promising strategy in drug discovery of a novel class of anticancer drugs from bioactive natural products. Creative Commons Attribution License

  20. Andrographolide inhibits nuclear factor-κB activation through JNK-Akt-p65 signaling cascade in tumor necrosis factor-α-stimulated vascular smooth muscle cells.

    Science.gov (United States)

    Chen, Yu-Ying; Hsu, Ming-Jen; Hsieh, Cheng-Ying; Lee, Lin-Wen; Chen, Zhih-Cherng; Sheu, Joen-Rong

    2014-01-01

    Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Andrographolide is the most active and critical constituent isolated from the leaves of Andrographis paniculata, a herbal medicine widely used for treating anti-inflammation in Asia. In this study, we investigated the mechanisms of the inhibitory effects of andrographolide in vascular smooth muscle cells (VSMCs) exposed to a proinflammatory stimulus, tumor necrosis factor-α (TNF-α). Treating TNF-α-stimulated VSMCs with andrographolide suppressed the expression of inducible nitric oxide synthase in a concentration-dependent manner. A reduction in TNF-α-induced c-Jun N-terminal kinase (JNK), Akt, and p65 phosphorylation was observed in andrographolide-treated VSMCs. However, andrographolide affected neither IκBα degradation nor p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2 phosphorylation under these conditions. Both treatment with LY294002, a phosphatidylinositol 3-kinase/Akt inhibitor, and treatment with SP600125, a JNK inhibitor, markedly reversed the andrographolide-mediated inhibition of p65 phosphorylation. In addition, LY294002 and SP600125 both diminished Akt phosphorylation, whereas LY294002 had no effects on JNK phosphorylation. These results collectively suggest that therapeutic interventions using andrographolide can benefit the treatment of vascular inflammatory diseases, and andrographolide-mediated inhibition of NF-κB activity in TNF-α-stimulated VSMCs occurs through the JNK-Akt-p65 signaling cascade, an IκBα-independent mechanism.

  1. Andrographolide Inhibits Nuclear Factor-κB Activation through JNK-Akt-p65 Signaling Cascade in Tumor Necrosis Factor-α-Stimulated Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Yu-Ying Chen

    2014-01-01

    Full Text Available Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Andrographolide is the most active and critical constituent isolated from the leaves of Andrographis paniculata, a herbal medicine widely used for treating anti-inflammation in Asia. In this study, we investigated the mechanisms of the inhibitory effects of andrographolide in vascular smooth muscle cells (VSMCs exposed to a proinflammatory stimulus, tumor necrosis factor-α (TNF-α. Treating TNF-α-stimulated VSMCs with andrographolide suppressed the expression of inducible nitric oxide synthase in a concentration-dependent manner. A reduction in TNF-α-induced c-Jun N-terminal kinase (JNK, Akt, and p65 phosphorylation was observed in andrographolide-treated VSMCs. However, andrographolide affected neither IκBα degradation nor p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2 phosphorylation under these conditions. Both treatment with LY294002, a phosphatidylinositol 3-kinase/Akt inhibitor, and treatment with SP600125, a JNK inhibitor, markedly reversed the andrographolide-mediated inhibition of p65 phosphorylation. In addition, LY294002 and SP600125 both diminished Akt phosphorylation, whereas LY294002 had no effects on JNK phosphorylation. These results collectively suggest that therapeutic interventions using andrographolide can benefit the treatment of vascular inflammatory diseases, and andrographolide-mediated inhibition of NF-κB activity in TNF-α-stimulated VSMCs occurs through the JNK-Akt-p65 signaling cascade, an IκBα-independent mechanism.

  2. Activity of andrographolide against chikungunya virus infection.

    Science.gov (United States)

    Wintachai, Phitchayapak; Kaur, Parveen; Lee, Regina Ching Hua; Ramphan, Suwipa; Kuadkitkan, Atichat; Wikan, Nitwara; Ubol, Sukathida; Roytrakul, Sittiruk; Chu, Justin Jang Hann; Smith, Duncan R

    2015-09-18

    Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus that has recently engendered large epidemics around the world. There is no specific antiviral for treatment of patients infected with CHIKV, and development of compounds with significant anti-CHIKV activity that can be further developed to a practical therapy is urgently required. Andrographolide is derived from Andrographis paniculata, a herb traditionally used to treat a number of conditions including infections. This study sought to determine the potential of andrographolide as an inhibitor of CHIKV infection. Andrographolide showed good inhibition of CHIKV infection and reduced virus production by approximately 3log10 with a 50% effective concentration (EC50) of 77 μM without cytotoxicity. Time-of-addition and RNA transfection studies showed that andrographolide affected CHIKV replication and the activity of andrographolide was shown to be cell type independent. This study suggests that andrographolide has the potential to be developed further as an anti-CHIKV therapeutic agent.

  3. QSAR Studies on Andrographolide Derivatives as α-Glucosidase Inhibitors

    Directory of Open Access Journals (Sweden)

    Shaohui Cai

    2010-03-01

    Full Text Available Andrographolide derivatives were shown to inhibit α-glucosidase. To investigate the relationship between activities and structures of andrographolide derivatives, a training set was chosen from 25 andrographolide derivatives by the principal component analysis (PCA method, and a quantitative structure-activity relationship (QSAR was established by 2D and 3D QSAR methods. The cross-validation r2 (0.731 and standard error (0.225 illustrated that the 2D-QSAR model was able to identify the important molecular fragments and the cross-validation r2 (0.794 and standard error (0.127 demonstrated that the 3D-QSAR model was capable of exploring the spatial distribution of important fragments. The obtained results suggested that proposed combination of 2D and 3D QSAR models could be useful in predicting the α-glucosidase inhibiting activity of andrographolide derivatives.

  4. Effects of andrographolide on the pharmacokinetics of aminophylline and doxofylline in rats.

    Science.gov (United States)

    Li, X P; Zhang, C L; Gao, P; Gao, J; Liu, D

    2013-05-01

    Andrographolide, which is one of the main pharmaceutical ingredients in traditional Chinese medicine Andrographis paniculata, can clear heat, detoxify human body, cool blood and reduce swelling, etc. Respiratory tract infectious diseases have been treated with the combination of andrographolide and theophyllines clinically. As andrographolide inhibits the CYP1A2 activity in vitro, it potentially interacts with theophyllines that are mainly metabolized by CYP1A2. Therefore, we herein studied the effects of andrographolide on the pharmacokinetics of aminophylline and doxofylline in rats. The blood drug concentrations of aminophylline, doxofylline and its metabolite theophylline were determined by HPLC. The theophylline AUC(0-t) was significantly elevated confronting the combination of andrographolide and aminophylline compared to that of the control group (Pandrographolide. The results suggest that andrographolide and aminophylline should not be simultaneously administered because the former may raise the risks of side effects by inhibiting the clearance of the latter. In contrast, it is more secure to combine doxofylline with andrographolide owing to the almost intact pharmacokinetics. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Andrographolide ameliorates diabetic nephropathy by attenuating hyperglycemia-mediated renal oxidative stress and inflammation via Akt/NF-κB pathway.

    Science.gov (United States)

    Ji, Xiaoqian; Li, Changzheng; Ou, Yitao; Li, Ning; Yuan, Kai; Yang, Guizhi; Chen, Xiaoyan; Yang, Zhicheng; Liu, Bing; Cheung, Wai W; Wang, Lijing; Huang, Ren; Lan, Tian

    2016-12-05

    Diabetic nephropathy (DN) is characterized by proliferation of mesangial cells, mesangial hypertrophy and extracellular matrix (ECM) accumulation. Our recent study found that andrographolide inhibited high glucose-induced mesangial cell proliferation and fibronectin expression through inhibition of AP-1 pathway. However, whether andrographolide has reno-protective roles in DN has not been fully elucidated. Here, we studied the pharmacological effects of andrographolide against the progression of DN and high glucose-induced mesangial dysfunction. Diabetes was induced in C57BL/6 mice by intraperitoneal injection of streptozotocin (STZ). After 1 weeks after STZ injection, normal diet was substituted with a high-fat diet (HFD). Diabetic mice were intraperitoneal injected with andrographolide (2 mg/kg, twice a week). After 8 weeks, functional and histological analyses were carried out. Parallel experiments uncovering the molecular mechanism by which andrographolide prevents from DN was performed in mesangial cells. Andrographolide inhibited the increases in fasting blood glucose, triglyceride, kidney/body weight ratio, blood urea nitrogen, serum creatinine and 24-h albuminuria in diabetic mice. Andrographolide also prevented renal hypertrophy and ECM accumulation. Furthermore, andrographolide markedly attenuated NOX1 expression, ROS production and pro-inflammatory cytokines as well. Additionally, andrographolide inhibited Akt/NF-κB signaling pathway. These results demonstrate that andrographolide is protective against the progression of experimental DN by inhibiting renal oxidative stress, inflammation and fibrosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Andrographolide impedes cancer stemness and enhances radio-sensitivity in oral carcinomas via miR-218 activation.

    Science.gov (United States)

    Yang, Po-Yu; Hsieh, Pei-Ling; Wang, Tong Hong; Yu, Cheng-Chia; Lu, Ming-Yi; Liao, Yi-Wen; Lee, Tzu-Hsin; Peng, Chih-Yu

    2017-01-17

    Current evidence suggests that oral cancer stem cells (OCSCs) possess high tumorigenic and metastatic properties as well as chemo- and radioresistance. In this study, we demonstrated that andrographolide, the main bioactive component in the medicinal plant Andrographis, significantly reduced oncogenicity and restored radio-sensitivity of ALDH1+CD44+ OCSCs. Mechanistic studies showed that andrographolide treatment increased the expression of microRNA-218 (miR-218), leading to the downregulation of Bmi1. We showed that knockdown of miR-218 in ALDH1-CD44- non-OCSCs enhanced cancer stemness, while silencing of Bmi1 significantly counteracted it. Furthermore, we found tumor growth was reduced in mice bearing xenograft tumors after andrographolide treatment via activation of miR-218/Bmi1 axis. Together, these data demonstrated that the inhibition of tumor aggressiveness in OCSCs by andrographolide was mediated through the upregulation of miR-218, thereby reducing Bmi1 expression. These findings suggest that andrographolide may be a valuable natural compound for anti-CSCs treatment of OSCC.

  7. Andrographolide protects against LPS-induced acute lung injury by inactivation of NF-κB.

    Directory of Open Access Journals (Sweden)

    Tao Zhu

    Full Text Available Nuclear factor-κB (NF-κB is a central transcriptional factor and a pleiotropic regulator of many genes involved in acute lung injury. Andrographolide is found in the plant of Andrographis paniculata and widely used in Traditional Chinese Medicine, exhibiting potently anti-inflammatory property by inhibiting NF-κB activity. The purpose of our investigation was designed to reveal the effect of andrographolide on various aspects of LPS induced inflammation in vivo and in vitro.In vivo, BALB/C mice were subjected to LPS injection with or without andrographolide treatments to induce ALI model. In vitro, MLE-12 cells were stimulated with LPS in the presence and absence of andrographolide. In vivo, pulmonary inflammation, pulmonary edema, ultrastructure changes of type II alveolar epithelial cells, MPO activity, total cells, neutrophils, macrophages, TNF-α, IL-6 and IL-1β in BALF, along with the expression of VCAM-1 and VEGF were dose-dependently attenuated by andrographolide. Meanwhile, in vitro, the expression of VCAM-1 and VEGF was also reduced by andrographolide. Moreover, our data showed that andrographolide significantly inhibited the ratios of phospho-IKKβ/total IKKβ, phospho-IκBα/total IκBα and phospho-NF-κB p65/total NF-κB p65, and NF-κB p65 DNA binding activities, both in vivo and in vitro.These results indicate that andrographolide dose-dependently suppressed the severity of LPS-induced ALI, more likely by virtue of andrographolide-mediated NF-κB inhibition at the level of IKKβ activation. These results suggest andrographolide may be considered as an effective and safe drug for the potential treatment of ALI.

  8. Andrographolide Protects against LPS-Induced Acute Lung Injury by Inactivation of NF-κB

    Science.gov (United States)

    Zhu, Tao; Wang, Dao-xin; Zhang, Wei; Liao, Xiu-qing; Guan, Xian; Bo, Hong; Sun, Jia-yang; Huang, Ni-wen; He, Jing; Zhang, Yun-kun; Tong, Jing; Li, Chang-yi

    2013-01-01

    Background Nuclear factor-κB (NF-κB) is a central transcriptional factor and a pleiotropic regulator of many genes involved in acute lung injury. Andrographolide is found in the plant of Andrographis paniculata and widely used in Traditional Chinese Medicine, exhibiting potently anti-inflammatory property by inhibiting NF-κB activity. The purpose of our investigation was designed to reveal the effect of andrographolide on various aspects of LPS induced inflammation in vivo and in vitro. Methods and Results In vivo, BALB/C mice were subjected to LPS injection with or without andrographolide treatments to induce ALI model. In vitro, MLE-12 cells were stimulated with LPS in the presence and absence of andrographolide. In vivo, pulmonary inflammation, pulmonary edema, ultrastructure changes of type II alveolar epithelial cells, MPO activity, total cells, neutrophils, macrophages, TNF-α, IL-6 and IL-1β in BALF, along with the expression of VCAM-1 and VEGF were dose-dependently attenuated by andrographolide. Meanwhile, in vitro, the expression of VCAM-1 and VEGF was also reduced by andrographolide. Moreover, our data showed that andrographolide significantly inhibited the ratios of phospho-IKKβ/total IKKβ, phospho-IκBα/total IκBα and phospho-NF-κB p65/total NF-κB p65, and NF-κB p65 DNA binding activities, both in vivo and in vitro. Conclusions These results indicate that andrographolide dose-dependently suppressed the severity of LPS-induced ALI, more likely by virtue of andrographolide-mediated NF-κB inhibition at the level of IKKβ activation. These results suggest andrographolide may be considered as an effective and safe drug for the potential treatment of ALI. PMID:23437127

  9. Andrographolide inhibits hypoxia-induced hypoxia-inducible factor 1α and endothelin 1 expression through the heme oxygenase 1/CO/cGMP/MKP-5 pathways in EA.hy926 cells.

    Science.gov (United States)

    Lin, Hung-Chih; Su, Shih-Li; Lin, Wan-Chun; Lin, Ai-Hsuan; Yang, Ya-Chen; Lii, Chong-Kuei; Chen, Haw-Wen

    2018-03-01

    Andrographolide is a potent anti-inflammatory agent found in Andrographis paniculata. Endothelin 1 (ET-1) is an endothelium-derived vasoconstrictor with pro-inflammatory properties secreted in response to hypoxia. Mitogen-activated protein kinase phosphatase 5 (MKP-5) is a dual-specificity phosphatase that dephosphorylates threonine and tyrosine residues of MAPKs. We showed previously that hypoxia-induced HIF-1α expression and ET-1 secretion are dependent on p38 MAPK in EA.hy926 cells. Here, we investigate what role MKP-5 plays in andrographolide's inhibition of hypoxia-induced expression of HIF-1α and ET-1. Hypoxic conditions were created using the hypoxia-mimetic agent CoCl 2 . Andrographolide enhanced HO-1 and MKP-5 expression and cellular cGMP content in addition to inhibiting hypoxia-induced ROS generation. Concomitantly, the HO-1 byproduct CO and the cGMP analogue 8-bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP) increased MKP-5 expression, and pretreatment with CO and 8-Br-cGMP inhibited hypoxia-induced HIF-1α and ET-1 expression. Transfection of HO-1 siRNA or pretreatment with the HO-1 inhibitor ZnPP-9 or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a specific inhibitor of soluble guanylate cyclase, reduced andrographolide-induced MKP-5 expression. Moreover, silencing MKP-5 or treatment with the phosphatase inhibitor vanadate abrogated andrographolide's suppressing hypoxia-induced p38 MAPK activation and HIF-1α expression. The inhibition of hypoxia-induced HIF-1α and ET-1 expression by andrographolide is likely associated with HO-1/CO/cGMP/MKP-5 pathways, which is involved in inhibiting hypoxia-induced p38 MAPK activation. © 2017 Wiley Periodicals, Inc.

  10. Andrographolide induces vascular smooth muscle cell apoptosis through a SHP-1-PP2A-p38MAPK-p53 cascade.

    Science.gov (United States)

    Chen, Yu-Ying; Hsieh, Cheng-Ying; Jayakumar, Thanasekaran; Lin, Kuan-Hung; Chou, Duen-Suey; Lu, Wan-Jung; Hsu, Ming-Jen; Sheu, Joen-Rong

    2014-07-10

    The abnormal growth of vascular smooth muscle cells (VSMCs) is considered a critical pathogenic process in inflammatory vascular diseases. We have previously demonstrated that protein phosphatase 2 A (PP2A)-mediated NF-κB dephosphorylation contributes to the anti-inflammatory properties of andrographolide, a novel NF-κB inhibitor. In this study, we investigated whether andrographolide causes apoptosis, and characterized its apoptotic mechanisms in rat VSMCs. Andrographolide activated the p38 mitogen-activated protein kinase (p38MAPK), leading to p53 phosphorylation. Phosphorylated p53 subsequently transactivated the expression of Bax, a pro-apoptotic protein. Transfection with pp2a small interfering RNA (siRNA) suppressed andrographolide-induced p38MAPK activation, p53 phosphorylation, and caspase 3 activation. Andrographolide also activated the Src homology 1 domain-containing protein tyrosine phosphatase (SHP-1), and induced PP2A dephosphorylation, both of which were inhibited by the SHP-1 inhibitor sodium stibogluconate (SSG) or shp-1 siRNA. SSG or shp-1 siRNA prevented andrographolide-induced apoptosis. These results suggest that andrographolide activates the PP2A-p38MAPK-p53-Bax cascade, causing mitochondrial dysfunction and VSMC death through an SHP-1-dependent mechanism.

  11. Andrographolide radiosensitizes human esophageal cancer cell line ECA109 to radiation in vitro.

    Science.gov (United States)

    Wang, Z-M; Kang, Y-H; Yang, X; Wang, J-F; Zhang, Q; Yang, B-X; Zhao, K-L; Xu, L-P; Yang, L-P; Ma, J-X; Huang, G-H; Cai, J; Sun, X-C

    2016-01-01

    To explore the radiosensitivity of andrographolide on esophageal cancer cell line ECA109. The inhibition effects of andrographolide were measured using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium (MTT) assay. Clonogenic survival assay was used to evaluate the effects of andrographolide on the radiosensitivity of esophageal cancer cells. Immunofluorescence was employed to examine Bax expression. The changes in cell cycle distribution and apoptosis were assayed using flow cytometry. The expression of NF-κb/Cleaved-Caspase3/Bax/Bcl-2 was measured using Western blot analysis. DNA damage was detected via γ-H2AX foci counting. With a clear dose and time effects, andrographolide was found to inhibit the proliferation of esophageal cell line ECA109. The results of the clonogenic survival assay show that andrographolide could markedly enhance radiosensitivity (P Andrographolide caused a dose-dependent increase in Cleaved-Caspase3/Bax protein expression and a decrease in Bcl-2/NF-κb expression. Apoptosis in andrographolide-treated ECA-109 increased significantly compared with the apoptosis in the simple drug and radiation combined with drug groups (P andrographolide combined with radiation group increased the number of DNA double chain breaks. Andrographolide can increase the radiosensitivity of esophageal cell line ECA109. This result may be associated with the decrease in the NF-κb level and the induced apoptosis of esophageal cancer cells. © 2014 International Society for Diseases of the Esophagus.

  12. Andrographolide inhibits growth of human T-cell acute lymphoblastic leukemia Jurkat cells by downregulation of PI3K/AKT and upregulation of p38 MAPK pathways

    Directory of Open Access Journals (Sweden)

    Yang T

    2016-04-01

    Full Text Available Tingfang Yang,1 Shuluan Yao,2 Xianfeng Zhang,3 Yan Guo2 1Department of Pediatrics, Jining No 1 People’s Hospital, Shandong Province, People’s Republic of China; 2Department of Respiratory Medicine, Jining Medical University Affiliated Hospital, Shandong Province, People’s Republic of China; 3Department of Psychiatry, Jining Psychiatric Hospital, Shandong Province, People’s Republic of China Abstract: T-cell acute lymphoblastic leukemia (T-ALL as a prevalent hematologic malignancy is one of the most common malignant tumors worldwide in children. Andrographolide (Andro, the major active component from Andrographis paniculata, has been shown to possess antitumor activities in several types of cancer cells. However, whether Andro would inhibit T-ALL cell growth remains unclear. In this study, we investigated the cytotoxic effect of Andro on human T-ALL Jurkat cells and explored the mechanisms of cell death. Cell apoptosis was assayed by flow cytometry, and the signaling transduction for Andro was analyzed by Western blotting. The results indicated 10 µg/mL Andro could significantly induce Jurkat cells’ apoptosis, depending on the inhibition of PI3K/AKT pathway. Moreover, Andro-induced apoptosis is enhanced by AKT-selective inhibitor LY294002. ERK- or JNK-selective inhibitors PD98059 and SP600125 had no effect on Andro-induced apoptosis. In addition, p38 inhibitor SB203580 could reverse Andro-induced apoptosis in Jurkat cells. We also found that the protein expression of p-p53 and p-p38 were increased after Andro treatments. The result of an in vivo study also demonstrated Andro’s dose-dependent inhibition in subcutaneous Jurkat xenografts. In conclusion, our findings explained a novel mechanism of drug action by Andro in Jurkat cells and suggested that Andro might be developed into a new candidate therapy for T-ALL patients in the coming days. Keywords: andrographolide, PI3K, AKT, Burkitt lymphoma, Jurkat cell

  13. Andrographolide Sensitizes Ras-Transformed Cells to Radiation in vitro and in vivo

    International Nuclear Information System (INIS)

    Hung, Shih-Kai; Hung, Ling-Chien; Kuo, Cheng-Deng

    2010-01-01

    Purpose: Increasing the sensitivity of tumor cells to radiation is a major goal of radiotherapy. The present study investigated the radiosensitizing effects of andrographolide and examined the molecular mechanisms of andrographolide-mediated radiosensitization. Methods and Materials: An H-ras-transformed rat kidney epithelial (RK3E) cell line was used to measure the radiosensitizing effects of andrographolide in clonogenic assays, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide assays, and a xenograft tumor growth model. The mechanism of andrographolide-sensitized cell death was analyzed using annexin V staining, caspase 3 activity assays, and terminal transferase uridyl nick end labeling assays. The roles of nuclear factor kappa B (NF-κB) and Akt in andrographolide-mediated sensitization were examined using reporter assays, electrophoretic mobility shift assays, and Western blotting. Results: Concurrent andrographolide treatment (10 μM, 3 h) sensitized Ras-transformed cells to radiation in vitro (sensitizer enhancement ratio, 1.73). Andrographolide plus radiation (one dose of 300 mg/kg peritumor andrographolide and one dose of 6 Gy radiation) resulted in significant tumor growth delay (27 ± 2.5 days) compared with radiation alone (22 ± 1.5 days; p <.05). Radiation induced apoptotic markers (e.g., caspase-3, membrane reversion, DNA fragmentation), and andrographolide treatment did not promote radiation-induced apoptosis. However, the protein level of activated Akt was significantly reduced by andrographolide. NF-κB activity was elevated in irradiated Ras-transformed cells, and andrographolide treatment significantly reduced radiation-induced NF-κB activity. Conclusion: Andrographolide sensitized Ras-transformed cells to radiation both in vitro and in vivo. Andrographolide-mediated radiosensitization was associated with downregulation of Akt and NF-κB activity. These observations indicate that andrographolide is a novel radiosensitizing agent

  14. Clinical Efficacy of Andrographolide Sulfonate in the Treatment of Severe Hand, Foot, and Mouth Disease (HFMD) is Dependent upon Inhibition of Neutrophil Activation.

    Science.gov (United States)

    Wen, Tao; Xu, Wenjun; Liang, Lianchun; Li, Junhong; Ding, Xiaorong; Chen, Xiao; Hu, Jianhua; Lv, Aiping; Li, Xiuhui

    2015-08-01

    Andrographolide sulfonate treatment has been shown to improve clinical severe hand, foot, and mouth disease (HFMD) efficacies when combined with conventional therapy. However, the mechanisms for its therapeutic effects remain elusive. In this study, we aimed to investigate whether andrographolide sulfonate exerts its efficacy by acting on neutrophil activation. We obtained serial plasma samples at two time points (before and after 5 days of therapy) from 28 HFMD patients who received conventional therapy and 18 patients who received combination therapy (andrographolide sulfonate plus conventional therapy). Then, we measured plasma myeloperoxidase (MPO), S100A8/A9, histone, and inflammatory cytokine levels. Furthermore, we examined if andrographolide sulfonate had direct effects on neutrophil activation in vitro. We observed that MPO and S100A8/A9 levels were markedly elevated in the HFMD patients before clinical treatment. At 5 days post-medication, the MPO, S100A8/A9, histone, and interleukin-6 levels were markedly lower in the combination therapy group compared with the conventional therapy group. In vitro studies showed that andrographolide sulfonate inhibited lipopolysaccharide-stimulated neutrophil activation, demonstrated by the decreased production of reactive oxygen species and cytokines. These data indicate that neutrophil activation modulation by andrographolide sulfonate may be a critical determinant for its clinical HFMD treatment efficacy. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Establishment of in vitro adventitious root cultures and analysis of andrographolide in Andrographis paniculata.

    Science.gov (United States)

    Sharma, Shiv Narayan; Jha, Zenu; Sinha, Rakesh Kumar

    2013-08-01

    Andrographolide is the principal bioactive component of the medicinal plant Andrographis paniculata, to which various diverse pharmacological properties are attributed. Traditionally, andrographolide was extracted from the leaves, stems and other parts of the plant. Leaves have the highest andrographolide content (2-3%) in comparison with the other plant parts. Adventitious root culture of leaf explants of A. paniculata was studied using different strength MS medium supplemented by different concentrations of auxins and a combination of NAA + kinetin for growth and andrographolide production. Among the different auxin treatments in adventitious root culture, only NAA was able to induce adventitious roots. Adventitious roots grown in modified strength MS medium showed the highest root growth (26.7 +/- 1.52), as well as the highest amount of andrographolide (133.3 +/- 1.5 mg/g DW) as compared with roots grown in half- and full-strength MS medium. Growth kinetics showed maximum biomass production after five weeks of culture in different strength MS liquid medium. The produced andrographolide content was 3.5 - 5.5 folds higher than that of the natural plant, depending on the medium strength.

  16. Andrographolide interferes with binding of nuclear factor-κB to DNA in HL-60-derived neutrophilic cells

    Science.gov (United States)

    Hidalgo, María A; Romero, Alex; Figueroa, Jaime; Cortés, Patricia; Concha, Ilona I; Hancke, Juan L; Burgos, Rafael A

    2005-01-01

    Andrographolide, the major active component from Andrographis paniculata, has shown to possess anti-inflammatory activity. Andrographolide inhibits the expression of several proinflammatory proteins that exhibit a nuclear factor kappa B (NF-κB) binding site in their gene. In the present study, we analyzed the effect of andrographolide on the activation of NF-κB induced by platelet-activating factor (PAF) and N-formyl-methionyl-leucyl-phenylalanine (fMLP) in HL-60 cells differentiated to neutrophils. PAF (100 nM) and fMLP (100 nM) induced activation of NF-κB as determined by degradation of inhibitory factor B α (IκBα) using Western blotting in cytosolic extracts and by binding to DNA using electrophoretic mobility shift assay (EMSA) in nuclear extracts. Andrographolide (5 and 50 μM) inhibited the NF-κB-luciferase activity induced by PAF. However, andrographolide did not reduce phosphorylation of p38 MAPK or ERK1/2 and did not change IκBα degradation induced by PAF and fMLP. Andrographolide reduced the DNA binding of NF-κB in whole cells and in nuclear extracts induced by PAF and fMLP. Andrographolide reduced cyclooxygenase-2 (COX-2) expression induced by PAF and fMLP in HL-60/neutrophils. It is concluded that andrographolide exerts its anti-inflammatory effects by inhibiting NF-κB binding to DNA, and thus reducing the expression of proinflammatory proteins, such as COX-2. PMID:15678086

  17. Andrographolide: solving chemical instability and poor solubility by means of cocrystals.

    Science.gov (United States)

    Suresh, Kuthuru; Goud, N Rajesh; Nangia, Ashwini

    2013-12-01

    The bioactive agent andrographolide was screened with pharmaceutically acceptable coformers to discover a novel solid form that will solve the chemical instability and poor solubility problems of this herbal medicine. Liquid-assisted grinding of andrographolide with GRAS (generally regarded as safe) coformers in a fixed stoichiometry resulted in cocrystals with vanillin (1:1), vanillic acid (1:1), salicylic acid (1:1), resorcinol (1:1), and guaiacol (1:1). All the crystalline products were characterized by thermal, spectroscopic, and diffraction methods. Interestingly, even though the cocrystals are isostructural, their physicochemical properties are quite different. The andrographolide-salicylic acid cocrystal completely inhibited the chemical transformation of andrographolide to its inactive sulfate metabolite, and moreover, the cocrystal exhibited a dissolution rate that was three times faster and a drug release that was two times higher than pure andrographolide. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Andrographis paniculata extracts and major constituent diterpenoids inhibit growth of intrahepatic cholangiocarcinoma cells by inducing cell cycle arrest and apoptosis.

    Science.gov (United States)

    Suriyo, Tawit; Pholphana, Nanthanit; Rangkadilok, Nuchanart; Thiantanawat, Apinya; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2014-05-01

    Andrographis paniculata is an important herbal medicine widely used in several Asian countries for the treatment of various diseases due to its broad range of pharmacological activities. The present study reports that A. paniculata extracts potently inhibit the growth of liver (HepG2 and SK-Hep1) and bile duct (HuCCA-1 and RMCCA-1) cancer cells. A. paniculata extracts with different contents of major diterpenoids, including andrographolide, 14-deoxy-11,12-didehydroandrographolide, neoandrographolide, and 14-deoxyandrographolide, exhibited a different potency of growth inhibition. The ethanolic extract of A. paniculata at the first true leaf stage, which contained a high amount of 14-deoxyandrographolide but a low amount of andrographolide, showed a cytotoxic effect to cancer cells about 4 times higher than the water extract of A. paniculata at the mature leaf stage, which contained a high amount of andrographolide but a low amount of 14-deoxyandrographolide. Andrographolide, not 14-deoxy-11,12-didehydroandrographolide, neoandrographolide, or 14-deoxyandrographolide, possessed potent cytotoxic activity against the growth of liver and bile duct cancer cells. The cytotoxic effect of the water extract of A. paniculata at the mature leaf stage could be explained by the present amount of andrographolide, while the cytotoxic effect of the ethanolic extract of A. paniculata at the first true leaf stage could not. HuCCA-1 cells showed more sensitivity to A. paniculata extracts and andrographolide than RMCCA-1 cells. Furthermore, the ethanolic extract of A. paniculata at the first true leaf stage increased cell cycle arrest at the G0/G1 and G2/M phases, and induced apoptosis in both HuCCA-1 and RMCCA-1 cells. The expressions of cyclin-D1, Bcl-2, and the inactive proenzyme form of caspase-3 were reduced by the ethanolic extract of A. paniculata in the first true leaf stage treatment, while a proapoptotic protein Bax was increased. The cleavage of poly (ADP

  19. Protective role of andrographolide in bleomycin-induced pulmonary fibrosis in mice.

    Science.gov (United States)

    Zhu, Tao; Zhang, Wei; Xiao, Min; Chen, Hongying; Jin, Hong

    2013-12-03

    Idiopathic pulmonary fibrosis (IPF) is a chronic devastating disease with poor prognosis. Multiple pathological processes, including inflammation, epithelial mesenchymal transition (EMT), apoptosis, and oxidative stress, are involved in the pathogenesis of IPF. Recent findings suggested that nuclear factor-κB (NF-κB) is constitutively activated in IPF and acts as a central regulator in the pathogenesis of IPF. The aim of our study was to reveal the value of andrographolide on bleomycin-induced inflammation and fibrosis in mice. The indicated dosages of andrographolide were administered in mice with bleomycin-induced pulmonary fibrosis. On day 21, cell counts of total cells, macrophages, neutrophils and lymphocytes, alone with TNF-α in bronchoalveolar lavage fluid (BALF) were measured. HE staining and Masson's trichrome (MT) staining were used to observe the histological alterations of lungs. The Ashcroft score and hydroxyproline content of lungs were also measured. TGF-β1 and α-SMA mRNA and protein were analyzed. Activation of NF-κB was determined by western blotting and electrophoretic mobility shift assay (EMSA). On day 21 after bleomycin stimulation, andrographolide dose-dependently inhibited the inflammatory cells and TNF-α in BALF. Meanwhile, our data demonstrated that the Ashcroft score and hydroxyproline content of the bleomycin-stimulated lung were reduced by andrographolide administration. Furthermore, andrographloide suppressed TGF-β1 and α-SMA mRNA and protein expression in bleomycin-induced pulmonary fibrosis. Meanwhile, andrographolide significantly dose-dependently inhibited the ratio of phospho-NF-κB p65/total NF-κB p65 and NF-κB p65 DNA binding activities. Our findings indicate that andrographolide compromised bleomycin-induced pulmonary inflammation and fibrosis possibly through inactivation of NF-κB. Andrographolide holds promise as a novel drug to treat the devastating disease of pulmonary fibrosis.

  20. Protective Role of Andrographolide in Bleomycin-Induced Pulmonary Fibrosis in Mice

    Directory of Open Access Journals (Sweden)

    Tao Zhu

    2013-12-01

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a chronic devastating disease with poor prognosis. Multiple pathological processes, including inflammation, epithelial mesenchymal transition (EMT, apoptosis, and oxidative stress, are involved in the pathogenesis of IPF. Recent findings suggested that nuclear factor-κB (NF-κB is constitutively activated in IPF and acts as a central regulator in the pathogenesis of IPF. The aim of our study was to reveal the value of andrographolide on bleomycin-induced inflammation and fibrosis in mice. The indicated dosages of andrographolide were administered in mice with bleomycin-induced pulmonary fibrosis. On day 21, cell counts of total cells, macrophages, neutrophils and lymphocytes, alone with TNF-α in bronchoalveolar lavage fluid (BALF were measured. HE staining and Masson’s trichrome (MT staining were used to observe the histological alterations of lungs. The Ashcroft score and hydroxyproline content of lungs were also measured. TGF-β1 and α-SMA mRNA and protein were analyzed. Activation of NF-κB was determined by western blotting and electrophoretic mobility shift assay (EMSA. On day 21 after bleomycin stimulation, andrographolide dose-dependently inhibited the inflammatory cells and TNF-α in BALF. Meanwhile, our data demonstrated that the Ashcroft score and hydroxyproline content of the bleomycin-stimulated lung were reduced by andrographolide administration. Furthermore, andrographloide suppressed TGF-β1 and α-SMA mRNA and protein expression in bleomycin-induced pulmonary fibrosis. Meanwhile, andrographolide significantly dose-dependently inhibited the ratio of phospho-NF-κB p65/total NF-κB p65 and NF-κB p65 DNA binding activities. Our findings indicate that andrographolide compromised bleomycin-induced pulmonary inflammation and fibrosis possibly through inactivation of NF-κB. Andrographolide holds promise as a novel drug to treat the devastating disease of pulmonary fibrosis.

  1. Mechanisms of suppression of inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells by andrographolide

    Science.gov (United States)

    Chiou, Wen-Fei; Chen, Chieh-Fu; Lin, Jin-Jung

    2000-01-01

    Andrographolide, an active component found in leaves of Andrographis paniculata, has been reported to exhibit nitric oxide (NO) inhibitory property in endotoxin-stimulated macrophages, however, the detailed mechanisms remain unclear. In the present study we investigated the effect of andrographolide on the expression of inducible NO synthase (iNOS) mRNA, protein, and enzyme activity in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS) plus interferon-γ (IFN-γ).RAW 264.7 cells stimulated with LPS/IFN-γ activated NO production; in this condition andrographolide (1–100 μM) inhibited NO production in a dose-dependent manner with an IC50 value of 17.4±1.1 μM. Andrographolide also reduces the expression of iNOS protein level but without a significant effect on iNOS mRNA. The reduction of iNOS activity is thought to be caused by decreased expression of iNOS protein.In a protein stability assay, andrographolide moderately but significantly reduced the amount of iNOS protein as suggested by accelerating degradation. Furthermore, andrographolide also inhibited total protein de novo synthesis as demonstrated by [35S]-methionine incorporation.As a whole, these data suggest that andrographolide inhibits NO synthesis in RAW 264.7 cells by reducing the expression of iNOS protein and the reduction could occur through two additional mechanisms: prevention of the de novo protein synthesis and decreasing the protein stability via a post-transcriptional mechanism. It is also possible that inhibition of iNOS protein expression and NO production under immune stimulation and/or bacteria infection may explain, in part, the beneficial effects of andrographolide as an anti-inflammatory agent. PMID:10780958

  2. Preventive effects of andrographolide on the development of diabetes in autoimmune diabetic NOD mice by inducing immune tolerance.

    Science.gov (United States)

    Zhang, Chengliang; Gui, Ling; Xu, Yanjiao; Wu, Tao; Liu, Dong

    2013-08-01

    Andrographolide, an active component in traditional anti-diabetic herbal plants, is a diterpenoid lactone isolated from Andrographis paniculata because of its potent anti-inflammatory and hypoglycemic effects. However, the effect of andrographolide on the development of diabetes in autoimmune non-obese diabetic (NOD) mice remains unknown. This study aimed to investigate the protective effects of andrographolide on the development of autoimmune diabetes and clarify the underlying mechanism. NOD mice were randomly divided into four groups and administered with water and andrographolide at 50, 100, and 150mg/kg body weight for four weeks. ICR mice were also selected as the control group. Oral glucose tolerance and histopathological insulitis were examined. Th1/Th2/Th17 cytokine secretion was determined by ELISA. The transcriptional profiles of T-bet, GATA3, and RORγt in the pancreatic lymphatic node samples derived from the NOD mice were detected by RT-PCR. After four weeks of oral supplementation, andrographolide significantly inhibited insulitis, delayed the onset, and suppressed the development of diabetes in 30-week-old NOD mice in a dose dependent manner. This protective status was correlated with a substantially decreased production of interferon (IFN)-γ and interleukin (IL)-2, increased IL-10 and transforming growth factor (TGF)-β, and a reduced IL-17. Andrographolide also increased GATA3 mRNA expression but decreased T-bet and RORγt mRNA expressions. Our results suggested that andrographolide prevented type 1 diabetes by maintaining Th1/Th2/Th17 homeostasis. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Andrographolide downregulates the v-Src and Bcr-Abl oncoproteins and induces Hsp90 cleavage in the ROS-dependent suppression of cancer malignancy.

    Science.gov (United States)

    Liu, Sheng-Hung; Lin, Chao-Hsiung; Liang, Fong-Ping; Chen, Pei-Fen; Kuo, Cheng-Deng; Alam, Mohd Mujahid; Maiti, Barnali; Hung, Shih-Kai; Chi, Chin-Wen; Sun, Chung-Ming; Fu, Shu-Ling

    2014-01-15

    Andrographolide is a diterpenoid compound isolated from Andrographis paniculata that exhibits anticancer activity. We previously reported that andrographolide suppressed v-Src-mediated cellular transformation by promoting the degradation of Src. In the present study, we demonstrated the involvement of Hsp90 in the andrographolide-mediated inhibition of Src oncogenic activity. Using a proteomics approach, a cleavage fragment of Hsp90α was identified in andrographolide-treated cells. The concentration- and time-dependent induction of Hsp90 cleavage that accompanied the reduction in Src was validated in RK3E cells transformed with either v-Src or a human truncated c-Src variant and treated with andrographolide. In cancer cells, the induction of Hsp90 cleavage by andrographolide and its structural derivatives correlated well with decreased Src levels, the suppression of transformation, and the induction of apoptosis. Moreover, the andrographolide-induced Hsp90 cleavage, Src degradation, inhibition of transformation, and induction of apoptosis were abolished by a ROS inhibitor, N-acetyl-cysteine. Notably, Hsp90 cleavage, decreased levels of Bcr-Abl (another known Hsp90 client protein), and the induction of apoptosis were also observed in human K562 leukemia cells treated with andrographolide or its active derivatives. Together, we demonstrated a novel mechanism by which andrographolide suppressed cancer malignancy that involved inhibiting Hsp90 function and reducing the levels of Hsp90 client proteins. Our results broaden the molecular basis of andrographolide-mediated anticancer activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. A novel bioactivity of andrographolide from Andrographis paniculata on cerebral ischemia/reperfusion-induced brain injury through induction of cerebral endothelial cell apoptosis.

    Science.gov (United States)

    Yen, Ting-Lin; Hsu, Wen-Hsien; Huang, Steven Kuan-Hua; Lu, Wan-Jung; Chang, Chao-Chien; Lien, Li-Ming; Hsiao, George; Sheu, Joen-Rong; Lin, Kuan-Hung

    2013-09-01

    Andrographolide, extracted from the leaves of Andrographis paniculata (Burm. f.) Nees (Acanthaceae), is a labdane diterpene lactone. It is widely reported to possess anti-inflammatory and antitumorigenic activities. Cerebral endothelial cells (CECs) play a crucial role in supporting the integrity and the function of the blood-brain barrier (BBB). However, no data are available concerning the effects of andrographolide in CECs. The aim of this study was to examine the detailed mechanisms of andrographolide on CECs. This study investigated a novel bioactivity of andrographolide on cerebral ischemia/reperfusion-induced brain injury. CECs were treated with andrographolide (20-100 µΜ) for the indicated times (0-24 h). After the reactions, cell survival rate and cytotoxicity were tested by the MTT assay and the lactate dehydrogenase (LDH) test, respectively. Western blotting was used to detect caspase-3 expression. In addition, analysis of cell cycle and apoptosis using PI staining and annexin V-FITC/PI labeling, respectively, was performed by flow cytometry. We also investigated the effect of andrographolide on middle cerebral artery occlusion (MCAO)/reperfusion-induced brain injury in a rat model. In the present study, we found that andrographolide (50-100 µΜ) markedly inhibited CEC growth according to an MTT assay and caused CEC damage according to a LDH test. Our data also revealed that andrographolide (50 µM) induced CEC apoptosis and caspase-3 activation as respectively detected by PI/annexin-V double staining and western blotting. Moreover, andrographolide arrested the CEC cell cycle at the G0/G1 phase by PI staining. In addition, andrographolide (5 mg/kg) caused deterioration of MCAO/reperfusion-induced brain injury in a rat model. These data suggest that andrographolide may disrupt BBB integrity, thereby deteriorating MCAO/reperfusion-induced brain injury, which are, in part, associated with its capacity to arrest cell-cycle and induce CEC

  5. Andrographolide potentiates the antitumor effect of topotecan in acute myeloid leukemia cells through an intrinsic apoptotic pathway.

    Science.gov (United States)

    Hodroj, Mohammad Hassan; Jardaly, Achraf; Abi Raad, Sarah; Zouein, Annalise; Rizk, Sandra

    2018-01-01

    Topotecan (TP) is an anticancer drug acting as topoisomerase I inhibitor that is used in the treatment of many types of cancers including leukemia, but it has significant side effects. Andrographolide, a compound extracted from Andrographis paniculata , was recently proven to inhibit the growth of cancer cells and can induce apoptosis. The aim of this study is to investigate the possible synergism between TP and andrographolide in acute myeloid cells in vitro. U937 acute myeloid leukemic cells were cultured using Roswell Park Memorial Institute (RPMI) medium and then treated for 24 h with TP and andrographolide prepared through the dilution of dimethyl sulfoxide (DMSO) stocks with RPMI on the day of treatment. Cell proliferation was assessed using cell proliferation assay upon treatment with both compounds separately and in combination. Cell-cycle study and apoptosis detection were performed by staining the cells with propidium iodide (PI) stain and Annexin V/PI stain, respectively, followed by flow cytometry analysis. Western blotting was used to assess the expression of various proteins involved in apoptotic pathways. Both TP and andrographolide showed an antiproliferative effect in a dose-dependent manner when applied on U937 cells separately; however, pretreating the cells with andrographolide before applying TP exhibited a synergistic effect with lower inhibitory concentrations (half-maximal inhibitory concentration). Treating the cells with TP alone led to specific cell-cycle arrest at S phase that was more prominent upon pretreatment combination with andrographolide. Using Annexin V/PI staining to assess the proapoptotic effect following the pretreatment combination showed an increase in the number of apoptotic cells, which was supported by the Western blot results that manifested an upregulation of several proapoptotic proteins expression. The pretreatment of U937 with andrographolide followed by low doses of TP showed an enhancement in inducing apoptosis

  6. Andrographolide inhibits hypoxia-induced HIF-1α-driven endothelin 1 secretion by activating Nrf2/HO-1 and promoting the expression of prolyl hydroxylases 2/3 in human endothelial cells.

    Science.gov (United States)

    Lin, Hung-Chih; Su, Shih-Li; Lu, Chia-Yang; Lin, Ai-Hsuan; Lin, Wan-Chun; Liu, Chin-San; Yang, Ya-Chen; Wang, Hsiu-Miao; Lii, Chong-Kuei; Chen, Haw-Wen

    2017-03-01

    Andrographolide, the main bioactive component of the medicinal plant Andrographis paniculata, has been shown to possess potent anti-inflammatory activity. Endothelin 1 (ET-1), a potent vasoconstrictor peptide produced by vascular endothelial cells, displays proinflammatory property. Hypoxia-inducible factor 1α (HIF-1α), the regulatory member of the transcription factor heterodimer HIF-1α/β, is one of the most important molecules that responds to hypoxia. Changes in cellular HIF-1α protein level are the result of altered gene transcription and protein stability, with the latter being dependent on prolyl hydroxylases (PHDs). In this study, inhibition of pro-inflammatory ET-1 expression and changes of HIF-1α gene transcription and protein stability under hypoxia by andrographolide in EA.hy926 endothelial-like cells were investigated. Hypoxic conditions were created using the hypoxia-mimetic agent CoCl 2. We found that hypoxia stimulated the production of reactive oxygen species (ROS), the expression of HIF-1α mRNA and protein, and the expression and secretion of ET-1. These effects, however, were attenuated by co-exposure to andrographolide, bilirubin, and RuCO. Silencing Nrf2 and heme oxygenase 1 (HO-1) reversed the inhibitory effects of andrographolide on hypxoia-induced HIF-1α mRNA and protein expression. Moreover, andrographolide increased the expression of prolyl hydroxylases (PHD) 2/3, which hydroxylate HIF-1α and promotes HIF-1α proteasome degradation, with an increase in HIF-1α hydroxylation was noted under hypoxia. Inhibition of p38 MAPK abrogated the hypoxia-induced increases in HIF-1α mRNA and protein expression as well as ET-1 mRNA expression and secretion. Taken together, these results suggest that andrographolide suppresses hypoxia-induced pro-inflammatory ET-1 expression by activating Nrf2/HO-1, inhibiting p38 MAPK signaling, and promoting PHD2/3 expression. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 918-930, 2017. © 2016 Wiley

  7. Elicitation of andrographolide in the suspension cultures of Andrographis paniculata.

    Science.gov (United States)

    Gandi, Suryakala; Rao, Kiranmayee; Chodisetti, Bhuvaneswari; Giri, Archana

    2012-12-01

    Andrographis paniculata belonging to the family Acanthaceae produces a group of diterpene lactones, one of which is the pharmaceutically important-andrographolide. It is known to possess various important biological properties like anticancer, anti-HIV, anti-inflammatory, etc. This is the first report on the production of andrographolide in the cell suspension cultures of Andrographis paniculata by 'elicitation'. Elicitation was attempted to enhance the andrographolide content in the suspension cultures of Andrographis paniculata and also to ascertain its stimulation under stress conditions or in response to pathogen attack. The maximum andrographolide production was found to be 1.53 mg/g dry cell weight (DCW) at the end of stationary phase during the growth curve. The biotic elicitors (yeast, Escherichia coli, Bacillus subtilis, Agrobacterium rhizogenes 532 and Agrobacterium tumefaciens C 58) were more effective in eliciting the response when compared to the abiotic elicitors (CdCl(2), AgNO(3), CuCl(2) and HgCl(2)). Yeast has shown to stimulate maximum accumulation of 13.5 mg/g DCW andrographolide, which was found to be 8.82-fold higher than the untreated cultures.

  8. Andrographolide suppresses TRIF-dependent signaling of toll-like receptors by targeting TBK1.

    Science.gov (United States)

    Kim, Ah-Yeon; Shim, Hyun-Jin; Shin, Hyeon-Myeong; Lee, Yoo Jung; Nam, Hyeonjeong; Kim, Su Yeon; Youn, Hyung-Sun

    2018-04-01

    Toll-like receptors (TLRs) play a crucial role in danger recognition and induction of innate immune response against bacterial and viral infections. The TLR adaptor molecule, toll-interleukin-1 receptor domain-containing adapter inducing interferon-β (TRIF), facilitates TLR3 and TLR4 signaling, leading to the activation of the transcription factor, NF-κB and interferon regulatory factor 3 (IRF3). Andrographolide, the active component of Andrographis paniculata, exerts anti-inflammatory effects; however, the principal molecular mechanisms remain unclear. The objective of this study was to investigate the role of andrographolide in TLR signaling pathways. Andrographolide suppressed NF-κB activation as well as COX-2 expression induced by TLR3 or TLR4 agonists. Andrographolide also suppressed the activation of IRF3 and the expression of interferon inducible protein-10 (IP-10) induced by TLR3 or TLR4 agonists. Andrographolide attenuated ligand-independent activation of IRF3 following overexpression of TRIF, TBK1, or IRF3. Furthermore, andrographolide inhibited TBK1 kinase activity in vitro. These results indicate that andrographolide modulates the TRIF-dependent pathway of TLRs by targeting TBK1 and represents a potential new anti-inflammatory candidate. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Andrographolide inhibits growth of human T-cell acute lymphoblastic leukemia Jurkat cells by downregulation of PI3K/AKT and upregulation of p38 MAPK pathways

    Science.gov (United States)

    Yang, Tingfang; Yao, Shuluan; Zhang, Xianfeng; Guo, Yan

    2016-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) as a prevalent hematologic malignancy is one of the most common malignant tumors worldwide in children. Andrographolide (Andro), the major active component from Andrographis paniculata, has been shown to possess antitumor activities in several types of cancer cells. However, whether Andro would inhibit T-ALL cell growth remains unclear. In this study, we investigated the cytotoxic effect of Andro on human T-ALL Jurkat cells and explored the mechanisms of cell death. Cell apoptosis was assayed by flow cytometry, and the signaling transduction for Andro was analyzed by Western blotting. The results indicated 10 μg/mL Andro could significantly induce Jurkat cells’ apoptosis, depending on the inhibition of PI3K/AKT pathway. Moreover, Andro-induced apoptosis is enhanced by AKT-selective inhibitor LY294002. ERK- or JNK-selective inhibitors PD98059 and SP600125 had no effect on Andro-induced apoptosis. In addition, p38 inhibitor SB203580 could reverse Andro-induced apoptosis in Jurkat cells. We also found that the protein expression of p-p53 and p-p38 were increased after Andro treatments. The result of an in vivo study also demonstrated Andro’s dose-dependent inhibition in subcutaneous Jurkat xenografts. In conclusion, our findings explained a novel mechanism of drug action by Andro in Jurkat cells and suggested that Andro might be developed into a new candidate therapy for T-ALL patients in the coming days. PMID:27114702

  10. Effects of andrographolide on intrahepatic cholestasis induced by alpha-naphthylisothiocyanate in rats.

    Science.gov (United States)

    Khamphaya, Tanaporn; Chansela, Piyachat; Piyachaturawat, Pawinee; Suksamrarn, Apichart; Nathanson, Michael H; Weerachayaphorn, Jittima

    2016-10-15

    Cholestasis is a cardinal manifestation of liver diseases but effective therapeutic approaches are limited. Therefore, alternative therapy for treating and preventing cholestatic liver diseases is necessary. Andrographolide, a promising anticancer drug derived from the medicinal plant Andrographis paniculata, has diverse pharmacological properties and multi-spectrum therapeutic applications. However, it is unknown whether andrographolide has a hepatoprotective effect on intrahepatic cholestasis. The aims of this study were to investigate the protective effect and possible mechanisms of andrographolide in a rat model of acute intrahepatic cholestasis induced by alpha-naphthylisothiocyanate (ANIT). Andrographolide was administered intragastrically for four consecutive days, with a single intraperitoneal injection of ANIT on the second day. Liver injury was evaluated biochemically and histologically together with hepatic gene and protein expression analysis. Rats pretreated with andrographolide prior to ANIT injection demonstrated lower levels of serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma-glutamyltransferase, as well as bilirubin and bile acids as compared to rats treated with ANIT alone. Andrographolide also decreased the incidence and extent of periductular fibrosis and bile duct proliferation. Analysis of protein expression in livers from andrographolide-treated cholestatic rats revealed markedly decreased expression of alpha-smooth muscle actin and nuclear factor kappa-B (NF-κB). In conclusion, andrographolide has a potent protective property against ANIT-induced cholestatic liver injury. The mechanisms that underlie this protective effect are mediated through down-regulation of NF-κB expression and inhibition of hepatic stellate cell activation. These findings suggest that andrographolide could be a promising therapeutic option in prevention and slowing down the progression of cholestatic liver diseases. Copyright

  11. Andrographolide inhibits TNFα-induced ICAM-1 expression via suppression of NADPH oxidase activation and induction of HO-1 and GCLM expression through the PI3K/Akt/Nrf2 and PI3K/Akt/AP-1 pathways in human endothelial cells.

    Science.gov (United States)

    Lu, Chia-Yang; Yang, Ya-Chen; Li, Chien-Chun; Liu, Kai-Li; Lii, Chong-Kuei; Chen, Haw-Wen

    2014-09-01

    Andrographolide, the major bioactive component of Andrographis paniculata, has been demonstrated to have various biological properties including anti-inflammation, antioxidation, and anti-hepatotoxicity. Oxidative stress is considered a major risk factor in aging, inflammation, cancer, atherosclerosis, and diabetes mellitus. NADPH oxidase is a major source of endogenous reactive oxygen species (ROS). In this study, we used EA.hy926 endothelial-like cells to explore the anti-inflammatory activity of andrographolide. Andrographolide attenuated TNFα-induced ROS generation, Src phosphorylation, membrane translocation of the NADPH oxidase subunits p47(phox) and p67(phox), and ICAM-1 gene expression. In the small hairpin RNA interference assay, shp47(phox) abolished TNFα-induced p65 nuclear translocation, ICAM-1 gene expression, and adhesion of HL-60 cells. Andrographolide induced the gene expression of heme oxygenase 1 (HO-1) and glutamate cysteine ligase modifier subunit (GCLM) in a time-dependent manner. Cellular glutathione (GSH) content was increased by andrographolide. shGCLM attenuated the andrographolide-induced increase in GSH content and reversed the andrographolide inhibition of HL-60 adhesion. shHO-1 showed a similar effect on andrographolide inhibition of HL-60 adhesion to shGCLM. The mechanism underlying the up-regulation of HO-1 and GCLM by andrographolide was dependent on the PI3K/Akt pathway, and both the Nrf2 and AP-1 transcriptional factors were involved. Our results suggest that andrographolide attenuates TNFα-induced ICAM-1 expression at least partially through suppression of NADPH oxidase activation and induction of HO-1 and GCLM expression, which is PI3K/Akt pathway-dependent. Copyright © 2014. Published by Elsevier Inc.

  12. Immunomodulatory activity of andrographolide on macrophage activation and specific antibody response

    Science.gov (United States)

    Wang, Wei; Wang, Jing; Dong, Sheng-fu; Liu, Chun-hong; Italiani, Paola; Sun, Shu-hui; Xu, Jing; Boraschi, Diana; Ma, Shi-ping; Qu, Di

    2010-01-01

    Aim: To investigate the immunomodulatory effects of andrographolide on both innate and adaptive immune responses. Methods: Andrographolide (10 μg/mL in vitro or 1 mg/kg in vivo) was used to modulate LPS-induced classical activated (M1) or IL-4-induced alternative activated (M2) macrophages in vitro and humor immune response to HBsAg in vivo. Cytokine gene expression profile (M1 vs M2) was measured by real-time PCR, IL-12/IL-10 level was detected by ELISA, and surface antigen expression was evaluated by flow cytometry, whereas phosphorylation level of ERK 1/2 and AKT was determined by Western blot. The level of anti-HBs antibodies in HBsAg immunized mice was detected by ELISA, and the number of HBsAg specific IL-4-producing splenocyte was enumerated by ELISPOT. Results: Andrographolide treatment in vitro attenuated either LPS or IL-4 induced macrophage activation, inhibited both M1 and M2 cytokines expression and decreased IL-12/IL-10 ratio (the ratio of M1/M2 polarization). Andrographolide down-regulated the expression of mannose receptor (CD206) in IL-4 induced macrophages and major histocompability complex/costimulatory molecules (MHC I, CD40, CD80, CD86) in LPS-induced macrophages. Correspondingly, anti-HBs antibody production and the number of IL-4-producing splenocytes were reduced by in vivo administration of andrographolide. Reduced phosphorylation levels of ERK1/2 and AKT were observed in macrophages treated with andrographolide. Conclusion: Andrographolide can modulate the innate and adaptive immune responses by regulating macrophage phenotypic polarization and Ag-specific antibody production. MAPK and PI3K signaling pathways may participate in the mechanisms of andrographolide regulating macrophage activation and polarization. PMID:20139902

  13. Andrographolide interferes quorum sensing to reduce cell damage caused by avian pathogenic Escherichia coli.

    Science.gov (United States)

    Guo, Xun; Zhang, Li-Yan; Wu, Shuai-Cheng; Xia, Fang; Fu, Yun-Xing; Wu, Yong-Li; Leng, Chun-Qing; Yi, Peng-Fei; Shen, Hai-Qing; Wei, Xu-Bin; Fu, Ben-Dong

    2014-12-05

    Avian pathogenic Escherichia coli (APEC) induce septicemia in chickens by invading type II pneumocytes to breach the blood-air barrier. The virulence of APEC can be regulated by quorum sensing (QS). Andrographolide is a QS inhibitor of Pseudomonas aeruginosa (P. aeruginosa). Therefore, we investigate whether andrographolide inhibits the injury of chicken type II pneumocytes by avian pathogenic E. coli O78 (APEC-O78) by disrupting the bacterial QS system. The results showed that sub-MIC of andrographolide significantly reduced the release of lactate dehydrogenase (LDH), F-actin cytoskeleton polymerization, and the degree of the adherence to chicken type II pneumocytes induced by APEC-O78. Further, we found that andrographolide significantly decreased the autoinducer-2 (AI-2) activity and the expression of virulence factors of APEC-O78. These results suggest that andrographolide reduce the pathogenicity of APEC-O78 in chicken type II pneumocytes by interfering QS and decreasing virulence. These results provide new evidence for colibacillosis prevention methods in chickens. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Andrographolide potentiates the antitumor effect of topotecan in acute myeloid leukemia cells through an intrinsic apoptotic pathway

    Directory of Open Access Journals (Sweden)

    Hodroj MH

    2018-05-01

    Full Text Available Mohammad Hassan Hodroj, Achraf Jardaly, Sarah Abi Raad, Annalise Zouein, Sandra Rizk Department of Natural Sciences, Lebanese American University, Beirut, Lebanon Background: Topotecan (TP is an anticancer drug acting as topoisomerase I inhibitor that is used in the treatment of many types of cancers including leukemia, but it has significant side effects. Andrographolide, a compound extracted from Andrographis paniculata, was recently proven to inhibit the growth of cancer cells and can induce apoptosis. The aim of this study is to investigate the possible synergism between TP and andrographolide in acute myeloid cells in vitro. Materials and methods: U937 acute myeloid leukemic cells were cultured using Roswell Park Memorial Institute (RPMI medium and then treated for 24 h with TP and andrographolide prepared through the dilution of dimethyl sulfoxide (DMSO stocks with RPMI on the day of treatment. Cell proliferation was assessed using cell proliferation assay upon treatment with both compounds separately and in combination. Cell-cycle study and apoptosis detection were performed by staining the cells with propidium iodide (PI stain and Annexin V/PI stain, respectively, followed by flow cytometry analysis. Western blotting was used to assess the expression of various proteins involved in apoptotic pathways. Results: Both TP and andrographolide showed an antiproliferative effect in a dose-dependent manner when applied on U937 cells separately; however, pretreating the cells with andrographolide before applying TP exhibited a synergistic effect with lower inhibitory concentrations (half-maximal inhibitory concentration. Treating the cells with TP alone led to specific cell-cycle arrest at S phase that was more prominent upon pretreatment combination with andrographolide. Using Annexin V/PI staining to assess the proapoptotic effect following the pretreatment combination showed an increase in the number of apoptotic cells, which was supported by

  15. Anti-tumor effect of cisplatin in human oral squamous cell carcinoma was enhanced by andrographolide via upregulation of phospho-p53 in vitro and in vivo.

    Science.gov (United States)

    Chen, Songjie; Hu, Hui; Miao, Shushu; Zheng, Jiayong; Xie, Zhijian; Zhao, Hui

    2017-05-01

    Oral squamous cell carcinoma is one of the most common neoplasm in the world. Despite the improvements in diagnosis and treatment, the outcome is still poor now. Thus, the development of novel therapeuticapproaches is needed. The aim of this study is to assess the synergistic anti-tumor effect of andrographolide with cisplatin (DDP) in oral squamous cell carcinoma CAL-27 cells in vitro and in vivo. We performed Cell Counting Kit-8 proliferation assay, apoptosis assay, and western blotting on CAL-27 cells treated with andrographolide, DDP or the combination in vitro. In vivo, we also treated CAL-27 xenografts with andrographolide or the combination, and performed terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay and immunohistochemical analysis of Ki-67. The results showed the combination of andrographolide and DDP synergistically inhibited CAL-27 cell proliferation in vitro and caused tumor regression in vivo in the CAL-27 xenografts. In addition, the synergistic anti-tumor effect of andrographolide with synergistic was due to an enhanced apoptosis. Moreover, the combination therapy upregulated the expression level of p-p53 in vitro and decreased Ki-67 expression in vivo. Our data indicate that the combination treatment of andrographolide and DDP results in synergistic anti-tumor growth activity against oral squamous cell carcinoma CAL-27 in vitro and in vivo. These results demonstrated that combination of andrographolide with DDP was likely to represent a potential therapeutic strategy for oral squamous cell carcinoma.

  16. In vitro inhibitory effects of major bioactive constituents of Andrographis paniculata, Curcuma longa and Silybum marianum on human liver microsomal morphine glucuronidation: A prediction of potential herb-drug interactions arising from andrographolide, curcumin and silybin inhibition in humans.

    Science.gov (United States)

    Uchaipichat, Verawan

    2018-02-01

    This study aimed to investigate the liver microsomal inhibitory effects of silybin, silychristin, andrographolide, and curcumin by using morphine as an in vitro UGT2B7 probe substrate, and predict the magnitude of the herb-drug interaction arising from these herbal constituents' inhibition in vivo. Studies were performed in the incubation with and without bovine serum albumin (BSA). Andrographolide and curcumin showed a marked inhibition on morphine 3- and 6-glucuronidation with IC 50 of 50&87 and 96&111 μM, respectively. In the presence of 2%BSA, andrographolide also showed a strong inhibition on morphine 3- and 6-glucuronidation (IC 50 4.4&21.6 μM) whereas curcumin showed moderate inhibition (IC 50 338&333 μM). In the absence and presence of 2%BSA, morphine 3- and 6-glucuronidation was moderately inhibited by silybin (IC 50 583&862 and 1252&1421 μM, respectively), however was weakly inhibited by silychristin (IC 50 3527&3504 and 1124&1530 μM, respectively). The K i of andrographolide, curcumin and silybin on morphine 3- and 6-glucuronidation were 7.1&9.5, 72.7&65.2, and 224.5&159.7 μM, respectively, while the respective values generated from the system containing 2%BSA were 2.4&3.1, 96.4&108.8, and 366.3&394.5 μM. Using the in vitro and in vivo extrapolation approach, andrographolide was herbal component that may have had a potential interaction in vivo when it was co-administered with morphine. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  17. Therapeutic Potential of Andrographolide Isolated from the Leaves of Andrographis paniculata Nees for Treating Lung Adenocarcinomas

    Directory of Open Access Journals (Sweden)

    Yu-Tang Tung

    2013-01-01

    Full Text Available Andrographolide is one of the major diterpene lactones found in Andrographis paniculata Nees and exhibits remarkable inhibitory effects on various cancers. In this study, the antipulmonary cancer effects of andrographolide were studied in a lung tumor mouse model induced by human vascular endothelial growth factor A165 (hVEGF-A165. These results demonstrated that andrographolide significantly reduced the expression of hVEGF-A165 compared with a mock group in the Clara cells of the lungs. In addition, andrographolide also decreased tumor formation by reducing VEGF, EGFR, Cyclin A, and Cyclin B expression on the transcriptional and translational levels. These results indicated that andrographolide treatment on the overexpression of VEGF can arrest the cell cycle, which induced pulmonary tumors in transgenic mice. In conclusion, the antiangiogenesis and chemotherapeutic potential of andrographolide may provide a cure for pulmonary tumors in the future.

  18. Andrographolide potentiates the antitumor effect of topotecan in acute myeloid leukemia cells through an intrinsic apoptotic pathway

    OpenAIRE

    Hodroj,Mohammad Hassan; Jardaly,Achraf; abi Raad,Sarah; Zouein,Annalise; Rizk,Sandra

    2018-01-01

    Mohammad Hassan Hodroj, Achraf Jardaly, Sarah Abi Raad, Annalise Zouein, Sandra Rizk Department of Natural Sciences, Lebanese American University, Beirut, Lebanon Background: Topotecan (TP) is an anticancer drug acting as topoisomerase I inhibitor that is used in the treatment of many types of cancers including leukemia, but it has significant side effects. Andrographolide, a compound extracted from Andrographis paniculata, was recently proven to inhibit the growth of cancer cells and can ind...

  19. Modulation of thioacetamide-induced hepatic inflammations, angiogenesis and fibrosis by andrographolide in mice.

    Science.gov (United States)

    Lee, Tzung-Yan; Chang, Hen-Hong; Wen, Chorng-Kai; Huang, Tse-Hung; Chang, Ya-Shu

    2014-12-02

    Liver fibrosis is a complex disease in which several pathological processes, such as inflammation and angiogenesis, are closely integrated. We hypothesised that treatment with the pharmacological agent, andrographolide (AP), which has multiple mechanisms of action, will provide a greater understanding of the role of AP during the multiple pathological processes that occur in advanced liver disease. Liver fibrogenesis was induced in mice using thioacetamide (TAA), which was administrated for 6 weeks. Andrographolide (5, 20 or 100mg/kg) was then given once daily following TAA injection. Liver collagen was examined using hydroxyproline and α-SMA, while the inflammatory response was quantified by Western blot and RT-PCR assays. Liver angiogenesis, neutrophil infiltration and hypoxia were assessed using CD11b+, vWF and HIF-1α immunostaining. Mice with liver injuries that were treated with andrographolide showed improved inflammatory response and diminished angiogenesis and hepatic fibrosis. Andrographolide treatment inhibited liver neutrophil infiltration, while a decreased in TNF-α and COX-2 signalling indicated macrophage activation. Andrographolide decreased overall liver hypoxia, as shown by the downregulation of hypoxia-inducible cascade genes, such as VEGF. Andrographolide treatment resulted in a significant decrease in hepatic fibrogenesis, α-SMA abundance, and TGF-βR1 expression. The present results suggest that multi-targeted therapies directed against angiogenesis, inflammation, and fibrosis should be considered for the treatment of advanced liver injury. They further suggest that andrographolide treatment may be a novel therapeutic agent for the treatment of liver disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Endoplasmic reticulum stress and IRE-1 signaling cause apoptosis in colon cancer cells in response to andrographolide treatment.

    Science.gov (United States)

    Banerjee, Aditi; Ahmed, Hafiz; Yang, Peixin; Czinn, Steven J; Blanchard, Thomas G

    2016-07-05

    The plant metabolite andrographolide induces cell cycle arrest and apoptosis in cancer cells. The mechanism(s) by which andrographolide induces apoptosis however, have not been elucidated. The present study was performed to determine the molecular events that promote apoptosis in andrographolide treated cells using T84, HCT116 and COLO 205 colon cancer cell lines. Andrographolide was determined to limit colony formation and Ki67 expression, alter nuclear morphology, increase cytoplasmic histone-associated-DNA-fragments, and increase cleaved caspase-3 levels. Andrographolide also induced significantly higher expression of endoplasmic reticulum (ER) stress proteins GRP-78 and IRE-1 by 48 h but not PERK or ATF6. Apoptosis signaling molecules BAX, spliced XBP-1 and CHOP were also significantly increased. Moreover, chemical inhibition of ER stress or IRE-1 depletion with siRNA in andrographolide treated cells significantly limited expression of IRE-1 and CHOP as determined by immunofluorescence staining, real time PCR, or immunobloting. This was accompanied by a decreased BAX/Bcl-2 ratio. Andrographolide significantly promotes cancer cell death compared to normal cells. These data demonstrate that andrographolide associated ER stress contributes to apoptosis through the activation of a pro-apoptotic GRP-78/IRE-1/XBP-1/CHOP signaling pathway.

  1. Jasmonate-induced biosynthesis of andrographolide in Andrographis paniculata.

    Science.gov (United States)

    Sharma, Shiv Narayan; Jha, Zenu; Sinha, Rakesh Kumar; Geda, Arvind Kumar

    2015-02-01

    Andrographolide is a prominent secondary metabolite found in Andrographis paniculata that exhibits enormous pharmacological effects. In spite of immense value, the normal biosynthesis of andrographolide results in low amount of the metabolite. To induce the biosynthesis of andrographolide, we attempted elicitor-induced activation of andrographolide biosynthesis in cell cultures of A. paniculata. This was carried out by using methyl jasmonate (MeJA) as an elicitor. Among the various concentrations of MeJA tested at different time periods, 5 µM MeJA yielded 5.25 times more andrographolide content after 24 h of treatment. The accumulation of andrographolide was correlated with the expression level of known regulatory genes (hmgs, hmgr, dxs, dxr, isph and ggps) of mevalonic acid (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways. These results established the involvement of MeJA in andrographolide biosynthesis by inducing the transcription of its biosynthetic pathways genes. The coordination of isph, ggps and hmgs expression highly influenced the andrographolide biosynthesis. © 2014 Scandinavian Plant Physiology Society.

  2. Mechanisms of andrographolide-induced platelet apoptosis in human platelets: regulatory roles of the extrinsic apoptotic pathway.

    Science.gov (United States)

    Lien, Li-Ming; Su, Cheng-Chen; Hsu, Wen-Hsien; Lu, Wan-Jung; Chung, Chi-Li; Yen, Ting-Lin; Chiu, Hou-Chang; Sheu, Joen-Rong; Lin, Kuan-Hung

    2013-11-01

    Andrographolide, a novel nuclear factor-κB (NF-κB) inhibitor, is isolated from the leaves of Andrographis paniculata. Platelet activation is relevant to a variety of coronary heart diseases. Our recent studies revealed that andrographolide possesses potent antiplatelet activity by inhibition of the p38 MAPK/(●) HO-NF-κB-ERK2 cascade. Although platelets are anucleated cells, apoptotic machinery apparatus recently has been found to regulate platelet activation and limit platelet lifespan. Therefore, we further investigated the regulatory effects of andrographolide on platelet apoptotic events. In this study, apoptotic signaling events for caspase-3, -8, and Bid were time (10-60 min)- and dose (25-100 μΜ)-dependently activated by andrographolide in human platelets. Andrographolide could also disrupt mitrochondrial membrane potential. In addition, caspase-8 inhibitor (z-IETD-fmk, 50 μΜ) was found to reverse andrographolide-induced caspase-8 activation, whereas the antagonistic anti-Fas receptor (ZB4, 500 ng/mL) and anti-tumor necrosis factor-R1 (H398, 10 µg/mL) monoclonal antibodies did not. In conclusion, this study for the first time demonstrated that andrographolide might limit platelet lifespan by initiating the caspase-8-dependent extrinsic apoptotic pathway, in spite of no direct evidence that death receptors are involved in this process proved. Overall, the various medicinal properties of andrographolide suggest its potential value in treating patients with thromboembolic disorders. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Is there a future for andrographolide to be an anti-inflammatory drug? Deciphering its major mechanisms of action.

    Science.gov (United States)

    Tan, W S Daniel; Liao, Wupeng; Zhou, Shuo; Wong, W S Fred

    2017-09-01

    Andrographis paniculata has long been part of the traditional herbal medicine system in Asia and in Scandinavia. Andrographolide was isolated as a major bioactive constituent of A. paniculata in 1951, and since 1984, andrographolide and its analogs have been scrutinized with modern drug discovery approach for anti-inflammatory properties. With this accumulated wealth of pre-clinical data, it is imperative to review and consolidate different sources of information, to decipher the major anti-inflammatory mechanisms of action in inflammatory diseases, and to provide direction for future studies. Andrographolide and its analogs have been shown to provide anti-inflammatory benefits in a variety of inflammatory disease models. Among the diverse signaling pathways investigated, inhibition of NF-κB activity is the prevailing anti-inflammatory mechanism elicited by andrographolide. There is also increasing evidence supporting endogenous antioxidant defense enhancement by andrographolide through Nrf2 activation. However, the exact pathway leading to NF-κB and Nrf2 activation by andrographolide has yet to be elucidated. Validation and consensus on the major mechanistic actions of andrographolide in different inflammatory conditions are required before translating current findings into clinical settings. There are a few clinical trials conducted using andrographolide in fixed combination formulation which have shown anti-inflammatory benefits and good safety profile. A concerted effort is definitely needed to identify potent andrographolide lead compounds with improved pharmacokinetics and toxicological properties. Taken together, andrographolide and its analogs have great potential to be the next new class of anti-inflammatory agents, and more andrographolide molecules are likely moving towards clinical study stage in the near future. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Anti-angiogenic activity of a new andrographolide derivative in zebrafish and HUVECs.

    Science.gov (United States)

    Li, Jingjing; Peng, Yuran; Li, Shang; Sun, Yicheng; Chan, Judy Yuet-Wa; Cui, Guozhen; Wang, Decai; Zhou, Guo-Chun; Lee, Simon Ming-Yuen

    2016-10-15

    Andrographolide is among the most promising anti-tumor and anti-angiogenic components in Andrographis paniculata but its poor bioavailability and limited efficacy pose difficulties for its therapeutic development. Therefore, improving its pharmaceutical features and potency, by modifying its chemical structure, is desirable. In the present study, a new andrographolide derivative (AGP-40) was synthesized and characterized for its anti-angiogenic properties. Human umbilical vein endothelial cells (HUVECs) and zebrafish models were used to identify the anti-angiogenic activity of AGP-40. AGP-40 significantly suppressed the formation of blood vessels in zebrafish and inhibited proliferation, migration and tube formation in vitro. The anti-angiogenic effects of AGP-40 are at least partially mediated via the PI3K/Akt and MEK/Erk(1/2) signaling pathways. Furthermore, AGP-40 exhibited stronger anti-proliferative effects than andrographolide against A549, HepG2, Hela cancer cell lines. This study is the first to demonstrate the promising anti-angiogenic activity of the new andrographolide derivative AGP-40. Our results indicate that AGP-40 could serve as a potential therapeutic agent for the treatment and prevention of diseases associated with excessive angiogenesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Andrographolide sulfonate ameliorates lipopolysaccharide-induced acute lung injury in mice by down-regulating MAPK and NF-κB pathways.

    Science.gov (United States)

    Peng, Shuang; Hang, Nan; Liu, Wen; Guo, Wenjie; Jiang, Chunhong; Yang, Xiaoling; Xu, Qiang; Sun, Yang

    2016-05-01

    Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a severe, life-threatening medical condition characterized by widespread inflammation in the lungs, and is a significant source of morbidity and mortality in the patient population. New therapies for the treatment of ALI are desperately needed. In the present study, we examined the effect of andrographolide sulfonate, a water-soluble form of andrographolide (trade name: Xi-Yan-Ping Injection), on lipopolysaccharide (LPS)-induced ALI and inflammation. Andrographolide sulfonate was administered by intraperitoneal injection to mice with LPS-induced ALI. LPS-induced airway inflammatory cell recruitment and lung histological alterations were significantly ameliorated by andrographolide sulfonate. Protein levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF) and serum were reduced by andrographolide sulfonate administration. mRNA levels of pro-inflammatory cytokines in lung tissue were also suppressed. Moreover, andrographolide sulfonate markedly suppressed the activation of mitogen-activated protein kinase (MAPK) as well as p65 subunit of nuclear factor-κB (NF-κB). In summary, these results suggest that andrographolide sulfonate ameliorated LPS-induced ALI in mice by inhibiting NF-κB and MAPK-mediated inflammatory responses. Our study shows that water-soluble andrographolide sulfonate may represent a new therapeutic approach for treating inflammatory lung disorders.

  6. Andrographolide sulfonate ameliorates lipopolysaccharide-induced acute lung injury in mice by down-regulating MAPK and NF-κB pathways

    Directory of Open Access Journals (Sweden)

    Shuang Peng

    2016-05-01

    Full Text Available Acute lung injury (ALI or acute respiratory distress syndrome (ARDS is a severe, life-threatening medical condition characterized by widespread inflammation in the lungs, and is a significant source of morbidity and mortality in the patient population. New therapies for the treatment of ALI are desperately needed. In the present study, we examined the effect of andrographolide sulfonate, a water-soluble form of andrographolide (trade name: Xi-Yan-Ping Injection, on lipopolysaccharide (LPS-induced ALI and inflammation. Andrographolide sulfonate was administered by intraperitoneal injection to mice with LPS-induced ALI. LPS-induced airway inflammatory cell recruitment and lung histological alterations were significantly ameliorated by andrographolide sulfonate. Protein levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF and serum were reduced by andrographolide sulfonate administration. mRNA levels of pro-inflammatory cytokines in lung tissue were also suppressed. Moreover, andrographolide sulfonate markedly suppressed the activation of mitogen-activated protein kinase (MAPK as well as p65 subunit of nuclear factor-κB (NF-κB. In summary, these results suggest that andrographolide sulfonate ameliorated LPS-induced ALI in mice by inhibiting NF-κB and MAPK-mediated inflammatory responses. Our study shows that water-soluble andrographolide sulfonate may represent a new therapeutic approach for treating inflammatory lung disorders.

  7. Specificity and inhibitory mechanism of andrographolide and its analogues as antiasthma agents on NF-κB p50.

    Science.gov (United States)

    Nguyen, Van Sang; Loh, Xin Yi; Wijaya, Hadhi; Wang, Jigang; Lin, Qingsong; Lam, Yulin; Wong, Wai-Shiu Fred; Mok, Yu Keung

    2015-02-27

    Andrographolide (1) is a diterpenoid lactone with an α,β-unsaturated lactone group that inhibits NF-κB DNA binding. Andrographolide reacts with the nucleophilic Cys62 of NF-κB p50 through a Michael addition at the Δ(12(13)) exocylic double bond to form a covalent adduct. Using computer docking, site-directed mutagenesis, and mass spectrometry, the noncovalent interactions between andrographolide and additional binding site residues other than Cys62 were found to be essential for the covalent incorporation of andrographolide. Furthermore, the addition reaction of andrographolide on Cys62 was highly dependent on the redox conditions and on the vicinity of nearby, positively charged Arg residues in the conserved RxxRxR motif. The reaction mechanisms of several of the analogues were determined, showing that 14-deoxy-11,12-didehydroandrographolide (8) reacts with NF-κB p50 via a novel mechanism distinct from andrographolide. The noncovalent interaction and redox environment of the binding site should be considered, in addition to the electrophilicity, when designing a covalent drug. Analogues similar in structure appear to use distinct reaction mechanisms and may have very different cytotoxicities, e.g., compound 6.

  8. Broad-spectrum antiviral properties of andrographolide.

    Science.gov (United States)

    Gupta, Swati; Mishra, K P; Ganju, Lilly

    2017-03-01

    Andrographolide, a diterpenoid, is known for its anti-inflammatory effects. It can be isolated from various plants of the genus Andrographis, commonly known as 'creat'. This purified compound has been tested for its anti-inflammatory effects in various stressful conditions, such as ischemia, pyrogenesis, arthritis, hepatic or neural toxicity, carcinoma, and oxidative stress, Apart from its anti-inflammatory effects, andrographolide also exhibits immunomodulatory effects by effectively enhancing cytotoxic T cells, natural killer (NK) cells, phagocytosis, and antibody-dependent cell-mediated cytotoxicity (ADCC). All these properties of andrographolide form the foundation for the use of this miraculous compound to restrain virus replication and virus-induced pathogenesis. The present article covers antiviral properties of andrographolide in variety of viral infections, with the hope of developing of a new highly potent antiviral drug with multiple effects.

  9. Andrographolide Ameliorates Inflammation and Fibrogenesis and Attenuates Inflammasome Activation in Experimental Non-Alcoholic Steatohepatitis

    NARCIS (Netherlands)

    Cabrera, Daniel; Wree, Alexander; Povero, Davide; Solís, Nancy; Hernandez, Alejandra; Pizarro, Margarita; Moshage, Han; Torres, Javiera; Feldstein, Ariel E; Cabello-Verrugio, Claudio; Brandan, Enrique; Barrera, Francisco; Arab, Juan Pablo; Arrese, Marco

    2017-01-01

    Therapy for nonalcoholic steatohepatitis (NASH) is limited. Andrographolide (ANDRO), a botanical compound, has a potent anti-inflammatory activity due to its ability to inhibit NF-kB. ANDRO has been also shown to inhibit the NLRP3 inflammasome, a relevant pathway in NASH. Our aim was to evaluate the

  10. Andrographolide Ameliorates Abdominal Aortic Aneurysm Progression by Inhibiting Inflammatory Cell Infiltration through Downregulation of Cytokine and Integrin Expression

    Science.gov (United States)

    Ren, Jun; Liu, Zhenjie; Wang, Qiwei; Giles, Jasmine; Greenberg, Jason; Sheibani, Nader; Kent, K. Craig

    2016-01-01

    Abdominal aortic aneurysm (AAA), characterized by exuberant inflammation and tissue deterioration, is a common aortic disease associated with a high mortality rate. There is currently no established pharmacological therapy to treat this progressive disease. Andrographolide (Andro), a major bioactive component of the herbaceous plant Andrographis paniculata, has been found to exhibit potent anti-inflammatory properties by inhibiting nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activity in several disease models. In this study, we investigated the ability of Andro to suppress inflammation associated with aneurysms, and whether it may be used to block the progression of AAA. Whereas diseased aortae continued to expand in the solvent-treated group, daily administration of Andro to mice with small aneurysms significantly attenuated aneurysm growth, as measured by the diminished expansion of aortic diameter (165.68 ± 15.85% vs. 90.62 ± 22.91%, P < 0.05). Immunohistochemistry analyses revealed that Andro decreased infiltration of monocytes/macrophages and T cells. Mechanistically, Andro inhibited arterial NF-κB activation and reduced the production of proinflammatory cytokines [CCL2, CXCL10, tumor necrosis factor α, and interferon-γ] in the treated aortae. Furthermore, Andro suppressed α4 integrin expression and attenuated the ability of monocytes/macrophages to adhere to activated endothelial cells. These results indicate that Andro suppresses progression of AAA, likely through inhibition of inflammatory cell infiltration via downregulation of NF-κB–mediated cytokine production and α4 integrin expression. Thus, Andro may offer a pharmacological therapy to slow disease progression in patients with small aneurysms. PMID:26483397

  11. Analyzing the interaction of a herbal compound Andrographolide from Andrographis paniculata as a folklore against swine flu (H1N1

    Directory of Open Access Journals (Sweden)

    Chandrabhan Seniya

    2014-09-01

    Full Text Available Objective: To find new bioactive molecules for the treatment of swine flu. Methods: The present study is an attempt to elucidate inhibition potential of andrographolide and its derivatives along with an associated binding mechanism through virtual screening and molecular docking simulation studies. Results: Our findings revealed structural conformation changes in 150 loop, secondary sialic acid binding site residues of ACZ97474 {Neuraminidase (A/Blore/NIV236/2009(H1N1}. Andrographolide have been identified as the highest binging energy of -1 0.88 Kcal/mol, 3 hydrogen bond interactions (Arg152, Lys150, and Gly197, total intermolecular energy of -12.07 Kcal/mol with bioactivity value (Ki of 10.59 nmol/L, while the Food and Drug Admistraton approved drug Oseltamivir and Zanamivir have shown 2 and 4 hydrogen bond interactions with binding energies of -6.28 Kcal/mol and -7.73Kcal/mol, respectively, which is higher than andrographolide. The guanidine group of Arg152 has binding affinities to the hydrophilic nature of the inhibitors (-OH and =O groups, as identified by docking of andrographolide (CID: 5318517 on neuraminidase. Conclusions: Hence, andrographolide has the potential to inhibit neuraminidase activity of H1N1 and may be used as an alternative medicinal therapy for swine flu positive patient. With potent antiviral activity and a potentially new mechanism of action, andrographolide may warrant further evaluation as a possible therapy for influenza.

  12. Increased reactive oxygen species levels cause ER stress and cytotoxicity in andrographolide treated colon cancer cells.

    Science.gov (United States)

    Banerjee, Aditi; Banerjee, Vivekjyoti; Czinn, Steven; Blanchard, Thomas

    2017-04-18

    Chemotherapy continues to play an essential role in the management of many cancers including colon cancer, the third leading cause of death due to cancer in the United States. Many naturally occurring plant compounds have been demonstrated to possess anti-cancer cell activity and have the potential to supplement existing chemotherapy strategies. The plant metabolite andrographolide induces cell death in cancer cells and apoptosis is dependent upon the induction of endoplasmic reticulum stress (ER stress) leading to the unfolded protein response (UPR). The goal of the present study was to determine the mechanism by which andrographolide induces ER stress and to further evaluate its role in promoting cell death pathways. The T84 and COLO 205 cancer cell lines were used to demonstrate that andrographolide induces increased ROS levels, corresponding anti-oxidant response molecules, and reduced mitochondrial membrane potential. No increases in ROS levels were detected in control colon fibroblast cells. Andrographolide-induced cell death, UPR signaling, and CHOP, Bax, and caspase 3 apoptosis elements were all inhibited in the presence of the ROS scavenger NAC. Additionally, andrographolide-induced suppression of cyclins B1 and D1 were also reversed in the presence of NAC. Finally, Akt phosphorylation and phospho-mTOR levels that are normally suppressed by andrographolide were also expressed at normal levels in the absence of ROS. These data demonstrate that andrographolide induces ER stress leading to apoptosis through the induction of ROS and that elevated ROS also play an important role in down-regulating cell cycle progression and cell survival pathways as well.

  13. Andrographolide, a diterpene lactone from Andrographis paniculata and its therapeutic promises in cancer.

    Science.gov (United States)

    Islam, Muhammad Torequl; Ali, Eunüs S; Uddin, Shaikh Jamal; Islam, Md Amirul; Shaw, Subrata; Khan, Ishaq N; Saravi, Seyed Soheil Saeedi; Ahmad, Saheem; Rehman, Shahnawaz; Gupta, Vijai Kumar; Găman, Mihnea-Alexandru; Găman, Amelia Maria; Yele, Santosh; Das, Asish Kumar; de Castro E Sousa, João Marcelo; de Moura Dantas, Sandra Maria Mendes; Rolim, Hercília Maria Lins; de Carvalho Melo-Cavalcante, Ana Amélia; Mubarak, Mohammad S; Yarla, Nagendra Sastry; Shilpi, Jamil A; Mishra, Siddhartha Kumar; Atanasov, Atanas G; Kamal, Mohammad Amjad

    2018-04-28

    The diterpene lactone andrographolide, isolated from Andrographis paniculata, has been proven to possess several important protective biological activities, including antioxidant, anti-inflammatory, immunomodulatory, antiseptic, antimicrobial, cytotoxic, hypolipidemic, cardioprotective, hepatoprotective, and neuroprotective effects. In addition, it has been reported to play a therapeutic role in the treatment of major human diseases, such as Parkinson's disease, rheumatoid arthritis, and colitis. This systematic review aims to highlight andrographolide as a promising agent in cancer treatment. To this purpose, a number of databases were used to search for the cytotoxic/anticancer effects of andrographolide in pre-clinical and clinical studies. Among 1703 identified literature articles, 139 were included in this review; 109 were investigated as non-clinical, whereas 24, 3, and 3 were pre-clinical, clinical, and non-pre-clinical trials, respectively. Among the model systems, cultured cell lines appeared as the most frequently (79.14%) used, followed by in vivo models using rodents, among others. Furthermore, andrographolide was found to exert cytotoxic/anticancer effects on almost all types of cell lines with the underlying mechanisms involving oxidative stress, cell cycle arrest, anti-inflammatory and immune system mediated effects, apoptosis, necrosis, autophagy, inhibition of cell adhesion, proliferation, migration, invasion, anti-angiogenic activity, and other miscellaneous actions. After careful consideration of the relevant evidence, we suggest that andrographolide can be one of the potential agents in the treatment of cancer in the near future. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Development of a Bifunctional Andrographolide-Based Chemical Probe for Pharmacological Study.

    Science.gov (United States)

    Hsu, Ya-Hsin; Hsu, Yu-Ling; Liu, Sheng-Hung; Liao, Hsin-Chia; Lee, Po-Xuan; Lin, Chao-Hsiung; Lo, Lee-Chiang; Fu, Shu-Ling

    2016-01-01

    Andrographolide (ANDRO) is a lactone diterpenoid compound present in the medicinal plant Andrographis paniculata which is clinically applied for multiple human diseases in Asia and Europe. The pharmacological activities of andrographolide have been widely demonstrated, including anti-inflammation, anti-cancer and hepatoprotection. However, the pharmacological mechanism of andrographolide remains unclear. Therefore, further characterization on the kinetics and molecular targets of andrographolide is essential. In this study, we described the synthesis and characterization of a novel fluorescent andrographolide derivative (ANDRO-NBD). ANDRO-NBD exhibited a comparable anti-cancer spectrum to andrographolide: ANDRO-NBD was cytotoxic to various types of cancer cells and suppressed the migration activity of melanoma cells; ANDRO-NBD treatment induced the cleavage of heat shock protein 90 (Hsp90) and the downregulation of its client oncoproteins, v-Src and Bcr-abl. Notably, ANDRO-NBD showed superior inhibitory effects to andrographolide in all anticancer assays we have performed. In addition, ANDRO-NBD was further used as a fluorescent probe to investigate the uptake kinetics, cellular distribution and molecular targets of andrographolide. Our data revealed that ANDRO-NBD entered cells rapidly and its fluorescent signal could be detected in nucleus, cytoplasm, mitochondria, and lysosome. Moreover, we demonstrated that ANDRO-NBD was covalently bound to several putative target proteins of andrographolide, including NF-κB and hnRNPK. In summary, we developed a fluorescent andrographolide probe with comparable bioactivity to andrographolide, which serves as a powerful tool to explore the pharmacological mechanism of andrographolide.

  15. Development of a Bifunctional Andrographolide-Based Chemical Probe for Pharmacological Study.

    Directory of Open Access Journals (Sweden)

    Ya-Hsin Hsu

    Full Text Available Andrographolide (ANDRO is a lactone diterpenoid compound present in the medicinal plant Andrographis paniculata which is clinically applied for multiple human diseases in Asia and Europe. The pharmacological activities of andrographolide have been widely demonstrated, including anti-inflammation, anti-cancer and hepatoprotection. However, the pharmacological mechanism of andrographolide remains unclear. Therefore, further characterization on the kinetics and molecular targets of andrographolide is essential. In this study, we described the synthesis and characterization of a novel fluorescent andrographolide derivative (ANDRO-NBD. ANDRO-NBD exhibited a comparable anti-cancer spectrum to andrographolide: ANDRO-NBD was cytotoxic to various types of cancer cells and suppressed the migration activity of melanoma cells; ANDRO-NBD treatment induced the cleavage of heat shock protein 90 (Hsp90 and the downregulation of its client oncoproteins, v-Src and Bcr-abl. Notably, ANDRO-NBD showed superior inhibitory effects to andrographolide in all anticancer assays we have performed. In addition, ANDRO-NBD was further used as a fluorescent probe to investigate the uptake kinetics, cellular distribution and molecular targets of andrographolide. Our data revealed that ANDRO-NBD entered cells rapidly and its fluorescent signal could be detected in nucleus, cytoplasm, mitochondria, and lysosome. Moreover, we demonstrated that ANDRO-NBD was covalently bound to several putative target proteins of andrographolide, including NF-κB and hnRNPK. In summary, we developed a fluorescent andrographolide probe with comparable bioactivity to andrographolide, which serves as a powerful tool to explore the pharmacological mechanism of andrographolide.

  16. Activity of andrographolide against dengue virus.

    Science.gov (United States)

    Panraksa, Patcharee; Ramphan, Suwipa; Khongwichit, Sarawut; Smith, Duncan R

    2017-03-01

    Dengue is the most prevalent arthropod-transmitted viral illness of humans, with an estimated 100 million symptomatic infections occurring each year and more than 2.5 billion people living at risk of infection. There are no approved antiviral agents against dengue virus, and there is only limited introduction of a dengue vaccine in some countries. Andrographolide is derived from Andrographis paniculata, a medicinal plant traditionally used to treat a number of conditions including infections. The antiviral activity of andrographolide against dengue virus (DENV) serotype 2 was evaluated in two cell lines (HepG2 and HeLa) while the activity against DENV 4 was evaluated in one cell line (HepG2). Results showed that andrographolide had significant anti-DENV activity in both cell lines, reducing both the levels of cellular infection and virus output, with 50% effective concentrations (EC 50 ) for DENV 2 of 21.304 μM and 22.739 μM for HepG2 and HeLa respectively. Time of addition studies showed that the activity of andrographolide was confined to a post-infection stage. These results suggest that andrographolide has the potential for further development as an anti-viral agent for dengue virus infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Andrographolide - A promising therapeutic agent, negatively regulates glial cell derived neurodegeneration of prefrontal cortex, hippocampus and working memory impairment.

    Science.gov (United States)

    Das, Sudeshna; Mishra, K P; Ganju, Lilly; Singh, S B

    2017-12-15

    Over activation of glial cell derived innate immune factors induces neuro-inflammation that results in neurodegenerative disease, like working memory impairment. In this study, we have investigated the role of andrographolide, a major constituent of Andrographis paniculata plant, in reduction of reactive glial cell derived working memory impairment. Real time PCR, Western bloting, flow cytometric and immunofluorescence studies demonstrated that andrographolide inhibited lipopolysaccharide (LPS)-induced overexpression of HMGB1, TLR4, NFκB, COX-2, iNOS, and release of inflammatory mediators in primary mix glial culture, adult mice prefrontal cortex and hippocampus region. Active microglial and reactive astrocytic makers were also downregulated after andrographolide treatment. Andrographolide suppressed overexpression of microglial MIP-1α, P2X7 receptor and its downstream signaling mediators including-inflammasome NLRP3, caspase1 and mature IL-1β. Furthermore, in vivo maze studies suggested that andrographolide treatment reversed LPS-induced behavioural and working memory disturbances including regulation of expression of protein markers like PKC, p-CREB, amyloid beta, APP, p-tau, synapsin and PSD-95. Andrographolide, by lowering expression of pro apoptotic genes and enhancing the expression of anti-apoptotic gene showed its anti-apoptotic nature that in turn reduces neurodegeneration. Morphology studies using Nissl and FJB staining also showed the neuroprotective effect of andrographolide in the prefrontal cortex region. The above studies indicated that andrographolide prevented neuroinflammation-associated neurodegeneration and improved synaptic plasticity markers in cortical as well as hippocampal region which suggests that andrographolide could be a novel pharmacological countermeasure for the treatment of neuroinflammation and neurological disorders related to memory impairment. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A silyl andrographolide analogue suppresses Wnt/β-catenin signaling pathway in colon cancer.

    Science.gov (United States)

    Reabroi, Somrudee; Chairoungdua, Arthit; Saeeng, Rungnapha; Kasemsuk, Teerapich; Saengsawang, Witchuda; Zhu, Weiming; Piyachaturawat, Pawinee

    2018-05-01

    Hyperactivation of Wnt/β-catenin signaling implicated in oncogenesis of colorectal cancer (CRC) is a potential molecular target for chemotherapy. An andrographolide analogue, 3A.1 (19-tert-butyldiphenylsilyl-8, 17-epoxy andrographolide) has previously been reported to be potently cytotoxic toward cancer cells by unknown molecular mechanisms. The present study explored the anti-cancer activity of analogue 3A.1 on Wnt/β-catenin signaling in colon cancer cells (HT29 cells) which were more sensitive to the others (HCT116 and SW480 cells). Analogue 3A.1 inhibited viability of HT29 cells with IC 50 value of 11.1 ± 1.4 μM at 24 h, which was more potent than that of the parent andrographolide. Analogue 3A.1 also suppressed the proliferation of HT29 cells and induced cell apoptosis in a dose-dependent manner. Its apoptotic activity was accompanied with increased expressions of proteins related to DNA damages; PARP-1 and γ-H2AX. In addition, analogue 3A.1 significantly inhibited T-cell factor and lymphoid enhancer factor (TCF/LEF) promoter activity of Wnt/β-catenin signaling. Accordingly, the expressions of Wnt target genes and β-catenin protein were suppressed. Moreover, analogue 3A.1 increased the activity of GSK-3β kinase, which is a negative regulator responsible for degradation of intracellular β-catenin. This mode of action was further supported by the absence of the effects after treatment with a GSK-3β inhibitor, and over-expression of a mutant β-catenin (S33Y). Our findings reveal, for the first time, an insight into the molecular mechanism of the anti-cancer activity of analogue 3A.1 through the inhibition of Wnt/β-catenin/GSK-3β pathway and provide a therapeutic potential of the andrographolide analogue 3A.1 in CRC treatment. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Bioavailability of andrographolide and protection against carbon tetrachloride-induced oxidative damage in rats

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haw-Wen [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Huang, Chin-Shiu [Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (China); Li, Chien-Chun [School of Nutrition, Chung Shan Medical University, Taichung, Taiwan (China); Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Lin, Ai-Hsuan; Huang, Yu-Ju [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Wang, Tsu-Shing [Department of Biomedical Science, Chung Shan Medical University, Taichung, Taiwan (China); Yao, Hsien-Tsung [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Lii, Chong-Kuei [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (China)

    2014-10-01

    Andrographolide, a bioactive diterpenoid, is identified in Andrographis paniculata. In this study, we investigated the pharmacokinetics and bioavailability of andrographolide in rats and studied whether andrographolide enhances antioxidant defense in a variety of tissues and protects against carbon tetrachloride-induced oxidative damage. After a single 50-mg/kg administration, the maximum plasma concentration of andrographolide was 1 μM which peaked at 30 min. The bioavailability of andrographolide was 1.19%. In a hepatoprotection study, rats were intragastrically dosed with 30 or 50 mg/kg andrographolide for 5 consecutive days. The results showed that andrographolide up-regulated glutamate cysteine ligase (GCL) catalytic and modifier subunits, superoxide dismutase (SOD)-1, heme oxygenase (HO)-1, and glutathione (GSH) S-transferase (GST) Ya/Yb protein and mRNA expression in the liver, heart, and kidneys. The activity of SOD, GST, and GSH reductase was also increased in rats dosed with andrographolide (p < 0.05). Immunoblot analysis and EMSA revealed that andrographolide increased nuclear Nrf2 contents and Nrf2 binding to DNA, respectively. After the 5-day andrographolide treatment, one group of animals was intraperitoneally injected with carbon tetrachloride (CCl{sub 4}) at day 6. Andrographolide pretreatment suppressed CCl{sub 4}-induced plasma aminotransferase activity and hepatic lipid peroxidation (p < 0.05). These results suggest that andrographolide is quickly absorbed in the intestinal tract in rats with a bioavailability of 1.19%. Andrographolide protects against chemical-induced oxidative damage by up-regulating the gene transcription and activity of antioxidant enzymes in various tissues. - Highlights: • The bioavailability of andrographolide is 1.19% in rats. • Plasma concentration reaches 1 μM after giving 50 mg/kg andrographolide. • Andrographolide up-regulates Nrf2-dependent antioxidant genes. • Andrographolide increases antioxidant defense

  20. Bioavailability of andrographolide and protection against carbon tetrachloride-induced oxidative damage in rats

    International Nuclear Information System (INIS)

    Chen, Haw-Wen; Huang, Chin-Shiu; Li, Chien-Chun; Lin, Ai-Hsuan; Huang, Yu-Ju; Wang, Tsu-Shing; Yao, Hsien-Tsung; Lii, Chong-Kuei

    2014-01-01

    Andrographolide, a bioactive diterpenoid, is identified in Andrographis paniculata. In this study, we investigated the pharmacokinetics and bioavailability of andrographolide in rats and studied whether andrographolide enhances antioxidant defense in a variety of tissues and protects against carbon tetrachloride-induced oxidative damage. After a single 50-mg/kg administration, the maximum plasma concentration of andrographolide was 1 μM which peaked at 30 min. The bioavailability of andrographolide was 1.19%. In a hepatoprotection study, rats were intragastrically dosed with 30 or 50 mg/kg andrographolide for 5 consecutive days. The results showed that andrographolide up-regulated glutamate cysteine ligase (GCL) catalytic and modifier subunits, superoxide dismutase (SOD)-1, heme oxygenase (HO)-1, and glutathione (GSH) S-transferase (GST) Ya/Yb protein and mRNA expression in the liver, heart, and kidneys. The activity of SOD, GST, and GSH reductase was also increased in rats dosed with andrographolide (p < 0.05). Immunoblot analysis and EMSA revealed that andrographolide increased nuclear Nrf2 contents and Nrf2 binding to DNA, respectively. After the 5-day andrographolide treatment, one group of animals was intraperitoneally injected with carbon tetrachloride (CCl 4 ) at day 6. Andrographolide pretreatment suppressed CCl 4 -induced plasma aminotransferase activity and hepatic lipid peroxidation (p < 0.05). These results suggest that andrographolide is quickly absorbed in the intestinal tract in rats with a bioavailability of 1.19%. Andrographolide protects against chemical-induced oxidative damage by up-regulating the gene transcription and activity of antioxidant enzymes in various tissues. - Highlights: • The bioavailability of andrographolide is 1.19% in rats. • Plasma concentration reaches 1 μM after giving 50 mg/kg andrographolide. • Andrographolide up-regulates Nrf2-dependent antioxidant genes. • Andrographolide increases antioxidant defense in

  1. Andrographolide powder treatment as antifeedant decreased digestive enzyme activity from Plutella xylostella (L.) larvae midgut

    Science.gov (United States)

    Madihah, Malini, Desak Made; Roviani, Hana; Rani, Nessa Vidya; Hermawan, Wawan

    2018-02-01

    Andrographolide, an active compound of Andrographis paniculata, has shown antifeedant activity against Plutella xylostella larvae by disrupting the midgut histological structures. This study aims to determine the activity of andrographolide in crystallized powder form against several digestive enzymes from the midgut of 4th instar P. xylostella larvae. The concentrations used were 0 (control), 1000, 1600, 2500, 4000 and 6500 ppm with four replications each. No-choice antifeedant test with leaf disc method is used in a bioassay for 24 hours. The midgut was dissected from 2nd until 6th segment of 4th instar larvae and was homogenized in iced-buffer solution. Furthermore, larvae's midgut samples were centrifuged at 10,000 rpm, 4°C for 20 min and the supernatant is used as enzyme source. The results showed that andrographolide significantly reduces the amylase, invertase, protease and trypsin activity, as well as total protein concentration compared with control (p<0.05) in a dose-dependent manner. This study provides information about the mode of action of andrographolide in inhibiting feed activity by the reduced digestive enzyme activity of 4th instar P. xylostella larvae.

  2. Andrographolide protects against radiation-induced lung injury in mice

    International Nuclear Information System (INIS)

    Kang Yahui; Wang Jinfeng; Zhang Qu; Huang Guanhong; Ma Jianxin; Yang Baixia; He Xiangfeng; Wang Zhongming

    2014-01-01

    Objective: To investigate the protective effect of andrographolide against radiation-induced lung injury (RILI) in C57BL/6 mice. Methods: Eighty C57BL mice were randomly divided into four groups: un-irradiated and normal saline-treated group (n = 20, control group), un-irradiated and andrographolide-treated group (n = 20, drug group), radiation plus normal saline-treated group (n = 20, radiation group) and radiation plus andrographolide-treated group (n = 20, treatment group). Before radiation, the mice in drug group and treatment group were administered daily via gavage with andrographolide (20 mg·kg -1 ·d -1 )) for 30 d, while the same volume of normal saline solution was given daily in the control and radiation groups. The model of RILI in C57BL mice was established by irradiating whole mouse chest with a single dose of 15 Gy of 6 MV X-rays. The pathological changes of the lung stained with HE/Masson were observed with a light microscope. The transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α) in serum were examined by enzyme-linked immunosorbent assay. The activities of malondialdehyde (MDA) and superoxide dismutase (SOD) and the content of hydroxyproline in lung tissues were examined by corresponding kits. Results: Compared with radiation group, there was an obvious amelioration in pathological injury of lung tissue in the treatment group. The lung coefficient, the activities of lung tissue MDA, the content of Hyp, the serum content of hydroxide free radical, and the serum levels of TGF-β1 and TNF-α in the treatment group were significantly lower than those in radiation group at 24 th week, (t lung coefficient = 1.60, t MDA = 7.06, t Hyp = 17.44, t TGF-β1 = 16.67, t TNF-α = 14.03, P < 0.05), while slightly higher than those in control group. The activity of SOD was significantly higher in the treatment group than that in radiation group (t = 60.81, P < 0.05), while lower than those in control group and drug group. There were no

  3. Positive therapy of andrographolide in vocal fold leukoplakia.

    Science.gov (United States)

    Xu, Jue; Xue, Tao; Bao, Ying; Wang, Dong-Hai; Ma, Bing-Liang; Yin, Chen-Yi; Yang, Guang-Hui; Ren, Gang; Lan, Long-Jiang; Wang, Jian-Qiu; Zhang, Xiao-Lan; Zhao, Yu-Qin

    2014-01-01

    Vocal fold leukoplakia is a premalignant precursor of squamous cell carcinoma. Although many efforts have been contributed to therapy of this disease, none exhibits a satisfactory result. The aims of this study were to investigate the effectiveness and feasibility of andrographolide therapy in vocal fold leukoplakia and to explore the preliminary mechanism underlying. Forty-one eligible patients were enrolled in the study. The patients were treated for 10-minute exposures of 5 ml (25mg/ml) andrographolide injection aerosols twice a day, and 2 weeks was considered as one treatment course. Electronic laryngoscope was used to observe the condition of vocal fold leukoplakia during the treatment. Every patient received one or two treatment courses, and the follow-up was carried out for 12 months. Toxic reactions of treatments were evaluated on the basis of the standards of the United States MD Anderson Cancer Center. Moreover, laryngeal carcinoma cell line Hep2 was applied to explore the mechanism of effect of andrographolide. Anti-proliferative effect on Hep2, cell nuclear morphology, express of mitogen-activated protein kinases (MAPK) and pro-apoptotic protein were detected after andrographolide treatment. We found that andrographolide exhibited significant curative effects on treatments, which were accompanied by thinning of the lesion of leukoplakia, reduction in the whitish surface area, and return of pink or red epithelium. A complete response up to 85% was observed, and no toxic side effect events occurred during the study. No patient with a complete response had a recurrence in the follow-up. Moreover, cellular experiments in Hep2 indicated that andrographolide activated MAPK pathway and caspase cascade, and finally induced apoptosis in laryngeal carcinoma cell. The advantages of andrographolide are connected with minimally invasive and localized character of the treatment and no damage of collagenous tissue structures, which are more convenient and less painful

  4. Andrographolide suppresses proliferation of human colon cancer SW620 cells through the TLR4/NF-κB/MMP-9 signaling pathway.

    Science.gov (United States)

    Zhang, Rui; Zhao, Jian; Xu, Jian; Jiao, De-Xin; Wang, Jian; Gong, Zhi-Qiang; Jia, Jian-Hui

    2017-10-01

    Modern pharmacological research has revealed that andrographolide has various functions, including anti-bacterial, anti-inflammatory and anti-viral effects, immunoregulation, treating cardiovascular and cerebrovascular diseases, and prevention and treatment of alcoholic liver injury. The present study investigated whether andrographolide suppresses the proliferation of human colon cancer cell through the Toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB/matrix metalloproteinase-9 (MMP-9) signaling pathway. The MTT assay and lactate dehydrogenase assay were used to evaluate the anticancer effects of andrographolide on cell proliferation and cytotoxicity in human colon cancer SW620 cells. Flow cytometry was used to analyze the anticancer effects of andrographolide on apoptosis by Annexin V-fluorescein isothiocyanate/propidium iodide kit. The effects of andrographolide on the activity of caspase-3/9 were measured using ELISA. Western blot analysis was also used to analyze the protein expression of TLR4, myeloid differentiation primary response gene 88 (MyD88), NF-κB-p65 and MMP-9. In the present study, it was found that andrographolide suppressed the cell proliferation, augmented cytotoxicity, evoked cell apoptosis and activated caspase-3/9 activities in human colon cancer SW620 cells. The results revealed that the anti-proliferation effects of andrographolide on the SW620 cells was associated with the inhibition of TLR4, MyD88, NF-κB-p65 and MMP-9 signaling activation. The results suggest that andrographolide is a promising drug for treatment of human colon cancer via suppression of the TLR4/NF-κB/MMP-9 signaling pathway.

  5. Andrographolide, a Novel NF-κB Inhibitor, Induces Vascular Smooth Muscle Cell Apoptosis via a Ceramide-p47phox-ROS Signaling Cascade

    Directory of Open Access Journals (Sweden)

    Yu-Ying Chen

    2013-01-01

    Full Text Available Atherosclerosis is linked with the development of many cardiovascular complications. Abnormal proliferation of vascular smooth muscle cells (VSMCs plays a crucial role in the development of atherosclerosis. Accordingly, the apoptosis of VSMCs, which occurs in the progression of vascular proliferation, may provide a beneficial strategy for managing cardiovascular diseases. Andrographolide, a novel nuclear factor-κB inhibitor, is the most active and critical constituent isolated from the leaves of Andrographis paniculata. Recent studies have indicated that andrographolide is a potential therapeutic agent for treating cancer through the induction of apoptosis. In this study, the apoptosis-inducing activity and mechanisms in andrographolide-treated rat VSMCs were characterized. Andrographolide significantly induced reactive oxygen species (ROS formation, p53 activation, Bax, and active caspase-3 expression, and these phenomena were suppressed by pretreating the cells with N-acetyl-L-cysteine, a ROS scavenger, or diphenylene iodonium, a nicotinamide adenine dinucleotide phosphate (NADPH oxidase (Nox inhibitor. Furthermore, p47phox, a Nox subunit protein, was phosphorylated in andrographolide-treated rat VSMCs. However, pretreatment with 3-O-methyl-sphingomyelin, a neutral sphingomyelinase inhibitor, significantly inhibited andrographolide-induced p47phox phosphorylation as well as Bax and active caspase-3 expression. Our results collectively demonstrate that andrographolide-reduced cell viability can be attributed to apoptosis in VSMCs, and this apoptosis-inducing activity was associated with the ceramide-p47phox-ROS signaling cascade.

  6. Andrographolide Inhibits Ovariectomy-Induced Bone Loss via the Suppression of RANKL Signaling Pathways

    Science.gov (United States)

    Wang, Tao; Liu, Qian; Zhou, Lin; Yuan, Jin Bo; Lin, Xixi; Zeng, Rong; Liang, Xiaonan; Zhao, Jinmin; Xu, Jiake

    2015-01-01

    Osteoporosis is a debilitating skeletal disorder with an increased risk of low-energy fracture, which commonly occurs among postmenopausal women. Andrographolide (AP), a natural product isolated from Andrographis paniculata, has been found to have anti-inflammatory, anti-cancer, anti-asthmatic, and neuro-protective properties. However, its therapeutic effect on osteoporosis is unknown. In this study, an ovariectomy (OVX) mouse model was used to evaluate the therapeutic effects of AP on post-menopausal osteoporosis by using micro-computed tomography (micro-CT). Bone marrow-derived osteoclast culture was used to examine the inhibitory effect of AP on osteoclastogenesis. Real time PCR was employed to examine the effect of AP on the expression of osteoclast marker genes. The activities of transcriptional factors NF-κB and NFATc1 were evaluated using a luciferase reporter assay, and the IκBα protein level was analyzed by Western blot. We found that OVX mice treated with AP have greater bone volume (BV/TV), trabecular thickness (Tb.Th), and trabecular number (Tb.N) compared to vehicle-treated OVX mice. AP inhibited RANKL-induced osteoclastogenesis, the expression of osteoclast marker genes including cathepsin K (Ctsk), TRACP (Acp5), and NFATc1, as well as the transcriptional activities of NF-κB and NFATc1. In conclusion, our results suggest that AP inhibits estrogen deficiency-induced bone loss in mice via the suppression of RANKL-induced osteoclastogensis and NF-κB and NFATc1 activities and, thus, might have therapeutic potential for osteoporosis. PMID:26593901

  7. Andrographolide Inhibits Ovariectomy-Induced Bone Loss via the Suppression of RANKL Signaling Pathways.

    Science.gov (United States)

    Wang, Tao; Liu, Qian; Zhou, Lin; Yuan, Jin Bo; Lin, Xixi; Zeng, Rong; Liang, Xiaonan; Zhao, Jinmin; Xu, Jiake

    2015-11-17

    Osteoporosis is a debilitating skeletal disorder with an increased risk of low-energy fracture, which commonly occurs among postmenopausal women. Andrographolide (AP), a natural product isolated from Andrographis paniculata, has been found to have anti-inflammatory, anti-cancer, anti-asthmatic, and neuro-protective properties. However, its therapeutic effect on osteoporosis is unknown. In this study, an ovariectomy (OVX) mouse model was used to evaluate the therapeutic effects of AP on post-menopausal osteoporosis by using micro-computed tomography (micro-CT). Bone marrow-derived osteoclast culture was used to examine the inhibitory effect of AP on osteoclastogenesis. Real time PCR was employed to examine the effect of AP on the expression of osteoclast marker genes. The activities of transcriptional factors NF-κB and NFATc1 were evaluated using a luciferase reporter assay, and the IκBα protein level was analyzed by Western blot. We found that OVX mice treated with AP have greater bone volume (BV/TV), trabecular thickness (Tb.Th), and trabecular number (Tb.N) compared to vehicle-treated OVX mice. AP inhibited RANKL-induced osteoclastogenesis, the expression of osteoclast marker genes including cathepsin K (Ctsk), TRACP (Acp5), and NFATc1, as well as the transcriptional activities of NF-κB and NFATc1. In conclusion, our results suggest that AP inhibits estrogen deficiency-induced bone loss in mice via the suppression of RANKL-induced osteoclastogensis and NF-κB and NFATc1 activities and, thus, might have therapeutic potential for osteoporosis.

  8. Andrographolide Inhibits Ovariectomy-Induced Bone Loss via the Suppression of RANKL Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2015-11-01

    Full Text Available Osteoporosis is a debilitating skeletal disorder with an increased risk of low-energy fracture, which commonly occurs among postmenopausal women. Andrographolide (AP, a natural product isolated from Andrographis paniculata, has been found to have anti-inflammatory, anti-cancer, anti-asthmatic, and neuro-protective properties. However, its therapeutic effect on osteoporosis is unknown. In this study, an ovariectomy (OVX mouse model was used to evaluate the therapeutic effects of AP on post-menopausal osteoporosis by using micro-computed tomography (micro-CT. Bone marrow-derived osteoclast culture was used to examine the inhibitory effect of AP on osteoclastogenesis. Real time PCR was employed to examine the effect of AP on the expression of osteoclast marker genes. The activities of transcriptional factors NF-κB and NFATc1 were evaluated using a luciferase reporter assay, and the IκBα protein level was analyzed by Western blot. We found that OVX mice treated with AP have greater bone volume (BV/TV, trabecular thickness (Tb.Th, and trabecular number (Tb.N compared to vehicle-treated OVX mice. AP inhibited RANKL-induced osteoclastogenesis, the expression of osteoclast marker genes including cathepsin K (Ctsk, TRACP (Acp5, and NFATc1, as well as the transcriptional activities of NF-κB and NFATc1. In conclusion, our results suggest that AP inhibits estrogen deficiency-induced bone loss in mice via the suppression of RANKL-induced osteoclastogensis and NF-κB and NFATc1 activities and, thus, might have therapeutic potential for osteoporosis.

  9. Functional characterization of ent-copalyl diphosphate synthase from Andrographis paniculata with putative involvement in andrographolides biosynthesis.

    Science.gov (United States)

    Shen, Qinqin; Li, Lixia; Jiang, Yu; Wang, Qiang

    2016-01-01

    To characterize the ent-copalyl diphosphate (ent-CPP) synthase involved in the biosynthetic pathway of andrographolides in a medicinal plant, Andrographis paniculata. The ent-CPP synthase (ent-CPS) gene was cloned from A. paniculata and its encoded ApCPS was demonstrated to react with (E,E,E)-geranylgeranyl diphosphate to form ent-CPP through recombinant expression in Escherichia coli. Site-directed mutagenesis of the Asp to Ala in the conserved DXDD motif of ApCPS resulted in loss of function. One Arg is located in the conserved position close to DXDD motif indicating the involvement of ApCPS in specialized metabolism. In addition, RT-PCR analysis revealed that ApCPS was expressed in all tissues of A. paniculata at all growth stages, which is consistent with andrographolides accumulating in these organs. Methyl jasmonate induced ApCPS gene expression, matching inducible accumulation of andrographolides in vivo. ApCPS is the first ent-CPS characterized in A. paniculata and is suggested to be involved in biosynthesis of andrographolides that have high pharmaceutical values.

  10. Bioavailability of andrographolide and protection against carbon tetrachloride-induced oxidative damage in rats.

    Science.gov (United States)

    Chen, Haw-Wen; Huang, Chin-Shiu; Li, Chien-Chun; Lin, Ai-Hsuan; Huang, Yu-Ju; Wang, Tsu-Shing; Yao, Hsien-Tsung; Lii, Chong-Kuei

    2014-10-01

    Andrographolide, a bioactive diterpenoid, is identified in Andrographis paniculata. In this study, we investigated the pharmacokinetics and bioavailability of andrographolide in rats and studied whether andrographolide enhances antioxidant defense in a variety of tissues and protects against carbon tetrachloride-induced oxidative damage. After a single 50-mg/kg administration, the maximum plasma concentration of andrographolide was 1μM which peaked at 30min. The bioavailability of andrographolide was 1.19%. In a hepatoprotection study, rats were intragastrically dosed with 30 or 50mg/kg andrographolide for 5 consecutive days. The results showed that andrographolide up-regulated glutamate cysteine ligase (GCL) catalytic and modifier subunits, superoxide dismutase (SOD)-1, heme oxygenase (HO)-1, and glutathione (GSH) S-transferase (GST) Ya/Yb protein and mRNA expression in the liver, heart, and kidneys. The activity of SOD, GST, and GSH reductase was also increased in rats dosed with andrographolide (pandrographolide increased nuclear Nrf2 contents and Nrf2 binding to DNA, respectively. After the 5-day andrographolide treatment, one group of animals was intraperitoneally injected with carbon tetrachloride (CCl4) at day 6. Andrographolide pretreatment suppressed CCl4-induced plasma aminotransferase activity and hepatic lipid peroxidation (pandrographolide is quickly absorbed in the intestinal tract in rats with a bioavailability of 1.19%. Andrographolide protects against chemical-induced oxidative damage by up-regulating the gene transcription and activity of antioxidant enzymes in various tissues. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. fektivitas Penambahan Elisitor Asam Jasmonik dalam Peningkatan Sintesis Senyawa Bioaktif Andrografolid pada Kultur Suspensi Sel Sambiloto (Effectiveness of Jasmonic Acid Elicitor Addition for Andrographolide Synthesis Induction of Sambiloto Culture

    Directory of Open Access Journals (Sweden)

    Noor Aini Habibah

    2009-03-01

    Full Text Available In this research, we have studied synthesis of improvement of andrographolid bioactive compound on cell culture of sambiloto by addition of jasmonic acid. The essential problems in this research are firstly, the effects of addition of jasmonic acid either can induce or not andrographolide synthesis improvement of cell culture of sambiloto and secondly, to observe the largest content of andrographolide in jasmonic acid concentrations. Meanwhile, the purpose of this research are to observe the functions of jasmonic acid elicitor for induction of andrographolide synthesis improvement of cell culture of sambiloto and to optimize jasmonic acid concentrations which can produce the largest andrographolide content. The independent variable is concentration of addition of jasmonic acid on cell culture and the dependent variable are the growth of cell suspension culture and andrographolide bioactive content. Experiment result show that the optimum medium of sambiloto cell consist of Murashige & Skoog (1962 medium supplemented by 0,5 ppm kinetin and 2,4-D 5 ppm. The cell growth phases are the followings : lag phase at age of 0-5 days, exponential phase of 5-15 days, and stationary phase at age of longer than 15 days. The highest andrographolide was 4,66 x 10-2 reached in cell culture was supplemented with 10 µM jasmonic acid. Keywords : andrographolide, sambiloto cell suspension culture, jasmonic acid elicitor.

  12. Is Andrographis paniculata extract and andrographolide anaphylactic?

    Directory of Open Access Journals (Sweden)

    Edwin Jothie Richard

    Full Text Available Andrographis paniculata, “King of bitters” is a popularly known medicinal plant extensively used in many parts of the world for treatment of various diseases. Since recent past, anaphylactic/allergic type adverse events were reported upon A. paniculata usage, the study aimed to evaluate the anaphylactic and anaphylactoid potential of A. paniculata extract and andrographolide (a major phytoactive of A. paniculata. The anaphylactic potential was evaluated using active systemic anaphylaxis (ASA assay in guinea pigs. Further, the release of allergic mediators was measured in immunoglobulin E (IgE sensitized and non-IgE sensitized Rat Basophilic Leukemia (RBL-2H3 cell lines in-vitro. A. paniculata extract or andrographolide sensitized guinea pigs following the challenge antigen administration orally and intravenously did not demonstrate any clinical signs of anaphylaxis. IgE sensitized and non- IgE sensitized RBL-2H3 cells treated with A. paniculata extract did not induce release of allergic mediators. Whereas IgE sensitized and non- IgE sensitized RBL-2H3 cells treated with andrographolide demonstrated mild to moderate release of allergic mediators. A. paniculata extract has no anaphylactic and anaphylactoid potential in in-vivo and in-vitro studies. Whereas, andrographolide effects on allergic mediators in in-vitro studies needs to be scrutinized if they are of biologically important. Keywords: Andrographis paniculata extract, Andrographolide, Active systemic anaphylaxis, Anaphylactoid, &beta, &minus, Hexosaminidase, Leukotriene C4

  13. Reaction Characteristics of Andrographolide and its Analogue AL-1 with GSH, as a Simple Chemical Simulation of NF-κB Inhibition

    Directory of Open Access Journals (Sweden)

    Yuqiang Wang

    2012-01-01

    Full Text Available 14-α-Lipoic acid-3,19-dihydroxyandrographolide (AL-1, 2 is an analogue of andrographolide (Andro, 1 coupled to α-lipoic acid (LA, 4. AL-1 was at least 10-fold more potent than the natural parent compound Andro in inhibiting nuclear factor (NF-κB activation in RIN-m cells. In the present study, glutathione (GSH, 3 was used as a simple chemical model molecule of NF-κB with cysteine 62. The characteristics of the reaction between AL-1 or Andro and GSH were investigated to trace some possible elucidation for the inhibitive mechanism and stronger inhibition of AL-1 to NF-κB activation. The results showed that the main reaction products of AL-1 and Andro were identical, sulfhydryl adduct and amino adduct. AL-1 reacted much faster than Andro with GSH. The product yield of AL-1 was much higher than that of Andro. It was speculated that AL-1 might inhibit NF-κB by the same mechanism as Andro. And the faster reaction rate and higher yield may account for the stronger NF-κB inhibition of AL-1 when compared with Andro.

  14. Andrographolide attenuates skeletal muscle dystrophy in mdx mice and increases efficiency of cell therapy by reducing fibrosis.

    Science.gov (United States)

    Cabrera, Daniel; Gutiérrez, Jaime; Cabello-Verrugio, Claudio; Morales, Maria Gabriela; Mezzano, Sergio; Fadic, Ricardo; Casar, Juan Carlos; Hancke, Juan L; Brandan, Enrique

    2014-01-01

    Duchenne muscular dystrophy (DMD) is characterized by the absence of the cytoskeletal protein dystrophin, muscle wasting, increased transforming growth factor type beta (TGF-β) signaling, and fibrosis. At the present time, the only clinically validated treatments for DMD are glucocorticoids. These drugs prolong muscle strength and ambulation of patients for a short term only and have severe adverse effects. Andrographolide, a bicyclic diterpenoid lactone, has traditionally been used for the treatment of colds, fever, laryngitis, and other infections with no or minimal side effects. We determined whether andrographolide treatment of mdx mice, an animal model for DMD, affects muscle damage, physiology, fibrosis, and efficiency of cell therapy. mdx mice were treated with andrographolide for three months and skeletal muscle histology, creatine kinase activity, and permeability of muscle fibers were evaluated. Fibrosis and TGF-β signaling were evaluated by indirect immunofluorescence and Western blot analyses. Muscle strength was determined in isolated skeletal muscles and by a running test. Efficiency of cell therapy was determined by grafting isolated skeletal muscle satellite cells onto the tibialis anterior of mdx mice. mdx mice treated with andrographolide exhibited less severe muscular dystrophy than untreated dystrophic mice. They performed better in an exercise endurance test and had improved muscle strength in isolated muscles, reduced skeletal muscle impairment, diminished fibrosis and a significant reduction in TGF-β signaling. Moreover, andrographolide treatment of mdx mice improved grafting efficiency upon intramuscular injection of dystrophin-positive satellite cells. These results suggest that andrographolide could be used to improve quality of life in individuals with DMD.

  15. Andrographolide exerts anti-hepatitis C virus activity by up-regulating haeme oxygenase-1 via the p38 MAPK/Nrf2 pathway in human hepatoma cells.

    Science.gov (United States)

    Lee, Jin-Ching; Tseng, Chin-Kai; Young, Kung-Chia; Sun, Hung-Yu; Wang, Shainn-Wei; Chen, Wei-Chun; Lin, Chun-Kuang; Wu, Yu-Hsuan

    2014-01-01

    This study aimed to evaluate the anti-hepatitis C virus (HCV) activity of andrographolide, a diterpenoid lactone extracted from Andrographis paniculata, and to identify the signalling pathway involved in its antiviral action. Using HCV replicon and HCVcc infectious systems, we identified anti-HCV activity of andrographolide by measuring protein and RNA levels. A reporter activity assay was used to determine transcriptional regulation of anti-HCV agents. A specific inhibitor and short hairpin RNAs were used to investigate the mechanism responsible for the effect of andrographolide on HCV replication. In HCV replicon and HCVcc infectious systems, andrographolide time- and dose-dependently suppressed HCV replication. When combined with IFN-α, an inhibitor targeting HCV NS3/4A protease (telaprevir), or NS5B polymerase (PSI-7977), andrographolide exhibited a significant synergistic effect. Andrographolide up-regulated the expression of haeme oxygenase-1 (HO-1), leading to increased amounts of its metabolite biliverdin, which was found to suppress HCV replication by promoting the antiviral IFN responses and inhibiting NS3/4A protease activity. Significantly, these antiviral effects were attenuated by an HO-1-specific inhibitor or HO-1 gene knockdown, indicating that HO-1 contributed to the anti-HCV activity of andrographolide. Andrographolide activated p38 MAPK phosphorylation, which stimulated nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated HO-1 expression, and this was found to be associated with its anti-HCV activity. Our results demonstrate that andrographolide has the potential to control HCV replication and suggest that targeting the Nrf2-HO-1 signalling pathway might be a promising strategy for drug development. © 2013 The British Pharmacological Society.

  16. STRUCTURE MODIFICATION OF ANDROGRAPHOLIDE TO IMPROVE ITS POTENCY AS ANTICANCER

    OpenAIRE

    Hadi Poerwono; Yoshiyuki Hattori; Hajime Kubo; Kimio Higashiyama

    2010-01-01

    Andrographolide, a diterpenoid lactone isolated from the herb of Andrographis paniculata and known to possess antitumor activity in breast cancer models was subjected to semisynthesis leading to the preparation of a number of derivatives. After protection of the two hydroxyl groups present at C-3 and C-19 to give 3,19-isopropylidene and 3,19-benzylidene andrographolides, the remaining hydroxyl group at C-14 of andrographolide was treated with acid anhydride or acid chloride under base conditi...

  17. [HPTLC fingerprint analysis of andrographolides from Andrographis paniculata].

    Science.gov (United States)

    Shao, Yan-Hua; Wang, Jian-Gang; Lai, Xiao-Ping; Wu, Xiang-Wei; Ding, Ping

    2014-02-01

    To establish the high-performance thin layer chromatography (HPTLC) fingerprint of andrographolides from Andrographis paniculata, and to valuate the fingerprint similarity of samples from different habitats, markets, used parts and so on. Chromatographic conditions were as follows: stationary phase: precoated HPTLC GF254 silica-gel plate (20 cm x 10 cm); developing solvent system: chloroform-toluene-methanol (80:10:15); Relative humidity: 42%; Color development reagent: 5% H2SO4 ethanolic solution, heating at 105 degrees C and observing the fluorescent chromatogram in a UV cabinet at 366 nm. The common patterns of HPTLC fingerprint were obtained through CHROMAP 1.5 solution software. The HPTLC fingerprint of andrographolides was consisted of 9 characteristic peaks (fluorescent bands) including andrographolide, neoandrographolide and dehydroandrographolide which were chemical reference substances. The investigation and analysis of 51 batches of Andrographis paniculata showed that there were remarkable differences among different samples, so was the content of andrographolide and total lactones. This method is simple and rapid, which can serve as an effective identification and quality assessment method for Andrographis paniculata.

  18. Is Andrographis paniculata extract and andrographolide anaphylactic?

    Science.gov (United States)

    Richard, Edwin Jothie; Murugan, Sasikumar; Bethapudi, Bharathi; Illuri, Ramanaiah; Mundkinajeddu, Deepak; Chinampudur Velusami, Chandrasekaran

    2017-01-01

    Andrographis paniculata, "King of bitters" is a popularly known medicinal plant extensively used in many parts of the world for treatment of various diseases. Since recent past, anaphylactic/allergic type adverse events were reported upon A. paniculata usage, the study aimed to evaluate the anaphylactic and anaphylactoid potential of A. paniculata extract and andrographolide (a major phytoactive of A. paniculata ). The anaphylactic potential was evaluated using active systemic anaphylaxis (ASA) assay in guinea pigs. Further, the release of allergic mediators was measured in immunoglobulin E (IgE) sensitized and non-IgE sensitized Rat Basophilic Leukemia (RBL-2H3) cell lines in-vitro . A. paniculata extract or andrographolide sensitized guinea pigs following the challenge antigen administration orally and intravenously did not demonstrate any clinical signs of anaphylaxis. IgE sensitized and non- IgE sensitized RBL-2H3 cells treated with A. paniculata extract did not induce release of allergic mediators. Whereas IgE sensitized and non- IgE sensitized RBL-2H3 cells treated with andrographolide demonstrated mild to moderate release of allergic mediators. A. paniculata extract has no anaphylactic and anaphylactoid potential in in-vivo and in-vitro studies. Whereas, andrographolide effects on allergic mediators in in-vitro studies needs to be scrutinized if they are of biologically important.

  19. Multi-targeting Andrographolide and its Natural Analogs as Potential Therapeutic Agents.

    Science.gov (United States)

    Kishore, V; Yarla, Nagendra Sastry; Bishayee, Anupam; Putta, Swathi; Malla, Ramarao; Neelapu, Nageswara Rao Reddy; Challa, Surekha; Das, Subhasish; Shiralgi, Yallappa; Hegde, Gurumurthy; Dhananjaya, Bhadrapura Lakkappa

    2017-01-01

    Andrographis paniculata (A. paniculata) is a medicinal plant used in the Indian and Chinese traditional medicinal systems for its various beneficial properties of therapeutics. This is due to the presence of a diterpene lactone called 'andrographolide'. Several biological activities like antiinflammatory, antitumour, anti-hyperglycaemic, anti-fertility, antiviral, cardio protective and hepatoprotective properties are attributed to andrographolide and its natural analogs. The studies have shown that not only this diterpene lactone (andrographolide), but also other related terpenoid analogs from A. paniculata could be exploited for disease prevention due to their structural similarity with diverse pharmacological activities. Several scientific groups are trying to unveil the underlying mechanisms involved in these biological actions brough aout by andrographolide and its analogs. This review aims at giving an overview on the therapeutical and/or pharmacological activities of andrographolide and its derivatives and also exemplify the underlying mechanisms involved. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Mitochondrial-mediated apoptosis in lymphoma cells by the diterpenoid lactone Andrographolide, the active component of Andrographis paniculata

    Science.gov (United States)

    Yang, Shuo; Evens, Andrew M.; Prachand, Sheila; Singh, Amareshwar T.K; Bhalla, Savita; David, Kevin; Gordon, Leo I.

    2010-01-01

    Purpose Andrographolide is a diterpenoid lactone isolated from Andrographis paniculata (King of Bitters), an herbal medicine used in Asia. It has been reported to have anti-inflammatory, antihypertensive, anti-viral and immune-stimulant properties. Furthermore, it has been shown to inhibit cancer cell proliferation and induce apoptosis in leukemia and solid tumor cell lines. Experimental Design We studied the Burkitt p53 mutated Ramos cell line, the mantle-cell lymphoma (MCL) line Granta, the follicular lymphoma (FL) cell line HF-1 and the diffuse large B-cell lymphoma (DLBCL) cell line SUDHL4, as well as primary cells from patients with FL, DLBCL, and MCL. Results We found that andrographolide resulted in dose- and time-dependent cell death as measured by MTT. Andrographolide significantly increased reactive oxygen species (ROS) production in all cell lines. To determine mechanism of cell death, we measured apoptosis by Annexin-V/propidium iodide (PI) in the presence and absence of the antioxidant N-acetyl-L-cysteine (NAC), the glutathione-depleting agent buthionine sulfoxamine (BSO), or caspase inhibitors. We found that apoptosis was greatly enhanced by BSO, blocked by NAC, and accompanied by PARP cleavage and activation of caspases 3, 8 and 9. We measured BAX conformational change, and mitochondrial membrane potential, and using mouse embryonic fibroblast (MEF) Bax/Bak double knockouts (MEFBax−/−/Bak−/−), we found that apoptosis was mediated through mitochondrial pathways, but dependent on caspases in both cell lines and in patient samples. Conclusions Andrographolide caused ROS-dependent apoptosis in lymphoma cell lines and in primary tumor samples, which was enhanced by depletion of GSH and inhibited by NAC or the pan-caspase inhibitor Z-VAD-FMK. Further studies of diterpenoid lactones in lymphoma are warranted. PMID:20798229

  1. Andrographolide Ameliorate Rheumatoid Arthritis by Promoting the Development of Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Muhaimin Rifa’i

    2010-10-01

    Full Text Available Andrographolide is important material present in Andrographis paniculata. This material can promote T cell to develop into regulatory T cell, CD4+CD25+. CD4+CD25+ regulatory T (Treg cells, a component of the innate immune response, which play a key role in the maintenance of self-tolerance, have become the focus of numerous studies over the last decade. These cells have the potential to be exploited to treat autoimmune disease. These cells inhibit the immune response in an Ag-nonspecific manner, interacting with other T cells. These T cell populations actively control the properties of other immune cells by suppressing their functional activity to prevent autoimmunity but also influence the immune response to allergens as well as against tumor cells and pathogens. In this experiment we showed that active compound from Andrographis paniculata namely andrographolide can induce active regulatory T cell that has an efficacy to cure rheumatoid arthritis mice model.

  2. Pancreatic effect of andrographolide isolated from Andrographis paniculata (Burm. f.) Nees.

    Science.gov (United States)

    Nugroho, Agung Endro; Rais, Ichwan Ridwan; Setiawan, Iwan; Pratiwi, Pramita Yuli; Hadibarata, Tony; Tegar, Maulana; Pramono, Suwidjiyo

    2014-01-01

    Andrographis paniculata (Burm. f.) Nees is a plant that originates from India and grows widely to Southeast which used for several purposes mainly as treatment of diabetes mellitus so the aim of this study was evaluate andrographolide for its pancreatic effect in neonatal streptozotocin (STZ)-induced diabetic rats, a model of type 2 diabetic rats. Diabetic condition was induced with an intraperitoneal injection of 90 mg kg(-1) streptozotocin in two-day-old rats. After three months, the neonatal STZ-induced diabetic rats were treated with andrographolide or andrographolide-enriched extract of A. paniculata (AEEAP) for 8 consecutive days. Pancreatic effect was evaluated by estimating mainly the preprandial and postprandial blood glucose levels and other parameters such as morphology of pancreatic islet, beta cells density and morphology and immunohistochemically pancreatic insulin. Andrographolide significantly (p < 0.05) decreased the levels of blood glucose and improved diabetic rat islet and beta cells. However, AEEAP exhibited moderate hypoglycaemic effects on the blood glucose levels. Moderate changes in beta cells were observed after AEEAP treatment. They could restore decreasing of pancreatic insulin contents. Based on these results andrographolide and AEEAP exhibited pancreatic actions in neonatal STZ-induced diabetic rats. The activity of andrographolide was more effective than this of AEEAP.

  3. Multi-Targeting Andrographolide, a Novel NF-κB Inhibitor, as a Potential Therapeutic Agent for Stroke.

    Science.gov (United States)

    Yang, Chih-Hao; Yen, Ting-Lin; Hsu, Chia-Yuan; Thomas, Philip-Aloysius; Sheu, Joen-Rong; Jayakumar, Thanasekaran

    2017-07-27

    A key focus in the field of drug discovery has been motivated by the neuroprotection of natural compounds. Cerebral ischemia is a multifaceted pathological process with a series of mechanisms, and a perspective for the development of neuroprotectants from traditional herbal medicine or natural products is a promising treatment for this disease. Natural compounds with the effects of anti-oxidation, anti-inflammation, anti-apoptosis, and neurofunctional regulation exhibit therapeutic effects on experimental ischemic brain injury. Conferring to the pharmacological mechanisms underlying neuroprotection, a study found that androgapholide, a diterpene lactone compound, exhibits varying degrees of neuroprotective activities in both in vitro and in vivo experimental models of stroke. The neuroprotective mechanisms of andrographolide are suggested as: (I) increasing nuclear factor E2-related factor 2-heme oxygenase (Nrf2-HO-1) expression through p38-mitogen activated protein kinase (MAPK) regulation, (II) inducing cerebral endothelial cells (CEC) apoptosis and caspase-3 activation, (III) down regulating Bax, inducible nitric oxide synthase (iNOS), and (IV) inhibiting hydroxyl radical (OH - ) formation, and activating transcription factor NF-κB signaling pathways. Recently, several researchers have also been trying to unveil the principal mechanisms involved in the neuroprotective effects of andrographolide. Therefore, this review aims to summarize an overview on the neuroprotective effects of andrographolide and exemplifies the essential mechanisms involved. This paper can provide information that andrographolide drug discovery may be a promising strategy for the development of a novel class of neuroprotective drug.

  4. Binding Studies of Andrographolide with Human serum albumin: Molecular Docking, Chromatographic and Spectroscopic studies.

    Science.gov (United States)

    Godugu, Deepika; Rupula, Karuna; Beedu, Sashidhar Rao

    2018-02-11

    Andrographolide, sourced from Andrographis paniculata, is an established therapeutic agent with variety of pharmacological properties in treatment of various diseases. The present study is designed to evaluate the interaction and binding affinity of andrographolide with HSA by docking and spectral studies. The docking study for screening the interaction of andrographolide with HSA protein was carried out using Auto Dock Vina software and the binding score of andrographolide was -8.7 kcal mol-1 and formed one hydrogen bond with Arg 218 residue of HSA in sub-domains IIA region. The formation of HSA-andrographolide complex was characterized by spectroscopic methods - UV absorption, HPLC, CD and FTIR analysis. The UV spectral analysis revealed a decrease in the absorption peak of HSA due to its interaction with andrographolide. A new peak was observed at retention time 7.45 min by HPLC analysis and the Bmax was found to be 7.5 ± 0.4 mg protein with a Kd value of 1.89 mM, indicating interaction of andrographolide with HSA. The CD spectra results suggested, a marginal decrease in the negative ellipticity without any significant shift in peak, indicating the stabilization of the HSA-andrographolide complex. The FTIR analysis further confirmed, a shift of amide I groups from 1646 to 1637 cm-1 and a peak at 1016 cm-1 in andrographolide, was observed in the complex, indicating the interaction. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Neuroprotective effects of andrographolide in a rat model of permanent cerebral ischaemia

    Science.gov (United States)

    Chan, Su Jing; Wong, WS Fred; Wong, Peter TH; Bian, Jin-Song

    2010-01-01

    BACKGROUND AND PURPOSE Andrographolide is a diterpenoid lactone isolated from a traditional medicinal herb, Andrographis paniculata. It possesses potent anti-inflammatory activity. The present study examined potential therapeutic effects of andrographolide on cerebral ischaemia using a rat model with permanent middle cerebral artery occlusion (pMCAO). EXPERIMENTAL APPROACH The MCA in rats was permanently occluded (by cautery), and 24 h later neurological effects were assessed with behavioural scores. Infarct volume and microglial activation were determined histologically. The p65 form of the transcription factor, nuclear factor-κB (NF-κB), was measured by Western blot, and cytokines by immunoassay of brain extracts. KEY RESULTS Andrographolide, given i.p. 1 h after pMCAO, reduced infarct volume with a maximum reduction of approximately 50% obtained at 0.1 mg·kg−1. Neurological deficits were also reduced by andrographolide, reflecting a correlation between infarct volume and neurological deficits. pMCAO was found to induce activation of microglia and elevate tumour necrosis factor (TNF)-α, interleukin (IL)-1β and prostaglandin (PG)E2 in the ischaemic brain areas. Andrographolide (0.1 mg·kg−1) significantly attenuated or abolished these effects. In addition, andrographolide suppressed the translocation of p65 from cytosol to nucleus, indicating reduced NF-κB activation. CONCLUSIONS AND IMPLICATIONS Andrographolide exhibited neuroprotective effects, with accompanying suppression of NF-κB and microglial activation, and reduction in the production of cytokines including TNF-α and IL-1β, and pro-inflammatory factors such as PGE2. Our findings suggest that andrographolide may have therapeutic value in the treatment of stroke. PMID:20880404

  6. Andrographolide antagonizes cigarette smoke extract-induced inflammatory response and oxidative stress in human alveolar epithelial A549 cells through induction of microRNA-218.

    Science.gov (United States)

    Li, Ying-jie; Yu, Chang-hai; Li, Jing-bo; Wu, Xi-ya

    2013-12-01

    Andrographolide is a major bioactive labdane diterpenoid isolated from Andrographis paniculata and has protective effects against cigarette smoke (CS)-induced lung injury. This study was done to determine whether such protective effects were mediated through modulation of microRNA (miR)-218 expression. Therefore, we exposed human alveolar epithelial A549 cells to cigarette smoke extract (CSE) with or without andrographolide pretreatment and measured the level of glutathione, nuclear factor-kappaB (NF-κB) activation, proinflammatory cytokine production, and miR-218 expression. We found that andrographolide pretreatment significantly restored the glutathione level in CSE-exposed A549 cells, coupled with reduced inhibitor κB (IκB)-α phosphorylation and p65 nuclear translocation and interleukin (IL)-8 and IL-6 secretion. The miR-218 expression was significantly upregulated by andrographolide pretreatment. To determine the biological role of miR-218, we overexpressed and downregulated its expression using miR-218 mimic and anti-miR-218 inhibitor, respectively. We observed that miR-218 overexpression led to a marked reduction in IκB-α phosphorylation, p65 nuclear accumulation, and NF-κB-dependent transcriptional activity in CSE-treated A549 cells. In contrast, miR-218 silencing enhanced IκB-α phosphorylation and p65 nuclear accumulation in cells with andrographolide pretreatment and reversed andrographolide-mediated reduction of IL-6 and IL-8 production. In addition, depletion of miR-218 significantly reversed the upregulation of glutathione levels in A549 cells by andrographolide. Taken together, our results demonstrate that andrographolide mitigates CSE-induced inflammatory response in A549 cells, largely through inhibition of NF-κB activation via upregulation of miR-218, and thus has preventive benefits in CS-induced inflammatory lung diseases.

  7. In silico and in vitro Studies on Begomovirus Induced Andrographolide Biosynthesis Pathway in Andrographis Paniculata for Combating Inflammation and Cancer.

    Science.gov (United States)

    Khan, Asifa; Sharma, Pooja; Khan, Feroz; Ajayakumar, P V; Shanker, Karuna; Samad, Abdul

    2016-07-01

    Andrographolide and neoandrographolide are major bioactive molecules of Andrographis paniculata, a well-known medicinal plant. These molecules exhibited varying degrees of anti-inflammatory and anticancer activities in-vitro and in-vivo. Role of begomovirus protein C2/TrAP in biosynthesis of andrographolide was identified through molecular modeling, docking and predicted results were substantiated by in vitro studies. Homology molecular modeling and molecular docking were performed to study the binding conformations and different bonding behaviors, in order to reveal the possible mechanism of action behind higher accumulation of andrographolide. It was concluded that C2/TrAP inhibit the activation of SNF1-Related Protein Kinase-1 (SnRK1) in terpenoid pathway and removes the negative regulation of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) by SnRK1, leading to higher accumulation of andrographolide and neoandrographolide in begomovirus infected plants. The binding site residues of SnRK1 docked with C2/TrAP were found to be associated with ATP binding site, substrate binding site and activation loop. Predicted results were also validated by HPTLC. This study provides important insights into understanding the role of viral protein in altering the regulation of biosynthesis of andrographolide and could be used in future research to develop biomimetic methods for increasing the production of such phytometabolites having anti-cancerous and anti-inflammatory properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Andrographolide Restores Steroid Sensitivity To Block Lipopolysaccharide/IFN-γ-Induced IL-27 and Airway Hyperresponsiveness in Mice.

    Science.gov (United States)

    Liao, Wupeng; Tan, W S Daniel; Wong, W S Fred

    2016-06-01

    LPS and IFN-γ alone or in combination have been implicated in the development of steroid resistance. Combined LPS/IFN-γ strongly upregulates IL-27 production, which has been linked to steroid-resistant airway hyperresponsiveness (AHR). Andrographolide, a bioactive molecule isolated from the plant Andrographis paniculata, has demonstrated anti-inflammatory and antioxidant properties. The present study investigated whether andrographolide could restore steroid sensitivity to block LPS/IFN-γ-induced IL-27 production and AHR via its antioxidative property. The mouse macrophage cell line Raw 264.7, mouse primary lung monocytes/macrophages, and BALB/c mice were treated with LPS/IFN-γ, in the presence and absence of dexamethasone and/or andrographolide. Levels of IL-27 in vitro and in vivo were examined and mouse AHR was assessed. Dexamethasone alone failed to inhibit LPS/IFN-γ-induced IL-27 production and AHR in mice. Andrographolide significantly restored the suppressive effect of dexamethasone on LPS/IFN-γ-induced IL-27 mRNA and protein levels in the macrophage cell line and primary lung monocytes/macrophages, mouse bronchoalveolar lavage fluid and lung tissues, and AHR in mice. LPS/IFN-γ markedly reduced the nuclear level of histone deacetylase (HDAC)2, an essential epigenetic enzyme that mediates steroid anti-inflammatory action. LPS/IFN-γ also decreased total HDAC activity but increased the total histone acetyltransferase/HDAC activity ratio in mouse lungs. Andrographolide significantly restored nuclear HDAC2 protein levels and total HDAC activity, and it diminished the total histone acetyltransferase/HDAC activity ratio in mouse lungs exposed to LPS/IFN-γ, possibly via suppression of PI3K/Akt/HDAC2 phosphorylation, and upregulation of the antioxidant transcription factor NF erythroid-2-related factor 2 level and DNA binding activity. Our data suggest that andrographolide may have therapeutic value in resensitizing steroid action in respiratory disorders

  9. Andrographolide protects liver cells from H2O2 induced cell death by upregulation of Nrf-2/HO-1 mediated via adenosine A2a receptor signalling.

    Science.gov (United States)

    Mittal, Smriti P K; Khole, Swati; Jagadish, Nidhi; Ghosh, Debjani; Gadgil, Vijay; Sinkar, Vilas; Ghaskadbi, Saroj S

    2016-11-01

    Andrographolide, principle constituent of Andrographis paniculata Nees is used in traditional medicine in Southeast Asia and is known to exhibit various biological activities. Its antioxidant activity is due to its ability to activate one of the antioxidant enzymes, heme oxygenase-1 (HO-1) which is regulated transcriptionally through Nrf-2. However, molecular mechanism underlying activation of Nrf-2/HO-1 has not yet been clearly understood. Protective effect of andrographolide against H2O2 induced cell death, reactive oxygen species and lipid peroxidation was observed in HepG2 cells. Ability of andrographolide to modulate G-protein coupled receptor (GPCR) mediated signalling was determined using in silico docking and gene expression was analyzed by qRT-PCR, confocal microscopy and western blot analysis. We clearly show that andrographolide via adenosine A2A receptor signalling leads to activation of p38 MAP kinase, resulting in upregulation of Nrf-2, its translocation to nucleus and activation of HO-1. Additionally, it activates adenylate cyclase resulting in cAMP formation which in turn activates protein kinase A leading to inhibition of GSK-3β by phosphorylation. Inactivated GSK-3β leads to retention of Nrf-2 in the nucleus leading to sustained expression of HO-1 by binding to its antioxidant response element (ARE). Thus, andrographolide probably by binding to adenosine A2a receptor activates Nrf-2 transcription and also inhibits its exclusion from the nucleus by inactivating GSK-3β, together resulting in activation of HO-1. We speculate that andrographolide can be used as a therapeutic drug to combat oxidative stress implicated in pathogenesis of various diseases such as diabetes, osteoporosis, neurodegenerative diseases etc. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. [Research on determination of chemical purity of andrographolide by coulometric titration method].

    Science.gov (United States)

    Yang, Ning; Yang, Dezhi; Xu, Lishen; Lv, Yang

    2010-04-01

    The determination of chemical purity of andrographolide by coulometric titration method is studied in this paper. The coulometric titration was carried out in a mixture composed of 4 mol x L(-1) hydrochloric acid and 1 mol x L(-1) potassium bromide solution and 1 mol x L(-1) potassium nitrate solution (1:1). Bromine is electrogenerated at the anode and reacts with the andrographolide. The number of electrons involved in the eleatrode reaction is 2. Purity of andrographolide is 99.76% compared with 99.77% utilizing area normalization method by HPLC. The RSD are 0.33% and 0.02% respectively. The results from two methods are consistent, so the determination of chemical purity of andrographolide by coulometric titration method is scientific and feasible. The method is rapid, simple, convenient, sensitive and accurate. The reference material is not essential in the method. The method is suitable for determination of chemical purity of andrographolide.

  11. The antitumor effect of arsenic trioxide on hepatocellular carcinoma is enhanced by andrographolide.

    Science.gov (United States)

    Duan, Xuhua; Li, Tengfei; Han, Xinwei; Ren, Jianzhuang; Chen, Pengfei; Li, Hao; Gong, Shaojun

    2017-10-31

    High concentrations of arsenic trioxide (As 2 O 3 ) are used to treat acute promyelocytic leukemia and solid tumors, with negative side effects to normal cells. Andrographolide is a traditional Chinese medicine that exerts anti-cancer, anti-inflammatory, anti-virus, and anti-diabetic effects. Here, we tested the effects of combined andrographolide with As 2 O 3 against hepatocellular carcinoma (HCC). We found that by increasing apoptosis, andrographolide synergistically enhanced the anti-tumor effects of As2O3 in HepG2 cells in vitro and in vivo . Furthermore, results from our microarray assays and experiments with mouse xenografts showed that EphB4 was downregulated by the combination of As 2 O 3 plus andrographolide. These findings suggest that the combination of andrographolide and As 2 O 3 could yield therapeutic benefits in the treatment of HCC.

  12. HPTLC analysis of hepatoprotective diterpenoid andrographolide from Andrographis paniculata nees (kalmegh)

    OpenAIRE

    Raina Archana; Kumar A; Pareek S

    2007-01-01

    A rapid, accurate and simple high performance thin layer chromatography method for quantitative estimation of andrographolide in Andrographis paniculata is described here. The assay combines separation of andrographolide on silica gel 60 F 254 HPTLC plates followed by scanning of the spots at 232 nm using a Camag Scanner 3. Thirty germplasm collections of Andrographis paniculata were evaluated for andrographolide content by this method. Andrographolide content ranged from 1.14% to...

  13. Quantification of Andrographolide Isolated from Andrographis paniculata Nees Obtained from Traditional Market in Yogyakarta Using Validated HPLC

    Directory of Open Access Journals (Sweden)

    Yandi Syukri

    2016-08-01

    Full Text Available This research was aimed to quantification of andrographolide isolated from A. paniculata Ness found in traditional market in Yogyakarta using validated HPLC to obtain high level content of andrographolide. The extraction of andrographolide from A. paniculata was carried out using ethanol as the solvent. Fractionation and isolation were continued using a non-polar solvent. Next, the extracts were re-crystallized to obtain isolated andrographolide. The identity of the compound was confirmed through an analysis of the melting point, IR spectra, and TLC. The purity of the compound was confirmed by the validated HPLC. The data obtained were then compared using an analytical grade of andrographolide as the standard. The isolated andrographolide confirmed melting point, IR spectra and TLC analysis were similar to the standard andrographolide. The method to determine the content of isolated andrographolide showed an adequate precision, with a relative standard deviation (RSD smaller than 1%. The accuracy showed good recovery values were obtained for all concentrations used. The HPLC method in this study showed specificity and selectivity with linearity in the working range and good precision and accuracy, making it very suitable for the quantification of andrographolide isolated in A. paniculata. When compared to the standard, the purity of the isolated andrographolide was 95.74 ± 0.29%.

  14. Andrographolide Sodium Bisulfate Prevents UV-Induced Skin Photoaging through Inhibiting Oxidative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Janis Ya-Xian Zhan

    2016-01-01

    Full Text Available Andrographolide sodium bisulfate (ASB, a water-soluble form made from andrographolide through sulfonating reaction, is an antioxidant and anti-inflammatory drug; however, the antiphotoaging effect of ASB has still not been revealed. Oxidative stress and inflammation are known to be responsible for ultraviolet (UV irradiation induced skin damage and consequently premature aging. In this study, we aimed at examining the effect of ASB on UV-induced skin photoaging of mice by physiological and histological analysis of skin and examination of skin antioxidant enzymes and immunity analyses. Results showed that topical administration of ASB suppressed the UV-induced skin thickness, elasticity, wrinkles, and water content, while ASB, especially at dose of 3.6 mg/mouse, increased the skin collagen content by about 53.17%, decreased the epidermal thickness by about 41.38%, and prevented the UV-induced disruption of collagen fibers and elastic fibers. Furthermore, ASB decreased MDA level by about 40.21% and upregulated the activities of SOD and CAT and downregulated the production of IL-1β, IL-6, IL-10, and TNF-α in UV-irradiated mice. Our study confirmed the protective effect of ASB against UV-induced photoaging and initially indicated that this effect can be attributed to its antioxidant and anti-inflammatory activities in vivo, suggesting that ASB may be a potential antiphotoaging agent.

  15. Andrographolide Sodium Bisulfate Prevents UV-Induced Skin Photoaging through Inhibiting Oxidative Stress and Inflammation

    Science.gov (United States)

    Zhan, Janis Ya-Xian; Wang, Xiu-Fen; Liu, Yu-Hong; Zhang, Zhen-Biao; Wang, Lan; Chen, Jian-Nan; Huang, Song; Zeng, Hui-Fang; Lai, Xiao-Ping

    2016-01-01

    Andrographolide sodium bisulfate (ASB), a water-soluble form made from andrographolide through sulfonating reaction, is an antioxidant and anti-inflammatory drug; however, the antiphotoaging effect of ASB has still not been revealed. Oxidative stress and inflammation are known to be responsible for ultraviolet (UV) irradiation induced skin damage and consequently premature aging. In this study, we aimed at examining the effect of ASB on UV-induced skin photoaging of mice by physiological and histological analysis of skin and examination of skin antioxidant enzymes and immunity analyses. Results showed that topical administration of ASB suppressed the UV-induced skin thickness, elasticity, wrinkles, and water content, while ASB, especially at dose of 3.6 mg/mouse, increased the skin collagen content by about 53.17%, decreased the epidermal thickness by about 41.38%, and prevented the UV-induced disruption of collagen fibers and elastic fibers. Furthermore, ASB decreased MDA level by about 40.21% and upregulated the activities of SOD and CAT and downregulated the production of IL-1β, IL-6, IL-10, and TNF-α in UV-irradiated mice. Our study confirmed the protective effect of ASB against UV-induced photoaging and initially indicated that this effect can be attributed to its antioxidant and anti-inflammatory activities in vivo, suggesting that ASB may be a potential antiphotoaging agent. PMID:26903706

  16. Two novel creatinine adducts of andrographolide in human urine.

    Science.gov (United States)

    Qiu, Feng; Cui, Liang; Chen, Lixia; Sun, Jiawen; Yao, Xinsheng

    2012-09-01

    Andrographolide is a major labdane diterpenoid of the traditional Chinese and Ayurvedic medicine. Andrographis paniculate (Burm) Nees, is used in clinical situations in China mainly to treat fever, cold, and inflammation. In our previous study, fifteen metabolites of andrographolide were identified in human urine. However, there are still two other unknown metabolites. The aim of this study was to elucidate the structures of these two metabolites. 3. The two metabolites which are probably epimers were identified as creatinine adducts, and their structures were determined to be 14-deoxy-12-(creatinine-5-yl)-andrographolide-19-O-β-D-glucuronide A (Metabolite 1) and 14-deoxy-12-(creatinine-5-yl)-andrographolide-19-O-β-D-glucuronide B (Metabolite 2) by means of spectroscopic evidences. 4. It is for the first time that the formation of creatinine adducts as a novel metabolic pathway is reported. The mechanism was presumed that β-carbon (C-12) of α, β-unsaturated carbonyl was attacked by a 5-anion intermediate of creatinine formed through elimination of a proton, followed by the double bond migration from 12(13) to 13(14) and elimination of the hydroxyl group at C-14.

  17. Andrographolide protects against cigarette smoke-induced oxidative lung injury via augmentation of Nrf2 activity

    Science.gov (United States)

    Guan, SP; Tee, W; Ng, DSW; Chan, TK; Peh, HY; Ho, WE; Cheng, C; Mak, JC; Wong, WSF

    2013-01-01

    Background and Purpose Cigarette smoke is a major cause for chronic obstructive pulmonary disease (COPD). Andrographolide is an active biomolecule isolated from the plant Andrographis paniculata. Andrographolide has been shown to activate nuclear factor erythroid-2-related factor 2 (Nrf2), a redox-sensitive antioxidant transcription factor. As Nrf2 activity is reduced in COPD, we hypothesize that andrographolide may have therapeutic value for COPD. Experimental Approach Andrographolide was given i.p. to BALB/c mice daily 2 h before 4% cigarette smoke exposure for 1 h over five consecutive days. Bronchoalveolar lavage fluid and lungs were collected for analyses of cytokines, oxidative damage markers and antioxidant activities. BEAS-2B bronchial epithelial cells were exposed to cigarette smoke extract (CSE) and used to study the antioxidant mechanism of action of andrographolide. Key Results Andrographolide suppressed cigarette smoke-induced increases in lavage fluid cell counts; levels of IL-1β, MCP-1, IP-10 and KC; and levels of oxidative biomarkers 8-isoprostane, 8-OHdG and 3-nitrotyrosine in a dose-dependent manner. Andrographolide promoted inductions of glutathione peroxidase (GPx) and glutathione reductase (GR) activities in lungs from cigarette smoke-exposed mice. In BEAS-2B cells, andrographolide markedly increased nuclear Nrf2 accumulation, promoted binding to antioxidant response element (ARE) and total cellular glutathione level in response to CSE. Andrographolide up-regulated ARE-regulated gene targets including glutamate-cysteine ligase catalytic (GCLC) subunit, GCL modifier (GCLM) subunit, GPx, GR and heme oxygenase-1 in BEAS-2B cells in response to CSE. Conclusions Andrographolide possesses antioxidative properties against cigarette smoke-induced lung injury probably via augmentation of Nrf2 activity and may have therapeutic potential for treating COPD. PMID:23146110

  18. Andrographolide reversed 5-FU resistance in human colorectal cancer by elevating BAX expression.

    Science.gov (United States)

    Wang, Weicheng; Guo, Wenjie; Li, Lele; Fu, Zan; Liu, Wen; Gao, Jian; Shu, Yongqian; Xu, Qiang; Sun, Yang; Gu, Yanhong

    2016-12-01

    5-FU is the first line therapy for colorectal cancer, however, treatment effect is often hampered by the development of drug resistance or toxicity at high doses. Andrographolide is a natural diterpenoid from Andrographis paniculata which has anti-bacterial, anti-antiviral and anti-inflammation activities. In the current study, we test the hypothesis that Andrographolide reverses 5-FU resistance in colorectal cancer and examine the underlying mechanism. In vitro and vivo studies indicated that Andrographolide treatment significantly re-sensitizes HCT116/5-FUR cells (HCT116 cells which are 5-FU resistant) to cytotoxicity of 5-FU. Mechanism analysis showed that Andrographolide/5-FU co-treatment elevated apoptosis level of HCT116/5-FUR cells with highly increased level of BAX. By using biotin-Andrographolide pull down and cellular thermal shift assay, we found out that Andrographolide can directly target to BAX. Andrographolide-BAX interaction prevented BAX degradation, enhancing mitochondria-mediated apoptosis thus reversed 5-FU resistance while BAX silence diminished this effect. Further, by analyzing patient samples who received 5-FU involved chemotherapy, we found that expression level of BAX is correlated with PFS. Our results here provide a novel combination treatment strategy, especially for patients with 5-FU-resistant tumors expressing low level of BAX. Meanwhile, we also proposed that BAX expression may be a predicted and prognosis marker of 5-FU involved chemotherapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Rational computational design for the development of andrographolide molecularly imprinted polymer

    Science.gov (United States)

    Krishnan, Hemavathi; Islam, K. M. Shafiqul; Hamzah, Zainab; Ahmad, Mohd Noor

    2017-10-01

    Andrographolide is a popular medicinal compound derived from Andrographis Paniculata (AP). Molecularly Imprint Polymer (MIP) is a "Lock and Key" approach, where MIP is the lock and Andrographolide is the key which fits to the MIP lock by both physically and chemically. MIP will be used as selective extraction tool to enrich Andrographolide bioactive compound. Pre-polymerization step is crucial to design MIP. This work investigates molecular interactions and the Gibbs free binding energies on the development of MIP. The structure of Andrographolide (template) and functional monomers were drawn in HyperChem 8.0.10. A hybrid quantum chemical model was used with a few functional monomers. Possible conformations of template and functional monomer as 1:n (n < 4) were designed and simulated to geometrically optimize the complex to the lowest energy in gas phase. The Gibbs free binding energies of each conformation were calculated using semi-empirical PM3 simulation method. Results proved that functional monomers that contain carboxylic group shows higher binding energy compared to those with amine functional group. Itaconic acid (IA) chosen as the best functional monomer at optimum ratio (1:3) of template: monomer to prepare andrographolide MIP. This study demonstrates the importance of studying intermolecular interaction among template, functional monomer and template-monomer ratio in developing MIP.

  20. Andrographolide Suppresses MV4-11 Cell Proliferation through the Inhibition of FLT3 Signaling, Fatty Acid Synthesis and Cellular Iron Uptake

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2017-08-01

    Full Text Available Background: Andrographolide (ADR, the main active component of Andrographis paniculata, displays anticancer activity in various cancer cell lines, among which leukemia cell lines exhibit the highest sensitivity to ADR. In particular, ADR was also reported to have reduced drug resistance in multidrug resistant cell lines. However, the mechanism of action (MOA of ADR’s anticancer and anti-drug-resistance activities remain elusive. Methods: In this study, we used the MV4-11 cell line, a FLT3 positive acute myeloid leukemia (AML cell line that displays multidrug resistance, as our experimental system. We first evaluated the effect of ADR on MV4-11 cell proliferation. Then, a quantitative proteomics approach was applied to identify differentially expressed proteins in ADR-treated MV4-11 cells. Finally, cellular processes and signal pathways affected by ADR in MV4-11 cell were predicted with proteomic analysis and validated with in vitro assays. Results: ADR inhibits MV4-11 cell proliferation in a dose- and time-dependent manner. With a proteomic approach, we discovered that ADR inhibited fatty acid synthesis, cellular iron uptake and FLT3 signaling pathway in MV4-11 cells. Conclusions: ADR inhibits MV4-11 cell proliferation through inhibition of fatty acid synthesis, iron uptake and protein synthesis. Furthermore, ADR reduces drug resistance by blocking FLT3 signaling.

  1. Validation for The Quantification of Andrographolide Isolated from Andrographis paniculata Nees Plant Using HPLC

    Directory of Open Access Journals (Sweden)

    Yandi Syukri

    2015-12-01

    Full Text Available The aim of study was to develop quantitative analysis of isolated andrographolide from Andrographis paniculata and different solvent for prelimenary studies to preperation Self Nano Emulsifying Drug Delivery System (SNEDDS using HPLC. The separation was acquired on Sunfire C18 column with an isocratic mixture of methanol and water at a ratio of 6:4, v/v as a mobile phase. The method to determine the content of isolated andrographolide showed an adequate precision, with a RSD smaller than 1%. The accuracy was analyzed by adding the standard andrographolide, and good recovery values were obtained for all concentrations used. The HPLC method developed in this study showed specificity and selectivity with linearity in the working range and good precision and accuracy, making it very suitable for the quantification of isolated andrographolide. Compared to the standard, the purity of the isolated andrographolide was 95.74 ± 0.29 %. Prelimenary study to determined the highest solubility of isolated andrographolide in oil, surfactant and co-surfactant phases for preperation of SNEDDS were obtained 1.226 ± 0.009 of Capryol-90, 2.965 ± 0.014 of tween 20, and  6.074 ± 0.101 mg mL-1 of PEG 400, respectively. Conclusion, this method suitable used to determination solublity of isolated andrographolide for preperation SNEDDS.

  2. Andrographis paniculata Extract and Andrographolide Modulate the Hepatic Drug Metabolism System and Plasma Tolbutamide Concentrations in Rats

    Directory of Open Access Journals (Sweden)

    Haw-Wen Chen

    2013-01-01

    Full Text Available Andrographolide is the most abundant terpenoid of A. paniculata which is used in the treatment of diabetes. In this study, we investigated the effects of A. paniculata extract (APE and andrographolide on the expression of drug-metabolizing enzymes in rat liver and determined whether modulation of these enzymes changed the pharmacokinetics of tolbutamide. Rats were intragastrically dosed with 2 g/kg/day APE or 50 mg/kg/day andrographolide for 5 days before a dose of 20 mg/kg tolbutamide was given. APE and andrographolide reduced the AUC0–12 h of tolbutamide by 37% and 18%, respectively, compared with that in controls. The protein and mRNA levels and enzyme activities of CYP2C6/11, CYP1A1/2, and CYP3A1/2 were increased by APE and andrographolide. To evaluate whether APE or andrographolide affected the hypoglycemic action of tolbutamide, high-fat diet-induced obese mice were used and treated in the same manner as the rats. APE and andrographolide increased CYP2C6/11 expression and decreased plasma tolbutamide levels. In a glucose tolerance test, however, the hypoglycemic effect of tolbutamide was not changed by APE or andrographolide. These results suggest that APE and andrographolide accelerate the metabolism rate of tolbutamide through increased expression and activity of drug-metabolizing enzymes. APE and andrographolide, however, do not impair the hypoglycemic effect of tolbutamide.

  3. Metabolic disturbance and phytochemical changes in Andrographis paniculata and possible action mode of andrographolide

    Directory of Open Access Journals (Sweden)

    Netiya Karaket

    2018-01-01

    Full Text Available Objective: To explore the effect of gibberellic acid (GA3 and its inhibitor paclobutrazol (PBZ on chemical composition and their pharmacological effects on Andrographis paniculata (Burm. f. Wall. ex Nees, and to clarify action mode of andrographolide. Methods: The chemical composition was extracted by sequential extraction with hexane, dichloromethane, ethyl acetate and methanol, respectively. Andrographolide and its derivatives were evaluated by HPLC. Moreover, the metabolic profiling was analyzed by GC-MS. Inhibitory effect of crude extracts was tested against Staphylococcus aureus using agar well diffusion method. Mode of action was tested against mutant yeast by spotting assay. Andrographolide were tested for their mode of action against eukaryotes. Results: Among different solvents, dichloromethane gave the highest yield of crude (3.58% DW, with the highest andrographolide content (8.3 mg/g DW. The effect of plant hormone (10 mg/L GA3 or PBZ on phytochemical variations and bioactivity of Andrographis paniculata was demonstrated. It was found that PBZ promoted sesquiterpene compounds about 3.5 times over than GA3 treatment. But inhibitory effect of extracts against Staphylococcus aureus was highest in GA3 treated plants; andrographolide and 14-deoxy-11,12-didehydroandrographolide contents were significantly higher than those of water or PBZ. It was found that there were 11 strains involving in ergosterol biosynthesis, V-ATPase activity and homeostasis, and superoxide detoxification process. In this regard, andrographolide might cause the damage on the lipid bilayer of yeast cell and plasma membrane by interfering ergosterol biosynthesis. Conclusions: It is found that GA3 promotes andrographolide and 14-deoxy-11,12-didehydroandrographolide content while PBZ promotes sesquiterpene content. Andrographolide might cause the damage on the lipid bilayer of yeast cell and plasma membrane by interfering ergosterol biosynthesis. It might also affect

  4. Development of andrographolide molecularly imprinted polymer for solid-phase extraction

    Science.gov (United States)

    Yin, Xiaoying; Liu, Qingshan; Jiang, Yifan; Luo, Yongming

    2011-06-01

    A method employing molecularly imprinted polymer (MIP) as selective sorbent for solid-phase extraction (SPE) to pretreat samples was developed. The polymers were prepared by precipitation polymerization with andrographolide as template molecule. The structure of MIP was characterized and its static adsorption capacity was measured by the Scatchard equation. In comparison with C 18-SPE and non-imprinted polymer (NIP) SPE column, MIP-SPE column displays high selectivity and good affinity for andrographolide and dehydroandrographolide for extract of herb Andrographis paniculata ( Burm.f.) Nees (APN). MIP-SPE column capacity was 11.9 ± 0.6 μmol/g and 12.1 ± 0.5 μmol/g for andrographolide and dehydroandrographolide, respectively and was 2-3 times higher than that of other two columns. The precision and accuracy of the method developed were satisfactory with recoveries between 96.4% and 103.8% (RSD 3.1-4.3%, n = 5) and 96.0% and 104.2% (RSD 2.9-3.7%, n = 5) for andrographolide and dehydroandrographolide, respectively. Various real samples were employed to confirm the feasibility of method. This developed method demonstrates the potential of molecularly imprinted solid phase extraction for rapid, selective, and effective sample pretreatment.

  5. Andrographolide Induces Autophagic Cell Death and Inhibits Invasion and Metastasis of Human Osteosarcoma Cells in An Autophagy-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2017-11-01

    Full Text Available Background/Aims: Osteosarcoma (OS is the most common primary malignant tumor of bone tissue. Although treatment effectiveness has improved, the OS survival rate has fluctuated in recent years. Andrographolide (AG has been reported to have antitumor activity against a variety of tumors. Our aim was to investigate the effects and potential mechanisms of AG in human osteosarcoma. Methods: Cell viability and morphological changes were assessed by MTT and live/dead assays. Apoptosis was detected using Annexin V-FITC/PI double staining, DAPI, and caspase-3 assays. Autophagy was detected with mRFP-GFP-LC3 adenovirus transfection and western blot. Cell migration and invasion were detected by wound healing assay and Transwell® experiments. Results: AG dose-dependently reduced the viability of osteosarcoma cells. No increase in apoptosis was detected in AG-treated human OS MG-63 and U-2OS cells, and the pan-caspase inhibitor z-VAD did not attenuate AG-induced cell death. However, AG induced autophagy by suppressing PI3K/Akt/mTOR and enhancing JNK signaling pathways. 3-MA and Beclin-1 siRNA could reverse the cytotoxic effects of AG. In addition, AG inhibited the invasion and metastasis of OS, and this effect could be reversed with Beclin-1 siRNA. Conclusion: AG inhibits viability and induces autophagic death in OS cells. AG-induced autophagy inhibits the invasion and metastasis of OS.

  6. Adaptogenic potential of andrographolide: An active principle of the king of bitters (Andrographis paniculata).

    Science.gov (United States)

    Thakur, Ajit Kumar; Chatterjee, Shyam Sunder; Kumar, Vikas

    2015-01-01

    Andrographolide is a major bioactive secondary plant metabolite isolated Andrographis paniculata (Burm. F.) Wall. Ex. Nees. ( chuān xīn lián), a well-known traditionally used medicinal herb. The aim of the study was to pharmacologically evaluate the beneficial effect of andrographolide on stress-induced thermoregulatory and other physiological responses in mice. A stress-induced hyperthermia test was conducted in mice. The test agents were orally administered once daily for 11 consecutive days, and treatment effects on body weight changes, basal rectal temperature, and foot-shock-triggered hyperthermic responses were quantified on Day 1, Day 5, Day 7, and Day 10 of the experiments. Pentobarbital-induced hypnosis was quantified on the 11(th) day of treatment. Observations made during a pilot dose finding experiment revealed that, like A. paniculata extracts, pure andrographolide also possess adaptogenic properties. Observed dose-dependent efficacies of 3 mg/kg/d, 10 mg/kg/d, and 30 mg/kg/d andrographolide in the pilot experiment were reconfirmed by conducting two further analogous experiments using separate groups of either male or female mice. In these confirmatory experiments, efficacies of andrographolide were compared with that of 5 mg/kg/d oral doses of the standard anxiolytic diazepam. Significantly reduced body weights and elevated core temperatures of the three vehicle-treated control groups observed on the 5(th) day and subsequent observational days were completely absent even in the groups treated with the lowest andrographolide dose (3 mg/kg/d) or diazepam (5 mg/kg/d). Benzodiazepine-like potentiation of pentobarbital hypnosis was observed in andrographolide-treated animals. These observations reveal that andrographolide is functionally a diazepam-like desensitizer of biological mechanisms, and processes involved in stress trigger thermoregulatory and other physiological responses.

  7. Adaptogenic potential of andrographolide: An active principle of the king of bitters (Andrographis paniculata

    Directory of Open Access Journals (Sweden)

    Ajit Kumar Thakur

    2015-01-01

    Full Text Available Andrographolide is a major bioactive secondary plant metabolite isolated Andrographis paniculata (Burm. F. Wall. Ex. Nees. (穿心蓮 chuān xīn lián, a well-known traditionally used medicinal herb. The aim of the study was to pharmacologically evaluate the beneficial effect of andrographolide on stress-induced thermoregulatory and other physiological responses in mice. A stress-induced hyperthermia test was conducted in mice. The test agents were orally administered once daily for 11 consecutive days, and treatment effects on body weight changes, basal rectal temperature, and foot-shock-triggered hyperthermic responses were quantified on Day 1, Day 5, Day 7, and Day 10 of the experiments. Pentobarbital-induced hypnosis was quantified on the 11th day of treatment. Observations made during a pilot dose finding experiment revealed that, like A. paniculata extracts, pure andrographolide also possess adaptogenic properties. Observed dose-dependent efficacies of 3 mg/kg/d, 10 mg/kg/d, and 30 mg/kg/d andrographolide in the pilot experiment were reconfirmed by conducting two further analogous experiments using separate groups of either male or female mice. In these confirmatory experiments, efficacies of andrographolide were compared with that of 5 mg/kg/d oral doses of the standard anxiolytic diazepam. Significantly reduced body weights and elevated core temperatures of the three vehicle-treated control groups observed on the 5th day and subsequent observational days were completely absent even in the groups treated with the lowest andrographolide dose (3 mg/kg/d or diazepam (5 mg/kg/d. Benzodiazepine-like potentiation of pentobarbital hypnosis was observed in andrographolide-treated animals. These observations reveal that andrographolide is functionally a diazepam-like desensitizer of biological mechanisms, and processes involved in stress trigger thermoregulatory and other physiological responses.

  8. Andrographolide induces Nrf2 and heme oxygenase 1 in astrocytes by activating p38 MAPK and ERK.

    Science.gov (United States)

    Wong, Siew Ying; Tan, Michelle G K; Wong, Peter T H; Herr, Deron R; Lai, Mitchell K P

    2016-09-23

    Andrographolide is the major labdane diterpenoid originally isolated from Andrographis paniculata and has been shown to have anti-inflammatory and antioxidative effects. However, there is a dearth of studies on the potential therapeutic utility of andrographolide in neuroinflammatory conditions. Here, we aimed to investigate the mechanisms underlying andrographolide's effect on the expression of anti-inflammatory and antioxidant heme oxygenase-1 (HO-1) in primary astrocytes. Measurements of the effects of andrograholide on antioxidant HO-1 and its transcription factor, Nrf2, include gene expression, protein turnover, and activation of putative signaling regulators. Andrographolide potently activated Nrf2 and also upregulated HO-1 expression in primary astrocytes. Andrographolide's effects on Nrf2 seemed to be biphasic, with acute (within 1 h) reductions in Nrf2 ubiquitination efficiency and turnover rate, followed by upregulation of Nrf2 mRNA between 8 and 24 h. The acute regulation of Nrf2 by andrographolide seemed to be independent of Keap1 and partly mediated by p38 MAPK and ERK signaling. These data provide further insights into the mechanisms underlying andrographolide's effects on astrocyte-mediated antioxidant, and anti-inflammatory responses and support the further assessment of andrographolide as a potential therapeutic for neurological conditions in which oxidative stress and neuroinflammation are implicated.

  9. Quantification of Andrographolide Isolated from Andrographis paniculata Nees Obtained from Traditional Market in Yogyakarta Using Validated HPLC

    OpenAIRE

    Syukri, Yandi; Martien, Ronny; Lukitaningsih, Endang; Nugroho, Agung Endro

    2018-01-01

    This research was aimed to quantification of andrographolide isolated from A. paniculata Ness found in traditional market in Yogyakarta using validated HPLC to obtain high level content of andrographolide. The extraction of andrographolide from A. paniculata was carried out using ethanol as the solvent. Fractionation and isolation were continued using a non-polar solvent. Next, the extracts were re-crystallized to obtain isolated andrographolide. The identity of the compound was confirmed thr...

  10. Andrographolide stimulates p38 mitogen-activated protein kinase-nuclear factor erythroid-2-related factor 2-heme oxygenase 1 signaling in primary cerebral endothelial cells for definite protection against ischemic stroke in rats.

    Science.gov (United States)

    Yen, Ting-Lin; Chen, Ray-Jade; Jayakumar, Thanasekaran; Lu, Wan-Jung; Hsieh, Cheng-Ying; Hsu, Ming-Jen; Yang, Chih-Hao; Chang, Chao-Chien; Lin, Yen-Kuang; Lin, Kuan-Hung; Sheu, Joen-Rong

    2016-04-01

    Stroke pathogenesis involves complex oxidative stress-related pathways. The nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) pathways have been considered molecular targets in pharmacologic intervention for ischemic diseases. Andrographolide, a labdane diterpene, has received increasing attention in recent years because of its various pharmacologic activities. We determined that andrographolide modulates the mitogen-activated protein kinase (MAPK)-Nrf2-HO-1 signaling cascade in primary cerebral endothelial cells (CECs) to provide positive protection against middle cerebral artery occlusion (MCAO)-induced ischemic stroke in rats. In the present study, andrographolide (10 μM) increased HO-1 protein and messenger RNA expressions, Nrf2 phosphorylation, and nuclear translocation in CECs, and these activities were disrupted by a p38 MAPK inhibitor, SB203580, but not by the extracellular signal-regulated kinase inhibitor PD98059 or c-Jun amino-terminal kinase inhibitor SP600125. Similar results were observed in confocal microscopy analysis. Moreover, andrographolide-induced Nrf2 and HO-1 protein expressions were significantly inhibited by Nrf2 small interfering RNA. Moreover, HO-1 knockdown attenuated the protective effect of andrographolide against oxygen-glucose deprivation-induced CEC death. Andrographolide (0.1 mg/kg) significantly suppressed free radical formation, blood-brain barrier disruption, and brain infarction in MCAO-insulted rats, and these effects were reversed by the HO-1 inhibitor zinc protoporphyrin IX. The mechanism is attributable to HO-1 activation, as directly evidenced by andrographolide-induced pronounced HO-1 expression in brain tissues, which was highly localized in the cerebral capillary. In conclusion, andrographolide increased Nrf2-HO-1 expression through p38 MAPK regulation, confirming that it provides protection against MCAO-induced brain injury. These findings provide strong evidence that andrographolide could

  11. A pilot study on the use of andrographolide to treat symptomatic adenomyosis

    Directory of Open Access Journals (Sweden)

    Xishi Liu

    2014-11-01

    Conclusion: Andrographolide is effective in some patients with symptomatic adenomyosis, who have a higher endometrial expression of the activated form of the NF-κB p65 subunit. Future independent validation studies or randomized clinical trials may be needed to more precisely evaluate the efficacy of andrographolide.

  12. Andrographolide sulfonate improves Alzheimer-associated phenotypes and mitochondrial dysfunction in APP/PS1 transgenic mice.

    Science.gov (United States)

    Geng, Ji; Liu, Wen; Xiong, Yuyun; Ding, Hongqun; Jiang, Chunhong; Yang, Xiaoling; Li, Xiang; Elgehama, Ahmed; Sun, Yang; Xu, Qiang; Guo, Wenjie; Gao, Jing

    2018-01-01

    Alzheimer's disease is a neurodegenerative disorder with Amyloid-β plaques onset, synaptic damage, and cognitive decline. Aβ deposits cause pathological events including oxidative stress, mitochondrial dysfunction, and neuron death. In this study, APPswe/PSENΔ9 double transgenic mice model was used to imitate Alzheimer's disease and the effect and possible mechanism of Andrographolide sulfonate were examined. Andrographolide sulfonate was given to the mice for 7 months before the onset of Aβ plaque. Spatial memory test showed that Andrographolide sulfonate treatment prevented cognitive decline. Aβ deposits were not affected while hippocampus and synapse damage was significantly alleviated. Mechanism studies showed that oxidative stress and mitochondrial swelling was reduced after Andrographolide sulfonate administration. These findings suggest that Andrographolide sulfonate, which has been applied in clinical medicine, might be a promising therapeutic agent for AD therapy via mitochondria protection. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. An in vitro study of anti-inflammatory activity of standardised Andrographis paniculata extracts and pure andrographolide.

    Science.gov (United States)

    Low, Mitchell; Khoo, Cheang S; Münch, Gerald; Govindaraghavan, Suresh; Sucher, Nikolaus J

    2015-02-07

    The anti-inflammatory activity of Andrographis paniculata (Acanthaceae), a traditional medicine widely used in Asia, is commonly attributed to andrographolide, its main secondary metabolite. Commercial A. paniculata extracts are standardised to andrographolide content. We undertook the present study to investigate 1) how selective enrichment of andrographolide in commercial A. paniculata extracts affects the variability of non-standardised phytochemical components and 2) if variability in the non-standardised components of the extract affects the pharmacological activity of andrographolide itself. We characterized 12 commercial, standardised (≥30% andrographolide) batches of A. paniculata extracts from India by HPLC profiling. We determined the antioxidant capacity of the extracts using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, oxygen radical antioxidant capacity (ORAC) and a Folin-Ciocalteu (FC) antioxidant assays. Their anti-inflammatory activity was assessed by assaying their inhibitory effect on the release of tumor necrosis factor alpha (TNF-α) in the human monocytic cell line THP-1. The andrographolide content in the samples was close to the claimed value (32.2 ± 2.1%, range 27.5 to 35.9%). Twenty-one non-standardised constituents exhibited more than 2-fold variation in HPLC peak intensities in the tested batches. The chlorogenic acid content of the batches varied more than 30-fold. The DPPH free radical scavenging activity varied ~3-fold, the ORAC and FC antioxidant capacity varied ~1.5 fold among batches. In contrast, the TNF-α inhibitory activity of the extracts exhibited little variation and comparison with pure andrographolide indicated that it was mostly due to their andrographolide content. Standardised A. paniculata extracts contained the claimed amount of andrographolide but exhibited considerable phytochemical background variation. DPPH radical scavenging activity of the extracts was mostly due to the flavonoid

  14. Andrographolide Attenuates LPS-Induced Cardiac Malfunctions Through Inhibition of IκB Phosphorylation and Apoptosis in Mice

    Directory of Open Access Journals (Sweden)

    Jinlong Zhang

    2015-11-01

    Full Text Available Background/Aims: Cardiac malfunction is a common complication in sepsis and significantly increases the mortality of patients in septic shock. However, no studies have examined whether andrographolide (And reduces LPS-induced myocardial malfunction. Methods: Left ventricular systolic and diastolic functions were examined using echocardiography. TNF-a and IL-1ß protein levels were detected by an enzyme-linked immunosorbent assay (ELISA. NO oxidation products were determined using Griess reagent. Protein expression levels of inhibitors of NF-κBa (IκB and phospho-IκB were determined via Western blot. Oxidative injury was determined by measuring myocardial lipid peroxidation and superoxide dismutase activity. Cardiac apoptosis was examined by terminal deoxynucleotidyl transferase-mediated dUTP nickend-labeling (TUNEL and cardiac caspase 3/7 activity. Results: And blunted LPS-induced myocardial malfunctions in mice. LPS induced TNF-a, IL-1ß, and NO production as well as I-κB phosphorylation. Cardiac apoptosis was attenuated via incubation with And, but the extent of oxidative injury remained unaffected. Conclusion: And prevents LPS-induced cardiac malfunctions in mice by inhibiting TNF-a, IL-1ß, and NO production, IκB phosphorylation, and cardiac apoptosis, indicating that And may be a potential agent for preventing myocardial malfunction during sepsis.

  15. Andrographolide Activates Keap1/Nrf2/ARE/HO-1 Pathway in HT22 Cells and Suppresses Microglial Activation by Aβ42 through Nrf2-Related Inflammatory Response.

    Science.gov (United States)

    Seo, Ji Yeon; Pyo, Euisun; An, Jin-Pyo; Kim, Jinwoong; Sung, Sang Hyun; Oh, Won Keun

    2017-01-01

    Therapeutic approach of Alzheimer's disease (AD) has been gradually diversified. We examined the therapeutic and preventive potential of andrographolide, which is a lactone diterpenoid from Andrographis paniculata , and focused on the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated heme oxygenase (HO)-1-inducing effects and the inhibitory activity of amyloid beta (A β ) 42 -induced microglial activation related to Nrf2 and nuclear factor κ B (NF- κ B)-mediated inflammatory responses. Andrographolide induced the expression and translocation of Nrf2 from the cytoplasm to the nucleus, thereby activating antioxidant response element (ARE) gene transcription and HO-1 expression in murine hippocampal HT22 cells. Andrographolide eliminated intracellular A β 42 in BV-2 cells and decreased the production of interleukin (IL)-6, IL-1 β , prostaglandin (PG)E 2 , and nitric oxide (NO) because of artificial phagocytic A β 42 . It decreased pNF- κ B accumulation in the nucleus and the expression of inducible nitric oxide synthase (i-NOS) and cyclooxygenase II (COX-II) in the microglial BV-2 cell line. In summary, andrographolide activates Nrf2-mediated HO-1 expression and inhibits A β 42 -overexpressed microglial BV-2 cell activation. These results suggested that andrographolide might have the potential for further examination of the therapeutics of AD.

  16. Andrographolide Activates Keap1/Nrf2/ARE/HO-1 Pathway in HT22 Cells and Suppresses Microglial Activation by Aβ42 through Nrf2-Related Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Ji Yeon Seo

    2017-01-01

    Full Text Available Therapeutic approach of Alzheimer’s disease (AD has been gradually diversified. We examined the therapeutic and preventive potential of andrographolide, which is a lactone diterpenoid from Andrographis paniculata, and focused on the Kelch-like ECH-associated protein 1 (Keap1/nuclear factor (erythroid-derived 2-like 2 (Nrf2-mediated heme oxygenase (HO-1-inducing effects and the inhibitory activity of amyloid beta (Aβ42-induced microglial activation related to Nrf2 and nuclear factor κB (NF-κB-mediated inflammatory responses. Andrographolide induced the expression and translocation of Nrf2 from the cytoplasm to the nucleus, thereby activating antioxidant response element (ARE gene transcription and HO-1 expression in murine hippocampal HT22 cells. Andrographolide eliminated intracellular Aβ42 in BV-2 cells and decreased the production of interleukin (IL-6, IL-1β, prostaglandin (PGE2, and nitric oxide (NO because of artificial phagocytic Aβ42. It decreased pNF-κB accumulation in the nucleus and the expression of inducible nitric oxide synthase (i-NOS and cyclooxygenase II (COX-II in the microglial BV-2 cell line. In summary, andrographolide activates Nrf2-mediated HO-1 expression and inhibits Aβ42-overexpressed microglial BV-2 cell activation. These results suggested that andrographolide might have the potential for further examination of the therapeutics of AD.

  17. Andrographolide: A potent antituberculosis compound that targets Aminoglycoside 2'-N-acetyltransferase in Mycobacterium tuberculosis.

    Science.gov (United States)

    Prabu, Amudha; Hassan, Sameer; Prabuseenivasan; Shainaba, A S; Hanna, L E; Kumar, Vanaja

    2015-09-01

    Tuberculosis (TB) still remains a major challenging infectious disease. The increased rate of emergence of multi-drug resistant and extensively-drug resistant strains of the organism has further complicated the situation, resulting in an urgent need for new anti-TB drugs. Antimycobacterial activity of Andrographis paniculata was evaluated using a rapid LRP assay and the probable targets were identified by docking analysis. The methanolic extract of A. paniculata showed maximum antimycobacterial activity at 250μg/ml against all the tested strains of M. tuberculosis (H37Rv, MDR, and drug sensitive). Based on bioassay guided fractionation, andrographolide was identified as the potent molecule. With the docking analysis, both ICDH (Isocitrate Dehydrogenase) and AAC (Aminoglycoside 2'-N-acetyltransferase) were predicted as targets of andrographolide in M. tuberculosis. Molecular simulation revealed that, ICDH showed low binding affinity to andrographolide. However, for AAC, the andrographolide was observed to be well within the active site after 10ns of molecular simulation. This suggests that ACC (PDB ID 1M4I) could be the probable target for andrographolide. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Analyzing the Interaction of Andrographolide and Neoandrographolide, Diterpenoid Compounds From Andrographis Paniculata (Burm.F Nees, to Cyclooxygenase-2 Enzyme by Docking Simulation

    Directory of Open Access Journals (Sweden)

    Jutti Levita

    2009-09-01

    Full Text Available Cyclooxygenase (COX, an enzyme involved in the conversion of arachidonic acid to prostaglandins, exists in two isoforms, which are COX-1 and COX-2. Despite the similarities of COX-1 and COX-2, the two isoforms show subtle differences in amino acid composition at the active sites. Since COX-1 has isoleucine, a bulkier amino acid at position 523 than COX-2’s valine, it allows COX-2 to have a larger space in its active site. Andrographolide reduces COX-2 expression induced by PAF and fMLP in HL60/neutrophils. Neoandrographolide inhibits COX-2 expression at the translational level. The purpose of this study is to examine the binding modes of andrographolide and neoandrographolide against COX-1 and COX-2 in terms of hydrogen bonds and docking energy, to understand their antiinflammatory property. The docking study indicates that both andrographolide and neoandrographolide are able to be located in the COX-2’s binding pocket but not in the COX-1’s. It confirms that COX-1’s binding pocket is smaller than COX-2’s. Based on this study, both andrographolide and neoandrographolide show selective inhibitory property to COX-2. Their selectivity are due to their specific interaction with Arg 513 in the binding pocket of COX-2, which is also shown by SC-558, a COX-2 selective inhibitor.

  19. Andrographolide reorganise hyperglycaemia and distorted antioxidant profile in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Naik, Ramavat Ravindhar; Munipally, Praveen Kumar; Nagaraju, Turlapati

    2017-10-26

    Diabetes mellitus (DM) is a constant and illimitable metabolic disorder that can happen even at a young age due to the virtual absence of naturally acting insulin, which uptakes and accumulates glucose; thereby reduce the use of glucose. In the present study, we evaluated the neuroprotective efficacy of andrographolide on streptozotocin (STZ) induced diabetic Sprague dawley rats. Diabetes was induced by intraperitonial injection of STZ (45 mg/kg B.W) in Sprague dawley rats. Andrographolide (2.5 mg/kg B.W) was administered orally to diabetic rats and Glibenclamide (25mg/kg B.W) as control for 30 days to assess its effects on blood glucose, insulin, insulin resistance and antioxidant profiles such as superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione and lipid peroxidation in various regions of brain namely hypothalamus, cerebellum, hippocampus and brain cerebral cortex. Oral supplementation of andrographolide extensively diminished the blood glucose levels than diabetic control. There was noteworthy reduction in the CAT, SOD and GPx activities in the hippocampus, hypothalamus and cerebral cortex cerebellum of the DM rat brain. However, andrographolide supplementation drastically reverses the CAT, GPx and SOD back to normal levels. In conclusion, the results revealed that andrographolide shown beneficial potentiality against neuropathy in STZ induced diabetic rats. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Endoplasmic reticulum stress and IRE-1 signaling cause apoptosis in colon cancer cells in response to andrographolide treatment

    OpenAIRE

    Banerjee, Aditi; Ahmed, Hafiz; Yang, Peixin; Czinn, Steven J.; Blanchard, Thomas G.

    2016-01-01

    The plant metabolite andrographolide induces cell cycle arrest and apoptosis in cancer cells. The mechanism(s) by which andrographolide induces apoptosis however, have not been elucidated. The present study was performed to determine the molecular events that promote apoptosis in andrographolide treated cells using T84, HCT116 and COLO 205 colon cancer cell lines. Andrographolide was determined to limit colony formation and Ki67 expression, alter nuclear morphology, increase cytoplasmic histo...

  1. Combination therapy with andrographolide and D-penicillamine enhanced therapeutic advantage over monotherapy with D-penicillamine in attenuating fibrogenic response and cell death in the periportal zone of liver in rats during copper toxicosis

    International Nuclear Information System (INIS)

    Roy, Dijendra Nath; Sen, Gargi; Chowdhury, Kaustav Dutta; Biswas, Tuli

    2011-01-01

    Long treatment regime with D-penicillamine is needed before it can exert clinically meaningful benefits in the treatment of copper toxicosis. The consequence of long-term D-penicillamine treatment is associated with numerous side effects. The limitations of D-penicillamine monotherapy prompted us to search for more effective treatment strategies that could decrease the duration of D-penicillamine therapy. The present study was designed to evaluate the therapeutic potential of D-penicillamine in combination with another hepatoprotective drug, andrographolide in treatment of copper toxicosis in rats. D-penicillamine treatment led to the excretion of copper through urine. Addition of andrographolide to D-penicillamine regime appeared to increase protection of liver by increasing the biliary excretion of copper and reduction in cholestatic injury. The early removal of the causative agent copper during combination treatment was the most effective therapeutic intervention that contributed to the early rectification of fibrosis in liver. Combination treatment reduced Kupffer cells accumulation and TNFα production in liver of copper exposed rats. In particular, andrographolide mediated the anti-inflammatory effect by inhibiting the cytokine production. However, another possible mechanism of cytoprotection of andrographolide was decreasing mitochondrial production of superoxide anions that resulted in better restoration of mitochondrial dysfunction during combination therapy than monotherapy. Furthermore, ROS inhibition by combination regimen resulted in significant decline in activation of caspase cascade. Inhibition of caspases attenuated apoptosis of hepatocytes, induced by chronic copper exposure. In summary, this study suggested that added benefit of combination treatment over use of either agent alone in alleviating the hepatotoxicity and fibrosis associated with copper toxicosis.

  2. Experimental and Clinical Pharmacology of Andrographis paniculata and Its Major Bioactive Phytoconstituent Andrographolide

    Directory of Open Access Journals (Sweden)

    Thanasekaran Jayakumar

    2013-01-01

    Full Text Available Andrographis paniculata (Burm. F Nees, generally known as “king of bitters,” is an herbaceous plant in the family Acanthaceae. In China, India, Thailand, and Malaysia, this plant has been widely used for treating sore throat, flu, and upper respiratory tract infections. Andrographolide, a major bioactive chemical constituent of the plant, has shown anticancer potential in various investigations. Andrographolide and its derivatives have anti-inflammatory effects in experimental models asthma, stroke, and arthritis. In recent years, pharmaceutical chemists have synthesized numerous andrographolide derivatives, which exhibit essential pharmacological activities such as those that are anti-inflammatory, antibacterial, antitumor, antidiabetic, anti-HIV, antifeedant, and antiviral. However, what is noteworthy about this paper is summarizing the effects of andrographolide against cardiovascular disease, platelet activation, infertility, and NF-κB activation. Therefore, this paper is intended to provide evidence reported in relevant literature on qualitative research to assist scientists in isolating and characterizing bioactive compounds.

  3. Experimental and Clinical Pharmacology of Andrographis paniculata and Its Major Bioactive Phytoconstituent Andrographolide

    Science.gov (United States)

    Jayakumar, Thanasekaran; Hsieh, Cheng-Ying; Lee, Jie-Jen; Sheu, Joen-Rong

    2013-01-01

    Andrographis paniculata (Burm. F) Nees, generally known as “king of bitters,” is an herbaceous plant in the family Acanthaceae. In China, India, Thailand, and Malaysia, this plant has been widely used for treating sore throat, flu, and upper respiratory tract infections. Andrographolide, a major bioactive chemical constituent of the plant, has shown anticancer potential in various investigations. Andrographolide and its derivatives have anti-inflammatory effects in experimental models asthma, stroke, and arthritis. In recent years, pharmaceutical chemists have synthesized numerous andrographolide derivatives, which exhibit essential pharmacological activities such as those that are anti-inflammatory, antibacterial, antitumor, antidiabetic, anti-HIV, antifeedant, and antiviral. However, what is noteworthy about this paper is summarizing the effects of andrographolide against cardiovascular disease, platelet activation, infertility, and NF-κB activation. Therefore, this paper is intended to provide evidence reported in relevant literature on qualitative research to assist scientists in isolating and characterizing bioactive compounds. PMID:23634174

  4. An ex vivo evaluation of the efficacy of andrographolide in modulating differential expression of transcription factors and target genes in periodontal cells and its potential role in treating periodontal diseases.

    Science.gov (United States)

    Ambili R; Janam, Prasanthila; Saneesh Babu, P S; Prasad, Manu; Vinod, D; Anil Kumar, P R; Kumary, T V; Asha Nair, S; Radhakrishna Pillai, M

    2017-01-20

    Andrographolide is a herbal extract traditionally used in South Asian countries for treating inflammatory diseases. To evaluate the efficacy of andrographolide in management of periodontal disease which is a highly prevalent oral disease. Periodontal ligament fibroblasts (PDLF) were cultured from healthy and diseased periodontium using explant culture methods. The safe dose of AG was determined using MTT assay. LPS (lipopolysaccharide) of the most important periodontopathogen, P gingivalis was used to activate NF-κB and STAT3 in PDLF. The efficacy of AG in inhibiting NF-κB and STAT3 was analyzed using immunofluorescence. Down regulation of expression of target genes of these transcription factors related to inflammation and bone resorption were analyzed using real time PCR. AG up to the concentration of 25μM was found to be safe as determined by MTT assay. Statistically significant activation of NF-κB and STAT3 in cultured PDLF was observed in diseased group compared to healthy controls before and after LPS challenge. 5μM AG pretreatment significantly inhibited activation of NF-κB and STAT3 and down regulated expression of inflammatory and bone resorptive genes in cultured PDLF. The findings of the present study propose the adjunctive use of a novel herbal drug andrographolide as a promising host modulation agent for periodontal therapy by inhibiting NF-κB and STAT3 activation and inhibition of inflammation and bone resorption related genes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Effects of andrographolide on postoperative cognitive dysfunction and the association with NF-κB/MAPK pathway.

    Science.gov (United States)

    Ding, Yongbo; Shi, Cunxian; Chen, Linjing; Ma, Piliang; Li, Kezhong; Jin, Jin; Zhang, Qingfeng; Li, Aizhi

    2017-12-01

    The present study investigated the effects of andrographolide on postoperative cognitive dysfunction (POCD) in aged rats to gain insight of the underlying mechanism, which may provide theoretical basis for the clinical application of andrographolide to prevent POCD in older patients. Thirty aged male rats were randomly assigned to 3 groups: Control, model and andrographolide groups. The Morris water maze test was used to examine the spatial memory and learning ability of the rats postoperatively. The histological alterations of neuronal cells in the hippocampus were visualized by H&E staining. The serum levels of neuron-specific enolase (NSE), human soluble protein-100β (S-100β) and the inflammation factors of interluekin (IL)-1β, IL-6 and TNF-α involved in the nuclear factor κB (NF-κB)/mitogen-activated protein kinase (MAPK) signaling pathway were detected by ELISA. The NF-κB/MAPK signaling pathway-associated proteins in rat serum were detected by western blotting. Following andrographolide treatment, the rats significantly gained learning ability after surgery. Is it ameliorated hippocampal neuronal injury in rats following surgery. Andrographolide decreased NSE, S-100β, and the inflammation factors, IL-6, IL-1β and TNF-α in serum. Andrographolide reduced NF-κB/MAPK pathway-associated protein expression. Andrographolide ameliorated POCD in aged rats following surgery. The underlying mechanism may be associated with the downregulation the inflammatory factors and NF-κB/MAPK-associated protein expression.

  6. Andrographolide suppresses epithelial mesenchymal transition by ...

    Indian Academy of Sciences (India)

    Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) may contribute to the development of posterior capsular opacification (PCO), which leads to visual impairment. Andrographolide has been shown to have therapeutic potential against various cancers. However, its effect on human LECs is still unknown.

  7. Andrographolide induced acute kidney injury: analysis of 26 cases reported in Chinese Literature.

    Science.gov (United States)

    Zhang, Wu-Xing; Zhang, Zhi-Min; Zhang, Zhi-Qiang; Wang, Yang; Zhou, Wei

    2014-01-01

    Some Chinese herbs have been known for their kidney toxicity. Andrographolide, the primary component of a traditional medicinal herb, Andrographis paniculata, is widely used in China for the treatment of upper and lower respiratory tract infection, and dysentery etc. The aim of the study was to identify and summarize any case of kidney injury attributed to its use in the Chinese literature. A systemic analysis of the Chinese literature from January 1978 to August 2013 was conducted of case reports of andrographolide induced acute kidney injury (AKI). We identified 26 cases of andrographolide induced AKI (22 males and four females), with an average age of 31.3 years (range: 21 months to 47 years). 100-750 mg (58% 500 mg) of andrographolide was administered in 100-500 mL 5% glucose solution or normal saline by intravenous drip once a day. The adverse event appeared after one to six doses (19 [73.1%] patients got only one dose; cumulative dose 690 ± 670 mg) of andrographolide was given, or 0-96 h (median 1 h) after andrographolide was given. The symptoms included flank pain in 23 cases (88.5%), decreased urine volume in five cases (19.2%), and nausea or vomiting in six cases (23.1%). Laboratory tests showed maximum creatinine 352.8 ± 184.1 (158-889) μmol/L and blood urea nitrogen 12.1 ± 7.6 (4.0-40.6) mmol/L. Urine analysis showed proteinuria in 10 (38.5%) cases and occult blood in eight (30.8%) cases. Kidney biopsy was carried out in two cases and both revealed acute tubular necrosis. Management of this adverse event included withdrawal of the culprit drug, conservative therapy, and renal replacement therapy (six cases, 23.1%). All the patients recovered and were discharged with a normal or close to normal serum creatinine. Their average length of hospital stay was 12.1 ± 4.8 days. Acute kidney injury may occur shortly after intravenous infusion of andrographolide, with symptoms including flank pain, decreased urine output, and

  8. A biochemical study on the gastroprotective effect of andrographolide in rats induced with gastric ulcer.

    Science.gov (United States)

    Saranya, P; Geetha, A; Selvamathy, S M K Narmadha

    2011-09-01

    The major objective of the study was to evaluate the gastroprotective property of andrographolide, a chief component of the leaves of Andrographis paniculata in terms of the ulcer preventive effect in rats. An acute toxicity test was conducted with different concentrations of andrographolide to determine the LD(50) value. The dose responsive study was conducted in rats pretreated with andrographolide (1, 3 and 5 mg/kg) for a period of 30 days, prior to ulcer induction by administering ethanol, aspirin or by pyloric ligation. The ulcer protective efficacy was tested by determining the ulcer score, pH, pepsin, titrable acidity, gastric mucin, lipid peroxides, reduced glutathione, and enzymatic antioxidants superoxide dismutase, catalase and glutathione peroxidase in gastric tissue. The activities of H(+)-K(+) ATPase and myeloperoxidase were also determined in gastric tissue. The LD(50) value was found to be 48 mg/kg b. wt and the effective dose was found to be 3 mg/kg. We have observed a significant reduction in the ulcer score in rats pretreated with 3 mg of andrographolide/kg body weight. A favourable increase in the pH and decrease in titrable acidity were observed in the gastric fluid of rats pretreated with the test drug. The gastric tissue H(+)-K(+) ATPase and myeloperoxidase activities were elevated in ulcer-induced animals. The elevation in the enzyme activity was significantly minimized in the andrographolide received animals. The antioxidants and mucin levels were significantly maintained in the gastric tissue of drug-pretreated animals. Andrographolide did not produce any toxic effects in normal rats. This study reveals that the ulcer preventive efficacy of andrographolide may probably due to its antioxidant, cytoprotective and antiacid secretory effects.

  9. Cytotoxic activity and apoptosis-inducing potential of di-spiropyrrolidino and di-spiropyrrolizidino oxindole andrographolide derivatives.

    Directory of Open Access Journals (Sweden)

    Sumit Kumar Dey

    Full Text Available Anticancer role of andrographolide is well documented. To find novel potent derivatives with improved cytotoxicity than andrographolide on cancer cells, two series of di-spiropyrrolidino- and di-spiropyrrolizidino oxindole andrographolide derivatives prepared by cyclo-addition of azomethine ylide along with sarcosine or proline (viz. sarcosine and proline series respectively and substitution of different functional groups (-CH3, -OCH3 and halogens were examined for their cytotoxic effect on a panel of six human cancer cell lines (colorectal carcinoma HCT116 cells, pancreatic carcinoma MiaPaCa-2 cells, hepatocarcinoma HepG2 cells, cervical carcinoma HeLa cells, lung carcinoma A549 and melanoma A375 cells. Except halogen substituted derivatives of proline series (viz. CY2, CY14 and CY15 for Br, Cl and I substitution respectively, none of the other derivatives showed improved cytotoxicity than andrographolide in the cancer cell lines examined. Order of cytotoxicity of the potent compounds is CY2>CY14>CY15>andrographolide. Higher toxicity was observed in HCT116, MiaPaCa-2 and HepG2 cells. CY2, induced death of HCT116 (GI50 10.5, MiaPaCa-2 (GI50 11.2 and HepG2 (GI50 16.6 cells were associated with cell rounding, nuclear fragmentation and increased percentage of apoptotic cells, cell cycle arrest at G1 phase, ROS generation, and involvement of mitochondrial pathway. Upregulation of Bax, Bad, p53, caspases-3,-9 and cleaved PARP; downregulation of Bcl-2, cytosolic NF-κB p65, PI3K and p-Akt; translocation of P53/P21, NF-κB p65 were seen in CY2 treated HCT116 cells. Thus, three halogenated di-spiropyrrolizidino oxindole derivatives of andrographolide are found to be more cytotoxic than andrographolide in some cancer cells. The most potent derivative, CY2 induced death of the cancer cells involves ROS dependent mitochondrial pathway like andrographolide.

  10. Cytotoxic Activity and Apoptosis-Inducing Potential of Di-spiropyrrolidino and Di-spiropyrrolizidino Oxindole Andrographolide Derivatives

    Science.gov (United States)

    Hazra, Abhijit; Naskar, Subhendu; Nandy, Abhishek; Munda, Rudra Narayan; Das, Subhadip; Chatterjee, Nabanita; Mondal, Nirup Bikash; Banerjee, Sukdeb; Saha, Krishna Das

    2013-01-01

    Anticancer role of andrographolide is well documented. To find novel potent derivatives with improved cytotoxicity than andrographolide on cancer cells, two series of di-spiropyrrolidino- and di-spiropyrrolizidino oxindole andrographolide derivatives prepared by cyclo-addition of azomethine ylide along with sarcosine or proline (viz. sarcosine and proline series respectively) and substitution of different functional groups (-CH3, -OCH3 and halogens) were examined for their cytotoxic effect on a panel of six human cancer cell lines (colorectal carcinoma HCT116 cells, pancreatic carcinoma MiaPaCa-2 cells, hepatocarcinoma HepG2 cells, cervical carcinoma HeLa cells, lung carcinoma A549 and melanoma A375 cells). Except halogen substituted derivatives of proline series (viz. CY2, CY14 and CY15 for Br, Cl and I substitution respectively), none of the other derivatives showed improved cytotoxicity than andrographolide in the cancer cell lines examined. Order of cytotoxicity of the potent compounds is CY2>CY14>CY15>andrographolide. Higher toxicity was observed in HCT116, MiaPaCa-2 and HepG2 cells. CY2, induced death of HCT116 (GI50 10.5), MiaPaCa-2 (GI50 11.2) and HepG2 (GI50 16.6) cells were associated with cell rounding, nuclear fragmentation and increased percentage of apoptotic cells, cell cycle arrest at G1 phase, ROS generation, and involvement of mitochondrial pathway. Upregulation of Bax, Bad, p53, caspases-3,-9 and cleaved PARP; downregulation of Bcl-2, cytosolic NF-κB p65, PI3K and p-Akt; translocation of P53/P21, NF-κB p65 were seen in CY2 treated HCT116 cells. Thus, three halogenated di-spiropyrrolizidino oxindole derivatives of andrographolide are found to be more cytotoxic than andrographolide in some cancer cells. The most potent derivative, CY2 induced death of the cancer cells involves ROS dependent mitochondrial pathway like andrographolide. PMID:23472133

  11. Andrographolide attenuates LPS-stimulated up-regulation of C-C and C-X-C motif chemokines in rodent cortex and primary astrocytes.

    Science.gov (United States)

    Wong, Siew Ying; Tan, Michelle G K; Banks, William A; Wong, W S Fred; Wong, Peter T-H; Lai, Mitchell K P

    2016-02-09

    Andrographolide is the major bioactive compound isolated from Andrographis paniculata, a native South Asian herb used medicinally for its anti-inflammatory properties. In this study, we aimed to assess andrographolide's potential utility as an anti-neuroinflammatory therapeutic. The effects of andrographolide on lipopolysaccharide (LPS)-induced chemokine up-regulation both in mouse cortex and in cultured primary astrocytes were measured, including cytokine profiling, gene expression, and, in cultured astrocytes, activation of putative signaling regulators. Orally administered andrographolide significantly attenuated mouse cortical chemokine levels from the C-C and C-X-C subfamilies. Similarly, andrographolide abrogated a range of LPS-induced chemokines as well as tumor necrosis factor (TNF)-α in astrocytes. In astrocytes, the inhibitory actions of andrographolide on chemokine and TNF-α up-regulation appeared to be mediated by nuclear factor-κB (NF-κB) or c-Jun N-terminal kinase (JNK) activation. These results suggest that andrographolide may be useful as a therapeutic for neuroinflammatory diseases, especially those characterized by chemokine dysregulation.

  12. Beneficial effects of an Andrographis paniculata extract and andrographolide on cognitive functions in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Thakur, Ajit Kumar; Rai, Geeta; Chatterjee, Shyam Sunder; Kumar, Vikas

    2016-09-01

    Context Andrographolide containing Andrographis paniculata (Burm. F.) Wall. Ex Nees (Acanthaceae) extracts is often used for treatments of diabetes and other inflammatory disorders commonly accompanying cognitive and other psychiatric disorders. Objective To compare the efficacies of a standardised A. paniculata extract (AP) and pure andrographolide on cognitive functions, oxidative stress and cholinergic function in diabetic rats. Materials and methods Streptozotocin-induced diabetic Charles Foster albino rats treated orally with a hydro-methanolic A. paniculata leaf extract (50, 100 and 200 mg/kg/day), or with pure andrographolide (15, 30 and 60 mg/kg/day) for 10 consecutive days, were subjected to Morris water maze test. After the test, acetylcholinesterase, superoxide dismutase (SOD), and catalase (CAT) activities and lipid peroxidation (LPO) in brain tissues were assessed. Results Acetylcholinesterase activity in pre-frontal cortex and hippocampus of diabetic rats was 2.1 and 2.6 times higher compared to nondiabetic rats. LPO was 1.6 times higher and decreased SOD (56.3%) and CAT (44.9%) activities in pre-frontal cortex of diabetic rats compared to nondiabetic rats. AP or andrographolide treatments dose dependently attenuated cognitive deficits, reduced acetylcholinesterase activity, oxidative stress, improved diabetic hyperglycemia and insulin deficiency. All observed effects of AP were quantitatively almost equal to those expected from its analytically quantified andrographolide content. Discussion and conclusion Reported observations are the very first ones suggesting beneficial effects of andrographolide against diabetes associated cognitive deficits, increased acetylcholinesterase activity and deteriorated antioxidative status. Efforts to exploit A. paniculata extracts enriched in andrographolide as preventive measures against such disorders can be warranted.

  13. Andrographolide ameliorates OVA-induced lung injury in mice by suppressing ROS-mediated NF-κB signaling and NLRP3 inflammasome activation.

    Science.gov (United States)

    Peng, Shuang; Gao, Jian; Liu, Wen; Jiang, Chunhong; Yang, Xiaoling; Sun, Yang; Guo, Wenjie; Xu, Qiang

    2016-12-06

    In this study, we attempted to explore the effect and possible mechanism of Andrographolide on OVA-induced asthma. OVA challenge induced significant airway inflammatory cell recruitment and lung histological alterations, which were ameliorated by Andrographolide. The protein levels of cytokines in bron-choalveolar fluid (BALF) and serum were reduced by Andrographolide administration as well as the mRNA levels in lung tissue. Mechanically, Andrographolide markedly hampered the activation of nuclear factor-κB (NF-κB) and NLRP3 inflammasome both in vivo and vitro thus decreased levels of TNF-α and IL-1β. Finally, we confirmed that ROS scavenging was responsible for Andrographolide's inactivation of NF-κB and NLRP3 inflammasome signaling. Our study here revealed the effect and possible mechanism of Andrographolide on asthma, which may represent a new therapeutic approach for treating this disease.

  14. Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells

    OpenAIRE

    Lim, Sung-Chul; Jeon, Ho Jong; Kee, Keun Hong; Lee, Mi Ja; Hong, Ran; Han, Song Iy

    2017-01-01

    Andrographolide, a natural compound isolated from Andrographis paniculata, has been reported to possess antitumor activity. In the present study, the effect of andrographolide in human gastric cancer (GC) cells was investigated. Andrographolide induced cell death with apoptotic and non-apoptotic features. At a low concentration, andrographolide potentiated apoptosis and reduction of clonogenicity triggered by recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL)....

  15. Andrographolide Ameliorates Beta-Naphthoflavone-Induced CYP1A Enzyme Activity and Lipid Peroxidation in Hamsters with Acute Opisthorchiasis.

    Science.gov (United States)

    Udomsuk, Latiporn; Chatuphonprasert, Waranya; Jarukamjorn, Kanokwan; Sithithaworn, Paiboon

    2016-01-01

    Opisthorchis viverrini (OV) infection generates oxidative stress/free radicals and is considered as a primary cause ofcholangiocarcinoma since it primarily triggers sclerosing cholangitis. In this study, the impacts of andrographolide on acute opisthorchaisis in β-naphthoflavone (BNF)-exposed hamsters were investigated. Ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-demethylase (MROD) activities and Thiobarbituric acid reaction substances (TBARS) assay of andrographolide in acute opisthorchiasis in the BNF-exposed hamsters were assessed. The results showed that andrographolide ameliorated the hepatic CYP1A1 and CYP1A2 activities by decreases of the specific enzymatic reactions of EROD and MROD, respectively, in the BNF-exposed hamsters. Moreover, andrographolide lowered the formation of malondialdehyde in the livers and brains of the hamsters. These observations revealed the promising chemo-protective and antioxidant activities of andrographolide via suppression of the specific EROD and MROD reactions and lipid peroxidation against acute opisthorchiasis in the BNF-exposed hamsters.

  16. Hypoglycemic and beta cell protective effects of andrographolide analogue for diabetes treatment

    Directory of Open Access Journals (Sweden)

    Larrick James W

    2009-07-01

    Full Text Available Abstract Background While all anti-diabetic agents can decrease blood glucose level directly or indirectly, few are able to protect and preserve both pancreatic beta cell mass and their insulin-secreting functions. Thus, there is an urgent need to find an agent or combination of agents that can lower blood glucose and preserve pancreatic beta cells at the same time. Herein, we report a dual-functional andrographolide-lipoic acid conjugate (AL-1. The anti-diabetic and beta cell protective activities of this novel andrographolide-lipoic acid conjugate were investigated. Methods In alloxan-treated mice (a model of type 1 diabetes, drugs were administered orally once daily for 6 days post-alloxan treatment. Fasting blood glucose and serum insulin were determined. Pathologic and immunohistochemical analysis of pancreatic islets were performed. Translocation of glucose transporter subtype 4 in soleus muscle was detected by western blot. In RIN-m cells in vitro, the effect of AL-1 on H2O2-induced damage and reactive oxidative species production stimulated by high glucose and glibenclamide were measured. Inhibition of nuclear factor kappa B (NF-κB activation induced by IL-1β and IFN-γ was investigated. Results In alloxan-induced diabetic mouse model, AL-1 lowered blood glucose, increased insulin and prevented loss of beta cells and their dysfunction, stimulated glucose transport protein subtype 4 (GLUT4 membrane translocation in soleus muscles. Pretreatment of RIN-m cells with AL-1 prevented H2O2-induced cellular damage, quenched glucose and glibenclamide-stimulated reactive oxidative species production, and inhibited cytokine-stimulated NF-κB activation. Conclusion We have demonstrated that AL-1 had both hypoglycemic and beta cell protective effects which translated into antioxidant and NF-κB inhibitory activity. AL-1 is a potential new anti-diabetic agent.

  17. Antioxidative and cytoprotective effects of andrographolide against CCl4-induced hepatotoxicity in HepG2 cells.

    Science.gov (United States)

    Krithika, R; Verma, R J; Shrivastav, P S

    2013-05-01

    This article describes antioxidative and cytoprotective property of andrographolide, a major active component of the plant Andrographis paniculata (A. paniculata). High yields (2.7%) of andrographolide was isolated from the aerial parts of this plant via silica column chromatography. The purity of the compound was determined by high-performance thin-layer chromatography (HPTLC) and reversed phase high-performance liquid chromatography (HPLC) analysis. The structure was elucidated using techniques such as UV-visible spectrophotometry, elemental analysis, Fourier transform infrared (FT-IR), (1)H nuclear magnetic resonance ((1)H NMR), (13)C nuclear magnetic resonance ((13)C NMR) and mass spectral analysis and the data obtained were comparable with reported results. It was observed that andrographolide exhibited significant antioxidative property (IC50 = 3.2 µg/ml) by its ability to scavenge a stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) as compared to known antioxidants like ascorbic acid, butylated hydroxy toluene (BHT) and the plant extract. The cytoprotective role of andrographolide against carbon tetrachloride (CCl4) toxicity in human hepatoma HepG2 cell line was assessed using trypan blue exclusion test, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, by estimation of various leakage enzymes and by measuring the glutathione levels. The recovery obtained for andrographolide treatment in the presence of CCl4 was two-fold compared to A. paniculata extract for all other related biochemical parameters investigated. The results of the study indicate that andrographolide is a potent inhibitor of CCl4-mediated lipid peroxidation.

  18. Recrystallization of andrographolide using the supercritical fluid antisolvent process

    Science.gov (United States)

    Chen, Kexun; Zhang, Xingyuan; Pan, Jian; Yin, Wenhong

    2005-01-01

    The supercritical antisolvent (SAS) process was used to modify the solid-state properties of andrographolide. Ethanol was employed as solvents for the pharmaceutical compound and carbon dioxide was used as an antisolvent. The effect of process parameters on the precipitate crystals such as pressure, organic solution flow rate, and concentration of the andrographolide solution were investigated. The crystal habit is column-like and its size changed from longer and thicker to shorter and thinner when pressure increased and when the solution flow rate increased, the size of the crystal decreased. The X-ray diffraction (XRD) patterns revealed variations of crystallinity and crystal orientation depending on pressure, where the degree of crystallinity increased when pressure increased. The differential scanning calorimetry patterns also showed the same results as XRD.

  19. Acute Toxicity and the Effect of Andrographolide on Porphyromonas gingivalis-Induced Hyperlipidemia in Rats

    Science.gov (United States)

    Al-Bayaty, Fouad; Al-Obaidi, Mazen M. Jamil; Abdulla, Mahmood A.

    2013-01-01

    The aim of the current study is to evaluate the effect of andrographolide on hyperlipidemia induced by Porphyromonas gingivalis in rats. Thirty male Sprague Dawley (SD) rats were divided into five groups as follows: group 1 (vehicle) and four experimental groups (groups 2, 3, 4, and 5) were challenged orally with P. gingivalis ATCC 33277 (0.2 mL of 1.5 ×1012 bacterial cells/mL in 2% carboxymethylcellulose (CMC) with phosphate-buffered saline (PBS)) five times a week for one month to induce hyperlipidemia. Then, group 3 received a standard oral treatment with simvastatin 100 mg/kg, and groups 4 and 5 received oral treatment with andrographolide 20 mg/kg and 10 mg/kg, respectively, for another month. The results showed that total cholesterol (TC), low-density lipoprotein (LDL-C), and triglycerides (TG) were reduced significantly in groups treated with andrographolide. The malondialdehyde (MDA) level was low in treated groups, while antioxidant enzymes, superoxide dismutase (SOD), and glutathione peroxidase (GPx) were significantly increased in these groups (P andrographolide reduce the accumulation of lipid droplets in hepatic tissue cells. An acute toxicity test did not show any toxicological symptoms in rats. PMID:23844365

  20. Synergistic Effect of 14-Alpha-Lipoyl Andrographolide and Various Antibiotics on the Formation of Biofilms and Production of Exopolysaccharide and Pyocyanin by Pseudomonas aeruginosa▿

    OpenAIRE

    Zeng, Xiangping; Liu, Xiangyang; Bian, Jiang; Pei, Gang; Dai, Huanqin; Polyak, Steven W.; Song, Fuhang; Ma, Li; Wang, Yuqiang; Zhang, Lixin

    2011-01-01

    Pseudomonas aeruginosa produces a biofilm that provides the bacteria with an effective barrier against antibiotics. Here, we investigated the synergy of various antibiotics with 14-alpha-lipoyl andrographolide (AL-1), focusing upon synthesis of the biofilm. AL-1 also inhibited the production of the exopolysaccharide and pyocyanin components. We propose that AL-1 may potentially serve as a cotherapy to combat P. aeruginosa.

  1. Synergistic effect of 14-alpha-lipoyl andrographolide and various antibiotics on the formation of biofilms and production of exopolysaccharide and pyocyanin by Pseudomonas aeruginosa.

    Science.gov (United States)

    Zeng, Xiangping; Liu, Xiangyang; Bian, Jiang; Pei, Gang; Dai, Huanqin; Polyak, Steven W; Song, Fuhang; Ma, Li; Wang, Yuqiang; Zhang, Lixin

    2011-06-01

    Pseudomonas aeruginosa produces a biofilm that provides the bacteria with an effective barrier against antibiotics. Here, we investigated the synergy of various antibiotics with 14-alpha-lipoyl andrographolide (AL-1), focusing upon synthesis of the biofilm. AL-1 also inhibited the production of the exopolysaccharide and pyocyanin components. We propose that AL-1 may potentially serve as a cotherapy to combat P. aeruginosa.

  2. Acute Toxicity and the Effect of Andrographolide on Porphyromonas gingivalis-Induced Hyperlipidemia in Rats

    Directory of Open Access Journals (Sweden)

    Rami Al Batran

    2013-01-01

    Full Text Available The aim of the current study is to evaluate the effect of andrographolide on hyperlipidemia induced by Porphyromonas gingivalis in rats. Thirty male Sprague Dawley (SD rats were divided into five groups as follows: group 1 (vehicle and four experimental groups (groups 2, 3, 4, and 5 were challenged orally with P. gingivalis ATCC 33277 (0.2 mL of bacterial cells/mL in 2% carboxymethylcellulose (CMC with phosphate-buffered saline (PBS five times a week for one month to induce hyperlipidemia. Then, group 3 received a standard oral treatment with simvastatin 100 mg/kg, and groups 4 and 5 received oral treatment with andrographolide 20 mg/kg and 10 mg/kg, respectively, for another month. The results showed that total cholesterol (TC, low-density lipoprotein (LDL-C, and triglycerides (TG were reduced significantly in groups treated with andrographolide. The malondialdehyde (MDA level was low in treated groups, while antioxidant enzymes, superoxide dismutase (SOD, and glutathione peroxidase (GPx were significantly increased in these groups (. Liver tissues of the groups treated with andrographolide reduce the accumulation of lipid droplets in hepatic tissue cells. An acute toxicity test did not show any toxicological symptoms in rats.

  3. Andrographolide down-regulates hypoxia-inducible factor-1{alpha} in human non-small cell lung cancer A549 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hui-Hsuan [School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Tsai, Chia-Wen [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Chou, Fen-Pi [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Wang, Chau-Jong [Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Hsuan, Shu-Wen [Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, No.89, Wen Hwa 1st St., Rende Shiang, Tainan County 717, Taiwan (China); Wang, Cheng-Kun [E-Chyun Dermatology Clinic, No.70, Sec. 3, Jhonghua E. Rd., East District, Tainan, Taiwan (China); Chen, Jing-Hsien [Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, No.89, Wen Hwa 1st St., Rende Shiang, Tainan County 717, Taiwan (China)

    2011-02-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to inhibit non-small cell lung cancer (NSCLC) A549 cell migration and invasion via down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Here we demonstrated that Andro inhibited the expression of hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) in A549 cells. HIF-1{alpha} plays an important role in tumor growth, angiogenesis and lymph node metastasis of NSCLC. The Andro-induced decrease of cellular protein level of HIF-1{alpha} was correlated with a rapid ubiquitin-dependent degradation of HIF-1{alpha}, and was accompanied by increased expressions of hydroxyl-HIF-1{alpha} and prolyl hydroxylase (PHD2), and a later decrease of vascular endothelial growth factor (VEGF) upon the treatment of Andro. The Andro-inhibited VEGF expression appeared to be a consequence of HIF-1{alpha} inactivation, because its DNA binding activity was suppressed by Andro. Molecular data showed that all these effects of Andro might be mediated via TGF{beta}1/PHD2/HIF-1{alpha} pathway, as demonstrated by the transfection of TGF{beta}1 overexpression vector and PHD2 siRNA, and the usage of a pharmacological MG132 inhibitor. Furthermore, we elucidated the involvement of Andro in HIF-1{alpha} transduced VEGF expression in A549 cells and other NSCLC cell lines. In conclusion, these results highlighted the potential effects of Andro, which may be developed as a chemotherapeutic or an anti-angiogenesis agent for NSCLC in the future.

  4. Andrographolide down-regulates hypoxia-inducible factor-1α in human non-small cell lung cancer A549 cells

    International Nuclear Information System (INIS)

    Lin, Hui-Hsuan; Tsai, Chia-Wen; Chou, Fen-Pi; Wang, Chau-Jong; Hsuan, Shu-Wen; Wang, Cheng-Kun; Chen, Jing-Hsien

    2011-01-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to inhibit non-small cell lung cancer (NSCLC) A549 cell migration and invasion via down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Here we demonstrated that Andro inhibited the expression of hypoxia-inducible factor-1α (HIF-1α) in A549 cells. HIF-1α plays an important role in tumor growth, angiogenesis and lymph node metastasis of NSCLC. The Andro-induced decrease of cellular protein level of HIF-1α was correlated with a rapid ubiquitin-dependent degradation of HIF-1α, and was accompanied by increased expressions of hydroxyl-HIF-1α and prolyl hydroxylase (PHD2), and a later decrease of vascular endothelial growth factor (VEGF) upon the treatment of Andro. The Andro-inhibited VEGF expression appeared to be a consequence of HIF-1α inactivation, because its DNA binding activity was suppressed by Andro. Molecular data showed that all these effects of Andro might be mediated via TGFβ1/PHD2/HIF-1α pathway, as demonstrated by the transfection of TGFβ1 overexpression vector and PHD2 siRNA, and the usage of a pharmacological MG132 inhibitor. Furthermore, we elucidated the involvement of Andro in HIF-1α transduced VEGF expression in A549 cells and other NSCLC cell lines. In conclusion, these results highlighted the potential effects of Andro, which may be developed as a chemotherapeutic or an anti-angiogenesis agent for NSCLC in the future.

  5. Andrographolide prevents high-fat diet-induced obesity in C57BL/6 mice by suppressing the sterol regulatory element-binding protein pathway.

    Science.gov (United States)

    Ding, Lili; Li, Jinmei; Song, Baoliang; Xiao, Xu; Huang, Wendong; Zhang, Binfeng; Tang, Xiaowen; Qi, Meng; Yang, Qiming; Yang, Qiaoling; Yang, Li; Wang, Zhengtao

    2014-11-01

    Sterol regulatory element-binding proteins (SREBPs) are major transcription factors regulating the expression of genes involved in biosynthesis of cholesterol, fatty acids, and triglycerides. We investigated the effect of the specific SREBP suppressor andrographolide, a natural compound isolated from Andrographis paniculata, on the regulation of SREBP signaling by use of Western blot, reporter gene assay, and quantitative real-time polymerase chain reaction analysis. In addition, the antiobesity effects of andrographolide were evaluated in C57BL/6 mice with high-fat diet (HFD)-induced obesity. Our results showed that andrographolide downregulated the expressions of SREBPs target genes and decreased cellular lipid accumulation in vitro. Further, andrographolide (100 mg/kg per day) attenuated HFD-induced body weight gain and fat accumulation in liver or adipose tissues, and improved serum lipid levels and insulin or glucose sensitivity in HFD-induced obese mice. Andrographolide effectively suppressed the respiratory quotient, energy expenditure, and oxygen consumption, which may have contributed to the decreased body-weight gain of the obese mice fed with a HFD. Consistently, andrographolide regulated SREBP target genes and metabolism-associated genes in liver or brown adipose tissue, which may have directly contributed to the lower lipid levels and enhanced insulin sensitivity. Taken together, our results indicated that andrographolide ameliorated lipid metabolism and improved glucose use in mice with HFD-induced obesity. Andrographolide has potential as a leading compound in the prevention or treatment of obesity and insulin resistance. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  6. STUDIES OF SHADING LEVELS AND NUTRITION SOURCES ON GROWTH, YIELD

    Directory of Open Access Journals (Sweden)

    Edi Purwanto

    2011-10-01

    Full Text Available Growth and biochemical content of medicinal crops are influenced by agroecosystems characteristics . The objective of this research was to determine the optimum shading level and type of fertilizer as sources of nutrition on the growth, yield, and andrographolide content of sambiloto. The experiment used Split Plot Design with basic design of Randomized Complete Block Design arranged with two treatment factors, with three replications. The first factor as the main plot was shading levels, namely without shading, 25% shading, 50% shading, and 75% shading. The second factor as the sub plot was sources of nutrition reprented by type of fertilizer, namely NPK fertilizer, cow stable fertilizer, and compost fertilizer. The result of research indicated that shading level and the kind of nutrition influenced some growth and yield variables such as number of leaves, number of branches, plant height, plant dry weight and simplisia weight, and andrographolide content. Interaction of shading level at 25% and straw compost fertilizer performed best in growth characteristics, while the highest andrographolide content resulted from the treatment combination of 50% shading level and straw compost fertilizer.

  7. Development of andrographolide loaded PLGA microspheres: optimization, characterization and in vitro-in vivo correlation.

    Science.gov (United States)

    Jiang, Yunxia; Wang, Fang; Xu, Hui; Liu, Hui; Meng, Qingguo; Liu, Wanhui

    2014-11-20

    The purpose of this study was to develop a sustained-release drug delivery system based on the injectable PLGA microspheres loaded with andrographolide. The andrographolide loaded PLGA microspheres were prepared by emulsion solvent evaporation method with optimization of formulation using response surface methodology (RSM). Physicochemical characterization, in vitro release behavior and in vivo pharmacokinetics of the optimized formulation were then evaluated. The percent absorbed in vivo was determined by deconvolution using the Loo-Riegelman method, and then the in vitro-in vivo correlation (IVIVC) was established. Results showed that the microspheres were spherical with a smooth surface. Average particle size, entrapment efficiency and drug loading were found to be 53.18±2.11 μm, 75.79±3.02% and 47.06±2.18%, respectively. In vitro release study showed a low initial burst release followed by a prolonged release up to 9 days and the release kinetics followed the Korsmeyer-Peppas model. After a single intramuscular injection, the microspheres maintained relatively high plasma concentration of andrographolide over one week. A good linear relationship was observed between the in vitro and in vivo release behavior (R(2)=0.9951). These results suggest the PLGA microspheres could be developed as a potential delivery system for andrographolide with high drug loading capacity and sustained drug release. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Validation for The Quantification of Andrographolide Isolated from Andrographis paniculata Nees Plant Using HPLC

    OpenAIRE

    Yandi Syukri; Agung Endro Nugroho; Ronny Martien; Endang Lukitaningsih

    2015-01-01

    The aim of study was to develop quantitative analysis of isolated andrographolide from Andrographis paniculata and different solvent for prelimenary studies to preperation Self Nano Emulsifying Drug Delivery System (SNEDDS) using HPLC. The separation was acquired on Sunfire C18 column with an isocratic mixture of methanol and water at a ratio of 6:4, v/v as a mobile phase. The method to determine the content of isolated andrographolide showed an adequate precision, with a RSD smaller than 1%....

  9. Andrographolide promotes vincristine-induced SK-NEP-1 tumor cell death via PI3K-AKT-p53 signaling pathway

    Directory of Open Access Journals (Sweden)

    Zhang M

    2016-09-01

    Full Text Available Mingsheng Zhang, Enda Xue, Wei Shao Department of Pediatric Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong Province, People’s Republic of China Background: Nephroblastoma (Wilms’ tumor [WT] is the most common malignant renal cancer in children. Although the outcome of WT has significantly improved as a result of the combination of surgery, chemotherapy, and radiotherapy; in some cases WT results in severe complications. Thus, novel strategies that would decrease treatment burden are required. The aim of the current study was to investigate the synergistic antitumor effect of andrographolide (AND in combination with vincristine (VCR on WT cells.Methods: Cell Counting Kit-8 assay was used to investigate the synergistic antiproliferation effect of AND and/or VCR on SK-NEP-1 cells in vitro. Meanwhile, SK-NEP-1 xenografts were used to detect the antitumor effect in vivo. Apoptosis and autophagy were then detected by Annexin V, monodansylcadaverine staining. Finally, the underlying signaling transduction was determined with Western blotting.Results: The combination of AND with VCR significantly suppressed SK-NEP-1 cell proliferation in vitro and inhibited xenograft tumor growth in vivo, compared with AND or VCR treatment alone. In addition, the synergistic antitumor effect of AND on the cells was due to an increased apoptosis, not autophagy. Moreover, PI3K-AKT-p53 signaling pathway was involved in the process of combination treatment, which was confirmed when a selective AKT activator was applied.Conclusion: The combination of AND with VCR has a strong synergistic antitumor effect on WT via PI3K-AKT-p53 signaling pathway, thereby representing a potential treatment for WT in the near future. Keywords: andrographolide, vincristine, p53, drug combination

  10. Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Edwin, Edward-Sam; Vasantha-Srinivasan, Prabhakaran; Senthil-Nathan, Sengottayan; Thanigaivel, Annamalai; Ponsankar, Athirstam; Pradeepa, Venkatraman; Selin-Rani, Selvaraj; Kalaivani, Kandaswamy; Hunter, Wayne B; Abdel-Megeed, Ahmed; Duraipandiyan, Veeramuthu; Al-Dhabi, Naif Abdullah

    2016-11-01

    The current study investigated the toxic effect of the leaf extract compound andrographolide from Andrographis paniculata (Burm.f) against the dengue vector Ae. aegypti. GC-MS analysis revealed that andrographolide was recognized as the major chemical constituent with the prominent peak area compared with other compounds. All isolated toxic compounds were purified and confirmed through RP-HPLC against chemical standards. The larvicidal assays established at 25ppm of bioactive compound against the treated instars of Ae. Aegypti showed prominent mortality compared to other treated concentrations. The percent mortality of larvae was directly proportional to concentration. The lethal concentration (LC50) was observed at 12ppm treatment concentration. The bioactive andrographolide considerably reduced the detoxifying enzyme regulations of α- and β- carboxylesterases. In contrast, the levels of GST and CYP450 significantly increase in a dose dependent manner. The andrographolide also showed strong oviposition deterrence effects at the sub-lethal dose of 12ppm. Similarly, the mean number of eggs were also significantly reduced in a dose dependent manner. At the concentration of 12ppm the effective percentage of repellency was greater than 90% with a protection time of 15-210min, compared with control. The histopathology study displayed that larvae treated with bioactive andrographolide had cytopathic effects in the midgut epithelium compared with the control. The present study established that bioactive andrographolide served as a potential useful for dengue vector management. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Synthesis and in vitro cytotoxicity of novel C-12 substituted-14-deoxy-andrographolide derivatives as potent anti-cancer agents.

    Science.gov (United States)

    Kandanur, Sai Giridhar Sarma; Golakoti, Nageswara Rao; Nanduri, Srinivas

    2015-12-15

    Andrographolide, the major labdane diterpenoid from Andrographis paniculata has been reported to be cytotoxic against various cancer cells in vitro. Our research efforts led to the discovery of novel 12-phenyl thio and 12-aryl amino-14-deoxy-andrographolide derivatives (III q and III r) with potent cytotoxic activity, 12-benzyl amino-14-deoxy-andrographolide analogues showing broad range of cytotoxic activity against most of the cell lines and 12-alkyl amino-14-deoxy-andrographolide derivatives being selective to few cell lines (PC-3 and HOP-92), when the selected analogues were evaluated against 60 human cancer cell line panel at National Cancer Institute (N.C.I.), USA. The SAR (structure activity relationship) studies demonstrated potent activity for the compounds containing the following functionalities at C-12: substituted aryl amino/phenyl thio>benzylamine>alkyl amine. The significant cytotoxic activity observed for compounds III q and III r suggest that these could serve as templates for further optimization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Improving the Efficacy of Conventional Therapy by Adding Andrographolide Sulfonate in the Treatment of Severe Hand, Foot, and Mouth Disease: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Xiuhui Li

    2013-01-01

    Full Text Available Background. Herb-derived compound andrographolide sulfonate (called Xiyanping injection recommended control measure for severe hand, foot, and mouth disease (HFMD by the Ministry of Health (China during the 2010 epidemic. However, there is a lack of good quality evidence directly comparing the efficacy of Andrographolide Sulfonate combination therapy with conventional therapy. Methods. 230 patients were randomly assigned to 7–10 days of Andrographolide Sulfonate 5–10 mg/Kg/day and conventional therapy, or conventional therapy alone. Results. The major complications occurred less often after Andrographolide Sulfonate (2.6% versus 12.1%; risk difference [RD], 0.94; 95% CI, 0.28–1.61; P=0.006. Median fever clearance times were 96 hours (CI, 80 to 126 for conventional therapy recipients and 48 hours (CI, 36 to 54 for Andrographolide Sulfonate combination-treated patients (χ2=16.57, P<0.001. The two groups did not differ in terms of HFMD-cause mortality (P=1.00 and duration of hospitalization (P=0.70. There was one death in conventional therapy group. No important adverse event was found in Andrographolide Sulfonate combination therapy group. Conclusions. The addition of Andrographolide Sulfonate to conventional therapy reduced the occurrence of major complications, fever clearance time, and the healing time of typical skin or oral mucosa lesions in children with severe HFMD.

  13. Protective effects of Andrographis paniculata extract and pure andrographolide against chronic stress-triggered pathologies in rats.

    Science.gov (United States)

    Thakur, Ajit Kumar; Soni, Upendra Kumar; Rai, Geeta; Chatterjee, Shyam Sunder; Kumar, Vikas

    2014-11-01

    This study was designed to experimentally verify the possibility that Andrographis paniculata could be another medicinal herb potentially useful for prevention of diverse spectrums of pathologies commonly associated with chronic unavoidable environmental stress, and whether andrographolide could as well be its quantitatively major bioactive secondary metabolite. Preventive effects of 21 daily oral 50, 100 and 200 mg/kg doses of a therapeutically used extract of the plant (AP) and 30 and 60 mg/kg/day of pure andrographolide were compared in rats subjected to 1-h daily unavoidable foot-shocks. A pharmaceutically well-standardized Withania somnifera (WS) root extract was used as a reference herbal anti-stress agent in all experiments. Effects of the treatments on stress-induced alterations in body weight, gastric ulcer, adrenal and spleen weights, and depressive state and sexual behavior in male rats were quantified. Other parameters quantified were plasma cortisol levels, and expressions of the cytokines TNF-α, IL-10 and IL-1β in blood and brain. All observed stress-induced pathological changes were less pronounced or completely prevented by both AP and pure andrographolide. Even the lowest tested doses of AP (50 mg/kg/day) or of andrographolide (30 mg/kg/day) suppressed almost maximally the blood IL-1β and IL-10 as well as brain TNF-α and IL-10 expressions induced by chronic stress. Qualitatively, the observed activity profiles of both of them were similar to those of WS dose tested. These results reveal that both AP and andrographolide are pharmacologically polyvalent anti-stress agents, and that biological processes regulating corticosterone and cytokine homeostasis are involved in their modes of actions.

  14. Andrographolide derivative CX-10 ameliorates dextran sulphate sodium-induced ulcerative colitis in mice: Involvement of NF-κB and MAPK signalling pathways.

    Science.gov (United States)

    Gao, Zhenfang; Yu, Cuicui; Liang, Haiyue; Wang, Xuekai; Liu, Yue; Li, Xin; Ji, Kai; Xu, Hui; Yang, Mingyan; Liu, Ke; Qi, Dong; Fan, Huaying

    2018-04-01

    Ulcerative colitis (UC) is a type of inflammatory bowel disease (IBD), which is characterized by chronic intestinal inflammation and leads to an increased risk of colon cancer. There are many studies using phyto-ingredients as a novel approach for the treatment of UC. The plant Andrographis paniculata (Acanthaceae) is a safe and edible vegetable that has been extensively adopted in traditional Chinese medicine for conditions involving inflammation, and the most active phytochemical agent is andrographolide. The andrographolide derivative 3,14,19-triacetyl andrographolide, which is known as CX-10 (a hemi chemical synthesized from andrographolide), has been found to possess strong anti-inflammatory properties. In the present study, we investigated the therapeutic potential of CX-10 as a complementary and alternative medicine against dextran sulphate sodium (DSS)-induced ulcerative colitis in mice. Our results revealed that CX-10 treatment reduced body weight loss, reduced colon length shortening, decreased colon weight, decreased the spleen index, decreased the disease activity index (DAI), and alleviated histological damage in the colon. The expression of TNF-α and IL-6 and the activity of myeloperoxidase (MPO) in colonic tissues were significantly reduced in CX-10 supplemented mice. It is noteworthy that the efficacy of 200 mg/kg of CX-10 was equivalent to that of the mesalazine positive control (200 mg/kg). Furthermore, western blot analysis revealed that CX-10 treatment reduced the expression of nuclear factor-κB (NF-κB) p65 and p-IκBα, increased the expression of IκBα and down-regulated the phosphorylation of p38 mitogen-activated protein kinase (MAPK), ERK and JNK. In conclusion, CX-10 treatment attenuated DSS-induced UC in mice through inhibiting the activation of NF-κB and MAPK pathways and reducing TNF-α and IL-6 levels, suggesting that CX-10 is a potential therapeutic drug for UC. Copyright © 2018. Published by Elsevier B.V.

  15. Activity of andrographolide against chikungunya virus infection

    OpenAIRE

    Phitchayapak Wintachai; Parveen Kaur; Regina Ching Hua Lee; Suwipa Ramphan; Atichat Kuadkitkan; Nitwara Wikan; Sukathida Ubol; Sittiruk Roytrakul; Justin Jang Hann Chu; Duncan R. Smith

    2015-01-01

    Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus that has recently engendered large epidemics around the world. There is no specific antiviral for treatment of patients infected with CHIKV, and development of compounds with significant anti-CHIKV activity that can be further developed to a practical therapy is urgently required. Andrographolide is derived from Andrographis paniculata, a herb traditionally used to treat a number of conditions including infections. This stud...

  16. Synthesis and biological evaluation of new C-12(α/β)-(N-) sulfamoyl-phenylamino-14-deoxy-andrographolide derivatives as potent anti-cancer agents.

    Science.gov (United States)

    Kandanur, Sai Giridhar Sarma; Nanduri, Srinivas; Golakoti, Nageswara Rao

    2017-07-01

    Andrographolide, the major diterpenoidal constituent of Andrographis paniculata (Acanthaceae) and its derivatives have been reported to possess plethora of biological properties including potent anti-cancer activity. In this work, synthesis and in-vitro anti-cancer evaluation of new C-12-substituted aryl amino 14-deoxy-andrographolide derivatives (III a-f) are reported. The substitutions include various sulfonamide moieties -SO 2 -NH-R 1 . The new derivatives (III a-e) exhibited improved cytotoxicity (GI 50 , TGI and LC 50 ) compared to andrographolide (I) and the corresponding 3,14,19-O-triacetyl andrographolide (II) when evaluated against 60 NCI cell line panel. Compounds III c and III e are found to be non-toxic to normal human dermal fibroblasts (NHDF) cells compared to reference drug THZ-1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effect of andrographolide on phosphatases activity and cytotoxicity against Spodoptera litura

    Science.gov (United States)

    Development of biorational insecticides from plant extracts, holds promise for many farmers in developing countries as an affordable alternative to commercially available pesticides. The chemical andrographolide was isolated using ethanol extraction of the leaves of Andrographis paniculata, an annua...

  18. Strong synergistic induction of CYP1A1 expression by andrographolide plus typical CYP1A inducers in mouse hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Jaruchotikamol, Atika [Department of Toxicology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Jarukamjorn, Kanokwan [Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Sirisangtrakul, Wanna [Department of Toxicology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Sakuma, Tsutomu; Kawasaki, Yuki [Department of Toxicology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Nemoto, Nobuo [Department of Toxicology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan)

    2007-10-15

    The effects of andrographolide, the major diterpenoid constituent of Andrographis paniculata, on the expression of cytochrome P450 superfamily 1 members, including CYP1A1, CYP1A2, and CYP1B1, as well as on aryl hydrocarbon receptor (AhR) expression in primary cultures of mouse hepatocytes were investigated in comparison with the effects of typical CYP1A inducers, including benz[a]anthracene, {beta}-naphthoflavone, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Andrographolide significantly induced the expression of CYP1A1 and CYP1A2 mRNAs in a concentration-dependent manner, as did the typical CYP1A inducers, but did not induce that of CYP1B1 or AhR. Interestingly, andrographolide plus the typical CYP1A inducers synergistically induced CYP1A1 expression, and the synergism was blocked by an AhR antagonist, resveratrol. The CYP1A1 enzyme activity showed a similar pattern of induction. This is the first report that shows that andrographolide has a potency to induce CYP1A1 enzyme and indicates that andrographolide could be a very useful compound for investigating the regulatory mechanism of the CYP1A1 induction pathway. In addition, our findings suggest preparing advice for rational administration of A. paniculata, according to its ability to induce CYP1A1 expression.

  19. Strong synergistic induction of CYP1A1 expression by andrographolide plus typical CYP1A inducers in mouse hepatocytes

    International Nuclear Information System (INIS)

    Jaruchotikamol, Atika; Jarukamjorn, Kanokwan; Sirisangtrakul, Wanna; Sakuma, Tsutomu; Kawasaki, Yuki; Nemoto, Nobuo

    2007-01-01

    The effects of andrographolide, the major diterpenoid constituent of Andrographis paniculata, on the expression of cytochrome P450 superfamily 1 members, including CYP1A1, CYP1A2, and CYP1B1, as well as on aryl hydrocarbon receptor (AhR) expression in primary cultures of mouse hepatocytes were investigated in comparison with the effects of typical CYP1A inducers, including benz[a]anthracene, β-naphthoflavone, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Andrographolide significantly induced the expression of CYP1A1 and CYP1A2 mRNAs in a concentration-dependent manner, as did the typical CYP1A inducers, but did not induce that of CYP1B1 or AhR. Interestingly, andrographolide plus the typical CYP1A inducers synergistically induced CYP1A1 expression, and the synergism was blocked by an AhR antagonist, resveratrol. The CYP1A1 enzyme activity showed a similar pattern of induction. This is the first report that shows that andrographolide has a potency to induce CYP1A1 enzyme and indicates that andrographolide could be a very useful compound for investigating the regulatory mechanism of the CYP1A1 induction pathway. In addition, our findings suggest preparing advice for rational administration of A. paniculata, according to its ability to induce CYP1A1 expression

  20. Andrographolide: A Novel Antimalarial Diterpene Lactone Compound from Andrographis paniculata and Its Interaction with Curcumin and Artesunate

    Directory of Open Access Journals (Sweden)

    Kirti Mishra

    2011-01-01

    Full Text Available Andrographolide (AND, the diterpene lactone compound, was purified by HPLC from the methanolic fraction of the plant Andrographis paniculata. The compound was found to have potent antiplasmodial activity when tested in isolation and in combination with curcumin and artesunate against the erythrocytic stages of Plasmodium falciparum in vitro and Plasmodium berghei ANKA in vivo. IC50s for artesunate (AS, andrographolide (AND, and curcumin (CUR were found to be 0.05, 9.1 and 17.4 μM, respectively. The compound (AND was found synergistic with curcumin (CUR and addictively interactive with artesunate (AS. In vivo, andrographolide-curcumin exhibited better antimalarial activity, not only by reducing parasitemia (29%, compared to the control (81%, but also by extending the life span by 2-3 folds. Being nontoxic to the in vivo system this agent can be used as template molecule for designing new derivatives with improved antimalarial properties.

  1. Cytotoxicity and cell cycle arrest induced by andrographolide lead to programmed cell death of MDA-MB-231 breast cancer cell line.

    Science.gov (United States)

    Banerjee, Malabika; Chattopadhyay, Subrata; Choudhuri, Tathagata; Bera, Rammohan; Kumar, Sanjay; Chakraborty, Biswajit; Mukherjee, Samir Kumar

    2016-04-16

    Breast cancer is considered as an increasing major life-threatening concern among the malignancies encountered globally in females. Traditional therapy is far from satisfactory due to drug resistance and various side effects, thus a search for complementary/alternative medicines from natural sources with lesser side effects is being emphasized. Andrographis paniculata, an oriental, traditional medicinal herb commonly available in Asian countries, has a long history of treating a variety of diseases, such as respiratory infection, fever, bacterial dysentery, diarrhea, inflammation etc. Extracts of this plant showed a wide spectrum of therapeutic effects, such as anti-bacterial, anti-malarial, anti-viral and anti-carcinogenic properties. Andrographolide, a diterpenoid lactone, is the major active component of this plant. This study reports on andrographolide induced apoptosis and its possible mechanism in highly proliferative, invasive breast cancer cells, MDA-MB-231 lacking a functional p53 and estrogen receptor (ER). Furthermore, the pharmacokinetic properties of andrographolide have also been studied in mice following intravenous and oral administration. Andrographolide showed a time- and concentration- dependent inhibitory effect on MDA-MB-231 breast cancer cell proliferation, but the treatment did not affect normal breast epithelial cells, MCF-10A (>80 %). The number of cells in S as well as G2/M phase was increased after 36 h of treatment. Elevated reactive oxygen species (ROS) production with concomitant decrease in Mitochondrial Membrane Potential (MMP) and externalization of phosphatidyl serine were observed. Flow cytometry with Annexin V revealed that the population of apoptotic cells increased with prolonged exposure to andrographolide. Activation of caspase-3 and caspase-9 were also noted. Bax and Apaf-1 expression were notably increased with decreased Bcl-2 and Bcl-xL expression in andrographolide-treated cells. Pharmacokinetic study with andrographolide

  2. Polysaccharide Encrusted Multilayered Nano-Colloidal System of Andrographolide for Improved Hepatoprotection.

    Science.gov (United States)

    Mishra, Nidhi; Yadav, Kuldeep Singh; Rai, Vineet Kumar; Yadav, Narayan Prasad

    2017-02-01

    Andrographolide (AP), a phytoconstituent of Andrographis paniculata is reported as a potent hepatoprotective agent. However, utility of this molecule is restricted due to its low aqueous solubility, gastric instability and hence low bioavailability. It was aimed to formulate and characterize AP-loaded, natural biopolymer stabilized, multilayered nano-hydrocolloid delivery system. Nanoemulsion (NE) was formulated using layer-by-layer (LbL) technology via electrostatic deposition of chitosan over alginate encrusted o/w NE by ultra-sonication. Improved transparency and stability of NE were observed with increasing sonication time. Best stability was obtained after 20 min sonication and particle size of the multilayered NE was measured in the range of 90.8-167.8 nm. Transmission electron microscopy confirmed the progressive layering of nanosized NE. Higher magnitude of zeta potential (i.e., 22.9 to 31.01 mV) confirmed higher stability and coating of alginate layer over NE surface for the period of 3 months. NE showed strategic release pattern when assessed in vitro in various simulated biological fluids of GIT in timed pattern. Multilayered NE showed significant modulation in liver function test (ALT, ALP, AST, TBIL, DBIL, and liver glycogen) and serum cytokines (TNF-α, IL-6, IL-10, and IL-β) when assessed in vivo in galactosamine-lipopolysaccharide intoxicated mice. In conclusion, the andrographolide engrained multi-layered NE enhanced the solubility, stability and henceforth assured the increased availability in simulated biological fluids. The in vivo study exhibited the significantly improved hepatoprotection by andrographolide when delivered in stable multi-layered NE carrier systems.

  3. In vivo inhibitory activity of andrographolide derivative ADN-9 against liver cancer and its mechanisms involved in inhibition of tumor angiogenesis.

    Science.gov (United States)

    Yang, Wei; Zhao, Jin; Wang, Yake; Xu, Haiwei; Wu, Zhenwei; Hu, Yangyang; Jiang, Kunkun; Shen, Pengpeng; Ma, Cuiyun; Guan, Zhenzhen; Zhang, Yan; Ma, Jiahui; Shang, Ning; Yan, Guangming; Wang, Zhenji; Dai, Guifu

    2017-07-15

    It is well known that liver cancer is a highly aggressive malignancy with poor prognosis. Andrographolide (AD), a major bioactive component of Andrographis paniculata (Burm. F.), is a potential anti-cancer pharmacophore and the synthesis of AD derivatives with better cytotoxicity to cancer cells has attracted considerable attentions. In the present study, we evaluated the in vivo inhibitory effects of ADN-9, a 15-benzylidene substituted derivative of AD, on the growth and metastasis of murine hepatoma H22 using an orthotopic xenograft model and a subcutaneous xenograft model, and we further studied the anti-angiogenic action and the related mechanisms of ADN-9 in vivo and in vitro. Importantly, ADN-9 remarkably suppressed the growth and metastasis of both orthotopic and subcutaneous xenograft tumors, and the serum AFP level in orthotopic hepatoma-bearing mice treated with 100mg/kg ADN-9 (ig.) was decreased to the normal level. We also found that ADN-9 showed stronger abilities than AD in shrinking tumors, suppressing the invasion and metastasis of H22 cells, decreasing the MVD and promoting tumor cell apoptosis in subcutaneous xenograft of mice. Additionally, ADN-9 exhibited stronger inhibitory activity than AD against the migration and VEGF-induced capillary-like tube formation in HUVECs, which was further proved to be associated with attenuating VEGF/VEGFR2/AKT signaling pathway. The present research provides the first evidence that a 15-substituted AD derivative is more promising than the parent compound in therapeutic treatment of liver cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Liquid and solid self-microemulsifying drug delivery systems for improving the oral bioavailability of andrographolide from a crude extract of Andrographis paniculata.

    Science.gov (United States)

    Sermkaew, Namfa; Ketjinda, Wichan; Boonme, Prapaporn; Phadoongsombut, Narubodee; Wiwattanapatapee, Ruedeekorn

    2013-11-20

    The purpose of this study was to develop self-microemulsifying formulations of an Andrographis paniculata extract in liquid and pellet forms for an improved oral delivery of andrographolide. The optimized liquid self-microemulsifying drug delivery system (SMEDDS) was composed of A. paniculata extract (11.1%), Capryol 90 (40%), Cremophor RH 40 (40%) and Labrasol (8.9%). This liquid SMEDDS was further adsorbed onto colloidal silicon dioxide and microcrystalline cellulose, and converted to SMEDDS pellets by the extrusion/spheronization technique. The microemulsion droplet sizes of the liquid and pellet formulations after dilution with water were in the range of 23.4 and 30.3 nm. The in vitro release of andrographolide from the liquid SMEDDS and SMEDDS pellets was 97.64% (SD 1.97%) and 97.74% (SD 3.36%) within 15 min, respectively while the release from the initial extract was only 10%. The oral absorption of andrographolide was determined in rabbits. The C(max) value of andrographolide from the A. paniculata extract liquid SMEDDS and SMEDDS pellet formulations (equivalent to 17.5mg/kg of andrographolide) was 6-fold and 5-fold greater than the value from the initial extract in aqueous suspension (equivalent to 35 mg/kg of andrographolide), respectively. In addition, the AUC(0-12h) was increased 15-fold by the liquid SMEDDS and 13-fold by the SMEDDS pellets compared to the extract in aqueous suspension, respectively. The results clearly indicated that the liquid and solid SMEDDS could be effectively used to improve the dissolution and oral bioavailability that would also enable a reduction in the dose of the poorly water soluble A. paniculata extract. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Antitussive arabinogalactan of Andrographis paniculata demonstrates synergistic effect with andrographolide.

    Science.gov (United States)

    Nosáľová, Gabriela; Majee, Sujay Kumar; Ghosh, Kanika; Raja, Washim; Chatterjee, Udipta Ranjan; Jureček, Ludovít; Ray, Bimalendu

    2014-08-01

    Traditional Indian medicines have been used in humans for thousands of years. While the link to a particular indication has been established in man, the active principle of the formulations often remains unknown. In this study, we aim to investigate the structural features and antitussive activity of fractions from Andrographis paniculata leaves. In vivo investigations of water extract (WE), and both ethanol-soluble (WES) and precipitated (WEP) fractions from WE on the citric-acid induced cough efforts and airways smooth muscle reactivity in guinea pigs were performed. Chemical, chromatographic and spectroscopic analysis revealed the existence of a highly branched pectic arabinogalactan (109kDa) in WEP and andrographolide in WES. WEP showed significant antitussive activity while the potencies of WE and WES are even higher. Neither WE nor WES significantly alter specific airway smooth muscle reactivity. Remarkably, the antitussive activity of arabinogalactan could be increased by synergistic action with andrographolide. Finally, traditional aqueous extraction method provides an arabinogalactan from A. paniculata, which stimulate biological response but without addiction. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Andrographolide Suppresses Proliferation of Nasopharyngeal Carcinoma Cells via Attenuating NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Tao Peng

    2015-01-01

    Full Text Available Andrographolide (Andro has been reported to have anticancer activity in multiple types of cancer due to its capacity to inactivate NF-κB pathway. Previous studies showed the therapeutic potential of targeting NF-κB pathway in nasopharyngeal carcinoma (NPC. However, the anticancer activity of Andro in NPC has not been reported. In this study, we defined the anticancer effects of Andro in NPC and elucidated its potential mechanisms of action. Our results showed that Andro significantly inhibited the proliferation and invasion of NPC cells (P<0.05, resp.. These anticancer activities were associated with cell apoptosis, cell death and induction of cell cycle arrest, and the downregulation of NF-κB target genes. This work provides evidence that NF-κB pathway is a potential therapeutic target and may also be indispensable in the Andro-mediated anticancer activities in nasopharyngeal carcinoma.

  7. Andrographolide Inhibits Mechanical and Thermal Hyperalgesia in a Rat Model of HIV-Induced Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Zhihua Yi

    2018-06-01

    Full Text Available Aim: In this study, we investigated whether andrographolide (Andro can alleviate neuropathic pain induced by HIV gp120 plus ddC treatment and the mechanism of its action.Methods: The paw withdrawal threshold and the paw withdrawal latency were observed to assess pain behaviors in all groups of the rats, including control group, control combined with Andro treatment group, sham group, gp120 combined with ddC treatment group, gp120 plus ddC combined with A438079 treatment group, and gp120 plus ddC combined with Andro treatment by intrathecally injecting at a dose of 25 μg/20 μl group. The protein expression levels of the P2X7 receptor, tumor necrosis factor-α-receptor (TNFα-R, interleukin-1β (IL-1β, IL-10, phospho-extracellular regulated protein kinases (ERK (p-ERK in the L4–L6 dorsal root ganglia (DRG were measured by western blotting. Real-time quantitative polymerase chain reaction was used to test the mRNA expression level of the P2X7 receptor. Double-labeling immunofluorescence was used to identify the co-localization of the P2X7 receptor with glial fibrillary acidic protein (GFAP in DRG. Molecular docking was performed to identify whether the Andro interacted perfectly with the rat P2X7 (rP2X7 receptor.Results: Andro attenuated the mechanical and thermal hyperalgesia in gp120+ddC-treated rats and down-regulated the P2X7 receptor mRNA and protein expression in the L4–L6 DRGs of gp120+ddC-treated rats. Additionally, Andro simultaneously decreased the expression of TNFα-R and IL-1β protein, increased the expression of IL-10 protein in L4–L6 DRGs, and inhibited the activation of ERK signaling pathways. Moreover, Andro decreased the co-expression of GFAP and the P2X7 receptor in the SGCs of L4–L6 DRG on 14th day after surgery.Conclusion: Andro decreased the hyperalgesia induced by gp120 plus ddC.

  8. The retardation of myometrial infiltration, reduction of uterine contractility, and alleviation of generalized hyperalgesia in mice with induced adenomyosis by levo-tetrahydropalmatine (l-THP) and andrographolide.

    Science.gov (United States)

    Mao, Xiaoyan; Wang, Yuedong; Carter, Andrew V; Zhen, Xuechu; Guo, Sun-Wei

    2011-10-01

    Adenomyosis is a tough disease to manage nonsurgically. Levo-tetrahydropalmatine (l-THP), a known analgesic, and andrographolide, a nuclear factor kappa B (NF-κB) inhibitor, are both active ingredients extracted from Chinese medicinal herbs. We sought to determine whether treatment of l-THP, andrographolide, and valproic acid (VPA) would suppress the myometrial infiltration, improve pain behavior, and reduce uterine contractility in a mice model of adenomyosis. Adenomyosis was induced in 55 female ICR mice neonatally dosed with tamoxifen, while another 8 (group C) were dosed with solvent only. Starting from 4 weeks after birth, hotplate test was administrated to all mice every 4 weeks. At the 16th week, all mice with induced adenomyosis were randomly divided into 6 groups, each receiving different treatment for 3 weeks: low- or high-dose l-THP, andrographolide, low-dose l-THP and andrographolide jointly, VPA, and untreated. Group C received no treatment. After treatment, the hotplate test was administered and all mice were killed. The depth of myometrial infiltration of ectopic endometrium and uterine contractility were measured and compared across groups. We found that induction of adenomyosis resulted in progressive generalized hyperalgesia, along with elevated amplitude and irregularity of uterine contractions. Treatment with either l-THP, andrographolide, VPA, or l-THP and andrographolide jointly suppressed myometrial infiltration, improved generalized hyperalgesia, and reduced the amplitude and irregularity of uterine contractions. These results suggest that increased uterine contractility, in the form of increased contractile amplitude and irregularity, may contribute to dysmenorrhea in women with adenomyosis. More importantly, l-THP, andrographolide, and VPA all seem to be promising compounds for treating adenomyosis.

  9. Pseudomonas aeruginosa inhibits the growth of Cryptococcus species.

    Science.gov (United States)

    Rella, Antonella; Yang, Mo Wei; Gruber, Jordon; Montagna, Maria Teresa; Luberto, Chiara; Zhang, Yong-Mei; Del Poeta, Maurizio

    2012-06-01

    Pseudomonas aeruginosa is a ubiquitous and opportunistic bacterium that inhibits the growth of different microorganisms, including Gram-positive bacteria and fungi such as Candida spp. and Aspergillus fumigatus. In this study, we investigated the interaction between P. aeruginosa and Cryptococcus spp. We found that P. aeruginosa PA14 and, to a lesser extent, PAO1 significantly inhibited the growth of Cryptococcus spp. The inhibition of growth was observed on solid medium by the visualization of a zone of inhibition of yeast growth and in liquid culture by viable cell counting. Interestingly, such inhibition was only observed when P. aeruginosa and Cryptococcus were co-cultured. Minimal inhibition was observed when cell-cell contact was prevented using a separation membrane, suggesting that cell contact is required for inhibition. Using mutant strains of Pseudomonas quinoline signaling, we showed that P. aeruginosa inhibited the growth of Cryptococcus spp. by producing antifungal molecules pyocyanin, a redox-active phenazine, and 2-heptyl-3,4-dihydroxyquinoline (PQS), an extracellular quorum-sensing signal. Because both P. aeruginosa and Cryptococcus neoformans are commonly found in lung infections of immunocompromised patients, this study may have important implication for the interaction of these microbes in both an ecological and a clinical point of view.

  10. Andrographolide: A New Plant-Derived Antineoplastic Entity on Horizon

    Directory of Open Access Journals (Sweden)

    Astha Varma

    2011-01-01

    Full Text Available Plant-derived natural products occupy an important position in the area of cancer chemotherapy. Molecules such as vincristine, vinblastine, paclitaxel, camptothecin derivatives, epipodophyllotoxin, and so forth, are invaluable contributions of nature to modern medicine. However, the quest to find out novel therapeutic compounds for cancer treatment and management is a never-ending venture; and diverse plant species are persistently being studied for identification of prospective anticancer agents. In this regard, Andrographis paniculata Nees, a well-known plant of Indian and Chinese traditional system of medicines, has drawn attention of researchers in recent times. Andrographolide, the principal bioactive chemical constituent of the plant has shown credible anticancer potential in various investigations around the globe. In vitro studies demonstrate the capability of the compound of inducing cell-cycle arrest and apoptosis in a variety of cancer cells at different concentrations. Andrographolide also shows potent immunomodulatory and anti-angiogenic activities in tumorous tissues. Synthetic analogues of the compound have also been created and analyzed, which have also shown similar activities. Although it is too early to predict its future in cancer chemotherapy, the prologue strongly recommends further research on this molecule to assess its potential as a prospective anticancer agent.

  11. Andrographolide Analogue Induces Apoptosis and Autophagy Mediated Cell Death in U937 Cells by Inhibition of PI3K/Akt/mTOR Pathway.

    Directory of Open Access Journals (Sweden)

    Deepak Kumar

    Full Text Available Current chemotherapeutic agents based on apoptosis induction are lacking in desired efficacy. Therefore, there is continuous effort to bring about new dimension in control and gradual eradication of cancer by means of ever evolving therapeutic strategies. Various forms of PCD are being increasingly implicated in anti-cancer therapy and the complex interplay among them is vital for the ultimate fate of proliferating cells. We elaborated and illustrated the underlying mechanism of the most potent Andrographolide analogue (AG-4 mediated action that involved the induction of dual modes of cell death-apoptosis and autophagy in human leukemic U937 cells.AG-4 induced cytotoxicity was associated with redox imbalance and apoptosis which involved mitochondrial depolarisation, altered apoptotic protein expressions, activation of the caspase cascade leading to cell cycle arrest. Incubation with caspase inhibitor Z-VAD-fmk or Bax siRNA decreased cytotoxic efficacy of AG-4 emphasising critical roles of caspase and Bax. In addition, AG-4 induced autophagy as evident from LC3-II accumulation, increased Atg protein expressions and autophagosome formation. Pre-treatment with 3-MA or Atg 5 siRNA suppressed the cytotoxic effect of AG-4 implying the pro-death role of autophagy. Furthermore, incubation with Z-VAD-fmk or Bax siRNA subdued AG-4 induced autophagy and pre-treatment with 3-MA or Atg 5 siRNA curbed AG-4 induced apoptosis-implying that apoptosis and autophagy acted as partners in the context of AG-4 mediated action. AG-4 also inhibited PI3K/Akt/mTOR pathway. Inhibition of mTOR or Akt augmented AG-4 induced apoptosis and autophagy signifying its crucial role in its mechanism of action.Thus, these findings prove the dual ability of AG-4 to induce apoptosis and autophagy which provide a new perspective to it as a potential molecule targeting PCD for future cancer therapeutics.

  12. Andrographolide sodium bisulphite-induced inactivation of urease: inhibitory potency, kinetics and mechanism.

    Science.gov (United States)

    Mo, Zhi-Zhun; Wang, Xiu-Fen; Zhang, Xie; Su, Ji-Yan; Chen, Hai-Ming; Liu, Yu-Hong; Zhang, Zhen-Biao; Xie, Jian-Hui; Su, Zi-Ren

    2015-07-16

    The inhibitory effect of andrographolide sodium bisulphite (ASB) on jack bean urease (JBU) and Helicobacter pylori urease (HPU) was performed to elucidate the inhibitory potency, kinetics and mechanism of inhibition in 20 mM phosphate buffer, pH 7.0, 2 mM EDTA, 25 °C. The ammonia formations, indicator of urease activity, were examined using modified spectrophotometric Berthelot (phenol-hypochlorite) method. The inhibitory effect of ASB was characterized with IC50 values. Lineweaver-Burk and Dixon plots for JBU inhibition of ASB was constructed from the kinetic data. SH-blocking reagents and competitive active site Ni2+ binding inhibitors were employed for mechanism study. Molecular docking technique was used to provide some information on binding conformations as well as confirm the inhibition mode. The IC50 of ASB against JBU and HPU was 3.28±0.13 mM and 3.17±0.34 mM, respectively. The inhibition proved to be competitive and concentration- dependent in a slow-binding progress. The rapid formation of initial ASB-JBU complex with an inhibition constant of Ki=2.86×10(-3) mM was followed by a slow isomerization into the final complex with an overall inhibition constant of Ki*=1.33×10(-4) mM. The protective experiment proved that the urease active site is involved in the binding of ASB. Thiol reagents (L-cysteine and dithiothreithol) strongly protect the enzyme from the loss of enzymatic activity, while boric acid and fluoride show weaker protection, indicating that the active-site sulfhydryl group of JBU was potentially involved in the blocking process. Moreover, inhibition of ASB proved to be reversible since ASB-inactivated JBU could be reactivated by dithiothreitol application. Molecular docking assay suggested that ASB made contacts with the important sulfhydryl group Cys-592 residue and restricted the mobility of the active-site flap. ASB was a competitive inhibitor targeting thiol groups of urease in a slow-binding manner both reversibly and concentration

  13. In situ imaging and proteome profiling indicate andrographolide is a highly promiscuous compound

    Science.gov (United States)

    Li, Lin; Wijaya, Hadhi; Samanta, Sanjay; Lam, Yulin; Yao, Shao Q.

    2015-06-01

    Natural products represent an enormous source of pharmacologically useful compounds, and are often used as the starting point in modern drug discovery. Many biologically interesting natural products are however not being pursued as potential drug candidates, partly due to a lack of well-defined mechanism-of-action. Traditional in vitro methods for target identification of natural products based on affinity protein enrichment from crude cellular lysates cannot faithfully recapitulate protein-drug interactions in living cells. Reported herein are dual-purpose probes inspired by the natural product andrographolide, capable of both reaction-based, real-time bioimaging and in situ proteome profiling/target identification in live mammalian cells. Our results confirm that andrographolide is a highly promiscuous compound and engaged in covalent interactions with numerous previously unknown cellular targets in cell type-specific manner. We caution its potential therapeutic effects should be further investigated in detail.

  14. Antidiabetic and antihiperlipidemic effect of Andrographis paniculata (Burm. f.) Nees and andrographolide in high-fructose-fat-fed rats

    Science.gov (United States)

    Nugroho, Agung Endro; Andrie, Mohamad; Warditiani, Ni Kadek; Siswanto, Eka; Pramono, Suwidjiyo; Lukitaningsih, Endang

    2012-01-01

    Objectives: Andrographis paniculata (Burm. f.) Nees originates from India and grows widely in many areas in Southeast Asian countries. Andrographis paniculata (Burm. f.) Nees has shown an antidiabetic effect in type 1 DM rats. The present study investigates the purified extract of the plant and its active compound andrographolide for antidiabetic and antihyperlipidemic effects in high-fructose-fat-fed rats, a model of type 2 DM rats. Materials and Methods: Hyperglycemia in rats was induced by high-fructose-fat diet containing 36% fructose, 15% lard, and 5% egg yolks in 0.36 g/200 gb.wt. 55 days. The rats were treated with the extract or test compound on the 50th day. Antidiabetic activity was measured by estimating mainly the pre– and postprandial blood glucose levels and other parameters such as cholesterol, LDL, triglyceride, and body weight. Results: The purified extract and andrographolide significantly (PAndrographis paniculata (Burm. f.) Nees or its active compound andrographolide showed hypoglycemic and hypolipidemic effects in high-fat-fructose-fed rat. PMID:22701250

  15. Andrographolide Ameliorates Liver Fibrosis in Mice: Involvement of TLR4/NF-κB and TGF-β1/Smad2 Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Liteng Lin

    2018-01-01

    Full Text Available Liver fibrosis is characterized by activated hepatic stellate cells (HSC and extracellular matrix accumulation. Blocking the activation of HSC and the inflammation response are two major effective therapeutic strategies for liver fibrosis. In addition to the long history of using andrographolide (Andro for inflammatory disorders, we aimed at elucidating the pharmacological effects and potential mechanism of Andro on liver fibrosis. In this study, liver fibrosis was induced by carbon tetrachloride (CCl4 and the mice were intraperitoneally injected with Andro for 6 weeks. HSC cell line (LX-2 and primary HSC were also treated with Andro in vitro. Treatment of CCl4-induced mice with Andro decreased the levels of alanine aminotransferase (ALT and aspartate aminotransferase (AST, Sirius red staining as well as the expression of α smooth muscle actin (α-SMA and transforming growth factor- (TGF- β1. Furthermore, the expression of Toll-like receptor (TLR4 and NF-κB p50 was also inhibited by Andro. Additionally, in vitro data confirmed that Andro treatment not only attenuated the expression of profibrotic and proinflammatory factors but also blocked the TGF-β1/Smad2 and TLR4/NF-κB p50 pathways. These results demonstrate that Andro prevents liver inflammation and fibrosis, which is in correlation with the inhibition of the TGF-β1/Smad2 and TLR4/NF-κB p50 pathways, highlighting Andro as a potential therapeutic strategy for liver fibrosis.

  16. Inhalable Andrographolide-β-cyclodextrin Inclusion Complexes for Treatment of Staphylococcus aureus Pneumonia by Regulating Immune Responses.

    Science.gov (United States)

    Zhang, Tongtong; Zhu, Lifei; Li, Miao; Hu, Yuzhen; Zhang, Erfeng; Jiang, Qingcheng; Han, Guang; Jin, Yiguang

    2017-05-01

    Bacterial pneumonia is a serious disease with high mortality if no appropriate and immediate therapy is available. Andrographolide (AG) is an anti-inflammatory agent extracted from a traditional Chinese herb andrographis paniculata. Oral AG tablets and pills are clinically applied for treatment of upper respiratory tract infections. However, the low solubility and bioavailability of AG lead to high doses and long-term therapy. Here we developed an andrographolide-β-cyclodextrin inclusion complex (AG-β-CD) for inhalation therapy of Staphylococcus aureus pneumonia. AG-β-CD was identified with X-ray diffraction and FT-IR. Surprisingly, both AG-β-CD and AG showed little in vitro anti-S. aureus activity. However, pulmonary delivery of AG, AG-β-CD, or penicillin had significant anti-S. aureus pneumonia effects. Leukocytes, neutrophils, white blood cells, total proteins, TNF-α, IL-6, NF-κB p65 expression, and bacterial colonies in the bronchoalveolar lavage fluids were detected. Pulmonary delivery of AG and AG-β-CD led to bacterial inhibition and inflammation alleviation by regulating immune responses, while penicillin only killed bacteria without significant immune regulation. Moreover, the antipneumonia activity of AG-β-CD was much higher than that of AG, probably resulting from locally accelerated AG dissolution due to β-CD inclusion. The aerodynamic diameter of AG-β-CD powders was 2.03 μm, suitable for pulmonary delivery. Inhalable AG-β-CD is a promising antibacterial and anti-inflammatory medicine for the treatment of S. aureus pneumonia by regulating immune responses, and the effect is enhanced by β-CD inclusion. AG and its formulations might be potent weapons against the resistant bacterial pneumonia due to their specific mechanism in the future.

  17. Jasmonic Acid Enhances Al-Induced Root Growth Inhibition.

    Science.gov (United States)

    Yang, Zhong-Bao; He, Chunmei; Ma, Yanqi; Herde, Marco; Ding, Zhaojun

    2017-02-01

    Phytohormones such as ethylene and auxin are involved in the regulation of the aluminum (Al)-induced root growth inhibition. Although jasmonate (JA) has been reported to play a crucial role in the regulation of root growth and development in response to environmental stresses through interplay with ethylene and auxin, its role in the regulation of root growth response to Al stress is not yet known. In an attempt to elucidate the role of JA, we found that exogenous application of JA enhanced the Al-induced root growth inhibition. Furthermore, phenotype analysis with mutants defective in either JA biosynthesis or signaling suggests that JA is involved in the regulation of Al-induced root growth inhibition. The expression of the JA receptor CORONATINE INSENSITIVE1 (COI1) and the key JA signaling regulator MYC2 was up-regulated in response to Al stress in the root tips. This process together with COI1-mediated Al-induced root growth inhibition under Al stress was controlled by ethylene but not auxin. Transcriptomic analysis revealed that many responsive genes under Al stress were regulated by JA signaling. The differential responsive of microtubule organization-related genes between the wild-type and coi1-2 mutant is consistent with the changed depolymerization of cortical microtubules in coi1 under Al stress. In addition, ALMT-mediated malate exudation and thus Al exclusion from roots in response to Al stress was also regulated by COI1-mediated JA signaling. Together, this study suggests that root growth inhibition is regulated by COI1-mediated JA signaling independent from auxin signaling and provides novel insights into the phytohormone-mediated root growth inhibition in response to Al stress. © 2017 American Society of Plant Biologists. All Rights Reserved.

  18. Engineered andrographolide nanosystems for smart recovery in hepatotoxic conditions

    Directory of Open Access Journals (Sweden)

    Roy P

    2014-10-01

    Full Text Available Partha Roy,1,2 Suvadra Das,1 Runa Ghosh Auddy,1,3 Arup Mukherjee1,3 1Division of Pharmaceutical and Fine Chemicals Technology, Department of Chemical Technology, University of Calcutta, Kolkata, India; 2Faculty of Technology (Pharmaceutical, Universiti Malaysia, Pahang, Malaysia; 3Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, India Abstract: Andrographolide (AG is one of the most potent labdane diterpenoid-type free radical scavengers available from plant sources. The compound is the principal bioactive component in Andrographis paniculata leaf extracts, and is responsible for anti-inflammatory, anticancer, and immunomodulatory activity. The application of AG in therapeutics, however, is severely constrained, due to its low aqueous solubility, short biological half-life, and poor cellular permeability. Engineered nanoparticles in biodegradable polymer systems were therefore conceived as one solution to aid in further drug-like applications of AG. In this study, a cationic modified poly(lactic-co-glycolic acid nanosystem was applied for evaluation against experimental mouse hepatotoxic conditions. Biopolymeric nanoparticles of hydrodynamic size of 229.7±17.17 nm and ζ-potential +34.4±1.87 mV facilitated marked restoration in liver functions and oxidative stress markers. Superior dissolution for bioactive AG, hepatic residence, and favorable cytokine regulation in the liver tissues are some of the factors responsible for the newer nanosystem-assisted rapid recovery. Keywords: andrographolide, engineered nanosystems, poly(lactic-co-glycolic acid, cytokine regulation, hepatotoxicity

  19. Sulindac Sulfide, but Not Sulindac Sulfone, Inhibits Colorectal Cancer Growth

    Directory of Open Access Journals (Sweden)

    Christopher S. Williams

    1999-06-01

    Full Text Available Sulindac sulfide, a metabolite of the nonsteroidal antiinflammatory drug (NSAID sulindac sulfoxide, is effective at reducing tumor burden in both familial adenomatous polyposis patients and in animals with colorectal cancer. Another sulindac sulfoxide metabolite, sulindac sulfone, has been reported to have antitumor properties without inhibiting cyclooxygenase activity. Here we report the effect of sulindac sulfone treatment on the growth of colorectal carcinoma cells. We observed that sulindac sulfide or sulfone treatment of HCA-7 cells led to inhibition of prostaglandin E2 production. Both sulindac sulfide and sulfone inhibited HCA-7 and HCT-116 cell growth in vitro. Sulindac sulfone had no effect on the growth of either HCA-7 or HCT-116 xenografts, whereas the sulfide derivative inhibited HCA-7 growth in vivo. Both sulindac sulfide and sulfone inhibited colon carcinoma cell growth and prostaglandin production in vitro, but sulindac sulfone had no effect on the growth of colon cancer cell xenografts in nude mice.

  20. Equol inhibits growth, induces atresia, and inhibits steroidogenesis of mouse antral follicles in vitro

    International Nuclear Information System (INIS)

    Mahalingam, Sharada; Gao, Liying; Gonnering, Marni; Helferich, William; Flaws, Jodi A.

    2016-01-01

    Equol is a non-steroidal estrogen metabolite produced by microbial conversion of daidzein, a major soy isoflavone, in the gut of some humans and many animal species. Isoflavones and their metabolites can affect endogenous estradiol production, action, and metabolism, potentially influencing ovarian follicle function. However, no studies have examined the effects of equol on intact ovarian antral follicles, which are responsible for sex steroid synthesis and further development into ovulatory follicles. Thus, the present study tested the hypothesis that equol inhibits antral follicle growth, increases follicle atresia, and inhibits steroidogenesis in the adult mouse ovary. To test this hypothesis, antral follicles isolated from adult CD-1 mice were cultured with vehicle control (dimethyl sulfoxide; DMSO) or equol (600 nM, 6 μM, 36 μM, and 100 μM) for 48 and 96 h. Every 24 h, follicle diameters were measured to monitor growth. At 48 and 96 h, the culture medium was subjected to measurement of hormone levels, and the cultured follicles were subjected to gene expression analysis. Additionally, follicles were histologically evaluated for signs of atresia after 96 h of culture. The results indicate that equol (100 μM) inhibited follicle growth, altered the mRNA levels of bcl2-associated X protein and B cell leukemia/lymphoma 2, and induced follicle atresia. Further, equol decreased the levels of estradiol, testosterone, androstenedione, and progesterone, and it decreased mRNA levels of cholesterol side-chain cleavage, steroid 17-α-hydroxalase, and aromatase. Collectively, these data indicate that equol inhibits growth, increases atresia, and inhibits steroidogenesis of cultured mouse antral follicles. - Highlights: • Equol exposure inhibits antral follicle growth. • Equol exposure increases follicle atresia. • Equol exposure inhibits sex steroid hormone levels. • Equol exposure inhibits mRNA levels of certain steroidogenic enzymes.

  1. Equol inhibits growth, induces atresia, and inhibits steroidogenesis of mouse antral follicles in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Mahalingam, Sharada, E-mail: mahalin2@illinois.edu [Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802 (United States); Gao, Liying, E-mail: lgao@uiuc.edu [Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802 (United States); Gonnering, Marni, E-mail: mgonne2@illinois.edu [Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802 (United States); Helferich, William, E-mail: helferic@illinois.edu [Department of Food Science and Human Nutrition, University of Illinois, 905 S. Goodwin, Urbana, IL 61801 (United States); Flaws, Jodi A., E-mail: jflaws@illinois.edu [Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802 (United States)

    2016-03-15

    Equol is a non-steroidal estrogen metabolite produced by microbial conversion of daidzein, a major soy isoflavone, in the gut of some humans and many animal species. Isoflavones and their metabolites can affect endogenous estradiol production, action, and metabolism, potentially influencing ovarian follicle function. However, no studies have examined the effects of equol on intact ovarian antral follicles, which are responsible for sex steroid synthesis and further development into ovulatory follicles. Thus, the present study tested the hypothesis that equol inhibits antral follicle growth, increases follicle atresia, and inhibits steroidogenesis in the adult mouse ovary. To test this hypothesis, antral follicles isolated from adult CD-1 mice were cultured with vehicle control (dimethyl sulfoxide; DMSO) or equol (600 nM, 6 μM, 36 μM, and 100 μM) for 48 and 96 h. Every 24 h, follicle diameters were measured to monitor growth. At 48 and 96 h, the culture medium was subjected to measurement of hormone levels, and the cultured follicles were subjected to gene expression analysis. Additionally, follicles were histologically evaluated for signs of atresia after 96 h of culture. The results indicate that equol (100 μM) inhibited follicle growth, altered the mRNA levels of bcl2-associated X protein and B cell leukemia/lymphoma 2, and induced follicle atresia. Further, equol decreased the levels of estradiol, testosterone, androstenedione, and progesterone, and it decreased mRNA levels of cholesterol side-chain cleavage, steroid 17-α-hydroxalase, and aromatase. Collectively, these data indicate that equol inhibits growth, increases atresia, and inhibits steroidogenesis of cultured mouse antral follicles. - Highlights: • Equol exposure inhibits antral follicle growth. • Equol exposure increases follicle atresia. • Equol exposure inhibits sex steroid hormone levels. • Equol exposure inhibits mRNA levels of certain steroidogenic enzymes.

  2. Evaluating Andrographolide as a Potent Inhibitor of NS3-4A Protease and Its Drug-Resistant Mutants Using In Silico Approaches

    Directory of Open Access Journals (Sweden)

    Vivek Chandramohan

    2015-01-01

    Full Text Available Current combination therapy of PEG-INF and ribavirin against the Hepatitis C Virus (HCV genotype-1 infections is ineffective in maintaining sustained viral response in 50% of the infection cases. New compounds in the form of protease inhibitors can complement the combination therapy. Asunaprevir is new to the drug regiment as the NS3-4A protease inhibitor, but it is susceptible to two mutations, namely, R155K and D168A in the protein. Thus, in our study, we sought to evaluate Andrographolide, a labdane-diterpenoid from the Andrographis paniculata plant as an effective compound for inhibiting the NS3-4A protease as well as its concomitant drug-resistant mutants by using molecular docking and dynamic simulations. Our study shows that Andrographolide has best docking scores of −15.0862, −15.2322, and −13.9072 compared to those of Asunaprevir −3.7159, −2.6431, and −5.4149 with wild-type R155K and D168A mutants, respectively. Also, as shown in the MD simulations, the compound was good in binding the target proteins and maintains strong bonds causing very less to negligible perturbation in the protein backbone structures. Our results validate the susceptibility of Asunaprevir to protein variants as seen from our docking studies and trajectory period analysis. Therefore, from our study, we hope to add one more option in the drug regiment to tackle drug resistance in HCV infections.

  3. Evaluation of anti-bacterial and anti-oxidant potential of andrographolide and echiodinin isolated from callus culture of Andrographis paniculata Nees

    Science.gov (United States)

    Arifullah, Mohmmed; Namsa, Nima Dandu; Mandal, Manabendra; Chiruvella, Kishore Kumar; Vikrama, Paritala; Gopal, Ghanta Rama

    2013-01-01

    Objective To evaluate the anti-bacterial and anti-oxidant activity of andrographolide (AND) and echiodinin (ECH) of Andrographis paniculata. Methods In this study, an attempt has been made to demonstrate the anti-microbial and anti-oxidant activity of isolated AND and ECH by broth micro-dilution method and 2,2-diphenyl-2-picryl-hydrazyl (DPPH) assay, respectively. Structure elucidation was determined by electro-spray ionization-MSD, NMR (1H and 13C) and IR spectra. Results AND was effective against most of the strains tested including Mycobacterium smegmatis, showing broad spectrum of growth inhibition activity with Minimum inhibitory concentration values against Staphylococcus aureus (100 µg/mL), Streptococcus thermophilus (350 µg/mL) Bacillus subtilis (100 µg/mL), Escherichia coli (50 µg/mL), Mycobacterium smegmatis (200 µg/mL), Klebsiella pneumonia (100 µg/mL), and Pseudomonas aeruginosa (200 µg/mL). ECH showed specific anti-bacterial activity against Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa at a concentration higher than 225 µg/mL. Both AND and ECH were not effective against the two yeast strains, Candida albicans and Saccharomyces cerevisiae tested in this study. Conclusion This preliminary study showed promising anti-bacterial activity and moderate free radical scavenging activity of AND and ECH, and it may provide the scientific rationale for its popular folklore medicines. PMID:23905016

  4. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  5. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    International Nuclear Information System (INIS)

    Chang, Cheng-Yi; Kuan, Yu-Hsiang; Ou, Yen-Chuan; Li, Jian-Ri; Wu, Chih-Cheng; Pan, Pin-Ho; Chen, Wen-Ying; Huang, Hsuan-Yi; Chen, Chun-Jung

    2014-01-01

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK

  6. Prevention of 5-fluorouracil-caused growth inhibition in Sordaria fimicola.

    Science.gov (United States)

    Schoen, H F; Berech, J

    1977-02-01

    Growth (dry weight accumulation) of Sordaria fimicola in standing liquid culture (sucrose-nitrate-salts-vitamins) is inhibited by the presence of 5 muM 5-fluorouracil in the medium. This inhibition is completely prevented by uracil, deoxyuridine, and 5-bromouracil, partly prevented (40 to 90% of growth observed without 5-fluorouracil) by uridine, thymidine, and 5-bromodeoxyuridine, and slightly prevented by trifluorothymine, cytosine, cytidine, deoxycytidine, and 5-methylcytosine (all at 0.5 to 1 mM). Thymidine and thymine riboside were without any apparent effect. Growth is also inhibited by 0.2 mM 6-azauracil, and this inhibition was completely prevented by uracil and uridine, partly prevented by deoxyuridine, 5-bromouracil, cytidine, and 5-methylcytosine, and slightly prevented by thymine, thymidine, 5-bromodeoxyuridine, cytosine, and deoxycytidine. The data suggest that the observed inhibition of growth by 5-fluorouracil is due to inhibition of both ribonucleic acid and deoxyribonucleic acid synthesis. The data also allow inferences concerning pyrimidine interconversions in S. fimicola; i.e., thymine can be anabolized to thymidylic acid without first being demethylated, although demethylation appears to occur also.

  7. Fluoxetine regulates cell growth inhibition of interferon-α.

    Science.gov (United States)

    Lin, Yu-Min; Yu, Bu-Chin; Chiu, Wen-Tai; Sun, Hung-Yu; Chien, Yu-Chieh; Su, Hui-Chen; Yen, Shu-Yang; Lai, Hsin-Wen; Bai, Chyi-Huey; Young, Kung-Chia; Tsao, Chiung-Wen

    2016-10-01

    Fluoxetine, a well-known anti-depression agent, may act as a chemosensitizer to assist and promote cancer therapy. However, how fluoxetine regulates cellular signaling to enhance cellular responses against tumor cell growth remains unclear. In the present study, addition of fluoxetine promoted growth inhibition of interferon-alpha (IFN-α) in human bladder carcinoma cells but not in normal uroepithelial cells through lessening the IFN-α-induced apoptosis but switching to cause G1 arrest, and maintaining the IFN-α-mediated reduction in G2/M phase. Activations and signal transducer and transactivator (STAT)-1 and peroxisome proliferator-activated receptor alpha (PPAR-α) were involved in this process. Chemical inhibitions of STAT-1 or PPAR-α partially rescued bladder carcinoma cells from IFN-α-mediated growth inhibition via blockades of G1 arrest, cyclin D1 reduction, p53 downregulation and p27 upregulation in the presence of fluoxetine. However, the functions of both proteins were not involved in the control of fluoxetine over apoptosis and maintained the declined G2/M phase of IFN-α. These results indicated that activation of PPAR-α and STAT-1 participated, at least in part, in growth inhibition of IFN-α in the presence of fluoxetine.

  8. DRF 3188 a novel semi-synthetic analog of andrographolide: cellular response to MCF 7 breast cancer cells

    International Nuclear Information System (INIS)

    Satyanarayana, Chitkala; Deevi, Dhanavanthri S; Rajagopalan, R; Srinivas, Nanduri; Rajagopal, Sriram

    2004-01-01

    We determined the effect of andrographolide and one of its novel semi-synthetic analog, DRF 3188, on the cell cycle of MCF 7 breast cancer cells. The effect of the compounds on cell cycle was determined using FACS and western blot analysis of cell cycle proteins. Hollow fibre assay was used to determine if the compounds had the same effect on the cell cycle in vitro and in vivo. Our results from the in vitro and in vivo experiments show that both the compounds block the cell cycle at the G0-G1 phase through the induction of the cell cycle inhibitor, p27, and the concomitant decrease in the levels of Cdk4. The results show that the novel semi-synthetic analog, DRF3188, and andrographolide bring about the anti cancer activity by a similar mechanism

  9. Andrographolide Induces Apoptosis of C6 Glioma Cells via the ERK-p53-Caspase 7-PARP Pathway

    Directory of Open Access Journals (Sweden)

    Shih-Hung Yang

    2014-01-01

    Full Text Available Background. Glioma is the most malignant tumor of the central nervous system. Efforts on the development of new chemotherapy are mandatory. Andrographolide (AND, a diterpenoid lactone isolated from the Andrographis paniculata, has been shown to have antitumor activities in several types of cancer cells. Whether AND can exert its antitumor activity in glioblastoma cells remains unknown. This study examined the anticancer effects of AND, both in vitro and in vivo. Methods. Cell apoptosis was assayed by flow cytometry and nuclear staining. The signaling pathway for AND was determined by western blotting. The effects of AND on tumor growth was evaluated in a mouse model. Results and Conclusion. In vitro, with application of specific inhibitors and siRNA, AND-induced apoptosis was proven through ROS-ERK-P53-caspase 7-PARP signaling pathway. In vivo, AND significantly retarded tumor growth and caused regression of well-formed tumors in vivo. Furthermore, AND did not induce apoptosis or activate ERK and p53 in primary cultured astrocyte cells, and it may serve as a potential therapeutic candidate for the treatment of glioma.

  10. E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions

    DEFF Research Database (Denmark)

    Perrais, Michaël; Chen, Xiao; Perez-Moreno, Mirna

    2007-01-01

    growth inhibitory signals. To address this question, we have selectively formed E-cadherin homophilic bonds at the cell surface of isolated epithelial cells by using functionally active recombinant E-cadherin protein attached to microspheres. We find that E-cadherin ligation alone reduces the frequency...... of cells entering the S phase, demonstrating that E-cadherin ligation directly transduces growth inhibitory signals. E-cadherin binding to beta-catenin is required for cell growth inhibition, but beta-catenin/T-cell factor transcriptional activity is not involved in growth inhibition resulting from...... homophilic binding. Neither E-cadherin binding to p120-catenin nor beta-catenin binding to alpha-catenin, and thereby the actin cytoskeleton, is required for growth inhibition. E-cadherin ligation also inhibits epidermal growth factor (EGF) receptor-mediated growth signaling by a beta...

  11. DSGOST inhibits tumor growth by blocking VEGF/VEGFR2-activated angiogenesis.

    Science.gov (United States)

    Choi, Hyeong Sim; Lee, Kangwook; Kim, Min Kyoung; Lee, Kang Min; Shin, Yong Cheol; Cho, Sung-Gook; Ko, Seong-Gyu

    2016-04-19

    Tumor growth requires a process called angiogenesis, a new blood vessel formation from pre-existing vessels, as newly formed vessels provide tumor cells with oxygen and nutrition. Danggui-Sayuk-Ga-Osuyu-Saenggang-Tang (DSGOST), one of traditional Chinese medicines, has been widely used in treatment of vessel diseases including Raynaud's syndrome in Northeast Asian countries including China, Japan and Korea. Therefore, we hypothesized that DSGOST might inhibit tumor growth by targeting newly formed vessels on the basis of its historical prescription. Here, we demonstrate that DSGOST inhibits tumor growth by inhibiting VEGF-induced angiogenesis. DSGOST inhibited VEGF-induced angiogenic abilities of endothelial cells in vitro and in vivo, which resulted from its inhibition of VEGF/VEGFR2 interaction. Furthermore, DSGOST attenuated pancreatic tumor growth in vivo by reducing angiogenic vessel numbers, while not affecting pancreatic tumor cell viability. Thus, our data conclude that DSGOST inhibits VEGF-induced tumor angiogenesis, suggesting a new indication for DSGOST in treatment of cancer.

  12. Gradient microfluidics enables rapid bacterial growth inhibition testing.

    Science.gov (United States)

    Li, Bing; Qiu, Yong; Glidle, Andrew; McIlvenna, David; Luo, Qian; Cooper, Jon; Shi, Han-Chang; Yin, Huabing

    2014-03-18

    Bacterial growth inhibition tests have become a standard measure of the adverse effects of inhibitors for a wide range of applications, such as toxicity testing in the medical and environmental sciences. However, conventional well-plate formats for these tests are laborious and provide limited information (often being restricted to an end-point assay). In this study, we have developed a microfluidic system that enables fast quantification of the effect of an inhibitor on bacteria growth and survival, within a single experiment. This format offers a unique combination of advantages, including long-term continuous flow culture, generation of concentration gradients, and single cell morphology tracking. Using Escherichia coli and the inhibitor amoxicillin as one model system, we show excellent agreement between an on-chip single cell-based assay and conventional methods to obtain quantitative measures of antibiotic inhibition (for example, minimum inhibition concentration). Furthermore, we show that our methods can provide additional information, over and above that of the standard well-plate assay, including kinetic information on growth inhibition and measurements of bacterial morphological dynamics over a wide range of inhibitor concentrations. Finally, using a second model system, we show that this chip-based systems does not require the bacteria to be labeled and is well suited for the study of naturally occurring species. We illustrate this using Nitrosomonas europaea, an environmentally important bacteria, and show that the chip system can lead to a significant reduction in the period required for growth and inhibition measurements (<4 days, compared to weeks in a culture flask).

  13. Canine tracheal epithelial cells are more sensitive than rat tracheal epithelial cells to transforming growth factor beta induced growth inhibition

    International Nuclear Information System (INIS)

    Hubbs, A.F.; Hahn, F.F.; Kelly, G.; Thomassen, D.G.

    1988-01-01

    Transforming growth factor beta (TGFβ) markedly inhibited growth of canine tracheal epithelial (CTE) cells. Reduced responsiveness to TGFβ-induced growth inhibition accompanied neoplastic progression of these cells from primary to transformed to neoplastic. This was similar to the relationship between neoplastic progression and increased resistance to TGFβ-induced growth inhibition seen for rat tracheal epithelial (RTE) cells. The canine cells were more sensitive than rat cells to TGFβ-induced growth inhibition at all stages in the neoplastic process. (author)

  14. DRF 3188 a novel semi-synthetic analog of andrographolide: cellular response to MCF 7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Srinivas Nanduri

    2004-06-01

    Full Text Available Abstract Background We determined the effect of andrographolide and one of its novel semi-synthetic analog, DRF 3188, on the cell cycle of MCF 7 breast cancer cells. Methods The effect of the compounds on cell cycle was determined using FACS and western blot analysis of cell cycle proteins. Hollow fibre assay was used to determine if the compounds had the same effect on the cell cycle in vitro and in vivo. Results Our results from the in vitro and in vivo experiments show that both the compounds block the cell cycle at the G0-G1 phase through the induction of the cell cycle inhibitor, p27, and the concomitant decrease in the levels of Cdk4. Conclusion The results show that the novel semi-synthetic analog, DRF3188, and andrographolide bring about the anti cancer activity by a similar mechanism.

  15. DRF 3188 a novel semi-synthetic analog of andrographolide: cellular response to MCF 7 breast cancer cells

    Science.gov (United States)

    Satyanarayana, Chitkala; Deevi, Dhanavanthri S; Rajagopalan, R; Srinivas, Nanduri; Rajagopal, Sriram

    2004-01-01

    Background We determined the effect of andrographolide and one of its novel semi-synthetic analog, DRF 3188, on the cell cycle of MCF 7 breast cancer cells. Methods The effect of the compounds on cell cycle was determined using FACS and western blot analysis of cell cycle proteins. Hollow fibre assay was used to determine if the compounds had the same effect on the cell cycle in vitro and in vivo. Results Our results from the in vitro and in vivo experiments show that both the compounds block the cell cycle at the G0-G1 phase through the induction of the cell cycle inhibitor, p27, and the concomitant decrease in the levels of Cdk4. Conclusion The results show that the novel semi-synthetic analog, DRF3188, and andrographolide bring about the anti cancer activity by a similar mechanism. PMID:15207007

  16. Andrographolide sensitizes prostate cancer cells to TRAIL-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Ruo-Jing Wei

    2018-01-01

    Full Text Available Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL is a promising agent for anticancer therapy. The identification of small molecules that can establish the sensitivity of prostate cancer (PCa cells to TRAIL-induced apoptosis is crucial for the targeted treatment of PCa. PC3, DU145, JAC-1, TsuPr1, and LNCaP cells were treated with Andrographolide (Andro and TRAIL, and the apoptosis was measured using the Annexin V/PI double staining method. Real time-polymerase chain reaction (PCR and Western blot analysis were performed to measure the expression levels of target molecules. RNA interference technique was used to down-regulate the expression of the target protein. We established a nude mouse xenograft model of PCa, which was used to measure the caspase-3 activity in the tumor cells using flow cytometry. In this research study, our results demonstrated that Andro preferentially increased the sensitivity of PCa cells to TRAIL-induced apoptosis at subtoxic concentrations, and the regulation mechanism was related to the up-regulation of DR4. In addition, it also increased the p53 expression and led to the generation of reactive oxygen species (ROS in the cells. Further research revealed that the DR4 inhibition, p53 expression, and ROS generation can significantly reduce the apoptosis induced by the combination of TRAIL and Andro in PCa cells. In conclusion, Andro increases the sensitivity of PCa cells to TRAIL-induced apoptosis through the generation of ROS and up-regulation of p53 and then promotes PCa cell apoptosis associated with the activation of DR4.

  17. Andrographolide enhanced 5-fluorouracil-induced antitumor effect in colorectal cancer via inhibition of c-MET pathway

    Directory of Open Access Journals (Sweden)

    Su M

    2017-11-01

    Full Text Available Meng Su,1 Baoli Qin,1 Fang Liu,2 Yuze Chen,2 Rui Zhang2 1Department of Internal Medicine, 2Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, China Abstract: Colorectal cancer (CRC is the third most common malignant neoplasm worldwide. 5-Fluorouracil (5-Fu is the most important chemotherapeutic drug used for the treatment of CRC. However, resistance to 5-Fu therapies is a growing concern in CRC clinical practice recently. Andrographolide (Andro is a main bioactive constituent of the herb Andrographis paniculata, which has various biological effects including anti-inflammation and antitumor activities. In the present study, we investigated the effects of combined Andro with 5-Fu against CRC HCT-116 cells. In vitro studies showed that Andro synergistically enhanced the anti-proliferation effect of 5-Fu on HCT-116 cells due to increased apoptotic cells. Meanwhile, results of the enzyme linked immunosorbent assay indicated that the level of phosphorylated cellular-mesenchymal to epithelial transition factor (p-MET was decreased by the combination treatment. Further study suggested that Andro promoted the antitumor effect of 5-Fu by downregulating the level of p-MET. In conclusion, these results confirmed the synergistic antitumor activity of Andro on CRC and provide evidence for possible clinical application of Andro for enhancing the antitumor effect of 5-Fu in CRC treatment. Keywords: Andro, 5-Fu, HCT-116 cells, apoptosis, p-MET

  18. Absolute Configuration of Andrographolide and Its Proliferation of Osteoblast Cell Lines

    Science.gov (United States)

    Chantrapromma, S.; Boonnak, N.; Pitakpornpreecha, T.; Yordthong, T.; Chidan Kumar, C. S.; Fun, H. K.

    2018-05-01

    Andrographolide, C20H30O5, is a labdane diterpenoid which was isolated from the leave of Andrographis paniculata. Its crystal structure is determined by single crystal X-ray diffraction: monoclinic, sp. gr. P21, Z = 2. Absolute configuration is determined by the refinement of the Flack parameter to 0.21(19). In the crystal, molecules are linked by O-H···O hydrogen bonds and C-H···O interactions into two dimensional network parallel to the (001) plane. Its proliferation of osteoblast cell lines is reported.

  19. A Phenylurea Cytokinin, CPPU, Elevated Reducing Sugar and Correlated to Andrographolide Contents in Leaves of Andrographis paniculata (Burm. F.) Wall. Ex Nees.

    Science.gov (United States)

    Worakan, Phapawee; Karaket, Netiya; Maneejantra, Nuchada; Supaibulwatana, Kanyaratt

    2017-02-01

    Cytokinins are phytohormones that play multiple roles to control plant growth and development. In this study, leaf biomass and the production of andrographolide compounds in a medicinal plant Andrographis paniculata were significantly increased after exogenously treating with the synthetic cytokinin cytokinin-1-(2-chloro-4-pyridyl)-3-phenylurea (CPPU) at 0 (water), 5, or 10 mg L -1 and observed the results for 24 h, 48 h, and 7 days of treatment. It was found that CPPU could significantly enhance new axillary bud formation and further promote branching 4.6-5.6-fold higher, resulting in higher fresh weight (FW) and dry weight (DW) than the control. Application of CPPU at 5 mg L -1 significantly promoted the highest contents of total reducing sugar at 2.5-fold in leaves and at 1.5-fold in roots. Although treatments of CPPU significantly affected the increasing contents of chlorophyll and carotenoid (1.2-1.6-fold), CPPU at 10 mg L -1 slightly caused leaf stress and chlorophyll reduction. Interestingly, 5 mg L -1 CPPU could enhance andrographolide content, an active anti-infectious compound in Andrographis paniculata (2.2-fold higher than the control) that reached the highest content at 24 h after treatment. This study suggested that CPPU should be suitable for field application to promote leaf yields and induce the production of useful pharmaceutical compounds in Andrographis paniculata.

  20. Dicumarol inhibition of NADPH:quinone oxidoreductase induces growth inhibition of pancreatic cancer via a superoxide-mediated mechanism.

    Science.gov (United States)

    Cullen, Joseph J; Hinkhouse, Marilyn M; Grady, Matthew; Gaut, Andrew W; Liu, Jingru; Zhang, Yu Ping; Weydert, Christine J Darby; Domann, Frederick E; Oberley, Larry W

    2003-09-01

    NADPH:quinone oxidoreductase (NQO(1)), a homodimeric, ubiquitous, flavoprotein, catalyzes the two-electron reduction of quinones to hydroquinones. This reaction prevents the one-electron reduction of quinones by cytochrome P450 reductase and other flavoproteins that would result in oxidative cycling with generation of superoxide (O(2)(.-)). NQO(1) gene regulation may be up-regulated in some tumors to accommodate the needs of rapidly metabolizing cells to regenerate NAD(+). We hypothesized that pancreatic cancer cells would exhibit high levels of this enzyme, and inhibiting it would suppress the malignant phenotype. Reverse transcription-PCR, Western blots, and activity assays demonstrated that NQO(1) was up-regulated in the pancreatic cancer cell lines tested but present in very low amounts in the normal human pancreas. To determine whether inhibition of NQO(1) would alter the malignant phenotype, MIA PaCa-2 pancreatic cancer cells were treated with a selective inhibitor of NQO(1), dicumarol. Dicumarol increased intracellular production of O(2)(.-), as measured by hydroethidine staining, and inhibited cell growth. Both of these effects were blunted with infection of an adenoviral vector containing the cDNA for manganese superoxide dismutase. Dicumarol also inhibited cell growth, plating efficiency, and growth in soft agar. We conclude that inhibition of NQO(1) increases intracellular O(2)(.-) production and inhibits the in vitro malignant phenotype of pancreatic cancer. These mechanisms suggest that altering the intracellular redox environment of pancreatic cancer cells may inhibit growth and delineate a potential strategy directed against pancreatic cancer.

  1. Predicting the dynamics of bacterial growth inhibition by ribosome-targeting antibiotics

    Science.gov (United States)

    Greulich, Philip; Doležal, Jakub; Scott, Matthew; Evans, Martin R.; Allen, Rosalind J.

    2017-12-01

    Understanding how antibiotics inhibit bacteria can help to reduce antibiotic use and hence avoid antimicrobial resistance—yet few theoretical models exist for bacterial growth inhibition by a clinically relevant antibiotic treatment regimen. In particular, in the clinic, antibiotic treatment is time-dependent. Here, we use a theoretical model, previously applied to steady-state bacterial growth, to predict the dynamical response of a bacterial cell to a time-dependent dose of ribosome-targeting antibiotic. Our results depend strongly on whether the antibiotic shows reversible transport and/or low-affinity ribosome binding (‘low-affinity antibiotic’) or, in contrast, irreversible transport and/or high affinity ribosome binding (‘high-affinity antibiotic’). For low-affinity antibiotics, our model predicts that growth inhibition depends on the duration of the antibiotic pulse, and can show a transient period of very fast growth following removal of the antibiotic. For high-affinity antibiotics, growth inhibition depends on peak dosage rather than dose duration, and the model predicts a pronounced post-antibiotic effect, due to hysteresis, in which growth can be suppressed for long times after the antibiotic dose has ended. These predictions are experimentally testable and may be of clinical significance.

  2. Andrographolide promotes vincristine-induced SK-NEP-1 tumor cell death via PI3K-AKT-p53 signaling pathway

    Science.gov (United States)

    Zhang, Mingsheng; Xue, Enda; Shao, Wei

    2016-01-01

    Background Nephroblastoma (Wilms’ tumor [WT]) is the most common malignant renal cancer in children. Although the outcome of WT has significantly improved as a result of the combination of surgery, chemotherapy, and radiotherapy; in some cases WT results in severe complications. Thus, novel strategies that would decrease treatment burden are required. The aim of the current study was to investigate the synergistic antitumor effect of andrographolide (AND) in combination with vincristine (VCR) on WT cells. Methods Cell Counting Kit-8 assay was used to investigate the synergistic antiproliferation effect of AND and/or VCR on SK-NEP-1 cells in vitro. Meanwhile, SK-NEP-1 xenografts were used to detect the antitumor effect in vivo. Apoptosis and autophagy were then detected by Annexin V, monodansylcadaverine staining. Finally, the underlying signaling transduction was determined with Western blotting. Results The combination of AND with VCR significantly suppressed SK-NEP-1 cell proliferation in vitro and inhibited xenograft tumor growth in vivo, compared with AND or VCR treatment alone. In addition, the synergistic antitumor effect of AND on the cells was due to an increased apoptosis, not autophagy. Moreover, PI3K-AKT-p53 signaling pathway was involved in the process of combination treatment, which was confirmed when a selective AKT activator was applied. Conclusion The combination of AND with VCR has a strong synergistic antitumor effect on WT via PI3K-AKT-p53 signaling pathway, thereby representing a potential treatment for WT in the near future. PMID:27729773

  3. Growth of antarctic cyanobacteria under ultraviolet radiation: UVA counteracts UVB inhibition

    International Nuclear Information System (INIS)

    Quesada, A.; Mouget, J.L.; Vincent, W.F.

    1995-01-01

    A mat-forming cyanobacterium (Phormidium murayi West and West) isolated from an ice-shelf pond in Antarctica was grown under white light combined with a range of UVA and UVB irradiance. The 4-day growth rate decreased under increasing ultraviolet (UV) radiation, with a ninefold greater response to UVB relative to UVA. In vivo absorbance spectra showed that UVA and to a greater extent UVB caused a decrease in phycocyanin/chlorophyll a and an increase in carotenoids/chlorophyll a. The phycocyanin/chlorophyll a ratio was closely and positively correlated to the UVB-inhibited growth rate. Under fixed spectral gradients of UV radiation, the growth inhibition effect was dominated by UVB. However, at specific UVB irradiances the inhibition of growth depended on the ratio of UVB to UVA, and growth rates increased linearly with increasing UVA. These results are consistent with the view that UVB inhibition represents the balance between damage and repair processes that are each controlled by separate wavebands. They also underscore the need to consider UV spectral balance in laboratory and field assays of UVB toxicity. 49 refs., 6 figs

  4. Growth Inhibition of Breast Cancer in Rat by AAV Mediated Angiostatin Gene

    Institute of Scientific and Technical Information of China (English)

    LI Ran; CHEN Hong; REN Chang-shan

    2007-01-01

    Objective: To observe growth inhibition effect of adeno-associated viral vectors (AAV) mediated angiostatin (ANG) gene on implanted breast cancer in rat and its mechanism. Methods: Gene transfer technique was used to transfer AAV-ANG to the tumor. Growth curves were drawn to observe the growth of breast cancer implanted in rat, and immunohistochemical method was used to detect the effects of angiostatin on microvesel density (MVD) of breast cancer implanted in rat. Results: Angiostatin inhibited the growth of breast cancer implanted in rat and decreased the microvessel density of tumor. Conclusion: Expression of an angiostatin transgene can suppress the growth of breast cancer implanted in rat through the inhibition of the growth of microvessels, surggesting that angiostatin gene transfer technique may be effective against breast cancer.

  5. Solubility enhancement and in vitro evaluation of PEG-b-PLA micelles as nanocarrier of semi-synthetic andrographolide analogue for cholangiocarcinoma chemotherapy.

    Science.gov (United States)

    Puntawee, Sujittra; Theerasilp, Man; Reabroi, Somrudee; Saeeng, Rungnapha; Piyachaturawat, Pawinee; Chairoungdua, Arthit; Nasongkla, Norased

    2016-01-01

    Semi-synthetic andrographolide analogue (19-triphenylmethyl ether andrographolide, AG 050) is a C-19 substituted andrographolide which is the major constituent from Andrographis Paniculata Nees (Acanthaceae). The analogue has previously been reported to be highly cytotoxic against several cancer cell lines. Nevertheless, its poor water solubility limits clinical applications of this compound. To improve the aqueous solubility and bioavailability of AG 050 by protonation and encapsulation in poly(ethylene glycol)-b-poly(d,l-lactide) (PEG-b-PLA) polymeric micelles. PEG-b-PLA micelle was employed as a nanocarrier for AG 050. The physicochemical properties and in vitro cytotoxicity against cholangiocarcinoma (CCA) (KKU-M213) cell line were done in this study. Hydrochloride salt of AG 050 (AG 050-P) greatly enhanced the solubility of this compound (15-fold). PEG-b-PLA was able to encapsulate AG 050-P in hydrophobic core with a significant increase in the amount of AG 050-P in aqueous solution (280-fold). Film sonication method provided greater results in drug-loading study as compared to micelles via solvent evaporation. In addition, the encapsulated AG 050-P exhibited sustained release pattern and excellent cytotoxicity activity against KKU-M213 with IC50 of 3.33 µM. Nanoencapsulation of AG 050-P implicated its potential development for clinical use in CCA treatment.

  6. Prolyl oligopeptidase inhibition-induced growth arrest of human gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kanayo [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Sakaguchi, Minoru, E-mail: sakaguti@gly.oups.ac.jp [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Tanaka, Satoshi [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Yoshimoto, Tadashi [Department of Life Science, Setsunan University, 17-8 Ikeda-Nakamachi, Neyagawa, Osaka 572-8508 (Japan); Takaoka, Masanori [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan)

    2014-01-03

    Highlights: •We examined the effects of prolyl oligopeptidase (POP) inhibition on p53 null gastric cancer cell growth. •POP inhibition-induced cell growth suppression was associated with an increase in a quiescent G{sub 0} state. •POP might regulate the exit from and/or reentry into the cell cycle. -- Abstract: Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We recently reported that POP inhibition suppressed the growth of human neuroblastoma cells. The growth suppression was associated with pronounced G{sub 0}/G{sub 1} cell cycle arrest and increased levels of the CDK inhibitor p27{sup kip1} and the tumor suppressor p53. In this study, we investigated the mechanism of POP inhibition-induced cell growth arrest using a human gastric cancer cell line, KATO III cells, which had a p53 gene deletion. POP specific inhibitors, 3-((4-[2-(E)-styrylphenoxy]butanoyl)-L-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thioprolyl-thioprolinal, or RNAi-mediated POP knockdown inhibited the growth of KATO III cells irrespective of their p53 status. SUAM-14746-induced growth inhibition was associated with G{sub 0}/G{sub 1} cell cycle phase arrest and increased levels of p27{sup kip1} in the nuclei and the pRb2/p130 protein expression. Moreover, SUAM-14746-mediated cell cycle arrest of KATO III cells was associated with an increase in the quiescent G{sub 0} state, defined by low level staining for the proliferation marker, Ki-67. These results indicate that POP may be a positive regulator of cell cycle progression by regulating the exit from and/or reentry into the cell cycle by KATO III cells.

  7. Andrographolide Induces Cell Cycle Arrest and Apoptosis of Chondrosarcoma by Targeting TCF-1/SOX9 Axis.

    Science.gov (United States)

    Zhang, Huan-Tian; Yang, Jie; Liang, Gui-Hong; Gao, Xue-Juan; Sang, Yuan; Gui, Tao; Liang, Zu-Jian; Tam, Man-Seng; Zha, Zhen-Gang

    2017-12-01

    Chondrosarcoma is the second most malignant bone tumor with poor prognosis and limited treatment options. Thus, development of more effective treatments has become urgent. Recently, natural compounds derived from medicinal plants have emerged as promising therapeutic options via targeting multiple key cellular molecules. Andrographolide (Andro) is such a compound, which has previously been shown to induce cell cycle arrest and apoptosis in several human cancers. However, the molecular mechanism through which Andro exerts its anti-cancer effect on chondrosarcoma remains to be elucidated. In the present study, we showed that Andro-induced G2/M cell cycle arrest of chondrosarcoma by fine-tuning the expressions of several cell cycle regulators such as p21, p27, and Cyclins, and that prolonged treatment of cells with Andro caused pronounced cell apoptosis. Remarkably, we found that SOX9 was highly expressed in poor-differentiated chondrosarcoma, and that knockdown of SOX9 suppressed chondrosarcoma cell growth. Further, our results showed that Andro dose-dependently down-regulated SOX9 expression in chondrosarcoma cells. Concomitantly, an inhibition of T cell factor 1 (TCF-1) mRNA expression and an enhancement of TCF-1 protein degradation by Andro were observed. In contrast, the expression and subcellular localization of β-catenin were not altered upon the treatment of Andro, suggesting that β-catenin might not function as the primary target of Andro. Additionally, we provided evidence that there was a mutual regulation between TCF-1 and SOX9 in chondrosarcoma cells. In conclusion, these results highlight the potential therapeutic effects of Andro in treatment of chondrosarcoma via targeting the TCF-1/SOX9 axis. J. Cell. Biochem. 118: 4575-4586, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. ITE inhibits growth of human pulmonary artery endothelial cells.

    Science.gov (United States)

    Pang, Ling-Pin; Li, Yan; Zou, Qing-Yun; Zhou, Chi; Lei, Wei; Zheng, Jing; Huang, Shi-An

    2017-10-01

    Pulmonary arterial hypertension (PAH), a deadly disorder is associated with excessive growth of human pulmonary artery endothelial (HPAECs) and smooth muscle (HPASMCs) cells. Current therapies primarily aim at promoting vasodilation, which only ameliorates clinical symptoms without a cure. 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) is an endogenous aryl hydrocarbon receptor (AhR) ligand, and mediates many cellular function including cell growth. However, the roles of ITE in human lung endothelial cells remain elusive. Herein, we tested a hypothesis that ITE inhibits growth of human pulmonary artery endothelial cells via AhR. Immunohistochemistry was performed to localize AhR expression in human lung tissues. The crystal violet method and MTT assay were used to determine ITE's effects on growth of HPAECs. The AhR activation in HPAECs was confirmed using Western blotting and RT-qPCR. The role of AhR in ITE-affected proliferation of HPAECs was assessed using siRNA knockdown method followed by the crystal violet method. Immunohistochemistry revealed that AhR was present in human lung tissues, primarily in endothelial and smooth muscle cells of pulmonary veins and arteries, as well as in bronchial and alveolar sac epithelia. We also found that ITE dose- and time-dependently inhibited proliferation of HPAECs with a maximum inhibition of 83% at 20 µM after 6 days of treatment. ITE rapidly decreased AhR protein levels, while it increased mRNA levels of cytochrome P450 (CYP), family 1, member A1 (CYP1A1) and B1 (CYP1B1), indicating activation of the AhR/CYP1A1 and AhR/CYP1B1 pathways in HPAECs. The AhR siRNA significantly suppressed AhR protein expression, whereas it did not significantly alter ITE-inhibited growth of HPAECs. ITE suppresses growth of HPAECs independent of AhR, suggesting that ITE may play an important role in preventing excessive growth of lung endothelial cells.

  9. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth

    Energy Technology Data Exchange (ETDEWEB)

    Lin Daohui [Department of Environmental Science, Zhejiang University, Hangzhou 310028 (China); Department of Plant, Soil and Insect Sciences, University of Massachusetts, Stockbridge Hall, Amherst, MA 01003 (United States); Xing Baoshan [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Stockbridge Hall, Amherst, MA 01003 (United States)], E-mail: bx@pssci.umass.edu

    2007-11-15

    Plants need to be included to develop a comprehensive toxicity profile for nanoparticles. Effects of five types of nanoparticles (multi-walled carbon nanotube, aluminum, alumina, zinc, and zinc oxide) on seed germination and root growth of six higher plant species (radish, rape, ryegrass, lettuce, corn, and cucumber) were investigated. Seed germination was not affected except for the inhibition of nanoscale zinc (nano-Zn) on ryegrass and zinc oxide (nano-ZnO) on corn at 2000 mg/L. Inhibition on root growth varied greatly among nanoparticles and plants. Suspensions of 2000 mg/L nano-Zn or nano-ZnO practically terminated root elongation of the tested plant species. Fifty percent inhibitory concentrations (IC{sub 50}) of nano-Zn and nano-ZnO were estimated to be near 50 mg/L for radish, and about 20 mg/L for rape and ryegrass. The inhibition occurred during the seed incubation process rather than seed soaking stage. These results are significant in terms of use and disposal of engineered nanoparticles. - Engineered nanoparticles can inhibit the seed germination and root growth.

  10. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth

    International Nuclear Information System (INIS)

    Lin Daohui; Xing Baoshan

    2007-01-01

    Plants need to be included to develop a comprehensive toxicity profile for nanoparticles. Effects of five types of nanoparticles (multi-walled carbon nanotube, aluminum, alumina, zinc, and zinc oxide) on seed germination and root growth of six higher plant species (radish, rape, ryegrass, lettuce, corn, and cucumber) were investigated. Seed germination was not affected except for the inhibition of nanoscale zinc (nano-Zn) on ryegrass and zinc oxide (nano-ZnO) on corn at 2000 mg/L. Inhibition on root growth varied greatly among nanoparticles and plants. Suspensions of 2000 mg/L nano-Zn or nano-ZnO practically terminated root elongation of the tested plant species. Fifty percent inhibitory concentrations (IC 50 ) of nano-Zn and nano-ZnO were estimated to be near 50 mg/L for radish, and about 20 mg/L for rape and ryegrass. The inhibition occurred during the seed incubation process rather than seed soaking stage. These results are significant in terms of use and disposal of engineered nanoparticles. - Engineered nanoparticles can inhibit the seed germination and root growth

  11. Andrographolide alleviates imiquimod-induced psoriasis in mice via inducing autophagic proteolysis of MyD88.

    Science.gov (United States)

    Shao, Fenli; Tan, Tao; Tan, Yang; Sun, Yang; Wu, Xingxin; Xu, Qiang

    2016-09-01

    Psoriasis is a chronic inflammatory skin disease with excessive activation of toll-like receptors (TLRs), which play important roles in developing psoriasis. Targeting TLR signaling remains a challenge for treating psoriasis. Here, we found that andrographolide (Andro), a small-molecule natural product, alleviated imiquimod- but not interleukin 23 (IL-23)-induced psoriasis in mice with reducing expressions of IL-23 and IL-1β in the skin. The improvement in imiquimod-induced psoriasis by Andro was not observed in microtubule-associated protein 1 light chain 3 beta (MAP1LC3B) knockout mice. Furthermore, Andro inhibited mRNA expressions of IL-23, IL-6 and IL-1β but not CD80 and CD86 in bone-marrow derived dendritic cells (BMDCs) treated with lipopolysaccharide (LPS) in a MAP1LC3B-dependent manner. In addition, Andro inhibited imiquimod-induced mRNA expressions of IL-23, IL-6, IL-1β, CD80 and CD86 in BMDCs from mice. Interestingly, Andro induced a degradation of myeloid differentiation factor 88 (MyD88) and blocked the recruitment of TNF receptor-associated factor 6 (TRAF6) to MyD88 upon LPS stimulation in BMDCs from mice. Blockade of autophagic proteolysis using NH4Cl or MAP1LC3B(-/-) BMDCs abolished the Andro-induced MyD88 degradation. In conclusion, Andro controls activation of MyD88-dependent cytokines and alleviates psoriasis in mice via inducing autophagic proteolysis of MyD88, which could be a novel strategy to treat psoriasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Enhancement of absorption and hepatoprotective potential through soya-phosphatidylcholine-andrographolide vesicular system.

    Science.gov (United States)

    Jain, Pushpendra Kumar; Khurana, Navneet; Pounikar, Yogesh; Gajbhiye, Asmita; Kharya, Murli Dhar

    2013-06-01

    Andrographis paniculata is a medicinal herb used extensively for various ailments and contains therapeutically active phytoconstituent, andrographolide (AN). Although hepatoprotective activity of AN is established, but their bioavailability is restricted due to its rapid clearance. The aim of this study, therefore, was to formulate AN herbosomes (ANH) through complexation with naturally occurring soya-phosphatidylcholine (SPC), in order to enhance absorption. Prepared andrographolide-soy phosphatidylcholine (AN-SPC) complex prepared was subjected for characterisation of complex and formation of vesicular system known as ANH using rotary evaporation techniques. This complex was subjected to in vitro study using everted small intestine sac technique which showed significantly increased absorption of AN from the ANH as compared to the plain AN. The hepatoprotective potential of ANH and plain AN was evaluated using carbon tetrachloride inducing hepatotoxicity rat model and compared, in which ANH equivalent to 50 mg/kg of plain AN significantly restore serum glutamate oxalacetate transaminase (112.4 ± 9.67 for AN whereas 90.2 ± 4.23 for ANH) and serum glutamate pyruvate transaminase (109.3 ± 7.89 for AN whereas 90.6 ± 4.34 for ANH) level as compared to control group. The ANH showed significantly better absorption than plain AN and this effect of ANH was also comparable to the standard drug (Silymarin). The findings of present study reveal that ANH has better bioavailability as shown by in vitro absorption study and hence improved hepatoprotection as compared to plain AN at equivalent dose.

  13. Platelet-derived growth factor inhibits platelet activation in heparinized whole blood.

    Science.gov (United States)

    Selheim, F; Holmsen, H; Vassbotn, F S

    1999-08-15

    We previously have demonstrated that human platelets have functionally active platelet-derived growth factor alpha-receptors. Studies with gel-filtered platelets showed that an autocrine inhibition pathway is transduced through this tyrosine kinase receptor during platelet activation. The physiological significance of this inhibitory effect of platelet-derived growth factor on gel-filtered platelets activation is, however, not known. In the present study, we investigated whether platelet-derived growth factor inhibits platelet activation under more physiological conditions in heparinized whole blood, which represents a more physiological condition than gel-filtered platelets. Using flow cytometric assays, we demonstrate here that platelet-derived growth factor inhibits thrombin-, thrombin receptor agonist peptide SFLLRN-, and collagen-induced platelet aggregation and shedding of platelet-derived microparticles from the platelet plasma membrane during platelet aggregation in stirred heparinized whole blood. The inhibitory effect of platelet-derived growth factor was dose dependent. However, under nonaggregating conditions (no stirring), we could not demonstrate any significant effect of platelet-derived growth factor on thrombin- and thrombin receptor agonist peptide-induced platelet surface expression of P-selectin. Our results demonstrate that platelet-derived growth factor appears to be a true antithrombotic agent only under aggregating conditions in heparinized whole blood.

  14. 3-Bromopyruvate inhibits human gastric cancer tumor growth in nude mice via the inhibition of glycolysis.

    Science.gov (United States)

    Xian, Shu-Lin; Cao, Wei; Zhang, Xiao-Dong; Lu, Yun-Fei

    2015-02-01

    Tumor cells primarily depend upon glycolysis in order to gain energy. Therefore, the inhibition of glycolysis may inhibit tumor growth. Our previous study demonstrated that 3-bromopyruvate (3-BrPA) inhibited gastric cancer cell proliferation in vitro . However, the ability of 3-BrPA to suppress tumor growth in vivo, and its underlying mechanism, have yet to be elucidated. The aim of the present study was to investigate the inhibitory effect of 3-BrPA in an animal model of gastric cancer. It was identified that 3-BrPA exhibited strong inhibitory effects upon xenograft tumor growth in nude mice. In addition, the antitumor function of 3-BrPA exhibited a dose-effect association, which was similar to that of the chemotherapeutic agent, 5-fluorouracil. Furthermore, 3-BrPA exhibited low toxicity in the blood, liver and kidneys of the nude mice. The present study hypothesized that the inhibitory effect of 3-BrPA is achieved through the inhibition of hexokinase activity, which leads to the downregulation of B-cell lymphoma 2 (Bcl-2) expression, the upregulation of Bcl-2-associated X protein expression and the subsequent activation of caspase-3. These data suggest that 3-BrPA may be a novel therapy for the treatment of gastric cancer.

  15. Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate.

    Science.gov (United States)

    Damodaran, Srinivasan

    2007-12-26

    The inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate produced by papain action was studied. The ice crystal growth was monitored by thermal cycling between -14 and -12 degrees C at a rate of one cycle per 3 min. It is shown that the hydrolysate fraction containing peptides in the molecular weight range of about 2000-5000 Da exhibited the highest inhibitory activity on ice crystal growth in ice cream mix, whereas fractions containing peptides greater than 7000 Da did not inhibit ice crystal growth. The size distribution of gelatin peptides formed in the hydrolysate was influenced by the pH of hydrolysis. The optimum hydrolysis conditions for producing peptides with maximum ice crystal growth inhibitory activity was pH 7 at 37 degrees C for 10 min at a papain to gelatin ratio of 1:100. However, this may depend on the type and source of gelatin. The possible mechanism of ice crystal growth inhibition by peptides from gelatin is discussed. Molecular modeling of model gelatin peptides revealed that they form an oxygen triad plane at the C-terminus with oxygen-oxygen distances similar to those found in ice nuclei. Binding of this oxygen triad plane to the prism face of ice nuclei via hydrogen bonding appears to be the mechanism by which gelatin hydrolysate might be inhibiting ice crystal growth in ice cream mix.

  16. Mullerian Inhibiting Substance (MIS) Augments IFN-gamma Mediated Inhibition of Breast Cancer Cell Growth

    National Research Council Canada - National Science Library

    Gupta, Vandana

    2004-01-01

    Mullerian Inhibiting Substance (MIS), a member of the TGFB family regulates growth, differentiation, and apoptosis in many cell types In the male embryo, MIS causes regression of the Mullerian duct...

  17. Pharmacokinetic and pharmacodynamic herb-drug interaction of Andrographis paniculata (Nees) extract and andrographolide with etoricoxib after oral administration in rats.

    Science.gov (United States)

    Balap, Aishwarya; Atre, Bhagyashri; Lohidasan, Sathiyanarayanan; Sinnathambi, Arulmozhi; Mahadik, Kakasaheb

    2016-05-13

    Andrographis paniculata Nees (Acanthacae) is commonly used medicinal plant in the traditional. Unani and Ayurvedic medicinal systems. It has broad range of pharmacological effects such as hepatoprotective, antioxidant, antivenom, antifertility, inhibition of replication of the HIV virus, antimalarial, antifungal, antibacterial, antidiabetic, suppression of various cancer cells and anti-inflammatory properties. Andrographolide (AN) is one of the active constituent of the A. paniculata Nees extract (APE). They have been found in many traditional herbal formulations in India and proven to be effective as anti-inflammatory drug To evaluate the pharmacokinetic and pharmacodynamic (anti-arthritic) herb-drug interactions of A. paniculata Nees extract (APE) and pure andrographolide (AN) with etoricoxib (ETO) after oral co-administration in wistar rats. After oral co-administration of APE (200mg/Kg) and AN (60mg/kg) with ETO (10mg/kg) in rats, drug concentrations in plasma were determined using HPLC method. The main pharmacokinetic parameters of Cmax, tmax, t1/2, MRT, Vd, CL, and AUC were calculated by non-compartment model. Change in paw volume, mechanical nociceptive threshold, mechanical hyperalgesia, histopathology and hematological parameters were evaluated to study antiarthritic activity. Co-administration of ETO with APE and pure AN decreased systemic exposure level of each compound in vivo. The Cmax, AUC, t1/2 of ETO was decreased whereas Vd and CL of ETO was increased significantly after co-administration of ETO with pure AN and APE. In pharmacodynamic study, ETO alone and ETO+APE (10+200mg/kg) groups exhibited significant synergistic anti-arthritic activity as compared to groups ETO+AN, APE and AN alone. The results obtained from this study suggested that ETO, APE and pure AN existed pharmacokinetic herb-drug interactions in rat which is correlated with anti-arthritic study. Physicians and patients using A. paniculata should have the knowledge about its possible

  18. AP-1/IRF-3 Targeted Anti-Inflammatory Activity of Andrographolide Isolated from Andrographis paniculata

    Directory of Open Access Journals (Sweden)

    Ting Shen

    2013-01-01

    Full Text Available Andrographolide (AG is an abundant component of plants of the genus Andrographis and has a number of beneficial properties including neuroprotective, anticancer, anti-inflammatory, and antidiabetic effects. Despite numerous pharmacological studies, the precise mechanism of AG is still ambiguous. Thus, in the present study, we investigated the molecular mechanisms of AG and its target proteins as they pertain to anti-inflammatory responses. AG suppressed the production of nitric oxide (NO and prostaglandin E2 (PGE2, as well as the mRNA abundance of inducible NO synthase (iNOS, tumor necrosis factor-alpha (TNF-α, cyclooxygenase (COX-2, and interferon-beta (IFN-β in a dose-dependent manner in both lipopolysaccharide- (LPS- activated RAW264.7 cells and peritoneal macrophages. AG also substantially ameliorated the symptoms of LPS-induced hepatitis and EtOH/HCl-induced gastritis in mice. Based on the results of luciferase reporter gene assays, kinase assays, and measurement of nuclear levels of transcription factors, the anti-inflammatory effects of AG were found to be clearly mediated by inhibition of both (1 extracellular signal-regulated kinase (ERK/activator protein (AP-1 and (2 IκB kinase ε (IKKε/interferon regulatory factor (IRF-3 pathways. In conclusion, we detected a novel molecular signaling pathway by which AG can suppress inflammatory responses. Thus, AG is a promising anti-inflammatory drug with two pharmacological targets.

  19. Targeting fibroblast growth factor receptor signaling inhibits prostate cancer progression.

    Science.gov (United States)

    Feng, Shu; Shao, Longjiang; Yu, Wendong; Gavine, Paul; Ittmann, Michael

    2012-07-15

    Extensive correlative studies in human prostate cancer as well as studies in vitro and in mouse models indicate that fibroblast growth factor receptor (FGFR) signaling plays an important role in prostate cancer progression. In this study, we used a probe compound for an FGFR inhibitor, which potently inhibits FGFR-1-3 and significantly inhibits FGFR-4. The purpose of this study is to determine whether targeting FGFR signaling from all four FGFRs will have in vitro activities consistent with inhibition of tumor progression and will inhibit tumor progression in vivo. Effects of AZ8010 on FGFR signaling and invasion were analyzed using immortalized normal prostate epithelial (PNT1a) cells and PNT1a overexpressing FGFR-1 or FGFR-4. The effect of AZ8010 on invasion and proliferation in vitro was also evaluated in prostate cancer cell lines. Finally, the impact of AZ8010 on tumor progression in vivo was evaluated using a VCaP xenograft model. AZ8010 completely inhibits FGFR-1 and significantly inhibits FGFR-4 signaling at 100 nmol/L, which is an achievable in vivo concentration. This results in marked inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and invasion in PNT1a cells expressing FGFR-1 and FGFR-4 and all prostate cancer cell lines tested. Treatment in vivo completely inhibited VCaP tumor growth and significantly inhibited angiogenesis and proliferation and increased cell death in treated tumors. This was associated with marked inhibition of ERK phosphorylation in treated tumors. Targeting FGFR signaling is a promising new approach to treating aggressive prostate cancer.

  20. Differential chlorate inhibition of Chaetomium globosum germination, hyphal growth, and perithecia synthesis.

    Science.gov (United States)

    Biles, Charles L; Wright, Desiree; Fuego, Marianni; Guinn, Angela; Cluck, Terry; Young, Jennifer; Martin, Markie; Biles, Josiah; Poudyal, Shubhra

    2012-12-01

    Chaetomium globosum Kunze:Fr is a dermatophytic, dematiaceous fungus that is ubiquitous in soils, grows readily on cellulolytic materials, and is commonly found on water-damaged building materials. Chlorate affects nitrogen metabolism in fungi and is used to study compatibility among anamorphic fungi by inducing nit mutants. The effect of chlorate toxicity on C. globosum was investigated by amending a modified malt extract agar (MEA), oat agar, and carboxymethyl cellulose agar (CMC) with various levels of potassium chlorate (KClO(3)). C. globosum perithecia production was almost completely inhibited (90-100 %) at low levels of KClO(3) (0.1 mM) in amended MEA. Inhibition of perithecia production was also observed on oat agar and CMC at 1 and 10 mM, respectively. However, hyphal growth in MEA was only inhibited 20 % by 0.1-100 mM KClO(3) concentrations. Hyphal growth was never completely inhibited at the highest levels tested (200 mM). Higher levels of KClO(3) were needed on gypsum board to inhibit perithecia synthesis. In additional experiments, KClO(3) did not inhibit C. globosum, Fusarium oxysporum, Aspergillus niger, Penicillum expansum, and airborne fungal spore germination. The various fungal spores were not inhibited by KClO(3) at 1-100 mM levels. These results suggest that C. globosum perithecia synthesis is more sensitive to chlorate toxicity than are hyphal growth and spore germination. This research provides basic information that furthers our understanding about perithecia formation and may help in developing control methods for fungal growth on building materials.

  1. A comparative study of ethylene growth response kinetics in eudicots and monocots reveals a role for gibberellin in growth inhibition and recovery.

    Science.gov (United States)

    Kim, Joonyup; Wilson, Rebecca L; Case, J Brett; Binder, Brad M

    2012-11-01

    Time-lapse imaging of dark-grown Arabidopsis (Arabidopsis thaliana) hypocotyls has revealed new aspects about ethylene signaling. This study expands upon these results by examining ethylene growth response kinetics of seedlings of several plant species. Although the response kinetics varied between the eudicots studied, all had prolonged growth inhibition for as long as ethylene was present. In contrast, with continued application of ethylene, white millet (Panicum miliaceum) seedlings had a rapid and transient growth inhibition response, rice (Oryza sativa 'Nipponbare') seedlings had a slow onset of growth stimulation, and barley (Hordeum vulgare) had a transient growth inhibition response followed, after a delay, by a prolonged inhibition response. Growth stimulation in rice correlated with a decrease in the levels of rice ETHYLENE INSENSTIVE3-LIKE2 (OsEIL2) and an increase in rice F-BOX DOMAIN AND LRR CONTAINING PROTEIN7 transcripts. The gibberellin (GA) biosynthesis inhibitor paclobutrazol caused millet seedlings to have a prolonged growth inhibition response when ethylene was applied. A transient ethylene growth inhibition response has previously been reported for Arabidopsis ethylene insensitive3-1 (ein3-1) eil1-1 double mutants. Paclobutrazol caused these mutants to have a prolonged response to ethylene, whereas constitutive GA signaling in this background eliminated ethylene responses. Sensitivity to paclobutrazol inversely correlated with the levels of EIN3 in Arabidopsis. Wild-type Arabidopsis seedlings treated with paclobutrazol and mutants deficient in GA levels or signaling had a delayed growth recovery after ethylene removal. It is interesting to note that ethylene caused alterations in gene expression that are predicted to increase GA levels in the ein3-1 eil1-1 seedlings. These results indicate that ethylene affects GA levels leading to modulation of ethylene growth inhibition kinetics.

  2. PANC-1 pancreatic cancer cell growth inhibited by cucurmosin alone and in combination with an epidermal growth factor receptor-targeted drug.

    Science.gov (United States)

    Wang, Congfei; Yang, Aiqin; Zhang, Baoming; Yin, Qiang; Huang, Heguang; Chen, Minghuang; Xie, Jieming

    2014-03-01

    To investigate the inhibition of PANC-1 pancreatic cancer cell growth by cucurmosin (CUS) and its possible mechanism. We observed the inhibition of PANC-1 cell growth by sulforhodamine B and colony-forming experiments in vitro and established nonobese diabetic/severe combined immunodeficiency mouse subcutaneous tumor models in vivo. We used Western blot to analyze protein levels related to apoptosis and epidermal growth factor receptor (EGFR) signaling pathways after drug intervention, whereas the messenger RNA expression of EGFR was analyzed by quantitative real-time polymerase chain reaction. Sulforhodamine B and colony-forming experiments indicated that CUS inhibited PANC-1 cell proliferation in a dose- and time-dependent manner. A stronger inhibitory effect was observed when CUS was combined with gefitinib. The subcutaneous tumor growth was also inhibited. Western blot showed that all the examined proteins decreased, except for 4E-BP1 and the active fragments of caspase 3 and caspase 9 increased. Epidermal growth factor receptor expression did not change significantly in quantitative real-time polymerase chain reaction. Cucurmosin can strongly inhibit the growth of PANC-1 cells in vitro and in vivo. Cucurmosin can down-regulate EGFR protein expression, but not at the messenger RNA level. Cucurmosin can also inhibit the ras/raf and phosphatidylinositol 3-kinase/Akt downstream signaling pathways and enhance the sensitivity of the EGFR-targeted drug gefitinib.

  3. Inhibition of placenta growth factor with TB-403

    DEFF Research Database (Denmark)

    Nielsen, Dorte Lisbet; Sengeløv, Lisa

    2012-01-01

    INTRODUCTION: There is clinical evidence that therapies targeting the vascular endothelial growth factor pathway are effective in delaying cancer progression. However, tumors may be either intrinsically resistant or evolve resistance to such therapies. Hence, there is a need for new therapies...... targeting angiogenesis. AREAS COVERED: The data are obtained by searching in the PubMed database. The search terms used included antiangiogenic therapy, TB-403 (RO5323441), placenta growth factor (PlGF) and VEGFR-1 (Flt-1). We review preclinical data concerning the function and inhibition of Pl......GF and summarize data on expression of PlGF in cancer patients. Data from early-phase clinical trials of TB-403 (RO5323441), a monoclonal antibody inhibiting PlGF, are discussed. Future development strategies, therapeutic potentials and limitations of TB-403 are further evaluated. EXPERT OPINION: There are some...

  4. Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential.

    Science.gov (United States)

    Caltagirone, S; Rossi, C; Poggi, A; Ranelletti, F O; Natali, P G; Brunetti, M; Aiello, F B; Piantelli, M

    2000-08-15

    Flavonoids are a class of polyphenolic compounds widely distributed in the plant kingdom, which display a variety of biological activities, including chemoprevention and tumor growth inhibition. Our aim was to investigate the effects of several polyphenols on the growth and metastatic potential of B16-BL6 melanoma cells in vivo. Intraperitoneal administration of quercetin, apigenin, (-)-epigallocathechin-3-gallate (EGCG), resveratrol, and the anti-estrogen tamoxifen, at the time of i.m. injection of B16-BL6 cells into syngeneic mice, resulted in a significant, dose-dependent delay of tumor growth, without toxicity. The relative descending order of potency was EGCG > apigenin = quercetin = tamoxifen > resveratrol > control. Furthermore, polyphenols significantly potentiated the inhibitory effect of a non-toxic dose of cisplatin. When tested for the ability to inhibit lung colonization, quercetin, apigenin, and tamoxifen (but not EGCG or resveratrol) significantly decreased the number of B16-BL6 colonies in the lungs in a dose-dependent manner, with quercetin and apigenin being more effective than tamoxifen. Interestingly, quercetin, apigenin, and tamoxifen (but not EGCG or resveratrol) significantly decreased the invasion of B16-BL6 cells in vitro, with quercetin and apigenin being more effective than tamoxifen. This suggests that anti-invasive activity is one of the mechanisms underlying inhibition of lung colonization by quercetin and apigenin. In conclusion, quercetin and apigenin inhibit melanoma growth and invasive and metastatic potential; therefore, they may constitute a valuable tool in the combination therapy of metastatic melanoma. Copyright 2000 Wiley-Liss, Inc.

  5. D-Tagatose inhibits the growth and biofilm formation of Streptococcus mutans

    Science.gov (United States)

    Hasibul, Khaleque; Nakayama-Imaohji, Haruyuki; Hashimoto, Masahito; Yamasaki, Hisashi; Ogawa, Takaaki; Waki, Junpei; Tada, Ayano; Yoneda, Saori; Tokuda, Masaaki; Miyake, Minoru; Kuwahara, Tomomi

    2018-01-01

    Dental caries is an important global health concern and Streptococcus mutans has been established as a major cariogenic bacterial species. Reports indicate that a rare sugar, D-tagatose, is not easily catabolized by pathogenic bacteria. In the present study, the inhibitory effects of D-tagatose on the growth and biofilm formation of S. mutans GS-5 were examined. Monitoring S. mutans growth over a 24 h period revealed that D-tagatose prolonged the lag phase without interfering with the final cell yield. This growth retardation was also observed in the presence of 1% sucrose, although it was abolished by the addition of D-fructose. S. mutans biofilm formation was significantly inhibited by growth in sucrose media supplemented with 1 and 4% D-tagatose compared with that in a culture containing sucrose alone, while S. mutans formed granular biofilms in the presence of this rare sugar. The inhibitory effect of D-tagatose on S. mutans biofilm formation was significantly more evident than that of xylitol. Growth in sucrose media supplemented with D-tagatose significantly decreased the expression of glucosyltransferase, exo-β-fructosidase and D-fructose-specific phosphotransferase genes but not the expression of fructosyltransferase compared with the culture containing sucrose only. The activity of cell-associated glucosyltransferase in S. mutans was inhibited by 4% D-tagatose. These results indicate that D-tagatose reduces water-insoluble glucan production from sucrose by inhibiting glucosyltransferase activities, which limits access to the free D-fructose released during this process and retards the growth of S. mutans. Therefore, foods and oral care products containing D-tagatose are anticipated to reduce the risk of caries by inhibiting S. mutans biofilm formation. PMID:29115611

  6. p8 inhibits the growth of human pancreatic cancer cells and its expression is induced through pathways involved in growth inhibition and repressed by factors promoting cell growth

    Directory of Open Access Journals (Sweden)

    Vasseur Sophie

    2003-11-01

    Full Text Available Abstract Background p8 is a stress-induced protein with multiple functions and biochemically related to the architectural factor HMG-I/Y. We analyzed the expression and function of p8 in pancreatic cancer-derived cells. Methods Expression of p8 was silenced in the human pancreatic cancer cell lines Panc-1 and BxPc-3 by infection with a retrovirus expressing p8 RNA in the antisense orientation. Cell growth was measured in control and p8-silenced cells. Influence on p8 expression of the induction of intracellular pathways promoting cellular growth or growth arrest was monitored. Results p8-silenced cells grew more rapidly than control cells transfected with the empty retrovirus. Activation of the Ras→Raf→MEK→ERK and JNK intracellular pathways down-regulated p8 expression. In addition, the MEK1/2 inhibitor U0126 and the JNK inhibitor SP600125 up-regulates expression of p8. Conversely, p38 or TGFβ-1 induced p8 expression whereas the specific p38 inhibitor SB203580 down-regulated p8 expression. Finally, TGFβ-1 induction was in part mediated through p38. Conclusions p8 inhibits the growth of human pancreatic cancer cells. p8 expression is induced through pathways involved in growth inhibition and repressed by factors that promote cell growth. These results suggest that p8 belongs to a pathway regulating the growth of pancreatic cancer cells.

  7. A new diatom growth inhibition assay using the XTT colorimetric method.

    Science.gov (United States)

    Jiang, Weina; Akagi, Takuya; Suzuki, Hidekazu; Takimoto, Ayaka; Nagai, Hiroshi

    2016-01-01

    Marine biofouling, which leads to significant operational stress and economic damage on marine infrastructures, is a major problem in marine related industries. Currently, the most common way to avoid marine biofouling involves the use of biocidal products in surface coatings. However, the need for environmentally friendly antibiofouling compounds has increased rapidly with the recent global prohibition of harmful antifoulants, such as tributyltin (TBT). In particular, periphytic diatoms have been shown to contribute significantly to biofilms, which play an important role in biofouling. Therefore, inhibiting the proliferation of fouling diatoms is a very important step in the prevention of marine biofouling. In this study, we developed a new, rapid, accurate, and convenient growth inhibition assay using the XTT colorimetric method to prevent the growth of the fouling periphytic diatom, Nitzschia amabilis Hidek. Suzuki (replaced synonym, Nitzschia laevis Hustedt). The feasibility of this method was verified by determining the growth inhibition activities of two standard photosynthetic inhibitors, DCMU and CuSO4. However, neither inhibitor had any cytotoxic activities at the range of concentrations tested. Moreover, this method was applied by screening and purification of herbicidic but non-cytotoxic compounds from cyanobacteria extracts. Our results demonstrate the utility of this newly established growth inhibition assay for the identification of marine anti-biofouling compounds. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Mixed metal oxide nanoparticles inhibit growth of Mycobacterium tuberculosis into THP-1 cells

    Directory of Open Access Journals (Sweden)

    A R Jafari

    2016-01-01

    Conclusion: Although Ag NPs exhibited low cytotoxicity, they were unable to inhibit Mtb growth in vitro. ZnO NPs exhibited strong anti-Mtb activity and inhibited bacterial growth, but exhibited high cytotoxicity to human macrophage cells. By mixing Ag and ZnO NPs at a ratio of 8ZnO/2Ag, we acquired a mixture that exhibited potent antibacterial activity against Mtb and no cytotoxic effects on THP-1 cells, resulting in inhibition of both in vitro and ex vivo Mtb growth [Figure 1],[Figure 2],[Figure 3], [Table 1],[Table 2],[Table 3].{Figure 1}{Figure 2}{Figure 3} {Table 1}{Table 2}{Table 3}

  9. Platelet-Derived Growth Factor-Receptor α Strongly Inhibits Melanoma Growth In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Debora Faraone

    2009-08-01

    Full Text Available Cutaneous melanoma is the most aggressive skin cancer; it is highly metastatic and responds poorly to current therapies. The expression of platelet-derived growth factor receptors (PDGF-Rs is reported to be reduced in metastatic melanoma compared with benign nevi or normal skin; we then hypothesized that PDGF-Rα may control growth of melanoma cells. We show here that melanoma cells overexpressing PDGF-Rα respond to serum with a significantly lower proliferation compared with that of controls. Apoptosis, cell cycle arrest, pRb dephosphorylation, and DNA synthesis inhibition were also observed in cells overexpressing PDGF-Rα. Proliferation was rescued by PDGF-Rα inhibitors, allowing to exclude nonspecific toxic effects and indicating that PDGF-Rα mediates autocrine antiproliferation signals in melanoma cells. Accordingly, PDGF-Rα was found to mediate staurosporine cytotoxicity. A protein array-based analysis of the mitogen-activated protein kinase pathway revealed that melanoma cells overexpressing PDGF-Rα show a strong reduction of c-Jun phosphorylated in serine 63 and of protein phosphatase 2A/Bα and a marked increase of p38γ, mitogen-activated protein kinase kinase 3, and signal regulatory protein α1 protein expression. In a mouse model of primary melanoma growth, infection with the Ad-vector overexpressing PDGF-Rα reached a significant 70% inhibition of primary melanoma growth (P < .001 and a similar inhibition of tumor angiogenesis. All together, these data demonstrate that PDGF-Rα strongly impairs melanoma growth likely through autocrine mechanisms and indicate a novel endogenous mechanism involved in melanoma control.

  10. Mullerian Inhibiting Substances (MIS) Augments IFN-gamma Mediated Inhibition of Breast Cancer Cell Growth

    National Research Council Canada - National Science Library

    Gupta, Vandana

    2006-01-01

    MIS is a member of the TGF family. The purpose of this study is to test the hypothesis that MIS and IFN-gamma might be more effective in the inhibition of breast cancer cell growth than either agent alone...

  11. Ultrasound-mediated interferon β gene transfection inhibits growth of malignant melanoma

    International Nuclear Information System (INIS)

    Yamaguchi, Kazuki; Feril, Loreto B.; Tachibana, Katsuro; Takahashi, Akira; Matsuo, Miki; Endo, Hitomi; Harada, Yoshimi; Nakayama, Juichiro

    2011-01-01

    Highlights: → Successful ultrasound-mediated transfection of melanoma (C32) cells with IFN-β genes both in vitro and in vivo. → Ultrasound-mediated IFN-β transfection inhibited proliferation of melanoma cells in vitro. → Ultrasound-mediated IFN-β transfection inhibited melanoma tumor growth in vivo. -- Abstract: We investigated the effects of ultrasound-mediated transfection (sonotransfection) of interferon β (IFN-β) gene on melanoma (C32) both in vitro and in vivo. C32 cells were sonotransfected with IFN-β in vitro. Subcutaneous C32 tumors in mice were sonicated weekly immediately after intra-tumor injection with IFN-β genes mixed with microbubbles. Successful sonotransfection with IFN-β gene in vitro was confirmed by ELISA, which resulted in C32 growth inhibition. In vivo, the growth ratio of tumors transfected with IFN-β gene was significantly lower than the other experimental groups. These results may lead to a new method of treatment against melanoma and other hard-to-treat cancers.

  12. Osteoclast inhibition impairs chondrosarcoma growth and bone destruction.

    Science.gov (United States)

    Otero, Jesse E; Stevens, Jeff W; Malandra, Allison E; Fredericks, Douglas C; Odgren, Paul R; Buckwalter, Joseph A; Morcuende, Jose

    2014-12-01

    Because Chondrosarcoma is resistant to available chemotherapy and radiation regimens, wide resection is the mainstay in treatment, which frequently results in high morbidity and which may not prevent local recurrence. There is a clear need for improved adjuvant treatment of this malignancy. We have observed the presence of osteoclasts in the microenvironment of chondrosarcoma in human pathological specimens. We utilized the Swarm rat chondrosarcoma (SRC) model to test the hypothesis that osteoclasts affect chondrosarcoma pathogenesis. We implanted SRC tumors in tibia of Sprague-Dawley rats and analyzed bone histologically and radiographically for bone destruction and tumor growth. At three weeks, tumors invaded local bone causing cortical disruption and trabecular resorption. Bone destruction was accompanied by increased osteoclast number and resorbed bone surface. Treatment of rats with the zoledronic acid prevented cortical destruction, inhibited trabecular resorption, and resulted in decreased tumor volume in bone. To confirm that inhibition of osteoclasts per se, and not off-target effects of drug, was responsible for the prevention of tumor growth and bone destruction, we implanted SRC into osteopetrotic rat tibia. SRC-induced bone destruction and tumor growth were impaired in osteopetrotic bone compared with control bone. The results from our animal model demonstrate that osteoclasts contribute to chondrosarcoma-mediated bone destruction and tumor growth and may represent a therapeutic target in particular chondrosarcoma patients. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Genistein exposure inhibits growth and alters steroidogenesis in adult mouse antral follicles

    International Nuclear Information System (INIS)

    Patel, Shreya; Peretz, Jackye; Pan, Yuan-Xiang; Helferich, William G.; Flaws, Jodi A.

    2016-01-01

    Genistein is a naturally occurring isoflavone phytoestrogen commonly found in plant products such as soybeans, lentils, and chickpeas. Genistein, like other phytoestrogens, has the potential to mimic, enhance, or impair the estradiol biosynthesis pathway, thereby potentially altering ovarian follicle growth. Previous studies have inconsistently indicated that genistein exposure may alter granulosa cell proliferation and hormone production, but no studies have examined the effects of genistein on intact antral follicles. Thus, this study was designed to test the hypothesis that genistein exposure inhibits follicle growth and steroidogenesis in intact antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice were cultured with vehicle (dimethyl sulfoxide; DMSO) or genistein (6.0 and 36 μM) for 18–96 h. Every 24 h, follicle diameters were measured to assess growth. At the end of each culture period, the media were pooled to measure hormone levels, and the cultured follicles were collected to measure expression of cell cycle regulators and steroidogenic enzymes. The results indicate that genistein (36 μM) inhibits growth of mouse antral follicles. Additionally, genistein (6.0 and 36 μM) increases progesterone, testosterone, and dehydroepiandrosterone (DHEA) levels, but decreases estrone and estradiol levels. The results also indicate that genistein alters the expression of steroidogenic enzymes at 24, 72 and 96 h, and the expression of cell cycle regulators at 18 h. These data indicate that genistein exposure inhibits antral follicle growth by inhibiting the cell cycle, alters sex steroid hormone levels, and dysregulates steroidogenic enzymes in cultured mouse antral follicles. - Highlights: • Genistein exposure inhibits antral follicle growth. • Genistein exposure alters expression of cell cycle regulators. • Genistein exposure alters sex steroid hormones. • Genistein exposure alters expression of steroidogenic enzymes.

  14. Genistein exposure inhibits growth and alters steroidogenesis in adult mouse antral follicles

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Shreya, E-mail: Shreya.patel214@gmail.com [Department of Comparative Biosciences, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802 (United States); Peretz, Jackye, E-mail: Jackye.peretz@gmail.com [Department of Comparative Biosciences, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802 (United States); Pan, Yuan-Xiang, E-mail: yxpan@illinois.edu [Department of Food Science and Human Nutrition, University of Illinois, 905 S. Goodwin, Urbana, IL 61801 (United States); Helferich, William G., E-mail: helferic@illinois.edu [Department of Food Science and Human Nutrition, University of Illinois, 905 S. Goodwin, Urbana, IL 61801 (United States); Flaws, Jodi A., E-mail: jflaws@illinois.edu [Department of Comparative Biosciences, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802 (United States)

    2016-02-15

    Genistein is a naturally occurring isoflavone phytoestrogen commonly found in plant products such as soybeans, lentils, and chickpeas. Genistein, like other phytoestrogens, has the potential to mimic, enhance, or impair the estradiol biosynthesis pathway, thereby potentially altering ovarian follicle growth. Previous studies have inconsistently indicated that genistein exposure may alter granulosa cell proliferation and hormone production, but no studies have examined the effects of genistein on intact antral follicles. Thus, this study was designed to test the hypothesis that genistein exposure inhibits follicle growth and steroidogenesis in intact antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice were cultured with vehicle (dimethyl sulfoxide; DMSO) or genistein (6.0 and 36 μM) for 18–96 h. Every 24 h, follicle diameters were measured to assess growth. At the end of each culture period, the media were pooled to measure hormone levels, and the cultured follicles were collected to measure expression of cell cycle regulators and steroidogenic enzymes. The results indicate that genistein (36 μM) inhibits growth of mouse antral follicles. Additionally, genistein (6.0 and 36 μM) increases progesterone, testosterone, and dehydroepiandrosterone (DHEA) levels, but decreases estrone and estradiol levels. The results also indicate that genistein alters the expression of steroidogenic enzymes at 24, 72 and 96 h, and the expression of cell cycle regulators at 18 h. These data indicate that genistein exposure inhibits antral follicle growth by inhibiting the cell cycle, alters sex steroid hormone levels, and dysregulates steroidogenic enzymes in cultured mouse antral follicles. - Highlights: • Genistein exposure inhibits antral follicle growth. • Genistein exposure alters expression of cell cycle regulators. • Genistein exposure alters sex steroid hormones. • Genistein exposure alters expression of steroidogenic enzymes.

  15. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis.

    Science.gov (United States)

    Li, Qingli; Lambrechts, Mark J; Zhang, Qiuyang; Liu, Sen; Ge, Dongxia; Yin, Rutie; Xi, Mingrong; You, Zongbing

    2013-01-01

    Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose) polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy.

  16. Di(2-ethylhexyl) phthalate inhibits antral follicle growth, induces atresia, and inhibits steroid hormone production in cultured mouse antral follicles

    Energy Technology Data Exchange (ETDEWEB)

    Hannon, Patrick R., E-mail: phannon2@illinois.edu; Brannick, Katherine E., E-mail: kbran@illinois.edu; Wang, Wei, E-mail: Wei.Wang2@covance.com; Gupta, Rupesh K., E-mail: drrupesh@yahoo.com; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    2015-04-01

    Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental toxicant found in consumer products that causes ovarian toxicity. Antral follicles are the functional ovarian units and must undergo growth, survival from atresia, and proper regulation of steroidogenesis to ovulate and produce hormones. Previous studies have determined that DEHP inhibits antral follicle growth and decreases estradiol levels in vitro; however, the mechanism by which DEHP elicits these effects is unknown. The present study tested the hypothesis that DEHP directly alters regulators of the cell cycle, apoptosis, and steroidogenesis to inhibit antral follicle functionality. Antral follicles from adult CD-1 mice were cultured with vehicle control or DEHP (1–100 μg/ml) for 24–96 h to establish the temporal effects of DEHP on the follicle. Following 24–96 h of culture, antral follicles were subjected to gene expression analysis, and media were subjected to measurements of hormone levels. DEHP increased the mRNA levels of cyclin D2, cyclin dependent kinase 4, cyclin E1, cyclin A2, and cyclin B1 and decreased the levels of cyclin-dependent kinase inhibitor 1A prior to growth inhibition. Additionally, DEHP increased the mRNA levels of BCL2-associated agonist of cell death, BCL2-associated X protein, BCL2-related ovarian killer protein, B-cell leukemia/lymphoma 2, and Bcl2-like 10, leading to an increase in atresia. Further, DEHP decreased the levels of progesterone, androstenedione, and testosterone prior to the decrease in estradiol levels, with decreased mRNA levels of side-chain cleavage, 17α-hydroxylase-17,20-desmolase, 17β-hydroxysteroid dehydrogenase, and aromatase. Collectively, DEHP directly alters antral follicle functionality by inhibiting growth, inducing atresia, and inhibiting steroidogenesis. - Highlights: • DEHP inhibits antral follicle growth by dysregulating cell cycle regulators. • DEHP induces antral follicle atresia by dysregulating apoptosis regulators. • DEHP

  17. Di(2-ethylhexyl) phthalate inhibits antral follicle growth, induces atresia, and inhibits steroid hormone production in cultured mouse antral follicles

    International Nuclear Information System (INIS)

    Hannon, Patrick R.; Brannick, Katherine E.; Wang, Wei; Gupta, Rupesh K.; Flaws, Jodi A.

    2015-01-01

    Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental toxicant found in consumer products that causes ovarian toxicity. Antral follicles are the functional ovarian units and must undergo growth, survival from atresia, and proper regulation of steroidogenesis to ovulate and produce hormones. Previous studies have determined that DEHP inhibits antral follicle growth and decreases estradiol levels in vitro; however, the mechanism by which DEHP elicits these effects is unknown. The present study tested the hypothesis that DEHP directly alters regulators of the cell cycle, apoptosis, and steroidogenesis to inhibit antral follicle functionality. Antral follicles from adult CD-1 mice were cultured with vehicle control or DEHP (1–100 μg/ml) for 24–96 h to establish the temporal effects of DEHP on the follicle. Following 24–96 h of culture, antral follicles were subjected to gene expression analysis, and media were subjected to measurements of hormone levels. DEHP increased the mRNA levels of cyclin D2, cyclin dependent kinase 4, cyclin E1, cyclin A2, and cyclin B1 and decreased the levels of cyclin-dependent kinase inhibitor 1A prior to growth inhibition. Additionally, DEHP increased the mRNA levels of BCL2-associated agonist of cell death, BCL2-associated X protein, BCL2-related ovarian killer protein, B-cell leukemia/lymphoma 2, and Bcl2-like 10, leading to an increase in atresia. Further, DEHP decreased the levels of progesterone, androstenedione, and testosterone prior to the decrease in estradiol levels, with decreased mRNA levels of side-chain cleavage, 17α-hydroxylase-17,20-desmolase, 17β-hydroxysteroid dehydrogenase, and aromatase. Collectively, DEHP directly alters antral follicle functionality by inhibiting growth, inducing atresia, and inhibiting steroidogenesis. - Highlights: • DEHP inhibits antral follicle growth by dysregulating cell cycle regulators. • DEHP induces antral follicle atresia by dysregulating apoptosis regulators. • DEHP

  18. Andrographolide Promotes Neural Differentiation of Rat Adipose Tissue-Derived Stromal Cells through Wnt/β-Catenin Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yan Liang

    2017-01-01

    Full Text Available Adipose tissue-derived stromal cells (ADSCs are a high-yield source of pluripotent stem cells for use in cell-based therapies. We explored the effect of andrographolide (ANDRO, one of the ingredients of the medicinal herb extract on the neural differentiation of rat ADSCs and associated molecular mechanisms. We observed that rat ADSCs were small and spindle-shaped and expressed multiple stem cell markers including nestin. They were multipotent as evidenced by adipogenic, osteogenic, chondrogenic, and neural differentiation under appropriate conditions. The proportion of cells exhibiting neural-like morphology was higher, and neurites developed faster in the ANDRO group than in the control group in the same neural differentiation medium. Expression levels of the neural lineage markers MAP2, tau, GFAP, and β-tubulin III were higher in the ANDRO group. ANDRO induced a concentration-dependent increase in Wnt/β-catenin signaling as evidenced by the enhanced expression of nuclear β-catenin and the inhibited form of GSK-3β (pSer9. Thus, this study shows for the first time how by enhancing the neural differentiation of ADSCs we expect that ANDRO pretreatment may increase the efficacy of adult stem cell transplantation in nervous system diseases, but more exploration is needed.

  19. Lactam inhibiting Streptococcus mutans growth on titanium

    International Nuclear Information System (INIS)

    Xavier, J.G.; Geremias, T.C.; Montero, J.F.D.; Vahey, B.R.; Benfatti, C.A.M.; Souza, J.C.M.; Magini, R.S.; Pimenta, A.L.

    2016-01-01

    The aim of this work was to analyze the activity of novel synthetic lactams on preventing biofilm formation on titanium surfaces. Titanium (Ti6Al4V) samples were exposed to Streptococcus mutans cultures in the presence or absence of a synthetic lactam. After 48 h incubation, planktonic growth was determined by spectrophotometry. Biofilm was evaluated by crystal violet staining and colony forming units (CFU·ml −1 ), followed by scanning electron microscopy (SEM). Results showed that the average of adhered viable cells was approximately 1.5 × 10 2 CFU/ml in the presence of lactam and 4 × 10 2 CFU/ml in its absence. This novel compound was considerable active in reducing biofilm formation over titanium surfaces, indicating its potential for the development of antimicrobial drugs targeting the inhibition of the initial stages of bacterial biofilms on dental implants abutments. - Highlights: • A novel synthetic compound is tested on preventing biofilm formation on titanium surfaces • Biofilm inhibition has been achieved on titanium surfaces containing the novel compound. • Planktonic growth of S. mutans was not affected by the presence of lactams on titanium.

  20. Lactam inhibiting Streptococcus mutans growth on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, J.G.; Geremias, T.C.; Montero, J.F.D. [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis/SC, 88040-900 (Brazil); Vahey, B.R. [Herman Ostrow School of Dentistry of USC, 925 W 34 St, Los Angeles, CA 90089 (United States); Benfatti, C.A.M.; Souza, J.C.M.; Magini, R.S. [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis/SC, 88040-900 (Brazil); Pimenta, A.L., E-mail: andrea@intelab.ufsc.br [Department of Biologia, ERRMECe, Université de Cergy Pontoise, 2, Av. Adolphe Chauvin 95302 Cergy, Pontoise (France); Integrated Laboratories Technologies (InteLab), Dept. Chemical and Food Engineering (EQA), Federal University of Santa Catarina - UFSC, Florianópolis/SC, 88040-970 (Brazil)

    2016-11-01

    The aim of this work was to analyze the activity of novel synthetic lactams on preventing biofilm formation on titanium surfaces. Titanium (Ti6Al4V) samples were exposed to Streptococcus mutans cultures in the presence or absence of a synthetic lactam. After 48 h incubation, planktonic growth was determined by spectrophotometry. Biofilm was evaluated by crystal violet staining and colony forming units (CFU·ml{sup −1}), followed by scanning electron microscopy (SEM). Results showed that the average of adhered viable cells was approximately 1.5 × 10{sup 2} CFU/ml in the presence of lactam and 4 × 10{sup 2} CFU/ml in its absence. This novel compound was considerable active in reducing biofilm formation over titanium surfaces, indicating its potential for the development of antimicrobial drugs targeting the inhibition of the initial stages of bacterial biofilms on dental implants abutments. - Highlights: • A novel synthetic compound is tested on preventing biofilm formation on titanium surfaces • Biofilm inhibition has been achieved on titanium surfaces containing the novel compound. • Planktonic growth of S. mutans was not affected by the presence of lactams on titanium.

  1. Growth inhibition of shrimp pathogens by isolated gastrointestinal microflora of Macrobrachium rosenbergii de Man

    Directory of Open Access Journals (Sweden)

    Seehanat, S.

    2005-02-01

    Full Text Available The useful bacteria which were isolated from the gastrointestinal tract of freshwater prawn (Macrobrachium rosenbergii de Man, cultivated in earthen pond at Maha Sarakham province, Thailand, consisted of 14 isolates of Bacillus (B1 – B14 and 18 isolates of Lactic acid bacteria (LA1 – LA18. The abilities of all isolated bacteria on growth inhibition of pathogenic bacteria (Escherichia coli, Bacillus cereus, Aeromonas hydrophila and Pseudomonas aeruginosa were studied by paperdisc plate method. The results showed that the Bacillus B2 and B5 were unable to inhibit the growth of all of the tested pathogens. Bacillus B1, B10 and B12 were capable of inhibiting the growth of 3 of 4 tested pathogen strains. Although all of the isolated lactic acid bacteria (LA1 –LA18 could not inhibit the E. coli growth, all of them could inhibit the growth of B. cereus. The isolated lactic acid bacteria which were capable of inhibiting the growth of 3 tested pathogen strains (excluded E. coli were LA12 , LA13 , LA14 , LA15 , LA16 , LA17 and LA18. In order to select the high potential strain of bacteria for using as probiotics, Bacillus B1 , B3 , B4 , B10 and B12 and lactic acid bacteria LA12 , LA13 , LA14 , LA15 , LA16 , LA17 and LA18 were tested for their growth abilities in various growth conditions. The tested growth conditions included various concentrations of the bile salt and salt (NaCl and various pH and temperatures. The results revealed that Bacillus B1 and B10 and lactic acid bacteria LA13 , LA16 and LA18 exhibited high potential for using as probiotics. The results of biochemical test for identification of these high potential strains showed that Bacillus B1 and B10 were possibly B. licheniformis and B. thuringiensis respectively. The lactic acid bacteria LA13 , LA16 and LA18 were possibly the same strain and belonged to the genus Pediococcus.

  2. Exogenous ethylene inhibits sprout growth in onion bulbs.

    Science.gov (United States)

    Bufler, Gebhard

    2009-01-01

    Exogenous ethylene has recently gained commercial interest as a sprouting inhibitor of onion bulbs. The role of ethylene in dormancy and sprouting of onions, however, is not known. A cultivar (Allium cepa 'Copra') with a true period of dormancy was used. Dormant and sprouting states of onion bulbs were treated with supposedly saturating doses of ethylene or with the ethylene-action inhibitor 1-methylcyclopropene (1-MCP). Initial sprouting was determined during storage at 18 degrees C by monitoring leaf blade elongation in a specific size class of leaf sheaths. Changes in ATP content and sucrose synthase activity in the sprout leaves, indicators of the sprouting state, were determined. CO(2) and ethylene production of onion bulbs during storage were recorded. Exogenous ethylene suppressed sprout growth of both dormant and already sprouting onion bulbs by inhibiting leaf blade elongation. In contrast to this growth-inhibiting effect, ethylene stimulated CO(2) production by the bulbs about 2-fold. The duration of dormancy was not significantly affected by exogenous ethylene. However, treatment of dormant bulbs with 1-MCP caused premature sprouting. Exogenous ethylene proved to be a powerful inhibitor of sprout growth in onion bulbs. The dormancy breaking effect of 1-MCP indicates a regulatory role of endogenous ethylene in onion bulb dormancy.

  3. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Zhengfu, He; Hu, Zhang; Huiwen, Miao; Zhijun, Li [Department of Thoracic Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China); Jiaojie, Zhou [Zhejiang University School of Medicine, Hangzhou (China); Xiaoyi, Yan, E-mail: xiaoyiyan163@163.com [Zhejiang University School of Medicine, Hangzhou (China); Xiujun, Cai, E-mail: xiujuncaomaj@163.com [Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China)

    2015-08-21

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs. Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice.

  4. Development of fluorescent Plasmodium falciparum for in vitro growth inhibition assays

    Directory of Open Access Journals (Sweden)

    Crabb Brendan S

    2010-06-01

    Full Text Available Abstract Background Plasmodium falciparum in vitro growth inhibition assays are widely used to evaluate and quantify the functional activity of acquired and vaccine-induced antibodies and the anti-malarial activity of known drugs and novel compounds. However, several constraints have limited the use of these assays in large-scale population studies, vaccine trials and compound screening for drug discovery and development. Methods The D10 P. falciparum line was transfected to express green fluorescent protein (GFP. In vitro growth inhibition assays were performed over one or two cycles of P. falciparum asexual replication using inhibitory polyclonal antibodies raised in rabbits, an inhibitory monoclonal antibody, human serum samples, and anti-malarials. Parasitaemia was evaluated by microscopy and flow cytometry. Results Transfected parasites expressed GFP throughout all asexual stages and were clearly detectable by flow cytometry and fluorescence microscopy. Measurement of parasite growth inhibition was the same when determined by detection of GFP fluorescence or staining with ethidium bromide. There was no difference in the inhibitory activity of samples when tested against the transfected parasites compared to the parental line. The level of fluorescence of GFP-expressing parasites increased throughout the course of asexual development. Among ring-stages, GFP-fluorescent parasites were readily separated from uninfected erythrocytes by flow cytometry, whereas this was less clear using ethidium bromide staining. Inhibition by serum and antibody samples was consistently higher when tested over two cycles of growth compared to one, and when using a 1 in 10 sample dilution compared to 1 in 20, but there was no difference detected when using a different starting parasitaemia to set-up growth assays. Flow cytometry based measurements of parasitaemia proved more reproducible than microscopy counts. Conclusions Flow cytometry based assays using GFP

  5. Inhibition of Lung Cancer Growth in Mice by Dietary Mixed Tocopherols

    Science.gov (United States)

    Lambert, Joshua D.; Lu, Gang; Lee, Mao-Jung; Hu, Jennifer; Ju, Jihyeung; Yang, Chung S.

    2009-01-01

    Tocopherols are lipophilic antioxidants found in vegetable oils. Here, we examined the growth inhibitory effect of a γ-tocopherol-enriched tocopherol mixture (γTmT) against CL13 murine lung cancer cells grown in culture and as subcutaneous tumors in A/J mice. We found γTmT had no effect after 2 d and weakly inhibited the growth of CL13 in culture after 5 d (28% growth inhibition at 80 µM). Dietary treatment with 0.1% and 0.3% γTmT for 50 d inhibited the growth of CL13 tumors in A/J mice by 53.9 and 80.5%, respectively. Histopathological analysis revealed an increase in tumor necrosis compared to control tumors (80% and 240% increase by 0.1% and 0.3% γTmT, respectively). Dietary treatment with γTmT dose-dependently increased γ- (10.0 – 37.6-fold) and δ-tocopherol (8.9 – 26.7-fold) in the tumors of treated mice compared to controls. Dietary treatment with γTmT also increased plasma γ- (5.4 – 6.7-fold) and δ-tocopherol (5.5 – 7-fold). Whereas others have demonstrated the cancer preventive activity of γTmT against mammary and colon cancer, this is the first report of growth inhibitory activity against lung cancer. Further studies are needed to determine the underlying mechanisms for this anticancer activity, and to determine if such activity occurs in other models of cancer. PMID:19557822

  6. Taxifolin enhances andrographolide-induced mitotic arrest and apoptosis in human prostate cancer cells via spindle assembly checkpoint activation.

    Directory of Open Access Journals (Sweden)

    Zhong Rong Zhang

    Full Text Available Andrographolide (Andro suppresses proliferation and triggers apoptosis in many types of cancer cells. Taxifolin (Taxi has been proposed to prevent cancer development similar to other dietary flavonoids. In the present study, the cytotoxic and apoptotic effects of the addition of Andro alone and Andro and Taxi together on human prostate carcinoma DU145 cells were assessed. Andro inhibited prostate cancer cell proliferation by mitotic arrest and activation of the intrinsic apoptotic pathway. Although the effect of Taxi alone on DU145 cell proliferation was not significant, the combined use of Taxi with Andro significantly potentiated the anti-proliferative effect of increased mitotic arrest and apoptosis by enhancing the cleavage of poly(ADP-ribose polymerase, and caspases-7 and -9. Andro together with Taxi enhanced microtubule polymerization in vitro, and they induced the formation of twisted and elongated spindles in the cancer cells, thus leading to mitotic arrest. In addition, we showed that depletion of MAD2, a component in the spindle assembly checkpoint (SAC, alleviated the mitotic block induced by the two compounds, suggesting that they trigger mitotic arrest by SAC activation. This study suggests that the anti-cancer activity of Andro can be significantly enhanced in combination with Taxi by disrupting microtubule dynamics and activating the SAC.

  7. Taxifolin Enhances Andrographolide-Induced Mitotic Arrest and Apoptosis in Human Prostate Cancer Cells via Spindle Assembly Checkpoint Activation

    Science.gov (United States)

    Wong, Matthew Man-Kin; Chiu, Sung-Kay; Cheung, Hon-Yeung

    2013-01-01

    Andrographolide (Andro) suppresses proliferation and triggers apoptosis in many types of cancer cells. Taxifolin (Taxi) has been proposed to prevent cancer development similar to other dietary flavonoids. In the present study, the cytotoxic and apoptotic effects of the addition of Andro alone and Andro and Taxi together on human prostate carcinoma DU145 cells were assessed. Andro inhibited prostate cancer cell proliferation by mitotic arrest and activation of the intrinsic apoptotic pathway. Although the effect of Taxi alone on DU145 cell proliferation was not significant, the combined use of Taxi with Andro significantly potentiated the anti-proliferative effect of increased mitotic arrest and apoptosis by enhancing the cleavage of poly(ADP-ribose) polymerase, and caspases-7 and -9. Andro together with Taxi enhanced microtubule polymerization in vitro, and they induced the formation of twisted and elongated spindles in the cancer cells, thus leading to mitotic arrest. In addition, we showed that depletion of MAD2, a component in the spindle assembly checkpoint (SAC), alleviated the mitotic block induced by the two compounds, suggesting that they trigger mitotic arrest by SAC activation. This study suggests that the anti-cancer activity of Andro can be significantly enhanced in combination with Taxi by disrupting microtubule dynamics and activating the SAC. PMID:23382917

  8. A Comparative Study of Ethylene Growth Response Kinetics in Eudicots and Monocots Reveals a Role for Gibberellin in Growth Inhibition and Recovery1[W][OA

    Science.gov (United States)

    Kim, Joonyup; Wilson, Rebecca L.; Case, J. Brett; Binder, Brad M.

    2012-01-01

    Time-lapse imaging of dark-grown Arabidopsis (Arabidopsis thaliana) hypocotyls has revealed new aspects about ethylene signaling. This study expands upon these results by examining ethylene growth response kinetics of seedlings of several plant species. Although the response kinetics varied between the eudicots studied, all had prolonged growth inhibition for as long as ethylene was present. In contrast, with continued application of ethylene, white millet (Panicum miliaceum) seedlings had a rapid and transient growth inhibition response, rice (Oryza sativa ‘Nipponbare’) seedlings had a slow onset of growth stimulation, and barley (Hordeum vulgare) had a transient growth inhibition response followed, after a delay, by a prolonged inhibition response. Growth stimulation in rice correlated with a decrease in the levels of rice ETHYLENE INSENSTIVE3-LIKE2 (OsEIL2) and an increase in rice F-BOX DOMAIN AND LRR CONTAINING PROTEIN7 transcripts. The gibberellin (GA) biosynthesis inhibitor paclobutrazol caused millet seedlings to have a prolonged growth inhibition response when ethylene was applied. A transient ethylene growth inhibition response has previously been reported for Arabidopsis ethylene insensitive3-1 (ein3-1) eil1-1 double mutants. Paclobutrazol caused these mutants to have a prolonged response to ethylene, whereas constitutive GA signaling in this background eliminated ethylene responses. Sensitivity to paclobutrazol inversely correlated with the levels of EIN3 in Arabidopsis. Wild-type Arabidopsis seedlings treated with paclobutrazol and mutants deficient in GA levels or signaling had a delayed growth recovery after ethylene removal. It is interesting to note that ethylene caused alterations in gene expression that are predicted to increase GA levels in the ein3-1 eil1-1 seedlings. These results indicate that ethylene affects GA levels leading to modulation of ethylene growth inhibition kinetics. PMID:22977279

  9. Inhibition of B16-BL6 melanoma growth in mice by methionine-enkephalin.

    Science.gov (United States)

    Murgo, A J

    1985-08-01

    The antitumor effect of methionine-enkephalin [( Met]enkephalin) was demonstrated in C57BL/6J mice inoculated with B16-BL6 melanoma cells. Local subcutaneous tumor growth was inhibited with a 50-micrograms dose daily for 7 or 14 days. The antitumor effect of [Met]enkephalin was inhibited by the administration of the opioid receptor antagonist naloxone. Naloxone alone had no significant effect on tumor growth.

  10. Smad7 induces tumorigenicity by blocking TGF-beta-induced growth inhibition and apoptosis.

    Science.gov (United States)

    Halder, Sunil K; Beauchamp, R Daniel; Datta, Pran K

    2005-07-01

    Smad proteins play a key role in the intracellular signaling of the transforming growth factor beta (TGF-beta) superfamily of extracellular polypeptides that initiate signaling to regulate a wide variety of biological processes. The inhibitory Smad, Smad7, has been shown to function as intracellular antagonists of TGF-beta family signaling and is upregulated in several cancers. To determine the effect of Smad7-mediated blockade of TGF-beta signaling, we have stably expressed Smad7 in a TGF-beta-sensitive, well-differentiated, and non-tumorigenic cell line, FET, that was derived from human colon adenocarcinoma. Smad7 inhibits TGF-beta-induced transcriptional responses by blocking complex formation between Smad 2/3 and Smad4. While Smad7 has no effect on TGF-beta-induced activation of p38 MAPK and ERK, it blocks the phosphorylation of Akt by TGF-beta and enhances TGF-beta-induced phosphorylation of c-Jun. FET cells expressing Smad7 show anchorage-independent growth and enhance tumorigenicity in athymic nude mice. Smad7 blocks TGF-beta-induced growth inhibition by preventing TGF-beta-induced G1 arrest. Smad7 inhibits TGF-beta-mediated downregulation of c-Myc, CDK4, and Cyclin D1, and suppresses the expression of p21(Cip1). As a result, Smad7 inhibits TGF-beta-mediated downregulation of Rb phosphorylation. Furthermore, Smad7 inhibits the apoptosis of these cells. Together, Smad7 may increase the tumorigenicity of FET cells by blocking TGF-beta-induced growth inhibition and by inhibiting apoptosis. Thus, this study provides a mechanism by which a portion of human colorectal tumors may become refractory to tumor-suppressive actions of TGF-beta that might result in increased tumorigenicity.

  11. STAT6 Mediates Interleukin-4 Growth Inhibition in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jennifer L. Gooch

    2002-01-01

    Full Text Available In addition to acting as a hematopoietic growth factor, interleukin-4 (IL-4 inhibits growth of some transformed cells in vitro and in vivo. In this study, we show that insulin receptor substrate (IRS-1, IRS-2, and signal transducer and activator of transcription 6 (STAT6 are phosphorylated following IL-4 treatment in MCF-7 breast cancer cells. STAT6 DNA binding is enhanced by IL-4 treatment. STAT6 activation occurs even after IRS-1 depletion, suggesting the two pathways are independent. To examine the role of STAT6 in IL-4-mediated growth inhibition and apoptosis, a fulllength STAT6 cDNA was transfected into MCF-7 cells. Transient overexpression of STAT6 resulted in both cytoplasmic and nuclear expression of the protein, increased DNA binding in response to IL-4, and increased transactivation of an IL-4 responsive promoter. In STAT6-transfected cells, basal proliferation was reduced whereas apoptosis was increased. Finally, stable expression of STAT6 resulted in reduced foci formation compared to vector-transfected cells alone. These results suggest STAT6 is required for IL-4mediated growth inhibition and induction of apoptosis in human breast cancer cells.

  12. Simultaneous Assessment of Acidogenesis-Mitigation and Specific Bacterial Growth-Inhibition by Dentifrices.

    Directory of Open Access Journals (Sweden)

    Sarah Forbes

    Full Text Available Dentifrices can augment oral hygiene by inactivating bacteria and at sub-lethal concentrations may affect bacterial metabolism, potentially inhibiting acidogenesis, the main cause of caries. Reported herein is the development of a rapid method to simultaneously measure group-specific bactericidal and acidogenesis-mitigation effects of dentifrices on oral bacteria. Saliva was incubated aerobically and anaerobically in Tryptone Soya Broth, Wilkins-Chalgren Broth with mucin, or artificial saliva and was exposed to dentifrices containing triclosan/copolymer (TD; sodium fluoride (FD; stannous fluoride and zinc lactate (SFD1; or stannous fluoride, zinc lactate and stannous chloride (SFD2. Minimum inhibitory concentrations (MIC were determined turbidometrically whilst group-specific minimum bactericidal concentrations (MBC were assessed using growth media and conditions selective for total aerobes, total anaerobes, streptococci and Gram-negative anaerobes. Minimum acid neutralization concentration (MNC was defined as the lowest concentration of dentifrice at which acidification was inhibited. Differences between MIC and MNC were calculated and normalized with respect to MIC to derive the combined inhibitory and neutralizing capacity (CINC, a cumulative measure of acidogenesis-mitigation and growth inhibition. The overall rank order for growth inhibition potency (MIC under aerobic and anaerobic conditions was: TD> SFD2> SFD1> FD. Acidogenesis-mitigation (MNC was ordered; TD> FD> SFD2> SFD1. CINC was ordered TD> FD> SFD2> SFD1 aerobically and TD> FD> SFD1> SFD2 anaerobically. With respect to group-specific bactericidal activity, TD generally exhibited the greatest potency, particularly against total aerobes, total anaerobes and streptococci. This approach enables the rapid simultaneous evaluation of acidity mitigation, growth inhibition and specific antimicrobial activity by dentifrices.

  13. Metformin enhances tamoxifen-mediated tumor growth inhibition in ER-positive breast carcinoma

    International Nuclear Information System (INIS)

    Ma, Ji; Zhang, Jian; Liu, Wenchao; Guo, Yan; Chen, Suning; Zhong, Cuiping; Xue, Yan; Zhang, Yuan; Lai, Xiaofeng; Wei, Yifang; Yu, Shentong

    2014-01-01

    Tamoxifen, an endocrine therapy drug used to treat breast cancer, is designed to interrupt estrogen signaling by blocking the estrogen receptor (ER). However, many ER-positive patients are low reactive or resistant to tamoxifen. Metformin is a widely used anti-diabetic drug with noteworthy anti-cancer effects. We investigated whether metformin has the additive effects with tamoxifen in ER-positive breast cancer therapy. The efficacy of metformin alone and in combination with tamoxifen against ER-positive breast cancer was analyzed by cell survival, DNA replication activity, plate colony formation, soft-agar, flow cytometry, immunohistochemistry, and nude mice model assays. The involved signaling pathways were detected by western blot assay. When metformin was combined with tamoxifen, the concentration of tamoxifen required for growth inhibition was substantially reduced. Moreover, metformin enhanced tamoxifen-mediated inhibition of proliferation, DNA replication activity, colony formation, soft-agar colony formation, and induction of apoptosis in ER-positive breast cancer cells. In addition, these tamoxifen-induced effects that were enhanced by metformin may be involved in the bax/bcl-2 apoptotic pathway and the AMPK/mTOR/p70S6 growth pathway. Finally, two-drug combination therapy significantly inhibited tumor growth in vivo. The present work shows that metformin and tamoxifen additively inhibited the growth and augmented the apoptosis of ER-positive breast cancer cells. It provides leads for future research on this drug combination for the treatment of ER-positive breast cancer

  14. Engineered andrographolide nanosystems for smart recovery in hepatotoxic conditions

    Science.gov (United States)

    Roy, Partha; Das, Suvadra; Auddy, Runa Ghosh; Mukherjee, Arup

    2014-01-01

    Andrographolide (AG) is one of the most potent labdane diterpenoid-type free radical scavengers available from plant sources. The compound is the principal bioactive component in Andrographis paniculata leaf extracts, and is responsible for anti-inflammatory, anticancer, and immunomodulatory activity. The application of AG in therapeutics, however, is severely constrained, due to its low aqueous solubility, short biological half-life, and poor cellular permeability. Engineered nanoparticles in biodegradable polymer systems were therefore conceived as one solution to aid in further drug-like applications of AG. In this study, a cationic modified poly(lactic-co-glycolic) acid nanosystem was applied for evaluation against experimental mouse hepatotoxic conditions. Biopolymeric nanoparticles of hydrodynamic size of 229.7±17.17 nm and ζ-potential +34.4±1.87 mV facilitated marked restoration in liver functions and oxidative stress markers. Superior dissolution for bioactive AG, hepatic residence, and favorable cytokine regulation in the liver tissues are some of the factors responsible for the newer nanosystem-assisted rapid recovery. PMID:25336950

  15. Herbicide glufosinate inhibits yeast growth and extends longevity during wine fermentation.

    Science.gov (United States)

    Vallejo, Beatriz; Picazo, Cecilia; Orozco, Helena; Matallana, Emilia; Aranda, Agustín

    2017-09-29

    Glufosinate ammonium (GA) is a widely used herbicide that inhibits glutamine synthetase. This inhibition leads to internal amino acid starvation which, in turn, causes the activation of different nutrient sensing pathways. GA also inhibits the enzyme of the yeast Saccharomyces cerevisiae in such a way that, although it is not used as a fungicide, it may alter yeast performance in industrial processes like winemaking. We describe herein how GA indeed inhibits the yeast growth of a wine strain during the fermentation of grape juice. In turn, GA extends longevity in a variety of growth media. The biochemical analysis indicates that GA partially inhibits the nutrient sensing TORC1 pathway, which may explain these phenotypes. The GCN2 kinase mutant is hypersensitive to GA. Hence the control of translation and amino acid biosynthesis is required to also deal with the damaging effects of this pesticide. A global metabolomics analysis under winemaking conditions indicated that an increase in amino acid and in polyamines occurred. In conclusion, GA affects many different biochemical processes during winemaking, which provides us with some insights into both the effect of this herbicide on yeast physiology and into the relevance of the metabolic step for connecting nitrogen and carbon metabolism.

  16. MicroRNA-375 inhibits colorectal cancer growth by targeting PIK3CA

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yihui [Department of Colorectal Surgery, The Third Affiliated Hospital of Harbin Medical University, 150 Haping Road, 150081 Harbin (China); Tang, Qingchao [Cancer Center, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086 Harbin (China); Li, Mingqi; Jiang, Shixiong [Department of Colorectal Surgery, The Third Affiliated Hospital of Harbin Medical University, 150 Haping Road, 150081 Harbin (China); Wang, Xishan, E-mail: wxshan12081@163.com [Cancer Center, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086 Harbin (China)

    2014-02-07

    Highlights: • miR-375 is downregulated in colorectal cancer cell lines and tissues. • miR-375 inhibits colorectal cancer cell growth by targeting PIK3CA. • miR-375 inhibits colorectal cancer cell growth in xenograft nude mice model. - Abstract: Colorectal cancer (CRC) is the second most common cause of death from cancer. MicroRNAs (miRNAs) represent a class of small non-coding RNAs that control gene expression by triggering RNA degradation or interfering with translation. Aberrant miRNA expression is involved in human disease including cancer. Herein, we showed that miR-375 was frequently down-regulated in human colorectal cancer cell lines and tissues when compared to normal human colon tissues. PIK3CA was identified as a potential miR-375 target by bioinformatics. Overexpression of miR-375 in SW480 and HCT15 cells reduced PIK3CA protein expression. Subsequently, using reporter constructs, we showed that the PIK3CA untranslated region (3′-UTR) carries the directly binding site of miR-375. Additionally, miR-375 suppressed CRC cell proliferation and colony formation and led to cell cycle arrest. Furthermore, miR-375 overexpression resulted in inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. SiRNA-mediated silencing of PIK3CA blocked the inhibitory effect of miR-375 on CRC cell growth. Lastly, we found overexpressed miR-375 effectively repressed tumor growth in xenograft animal experiments. Taken together, we propose that overexpression of miR-375 may provide a selective growth inhibition for CRC cells by targeting PI3K/Akt signaling pathway.

  17. Enhanced protective activity of nano formulated andrographolide against arsenic induced liver damage.

    Science.gov (United States)

    Das, Sujata; Pradhan, Goutam Kumar; Das, Subhadip; Nath, Debjani; Das Saha, Krishna

    2015-12-05

    Chronic exposure to arsenic over a period of time induces toxicity, primarily in liver but gradually in all systems of the body. Andrographolide (AG), a major diterpene lactone of Andrographis paniculata, shows a wide array of physiological functions including hepatoprotection. Therapeutic applications of AG are however seriously constrained because of its insolubility, poor bioavailability, and short plasma half-life. Nanoparticulation of AG is a possible solution to these problems. In the present study we investigated the effectiveness of polylactide co-glycolide (PLGA) nanocapsulated andrographolide (NA) against arsenic induced liver damage in mice. NA of average diameter 65.8 nm and encapsulation efficiency of 64% were prepared. Sodium arsenite at a dose of 40 mg/L supplied via drinking water in mice significantly raised the serum level of liver function markers such as AST, ALT, and ALP, and caused arsenic deposition in liver and ROS generation, though it did not show any lethality up to 30 days of exposure. However, even liver toxicity was not observed when mice were given AG and NA orally at doses up to 100 mg/kg bwt and 20 mg/kg bwt respectively on alternate days for one month. Treatment of non-toxic doses of AG or NA on alternate days along with arsenic significantly decreased the arsenic induced elevation of the serum level of ALT, AST and ALP, and arsenic deposition in liver. AG and NA increased the level of hepatic antioxidant enzymes such as superoxide dismutase (SOD), and catalase (CAT), and the level of reduced glutathione (GSH). Also, the ROS level was lowered in mice exposed to arsenic but treated with AG or NA. Protective efficiency of NA is about five times more than that of AG. Administration of NA to arsenic-treated mice caused signs of improvement in liver tissue architecture. In conclusion, the results of this study suggest that NA could be beneficial against arsenic-induced liver toxicity. Copyright © 2015 Elsevier Ireland Ltd. All rights

  18. Andrographolide, a New Hope in the Prevention and Treatment of Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Muhammad T. Islam

    2017-08-01

    Full Text Available Recently, the use of plant-derived medicines is increasing interest in the prevention and treatment of a variety of disorders including metabolic syndromes. Metabolic syndrome is one of the major risk factors for cardiovascular diseases (CVDs and incidence of mortality worldwide. Scientific evidence suggests that Andrographis paniculata and its derived components, especially andrographolide (AGL and its analogs/derivatives have a broad spectrum of biological activities. This review aims to sketch the activity of AGL and its analogs/derivatives against the components of metabolic syndromes such as diabetes, hyperlipidemia, hypertension, and obesity. Additionally, AGL activity against CVDs is also summarized. The finding suggests that AGL and its analogs/derivatives have a potential role in the management of metabolic syndrome; however, more studies should be conducted to evaluate their effectiveness.

  19. Targeting Insulin-Like Growth Factor 1 Receptor Inhibits Pancreatic Cancer Growth and Metastasis

    Science.gov (United States)

    Subramani, Ramadevi; Lopez-Valdez, Rebecca; Arumugam, Arunkumar; Nandy, Sushmita; Boopalan, Thiyagarajan; Lakshmanaswamy, Rajkumar

    2014-01-01

    Pancreatic cancer is one of the most lethal cancers. Increasing incidence and mortality indicates that there is still much lacking in detection and management of the disease. This is partly due to a lack of specific symptoms during early stages of the disease. Several growth factor receptors have been associated with pancreatic cancer. Here, we have investigated if an RNA interference approach targeted to IGF-IR could be effective and efficient against pancreatic cancer growth and metastasis. For that, we evaluated the effects of IGF-1R inhibition using small interfering RNA (siRNAs) on tumor growth and metastasis in HPAC and PANC-1 pancreatic cancer cell lines. We found that silencing IGF-1R inhibits pancreatic cancer growth and metastasis by blocking key signaling pathways such AKT/PI3K, MAPK, JAK/STAT and EMT. Silencing IGF-1R resulted in an anti-proliferative effect in PANC-1 and HPAC pancreatic cancer cell lines. Matrigel invasion, transwell migration and wound healing assays also revealed a role for IGF-1R in metastatic properties of pancreatic cancer. These results were further confirmed using Western blotting analysis of key intermediates involved in proliferation, epithelial mesenchymal transition, migration, and invasion. In addition, soft agar assays showed that silencing IGF-1R also blocks the colony forming capabilities of pancreatic cancer cells in vitro. Western blots, as well as, flow cytometric analysis revealed the induction of apoptosis in IGF-1R silenced cells. Interestingly, silencing IGF-1R also suppressed the expression of insulin receptor β. All these effects together significantly control pancreatic cancer cell growth and metastasis. To conclude, our results demonstrate the significance of IGF-1R in pancreatic cancer. PMID:24809702

  20. Growth inhibition of fouling bacteria and diatoms by extract of terrestrial plant, Derris scandens (Dicotyledonae:Leguminocae)

    Digital Repository Service at National Institute of Oceanography (India)

    Sawant, S.S.; Sonak, S.; Garg, A.

    Methanol extract of terrestrial plant, Derris scandens Benth, was found to inhibit growth of four diatoms and 7 bacterial species of fouling community. The concentrations required to bring about 100% inhibition of growth of the diatoms ranged...

  1. Limonene inhibits Candida albicans growth by inducing apoptosis.

    Science.gov (United States)

    Thakre, Archana; Zore, Gajanan; Kodgire, Santosh; Kazi, Rubina; Mulange, Shradha; Patil, Rajendra; Shelar, Amruta; Santhakumari, Bayitigeri; Kulkarni, Mahesh; Kharat, Kiran; Karuppayil, Sankunny Mohan

    2018-07-01

    Anti-Candida potential of limonene was evaluated against planktonic growth, biofilm (adhesion, development and maturation) and morphogenesis of Candida albicans in this study. Limonene is a major constituent of citrus oil and most frequently used terpene in food and beverage industry due to its pleasant fragrance, nontoxic, and is generally recognized as safe (GRAS) flavoring agent as well as treatment option in many gastrointestinal diseases.Limonene exhibited excellent anti-Candida activity and was equally effective against planktonic growth of C. albicans isolates differentially susceptible to FLC (N = 35). Limonene inhibited morphogenesis significantly at low concentration. However, it showed stage dependent activity against biofilm formation, that is, it was more effective against adhesion followed by development and maturation. Limonene also exhibited excellent synergy with FLC against planktonic and biofilm growth. SWATH-MS analysis led to identification of limonene responsive proteins that provided molecular insight of its anti-Candida activity. Proteomic analysis revealed upregulation of proteins involved in cell wall glucan synthesis (Kre6); oxidative stress (Rhr2, Adh7 and Ebp1); DNA damage stress (Mbf1 and Npl3); nucleolar stress (Rpl11, Rpl7, Rpl29, Rpl15) and down regulation of cytoskeleton organization (Crn1, Pin3, Cct8, Rbl2), and so forth, in response to limonene. Limonene mediated down regulation of Tps3 indicates activation of caspase (CaMca1) and induction of apoptosis in C. albicans. These results suggest that limonene inhibits C. albicans growth by cell wall/membrane damage induced oxidative stress that leads to DNA damage resulting into modulation of cell cycle and induction of apoptosis through nucleolar stress and metacaspase dependent pathway.

  2. Components in aqueous Hibiscus rosa-sinensis flower extract inhibit in vitro melanoma cell growth

    Directory of Open Access Journals (Sweden)

    Karina H. Goldberg

    2017-01-01

    Full Text Available Skin cancer is extremely common, and melanoma causes about 80% of skin cancer deaths. In fact, melanoma kills over 50 thousand people around the world each year, and these numbers are rising. Clearly, standard treatments are not effectively treating melanoma, and alternative therapies are needed to address this problem. Hibiscus tea has been noted to have medicinal properties, including anticancer effects. Extracts from Hibiscus have been shown to inhibit the growth of a variety of cancer cells. In particular, recent studies found that polyphenols extracted from Hibiscus sabdariffa by organic solvents can inhibit melanoma cell growth. However, effects of aqueous extracts from Hibiscus rosa-sinesis flowers, which are commonly used to make traditional medicinal beverages, have not been examined on melanoma cells. Here, we report that aqueous H. rosa-sinesis flower extract contains compounds that inhibit melanoma cell growth in a dose dependent manner at concentrations that did not affect the growth of nontransformed cells. In addition, these extracts contain low molecular weight growth inhibitory compounds below 3 kD in size that combine with larger compounds to more effectively inhibit melanoma cell growth. Future work should identify these compounds, and evaluate their potential to prevent and treat melanoma and other cancers.

  3. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy.

    Science.gov (United States)

    Sugg, Kristoffer B; Korn, Michael A; Sarver, Dylan C; Markworth, James F; Mendias, Christopher L

    2017-03-01

    The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth. © 2017 Federation of European Biochemical Societies.

  4. Andrographolide Stimulates Neurogenesis in the Adult Hippocampus

    Directory of Open Access Journals (Sweden)

    Lorena Varela-Nallar

    2015-01-01

    Full Text Available Andrographolide (ANDRO is a labdane diterpenoid component of Andrographis paniculata widely used for its anti-inflammatory properties. We have recently determined that ANDRO is a competitive inhibitor of glycogen synthase kinase-3β (GSK-3β, a key enzyme of the Wnt/β-catenin signaling cascade. Since this signaling pathway regulates neurogenesis in the adult hippocampus, we evaluated whether ANDRO stimulates this process. Treatment with ANDRO increased neural progenitor cell proliferation and the number of immature neurons in the hippocampus of 2- and 10-month-old mice compared to age-matched control mice. Moreover, ANDRO stimulated neurogenesis increasing the number of newborn dentate granule neurons. Also, the effect of ANDRO was evaluated in the APPswe/PS1ΔE9 transgenic mouse model of Alzheimer’s disease. In these mice, ANDRO increased cell proliferation and the density of immature neurons in the dentate gyrus. Concomitantly with the increase in neurogenesis, ANDRO induced the activation of the Wnt signaling pathway in the hippocampus of wild-type and APPswe/PS1ΔE9 mice determined by increased levels of β-catenin, the inactive form of GSK-3β, and NeuroD1, a Wnt target gene involved in neurogenesis. Our findings indicate that ANDRO stimulates neurogenesis in the adult hippocampus suggesting that this drug could be used as a therapy in diseases in which neurogenesis is affected.

  5. Di (2-ethylhexyl) phthalate inhibits growth of mouse ovarian antral follicles through an oxidative stress pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei, E-mail: weiwang2@illinois.edu; Craig, Zelieann R., E-mail: zelieann@illinois.edu; Basavarajappa, Mallikarjuna S., E-mail: mbasava2@illinois.edu; Gupta, Rupesh K., E-mail: drrupesh@yahoo.com; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    2012-01-15

    Di (2-ethylhexyl) phthalate (DEHP) is a plasticizer that has been shown to inhibit growth of mouse antral follicles, however, little is known about the mechanisms by which DEHP does so. Oxidative stress has been linked to follicle growth inhibition as well as phthalate-induced toxicity in non-ovarian tissues. Thus, we hypothesized that DEHP causes oxidative stress and that this leads to inhibition of the growth of antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice (age 31–35 days) were cultured with vehicle control (dimethylsulfoxide [DMSO]) or DEHP (1–100 μg/ml) ± N-acetyl cysteine (NAC, an antioxidant at 0.25–1 mM). During culture, follicles were measured daily. At the end of culture, follicles were collected and processed for in vitro reactive oxygen species (ROS) assays to measure the presence of free radicals or for measurement of the expression and activity of various key antioxidant enzymes: Cu/Zn superoxide dismutase (SOD1), glutathione peroxidase (GPX) and catalase (CAT). The results indicate that DEHP inhibits the growth of follicles compared to DMSO control and that NAC (0.25–1 mM) blocks the ability of DEHP to inhibit follicle growth. Furthermore, DEHP (10 μg/ml) significantly increases ROS levels and reduces the expression and activity of SOD1 compared to DMSO controls, whereas NAC (0.5 mM) rescues the effects of DEHP on ROS levels and SOD1. However, the expression and activity of GPX and CAT were not affected by DEHP treatment. Collectively, these data suggest that DEHP inhibits follicle growth by inducing production of ROS and by decreasing the expression and activity of SOD1. -- Highlights: ► DEHP inhibits growth and increases reactive oxygen species in ovarian antral follicles in vitro. ► NAC rescues the effects of DEHP on the growth and reactive oxygen species levels in follicles. ► DEHP decreases the expression and activity of Cu/Zn superoxide dismutase, which can be rescued by NAC, in antral

  6. Involvement of allelopathy in inhibition of understory growth in red pine forests.

    Science.gov (United States)

    Kato-Noguchi, Hisashi; Kimura, Fukiko; Ohno, Osamu; Suenaga, Kiyotake

    2017-11-01

    Japanese red pine (Pinus densiflora Sieb. et Zucc.) forests are characterized by sparse understory vegetation although sunlight intensity on the forest floor is sufficient for undergrowth. The possible involvement of pine allelopathy in the establishment of the sparse understory vegetation was investigated. The soil of the red pine forest floor had growth inhibitory activity on six test plant species including Lolium multiflorum, which was observed at the edge of the forest but not in the forest. Two growth inhibitory substances were isolated from the soil and characterized to be 15-hydroxy-7-oxodehydroabietate and 7-oxodehydroabietic acid. Those compounds are probably formed by degradation process of resin acids. Resin acids are produced by pine and delivered into the soil under the pine trees through balsam and defoliation. Threshold concentrations of 15-hydroxy-7-oxodehydroabietate and 7-oxodehydroabietic acid for the growth inhibition of L. multiflorum were 30 and 10μM, respectively. The concentrations of 15-hydroxy-7-oxodehydroabietate and 7-oxodehydroabietic acid in the soil were 312 and 397μM, respectively, which are sufficient concentrations to cause the growth inhibition because of the threshold. These results suggest that those compounds are able to work as allelopathic agents and may prevent from the invasion of herbaceous plants into the forests by inhibiting their growth. Therefore, allelopathy of red pine may be involved in the formation of the sparse understory vegetation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Influence of magnetic field on the morphology of the andrographolide crystal from supercritical carbon dioxide extraction crystallization

    Science.gov (United States)

    Chen, Kexun; Zhang, Xingyuan; Pan, Jian; Zhang, Wencheng; Yong, Ji; Yin, Wenhong

    2003-10-01

    In this paper, a supercritical fluid extraction-crystallization of andrographolide, a kind of Chinese traditional medicine, was investigated. We have studied the extraction-crystallization process with or without magnet in the extractor, respectively. It was found that the presence of magnetic field is an important factor influencing the quality of the products. SEM images showed that the crystal was slice-like in shape, and many slices reunited together in the absence of magnet. Further research showed that pressure had a certain effect on the morphology of the crystal.

  8. Fluoro-sorafenib (Regorafenib) effects on hepatoma cells: growth inhibition, quiescence and recovery

    Science.gov (United States)

    Carr, Brian I.; Cavallini, Aldo; Lippolis, Catia; D’Alessandro, Rosalba; Messa, Caterina; Refolo, Maria Grazia; Tafaro, Angela

    2015-01-01

    To evaluate the growth-inhibitory properties of the potent multi-kinase antagonist Regorafenib (Fluoro-Sorafenib), which was synthesized as a more potent Sorafenib, a Raf inhibitor and to determine whether similar mechanisms were involved, human hepatoma cell lines were grown in the presence or absence of Regorafanib and examined for growth inhibition. Western blots were performed for Raf targets, for apoptosis and autophagy. Regorafenib inhibited growth of human Hep3B, PLC/PRF/5 and HepG2 cells in a concentration- and time-dependent manner. Multiple signaling pathways were altered, including MAP kinases phospho-ERK and phospho-JNK and its target phospho-c-Jun. There was evidence for apoptosis by FACS, cleavage of caspases and increased Bax levels; as well as induction of autophagy, as judged by increased Beclin-1 and LC3 (II) levels. Prolonged drug exposure resulted in cell quiescence. Full growth recovery occurred after drug removal, unlike with doxorubicin chemotherapy. Regorafenib is a potent inhibitor of cell growth. Cells surviving Regorafenib treatment remain viable, but quiescent and capable of regrowth following drug removal. The reversibility of tumor cell growth suppression after drug removal may have clinical implications. PMID:22777740

  9. Plant growth inhibition by soluble salts in sewage sludge-amended mine spoils

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, C.S.; Anderson, R.C. [Illinois State University, Normal, IL (United States). Dept. of Biological Sciences

    1995-07-01

    The growth response of prairie switchgrass {ital Panicum virgatum}L was compared in strip mine spoil amended with various levels of anaerobically digested waste-activated sewage sludge (0, 56, 111, 222, or 333 dry Mg ha{sup -1}) and commercial fertilizer, pure sludge, and glasshouse soil. Plants were grown in a growth chamber and substrates were maintained at field capacity during the study. Soluble salt concentrations of the substrates increased linearly as a function of sludge amendment and were within the range known to inhibit the growth of many plant species at the high levels of sludge application. There was, however, a linear response of biomass production to increasing levels of sludge amendment. Maintaining substrates at field capacity apparently prevented the high concentration of soluble salts from inhibiting plant growth. The increased biomass yield associated with sludge application was likely due to the increased availability of inorganic nutrients associated with sludge amendment. 22 refs., 2 figs., 2 tabs.

  10. Algal growth inhibition test in filled, closed bottles for volatile and sorptive materials

    DEFF Research Database (Denmark)

    Mayer, Philipp; Nyholm, Niels; Verbruggen, Eric M. J.

    2000-01-01

    Exposure concentrations of many hydrophobic substances are difficult to maintain in algal growth inhibition tests performed in open agitated flasks. This is partly because such compounds tend to volatilize from aqueous solution and partly because of sorption to the algal biomass as well as to the......Exposure concentrations of many hydrophobic substances are difficult to maintain in algal growth inhibition tests performed in open agitated flasks. This is partly because such compounds tend to volatilize from aqueous solution and partly because of sorption to the algal biomass as well......, and the resulting dissolved CO2 concentration supported maximum algal growth rates without pH drift for algal densities up to 4 mg dry weight/L. Two-day toxicity tests with kerosene were performed with this new test design and compared with an open bottle test and with a closed bottle test with headspace. Exposure...... concentrations of the volatile fraction of kerosene decreased by 99% in the open test, by 77% in the closed flask test with headspace, and by 16% in the filled closed bottle test. Algal growth inhibition was observed at much lower additions of kerosene in the new test design because of the improved maintenance...

  11. BH3 mimetics inhibit growth of chondrosarcoma--a novel targeted-therapy for candidate models.

    Science.gov (United States)

    Morii, Takeshi; Ohtsuka, Kouki; Ohnishi, Hiroaki; Mochizuki, Kazuo; Yoshiyama, Akira; Aoyagi, Takayuki; Hornicek, Francis J; Ichimura, Shoichi

    2014-11-01

    Chondrosarcoma is refractory to conventional chemotherapy. BH-3 mimetics ABT-737 and ABT-263 are synthetic small-molecule inhibitors of anti-apoptotic proteins B-cell lymphoma-2 (Bcl2) and Bcl-xL, which play a critical role in survival of chondrosarcoma cells. Chondrosarcoma cell lines SW-1353 and CS-1 were used as the disease model. We used immunoblotting to assess the expression of target molecules Bcl2 and Bcl-xL, and the apoptotic inducers Bcl2-associated X (Bax) and Bcl2-antagonist/killer (Bak). In vitro growth inhibition by BH-3 mimetics was confirmed by photomicroscopic cell counting and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. Apoptotic induction was confirmed by Enzyme-Linked ImmunoSorbent Assay (ELISA). In vivo growth inhibition was assessed in a non-obese diabetic/severe combined immunodeficient (NOD/SCID) mouse model. Expression of the target and effector molecules was confirmed in chondrosarcoma cell lines. BH3 mimetics significantly inhibited cell growth and induced apoptosis in vitro. Administration of ABT-263 inhibited chondrosarcoma growth and improved survival in a mouse model. BH3 mimetics represent a novel treatment modality for chondrosarcoma. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Inhibition of phospholipase C disrupts cytoskeletal organization and gravitropic growth in Arabidopsis roots.

    Science.gov (United States)

    Andreeva, Zornitza; Barton, Deborah; Armour, William J; Li, Min Y; Liao, Li-Fen; McKellar, Heather L; Pethybridge, Kylie A; Marc, Jan

    2010-10-01

    The phospholipase protein superfamily plays an important role in hormonal signalling and cellular responses to environmental stimuli. There is also growing evidence for interactions between phospholipases and the cytoskeleton. In this report we used a pharmacological approach to investigate whether inhibiting a member of the phospholipase superfamily, phospholipase C (PLC), affects microtubules and actin microfilaments as well as root growth and morphology of Arabidopsis thaliana seedlings. Inhibiting PLC activity using the aminosteroid U73122 significantly inhibited root elongation and disrupted root morphology in a concentration-dependent manner, with the response being saturated at 5 μM, whereas the inactive analogue U73343 was ineffective. The primary root appeared to lose growth directionality accompanied by root waving and formation of curls. Immunolabelling of roots exposed to increasingly higher U73122 concentrations revealed that the normal transverse arrays of cortical microtubules in the elongation zone became progressively more disorganized or depolymerized, with the disorganization appearing within 1 h of incubation. Likewise, actin microfilament arrays also were disrupted. Inhibiting PLC using an alternative inhibitor, neomycin, caused similar disruptions to both cytoskeletal organization and root morphology. In seedlings gravistimulated by rotating the culture plates by 90°, both U73122 and neomycin disrupted the normal gravitropic growth of roots and etiolated hypocotyls. The effects of PLC inhibitors are therefore consistent with the notion that, as with phospholipases A and D, PLC likewise interacts with the cytoskeleton, alters growth morphology, and is involved in gravitropism.

  13. Growth inhibition of Listeria monocytogenes by a nonbacteriocinogenic Carnobacterium piscicola

    DEFF Research Database (Denmark)

    Nilsson, Lilian; Bech Hansen, T.; Garrido, P.

    2005-01-01

    Aims: This study elucidates the mechanisms by which a nonbacteriocinogenic Carnobacterium piscicola inhibits growth of Listeria monocytogenes. Methods and Results: Listeria monocytogenes was exposed to live cultures of a bacteriocin-negative variant of C. piscicola A9b in co-culture, in a diffusion...... chamber system, and to a cell-free supernatant. Suppression of maximum cell density (0-3.5 log units) of L. monocytogenes was proportional to initial levels of C. pisciola (10(3)-10(7) CFU ml(-1)). Cell-to-cell contact was not required to cause inhibition. The cell-free C. piscicola supernatant caused...... a decrease in L. monocytogenes maximum cell density, which was abolished by glucose addition but not by amino acid, vitamin or mineral addition. The fermentate also gave rise to a longer lag phase and a reduction in growth rate. These effects were independent of glucose and may have been caused by acetate...

  14. Growth inhibition of fouling bacteria and diatoms by extract of terrestrial plant, @iDerris scandens@@ (Dicotyledonae:Leguminocae)

    Digital Repository Service at National Institute of Oceanography (India)

    Sawant, S.S.; Sonak, S.; Garg, A.

    Methanol extract of terrestrial plant, @iDerris scandens@@ Benth, was found to inhibit growth of four diatoms and 7 bacterial species of fouling community. The concentrations required to bring about 100% inhibition of growth of the diatoms ranged...

  15. Adenoviral gene transfer of angiostatic ATF-BPTI inhibits tumour growth

    International Nuclear Information System (INIS)

    Lefesvre, Pierre; Attema, Joline; Bekkum, Dirk van

    2002-01-01

    The outgrowth of new vessels – angiogenesis – in the tumour mass is considered to be a limiting factor of tumour growth. To inhibit the matrix lysis that is part of the tumour angiogenesis, we employed the chimeric protein mhATF-BPTI, composed of the receptor binding part of the urokinase (ATF) linked to an inhibitor of plasmin (BPTI). For delivery, recombinant adenovirus encoding the transgene of interest was injected intravenously or locally into the tumour. The anti tumour effect of this compound was compared to that of human endostatin and of mhATF alone in two different rat bronchial carcinomas growing either as subcutaneous implants or as metastases. Significant inhibition of the tumour growth and decrease of the number of lung metastasis was achieved when the concentration of mhATF-BPTI at the tumour site was above 400 of ng / g tissue. This concentration could be achieved via production by the liver, only if permissive to the recombinant adenovirus. When the tumour cells could be transduced, local delivery of the vector was enough to obtain a response. In the case of metastasis, the capacity of the lung tissue to concentrate the encoded protein was essential to reach the required therapeutic levels. Further, endostatin or mhATF could not reproduce the effects of mhATF-BPTI, at similar concentrations (mhATF) and even at 10-fold higher concentration (endostatin). The ATF-BPTI was shown to inhibit tumour growth of different rat lung tumours when critical concentration was reached. In these tumour models, endostatin or ATF induce almost no tumour response

  16. Andrographolide protects mouse astrocytes against hypoxia injury by promoting autophagy and S100B expression

    Directory of Open Access Journals (Sweden)

    Juan Du

    2018-04-01

    Full Text Available Andrographolide (ANDRO has been studied for its immunomodulation, anti-inflammatory, and neuroprotection effects. Because brain hypoxia is the most common factor of secondary brain injury after traumatic brain injury, we studied the role and possible mechanism of ANDRO in this process using hypoxia-injured astrocytes. Mouse cortical astrocytes C8-D1A (astrocyte type I clone from C57/BL6 strains were subjected to 3 and 21% of O2 for various times (0–12 h to establish an astrocyte hypoxia injury model in vitro. After hypoxia and ANDRO administration, the changes in cell viability and apoptosis were assessed using CCK-8 and flow cytometry. Expression changes in apoptosis-related proteins, autophagy-related proteins, main factors of JNK pathway, ATG5, and S100B were determined by western blot. Hypoxia remarkably damaged C8-D1A cells evidenced by reduction of cell viability and induction of apoptosis. Hypoxia also induced autophagy and overproduction of S100B. ANDRO reduced cell apoptosis and promoted cell autophagy and S100B expression. After ANDRO administration, autophagy-related proteins, S-100B, JNK pathway proteins, and ATG5 were all upregulated, while autophagy-related proteins and s100b were downregulated when the jnk pathway was inhibited or ATG5 was knocked down. ANDRO conferred a survival advantage to hypoxia-injured astrocytes by reducing cell apoptosis and promoting autophagy and s100b expression. Furthermore, the promotion of autophagy and s100b expression by ANDRO was via activation of jnk pathway and regulation of ATG5.

  17. Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Chian, Song; Thapa, Ruby; Chi, Zhexu [Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058 (China); Wang, Xiu Jun [Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058 (China); Tang, Xiuwen, E-mail: xiuwentang@zju.edu.cn [Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058 (China)

    2014-05-16

    Highlights: • Luteolin inhibits the Nrf2 pathway in mouse liver and in xenografted tumors. • Luteolin markedly inhibits the growth of xenograft tumors. • Luteolin enhances the anti-cancer effect of cisplatin in mice in vivo. • Luteolin could serve as an adjuvant in the chemotherapy of NSCLC. - Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) is over-expressed in many types of tumor, promotes tumor growth, and confers resistance to anticancer therapy. Hence, Nrf2 is regarded as a novel therapeutic target in cancer. Previously, we reported that luteolin is a strong inhibitor of Nrf2 in vitro. Here, we showed that luteolin reduced the constitutive expression of NAD(P)H quinone oxidoreductase 1 in mouse liver in a time- and dose-dependent manner. Further, luteolin inhibited the expression of antioxidant enzymes and glutathione transferases, decreasing the reduced glutathione in the liver of wild-type mice under both constitutive and butylated hydroxyanisole-induced conditions. In contrast, such distinct responses were not detected in Nrf2{sup −/−} mice. In addition, oral administration of luteolin, either alone or combined with intraperitoneal injection of the cytotoxic drug cisplatin, greatly inhibited the growth of xenograft tumors from non-small-cell lung cancer (NSCLC) cell line A549 cells grown subcutaneously in athymic nude mice. Cell proliferation, the expression of Nrf2, and antioxidant enzymes were all reduced in tumor xenograft tissues. Furthermore, luteolin enhanced the anti-cancer effect of cisplatin. Together, our findings demonstrated that luteolin inhibits the Nrf2 pathway in vivo and can serve as an adjuvant in the chemotherapy of NSCLC.

  18. Effusanin E suppresses nasopharyngeal carcinoma cell growth by inhibiting NF-κB and COX-2 signaling.

    Directory of Open Access Journals (Sweden)

    Mingzhu Zhuang

    Full Text Available Rabdosia serra is well known for its antibacterial, anti-inflammatory and antitumor activities, but no information has been available for the active compounds derived from this plant in inhibiting human nasopharyngeal carcinoma (NPC cell growth. In this study, we isolated and purified a natural diterpenoid from Rabdosia serra and identified its chemical structure as effusanin E and elucidated its underlying mechanism of action in inhibiting NPC cell growth. Effusanin E significantly inhibited cell proliferation and induced apoptosis in NPC cells. Effusanin E also induced the cleavage of PARP, caspase-3 and -9 proteins and inhibited the nuclear translocation of p65 NF-κB proteins. Moreover, effusanin E abrogated the binding of NF-κB to the COX-2 promoter, thereby inhibiting the expression and promoter activity of COX-2. Pretreatment with a COX-2 or NF-κB-selective inhibitor (celecoxib or ammonium pyrrolidinedithiocarbamate had an additive effect on the effusanin E-mediated inhibition of proliferation, while pretreatment with an activator of NF-κB/COX-2 (lipopolysaccharides abrogated the effusanin E-mediated inhibition of proliferation. Effusanin E also significantly suppressed tumor growth in a xenograft mouse model without obvious toxicity, furthermore, the expression of p50 NF-κB and COX-2 were down-regulated in the tumors of nude mice. These data suggest that effusanin E suppresses p50/p65 proteins to down-regulate COX-2 expression, thereby inhibiting NPC cell growth. Our findings provide new insights into exploring effusanin E as a potential therapeutic compound for the treatment of human nasopharyngeal carcinoma.

  19. Picropodophyllin inhibits the growth of Ewing's sarcoma cells through the insulin‑like growth factor‑1 receptor/Akt signaling pathway.

    Science.gov (United States)

    Wu, Yong-Tao; Wang, Bao-Jun; Miao, Sheng-Wu; Gao, Jian-Jun

    2015-11-01

    Ewing's sarcoma (ES) is the second most common type of pediatric bone tumor, and is associated with a poor prognosis. Picropodophyllin (PPP), a novel selective inhibitor of insulin‑like growth factor‑1 receptor (IGF‑1R), is able to strongly inhibit various types of cancers. However, the effect of IGF‑1R on ES remains unclear. Following treatment with various concentrations of PPP for various times, cell viability was determined using an MTT assay. In addition, cell proliferation and apoptosis was investigated separately by bromodeoxyuridine staining and flow cytometry, respectively. The PPP‑associated signaling pathway was also investigated. The results of the present study suggested that PPP inhibited cell proliferation and viability of A673 and SK‑ES‑1 human Ewing's sarcoma cells in a dose- and time‑dependent manner. In addition, cell apoptosis rates were increased following treatment with PPP. Further investigation of the underlying mechanism revealed that PPP inhibited Akt phosphorylation. Fumonisin B1, an Akt‑specific activator, reversed the inhibitory effects of PPP on cell growth. Furthermore, the results suggested that PPP decreased the expression levels of IGF‑1R, a common activator of Akt signaling. PPP inhibited the growth of human Ewing's sarcoma cells by targeting the IGF‑1R/Akt signaling pathway. Therefore, PPP may prove useful in the development of an effective strategy for the treatment of Ewing's sarcoma.

  20. Water Deficit and Abscisic Acid Cause Differential Inhibition of Shoot versus Root Growth in Soybean Seedlings : Analysis of Growth, Sugar Accumulation, and Gene Expression.

    Science.gov (United States)

    Creelman, R A; Mason, H S; Bensen, R J; Boyer, J S; Mullet, J E

    1990-01-01

    Roots often continue to elongate while shoot growth is inhibited in plants subjected to low-water potentials. The cause of this differential response to water deficit was investigated. We examined hypocotyl and root growth, polysome status and mRNA populations, and abscisic acid (ABA) content in etiolated soybean (Glycine max [L.] Merr. cv Williams) seedlings whose growth was inhibited by transfer to low-water potential vermiculite or exogenous ABA. Both treatments affected growth and dry weight in a similar fashion. Maximum inhibition of hypocotyl growth occurred when internal ABA levels (modulated by ABA application) reached the endogenous level found in the elongating zone of seedlings grown in water-deficient vermiculite. Conversely, root growth was affected to only a slight extent in low-water potential seedlings and by most ABA treatments (in some, growth was promoted). In every seedling section examined, transfer of seedlings into low-water potential vermiculite caused ABA levels to increase approximately 5- to 10-fold over that found in well-watered seedlings. Changes in soluble sugar content, polysome status, and polysome mRNA translation products seen in low-water potential seedlings did not occur with ABA treatments sufficient to cause significant inhibition of hypocotyl elongation. These data suggest that both variation in endogenous ABA levels, and differing sensitivity to ABA in hypocotyls and roots can modulate root/shoot growth ratios. However, exogenous ABA did not induce changes in sugar accumulation, polysome status, and mRNA populations seen after transfer into low-water potential vermiculite.

  1. A molecular framework for the inhibition of Arabidopsis root growth in response to boron toxicity.

    Science.gov (United States)

    Aquea, Felipe; Federici, Fernan; Moscoso, Cristian; Vega, Andrea; Jullian, Pastor; Haseloff, Jim; Arce-Johnson, Patricio

    2012-04-01

    Boron is an essential micronutrient for plants and is taken up in the form of boric acid (BA). Despite this, a high BA concentration is toxic for the plants, inhibiting root growth and is thus a significant problem in semi-arid areas in the world. In this work, we report the molecular basis for the inhibition of root growth caused by boron. We show that application of BA reduces the size of root meristems, correlating with the inhibition of root growth. The decrease in meristem size is caused by a reduction of cell division. Mitotic cell number significantly decreases and the expression level of key core cell cycle regulators is modulated. The modulation of the cell cycle does not appear to act through cytokinin and auxin signalling. A global expression analysis reveals that boron toxicity induces the expression of genes related with abscisic acid (ABA) signalling, ABA response and cell wall modifications, and represses genes that code for water transporters. These results suggest that boron toxicity produces a reduction of water and BA uptake, triggering a hydric stress response that produces root growth inhibition. © 2011 Blackwell Publishing Ltd.

  2. Growth inhibition and differences in protein profiles in azadirachtin-treated Drosophila melanogaster larvae.

    Science.gov (United States)

    Wang, Hao; Lai, Duo; Yuan, Mei; Xu, Hanhong

    2014-04-01

    Azadirachtin A is a very effective biopesticide widely used in insect pest control. It has strong antifeeding and growth inhibitory activity against most insects, however, its mode of action is still unclear. Proteomic experiments using 2DE indicate significant effects of Azadirachtin A on the amount of proteins related to growth inhibition in Drosophila melanogaster larvae. Twenty-one spots with different intensity in azadirachtin-treated larvae were identified. These proteins are involved in cytoskeletal organization, transcription and translation, hormonal regulation, and energy metabolism. Protein network analysis reveals heat shock protein 23 to be a potential target of azadirachtin. These results provide new insights into understanding the mechanism of growth inhibition in insects in response to azadirachtin. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Phytochemical analysis of Binahong (Anredera Cordifolia) leaves extract to inhibit In Vitro growth of Aeromonas Hydrophila

    Science.gov (United States)

    Basyuni, Mohammad; Ginting, Prita Yulianti Anasta Br; Lesmana, Indra

    2017-11-01

    Binahong (Anredera cordifolia) is one of the medicinal plants commonly used to treat the disease of living organisms. The secondary metabolite of A. cordifolia leaves has been shown antibacterial activity. This study aimed to investigate the secondary metabolite of A. cordifolia leaves showing antibacterial and analysis the effectiveness of antibacterial to inhibit the growth of bacteria Aeromonas hydrophila. A paper disc soaked in a solution of A. cordifolia leaves extract was used to test in vitro at a concentration of 0% (w/v), 0.2%, 0.4%, 0.6%, 0.8%, and positive control of antibiotic (oxytetracycline), respectively. The extracts then placed on a tryptone soy agar (TSA) medium containing bacteria A. hydrophila and incubated at 37 °C for 24 hours. In vitro test showed that A. cordifolia leaves extract inhibited the growth of bacteria A. hydrophila with an inhibition area around the paper disc. The inhibition growth of A. hydrophila increased with the increasing of extract concentration. Bacterial growth was inhibited in the diameter zone of A. hydrophila under different levels of the extracts were 0 mm (0 % negative control), 8.4 mm (0.2 %), 9.4 mm (0.4 %), 10.5 mm (0.6 %), 11.9 mm (0.8 %), 27.5 mm (positive control), respectively. Phytochemical screening of A. cordifolia leaves extract indicated that the extracts contained flavonoid, phenol, saponin, alkaloid, triterpenoid, and β-sitosterol. Our in vitro study demonstrated the inhibition growth of A. hydrophila that caused the disease of motile Aeromonas septicemia (MAS).

  4. Inhibition of growth and mycotoxins formation in moulds by marine ...

    African Journals Online (AJOL)

    ... extracts (chloroform, hexane and methanol) had no activity on the microbial growth. Mycotoxins formation in Aspergillus flavus was inhibited by the ethanolic extracts at the concentration of 5%. Key Words: Algae, antimicrobial, minimal inhibitory concentration, moulds. African Journal of Biotechnology Vol.3(1) 2004: 71-75 ...

  5. Survivin inhibits anti-growth effect of p53 activated by aurora B

    International Nuclear Information System (INIS)

    Jung, Ji-Eun; Kim, Tae-Kyung; Lee, Joong-Seob; Oh, Se-Yeong; Kwak, Sungwook; Jin, Xun; Sohn, Jin-Young; Song, Min-Keun; Sohn, Young-Woo; Lee, Soo-Yeon; Pian, Xumin; Lee, Jang-Bo; Chung, Yong Gu; Choi, Young Ki; You, Seungkwon; Kim, Hyunggee

    2005-01-01

    Genomic instability and apoptosis evasion are hallmarks of cancer, but the molecular mechanisms governing these processes remain elusive. Here, we found that survivin, a member of the apoptosis-inhibiting gene family, and aurora B kinase, a chromosomal passenger protein, were co-overexpressed in the various glioblastoma cell lines and tumors. Notably, exogenous introduction of the aurora B in human BJ cells was shown to decrease cell growth and increase the senescence-associated β-galactosidase activity by activation of p53 tumor suppressor. However, aurora B overexpression failed to inhibit cell proliferation in BJ and U87MG cells transduced with dominant-negative p53 as well as in p53 -/- mouse astrocytes. Aurora B was shown to increase centrosome amplification in the p53 -/- astrocytes. Survivin was shown to induce anchorage-independent growth and inhibit anti-proliferation and drug-sensitive apoptosis caused by aurora B. Overexpression of both survivin and aurora B further accelerated the proliferation of BJ cells. Taken together, the present study indicates that survivin should accelerate tumorigenesis by inhibiting the anti-proliferative effect of p53 tumor suppressor that is activated by aurora B in normal and glioblastoma cells containing intact p53

  6. Inhibition of the growth of Alexandrium tamarense by algicidal substances in Chinese fir (Cunninghamia lanceolata).

    Science.gov (United States)

    Yang, Wei-Dong; Liu, Jie-Sheng; Li, Hong-Ye; Zhang, Xin-Lian; Qi, Yu-Zao

    2009-10-01

    The wood sawdust from Chinese fir (Cunninghamia lanceolata) exhibited stronger inhibition on the growth of Alexandrium tamarense than those from alder (Alnus cremastogyne), pine (Pinus massoniana), birch (Betula alnoides) and sapele (Entandrophragma cylindricum). The water extract, acetone-water extract and essential oil from fir sawdust were all shown to inhibit the growth of A. tamarense. The inhibition of fir essential oil was the strongest among all the above wood sources while the half effective concentration was only 0.65 mg/L. These results suggested that the fir essential oil may play an important role in the algicidal effect of Chinese fir.

  7. H32, a non-quinone sulfone analog of vitamin K3, inhibits human hepatoma cell growth by inhibiting Cdc25 and activating ERK.

    Science.gov (United States)

    Kar, Siddhartha; Wang, Meifang; Ham, Seung Wook; Carr, Brian I

    2006-10-01

    We previously synthesized a K-vitamin derivative, Cpd 5, which was a potent growth inhibitor of human tumor cells, including Hep3B hepatoma cells. However, being a quinone compound, Cpd 5 has the potential for generating toxic reactive oxygen species (ROS). We therefore synthesized a nonquinone sulfone derivative, H32, which has a sufone group substituting the quinone. The IC50 of H32 for Hep3B cells was found to be 2.5 microM, which was 2.5 and 3.2 times more potent than Cpd 5 and vitamin K3 respectively. It induced apoptosis in Hep3B cells but did not generate ROS when compared to Cpd 5. Interestingly, under similar culture conditions, normal rat hepatocytes were 14-fold more and 7-fold more resistant to the growth inhibitory effects of H32 than Hep3B and PLC/PRF5 cells respectively. H32 preferentially inhibited the activities of the cell cycle controlling Cdc25A phosphatase likely by binding to its catalytic cysteine. As a consequence, it induced inhibitory tyrosine phosphorylation of the Cdc25 substrate kinases Cdk2 and Cdk4 in Hep3B cells and the cells undergo an arrest in the G1 phase of the cell cycle. H32 also induced persistent phosphorylation of the MAPK protein ERK1/2, but marginal JNK1/2 and p38 phosphorylation. The ERK inhibitor U0126, added at least 30 min prior to H32, antagonized the growth inhibition induced by H32. However, the JNK and p38 inhibitors, JNKI-II and SB203580, were not able to antagonize H32 induced growth inhibition. Thus, H32 differentially inhibited growth of normal and liver tumor cells by preferentially inhibiting the actions of Cdc25 phosphatases and inducing persistent ERK phosphorylation.

  8. Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation

    Science.gov (United States)

    Reddy, Michael M.

    2012-01-01

    Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (Ωc). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and Ωc=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10−4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10−4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.

  9. Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Hsieh-Hsun [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan (China); Chang, Chi-Sen [Department of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Division of Gastroenterology, Taichung Veterans General Hospital, Taichung 402, Taiwan (China); Ho, Wei-Chi [Division of Gastroenterology, Jen-Ai Hospital, Taichung 402, Taiwan (China); Liao, Sheng-You [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan (China); Lin, Wea-Lung [Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pathology, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Wang, Chau-Jong, E-mail: wcj@csmu.edu.tw [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China)

    2013-01-01

    Our previous study demonstrated the therapeutic potential of gallic acid (GA) for controlling tumor metastasis through its inhibitory effect on the motility of AGS cells. A noteworthy finding in our previous experiment was increased RhoB expression in GA-treated cells. The aim of this study was to evaluate the role of RhoB expression on the inhibitory effects of GA on AGS cells. By applying the transfection of RhoB siRNA into AGS cells and an animal model, we tested the effect of GA on inhibition of tumor growth and RhoB expression. The results confirmed that RhoB-siRNA transfection induced GA to inhibit AGS cells’ invasive growth involving blocking the AKT/small GTPase signals pathway and inhibition of NF-κB activity. Finally, we evaluated the effect of GA on AGS cell metastasis by colonization of tumor cells in nude mice. It showed GA inhibited tumor cells growth via the expression of RhoB. These data support the inhibitory effect of GA which was shown to inhibit gastric cancer cell metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Thus, GA might be a potential agent in treating gastric cancer. Highlights: ► GA could downregulate AKT signal via increased expression of RhoB. ► GA inhibits metastasis in vitro in gastric carcinoma. ► GA inhibits tumor growth in nude mice model.

  10. Combination of α-Tomatine and Curcumin Inhibits Growth and Induces Apoptosis in Human Prostate Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Huarong Huang

    Full Text Available α-Tomatine is a glycoalkaloid found in tomatoes and curcumin is a major yellow pigment of turmeric. In the present study, the combined effect of these two compounds on prostate cancer cells was studied. Treatment of different prostate cancer cells with curcumin or α-tomatine alone resulted in growth inhibition and apoptosis in a concentration-dependent manner. Combinations of α-tomatine and curcumin synergistically inhibited the growth and induced apoptosis in prostate cancer PC-3 cells. Effects of the α-tomatine and curcumin combination were associated with synergistic inhibition of NF-κB activity and a potent decrease in the expression of its downstream gene Bcl-2 in the cells. Moreover, strong decreases in the levels of phospho-Akt and phosphor-ERK1/2 were found in PC-3 cells treated with α-tomatine and curcumin in combination. In animal experiment, SCID mice with PC-3 xenograft tumors were treated with α-tomatine and curcumin. Combination of α-tomatine and curcumin more potently inhibited the growth of PC-3 tumors than either agent alone. Results from the present study indicate that α-tomatine in combination with curcumin may be an effective strategy for inhibiting the growth of prostate cancer.

  11. Large plasma-membrane depolarization precedes rapid blue-light-induced growth inhibition in cucumber

    Science.gov (United States)

    Spalding, E. P.; Cosgrove, D. J.

    1989-01-01

    Blue-light (BL)-induced suppression of elongation of etiolated Cucumis sativus L. hypocotyls began after a 30-s lag time, which was halved by increasing the fluence rate from 10 to 100 micromoles m-2 s-1. Prior to the growth suppression, the plasma-membrane of the irradiated cells depolarized by as much as 100 mV, then returned within 2-3 min to near its initial value. The potential difference measured with surface electrodes changed with an identical time course but opposite polarity. The lag time for the change in surface potential showed an inverse dependence on fluence rate, similar to the lag for the growth inhibition. Green light and red light caused neither the electrical response nor the rapid inhibition of growth. The depolarization by BL did not propagate to nonirradiated regions and exhibited a refractory period of about 10 min following a BL pulse. Fluence-response relationships for the electrical and growth responses provide correlational evidence that the plasma-membrane depolarization reflects an event in the transduction chain of this light-growth response.

  12. Potential mechanisms for the inhibition of tumor cell growth by manganese superoxide dismutase.

    Science.gov (United States)

    Kim, K H; Rodriguez, A M; Carrico, P M; Melendez, J A

    2001-06-01

    Studies from many laboratories have shown that overexpression of manganese superoxide dismutase (MnSOD) inhibits the growth of numerous tumor cell types. The inhibition of tumor cell growth can be attributed to the increase in the steady-state levels of H2O2 as a result of the increased dismuting activity of MnSOD. Here we demonstrate that overexpression of MnSOD enhances the activity of the superoxide (O2*-)-sensitive enzyme aconitase, decreases the intracellular GSH/GSSG ratio, and dose-dependently inhibits pyruvate carboxylase activity. Thus, alterations in the steady-state concentrations of mitochondrial O2*- and H2O2 as a result of MnSOD overexpression can alter the metabolic capacity of the cell leading to inhibition of cell growth. Furthermore, we propose that MnSOD overexpression can modulate the activity of nitric oxide (*NO) by preventing its reaction with O2*-. This hypothesis suggests that the redox environment of the mitochondria can be altered to favor the activity of *NO rather than peroxynitrite (ONOO-) and may explain the enhanced toxicity of *NO-generating compounds toward MnSOD-overexpressing cell lines. These findings indicate that therapeutic strategies targeted at overexpressing MnSOD in tumor tissue may be more effective when used in combination with agents that deplete the oxidant-buffering and enhance the *NO-generating capacity of the tumor and host, respectively.

  13. Inhibition of hydroxyapatite growth by casein, a potential salivary phosphoprotein homologue.

    Science.gov (United States)

    Romero, Maria J R H; Nakashima, Syozi; Nikaido, Toru; Ichinose, Shizuko; Sadr, Alireza; Tagami, Junji

    2015-08-01

    Salivary phosphoproteins are essential in tooth mineral regulation but are often overlooked in vitro. This study aimed to evaluate the effect of casein, as a salivary phosphoprotein homologue, on the deposition and growth of hydroxyapatite (HA) on tooth surfaces. Hydroxyapatite growth was quantified using seeded crystal systems. Artificial saliva (AS) containing HA powder and 0, 10, 20, 50, or 100 μg ml(-1) of casein, or 100 μg ml(-1) of dephosphorylated casein (Dcasein), was incubated for 0-8 h at 37°C, pH 7.2. Calcium concentrations were measured using atomic absorption spectroscopy (AAS). Surface precipitation of HA on bovine enamel and dentine blocks, incubated in similar conditions for 7 d, was examined using field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) with selected area electron diffraction (SAED). Casein adsorption was assessed using modified Lowry assays and zeta-potential measurements. The AAS results revealed a concentration-dependent inhibition of calcium consumption. Hydroxyapatite precipitation occurred when no casein was present, whereas precipitation of HA was apparently completely inhibited in casein-containing groups. Adsorption data demonstrated increasingly negative zeta-potential with increased casein concentration and an affinity constant similar to proline-rich proteins with Langmuir modelling. Casein inhibited the deposition and growth of HA primarily through the binding of esterized phosphate to HA active sites, indicating its potential as a mineral-regulating salivary phosphoprotein homologue in vitro. © 2015 Eur J Oral Sci.

  14. Fungi & Health: can polysaccharides from the fungus inonotus obliquus (CHAGA) inhibit tumor growth?

    DEFF Research Database (Denmark)

    Wold, C. W.; Corthay, A.; Kjeldsen, Christian

    Inonotus obliquus (Chaga) – a white rot fungus found on birch trees in the northern hemisphere –has been used in traditional medicine in Europe and Asia for centuries. Native peoples have made use of Chaga by brewing it as a tea to treat gastro-intestinal problems, to heal wounds and even to treat...... cancer. The last few decades, studies have found Chaga to contain biologically active substances such as polysaccharides, triterpenoids, polyphenols and melanin. In vivo effects such as tumor growth inhibition have been observed in mice receiving various Chaga extracts. The main hypothesis behind...... the tumor inhibiting effect is two-fold: i) fungal polysaccharides may inhibit tumor growth indirectly by activating certain immune cells such as macrophages and ii) triterpenoids and other steroids from Chaga may give a direct cytotoxic effect against cancer cells. While triterpenoids from Chaga have been...

  15. Nitrogen-fixing trees inhibit growth of regenerating Costa Rican rainforests.

    Science.gov (United States)

    Taylor, Benton N; Chazdon, Robin L; Bachelot, Benedicte; Menge, Duncan N L

    2017-08-15

    More than half of the world's tropical forests are currently recovering from human land use, and this regenerating biomass now represents the largest carbon (C)-capturing potential on Earth. How quickly these forests regenerate is now a central concern for both conservation and global climate-modeling efforts. Symbiotic nitrogen-fixing trees are thought to provide much of the nitrogen (N) required to fuel tropical secondary regrowth and therefore to drive the rate of forest regeneration, yet we have a poor understanding of how these N fixers influence the trees around them. Do they promote forest growth, as expected if the new N they fix facilitates neighboring trees? Or do they suppress growth, as expected if competitive inhibition of their neighbors is strong? Using 17 consecutive years of data from tropical rainforest plots in Costa Rica that range from 10 y since abandonment to old-growth forest, we assessed how N fixers influenced the growth of forest stands and the demographic rates of neighboring trees. Surprisingly, we found no evidence that N fixers facilitate biomass regeneration in these forests. At the hectare scale, plots with more N-fixing trees grew slower. At the individual scale, N fixers inhibited their neighbors even more strongly than did nonfixing trees. These results provide strong evidence that N-fixing trees do not always serve the facilitative role to neighboring trees during tropical forest regeneration that is expected given their N inputs into these systems.

  16. Silencing VDAC1 Expression by siRNA Inhibits Cancer Cell Proliferation and Tumor Growth In Vivo

    Directory of Open Access Journals (Sweden)

    Tasleem Arif

    2014-01-01

    Full Text Available Alterations in cellular metabolism and bioenergetics are vital for cancer cell growth and motility. Here, the role of the mitochondrial protein voltage-dependent anion channel (VDAC1, a master gatekeeper regulating the flux of metabolites and ions between mitochondria and the cytoplasm, in regulating the growth of several cancer cell lines was investigated by silencing VDAC1 expression using small interfering RNA (siRNA. A single siRNA specific to the human VDAC1 sequence at nanomolar concentrations led to some 90% decrease in VDAC1 levels in the lung A549 and H358, prostate PC-3, colon HCT116, glioblastoma U87, liver HepG2, and pancreas Panc-1 cancer cell lines. VDAC1 silencing persisted 144 hours post-transfection and resulted in profound inhibition of cell growth in cancer but not in noncancerous cells, with up to 90% inhibition being observed over 5 days that was prolonged by a second transfection. Cells expressing low VDAC1 levels showed decreased mitochondrial membrane potential and adenoside triphosphate (ATP levels, suggesting limited metabolite exchange between mitochondria and cytosol. Moreover, cells silenced for VDAC1 expression showed decreased migration, even in the presence of the wound healing accelerator basic fibroblast growth factor (bFGF. VDAC1-siRNA inhibited cancer cell growth in a Matrigel-based assay in host nude mice. Finally, in a xenograft lung cancer mouse model, chemically modified VDAC1-siRNA not only inhibited tumor growth but also resulted in tumor regression. This study thus shows that VDAC1 silencing by means of RNA interference (RNAi dramatically inhibits cancer cell growth and tumor development by disabling the abnormal metabolic behavior of cancer cells, potentially paving the way for a more effective pipeline of anticancer drugs.

  17. Suppression of polymorphonuclear (PMN) and monocyte-mediated inhibition of Candida albicans growth by delta-9-tetrahydrocannabinol

    International Nuclear Information System (INIS)

    Djeu, J.Y.; Parapanios, A.; Halkias, D.; Friedman, H.

    1986-01-01

    This study was an in vitro attempt to identify the effector cells responsible for growth inhibition of the opportunistic fungus, candida albicans, and to determine if THC or another marijuana derivatives, 11-hydroxyTHC, would adversely affect their function. Using a 24h radiolabel assay, the authors found that growth inhibition of C. albicans was primarily mediated by PMN and monocytes that could be isolated normal human peripheral blood. Both effector cell types caused almost complete inhibition of Candida growth at effector/target ratio of 300/1 and inhibition was often still seen at 30/1-. Incubation of PMN, PBL, or monocytes for 1 hr at 37C with THC or 11-hydroxyTHC caused a marked suppression of function in all 3 cell populations. Maximal suppression was obtained with 7.5-10μg/ml of the drugs in medium containing 10% fetal bovine serum (FBS) or with 2-4μg/ml in 1% FBS. These drug concentrations did not affect lymphoid cell viability or candida growth in the absence of lymphoid effector cells. Marijuana derivatives, therefore, are doubly dangerous in that opportunistic fungi such as C. albicans can grow in their presence while the effector cells that control fungal growth are readily inactivated

  18. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    International Nuclear Information System (INIS)

    Tsang, Chi Man; Cheung, Yuk Chun; Lui, Vivian Wai-Yan; Yip, Yim Ling; Zhang, Guitao; Lin, Victor Weitao; Cheung, Kenneth Chat-Pan; Feng, Yibin; Tsao, Sai Wah

    2013-01-01

    Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC

  19. Inhibition of growth of Trichophyton tonsurans by Lactobacillus reuteri.

    Science.gov (United States)

    Guo, J; Mauch, A; Galle, S; Murphy, P; Arendt, E K; Coffey, A

    2011-08-01

    The aims of this study were to identify antifungal lactic acid bacteria (LAB) and characterize their activity against the dermatophyte Trichophyton tonsurans. A total of 165 different LAB were isolated and initially screened for anti-Penicillium expansum activity. Five strains, which exhibited strong inhibitory activity, were then tested against the dermatophyte T. tonsurans DSM12285, where they also caused inhibition as observed by large fungal clearing on agar surface. The strongest inhibition was seen with Lactobacillus reuteri R2. When freeze-dried cell-free supernatant powder from this strain was incorporated in culture medium at concentrations >1%, growth of fungal colony was inhibited. Conidia germination was also inhibited under these conditions as determined by microscopy. The anti-T. tonsurans activity of Lact. reuteri R2 was not affected neither by heat treatment nor by proteolytic treatment using pronase E and proteinase K, indicating that the responsible agent(s) were nonproteinaceous in nature. Lactobacillus reuteri R2 was identified as having strong inhibitory activity against the dermatophyte T. tonsurans DSMZ12285. LAB are naturally associated with many foods and are well recognized for their biopreservative properties. The use of these and/or their products may well provide alternative safe approaches for the inhibition of dermatophytic fungi. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  20. Exogenous nitrate induces root branching and inhibits primary root growth in Capsicum chinense Jacq.

    Science.gov (United States)

    Celis-Arámburo, Teresita de Jesús; Carrillo-Pech, Mildred; Castro-Concha, Lizbeth A; Miranda-Ham, María de Lourdes; Martínez-Estévez, Manuel; Echevarría-Machado, Ileana

    2011-12-01

    The effects of nitrate (NO₃⁻) on the root system are complex and depend on several factors, such as the concentration available to the plant, endogenous nitrogen status and the sensitivity of the species. Though these effects have been widely documented on Arabidopsis and cereals, no reports are available in the Capsicum genus. In this paper, we have determined the effect of an exogenous in vitro application of this nutrient on root growth in habanero pepper (Capsicum chinense Jacq.). Exposure to NO₃⁻ inhibited primary root growth in both, dose- and time-dependent manners. The highest inhibition was attained with 0.1 mM NO₃⁻ between the fourth and fifth days of treatment. Inhibition of primary root growth was observed by exposing the root to both homogeneous and heterogeneous conditions of the nutrient; in contrast, ammonium was not able to induce similar changes. NO₃⁻-induced inhibition of primary root growth was reversed by treating the roots with IAA or NPA, a polar auxin transport inhibitor. Heterogeneous NO₃⁻ application stimulated the formation and elongation of lateral roots in the segment where the nutrient was present, and this response was influenced by exogenous phytohormones. These results demonstrate that habanero pepper responds to NO₃⁻ in a similar fashion to other species with certain particular differences. Therefore, studies in this model could help to elucidate the mechanisms by which roots respond to NO₃⁻ in fluctuating soil environments. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  1. Release Profile and Inhibition Test of The Nanoparticles A. Paniculata Extract as Inhibitor of α-Glucosidase in The Process of Carbohydrates Breakdown Into Glucose Diabetes Mellitus

    Science.gov (United States)

    Imansari, Farisa; Sahlan, Muhammad; Arbianti, Rita

    2017-07-01

    Andrographis paniculata (A.paniculata) contain the main active substances Andrographolide which helps lower glucose levels in diabetics by inhibiting the enzyme α-glucosidase. The ability of the extract A.paniculata in lowering glucose levels will increase with the technique encapsulation with a coating of composition Chitosan-STPP as a drug delivery to the target organ. This study aimed to get an overview of A.paniculata release profile of nanoparticles in a synthetic fluid media with various concentrations of coating and inhibition testing nasty shard extract in inhibiting the enzyme α-glucosidase. This research resulted in nanoparticles by coating efficiency and loading capacity of chitosan greatest variation of 2% and 1% STPP 60% and 46.29%. chitosan greatest variation of 2% and 1% STPP 60% and 46.29%. The ability of A.paniculata extracts as α-glucosidase enzyme inhibitors has been demonstrated in this study, the percent inhibition of 33.17%.

  2. Herbal extracts of Tribulus terrestris and Bergenia ligulata inhibit growth of calcium oxalate monohydrate crystals in vitro

    Science.gov (United States)

    Joshi, V. S.; Parekh, B. B.; Joshi, M. J.; Vaidya, A. B.

    2005-02-01

    A large number of people in this world are suffering from urinary stone problem. Calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) containing stones (calculi) are commonly found. In the present study, COM crystals were grown by a double diffusion gel growth technique using U-tubes. The gel was prepared from hydrated sodium metasilicate solution. The gel framework acts like a three-dimensional crucible in which the crystal nuclei are delicately held in the position of their formation, and nutrients are supplied for the growth. This technique can be utilized as a simplified screening static model to study the growth, inhibition and dissolution of urinary stones in vitro. The action of putative litholytic medicinal plants, Tribulus terrestris Linn. ( T.t) and Bergenia ligulata Linn. ( B.l.), has been studied in the growth of COM crystals. Tribulus terrestris and Bergenia ligulata are commonly used as herbal medicines for urinary calculi in India. To verify the inhibitive effect, aqueous extracts of Tribulus terrestris and Bergenia ligulata were added along with the supernatant solutions. The growth was measured and compared, with and without the aqueous extracts. Inhibition of COM crystal growth was observed in the herbal extracts. Maximum inhibition was observed in Bergenia ligulata followed by Tribulus terrestris. The results are discussed.

  3. Inhibition of connective tissue growth factor overexpression decreases growth of hepatocellular carcinoma cells in vitro and in vivo.

    Science.gov (United States)

    Jia, Xiao-Qin; Cheng, Hai-Qing; Li, Hong; Zhu, Yan; Li, Yu-Hua; Feng, Zhen-Qing; Zhang, Jian-Ping

    2011-11-01

    We have previously found that connective tissue growth factor (CTGF) is highly expressed in a rat model of liver cancer. Here, we examined expression of CTGF in human hepatocellular carcinoma (HCC) cells and its effect on cell growth. Real-time PCR was used to observe expression of CTGF in human HCC cell lines HepG2, SMMC-7721, MHCC-97H and LO2. siRNA for the CTGF gene was designed, synthesized and cloned into a Plk0.1-GFP-SP6 vector to construct a lentivirus-mediated shRNA/CTGF. CTGF mRNA and protein expression in HepG2 cells treated by CTGF-specific shRNA was evaluated by real-time PCR and Western blotting. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was utilized to evaluate the growth effect, and a colony formation assay was used for observing clonogenic growth. In vivo, tumor cell proliferation was evaluated in a nude mouse model of xenotransplantation. Statistical significance was determined by t test for comparison between two groups, or analysis of variance (ANOVA) for multiple groups. Immunohistochemical staining of CTGF was seen in 35 of 40 HCC samples (87.5%). CTGF was overexpressed 5-fold in 20 HCC tissues, compared with surrounding non-tumor liver tissue. CTGF mRNA level was 5 - 8-fold higher in HepG2, SMMC-7721 and MHCC-97H than in LO2 cells. This indicated that the inhibition rate of cell growth was 43% after knockdown of CTGF expression (P < 0.05). Soft agar colony formation assay showed that siRNA mediated knockdown of CTGF inhibited colony formation in soft agar of HepG2 cells (P < 0.05). The volume of tumors from CTGF-shRNA-expressing cells only accounted for 35% of the tumors from the scrambled control-infected HepG2 cells (P < 0.05). CTGF was overexpressed in human HCC cells and downregulation of CTGF inhibited HCC growth in vitro and in vivo. Knockdown of CTGF may be a potential therapeutic strategy for treatment of HCC.

  4. Picropodophyllin inhibits tumor growth of human nasopharyngeal carcinoma in a mouse model

    International Nuclear Information System (INIS)

    Yin, Shu-Cheng; Guo, Wei; Tao, Ze-Zhang

    2013-01-01

    Highlights: •We identified that PPP inhibits IGF-1R/Akt pathway in NPC cells. •PPP dose-dependently inhibits NPC cell proliferation in vitro. •PPP suppresses tumor growth of NPC in nude mice. •PPP have little effect on microtubule assembly. -- Abstract: Insulin-like growth factor-1 receptor (IGF-1R) is a cell membrane receptor with tyrosine kinase activity and plays important roles in cell transformation, tumor growth, tumor invasion, and metastasis. Picropodophyllin (PPP) is a selective IGF-1R inhibitor and shows promising antitumor effects for several human cancers. However, its antitumor effects in nasopharyngeal carcinoma (NPC) remain unclear. The purpose of this study is to investigate the antitumor activity of PPP in NPC using in vitro cell culture and in vivo animal model. We found that PPP dose-dependently decreased the IGF-induced phosphorylation and activity of IGF-1R and consequently reduced the phosphorylation of Akt, one downstream target of IGF-1R. In addition, PPP inhibited NPC cell proliferation in vitro. The half maximal inhibitory concentration (IC50) of PPP for NPC cell line CNE-2 was ⩽1 μM at 24 h after treatment and ⩽0.5 μM at 48 h after treatment, respectively. Moreover, administration of PPP by intraperitoneal injection significantly suppressed the tumor growth of xenografted NPC in nude mice. Taken together, these results suggest targeting IGF-1R by PPP may represent a new strategy for treatment of NPCs with positive IGF-1R expression

  5. Picropodophyllin inhibits tumor growth of human nasopharyngeal carcinoma in a mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Shu-Cheng [Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Department of Otolaryngology – Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Guo, Wei [Department of Otolaryngology – Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Tao, Ze-Zhang, E-mail: zezhangtao@gmail.com [Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060 (China)

    2013-09-13

    Highlights: •We identified that PPP inhibits IGF-1R/Akt pathway in NPC cells. •PPP dose-dependently inhibits NPC cell proliferation in vitro. •PPP suppresses tumor growth of NPC in nude mice. •PPP have little effect on microtubule assembly. -- Abstract: Insulin-like growth factor-1 receptor (IGF-1R) is a cell membrane receptor with tyrosine kinase activity and plays important roles in cell transformation, tumor growth, tumor invasion, and metastasis. Picropodophyllin (PPP) is a selective IGF-1R inhibitor and shows promising antitumor effects for several human cancers. However, its antitumor effects in nasopharyngeal carcinoma (NPC) remain unclear. The purpose of this study is to investigate the antitumor activity of PPP in NPC using in vitro cell culture and in vivo animal model. We found that PPP dose-dependently decreased the IGF-induced phosphorylation and activity of IGF-1R and consequently reduced the phosphorylation of Akt, one downstream target of IGF-1R. In addition, PPP inhibited NPC cell proliferation in vitro. The half maximal inhibitory concentration (IC50) of PPP for NPC cell line CNE-2 was ⩽1 μM at 24 h after treatment and ⩽0.5 μM at 48 h after treatment, respectively. Moreover, administration of PPP by intraperitoneal injection significantly suppressed the tumor growth of xenografted NPC in nude mice. Taken together, these results suggest targeting IGF-1R by PPP may represent a new strategy for treatment of NPCs with positive IGF-1R expression.

  6. Online hyphenation of extraction, Sephadex LH-20 column chromatography, and high-speed countercurrent chromatography: A highly efficient strategy for the preparative separation of andrographolide from Andrographis paniculata in a single step.

    Science.gov (United States)

    Zhang, Ying-Qi; Wang, Shan-Shan; Han, Chao; Xu, Jin-Fang; Luo, Jian-Guang; Kong, Ling-Yi

    2017-12-01

    A novel isolation strategy, online hyphenation of ultrasonic extraction, Sephadex LH-20 column chromatography combined with high-speed countercurrent chromatography, was developed for pure compounds extraction and purification. Andrographolide from Andrographis paniculata was achieved only in a single step purification protocol via the present strategy. The crude powder was ultrasonic extracted and extraction was pumped into Sephadex LH-20 column directly to cut the nontarget fractions followed by the second-dimensional high-speed countercurrent chromatography, hyphenated by a six-port valve equipped at the post-end of Sephadex LH-20 column, for the final purification. The results yielded andrographolide with the amount of 1.02 mg and a purity of 98.5% in a single step, indicating that the present method is effective to harvest target compound from medicinal plant. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts

    International Nuclear Information System (INIS)

    Yu, Yanlan; Chen, Yicheng; Ding, Guoqing; Wang, Mingchao; Wu, Haiyang; Xu, Liwei; Rui, Xuefang; Zhang, Zhigen

    2015-01-01

    The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacy and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice

  8. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yanlan; Chen, Yicheng; Ding, Guoqing; Wang, Mingchao; Wu, Haiyang; Xu, Liwei; Rui, Xuefang; Zhang, Zhigen, E-mail: srrshurology@163.com

    2015-08-14

    The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacy and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice.

  9. Co-aggregation and growth inhibition of probiotic lactobacilli and clinical isolates of mutans streptococci: An in vitro study

    DEFF Research Database (Denmark)

    Keller, Mette Kirstine; Hassl F, Pamela; Stecks N-Blicks, Christina

    2011-01-01

    -free and caries-susceptible individuals. Conclusions. The selected lactobacilli displayed co-aggregation activity and inhibited growth of clinical mutans streptococci. The growth inhibition was strain-specific and dependent on pH and cell concentration. The findings indicate that the outcome of lactobacilli...

  10. Transactivation of the TIEG1 confers growth inhibition of transforming growth factor-β-susceptible hepatocellular carcinoma cells

    Science.gov (United States)

    Jiang, Lei; Lai, Yiu-Kay; Zhang, Jin-Fang; Chan, Chu-Yan; Lu, Gang; Lin, Marie CM; He, Ming-Liang; Li, Ji-Cheng; Kung, Hsiang-Fu

    2012-01-01

    AIM: To investigate the role of transforming growth factor (TGF)-β-inducible early gene 1 (TIEG1) in TGF-β-induced growth inhibition in hepatocellular carcinoma (HCC) cells. METHODS: Human hepatocyte and HCC cell lines with varied susceptibilities to TGF-β1 were tested by methylthiazoletetrazolium (MTT) assay. The expression changes of Smad2, Smad3, Smad4, Smad7, TIEG1 and TIEG2 gene following treatment with TGF-β1 in a TGF-β-sensitive hepatocyte cell line (MIHA), a TGF-β-sensitive hepatoma cell line (Hep3B) and two TGF-β-insensitive hepatoma cell lines (HepG2 and Bel7404) were examined. SiRNA targeting TIEG1 was transfected into Hep3B cells and the sensitivity of cells to TGF-β1 was examined. Overexpression of TIEG1 was induced by lentiviral-mediated transduction in TGF-β1-resistant hepatoma cell lines (Bel7404 and HepG2). MTT assay and 4’,6-Diamidino-2-phenylindole staining were used to identify cell viability and apoptosis, respectively. The expression level of stathmin was measured by reverse transcriptase polymerase chain reaction and Western-blotting analysis, and stathmin promoter activity by TIEG1 was monitored by a luciferase reporter gene system. RESULTS: TIEG1 was significantly upregulated by TGF-β1 in the TGF-β1-sensitive HCC cell line, Hep3B, but not in the resistant cell lines. The suppression of TIEG1 by siRNAs decreased the sensitivity of Hep3B cells to TGF-β1, whereas the overexpression of TIEG1 mediated growth inhibition and apoptosis in TGF-β1-resistant HCC cell lines, which resembled those of TGF-β1-sensitive HCC cells treated with TGF-β1. Our data further suggested that stathmin was a direct target of TIEG1, as stathmin was significantly downregulated by TIEG1 overexpression, and stathmin promoter activity was inhibited by TIEG1 in a dose-dependent manner. CONCLUSION: Our data suggest that transactivation of TIEG1 conferred growth inhibition of TGF-β-susceptible human HCC cells. PMID:22563190

  11. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis

    Directory of Open Access Journals (Sweden)

    Li Q

    2013-07-01

    Full Text Available Qingli Li,1,2 Mark J Lambrechts,1 Qiuyang Zhang,1 Sen Liu,1 Dongxia Ge,1 Rutie Yin,2 Mingrong Xi,2 Zongbing You1 1Departments of Structural and Cellular Biology and Orthopaedic Surgery, Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane Center for Stem Cell Research and Regenerative Medicine, and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, USA; 2Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China Abstract: Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA, are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy. Keywords: serine hydroxymethyltransferase, prostate cancer, apoptosis

  12. Paeoniflorin inhibits the growth of bladder carcinoma via deactivation of STAT3

    Directory of Open Access Journals (Sweden)

    Yang Jianhui

    2018-06-01

    Full Text Available Bladder cancer (BCa is one of the most common urinary cancers. The present study aims to investigate whether Paeoniflorin (Pae can exert inhibitory effects on BCa. The results showed that Pae inhibited proliferation of human BCa cell lines in a concentration- and time-dependent manner. Pae and cisplatin (Cis synergistically inhibited the growth of tumours in RT4-bearing mice. Pae treatment neutralized the body loss induced by Cis. Moreover, Pae induced apoptosis in RT4 cells and increased the activities of caspase3, caspase8 and caspase9. Western blotting and immunohistochemical analysis revealed that the phosphorylated signal transducer and activator of transcription-3 (p-STAT3 level were decreased in Pae-treated RT4 cells and Pae-treated tumour-bearing mice. Furthermore, STAT3 transcriptional target B-cell lymphoma-2 was decreased in Pae-treated RT4 cells. Interestingly, Pae prevented translocation of STAT3 to the nucleus in RT4 cells. Collectively, Pae inhibits the growth of BCa, at least in part, via a STAT3 pathway.

  13. Bee Venom Promotes Hair Growth in Association with Inhibiting 5α-Reductase Expression.

    Science.gov (United States)

    Park, Seeun; Erdogan, Sedef; Hwang, Dahyun; Hwang, Seonwook; Han, Eun Hye; Lim, Young-Hee

    2016-06-01

    Alopecia is an important issue that can occur in people of all ages. Recent studies show that bee venom can be used to treat certain diseases including rheumatoid arthritis, neuralgia, and multiple sclerosis. In this study, we investigated the preventive effect of bee venom on alopecia, which was measured by applying bee venom (0.001, 0.005, 0.01%) or minoxidil (2%) as a positive control to the dorsal skin of female C57BL/6 mice for 19 d. Growth factors responsible for hair growth were analyzed by quantitative real-time PCR and Western blot analysis using mice skins and human dermal papilla cells (hDPCs). Bee venom promoted hair growth and inhibited transition from the anagen to catagen phase. In both anagen phase mice and dexamethasone-induced catagen phase mice, hair growth was increased dose dependently compared with controls. Bee venom inhibited the expression of SRD5A2, which encodes a type II 5α-reductase that plays a major role in the conversion of testosterone into dihydrotestosterone. Moreover, bee venom stimulated proliferation of hDPCs and several growth factors (insulin-like growth factor 1 receptor (IGF-1R), vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF)2 and 7) in bee venom-treated hDPCs dose dependently compared with the control group. In conclusion, bee venom is a potentially potent 5α-reductase inhibitor and hair growth promoter.

  14. Platycodin D inhibits tumor growth by antiangiogenic activity via blocking VEGFR2-mediated signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Luan, Xin; Gao, Yun-Ge; Guan, Ying-Yun; Xu, Jian-Rong; Lu, Qin [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Zhao, Mei [Department of Pharmacy, Shanghai Institute of Health Sciences and Health School Attached to SJTU-SM, 279 Zhouzhu Road, Shanghai 201318 (China); Liu, Ya-Rong; Liu, Hai-Jun [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Fang, Chao, E-mail: fangchao100@hotmail.com [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Chen, Hong-Zhuan, E-mail: hongzhuan_chen@hotmail.com [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China)

    2014-11-15

    Platycodin D (PD) is an active component mainly isolated from the root of Platycodon grandiflorum. Recent studies proved that PD exhibited inhibitory effect on proliferation, migration, invasion and xenograft growth of diverse cancer cell lines. However, whether PD is suppressive for angiogenesis, an important hallmark in cancer development, remains unknown. Here, we found that PD could dose-dependently inhibit human umbilical vein endothelial cell (HUVEC) proliferation, motility, migration and tube formation. PD also significantly inhibited angiogenesis in the chick embryo chorioallantoic membrane (CAM). Moreover, the antiangiogenic activity of PD contributed to its in vivo anticancer potency shown in the decreased microvessel density and delayed growth of HCT-15 xenograft in mice with no overt toxicity. Western blot analysis indicated that PD inhibited the phosphorylation of VEGFR2 and its downstream protein kinase including PLCγ1, JAK2, FAK, Src, and Akt in endothelial cells. Molecular docking simulation showed that PD formed hydrogen bonds and hydrophobic interactions within the ATP binding pocket of VEGFR2 kinase domain. The present study firstly revealed the high antiangiogenic activity and the underlying molecular basis of PD, suggesting that PD may be a potential antiangiogenic agent for angiogenesis-related diseases. - Highlights: • Platycodin D inhibits HUVEC proliferation, motility, migration and tube formation. • Platycodin D inhibits the angiogenesis in chick embryo chorioallantoic membrane. • Platycodin D suppresses the angiogenesis and growth of HCT-15 xenograft in mice. • Platycodin D inhibits the phosphorylation of VEGFR2 and downstream kinases in HUVEC.

  15. Platycodin D inhibits tumor growth by antiangiogenic activity via blocking VEGFR2-mediated signaling pathway

    International Nuclear Information System (INIS)

    Luan, Xin; Gao, Yun-Ge; Guan, Ying-Yun; Xu, Jian-Rong; Lu, Qin; Zhao, Mei; Liu, Ya-Rong; Liu, Hai-Jun; Fang, Chao; Chen, Hong-Zhuan

    2014-01-01

    Platycodin D (PD) is an active component mainly isolated from the root of Platycodon grandiflorum. Recent studies proved that PD exhibited inhibitory effect on proliferation, migration, invasion and xenograft growth of diverse cancer cell lines. However, whether PD is suppressive for angiogenesis, an important hallmark in cancer development, remains unknown. Here, we found that PD could dose-dependently inhibit human umbilical vein endothelial cell (HUVEC) proliferation, motility, migration and tube formation. PD also significantly inhibited angiogenesis in the chick embryo chorioallantoic membrane (CAM). Moreover, the antiangiogenic activity of PD contributed to its in vivo anticancer potency shown in the decreased microvessel density and delayed growth of HCT-15 xenograft in mice with no overt toxicity. Western blot analysis indicated that PD inhibited the phosphorylation of VEGFR2 and its downstream protein kinase including PLCγ1, JAK2, FAK, Src, and Akt in endothelial cells. Molecular docking simulation showed that PD formed hydrogen bonds and hydrophobic interactions within the ATP binding pocket of VEGFR2 kinase domain. The present study firstly revealed the high antiangiogenic activity and the underlying molecular basis of PD, suggesting that PD may be a potential antiangiogenic agent for angiogenesis-related diseases. - Highlights: • Platycodin D inhibits HUVEC proliferation, motility, migration and tube formation. • Platycodin D inhibits the angiogenesis in chick embryo chorioallantoic membrane. • Platycodin D suppresses the angiogenesis and growth of HCT-15 xenograft in mice. • Platycodin D inhibits the phosphorylation of VEGFR2 and downstream kinases in HUVEC

  16. The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro.

    Science.gov (United States)

    Velázquez-Becerra, Crisanto; Macías-Rodríguez, Lourdes I; López-Bucio, José; Flores-Cortez, Idolina; Santoyo, Gustavo; Hernández-Soberano, Christian; Valencia-Cantero, Eduardo

    2013-12-01

    Plant diseases caused by fungal pathogens such as Botrytis cinerea and the oomycete Phytophthora cinnamomi affect agricultural production worldwide. Control of these pests can be done by the use of fungicides such as captan, which may have deleterious effects on human health. This study demonstrates that the rhizobacterium Arthrobacter agilis UMCV2 produces volatile organic compounds that inhibit the growth of B. cinerea in vitro. A single compound from the volatile blends, namely dimethylhexadecylamine (DMHDA), could inhibit the growth of both B. cinerea and P. cinnamomi when supplied to the growth medium in low concentrations. DMHDA also inhibited the growth of beneficial fungi Trichoderma virens and Trichoderma atroviride but at much higher concentrations. DMHDA-related aminolipids containing 4, 8, 10, 12, and 14 carbons in the alkyl chain were tested for their inhibitory effect on the growth of the pathogens. The results show that the most active compound from those tested was dimethyldodecylamine. This effect correlates with a decrease in the number of membrane lipids present in the mycelium of the pathogen including eicosanoic acid, (Z)-9-hexadecenoic acid, methyl ester, and (Z)-9-octadecenoic acid, methyl ester. Strawberry leaflets treated with DMHDA were not injured by the compound. These data indicate that DMHDA and related compounds, which can be produced by microorganisms may effectively inhibit the proliferation of certain plant pathogens.

  17. Aminomethylphosphonic acid inhibits growth and metastasis of human prostate cancer in an orthotopic xenograft mouse model.

    Science.gov (United States)

    Parajuli, Keshab Raj; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2016-03-01

    Aminomethylphosphonic acid (AMPA) has been shown to inhibit prostate cancer cell growth in vitro. The purpose of the present study was to determine if AMPA could inhibit growth and metastasis of prostate cancer in vivo. Human prostate cancer PC-3-LacZ-luciferase cells were implanted into the ventral lateral lobes of the prostate in 39 athymic Nu/Nu nude male mice. Seven days later, mice were randomized into the control group (n = 14, treated intraperitoneally with phosphate buffered saline), low dose group (n = 10, treated intraperitoneally with AMPA at 400 mg/kg body weight/day), and high dose group (n = 15, treated intraperitoneally with AMPA at 800 mg/kg body weight/day). Tumor growth and metastasis were examined every 4-7 days by bioluminescence imaging of live mice. We found that AMPA treatment significantly inhibited growth and metastasis of orthotopic xenograft prostate tumors and prolonged the survival time of the mice. AMPA treatment decreased expression of BIRC2 and activated caspase 3, leading to increased apoptosis in the prostate tumors. AMPA treatment decreased expression of cyclin D1. AMPA treatment also reduced angiogenesis in the prostate tumors. Taken together, these results demonstrate that AMPA can inhibit prostate cancer growth and metastasis, suggesting that AMPA may be developed into a therapeutic agent for the treatment of prostate cancer.

  18. Growth Inhibition by Bupivacaine Is Associated with Inactivation of Ribosomal Protein S6 Kinase 1

    Science.gov (United States)

    Beigh, Mushtaq Ahmad; Showkat, Mehvish; Bashir, Basharat; Bashir, Asma; Hussain, Mahboob ul; Andrabi, Khurshid Iqbal

    2014-01-01

    Bupivacaine is an amide type long acting local anesthetic used for epidural anesthesia and nerve blockade in patients. Use of bupivacaine is associated with severe cytotoxicity and apoptosis along with inhibition of cell growth and proliferation. Although inhibition of Erk, Akt, and AMPK seemingly appears to mediate some of the bupivacaine effects, potential downstream targets that mediate its effect remain unknown. S6 kinase 1 is a common downstream effector of several growth regulatory pathways involved in cell growth and proliferation known to be affected by bupivacaine. We have accordingly attempted to relate the growth inhibitory effects of bupivacaine with the status of S6K1 activity and we present evidence that decrease in cell growth and proliferation by bupivacaine is mediated through inactivation of S6 kinase 1 in a concentration and time dependent manner. We also show that ectopic expression of constitutively active S6 kinase 1 imparts substantial protection from bupivacaine induced cytotoxicity. Inactivation of S6K1 though associated with loss of putative mTOR mediated phosphorylation did not correspond with loss of similar phosphorylations in 4EBP1 indicating that S6K1 inhibition was not mediated through inactivation of mTORC1 signaling pathway or its down regulation. PMID:24605337

  19. Water Deficit and Abscisic Acid Cause Differential Inhibition of Shoot versus Root Growth in Soybean Seedlings 1

    Science.gov (United States)

    Creelman, Robert A.; Mason, Hugh S.; Bensen, Robert J.; Boyer, John S.; Mullet, John E.

    1990-01-01

    Roots often continue to elongate while shoot growth is inhibited in plants subjected to low-water potentials. The cause of this differential response to water deficit was investigated. We examined hypocotyl and root growth, polysome status and mRNA populations, and abscisic acid (ABA) content in etiolated soybean (Glycine max [L.] Merr. cv Williams) seedlings whose growth was inhibited by transfer to low-water potential vermiculite or exogenous ABA. Both treatments affected growth and dry weight in a similar fashion. Maximum inhibition of hypocotyl growth occurred when internal ABA levels (modulated by ABA application) reached the endogenous level found in the elongating zone of seedlings grown in water-deficient vermiculite. Conversely, root growth was affected to only a slight extent in low-water potential seedlings and by most ABA treatments (in some, growth was promoted). In every seedling section examined, transfer of seedlings into low-water potential vermiculite caused ABA levels to increase approximately 5- to 10-fold over that found in well-watered seedlings. Changes in soluble sugar content, polysome status, and polysome mRNA translation products seen in low-water potential seedlings did not occur with ABA treatments sufficient to cause significant inhibition of hypocotyl elongation. These data suggest that both variation in endogenous ABA levels, and differing sensitivity to ABA in hypocotyls and roots can modulate root/shoot growth ratios. However, exogenous ABA did not induce changes in sugar accumulation, polysome status, and mRNA populations seen after transfer into low-water potential vermiculite. Images Figure 6 Figure 7 PMID:16667248

  20. Inhibition of fibroblast growth by Notch1 signaling is mediated by induction of Wnt11-dependent WISP-1.

    Directory of Open Access Journals (Sweden)

    Zhao-Jun Liu

    Full Text Available Fibroblasts are an integral component of stroma and important source of growth factors and extracellular matrix (ECM. They play a prominent role in maintaining tissue homeostasis and in wound healing and tumor growth. Notch signaling regulates biological function in a variety of cells. To elucidate the physiological function of Notch signaling in fibroblasts, we ablated Notch1 in mouse (Notch1(Flox/Flox embryonic fibroblasts (MEFs. Notch1-deficient (Notch1(-/- MEFs displayed faster growth and motility rate compared to Notch1(Flox/Flox MEFs. Such phenotypic changes, however, were reversible by reconstitution of Notch1 activation via overexpression of the intracellular domain of Notch1 (NICD1 in Notch1-deficient MEFs. In contrast, constitutive activation of Notch1 signaling by introducing NICD1 into primary human dermal fibroblasts (FF2441, which caused pan-Notch activation, inhibited cell growth and motility, whereas cellular inhibition was relievable when the Notch activation was countered with dominant-negative mutant of Master-mind like 1 (DN-MAML-1. Functionally, "Notch-activated" stromal fibroblasts could inhibit tumor cell growth/invasion. Moreover, Notch activation induced expression of Wnt-induced secreted proteins-1 (WISP-1/CCN4 in FF2441 cells while deletion of Notch1 in MEFs resulted in an opposite effect. Notably, WISP-1 suppressed fibroblast proliferation, and was responsible for mediating Notch1's inhibitory effect since siRNA-mediated blockade of WISP-1 expression could relieve cell growth inhibition. Notch1-induced WISP-1 expression appeared to be Wnt11-dependent, but Wnt1-independent. Blockade of Wnt11 expression resulted in decreased WISP-1 expression and liberated Notch-induced cell growth inhibition. These findings indicated that inhibition of fibroblast proliferation by Notch pathway activation is mediated, at least in part, through regulating Wnt1-independent, but Wnt11-dependent WISP-1 expression.

  1. Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Qingyi [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Qing, Yong, E-mail: qingyongxy@yahoo.co.jp [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Yang [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Hu, Xiaojuan; Jiang, Lei [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Xiaohua, E-mail: wuxh@scu.edu.cn [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China)

    2014-12-01

    Dioscin has shown cytotoxicity against cancer cells, but its in vivo effects and the mechanisms have not elucidated yet. The purpose of the current study was to assess the antitumor effects and the molecular mechanisms of dioscin. We showed that dioscin could inhibit tumor growth in vivo and has no toxicity at the test condition. The growth suppression was accompanied by obvious blood vessel decrease within solid tumors. We also found dioscin treatment inhibited the proliferation of cancer and endothelial cell lines, and most sensitive to primary cultured human umbilical vein endothelial cells (HUVECs). What's more, analysis of HUVECs migration, invasion, and tube formation exhibited that dioscin has significantly inhibitive effects to these actions. Further analysis of blood vessel formation in the matrigel plugs indicated that dioscin could inhibit VEGF-induced blood vessel formation in vivo. We also identified that dioscin could suppress the downstream protein kinases of VEGFR2, including Src, FAK, AKT and Erk1/2, accompanied by the increase of phosphorylated P38MAPK. The results potently suggest that dioscin may be a potential anticancer drug, which efficiently inhibits angiogenesis induced by VEGFR2 signaling pathway as well as AKT/MAPK pathways. - Highlights: • Dioscin inhibits tumor growth in vivo and does not exhibit any toxicity. • Dioscin inhibits angiogenesis within solid tumors. • Dioscin inhibits the proliferation, migration, invasion, and tube formation of HUVECs. • Dioscin inhibits VEGF–induced blood vessel formation in vivo. • Dioscin inhibits VEGFR2 signaling pathway as well as AKT/MAPK pathway.

  2. KAEMPFEROL, A FLAVONOID COMPOUND FROM GYNURA MEDICA INDUCED APOPTOSIS AND GROWTH INHIBITION IN MCF-7 BREAST CANCER CELL

    OpenAIRE

    Yi, Xiaofang; Zuo, Jiangcheng; Tan, Chao; Xian, Sheng; Luo, Chunhua; Chen, Sai; Yu, Liangfang; Luo, Yucheng

    2016-01-01

    Background: Kaempferol, a natural flavonoid, has been shown to induce cancer cell apoptosis and cell growth inhibition in several tumors. Previously we have conducted a full investigation on the chemical constituents of Gynura medica, kaempferol and its glycosides are the major constituents of G. medica. Here we investigated the growth inhibition and apoptosis induction effect of kaempferol extracted from G. medica. Materials and Methods: The inhibition effects of kaempferol were evaluated by...

  3. Synergistic growth inhibition by sorafenib and vitamin K2 in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Zhang, Yafei; Zhang, Bicheng; Zhang, Anran; Zhao, Yong; Zhao, Jie; Liu, Jian; Gao, Jianfei; Fang, Dianchun; Rao, Zhiguo

    2012-09-01

    Sorafenib is an oral multikinase inhibitor that has been proven effective as a single-agent therapy in hepatocellular carcinoma, and there is a strong rationale for investigating its use in combination with other agents. Vitamin K2 is nearly non-toxic to humans and has been shown to inhibit the growth of hepatocellular carcinoma. In this study, we evaluated the effects of a combination of sorafenib and vitamin K2 on the growth of hepatocellular carcinoma cells. Flow cytometry, 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide) and nude mouse xenograft assays were used to examine the effects of sorafenib and vitamin K2 on the growth of hepatocellular carcinoma cells. Western blotting was used to elucidate the possible mechanisms underlying these effects. Assays for 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide) revealed a strong synergistic growth-inhibitory effect between sorafenib and vitamin K2. Flow cytometry showed an increase in cell cycle arrest and apoptosis after treatment with a combination of these two drugs at low concentrations. Sorafenib-mediated inhibition of extracellular signal-regulated kinase phosphorylation was promoted by vitamin K2, and downregulation of Mcl-1, which is required for sorafenib-induced apoptosis, was observed after combined treatment. Vitamin K2 also attenuated the downregulation of p21 expression induced by sorafenib, which may represent the mechanism by which vitamin K2 promotes the inhibitory effects of sorafenib on cell proliferation. Moreover, the combination of sorafenib and vitamin K2 significantly inhibited the growth of hepatocellular carcinoma xenografts in nude mice. Our results determined that combined treatment with sorafenib and vitamin K2 can work synergistically to inhibit the growth of hepatocellular carcinoma cells. This finding raises the possibility that this combined treatment strategy might be promising as a new therapy against hepatocellular carcinoma, especially for patients

  4. Synergistic growth inhibition of cancer cells harboring the RET/PTC1 ...

    Indian Academy of Sciences (India)

    Synergistic growth inhibition of cancer cells harboring the RET/PTC1 oncogene by staurosporine and rotenone involves enhanced cell death. ANTÓNIO PEDRO GONÇALVES, ARNALDO VIDEIRA, VALDEMAR MÁXIMO and PAULA SOARES. J. Biosci. 36(4), September 2011, 639-648, © Indian Academy of Sciences.

  5. Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer.

    Science.gov (United States)

    Liu, Junjun; Chen, Xiaosong; Ward, Toby; Mao, Yan; Bockhorn, Jessica; Liu, Xiaofei; Wang, Gen; Pegram, Mark; Shen, Kunwei

    2016-02-01

    Acquired resistance to lapatinib, a human epidermal growth factor receptor 2 kinase inhibitor, remains a clinical problem for women with human epidermal growth factor receptor 2-positive advanced breast cancer, as metastasis is commonly observed in these patients. Niclosamide, an anti-helminthic agent, has recently been shown to exhibit cytotoxicity to tumor cells with stem-like characteristics. This study was designed to identify the mechanisms underlying lapatinib resistance and to determine whether niclosamide inhibits lapatinib resistance by reversing epithelial-mesenchymal transition. Here, two human epidermal growth factor receptor 2-positive breast cancer cell lines, SKBR3 and BT474, were exposed to increasing concentrations of lapatinib to establish lapatinib-resistant cultures. Lapatinib-resistant SKBR3 and BT474 cells exhibited up-regulation of the phenotypic epithelial-mesenchymal transition markers Snail, vimentin and α-smooth muscle actin, accompanied by activation of nuclear factor-кB and Src and a concomitant increase in stem cell marker expression (CD44(high)/CD24(low)), compared to naive lapatinib-sensitive SKBR3 and BT474 cells, respectively. Interestingly, niclosamide reversed epithelial-mesenchymal transition, induced apoptosis and inhibited cell growth by perturbing aberrant signaling pathway activation in lapatinib-resistant human epidermal growth factor receptor 2-positive cells. The ability of niclosamide to alleviate stem-like phenotype development and invasion was confirmed. Collectively, our results demonstrate that lapatinib resistance correlates with epithelial-mesenchymal transition and that niclosamide inhibits lapatinib-resistant cell viability and epithelial-mesenchymal transition. These findings suggest a role of niclosamide or derivatives optimized for more favorable bioavailability not only in reversing lapatinib resistance but also in reducing metastatic potential during the treatment of human epidermal growth factor receptor

  6. Intracellular accumulation of mannopine, an opine produced by crown gall tumors, transiently inhibits growth of Agrobacterium tumefaciens.

    Science.gov (United States)

    Kim, K S; Baek, C H; Lee, J K; Yang, J M; Farrand, S K

    2001-06-01

    pYDH208, a cosmid clone from the octopine-mannityl opine-type tumor-inducing (Ti) plasmid pTi15955 confers utilization of mannopine (MOP) and agropine (AGR) on Agrobacterium tumefaciens strain NT1. NT1 harboring pYDH208 with an insertion mutation in mocC, which codes for MOP oxidoreductase, not only fails to utilize MOP as a sole carbon source, but also was inhibited in its growth by MOP and AGR. In contrast, the growth of mutants with insertions in other tested moc genes was not inhibited by either opine. Growth of strains NT1 or UIA5, a derivative of C58 that lacks pAtC58, was not inhibited by MOP, but growth of NT1 or UIA5 harboring pRE10, which codes for the MOP transport system, was inhibited by the opine. When a clone expressing mocC was introduced, the growth of strain NT1(pRE10) was not inhibited by MOP, although UIA5(pRE10) was still weakly inhibited. In strain NT1(pRE10, mocC), santhopine (SOP), produced by the oxidation of MOP by MocC, was further degraded by functions encoded by pAtC58. These results suggest that MOP and, to a lesser extent, SOP are inhibitory when accumulated intracellularly. The growth of NT1(pRE10), as measured by turbidity and viable cell counts, ceased upon the addition of MOP but restarted in a few hours. Regrowth was partly the result of the outgrowth of spontaneous MOP-resistant mutants and partly the adaptation of cells to MOP in the medium. Chrysopine, isochrysopine, and analogs of MOP in which the glutamine residue is substituted with other amino acids were barely taken up by NT1(pRE10) and were not inhibitory to growth of the strain. Sugar analogs of MOP were inhibitory, and those containing sugars in the D form were more inhibitory than those containing sugars in the L form. MOP analogs containing hexose sugars were more inhibitory than those containing sugars with three, four, or five carbon atoms. Mutants of NT1(pRE10) that are resistant to MOP arose in the zone of growth inhibition. Genetic and physiological analyses

  7. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    Science.gov (United States)

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Sulindac metabolites inhibit epidermal growth factor receptor activation and expression

    Directory of Open Access Journals (Sweden)

    Ahnen Dennis

    2005-01-01

    Full Text Available Abstract Background Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs is associated with a decreased mortality from colorectal cancer (CRC. NSAIDs induce apoptotic cell death in colon cancer cells in vitro and inhibit growth of neoplastic colonic mucosa in vivo however, the biochemical mechanisms required for these growth inhibitory effects are not well defined. We previously reported that metabolites of the NSAID sulindac downregulate extracellular-signal regulated kinase 1/2 (ERK1/2 signaling and that this effect is both necessary and sufficient for the apoptotic effects of these drugs. The goal of this project was to specifically test the hypothesis that sulindac metabolites block activation and/or expression of the epidermal growth factor (EGF receptor (EGFR. Methods HT29 human colon cancer cells were treated with EGF, alone, or in the presence of sulindac sulfide or sulindac sulfone. Cells lysates were assayed by immunoblotting for phosphorylated EGFR (pEGFR, pY1068, total EGFR, phosphorylated ERK1/2 (pERK1/2, total ERK1/2, activated caspase-3, and α-tubulin. Results EGF treatment rapidly induced phosphorylation of both EGFR and ERK1/2 in HT29 colon cancer cells. Pretreatment with sulindac metabolites for 24 h blocked EGF-induced phosphorylation of both EGFR and ERK1/2 and decreased total EGFR protein expression. Under basal conditions, downregulation of pEGFR and total EGFR was detected as early as 12 h following sulindac sulfide treatment and persisted through at least 48 h. Sulindac sulfone induced downregulation of pEGFR and total EGFR was detected as early as 1 h and 24 h, respectively, following drug treatment, and persisted through at least 72 h. EGFR downregulation by sulindac metabolites was observed in three different CRC cell lines, occurred prior to the observed downregulation of pERK1/2 and induction of apoptosis by these drugs, and was not dependent of caspase activation. Conclusion These results suggest that

  9. Inhibition of Estrogen-induced Growth of Breast Cancer by Targeting Mitochondrial Oxidants

    National Research Council Canada - National Science Library

    Roy, Deodutta; Felty, Quentin; Kunkle, Brian

    2008-01-01

    ...) Anchorage-independent cell growth, and (c) tumor spheroid formation using new 3D HuBiogel bioassay whether estrogen induced conversion of normal cells to transformed cells is inhibited by treatment with antioxidants, over expression of MnSOD...

  10. Oridonin inhibits breast cancer growth and metastasis through blocking the Notch signaling

    Directory of Open Access Journals (Sweden)

    Shixin Xia

    2017-05-01

    Full Text Available Background: Oridonin is a diterpenoid isolated from Rabdosia rubescens with potent anticancer activity. The aim of our study is to investigate the role of oridonin to inhibit growth and metastasis of human breast cancer cells. Methods: The effect of oridonin on proliferation was evaluated by MTT assay, cell migration and invasion were evaluated by transwell migration and invasion assays in human breast cancer cells. The inhibitive effect of oridonin in vivo was determined by using xenografted nude mice. In addition, the expression of Notch receptors (Notch 1–4 was detected by western blot. Results: Oridonin inhibited human breast cancer cells in vitro and in vivo. In addition, oridonin significantly induced human breast cancer cells apoptosis. Furthermore, the oridonin treatment not only inhibited cancer cell migration and invasion, but more significantly, decreased the expression of Notch 1-4 protein. Conclusion: Our results suggest that the inhibitive effect of oridonin is likely to be driven by the inhibition of Notch signaling pathway and the resulting increased apoptosis.

  11. Targeting tumor multicellular aggregation through IGPR-1 inhibits colon cancer growth and improves chemotherapy.

    Science.gov (United States)

    Woolf, N; Pearson, B E; Bondzie, P A; Meyer, R D; Lavaei, M; Belkina, A C; Chitalia, V; Rahimi, N

    2017-09-18

    Adhesion to extracellular matrix (ECM) is crucially important for survival of normal epithelial cells as detachment from ECM triggers specific apoptosis known as anoikis. As tumor cells lose the requirement for anchorage to ECM, they rely on cell-cell adhesion 'multicellular aggregation' for survival. Multicellular aggregation of tumor cells also significantly determines the sensitivity of tumor cells to the cytotoxic effects of chemotherapeutics. In this report, we demonstrate that expression of immunoglobulin containing and proline-rich receptor-1 (IGPR-1) is upregulated in human primary colon cancer. Our study demonstrates that IGPR-1 promotes tumor multicellular aggregation, and interfering with its adhesive function inhibits multicellular aggregation and, increases cell death. IGPR-1 supports colon carcinoma tumor xenograft growth in mouse, and inhibiting its activity by shRNA or blocking antibody inhibits tumor growth. More importantly, IGPR-1 regulates sensitivity of tumor cells to the chemotherapeutic agent, doxorubicin/adriamycin by a mechanism that involves doxorubicin-induced AKT activation and phosphorylation of IGPR-1 at Ser220. Our findings offer novel insight into IGPR-1's role in colorectal tumor growth, tumor chemosensitivity, and as a possible novel anti-cancer target.

  12. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    Science.gov (United States)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  13. Dampak Andrografolid dan Dua Jenis Insektisida Sintetik sebagai Penghambat Makan Nephotettix virescens, terhadap Transmisi Virus Tungro

    Directory of Open Access Journals (Sweden)

    I Nyoman Widiarta

    1998-07-01

    Full Text Available The effect of andrographolide and two synthetic insecticides of pymetrozine and imidacloprid, an antifeedant against N. virescens (Distant, to the rice virus transmission were tested using test tube inoculation method in the green house under natural photoperiod and average temperature of 28.5oC. The root of tungro diseased plant were soaked for 24 hours into tested materials before acquisition feeding to test virus acquisition inhibition, while root of rice seedlings were soaked into tested material for 24 hours before inoculation feeding to test virus inoculation inhibition. The results of studies showed that andrographolide, pymetrozine, and imidacloprid significantly reduced virus acquisition and virus inoculation by N. virescens. Pymetrozine and andrographolide treatments to the tungro diseased plants at concentration of 20 ppm significantly reduced proportion of viruliferous vector to become 17% in average. The increasing concentration into 40 ppm of both materials did not significantly reduce proportion of viruliferous vector. Imidacloprid at concentration of 0.01 and 0.02 ppm, completey inhibited feeding acquisition. Pymetrozine and andrographolide treatment at concentration of 20 ppm to the rice seedlings reduced significantly virus transmission by N. virescens to become 69% in average. The increasing concentration of pymetrozine up to 40 ppm did not reduce virus transmission rate. Imidacloprid at concentration of 0.01 ppm and 0.02 ppm reduced virus transmission to become 25% and 39%, respectively. It was concluded that imidacloprid was the most effective antifeedant reducing virus transmission by N. virescens among tested chemicals. Key words: antifeedant, N. virescens, rice tungro virus disease

  14. Green tea polyphenol epigallocatechin-3-gallate suppresses melanoma growth by inhibiting inflammasome and IL-1β secretion

    International Nuclear Information System (INIS)

    Ellis, Lixia Z.; Liu, Weimin; Luo, Yuchun; Okamoto, Miyako; Qu, Dovina; Dunn, Jeffrey H.; Fujita, Mayumi

    2011-01-01

    Highlights: ► EGCG inhibits melanoma cell growth at physiological doses (0.1–1 μM). ► EGCG inhibits melanoma cell growth via inflammasomes and IL-1β suppression. ► Inflammasomes and IL-1β could be potential targets for future melanoma therapeutics. -- Abstract: Epigallocatechin-3-gallate (EGCG), the major polyphenolic component of green tea, has been demonstrated to possess anti-inflammatory, antioxidant, anti-mutagenic and anti-carcinogenic properties. The anti-melanoma effect of EGCG has been previously suggested, but no clear mechanism of action has been established. In this study, we demonstrated that EGCG inhibits melanoma cell growth at physiological doses (0.1–1 μM). In the search for mechanisms of EGCG-mediated melanoma cell suppression, we found that NF-κB was inhibited, and that reduced NF-κB activity was associated with decreased IL-1β secretion from melanoma cells. Since inflammasomes are involved in IL-1β secretion, we investigated whether IL-1β suppression was mediated by inflammasomes, and found that EGCG treatment led to downregulation of the inflammasome component, NLRP1, and reduced caspase-1 activation. Furthermore, silencing the expression of NLRP1 abolished EGCG-induced inhibition of tumor cell proliferation both in vitro and in vivo, suggesting a key role of inflammasomes in EGCG efficacy. This paper provides a novel mechanism for EGCG-induced melanoma inhibition: inflammasome downregulation → decreased IL-1β secretion → decreased NF-κB activities → decreased cell growth. In addition, it suggests inflammasomes and IL-1β could be potential targets for future melanoma therapeutics.

  15. FXR blocks the growth of liver cancer cells through inhibiting mTOR-s6K pathway

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiongfei, E-mail: xiongfeihuang@hotmail.com [Department of Pathology and Institute of Oncology, Preclinical School, Fujian Medical University, Fuzhou 350108, Fujian (China); Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian (China); Zeng, Yeting [Department of Pathology and Institute of Oncology, Preclinical School, Fujian Medical University, Fuzhou 350108, Fujian (China); Wang, Xinrui [Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350108, Fujian (China); Ma, Xiaoxiao [Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, CA 91010 (United States); Li, Qianqian; Li, Ningbo; Su, Hongying [Department of Pathology and Institute of Oncology, Preclinical School, Fujian Medical University, Fuzhou 350108, Fujian (China); Huang, Wendong [Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, CA 91010 (United States)

    2016-05-27

    The nuclear receptor Farnesoid X Receptor (FXR) is likely a tumor suppressor in liver tissue but its molecular mechanism of suppression is not well understood. In this study, the gene expression profile of human liver cancer cells was investigated by microarray. Bioinformatics analysis of these data revealed that FXR might regulate the mTOR/S6K signaling pathway. This was confirmed by altering the expression level of FXR in liver cancer cells. Overexpression of FXR prevented the growth of cells and induced cell cycle arrest, which was enhanced by the mTOR/S6K inhibitor rapamycin. FXR upregulation also intensified the inhibition of cell growth by rapamycin. Downregulation of FXR produced the opposite effect. Finally, we found that ectopic expression of FXR in SK-Hep-1 xenografts inhibits tumor growth and reduces expression of the phosphorylated protein S6K. Taken together, our data provide the first evidence that FXR suppresses proliferation of human liver cancer cells via the inhibition of the mTOR/S6K signaling pathway. FXR expression can be used as a biomarker of personalized mTOR inhibitor treatment assessment for liver cancer patients. -- Highlights: •FXR inhibits the proliferation of liver cancer cells by prolonging G0/G1 phase. •Microarray results indicate that mTOR-S6k signaling is involved in cellular processes in which FXR plays an important role. •FXR blocks the growth of liver cancer cells via the inhibition of the mTOR/S6K signaling pathway in vitro and in vivo.

  16. FXR blocks the growth of liver cancer cells through inhibiting mTOR-s6K pathway

    International Nuclear Information System (INIS)

    Huang, Xiongfei; Zeng, Yeting; Wang, Xinrui; Ma, Xiaoxiao; Li, Qianqian; Li, Ningbo; Su, Hongying; Huang, Wendong

    2016-01-01

    The nuclear receptor Farnesoid X Receptor (FXR) is likely a tumor suppressor in liver tissue but its molecular mechanism of suppression is not well understood. In this study, the gene expression profile of human liver cancer cells was investigated by microarray. Bioinformatics analysis of these data revealed that FXR might regulate the mTOR/S6K signaling pathway. This was confirmed by altering the expression level of FXR in liver cancer cells. Overexpression of FXR prevented the growth of cells and induced cell cycle arrest, which was enhanced by the mTOR/S6K inhibitor rapamycin. FXR upregulation also intensified the inhibition of cell growth by rapamycin. Downregulation of FXR produced the opposite effect. Finally, we found that ectopic expression of FXR in SK-Hep-1 xenografts inhibits tumor growth and reduces expression of the phosphorylated protein S6K. Taken together, our data provide the first evidence that FXR suppresses proliferation of human liver cancer cells via the inhibition of the mTOR/S6K signaling pathway. FXR expression can be used as a biomarker of personalized mTOR inhibitor treatment assessment for liver cancer patients. -- Highlights: •FXR inhibits the proliferation of liver cancer cells by prolonging G0/G1 phase. •Microarray results indicate that mTOR-S6k signaling is involved in cellular processes in which FXR plays an important role. •FXR blocks the growth of liver cancer cells via the inhibition of the mTOR/S6K signaling pathway in vitro and in vivo.

  17. Inhibition of Hedgehog signaling antagonizes serous ovarian cancer growth in a primary xenograft model.

    Directory of Open Access Journals (Sweden)

    Christopher K McCann

    Full Text Available Recent evidence links aberrant activation of Hedgehog (Hh signaling with the pathogenesis of several cancers including medulloblastoma, basal cell, small cell lung, pancreatic, prostate and ovarian. This investigation was designed to determine if inhibition of this pathway could inhibit serous ovarian cancer growth.We utilized an in vivo pre-clinical model of serous ovarian cancer to characterize the anti-tumor activity of Hh pathway inhibitors cyclopamine and a clinically applicable derivative, IPI-926. Primary human serous ovarian tumor tissue was used to generate tumor xenografts in mice that were subsequently treated with cyclopamine or IPI-926.Both compounds demonstrated significant anti-tumor activity as single agents. When IPI-926 was used in combination with paclitaxel and carboplatinum (T/C, no synergistic effect was observed, though sustained treatment with IPI-926 after cessation of T/C continued to suppress tumor growth. Hh pathway activity was analyzed by RT-PCR to assess changes in Gli1 transcript levels. A single dose of IPI-926 inhibited mouse stromal Gli1 transcript levels at 24 hours with unchanged human intra-tumor Gli1 levels. Chronic IPI-926 therapy for 21 days, however, inhibited Hh signaling in both mouse stromal and human tumor cells. Expression data from the micro-dissected stroma in human serous ovarian tumors confirmed the presence of Gli1 transcript and a significant association between elevated Gli1 transcript levels and worsened survival.IPI-926 treatment inhibits serous tumor growth suggesting the Hh signaling pathway contributes to the pathogenesis of ovarian cancer and may hold promise as a novel therapeutic target, especially in the maintenance setting.

  18. Pu-erh Tea Inhibits Tumor Cell Growth by Down-Regulating Mutant p53

    Science.gov (United States)

    Zhao, Lanjun; Jia, Shuting; Tang, Wenru; Sheng, Jun; Luo, Ying

    2011-01-01

    Pu-erh tea is a kind of fermented tea with the incorporation of microorganisms’ metabolites. Unlike green tea, the chemical characteristics and bioactivities of Pu-erh tea are still not well understood. Using water extracts of Pu-erh tea, we analyzed the tumor cell growth inhibition activities on several genetically engineered mouse tumor cell lines. We found that at the concentration that did not affect wild type mouse embryo fibroblasts (MEFs) growth, Pu-erh tea extracts could inhibit tumor cell growth by down-regulated S phase and cause G1 or G2 arrest. Further study showed that Pu-erh tea extracts down-regulated the expression of mutant p53 in tumor cells at the protein level as well as mRNA level. The same concentration of Pu-erh tea solution did not cause p53 stabilization or activation of its downstream pathways in wild type cells. We also found that Pu-erh tea treatment could slightly down-regulate both HSP70 and HSP90 protein levels in tumor cells. These data revealed the action of Pu-erh tea on tumor cells and provided the possible mechanism for Pu-erh tea action, which explained its selectivity in inhibiting tumor cells without affecting wild type cells. Our data sheds light on the application of Pu-erh tea as an anti-tumor agent with low side effects. PMID:22174618

  19. Irisin inhibition of growth hormone secretion in cultured tilapia pituitary cells.

    Science.gov (United States)

    Lian, Anji; Li, Xin; Jiang, Quan

    2017-01-05

    Irisin, the product of fibronectin type III domain-containing protein 5 (FNDC5) gene, is well-documented to be a regulator of energy metabolism. At present, not much is known about its biological function in non-mammalian species. In this study, a full-length tilapia FDNC5 was cloned and its tissue expression pattern has been confirmed. Based on the sequence obtained, we produced and purified recombinant irisin which could induce uncoupling protein 1 (UCP1) gene expression in tilapia hepatocytes. Further, the rabbit polyclonal irisin antiserum was produced and its specificity was confirmed by antiserum preabsorption. In tilapia pituitary cells, irisin inhibited growth hormone (GH) gene expression and secretion and triggered rapid phosphorylation of Akt, Erk1/2, and p38 MAPK. Furthermore, irisin-inhibited GH mRNA expression could be prevented by inhibiting PI3K/Akt, MEK1/2, and p38 MAPK, respectively. Apparently, fish irisin can act directly at the pituitary level to inhibit GH transcript expression via multiple signaling pathways. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Computational study on the molecular inclusion of andrographolide by cyclodextrin

    Science.gov (United States)

    Zhou, Hongwei; Lai, Wai-Ping; Zhang, Zhiqiang; Li, Wai-Kee; Cheung, Hon-Yeung

    2009-03-01

    Due to the poor water solubility of andrographolide (andro), an inclusion technique has been developed to modify its physical and chemical properties so as to improve its bioavailability. In contrast with the immense experimental studies on the inclusion complexes of andro:cyclodextrin, no computational study has so far been carried out on this system. In this work, preliminary docking experiments with AutoDock were performed. Density Functional Theory (DFT) and Austin Model 1 (AM1) calculations upon the docking instances were applied to investigate the two possible modes of molecular inclusions between andro and x-cyclodextrin ( xCD, where x is α, β or γ). Atoms-in-Molecules (AIM) analysis based on the B3LYP/cc-pVDZ wavefunction was applied to verify the existence of the intermolecular hydrogen bonds. It was found that the most stable complex among the six possible inclusion complexes was the one formed between andro and βCD with andro's decalin ring moiety wrapped by CD at a ratio of 1:1. The hydrogen bonds between andro and CD were responsible for the stability of the inclusion complexes. The calculated data were found to be consistent with the experimental results. Thus, the results of this study can aid new drug design processes.

  1. Stochastic cellular automata model of neurosphere growth: Roles of proliferative potential, contact inhibition, cell death, and phagocytosis.

    Science.gov (United States)

    Sipahi, Rifat; Zupanc, Günther K H

    2018-05-14

    Neural stem and progenitor cells isolated from the central nervous system form, under specific culture conditions, clonal cell clusters known as neurospheres. The neurosphere assay has proven to be a powerful in vitro system to study the behavior of such cells and the development of their progeny. However, the theory of neurosphere growth has remained poorly understood. To overcome this limitation, we have, in the present paper, developed a cellular automata model, with which we examined the effects of proliferative potential, contact inhibition, cell death, and clearance of dead cells on growth rate, final size, and composition of neurospheres. Simulations based on this model indicated that the proliferative potential of the founder cell and its progenitors has a major influence on neurosphere size. On the other hand, contact inhibition of proliferation limits the final size, and reduces the growth rate, of neurospheres. The effect of this inhibition is particularly dramatic when a stem cell becomes encapsulated by differentiated or other non-proliferating cells, thereby suppressing any further mitotic division - despite the existing proliferative potential of the stem cell. Conversely, clearance of dead cells through phagocytosis is predicted to accelerate growth by reducing contact inhibition. A surprising prediction derived from our model is that cell death, while resulting in a decrease in growth rate and final size of neurospheres, increases the degree of differentiation of neurosphere cells. It is likely that the cellular automata model developed as part of the present investigation is applicable to the study of tissue growth in a wide range of systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Nitric oxide participates in cold-inhibited Camellia sinensis pollen germination and tube growth partly via cGMP in vitro.

    Directory of Open Access Journals (Sweden)

    Yu-Hua Wang

    Full Text Available Nitric oxide (NO plays essential roles in many biotic and abiotic stresses in plant development procedures, including pollen tube growth. Here, effects of NO on cold stress inhibited pollen germination and tube growth in Camellia sinensis were investigated in vitro. The NO production, NO synthase (NOS-like activity, cGMP content and proline (Pro accumulation upon treatment with NO scavenger cPTIO, NOS inhibitor L-NNA, NO donor DEA NONOate, guanylate cyclase (GC inhibitor ODQ or phosphodiesterase (PDE inhibitor Viagra at 25°C (control or 4°C were analyzed. Exposure to 4°C for 2 h reduced pollen germination and tube growth along with increase of NOS-like activity, NO production and cGMP content in pollen tubes. DEA NONOate treatment inhibited pollen germination and tube growth in a dose-dependent manner under control and reinforced the inhibition under cold stress, during which NO production and cGMP content promoted in pollen tubes. L-NNA and cPTIO markedly reduced the generation of NO induced by cold or NO donor along with partly reverse of cold- or NO donor-inhibited pollen germination and tube growth. Furthermore, ODQ reduced the cGMP content under cold stress and NO donor treatment in pollen tubes. Meanwhile, ODQ disrupted the reinforcement of NO donor on the inhibition of pollen germination and tube growth under cold condition. Additionally, Pro accumulation of pollen tubes was reduced by ODQ compared with that receiving NO donor under cold or control condition. Effects of cPTIO and L-NNA in improving cold-treated pollen germination and pollen tube growth could be lowered by Viagra. Moreover, the inhibitory effects of cPTIO and L-NNA on Pro accumulation were partly reversed by Viagra. These data suggest that NO production from NOS-like enzyme reaction decreased the cold-responsive pollen germination, inhibited tube growth and reduced Pro accumulation, partly via cGMP signaling pathway in C. sinensis.

  3. Andrographolide Enhances Proliferation and Prevents Dedifferentiation of Rabbit Articular Chondrocytes: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Li-ke Luo

    2015-01-01

    Full Text Available As the main active constituent of Andrographis paniculata that was applied in treatment of many diseases including inflammation in ancient China, andrographolide (ANDRO was found to facilitate reduction of edema and analgesia in arthritis. This suggested that ANDRO may be promising anti-inflammatory agent to relieve destruction and degeneration of cartilage after inflammation. In this study, the effect of ANDRO on rabbit articular chondrocytes in vitro was investigated. Results showed that not more than 8 μM ANDRO did no harm to chondrocytes (P0.05. The viability assay, hematoxylin-eosin, safranin O, and immunohistochemical staining also showed better performances in ANDRO groups. As to the doses, 3 μM ANDRO showed the best performance. The results indicate that ANDRO can accelerate proliferation of rabbit articular chondrocytes in vitro and meanwhile maintain the phenotype, which may provide valuable references for further exploration on arthritis.

  4. Inheritance and gene expression of a root-growth inhibiting mutant in rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Kitano, H.; Futsuhara, Y.

    1990-01-01

    Full text: A root-growth inhibiting mutant was induced in the dwarf mutant line, 'Fukei 71', through ethylene-imine. The mutant is characterised by the excessive inhibition of both seminal and crown roots elongation just after germination, although its shoots grow nearly normal. To study the genetics, the mutant was crossed with its original line 'Fukei 71' and some other normal cultivars. Results show that the root-growth inhibition is controlled by a recessive gene (rt), independent of the dwarf gene, d-50(t) locus in Fukei 71. For elucidating the gene action on root morphogenesis, histological and cytological experiments were carried out using a longitudinal and transverse thin section of seminal and/or crown root tips. Observations suggest that the rt gene affects the normal formation of the epidermal system which is differentiated from the protoderm of the root apical meristem. (author)

  5. [Inhibition of Bacillus coagulans growth in laboratory media and in fruit purees].

    Science.gov (United States)

    Cerrutti, P; Alzamora, S M; de Huergo, M S

    2000-01-01

    The growth of two strains of B. coagulans was inhibited in laboratory media at pH banana puree (pH approximately equal to 5.0) but acidification of the puree at pH = 3.5 was enough to prevent growth. The addition of up to 3,000 ppm vainillin ("natural" preservative) or 1,000 ppm potassium sorbate (traditional preservative) at pH higher than the inhibitory level previously determined could not prevent growth of B. coagulans in laboratory or in fruits, but 100 ppm lysozyme retarded growth in laboratory media at different pH levels (from 4.5 to 6.7) and in banana puree. As lysozyme showed to be effective at pH < or = 6.7, it might be used to prevent growth of B. coagulans at an eventual increment of pH during storage.

  6. Overexpression of Hiwi Inhibits the Growth and Migration of Chronic Myeloid Leukemia Cells.

    Science.gov (United States)

    Wang, Yalin; Jiang, Yan; Ma, Ning; Sang, Bailu; Hu, Xiaolin; Cong, Xiaofeng; Liu, Ziling

    2015-09-01

    Chronic myeloid leukemia (CML) is a hematopoietic malignancy characterized by dysregulated growth and proliferation of hematopoietic stem/progenitor cells in bone marrow and excessive expansion of hematopoietic compartments in peripheral blood. Expression deletion of Hiwi, a human Piwi homolog, has been reported to be implicated in leukemogenesis. We here explored Hiwi's role in CML pathogenesis by determining how and whether its forced overexpression could affect CML cell growth and migration. The present results showed that lentivirus-mediated overexpression of Hiwi significantly suppressed cell proliferation and induced obvious apoptosis in K562 cells, a CML line cell line. Tumors in BALB/c nude mice generated by the K562 cells expressing Hiwi were much smaller than those formed by the control cells. Like in vitro, Hiwi upregulation induced cell apoptosis in the tumor tissues in vivo. Additionally, Hiwi elevation suppressed K562 cell migration and inhibited the activity and expression of matrix metalloproteinase-2 and -9. In summary, our study demonstrates that Hiwi overexpression inhibits CML cell growth and migration, providing insights into its role in CML pathogenesis.

  7. The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence.

    Science.gov (United States)

    Liu, Tie; Longhurst, Adam D; Talavera-Rauh, Franklin; Hokin, Samuel A; Barton, M Kathryn

    2016-10-04

    Drought inhibits plant growth and can also induce premature senescence. Here we identify a transcription factor, ABA INSENSITIVE GROWTH 1 (ABIG1) required for abscisic acid (ABA) mediated growth inhibition, but not for stomatal closure. ABIG1 mRNA levels are increased both in response to drought and in response to ABA treatment. When treated with ABA, abig1 mutants remain greener and produce more leaves than comparable wild-type plants. When challenged with drought, abig1 mutants have fewer yellow, senesced leaves than wild-type. Induction of ABIG1 transcription mimics ABA treatment and regulates a set of genes implicated in stress responses. We propose a model in which drought acts through ABA to increase ABIG1 transcription which in turn restricts new shoot growth and promotes leaf senescence. The results have implications for plant breeding: the existence of a mutant that is both ABA resistant and drought resistant points to new strategies for isolating drought resistant genetic varieties.

  8. Sorafenib inhibits tumor growth and vascularization of rhabdomyosarcoma cells by blocking IGF-1R-mediated signaling

    Directory of Open Access Journals (Sweden)

    Wessen Maruwge

    2008-11-01

    Full Text Available Wessen Maruwge1, Pádraig D’Arcy1, Annika Folin1,2, Slavica Brnjic1, Johan Wejde1, Anthony Davis1, Fredrik Erlandsson3, Jonas Bergh1,2, Bertha Brodin11Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; 2Radiumhemmet, Karolinska University Hospital, Stockholm, Sweden; 3Bayer Pharmaceutical Corporation, SwedenAbstract: The growth of many soft tissue sarcomas is dependent on aberrant growth factor signaling, which promotes their proliferation and motility. With this in mind, we evaluated the effect of sorafenib, a receptor tyrosine kinase inhibitor, on cell growth and apoptosis in sarcoma cell lines of various histological subtypes. We found that sorafenib effectively inhibited cell proliferation in rhabdomyosarcoma, synovial sarcoma and Ewing’s sarcoma with IC50 values <5 µM. Sorafenib effectively induced growth arrest in rhabdomyosarcoma cells, which was concurrent with inhibition of Akt and Erk signaling. Studies of ligand-induced phosphorylation of Erk and Akt in rhabdomyosarcoma cells showed that insulin-like growth factor-1 is a potent activator, which can be blocked by treatment with sorafenib. In vivo sorafenib treatment of rhabdomyosarcoma xenografts had a significant inhibitory effect on tumor growth, which was associated with inhibited vascularization and enhanced necrosis in the adjacent tumor stroma. Our results demonstrate that in vitro and in vivo growth of rhabdomyosarcoma can be suppressed by treatment with sorafenib, and suggests the possibilities of using sorafenib as a potential adjuvant therapy for the treatment of rhabdomyosarcoma.Keywords: soft tissue sarcoma, kinase inhibitors, targeted therapy, vascularization

  9. Inhibition of Microbial Growth by Fatty Amine Catalysts from Polyurethane Foam Test Tube Plugs

    Science.gov (United States)

    Bach, John A.; Wnuk, Richard J.; Martin, Delano G.

    1975-01-01

    When polyurethane foam test tube plugs are autoclaved, they release volatile fatty amines that inhibit the growth of some microorganisms. The chemical structures of these amines were determined by the use of a gas chromatographmass spectrometer. They are catalysts used to produce the foam. The problem of contaminating growth media with toxic substances released from polymeric materials is discussed. PMID:1096816

  10. Inhibition of uropathogenic biofilm growth on silicone rubber in human urine by lactobacilli - a teleologic approach

    NARCIS (Netherlands)

    Velraeds, MMC; van de Belt-Gritter, B; Busscher, HJ; Reid, G; van der Mei, HC

    2000-01-01

    The ability of three Lactobacillus strains to inhibit the adhesion and growth of naturally occurring uropathogens on silicone rubber was investigated in human urine. The importance of biosurfactant production by Lactobacillus in discouraging uropathogen growth was determined in relation to the

  11. Role of pigment epithelium-derived factor in the involution of hemangioma: Autocrine growth inhibition of hemangioma-derived endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-Jin [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Yun, Jang-Hyuk; Heo, Jong-Ik [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Lee, Eun Hui [Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Min, Hye Sook [Department of Pathology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Choi, Tae Hyun, E-mail: psthchoi@snu.ac.kr [Department of Plastic and Reconstructive Surgery, Seoul National University Children’s Hospital, Seoul 110-744 (Korea, Republic of); Department of Pediatric Plastic and Reconstructive Surgery, Seoul National University Children’s Hospital, Seoul 110-744 (Korea, Republic of); Cho, Chung-Hyun, E-mail: iamhyun@snu.ac.kr [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Cancer Research Institute, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of)

    2014-11-14

    Highlights: • PEDF was expressed and induced during the involuting phase of IH. • PEDF inhibited the cell growth of the involuting HemECs in an autocrine manner. • PEDF suppression restored the impaired cell growth of the involuting HemECs. - Abstract: Hemangioma is a benign tumor derived from abnormal blood vessel growth. Unlike other vascular tumor counterparts, a hemangioma is known to proliferate during its early stage but it is followed by a stage of involution where regression of the tumor occurs. The critical onset leading to the involution of hemangioma is currently not well understood. This study focused on the molecular identities of the involution of hemangioma. We demonstrated that a soluble factor released from the involuting phase of hemangioma-derived endothelial cells (HemECs) and identified pigment epithelium-derived factor (PEDF) as an anti-angiogenic factor that was associated with the growth inhibition of the involuting HemECs. The growth inhibition of the involuting HemECs was reversed by suppression of PEDF in the involuting HemECs. Furthermore, we found that PEDF was more up-regulated in the involuting phase of hemangioma tissues than in the proliferating or the involuted. Taken together, we propose that PEDF accelerates the involution of hemangioma by growth inhibition of HemECs in an autocrine manner. The regulatory mechanism of PEDF expression could be a potential therapeutic target to treat hemangiomas.

  12. Growth inhibition of Listeria spp. on Camembert cheese by bacteria producing inhibitory substances.

    Science.gov (United States)

    Sulzer, G; Busse, M

    1991-12-01

    Bacterial strains exhibiting antimicrobial activity towards other bacteria are quite common in nature. During the past few years several genera have been shown to exert inhibitory action against Listeria. spp. In the present work strains of Enterococcus, Lactobacillus and Lactococcus were tested for their influence on the development of Listeria spp. on Camembert cheese. Partial or complete inhibition of growth of Listeria spp. was observed using various inhibitory bacteria. Complete inhibition occurred when the inhibitory strain was used as a starter culture and there was a low level of contamination with Listeria spp. during the first stage of ripening. Very little inhibition occurred if the inhibitory strain was added together with the starter culture.

  13. Rapamycin causes growth arrest and inhibition of invasion in human chondrosarcoma cells.

    Science.gov (United States)

    Song, Jian; Wang, Xiaobo; Zhu, Jiaxue; Liu, Jun

    2016-01-01

    Chondrosarcoma is a highly malignant tumor that is characterized by a potent capacity to invade locally and cause distant metastasis and notable for its lack of response to conventional chemotherapy or radiotherapy. Rapamycin, the inhibitor of mammalian target of rapamycin (mTOR), is a valuable drug with diverse clinical applications and regulates many cellular processes. However, the effects of rapamycin on cell growth and invasion of human chondrosarcoma cells are not well known. We determined the effect of rapamycin on cell proliferation, cell cycle arrest and invasion by using MTS, flow cytometry and invasion assays in two human chondrosarcoma cell lines, SW1353 and JJ012. Cell cycle regulatory and invasion-related genes' expression analysis was performed by quantitative RT-PCR (qRT-PCR). We also evaluated the effect of rapamycin on tumor growth by using mice xenograph models. Rapamycin significantly inhibited the cell proliferation, induced cell cycle arrest and decreased the invasion ability of human chondrosarcoma cells. Meanwhile, rapamycin modulated the cell cycle regulatory and invasion-related genes' expression. Furthermore, the tumor growth of mice xenograph models with human chondrosarcoma cells was significantly inhibited by rapamycin. These results provided further insight into the role of rapamycin in chondrosarcoma. Therefore, rapamycin targeted therapy may be a potential treatment strategy for chondrosarcoma.

  14. Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase

    International Nuclear Information System (INIS)

    Yang Dongren; Howard, Angela; Bruun, Donald; Ajua-Alemanj, Mispa; Pickart, Cecile; Lein, Pamela J.

    2008-01-01

    A primary role of acetylcholinesterase (AChE) is regulation of cholinergic neurotransmission by hydrolysis of synaptic acetylcholine. In the developing nervous system, however, AChE also functions as a morphogenic factor to promote axonal growth. This raises the question of whether organophosphorus pesticides (OPs) that are known to selectively bind to and inactivate the enzymatic function of AChE also interfere with its morphogenic function to perturb axonogenesis. To test this hypothesis, we exposed primary cultures of sensory neurons derived from embryonic rat dorsal root ganglia (DRG) to chlorpyrifos (CPF) or its oxon metabolite (CPFO). Both OPs significantly decreased axonal length at concentrations that had no effect on cell viability, protein synthesis or the enzymatic activity of AChE. Comparative analyses of the effects of CPF and CPFO on axonal growth in DRG neurons cultured from AChE nullizygous (AChE -/- ) versus wild type (AChE +/+ ) mice indicated that while these OPs inhibited axonal growth in AChE +/+ DRG neurons, they had no effect on axonal growth in AChE -/- DRG neurons. However, transfection of AChE -/- DRG neurons with cDNA encoding full-length AChE restored the wild type response to the axon inhibitory effects of OPs. These data indicate that inhibition of axonal growth by OPs requires AChE, but the mechanism involves inhibition of the morphogenic rather than enzymatic activity of AChE. These findings suggest a novel mechanism for explaining not only the functional deficits observed in children and animals following developmental exposure to OPs, but also the increased vulnerability of the developing nervous system to OPs

  15. Apyrase inhibitors enhance the ability of diverse fungicides to inhibit the growth of different plant-pathogenic fungi.

    Science.gov (United States)

    Kumar Tripathy, Manas; Weeraratne, Gayani; Clark, Greg; Roux, Stanley J

    2017-09-01

    A previous study has demonstrated that the treatment of Arabidopsis plants with chemical inhibitors of apyrase enzymes increases their sensitivity to herbicides. In this study, we found that the addition of the same or related apyrase inhibitors could potentiate the ability of different fungicides to inhibit the growth of five different pathogenic fungi in plate growth assays. The growth of all five fungi was partially inhibited by three commonly used fungicides: copper octanoate, myclobutanil and propiconazole. However, when these fungicides were individually tested in combination with any one of four different apyrase inhibitors (AI.1, AI.10, AI.13 or AI.15), their potency to inhibit the growth of five fungal pathogens was increased significantly relative to their application alone. The apyrase inhibitors were most effective in potentiating the ability of copper octanoate to inhibit fungal growth, and least effective in combination with propiconazole. Among the five pathogens assayed, that most sensitive to the fungicide-potentiating effects of the inhibitors was Sclerotinia sclerotiorum. Overall, among the 60 treatment combinations tested (five pathogens, four apyrase inhibitors, three fungicides), the addition of apyrase inhibitors increased significantly the sensitivity of fungi to the fungicide treatments in 53 of the combinations. Consistent with their predicted mode of action, inhibitors AI.1, AI.10 and AI.13 each increased the level of propiconazole retained in one of the fungi, suggesting that they could partially block the ability of efflux transporters to remove propiconazole from these fungi. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  16. Transcriptional and post-transcriptional upregulation of p27 mediates growth inhibition of isorhapontigenin (ISO) on human bladder cancer cells.

    Science.gov (United States)

    Jiang, Guosong; Huang, Chao; Li, Jingxia; Huang, Haishan; Wang, Jingjing; Li, Yawei; Xie, Fei; Jin, Honglei; Zhu, Junlan; Huang, Chuanshu

    2018-03-08

    There are few approved drugs available for the treatment of muscle-invasive bladder cancer (MIBC). Recently, we have demonstrated that isorhapontigenin (ISO), a new derivative isolated from the Chinese herb Gnetum cleistostachyum, effectively induces cell-cycle arrest at the G0/G1 phase and inhibits anchorage-independent cell growth through the miR-137/Sp1/cyclin D1 axis in human MIBC cells. Herein, we found that treatment of bladder cancer (BC) cells with ISO resulted in a significant upregulation of p27, which was also observed in ISO-treated mouse BCs that were induced by N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). Importantly, knockdown of p27 caused a decline in the ISO-induced G0-G1 growth arrest and reversed ISO suppression of anchorage-independent growth in BC cells. Mechanistic studies revealed that ISO promoted p27 expression at mRNA transcription level through increasing direct binding of forkhead box class O1 (FOXO1) to its promoter, while knockdown of FOXO1 attenuated ISO inhibition of BC cell growth. On the other hand, ISO upregulated the 3'-untranslated region (3'-UTR) activity of p27, which was accompanied by a reduction of miR-182 expression. In line with these observations, ectopic expression of miR-182 significantly blocked p27 3'-UTR activity, whereas mutation of the miR-182-binding site at p27 mRNA 3'-UTR effectively reversed this inhibition. Accordingly, ectopic expression of miR-182 also attenuated ISO upregulation of p27 expression and impaired ISO inhibition of BC cell growth. Our results not only provide novel insight into understanding of the underlying mechanism related to regulation of MIBC cell growth but also identify new roles and mechanisms underlying ISO inhibition of BC cell growth.

  17. RGS16 inhibits breast cancer cell growth by mitigating phosphatidylinositol 3-kinase signaling.

    Science.gov (United States)

    Liang, Genqing; Bansal, Geetanjali; Xie, Zhihui; Druey, Kirk M

    2009-08-07

    Aberrant activity of the phosphatidylinositol 3-kinase (PI3K) pathway supports growth of many tumors including those of breast, lung, and prostate. Resistance of breast cancer cells to targeted chemotherapies including tyrosine kinase inhibitors (TKI) has been linked to persistent PI3K activity, which may in part be due to increased membrane expression of epidermal growth factor (EGF) receptors (HER2 and HER3). Recently we found that proteins of the RGS (regulator of G protein signaling) family suppress PI3K activity downstream of the receptor by sequestering its p85alpha subunit from signaling complexes. Because a substantial percentage of breast tumors have RGS16 mutations and reduced RGS16 protein expression, we investigated the link between regulation of PI3K activity by RGS16 and breast cancer cell growth. RGS16 overexpression in MCF7 breast cancer cells inhibited EGF-induced proliferation and Akt phosphorylation, whereas shRNA-mediated extinction of RGS16 augmented cell growth and resistance to TKI treatment. Exposure to TKI also reduced RGS16 expression in MCF7 and BT474 cell lines. RGS16 bound the amino-terminal SH2 and inter-SH2 domains of p85alpha and inhibited its interaction with the EGF receptor-associated adapter protein Gab1. These results suggest that the loss of RGS16 in some breast tumors enhances PI3K signaling elicited by growth factors and thereby promotes proliferation and TKI evasion downstream of HER activation.

  18. Tiamulin inhibits breast cancer growth and pulmonary metastasis by decreasing the activity of CD73.

    Science.gov (United States)

    Yang, Xu; Pei, Shimin; Wang, Huanan; Jin, Yipeng; Yu, Fang; Zhou, Bin; Zhang, Hong; Zhang, Di; Lin, Degui

    2017-04-11

    Metastasis is the leading cause of death in breast cancer patients. CD73, also known as ecto-5'-nucleotidase, plays a critical role in cancer development including metastasis. The existing researches indicate that overexpression of CD73 promotes growth and metastasis of breast cancer. Therefore, CD73 inhibitor can offer a promising treatment for breast cancer. Here, we determined whether tiamulin, which was found to inhibit CD73, was able to suppress breast cancer development and explored the related mechanisms. We firstly measured the effect of tiamulin hydrogen fumarate (THF) on CD73 using high performance liquid chromatography (HPLC). Then, we investigated cell proliferation, migration and invasion in MDA-MB-231 human breast cancer cell line and 4 T1 mouse breast cancer cell line treated with THF by migration assay, invasion assay and activity assay. Besides, we examined the effect of THF on syngeneic mammary tumors of mice by immunohistochemistry. Our data demonstrated that THF inhibited CD73 by decreasing the activity instead of the expression of CD73. In vitro, THF inhibited the proliferation, migration and invasion of MDA-MB-231 and 4 T1 cells by suppressing CD73 activity. In vivo, animal experiments showed that THF treatment resulted in significant reduction in syngeneic tumor growth, microvascular density and lung metastasis rate. Our results indicate that THF inhibits growth and metastasis of breast cancer by blocking the activity of CD73, which may offer a promising treatment for breast cancer therapy.

  19. Vaginal lactobacilli inhibiting growth of Gardnerella vaginalis, Mobiluncus and other bacterial species cultured from vaginal content of women with bacterial vaginosis.

    Science.gov (United States)

    Skarin, A; Sylwan, J

    1986-12-01

    On a solid agar medium the growth-inhibitory effect of 9 Lactobacillus strains cultured from vaginal content was tested on bacteria cultured from vaginal content of women with bacterial vaginosis: Mobiluncus, Gardnerella vaginalis, Bacteroides and anaerobic cocci. Inhibition zones were observed in the growth of all of the strains isolated from women with bacterial vaginosis around all lactobacilli. The inhibitory effect of the lactobacilli was further tested on various anaerobic and facultatively anaerobic species, both type strains and fresh extragenitally cultured strains. Four Bacteroides fragilis strains as well as 2 out of 4 Staphylococcus aureus strains were clearly inhibited by the lactobacilli. The inhibition zones were generally wider at pH 5.5 than at 6.0. For all inhibited strains, (the S. aureus excepted) a low pH on the agar around the lactobacilli correlated to wider growth-inhibition zones.

  20. Instability of the Null Steady State: The Fundamental Problem of Inhibiting Malignant Cell Growth

    Science.gov (United States)

    Varfolomeev, S. D.; Lukovenkov, A. V.

    2018-07-01

    Mathematical modeling of the process of inhibiting malignant growth by common chemotherapeutic agents and biological therapeutics is used to investigate the effect kinetic parameters of the model have on the outcome of treatment. It is shown that the ultimate suppression of growth, i.e., the formation of a stable steady-state with no cancer cells, cannot be attained if only the means of classical chemotherapy are used.

  1. KAEMPFEROL, A FLAVONOID COMPOUND FROM GYNURA MEDICA INDUCED APOPTOSIS AND GROWTH INHIBITION IN MCF-7 BREAST CANCER CELL.

    Science.gov (United States)

    Yi, Xiaofang; Zuo, Jiangcheng; Tan, Chao; Xian, Sheng; Luo, Chunhua; Chen, Sai; Yu, Liangfang; Luo, Yucheng

    2016-01-01

    Kaempferol, a natural flavonoid, has been shown to induce cancer cell apoptosis and cell growth inhibition in several tumors. Previously we have conducted a full investigation on the chemical constituents of Gynura medica , kaempferol and its glycosides are the major constituents of G. medica . Here we investigated the growth inhibition and apoptosis induction effect of kaempferol extracted from G. medica . The inhibition effects of kaempferol were evaluated by MTS assay and soft agar colony formation assay. Fluorescence staining and western blotting were be used to study the apoptosis. The structure was identified by 1 H- NMR), 13 C-NMR and ESI-MS analyses. Our results showed that kaempferol's inhibition of MCF-7 breast cancer cell growth may through inducing apoptosis and downregulation of Bcl2 expression. Kaempferol is a promising cancer preventive and therapeutic agent for breast cancer. List of non-standard abbreviations: MTS: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, HPLC: High-performance liquid chromatography, NMR: Nuclear Magnetic Resonance, ESI-MS Electrospray Ionization Mass Spectral, PARP: Poly ADP-ribose polymerase.

  2. Inhibition of Epidermal Growth Factor Receptor and Vascular Endothelial Growth Factor Receptor Phosphorylation on Tumor-Associated Endothelial Cells Leads to Treatment of Orthotopic Human Colon Cancer in Nude Mice

    Directory of Open Access Journals (Sweden)

    Takamitsu Sasaki

    2007-12-01

    Full Text Available The purpose of our study was to determine whether the dual inhibition of epidermal growth factor receptor (EGFR and vascular endothelial growth factor receptor (VEGFR signaling pathways in tumor-associated endothelial cells can inhibit the progressive growth of human colon carcinoma in the cecum of nude mice. SW620CE2 human colon cancer cells growing in culture and orthotopically in the cecum of nude mice expressed a high level of transforming growth factor alpha (TGF-α and vascular endothelial growth factor (VEGF but were negative for EGFR, human epidermal growth factor receptor 2 (HER2, VEGFR. Double immunofluorescence staining revealed that tumorassociated endothelial cells expressed EGFR, VEGFR2, phosphorylated EGFR (pEGFR, phosphorylated VEGFR (pVEGFR. Treatment of mice with either 7H-pyrrolo [2,3-d]-pyrimidine lead scaffold (AEE788; an inhibitor of EGFR and VEGFR tyrosine kinase or CPT-11 as single agents significantly inhibited the growth of cecal tumors (P < .01; this decrease was even more pronounced with AEE788 combined with CPT-11 (P < .001. AEE788 alone or combined with CPT-11 also inhibited the expression of pEGFR and pVEGFR on tumor-associated endothelial cells, significantly decreased vascularization and tumor cell proliferation, increased the level of apoptosis in both tumorassociated endothelial cells and tumor cells. These data demonstrate that targeting EGFR and VEGFR signaling on tumor-associated endothelial cells provides a viable approach for the treatment of colon cancer.

  3. Epidermal growth factor (EGF) inhibits stimulated thyroid hormone secretion in the mouse

    International Nuclear Information System (INIS)

    Ahren, B.

    1987-01-01

    It is known that epidermal growth factor (EGF) inhibits iodide uptake in the thyroid follicular cells and lowers plasma levels of thyroid hormones upon infusion into sheep and ewes. In this study, the effects of EGF on basal and stimulated thyroid hormone secretion were investigated in the mouse. Mice were pretreated with 125 I and thyroxine; the subsequent release of 125 I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was not altered by intravenous injection of EGF (5 micrograms/animal). However, the radioiodine secretion stimulated by both TSH (120 microU/animal) and vasoactive intestinal peptide (VIP; 5 micrograms/animal) were inhibited by EGF (5 micrograms/animal). At a lower dose level (0.5 microgram/animal), EGF had no influence on stimulated radioiodine secretion. In conclusion, EGF inhibits stimulated thyroid hormone secretion in the mouse

  4. Steviol reduces MDCK Cyst formation and growth by inhibiting CFTR channel activity and promoting proteasome-mediated CFTR degradation.

    Directory of Open Access Journals (Sweden)

    Chaowalit Yuajit

    Full Text Available Cyst enlargement in polycystic kidney disease (PKD involves cAMP-activated proliferation of cyst-lining epithelial cells and transepithelial fluid secretion into the cyst lumen via cystic fibrosis transmembrane conductance regulator (CFTR chloride channel. This study aimed to investigate an inhibitory effect and detailed mechanisms of steviol and its derivatives on cyst growth using a cyst model in Madin-Darby canine kidney (MDCK cells. Among 4 steviol-related compounds tested, steviol was found to be the most potent at inhibiting MDCK cyst growth. Steviol inhibition of cyst growth was dose-dependent; steviol (100 microM reversibly inhibited cyst formation and cyst growth by 72.53.6% and 38.2±8.5%, respectively. Steviol at doses up to 200 microM had no effect on MDCK cell viability, proliferation and apoptosis. However, steviol acutely inhibited forskolin-stimulated apical chloride current in MDCK epithelia, measured with the Ussing chamber technique, in a dose-dependent manner. Prolonged treatment (24 h with steviol (100 microM also strongly inhibited forskolin-stimulated apical chloride current, in part by reducing CFTR protein expression in MDCK cells. Interestingly, proteasome inhibitor, MG-132, abolished the effect of steviol on CFTR protein expression. Immunofluorescence studies demonstrated that prolonged treatment (24 h with steviol (100 microM markedly reduced CFTR expression at the plasma membrane. Taken together, the data suggest that steviol retards MDCK cyst progression in two ways: first by directly inhibiting CFTR chloride channel activity and second by reducing CFTR expression, in part, by promoting proteasomal degradation of CFTR. Steviol and related compounds therefore represent drug candidates for treatment of polycystic kidney disease.

  5. Inhibition of dipeptidyl peptidase 4 regulates microvascular endothelial growth induced by inflammatory cytokines

    International Nuclear Information System (INIS)

    Takasawa, Wataru; Ohnuma, Kei; Hatano, Ryo; Endo, Yuko; Dang, Nam H.; Morimoto, Chikao

    2010-01-01

    Research highlights: → TNF-α or IL-1β induces EC proliferation with reduction of CD26 expression. → CD26 siRNA or DPP-4 inhibition enhances TNF-α or IL-1β-induced EC proliferation. → Loss of CD26/DPP-4 enhances aortic sprouting induced by TNF-α or IL-1β. → Capillary formation induced by TNF-α or IL-1β is enahced in the CD26 -/- mice. -- Abstract: CD26/DPP-4 is abundantly expressed on capillary of inflamed lesion as well as effector T cells. Recently, CD26/dipeptidyl peptidase 4 (DPP-4) inhibition has been used as a novel oral therapeutic approach for patients with type 2 diabetes. While accumulating data indicate that vascular inflammation is a key feature of both micro- and macro-vascular complications in diabetes, the direct role of CD26/DPP-4 in endothelial biology is to be elucidated. We herein showed that proinflammatory cytokines such as tumor necrosis factor or interleukin-1 reduce expression of CD26 on microvascular endothelial cells, and that genetical or pharmacological inhibition of CD26/DPP-4 enhances endothelial growth both in vitro and in vivo. With DPP-4 inhibitors being used widely in the treatment of type 2 diabetes, our data strongly suggest that DPP-4 inhibition plays a pivotal role in endothelial growth and may have a potential role in the recovery of local circulation following diabetic vascular complications.

  6. Inhibition of oxidative stress-elicited AKT activation facilitates PPARγ agonist-mediated inhibition of stem cell character and tumor growth of liver cancer cells.

    Directory of Open Access Journals (Sweden)

    Lanlan Liu

    Full Text Available Emerging evidence suggests that tumor-initiating cells (TICs are the most malignant cell subpopulation in tumors because of their resistance to chemotherapy or radiation treatment. Targeting TICs may be a key innovation for cancer treatment. In this study, we found that PPARγ agonists inhibited the cancer stem cell-like phenotype and attenuated tumor growth of human hepatocellular carcinoma (HCC cells. Reactive oxygen species (ROS initiated by NOX2 upregulation were partially responsible for the inhibitory effects mediated by PPARγ agonists. However, PPARγ agonist-mediated ROS production significantly activated AKT, which in turn promoted TIC survival by limiting ROS generation. Inhibition of AKT, by either pharmacological inhibitors or AKT siRNA, significantly enhanced PPARγ agonist-mediated inhibition of cell proliferation and stem cell-like properties in HCC cells. Importantly, in nude mice inoculated with HCC Huh7 cells, we demonstrated a synergistic inhibitory effect of the PPARγ agonist rosiglitazone and the AKT inhibitor triciribine on tumor growth. In conclusion, we observed a negative feedback loop between oxidative stress and AKT hyperactivation in PPARγ agonist-mediated suppressive effects on HCCs. Combinatory application of an AKT inhibitor and a PPARγ agonist may provide a new strategy for inhibition of stem cell-like properties in HCCs and treatment of liver cancer.

  7. Novel Midkine Inhibitor iMDK Inhibits Tumor Growth and Angiogenesis in Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Masui, Masanori; Okui, Tatsuo; Shimo, Tsuyoshi; Takabatake, Kiyofumi; Fukazawa, Takuya; Matsumoto, Kenichi; Kurio, Naito; Ibaragi, Soichiro; Naomoto, Yoshio; Nagatsuka, Hitoshi; Sasaki, Akira

    2016-06-01

    Midkine is a heparin-binding growth factor highly expressed in various human malignant tumors. However, its role in the growth of oral squamous cell carcinoma is not well understood. In this study, we analyzed the antitumor effect of a novel midkine inhibitor (iMDK) against oral squamous cell carcinoma. Administration of iMDK induced a robust antitumor response and suppressed cluster of differentiation 31 (CD31) expression in oral squamous cell carcinoma HSC-2 cells and SAS cells xenograft models. iMDK inhibited the proliferation of these cells dose-dependently, as well as the expression of midkine and phospho-extracellular signal-regulated kinase in HSC-2 and SAS cells. Moreover, iMDK significantly inhibited vascular endothelial growth factor and induced tube growth of human umbilical vein endothelial cells in a dose-dependent fashion. These findings suggest that midkine is critically involved in oral squamous cell carcinoma and iMDK can be effectively used for the treatment of oral squamous cell carcinoma. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Ibrutinib Inhibits ERBB Receptor Tyrosine Kinases and HER2-Amplified Breast Cancer Cell Growth.

    Science.gov (United States)

    Chen, Jun; Kinoshita, Taisei; Sukbuntherng, Juthamas; Chang, Betty Y; Elias, Laurence

    2016-12-01

    Ibrutinib is a potent, small-molecule Bruton tyrosine kinase (BTK) inhibitor developed for the treatment of B-cell malignancies. Ibrutinib covalently binds to Cys481 in the ATP-binding domain of BTK. This cysteine residue is conserved among 9 other tyrosine kinases, including HER2 and EGFR, which can be targeted. Screening large panels of cell lines demonstrated that ibrutinib was growth inhibitory against some solid tumor cells, including those inhibited by other HER2/EGFR inhibitors. Among sensitive cell lines, breast cancer lines with HER2 overexpression were most potently inhibited by ibrutinib (ibrutinib coincided with downregulation of phosphorylation on HER2 and EGFR and their downstream targets, AKT and ERK. Irreversible inhibition of HER2 and EGFR in breast cancer cells was established after 30-minute incubation above 100 nmol/L or following 2-hour incubation at lower concentrations. Furthermore, ibrutinib inhibited recombinant HER2 and EGFR activity that was resistant to dialysis and rapid dilution, suggesting an irreversible interaction. The dual activity toward TEC family (BTK and ITK) and ERBB family kinases was unique to ibrutinib, as ERBB inhibitors do not inhibit or covalently bind BTK or ITK. Xenograft studies with HER2 + MDA-MB-453 and BT-474 cells in mice in conjunction with determination of pharmacokinetics demonstrated significant exposure-dependent inhibition of growth and key signaling molecules at levels that are clinically achievable. Ibrutinib's unique dual spectrum of activity against both TEC family and ERBB kinases suggests broader applications of ibrutinib in oncology. Mol Cancer Ther; 15(12); 2835-44. ©2016 AACR. ©2016 American Association for Cancer Research.

  9. Parafibromin inhibits cancer cell growth and causes G1 phase arrest

    International Nuclear Information System (INIS)

    Zhang Chun; Kong Dong; Tan, M.-H.; Pappas, Donald L.; Wang, P.-F.; Chen, Jindong; Farber, Leslie; Zhang Nian; Koo, H.-M.; Weinreich, Michael; Williams, Bart O.; Teh, B.T.

    2006-01-01

    The HRPT2 (hereditary hyperparathyroidism type 2) tumor suppressor gene encodes a ubiquitously expressed 531 amino acid protein termed parafibromin. Inactivation of parafibromin predisposes one to the development of HPT-JT syndrome. To date, the role of parafibromin in tumorigenesis is largely unknown. Here, we report that parafibromin is a nuclear protein that possesses anti-proliferative properties. We show that overexpression of parafibromin inhibits colony formation and cellular proliferation, and induces cell cycle arrest in the G1 phase. Moreover, HPT-JT syndrome-derived mutations in HRPT2 behave in a dominant-negative manner by abolishing the ability of parafibromin to suppress cell proliferation. These findings suggest that parafibromin has a critical role in cell growth, and mutations in HRPT2 can directly inhibit this role

  10. Praziquantel synergistically enhances paclitaxel efficacy to inhibit cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Zhen Hua Wu

    Full Text Available The major challenges we are facing in cancer therapy with paclitaxel (PTX are the drug resistance and severe side effects. Massive efforts have been made to overcome these clinical challenges by combining PTX with other drugs. In this study, we reported the first preclinical data that praziquantel (PZQ, an anti-parasite agent, could greatly enhance the anticancer efficacy of PTX in various cancer cell lines, including PTX-resistant cell lines. Based on the combination index value, we demonstrated that PZQ synergistically enhanced PTX-induced cell growth inhibition. The co-treatment of PZQ and PTX also induced significant mitotic arrest and activated the apoptotic cascade. Moreover, PZQ combined with PTX resulted in a more pronounced inhibition of tumor growth compared with either drug alone in a mouse xenograft model. We tried to investigate the possible mechanisms of this synergistic efficacy induced by PZQ and PTX, and we found that the co-treatment of the two drugs could markedly decrease expression of X-linked inhibitor of apoptosis protein (XIAP, an anti-apoptotic protein. Our data further demonstrated that down-regulation of XIAP was required for the synergistic interaction between PZQ and PTX. Together, this study suggested that the combination of PZQ and PTX may represent a novel and effective anticancer strategy for optimizing PTX therapy.

  11. Arecoline inhibits endothelial cell growth and migration and the attachment to mononuclear cells

    Directory of Open Access Journals (Sweden)

    Shuei-Kuen Tseng

    2014-09-01

    Conclusion: Arecoline impaired vascular endothelial cells by inhibiting their growth and migration and their adhesion to U937 mononuclear cells. These results reveal that arecoline may contribute to the pathogenesis of oral submucous fibrosis and cardiovascular diseases by affecting endothelial cell function in BQ chewers.

  12. Inhibition of the mitogenic response to platelet-derived growth factor by terbinafine

    International Nuclear Information System (INIS)

    St Denny, I.H.; Glinka, K.G.; Nemecek, G.M.; Stuetz, A.

    1987-01-01

    Terbinafine (T;(E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-1-naphthalenemethanamine), an antimycotic which inhibits fungal squalene epoxidase activity, was examined for its effects on platelet-derived growth factor (PDGF)-stimulated mitogenesis. The inclusion of 1.5-5μM T in fibroblast incubation media was associated with increased [ 3 H]thymidine incorporation into DNA in the presence and absence of PDGF. However, T at concentrations above 6μM reduced DNA synthesis in control and PDGF-exposed cultures to nearly undetectable levels. Under a phase-contrast microscope, fibroblasts appeared morphologically normal at T concentrations as high as 25 μM. Neither the uptake of [ 3 H]thymidine nor the specific binding of 125 I-PDGF to fibroblast receptors was significantly affected by 10 μM T. Furthermore, concentrations of T which antagonized the mitogenic response to PDGF also interfered with fibroblast growth factor-induced mitogenesis. Together, these data suggest that T has the ability to inhibit the in vitro action of PDGF via a post-receptor mechanism

  13. Inhibition of the mitogenic response to platelet-derived growth factor by terbinafine

    Energy Technology Data Exchange (ETDEWEB)

    St. Denny, I.H.; Glinka, K.G.; Nemecek, G.M. (Sandoz Research Institute, East Hanover, NJ (USA)); Stuetz, A. (Sandoz Forschungsinstitut, Vienna (Austria))

    1987-05-01

    Terbinafine (T;(E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-1-naphthalenemethanamine), an antimycotic which inhibits fungal squalene epoxidase activity, was examined for its effects on platelet-derived growth factor (PDGF)-stimulated mitogenesis. The inclusion of 1.5-5{mu}M T in fibroblast incubation media was associated with increased ({sup 3}H)thymidine incorporation into DNA in the presence and absence of PDGF. However, T at concentrations above 6{mu}M reduced DNA synthesis in control and PDGF-exposed cultures to nearly undetectable levels. Under a phase-contrast microscope, fibroblasts appeared morphologically normal at T concentrations as high as 25 {mu}M. Neither the uptake of ({sup 3}H)thymidine nor the specific binding of {sup 125}I-PDGF to fibroblast receptors was significantly affected by 10 {mu}M T. Furthermore, concentrations of T which antagonized the mitogenic response to PDGF also interfered with fibroblast growth factor-induced mitogenesis. Together, these data suggest that T has the ability to inhibit the in vitro action of PDGF via a post-receptor mechanism.

  14. Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ved Parkash [Department of Environment and Vocational Studies, Panjab University, Chandigarh 160014 (India); Department of Zoology, Panjab University, Chandigarh 160014 (India); Singh, Harminder Pal, E-mail: hpsingh_01@yahoo.com [Department of Environment and Vocational Studies, Panjab University, Chandigarh 160014 (India); Kohli, Ravinder Kumar; Batish, Daizy Rani [Department of Botany, Panjab University, Chandigarh 160014 (India)

    2009-10-15

    During the last couple of decades, there has been a tremendous increase in the use of cell phones. It has significantly added to the rapidly increasing EMF smog, an unprecedented type of pollution consisting of radiation in the environment, thereby prompting the scientists to study the effects on humans. However, not many studies have been conducted to explore the effects of cell phone EMFr on growth and biochemical changes in plants. We investigated whether EMFr from cell phones inhibit growth of Vigna radiata (mung bean) through induction of conventional stress responses. Effects of cell phone EMFr (power density: 8.55 {mu}W cm{sup -2}; 900 MHz band width; for 1/2, 1, 2, and 4 h) were determined by measuring the generation of reactive oxygen species (ROS) in terms of malondialdehyde and hydrogen peroxide (H{sub 2}O{sub 2}) content, root oxidizability and changes in levels of antioxidant enzymes. Our results showed that cell phone EMFr significantly inhibited the germination (at {>=}2 h), and radicle and plumule growths ({>=}1 h) in mung bean in a time-dependent manner. Further, cell phone EMFr enhanced MDA content (indicating lipid peroxidation), and increased H{sub 2}O{sub 2} accumulation and root oxidizability in mung bean roots, thereby inducing oxidative stress and cellular damage. In response to EMFr, there was a significant upregulation in the activities of scavenging enzymes, such as superoxide dismutases, ascorbate peroxidases, guaiacol peroxidases, catalases and glutathione reductases, in mung bean roots. The study concluded that cell phone EMFr inhibit root growth of mung bean by inducing ROS-generated oxidative stress despite increased activities of antioxidant enzymes.

  15. Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress

    International Nuclear Information System (INIS)

    Sharma, Ved Parkash; Singh, Harminder Pal; Kohli, Ravinder Kumar; Batish, Daizy Rani

    2009-01-01

    During the last couple of decades, there has been a tremendous increase in the use of cell phones. It has significantly added to the rapidly increasing EMF smog, an unprecedented type of pollution consisting of radiation in the environment, thereby prompting the scientists to study the effects on humans. However, not many studies have been conducted to explore the effects of cell phone EMFr on growth and biochemical changes in plants. We investigated whether EMFr from cell phones inhibit growth of Vigna radiata (mung bean) through induction of conventional stress responses. Effects of cell phone EMFr (power density: 8.55 μW cm -2 ; 900 MHz band width; for 1/2, 1, 2, and 4 h) were determined by measuring the generation of reactive oxygen species (ROS) in terms of malondialdehyde and hydrogen peroxide (H 2 O 2 ) content, root oxidizability and changes in levels of antioxidant enzymes. Our results showed that cell phone EMFr significantly inhibited the germination (at ≥2 h), and radicle and plumule growths (≥1 h) in mung bean in a time-dependent manner. Further, cell phone EMFr enhanced MDA content (indicating lipid peroxidation), and increased H 2 O 2 accumulation and root oxidizability in mung bean roots, thereby inducing oxidative stress and cellular damage. In response to EMFr, there was a significant upregulation in the activities of scavenging enzymes, such as superoxide dismutases, ascorbate peroxidases, guaiacol peroxidases, catalases and glutathione reductases, in mung bean roots. The study concluded that cell phone EMFr inhibit root growth of mung bean by inducing ROS-generated oxidative stress despite increased activities of antioxidant enzymes.

  16. Magnolol Inhibits the Growth of Non-Small Cell Lung Cancer via Inhibiting Microtubule Polymerization

    Directory of Open Access Journals (Sweden)

    Jia Shen

    2017-07-01

    Full Text Available Background: The tubulin/microtubule system, which is an integral component of the cytoskeleton, plays an essential role in mitosis. Targeting mitotic progression by disturbing microtubule dynamics is a rational strategy for cancer treatment. Methods: Microtubule polymerization assay was performed to examine the effect of Magnolol (a novel natural phenolic compound isolated from Magnolia obovata on cellular microtubule polymerization in human non-small cell lung cancer (NSCLC cells. Cell cycle analysis, mitotic index assay, cell proliferation assay, colony formation assay, western blotting analysis of cell cycle regulators, Annexin V-FITC/PI staining, and live/dead viability staining were carried out to investigate the Magnolol’s inhibitory effect on proliferation and viability of NSCLS cells in vitro. Xenograft model of human A549 NSCLC tumor was used to determine the Magnolol’s efficacy in vivo. Results: Magnolol treatment effectively inhibited cell proliferation and colony formation of NSCLC cells. Further study proved that Magnolol induced the mitotic phase arrest and inhibited G2/M progression in a dose-dependent manner, which were mechanistically associated with expression alteration of a series of cell cycle regulators. Furthermore, Magnolol treatment disrupted the cellular microtubule organization via inhibiting the polymerization of microtubule. We also found treatment with NSCLC cells with Magnolol resulted in apoptosis activation through a p53-independent pathway, and autophgy induction via down-regulation of the Akt/mTOR pathway. Finally, Magnolol treatment significantly suppressed the NSCLC tumor growth in mouse xenograft model in vivo. Conclusion: These findings identify Magnolol as a promising candidate with anti-microtubule polymerization activity for NSCLC treatment.

  17. Iron inhibits hydroxyapatite crystal growth in vitro.

    Science.gov (United States)

    Guggenbuhl, Pascal; Filmon, Robert; Mabilleau, Guillaume; Baslé, Michel F; Chappard, Daniel

    2008-07-01

    Hemochromatosis is a known cause of osteoporosis in which the pathophysiology of bone loss is largely unknown and the role of iron remains questionable. We have investigated the effects of iron on the growth of hydroxyapatite crystals in vitro on carboxymethylated poly(2-hydroxyethyl methacrylate) pellets. This noncellular and enzyme-independent model mimics the calcification of woven bone (composed of calcospherites made of hydroxyapatite crystals). Polymer pellets were incubated with body fluid containing iron at increasing concentrations (20, 40, 60 micromol/L). Hydroxyapatite growth was studied by chemical analysis, scanning electron microscopy, and Raman microscopy. When incubated in body fluid containing iron, significant differences were observed with control pellets. Iron was detected at a concentration of 5.41- to 7.16-fold that of controls. In pellets incubated with iron, there was a approximately 3- to 4-fold decrease of Ca and P and a approximately 1.3- to 1.4-fold increase in the Ca/P ratio. There was no significant difference among the iron groups of pellets, but a trend to a decrease of Ca with the increase of iron concentration was noted. Calcospherite diameters were significantly lower on pellets incubated with iron. Raman microspectroscopy showed a decrease in crystallinity (measured by the full width of the half height of the 960 Deltacm(-1) band) with a significant increase in carbonate substitution (measured by the intensity ratio of 1071 to 960 Deltacm(-1) band). Energy dispersive x-ray analysis identified iron in the calcospherites. In vitro, iron is capable to inhibit bone crystal growth with significant changes in crystallinity and carbonate substitution.

  18. Quercetin inhibits angiogenesis through thrombospondin-1 upregulation to antagonize human prostate cancer PC-3 cell growth in vitro and in vivo.

    Science.gov (United States)

    Yang, Feiya; Jiang, Xian; Song, Liming; Wang, Huiping; Mei, Zhu; Xu, Zhiqing; Xing, Nianzeng

    2016-03-01

    The rapid growth, morbidity and mortality of prostate cancer, and the lack of effective treatment have attracted great interests of researchers to find novel cancer therapies aiming to inhibit angiogenesis and tumor growth. Quercetin is a flavonoid compound that widely exists in the nature. Our previous study preliminarily demonstrated that quercetin effectively inhibited human prostate cancer cell xenograft tumor growth by inhibiting angiogenesis. Thrombospondin-1 (TSP-1) is the first reported endogenous anti-angiogenic factor that can inhibit angiogenesis and tumorigenesis. However, the relationship between quercetin inhibiting angiogenesis and TSP-1 upregulation in prostate cancer has not been determined. Thus, we explored the important role of TSP-1 upregulation in reducing angiogenesis and anti-prostate cancer effect of quercetin both in vitro and in vivo for the first time. After the selected doses were used for a certain time, quercetin i) significantly inhibited PC-3 and human umbilical vein endothelial cells (HUVECs) proliferation, migration and invasion in a dose-dependent manner; ⅱ) effectively inhibited prostate cancer PC-3 cell xenograft tumor growth by 37.5% with 75 mg/kg as compared to vehicle control group, more effective than 25 (22.85%) and 50 mg/kg (29.6%); ⅲ) was well tolerated by BALB/c mice and no obvious toxic reactions were observed; ⅳ) greatly reduced angiogenesis and led to higher TSP-1 protein and mRNA expression both in vitro and in vivo in a dose-dependent manner. Therefore, quercetin could increase TSP-1 expression to inhibit angiogenesis resulting in antagonizing prostate cancer PC-3 cell and xenograft tumor growth. The present study can lay a good basis for the subsequent concrete mechanism study and raise the possibility of applying quercetin to clinical for human prostate cancer in the near future.

  19. Inhibition of fungal growth with extreme low oxygen levels

    DEFF Research Database (Denmark)

    Nielsen, Per Væggemose; Haasum, Iben

    1998-01-01

    Fungal spoilage of foods is effectively controlled by removal of oxygen from the package, especially if this is combined with elevated carbon dioxide (CO2) levels. However, great uncertainty exist on just how low the residual oxygen levels in the package must be especially when carbon dioxide lev...... food with low CO2 levels. Active packaging with oxygen absorbers may be considered for these products. The packaging solution must also reflect the micro flora of the product.......Fungal spoilage of foods is effectively controlled by removal of oxygen from the package, especially if this is combined with elevated carbon dioxide (CO2) levels. However, great uncertainty exist on just how low the residual oxygen levels in the package must be especially when carbon dioxide...... Penicillia and Aspergilli were also inhibited by oxygen levels less than 0.5%, but less than 0.01% was required to efficiently inhibit these fungi. Most resistant to very low oxygen levels was the Fusarium species.These results shows that very low oxygen levels are required to avoid fungal growth in package...

  20. Bovine Lactoferrin and Lactoferrin-Derived Peptides Inhibit the Growth of Vibrio cholerae and Other Vibrio species

    Directory of Open Access Journals (Sweden)

    Erika Acosta-Smith

    2018-01-01

    Full Text Available Vibrio is a genus of Gram-negative bacteria, some of which can cause serious infectious diseases. Vibrio infections are associated with the consumption of contaminated food and classified in Vibrio cholera infections and non-cholera Vibrio infections. In the present study, we investigate whether bovine lactoferrin (bLF and several synthetic peptides corresponding to bLF sequences, are able to inhibit the growth or have bactericidal effect against V. cholerae and other Vibrio species. The antibacterial activity of LF and LF-peptides was assessed by kinetics of growth or determination of colony forming unit in bacteria treated with the peptides and antibiotics. To get insight in the mode of action, the interaction between bLF and bLF-peptides (coupled to FITC and V. cholera was evaluated. The damage of effector-induced bacterial membrane permeability was measured by inclusion of the fluorescent dye propidium iodide using flow cytometry, whereas the bacterial ultrastructural damage in bacteria treated was observed by transmission electron microscopy. The results showed that bLF and LFchimera inhibited the growth of the V. cholerae strains; LFchimera permeabilized the bacteria which membranes were seriously damaged. Assays with a multidrug-resistant strain of Vibrio species indicated that combination of sub-lethal doses of LFchimera with ampicillin or tetracycline strongly reduced the concentration of the antibiotics to reach 95% growth inhibition. Furthermore, LFchimera were effective to inhibit the V. cholerae counts and damage due to this bacterium in a model mice. These data suggest that LFchimera and bLF are potential candidates to combat the V. cholerae and other multidrug resistant Vibrio species.

  1. Bovine Lactoferrin and Lactoferrin-Derived Peptides Inhibit the Growth of Vibrio cholerae and Other Vibrio species

    Science.gov (United States)

    Acosta-Smith, Erika; Viveros-Jiménez, Karina; Canizalez-Román, Adrian; Reyes-Lopez, Magda; Bolscher, Jan G. M.; Nazmi, Kamran; Flores-Villaseñor, Hector; Alapizco-Castro, Gerardo; de la Garza, Mireya; Martínez-Garcia, Jesús J.; Velazquez-Roman, Jorge; Leon-Sicairos, Nidia

    2018-01-01

    Vibrio is a genus of Gram-negative bacteria, some of which can cause serious infectious diseases. Vibrio infections are associated with the consumption of contaminated food and classified in Vibrio cholera infections and non-cholera Vibrio infections. In the present study, we investigate whether bovine lactoferrin (bLF) and several synthetic peptides corresponding to bLF sequences, are able to inhibit the growth or have bactericidal effect against V. cholerae and other Vibrio species. The antibacterial activity of LF and LF-peptides was assessed by kinetics of growth or determination of colony forming unit in bacteria treated with the peptides and antibiotics. To get insight in the mode of action, the interaction between bLF and bLF-peptides (coupled to FITC) and V. cholera was evaluated. The damage of effector-induced bacterial membrane permeability was measured by inclusion of the fluorescent dye propidium iodide using flow cytometry, whereas the bacterial ultrastructural damage in bacteria treated was observed by transmission electron microscopy. The results showed that bLF and LFchimera inhibited the growth of the V. cholerae strains; LFchimera permeabilized the bacteria which membranes were seriously damaged. Assays with a multidrug-resistant strain of Vibrio species indicated that combination of sub-lethal doses of LFchimera with ampicillin or tetracycline strongly reduced the concentration of the antibiotics to reach 95% growth inhibition. Furthermore, LFchimera were effective to inhibit the V. cholerae counts and damage due to this bacterium in a model mice. These data suggest that LFchimera and bLF are potential candidates to combat the V. cholerae and other multidrug resistant Vibrio species. PMID:29375503

  2. Inhibition of growth hormone and prolactin secretion by a serine proteinase inhibitor

    International Nuclear Information System (INIS)

    Rappay, G.; Nagy, I.; Makara, G.B.; Horvath, G.; Karteszi, M.; Bacsy, E.; Stark, E.

    1984-01-01

    The action of the tripeptide aldehyde t-butyloxycarbonyl-DPhe-Pro-Arg-H (boc-fPR-H), belonging to a family of serine proteinase inhibitors, on the release of immunoreactive prolactin (iPRL) and growth hormone (iGH) has been studied. In rat anterior pituitary cell cultures and pituitary quarters 1 mM boc-fPR-H inhibited basal iPRL and iGH release. Thyroliberin-induced iPRL release by cultured cells was also markedly inhibited with a concomitant accumulation of intracellular iPRL. During the short- and long-term exposure of cells to boc-fPR-H there were no changes in total cell protein contents and in activities of some lysosomal marker enzymes. The marked inhibition of basal as well as stimulated hormone release in the presence of the enzyme inhibitor might suggest that at least a portion of the hormones is released via a proteolytic enzyme-dependent process

  3. Inhibition of a ubiquitously expressed pectin methyl esterase in Solanum tuberosum L. affects plant growth, leaf growth polarity, and ion partitioning.

    Science.gov (United States)

    Pilling, J; Willmitzer, L; Bücking, H; Fisahn, J

    2004-05-01

    Two pectin methyl esterases (PMEs; EC 3.1.1.11) from Solanum tuberosum were isolated and their expression characterised. One partial clone ( pest1) was expressed in leaves and fruit tissue, while pest2 was a functional full-length clone and was expressed ubiquitously, with a preference for aerial organs. Potato plants were transformed with a chimeric antisense construct that was designed to simultaneously inhibit pest1 and pest2 transcript accumulation; however, reduction of mRNA levels was confined to pest2. The decrease in pest2 transcript was accompanied by up to 50% inhibition of total PME activity, which was probably due to the reduction of only one PME isoform. PME inhibition affected plant development as reflected by smaller stem elongation rates of selected transformants when compared with control plants, leading to a reduction in height throughout the entire course of development. Expansion rates of young developing leaves were measured simultaneously by two displacement transducers in the direction of the leaf tip (proximal-distal axis) and in the perpendicular direction (medial-lateral axis). Significant differences in leaf growth patterns were detected between wild-type and transgenic plants. We suggest that these visual phenotypes could be correlated with modifications of ion accumulation and partitioning within the transgenic plants. The ion-binding capacities of cell walls from PME-inhibited plants were specifically modified as they preferentially bound more sodium, but less potassium and calcium. X-ray microanalysis also indicated an increase in the concentration of several ions within the leaf apoplast of transgenic plants. Moreover, quantification of the total content of major cations revealed differences specific for a given element between the leaves of PME-inhibited and wild-type plants. Reduced growth rates might also be due to effects of PME inhibition on pectin metabolism, predominantly illustrated by an accumulation of galacturonic acid

  4. SKLB188 inhibits the growth of head and neck squamous cell carcinoma by suppressing EGFR signalling.

    Science.gov (United States)

    Barzegar, Mansoureh; Ma, Shuang; Zhang, Chao; Chen, Xin; Gu, Ying; Shang, Chaowei; Jiang, Xiaojuan; Yang, Jiao; Nathan, Cherie-Ann; Yang, Shengyong; Huang, Shile

    2017-10-10

    Overexpression of epidermal growth factor receptor (EGFR) occurs in approximately 90% of head and neck squamous cell carcinoma (HNSCC), and is correlated with poor prognosis. Thus, targeting EGFR is a promising strategy for treatment of HNSCC. Several small molecule EGFR inhibitors have been tested in clinical trials for treatment of HNSCC, but none of them are more effective than the current chemotherapeutic drugs. Thus, it is urgently needed to develop novel EGFR inhibitors for HNSCC treatment. By screening an in-house focused library containing approximately 650 000 known kinase inhibitors and kinase inhibitor-like compounds containing common kinase inhibitor core scaffolds, we identified SKLB188 as a lead compound for inhibition of EGFR. The anticancer effects of SKLB188 on HNSCC cells were investigated by in vitro cell growth, cell cycle and apoptosis assays, as well as in vivo FaDu xenograft mouse model. Molecular docking, in vitro kinase profiling and western blotting were performed to characterise EGFR as the molecular target. SKLB188 inhibited HNSCC cell proliferation by inducing G 1 cell cycle arrest, which was associated with downregulating the expression of Cdc25A, cyclins D1/A and cyclin-dependent kinases (CDK2/4), and upregulating the expression of cyclin-dependent kinase (CDK) inhibitors (p21 Cip1 and p27 Kip1 ), leading to decreased phosphorylation of Rb. SKLB188 also induced caspase-dependent apoptosis of HNSCC cells by downregulating the expression of Mcl-1 and survivin. Molecular docking revealed that SKLB188 could bind to the kinase domain of EGFR through hydrogen bonds and hydrophobic interactions. In vitro kinase assay showed that SKLB188 inhibited the activity of a recombinant human EGFR very potently (IC 50 =5 nM). Western blot analysis demonstrated that SKLB188 inhibited the phosphorylation of EGFR and its downstream targets, extracellular signal-regulated protein kinases 1 and 2 (Erk1/2) and Akt in the cells. In addition, SKLB188 dose

  5. Growth inhibition and radiosensitization of Celecoxib in nasopharyngeal caricnoma cell line CNE-2

    International Nuclear Information System (INIS)

    Xu Xinhua; Yi Fang; Fu Xiangyang; Zhang Xiaohong; Wang Yanlin; Zhang Changju; Du Jingtao

    2009-01-01

    Objective: To investigate the growth inhibition and radiosensitization of Celecoxib in human nasopharyngeal carcinoma cell line CNE-2. Methods: CNE-2 growth inhibition by Celecoxib was evaluated by MTT method. Apoptosis-related changes in morphology were observed by transmission electron microscopy(TEM). Cell cycle distribution and apoptosis rate were measured by flowcytometry(FCM). The expression of COX-2 protein was observed by SP method after the treatment of Celecoxib. Cells were randomly planted into four groups: irradiation control (Ci), drug group (Cd), irradiation group (R), and Celecoxib plus irradiation group (D + R). Single irradiation of 2,4,6,8, and 10 Gy were administered for colonogenic assay. Cell cycle distribution and apoptosis rate were analyzed at 6 Gy irradiation. Results: The growth of CNE-2 cell was inhibited by celecoxib in a dose-and time-dependent manner, the IC 50 was 80 μmol/L. After the treatment, cell ratio of G 0 and G 1 phases wasinereased (47.03 ± 2.76 vs 56.17 ± 1.95, t=4.68, P=0.010), whereas the ratio of S and G 2 /M phases was decreased (33.07 ± 1.86 vs 24.87 ± 1.76, t=5.54,P =0.010;19.30 ± 0.53:17.73 ± 0.83, t=2.75, P=0.050), and the apoptosis rate was increased (1.57 ± 0.47:10.47 ± 0.31,t=27.39, P=0.000) in a dose-dependent manner. Apoptosis with nuclear chromatin condensation, fragmentation and cell shrinkage was found by TEM. SP method showed that Celeib decreased COX-2 expression (17.48 ± 0.34 vs 12.82 ± 0.51, t=13.20, P=0.00). The sensitivity ratio (D 0 ) was 1.15. FCM showed that the percentage of cells in G 2 /M phase was significanty more in R and D + R groups than in Ci and Cd groups (68.00 ± 1.65, 54.27 ± 5.74,17.60 ± 0.80,14.86 ± 1.23, t=47.70,P=0.000; t=11.63, P=0.000), and also significantly different between R group and D + R group (t=3.99, P= 0.020). The apoptosis rate was higher in R and D + R groups than Ci and Cd groups(4.83 ± 0.97,9.50 ± 1.35,1.33 ± 0.86 and 2.28 ± 0.42, t=4.67, P=0.010; t

  6. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    Science.gov (United States)

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  7. Growth Inhibition of Cronobacter sakazakii in Experimentally Contaminated Powdered Infant Formula by Kefir Supernatant.

    Science.gov (United States)

    Kim, Dong-Hyeon; Chon, Jung-Whan; Kang, Il-Byeong; Kim, Hyunsook; Kim, Hong-Seok; Song, Kwang-Young; Seo, Kun-Ho

    2015-09-01

    Kefir is a type of fermented milk containing lactic and acetic acid bacteria and yeast. In this study, we evaluated the antimicrobial activity of kefir supernatant against Cronobacter sakazakii in powdered infant formula (PIF). In a spot-on-lawn test, the growth of 20 C. sakazakii strains, including 10 clinical and 10 food isolates, was completely inhibited in the presence of kefir supernatant. Significant differences in the diameters of inhibition zones were observed upon treatment with kefir compared with the results for Lactobacillus kefiri and Candida kefyr culture supernatants or solutions of lactic and acetic acid and ethyl alcohol in the agar well diffusion test (P < 0.05). The addition of 100 μl of kefir supernatant to 1 ml of nutrient broth completely inhibited the growth of C. sakazakii, as evaluated by spectrophotometry. The antimicrobial activity of kefir supernatant in experimentally contaminated PIF was also tested; we found no viable C. sakazakii cells remaining in PIF rehydrated with 30% kefir supernatant solution for 1 h, demonstrating that the antimicrobial activity of kefir supernatant against C. sakazakii could be applied in real food samples.

  8. A bi-paratopic anti-EGFR nanobody efficiently inhibits solid tumour growth

    Science.gov (United States)

    Roovers, Rob C.; Vosjan, Maria J.W.D.; Laeremans, Toon; el Khoulati, Rachid; de Bruin, Renée C.G.; Ferguson, Kathryn M.; Verkleij, Arie J.; van Dongen, Guus A.M.S.; van Bergen en Henegouwen, Paul M. P.

    2014-01-01

    The epidermal growth factor receptor (EGFR) has been shown to be a valid cancer target for antibody-based therapy. At present, several anti-EGFR monoclonal antibodies (mAbs) have been successfully used, among which cetuximab and matuzumab. X-ray crystallography data show that these antibodies bind to different epitopes on the ecto-domain of EGFR, providing a rationale for the combined use of these two antibody specificities. We have previously reported on the successful isolation of antagonistic anti-EGFR nanobodies. In the present study, we aimed to improve on these molecules by combining nanobodies with specificities similar to both cetuximab and matuzumab into a single bi-paratopic molecule. Carefully designed phage nanobody selections resulted in two sets of nanobodies that specifically blocked the binding of either matuzumab or of cetuximab to EGFR and that did not compete for each others binding. A combination of nanobodies from both epitope groups into the bi-paratopic nanobody CONAN-1 was shown to block EGFR activation more efficiently than monovalent or bivalent (monospecific) nanobodies. In addition, this bi-paratopic nanobody potently inhibited EGF-dependent cell proliferation. Importantly, in an in vivo model of athymic mice bearing A431 xenografts, CONAN-1 inhibited tumour outgrowth with an almost similar potency as the whole mAb cetuximab, despite the fact that CONAN-1 is devoid of an Fc portion that could mediate immune effector functions. Compared to therapy using bivalent, mono-specific nanobodies, CONAN-1 was clearly more potent in tumour growth inhibition. These results show that the rational design of bi-paratopic nanobody-based anti-cancer therapeutics may yield potent lead molecules for further development. PMID:21520037

  9. Co-inhibition of epidermal growth factor receptor and insulin-like growth factor receptor 1 enhances radiosensitivity in human breast cancer cells

    International Nuclear Information System (INIS)

    Li, Ping; Veldwijk, Marlon R; Zhang, Qing; Li, Zhao-bin; Xu, Wen-cai; Fu, Shen

    2013-01-01

    Over-expression of epidermal growth factor receptor (EGFR) or insulin-like growth factor-1 receptor (IGF-1R) have been shown to closely correlate with radioresistance of breast cancer cells. This study aimed to investigate the impact of co-inhibition of EGFR and IGF-1R on the radiosensitivity of two breast cancer cells with different profiles of EGFR and IGF-1R expression. The MCF-7 (EGFR +/−, IGF-1R +++) and MDA-MB-468 (EGFR +++, IGF-1R +++) breast cancer cell lines were used. Radiosensitizing effects were determined by colony formation assay. Apoptosis and cell cycle distribution were measured by flow cytometry. Phospho-Akt and phospho-Erk1/2 were quantified by western blot. In vivo studies were conducted using MDA-MB-468 cells xenografted in nu/nu mice. In MDA-MB-468 cells, the inhibition of IGF-1R upregulated the p-EGFR expression. Either EGFR (AG1478) or IGF-1R inhibitor (AG1024) radiosensitized MDA-MB-468 cells. In MCF-7 cells, radiosensitivity was enhanced by AG1024, but not by AG1478. Synergistical radiosensitizing effect was observed by co-inhibition of EGFR and IGF-1R only in MDA-MB-468 cells with a DMF 10% of 1.90. The co-inhibition plus irradiation significantly induced more apoptosis and arrested the cells at G0/G1 phase in MDA-MB-468 cells. Only co-inhibition of EGFR and IGF-1R synergistically diminished the expression of p-Akt and p-Erk1/2 in MDA-MB-468 cells. In vivo studies further verified the radiosensitizing effects by co-inhibition of both pathways in a MDA-MB-468 xenograft model. Our data suggested that co-inhibition of EGFR and IGF-1R synergistically radiosensitized breast cancer cells with both EGFR and IGF-1R high expression. The approach may have an important therapeutic implication in the treatment of breast cancer patients with high expression of EGFR and IGF-1R

  10. Inhibition of nucleation and growth of ice by poly(vinyl alcohol) in vitrification solution.

    Science.gov (United States)

    Wang, Hai-Yan; Inada, Takaaki; Funakoshi, Kunio; Lu, Shu-Shen

    2009-08-01

    Control of ice formation is crucial in cryopreservation of biological substances. Successful vitrification using several additives that inhibit ice nucleation in vitrification solutions has previously been reported. Among these additives, here we focused on a synthetic polymer, poly(vinyl alcohol) (PVA), and investigated the effects of PVA on nucleation and growth of ice in 35% (w/w) aqueous 1,2-propanediol solution by using a differential scanning calorimetry (DSC) system equipped with a cryomicroscope. First, the freezing temperature of the solution was measured using the DSC system, and then the change in ice fraction in the solution during cooling was evaluated based on images obtained using the cryomicroscope, at different concentrations of PVA between 0% and 3% (w/w). Based on the ice fraction, the change in residual solution concentration during cooling was also evaluated and then plotted on the state diagram of aqueous 1,2-propanediol solution. Results indicated that, when the partially glassy and partially frozen state was intentionally allowed, the addition of PVA effectively inhibited not only ice nucleation but also ice growth in the vitrification solution. The effect of PVA on ice growth in the vitrification solution was explained based on kinetic limitations mainly due to mass transport. The interfacial kinetics also might limit ice growth in the vitrification solution only when the ice growth rate decreased below a critical value. This coincides with the fact that PVA exhibits a unique antifreeze activity in the same manner as antifreeze proteins when ice growth rate is lower than a critical value.

  11. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions

    Directory of Open Access Journals (Sweden)

    Andy Hesketh

    2017-07-01

    Full Text Available We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP, cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection.

  12. Inhibition of tomato shoot growth by over-irrigation is linked to nitrogen deficiency and ethylene.

    Science.gov (United States)

    Fiebig, Antje; Dodd, Ian C

    2016-01-01

    Although physiological effects of acute flooding have been well studied, chronic effects of suboptimal soil aeration caused by over-irrigation of containerized plants have not, despite its likely commercial significance. By automatically scheduling irrigation according to soil moisture thresholds, effects of over-irrigation on soil properties (oxygen concentration, temperature and moisture), leaf growth, gas exchange, phytohormone [abscisic acid (ABA) and ethylene] relations and nutrient status of tomato (Solanum lycopersicum Mill. cv. Ailsa Craig) were studied. Over-irrigation slowly increased soil moisture and decreased soil oxygen concentration by 4%. Soil temperature was approximately 1°C lower in the over-irrigated substrate. Over-irrigating tomato plants for 2 weeks significantly reduced shoot height (by 25%) and fresh weight and total leaf area (by 60-70%) compared with well-drained plants. Over-irrigation did not alter stomatal conductance, leaf water potential or foliar ABA concentrations, suggesting that growth inhibition was not hydraulically regulated or dependent on stomatal closure or changes in ABA. However, over-irrigation significantly increased foliar ethylene emission. Ethylene seemed to inhibit growth, as the partially ethylene-insensitive genotype Never ripe (Nr) was much less sensitive to over-irrigation than the wild type. Over-irrigation induced significant foliar nitrogen deficiency and daily supplementation of small volumes of 10 mM Ca(NO3 )2 to over-irrigated soil restored foliar nitrogen concentrations, ethylene emission and shoot fresh weight of over-irrigated plants to control levels. Thus reduced nitrogen uptake plays an important role in inhibiting growth of over-irrigated plants, in part by stimulating foliar ethylene emission. © 2015 Scandinavian Plant Physiology Society.

  13. Isthmin inhibits glioma growth through antiangiogenesis in vivo.

    Science.gov (United States)

    Yuan, Bangqing; Xian, Ronghua; Ma, Jianfang; Chen, Yujian; Lin, Chuangan; Song, Yaoming

    2012-09-01

    Among glioma treatment strategies, antiangiogenesis emerges as a meaningful and feasible treatment approach for inducing long-term survival. Isthmin is a gene highly expressed in the isthmus of the midbrain-hindbrain organizer in Xenopus, and has recently been identified as a novel angiogenesis inhibitor. However, the potential of isthmin on the glioma angiogenesis has not been well studied. In the present study, we demonstrated that the recombinant adenovirus isthmin (Ad-isthmin) could inhibit VEGF-stimulated endothelial cell proliferation and induce apoptosis through a caspase-dependent pathway. In addition, Ad-isthmin significantly suppressed glioma growth through antiangiogenesis without apparent side effects. Taken together, our results demonstrated that isthmin could act as a novel angiogenesis inhibitor and might be utilized in the glioma antiangiogenesis therapy.

  14. Inhibition of Orobanche crenata seed germination and radicle growth by allelochemicals identified in cereals.

    Science.gov (United States)

    Fernández-Aparicio, Mónica; Cimmino, Alessio; Evidente, Antonio; Rubiales, Diego

    2013-10-16

    Orobanche crenata is a parasitic weed that causes severe yield losses in important grain and forage legume crops. Cereals have been reported to inhibit O. crenata parasitism when grown intercropped with susceptible legumes, but the responsible metabolites have not been identified. A number of metabolites have been reported in cereals that have allelopathic properties against weeds, pests, and pathogens. We tested the effect of several allelochemicals identified in cereals on O. crenata seed germination and radicle development. We found that 2-benzoxazolinone, its derivative 6-chloroacetyl-2-benzoxazolinone, and scopoletin significantly inhibited O. crenata seed germination. Benzoxazolinones, l-tryptophan, and coumalic acid caused the stronger inhibition of radicle growth. Also, other metabolites reduced radicle length, this inhibition being dose-dependent. Only scopoletin caused cell necrotic-like darkening in the young radicles. Prospects for their application to parasitic weed management are discussed.

  15. Calorimetric determination of inhibition of ice crystal growth by antifreeze protein in hydroxyethyl starch solutions.

    Science.gov (United States)

    Hansen, T N; Carpenter, J F

    1993-01-01

    Differential scanning calorimetry and cryomicroscopy were used to investigate the effects of type I antifreeze protein (AFP) from winter flounder on 58% solutions of hydroxyethyl starch. The glass, devitrification, and melt transitions noted during rewarming were unaffected by 100 micrograms/ml AFP. Isothermal annealing experiments were undertaken to detect the effects of AFP-induced inhibition of ice crystal growth using calorimetry. A premelt endothermic peak was detected during warming after the annealing procedure. Increasing the duration or the temperature of the annealing for the temperature range from -28 and -18 degrees C resulted in a gradual increase in the enthalpy of the premelt endotherm. This transition was unaffected by 100 micrograms/ml AFP. Annealing between -18 and -10 degrees C resulted in a gradual decrease in the premelt peak enthalpy. This process was inhibited by 100 micrograms/ml AFP. Cryomicroscopic examination of the samples revealed that AFP inhibited ice recrystallization during isothermal annealing at -10 degrees C. Annealing at lower temperatures resulted in minimal ice recrystallization and no visible effect of AFP. Thus, the 100 micrograms/ml AFP to have a detectable influence on thermal events in the calorimeter, conditions must be used that result in significant ice growth without AFP and visible inhibition of this process by AFP. Images FIGURE 8 PMID:7690257

  16. Growth inhibition of Chromatium D by L-methionine and its correlation to unusual accumulation of S-adenosyl-L-methionine in the cell

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Y; Nakatani, K; Shirakashi, T; Ohmori, H; Toraya, T [Kyoto Univ. (Japan). Faculty of Engineering

    1976-07-01

    L-Methionine strongly inhibited the growth of Chromatium D when added at a low concentration to the growth medium containing both sulfide and thiosulfate. S-Adenosyl-L-methionine inhibited the growth, irrespective of the coexistence of sulfide and thiosulfate. Upon addition of L-methionine to the growth media, the presence of both sulfide and thiosulfate in the media stimulated the in vivo conversion of L-methionine to S-adenosyl-L-methionine, and consequently increased the intracellular level of S-adenosyl-L-methionine. From these data, it was strongly suggested that the unusual accumulation of S-adenosyl-L-methionine in the cells of Chromatium D is responsible for the growth inhibition by L-methionine. The level of S-adenosyl-L-methionine synthetase (ATP: L-methionine S-adenosyltransferase, EC2.5.16) was significantly enhanced by adding L-methionine, sulfide and thiosulfate to the growth medium.

  17. Epidermal growth factor receptor-induced activato protein 1 activity controls density-dependent growht inhibition in normal rat kidney fibroblasts.

    NARCIS (Netherlands)

    Hornberg, J.J.; Dekker, H.; Peters, P.H.J.; Langerak, P.; Westerhoff, H.V.; Lankelma, J.; Zoelen, E.J.J.

    2006-01-01

    Density-dependent growth inhibition secures tissue homeostasis. Dysfunction of the mechanisms, which regulate this type of growth control is a major cause of neoplasia. In confluent normal rat kidney (NRK) fibroblasts, epidermal growth factor (EGF) receptor levels decline, ultimately rendering these

  18. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Science.gov (United States)

    2010-07-01

    ... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.” (a... killing or growth inhibition of repair deficient bacteria in a set of repair proficient and deficient...

  19. Tracing and inhibiting growth of Staphylococcus aureus in barbecue cheese production after product recall.

    Science.gov (United States)

    Johler, S; Zurfluh, K; Stephan, R

    2016-05-01

    Staphylococcal food poisoning is one of the most prevalent causes of foodborne intoxication worldwide. It is caused by ingestion of enterotoxins formed by Staphylococcus aureus during growth in the food matrix. Following a recall of barbecue cheese due to the detection of staphylococcal enterotoxins in Switzerland in July 2015, we analyzed the production process of the respective dairy. Although most cheese-making processes involve acidification to inhibit the growth of pathogenic bacteria, barbecue cheese has to maintain a pH >6.0 to prevent undesired melting of the cheese. In addition, the dairy decided to retain the traditional manual production process of the barbecue cheese. In this study, therefore, we aimed to (1) trace Staph. aureus along the barbecue cheese production process, and (2) develop a sustainable strategy to inhibit growth of Staph. aureus and decrease the risk of staphylococcal food poisoning without changing the traditional production process. To this end, we traced Staph. aureus in a step-wise blinded process analysis on 4 different production days using spa (Staphylococcus protein A gene) typing, DNA microarray profiling, and pulsed-field gel electrophoresis analysis. We subsequently selected a new starter culture and used a model cheese production including a challenge test assay to assess its antagonistic effect on Staph. aureus growth, as well as its sensory and technological implications. We detected Staph. aureus in 30% (37/124) of the collected samples taken from the barbecue cheese production at the dairy. This included detection of Staph. aureus in the final product on all 4 production days, either after enrichment or using quantitative detection. We traced 2 enterotoxigenic Staph. aureus strains (t073/CC45 and t282/CC45) colonizing the nasal cavity and the forearms of the cheesemakers to the final product. In the challenge test assay, we were able to show that the new starter culture inhibited growth of Staph. aureus while meeting

  20. Human Sulfatase 2 inhibits in vivo tumor growth of MDA-MB-231 human breast cancer xenografts

    International Nuclear Information System (INIS)

    Peterson, Sarah M; Concino, Michael F; Liaw, Lucy; Martini, Paolo GV; Iskenderian, Andrea; Cook, Lynette; Romashko, Alla; Tobin, Kristen; Jones, Michael; Norton, Angela; Gómez-Yafal, Alicia; Heartlein, Michael W

    2010-01-01

    Extracellular human sulfatases modulate growth factor signaling by alteration of the heparin/heparan sulfate proteoglycan (HSPG) 6-O-sulfation state. HSPGs bind to numerous growth factor ligands including fibroblast growth factors (FGF), epidermal growth factors (EGF), and vascular endothelial growth factors (VEGF), and are critically important in the context of cancer cell growth, invasion, and metastasis. We hypothesized that sulfatase activity in the tumor microenvironment would regulate tumor growth in vivo. We established a model of stable expression of sulfatases in the human breast cancer cell line MDA-MB-231 and purified recombinant human Sulfatase 2 (rhSulf2) for exogenous administration. In vitro studies were performed to measure effects on breast cancer cell invasion and proliferation, and groups were statistically compared using Student's t-test. The effects of hSulf2 on tumor progression were tested using in vivo xenografts with two methods. First, MDA-MB-231 cells stably expressing hSulf1, hSulf2, or both hSulf1/hSulf2 were grown as xenografts and the resulting tumor growth and vascularization was compared to controls. Secondly, wild type MDA-MB-231 xenografts were treated by short-term intratumoral injection with rhSulf2 or vehicle during tumor growth. Ultrasound analysis was also used to complement caliper measurement to monitor tumor growth. In vivo studies were statistically analyzed using Student's t test. In vitro, stable expression of hSulf2 or administration of rhSulf2 in breast cancer cells decreased cell proliferation and invasion, corresponding to an inhibition of ERK activation. Stable expression of the sulfatases in xenografts significantly suppressed tumor growth, with complete regression of tumors expressing both hSulf1 and hSulf2 and significantly smaller tumor volumes in groups expressing hSulf1 or hSulf2 compared to control xenografts. Despite significant suppression of tumor volume, sulfatases did not affect vascular

  1. Puerariae radix isoflavones and their metabolites inhibit growth and induce apoptosis in breast cancer cells

    International Nuclear Information System (INIS)

    Lin, Y.-J.; Hou, Y.C.; Lin, C.-H.; Hsu, Y.-A.; Sheu, Jim J.C.; Lai, C.-H.; Chen, B.-H.; Lee Chao, Pei-Dawn; Wan Lei; Tsai, F.-J.

    2009-01-01

    Puerariae radix (PR) is a popular natural herb and a traditional food in Asia, which has antithrombotic and anti-allergic properties and stimulates estrogenic activity. In the present study, we investigated the effects of the PR isoflavones puerarin, daidzein, and genistein on the growth of breast cancer cells. Our data revealed that after treatment with PR isoflavones, a dose-dependent inhibition of cell growth occurred in HS578T, MDA-MB-231, and MCF-7 cell lines. Results from cell cycle distribution and apoptosis assays revealed that PR isoflavones induced cell apoptosis through a caspase-3-dependent pathway and mediated cell cycle arrest in the G2/M phase. Furthermore, we observed that the serum metabolites of PR (daidzein sulfates/glucuronides) inhibited proliferation of the breast cancer cells at a 50% cell growth inhibition (GI 50 ) concentration of 2.35 μM. These results indicate that the daidzein constituent of PR can be metabolized to daidzein sulfates or daidzein glucuronides that exhibit anticancer activities. The protein expression levels of the active forms of caspase-9 and Bax in breast cancer cells were significantly increased by treatment with PR metabolites. These metabolites also increased the protein expression levels of p53 and p21. We therefore suggest that PR may act as a chemopreventive and/or chemotherapeutic agent against breast cancer by reducing cell viability and inducing apoptosis.

  2. Plant lectin can target receptors containing sialic acid, exemplified by podoplanin, to inhibit transformed cell growth and migration.

    Directory of Open Access Journals (Sweden)

    Jhon Alberto Ochoa-Alvarez

    Full Text Available Cancer is a leading cause of death of men and women worldwide. Tumor cell motility contributes to metastatic invasion that causes the vast majority of cancer deaths. Extracellular receptors modified by α2,3-sialic acids that promote this motility can serve as ideal chemotherapeutic targets. For example, the extracellular domain of the mucin receptor podoplanin (PDPN is highly O-glycosylated with α2,3-sialic acid linked to galactose. PDPN is activated by endogenous ligands to induce tumor cell motility and metastasis. Dietary lectins that target proteins containing α2,3-sialic acid inhibit tumor cell growth. However, anti-cancer lectins that have been examined thus far target receptors that have not been identified. We report here that a lectin from the seeds of Maackia amurensis (MASL with affinity for O-linked carbohydrate chains containing sialic acid targets PDPN to inhibit transformed cell growth and motility at nanomolar concentrations. Interestingly, the biological activity of this lectin survives gastrointestinal proteolysis and enters the cardiovascular system to inhibit melanoma cell growth, migration, and tumorigenesis. These studies demonstrate how lectins may be used to help develop dietary agents that target specific receptors to combat malignant cell growth.

  3. miR-449 overexpression inhibits papillary thyroid carcinoma cell growth by targeting RET kinase-β-catenin signaling pathway.

    Science.gov (United States)

    Li, Zongyu; Huang, Xin; Xu, Jinkai; Su, Qinghua; Zhao, Jun; Ma, Jiancang

    2016-10-01

    Papillary thyroid carcinoma (PTC) is the most common thyroid cancer and represent approximately 80% of all thyroid cancers. The present study is aimed to investigate the role of microRNA (miR)-449 in the progression of PTC. Our results revealed that miR-449 was underexpressed in the collected PTC specimens compared with non-cancerous PTC tissues. Overexpression of miR-449 induced a cell cycle arrest at G0/G1 phase and inhibited PTC cell growth in vitro. Further studies revealed that RET proto-oncogene (RET) is a novel miR-449 target, due to miR-449 bound directly to its 3'-untranslated region and miR-449 mimic reduced the protein expression of RET. Similar to the effects of miR-449 overexpression, RET downregulation inhibited cell growth, whereas RET overexpression reversed the inhibitive effect of miR-449 mimic. Furthermore, miR-449 overexpression inhibited the nuclear translocation of β-catenin and reduced the expression of several downstream genes, including c-Myc, cyclin D1, T cell-specific transcription factor (TCF) and lymphoid enhancer-binding factor 1 (LEF-1), and inactivated the β-catenin pathway in TPC-1 cells. Moreover, overexpression of β-catenin prevented miR-449-reduced cell cycle arrest and cell viability. In xenograft animal experiments, miR-449 overexpression effectively suppressed the tumor growth of PTC. Taken together, our research indicated that miR-449 functions as an anti-oncogene by targeting RET, and that miR-449 overexpression inhibited the growth of PTC by inactivating the β-catenin pathway. Thus, miR-449 may serve as a potential therapeutic strategy for the treatment of PTC.

  4. Calcite growth-rate inhibition by fulvic acids isolated from Big Soda Lake, Nevada, USA, The Suwannee River, Georgia, USA and by polycarboxylic acids

    Science.gov (United States)

    Reddy, Michael M.; Leenheer, Jerry

    2011-01-01

    Calcite crystallization rates are characterized using a constant solution composition at 25°C, pH=8.5, and calcite supersaturation (Ω) of 4.5 in the absence and presence of fulvic acids isolated from Big Soda Lake, Nevada (BSLFA), and a fulvic acid from the Suwannee River, Georgia (SRFA). Rates are also measured in the presence and absence of low-molar mass, aliphatic-alicyclic polycarboxylic acids (PCA). BSLFA inhibits calcite crystal-growth rates with increasing BSLFA concentration, suggesting that BSLFA adsorbs at growth sites on the calcite crystal surface. Calcite growth morphology in the presence of BSLFA differed from growth in its absence, supporting an adsorption mechanism of calcite-growth inhibition by BSLFA. Calcite growth-rate inhibition by BSLFA is consistent with a model indicating that polycarboxylic acid molecules present in BSLFA adsorb at growth sites on the calcite crystal surface. In contrast to published results for an unfractionated SRFA, there is dramatic calcite growth inhibition (at a concentration of 1 mg/L) by a SRFA fraction eluted by pH 5 solution from XAD-8 resin, indicating that calcite growth-rate inhibition is related to specific SRFA component fractions. A cyclic PCA, 1, 2, 3, 4, 5, 6-cyclohexane hexacarboxylic acid (CHXHCA) is a strong calcite growth-rate inhibitor at concentrations less than 0.1 mg/L. Two other cyclic PCAs, 1, 1 cyclopentanedicarboxylic acid (CPDCA) and 1, 1 cyclobutanedicarboxylic acid (CBDCA) with the carboxylic acid groups attached to the same ring carbon atom, have no effect on calcite growth rates up to concentrations of 10 mg/L. Organic matter ad-sorbed from the air onto the seed crystals has no effect on the measured calcite crystal-growth rates.

  5. Bacteria isolated from bats inhibit the growth of Pseudogymnoascus destructans, the causative agent of white-nose syndrome.

    Science.gov (United States)

    Hoyt, Joseph R; Cheng, Tina L; Langwig, Kate E; Hee, Mallory M; Frick, Winifred F; Kilpatrick, A Marm

    2015-01-01

    Emerging infectious diseases are a key threat to wildlife. Several fungal skin pathogens have recently emerged and caused widespread mortality in several vertebrate groups, including amphibians, bats, rattlesnakes and humans. White-nose syndrome, caused by the fungal skin pathogen Pseudogymnoascus destructans, threatens several hibernating bat species with extinction and there are few effective treatment strategies. The skin microbiome is increasingly understood to play a large role in determining disease outcome. We isolated bacteria from the skin of four bat species, and co-cultured these isolates with P. destructans to identify bacteria that might inhibit or kill P. destructans. We then conducted two reciprocal challenge experiments in vitro with six bacterial isolates (all in the genus Pseudomonas) to quantify the effect of these bacteria on the growth of P. destructans. All six Pseudomonas isolates significantly inhibited growth of P. destructans compared to non-inhibitory control bacteria, and two isolates performed significantly better than others in suppressing P. destructans growth for at least 35 days. In both challenge experiments, the extent of suppression of P. destructans growth was dependent on the initial concentration of P. destructans and the initial concentration of the bacterial isolate. These results show that bacteria found naturally occurring on bats can inhibit the growth of P. destructans in vitro and should be studied further as a possible probiotic to protect bats from white-nose syndrome. In addition, the presence of these bacteria may influence disease outcomes among individuals, populations, and species.

  6. Bacteria isolated from bats inhibit the growth of Pseudogymnoascus destructans, the causative agent of white-nose syndrome.

    Directory of Open Access Journals (Sweden)

    Joseph R Hoyt

    Full Text Available Emerging infectious diseases are a key threat to wildlife. Several fungal skin pathogens have recently emerged and caused widespread mortality in several vertebrate groups, including amphibians, bats, rattlesnakes and humans. White-nose syndrome, caused by the fungal skin pathogen Pseudogymnoascus destructans, threatens several hibernating bat species with extinction and there are few effective treatment strategies. The skin microbiome is increasingly understood to play a large role in determining disease outcome. We isolated bacteria from the skin of four bat species, and co-cultured these isolates with P. destructans to identify bacteria that might inhibit or kill P. destructans. We then conducted two reciprocal challenge experiments in vitro with six bacterial isolates (all in the genus Pseudomonas to quantify the effect of these bacteria on the growth of P. destructans. All six Pseudomonas isolates significantly inhibited growth of P. destructans compared to non-inhibitory control bacteria, and two isolates performed significantly better than others in suppressing P. destructans growth for at least 35 days. In both challenge experiments, the extent of suppression of P. destructans growth was dependent on the initial concentration of P. destructans and the initial concentration of the bacterial isolate. These results show that bacteria found naturally occurring on bats can inhibit the growth of P. destructans in vitro and should be studied further as a possible probiotic to protect bats from white-nose syndrome. In addition, the presence of these bacteria may influence disease outcomes among individuals, populations, and species.

  7. UV-B inhibition of hypocotyl growth in etiolated Arabidopsis thaliana seedlings is a consequence of cell cycle arrest initiated by photodimer accumulation

    Science.gov (United States)

    Biever, Jessica J.; Brinkman, Doug; Gardner, Gary

    2014-01-01

    Ultraviolet (UV) radiation is an important constituent of sunlight that determines plant morphology and growth. It induces photomorphogenic responses but also causes damage to DNA. Arabidopsis mutants of the endonucleases that function in nucleotide excision repair, xpf-3 and uvr1-1, showed hypersensitivity to UV-B (280–320nm) in terms of inhibition of hypocotyl growth. SOG1 is a transcription factor that functions in the DNA damage signalling response after γ-irradiation. xpf mutants that carry the sog1-1 mutation showed hypocotyl growth inhibition after UV-B irradiation similar to the wild type. A DNA replication inhibitor, hydroxyurea (HU), also inhibited hypocotyl growth in etiolated seedlings, but xpf-3 was not hypersensitive to HU. UV-B irradiation induced accumulation of the G2/M-specific cell cycle reporter construct CYCB1;1-GUS in wild-type Arabidopsis seedlings that was consistent with the expected accumulation of photodimers and coincided with the time course of hypocotyl growth inhibition after UV-B treatment. Etiolated mutants of UVR8, a recently described UV-B photoreceptor gene, irradiated with UV-B showed inhibition of hypocotyl growth that was not different from that of the wild type, but they lacked UV-B-specific expression of chalcone synthase (CHS), as expected from previous reports. CHS expression after UV-B irradiation was not different in xpf-3 compared with the wild type, nor was it altered after HU treatment. These results suggest that hypocotyl growth inhibition by UV-B light in etiolated Arabidopsis seedlings, a photomorphogenic response, is dictated by signals originating from UV-B absorption by DNA that lead to cell cycle arrest. This process occurs distinct from UVR8 and its signalling pathway responsible for CHS induction. PMID:24591052

  8. Dietary rice bran component γ-oryzanol inhibits tumor growth in tumor-bearing mice.

    Science.gov (United States)

    Kim, Sung Phil; Kang, Mi Young; Nam, Seok Hyun; Friedman, Mendel

    2012-06-01

    We investigated the effects of rice bran and components on tumor growth in mice. Mice fed standard diets supplemented with rice bran, γ-oryzanol, Ricetrienol®, ferulic acid, or phytic acid for 2 weeks were inoculated with CT-26 colon cancer cells and fed the same diet for two additional weeks. Tumor mass was significantly lower in the γ-oryzanol and less so in the phytic acid group. Tumor inhibition was associated with the following biomarkers: increases in cytolytic activity of splenic natural killer (NK) cells; partial restoration of nitric oxide production and phagocytosis in peritoneal macrophages increases in released the pro-inflammatory cytokines tumor necrosis factor-α, IL-1β, and IL-6 from macrophages; and reductions in the number of blood vessels inside the tumor. Pro-angiogenic biomarkers vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2), and 5-lipoxygenase-5 (5-LOX) were also significantly reduced in mRNA and protein expression by tumor genes. ELISA of tumor cells confirmed reduced expression of COX-2 and 5-LOX up to 30%. Reduced COX-2 and 5-LOX expression downregulated VEGF and inhibited neoangiogenesis inside the tumors. Induction of NK activity, activation of macrophages, and inhibition of angiogenesis seem to contribute to the inhibitory mechanism of tumor regression by γ-oryzanol. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Nonsteroidal Anti-inflammatory Drugs (NSAIDS) Inhibit the Growth and Reproduction of Chaetomium globosum and Other Fungi Associated with Water-Damaged Buildings.

    Science.gov (United States)

    Dalmont, Kelsey; Biles, Charles L; Konsure, Heather; Dahal, Sujita; Rowsey, Tyler; Broge, Matthew; Poudyal, Shubhra; Gurung, Tara; Shrestha, Sabina; Biles, Caleb L; Cluck, Terry; Howard, Alisha

    2017-12-01

    Indoor mold due to water damage causes serious human respiratory disorders, and the remediation to homes, schools, and businesses is a major expense. Prevention of mold infestation of building materials would reduce health problems and building remediation costs. Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit yeasts and a limited number of filamentous fungi. The purpose of this research was to determine the possible inhibitory activity of nonsteroidal anti-inflammatory drugs (NSAIDs) on germination, fungal growth, and reproduction of Chaetomium globosum and other important filamentous fungi that occur in water-damaged buildings. Several NSAIDs were found to inhibit C. globosum germination, growth, and reproduction. The most effective NSAIDs inhibiting C. globosum were ibuprofen, diflunisal, and diclofenac. Fusarium oxysporum, Fusarium solani, Aspergillus niger, and Stachybotrys atra were also tested on the various media with similar results obtained. However, F. oxysporum and A. niger exhibited a higher level of resistance to aspirin and NaSAL when compared to the C. globosum isolates. The inhibition exhibited by NSAIDs was variable depending on growth media and stage of fungal development. These compounds have a great potential of inhibiting fungal growth on building materials such as gypsum board. Formulations of sprays or building materials with NSAID-like chemical treatments may hold promise in reducing mold in homes and buildings.

  10. Raman spectrum reveals Mesenchymal stem cells inhibiting HL60 cells growth

    Science.gov (United States)

    Su, Xin; Fang, Shaoyin; Zhang, Daosen; Zhang, Qinnan; Lu, Xiaoxu; Tian, Jindong; Fan, Jinping; Zhong, Liyun

    2017-04-01

    Though some research results reveals that Mesenchymal stem cells (MSCs) have the ability of inhibiting tumor cells proliferation, it remains controversial about the precise interaction mechanism during MSCs and tumor cells co-culture. In this study, combing Raman spectroscopic data and principle component analysis (PCA), the biochemical changes of MSCs or Human promyelocytic leukemia (HL60) cells during their co-culture were presented. The obtained results showed that some main Raman peaks of HL60 assigned to nucleic acids or proteins were greatly higher in intensity in the late stage of co-culture than those in the early stage of co-culture while they were still lower relative to the control group, implicating that the effect of MSCs inhibiting HL60 proliferation appeared in the early stage but gradually lost the inhibiting ability in the late stage of co-culture. Moreover, some other peaks of HL60 assigned to proteins were decreased in intensity in the early stage of co-culture relative to the control group but rebounded to the level similar to the control group in the late stage, showing that the content and structure changes of these proteins might be generated in the early stage but returned to the original state in the late stage of co-culture. As a result, in the early stage of MSCs-HL60 co-culture, along with the level of Akt phosphorylation of HL60 was lowered relative to its control group, the proliferation rate of HL60 cells was decreased. And in the late stage of co-culture, along with the level of Akt phosphorylation was rebounded, the reverse transfer of Raman peaks within 875-880 cm- 1 appeared, thus MSCs lost the ability to inhibit HL60 growth and HL60 proliferation was increased. In addition, it was observed that the peak at 811 cm- 1, which is a marker of RNA, was higher in intensity in the late stage than that in the control group, indicating that MSCs might be differentiated into myofibroblast-like MSCs. In addition, PCA results also exhibited

  11. Herb-drug interaction of Andrographis paniculata (Nees) extract and andrographolide on pharmacokinetic and pharmacodynamic of naproxen in rats.

    Science.gov (United States)

    Balap, Aishwarya; Lohidasan, Sathiyanarayanan; Sinnathambi, Arulmozhi; Mahadik, Kakasaheb

    2017-01-04

    Andrographis paniculata Nees (Acanthacae) have broad range of pharmacological effects such as hepatoprotective, antifertility, antimalarial, antidiabetic, suppression of various cancer cells and anti-inflammatory properties and is widely used medicinal plant in the traditional Unani and Ayurvedic medicinal systems. Andrographolide (AN) is one of the active constituent of the A. paniculata Nees extract (APE). They have been found in many traditional herbal formulations in India and proven to be effective as anti-inflammatory drug. To evaluate the pharmacokinetic and pharmacodynamic (anti arthritic) herb-drug interactions of A. paniculata Nees extract (APE) and pure andrographolide (AN) with naproxen (NP) after oral co-administration in wistar rats. After oral co-administration of APE (200mg/Kg) and AN (60mg/kg) with NP (7.5mg/kg) in rats, drug concentrations in plasma were determined using HPLC method. The main pharmacokinetic parameters of C max , t max , t 1/2 , MRT, Vd, CL, and AUC were calculated by non-compartment model. Change in paw volume, mechanical nociceptive threshold, mechanical hyperalgesia, histopathology and hematological parameters were evaluated to study antiarthritic activity. Co-administration of NP with APE and pure AN decreased systemic exposure level of NP in vivo. The C max , t max, AUC 0-t of NP was decreased. In pharmacodynamic study, NP (10mg/kg) alone and NP+AN (10+60mg/kg) groups exhibited significant synergistic anti-arthritic activity as compared to groups NP+APE, APE and AN alone. The results obtained from this study suggested that NP, APE and pure AN existed pharmacokinetic herb-drug interactions in rat which is correlated with anti-arthritic study. The knowledge regarding possible herb-drug interaction of NP might be helpful for physicians as well as patients using AP. So further studies should be done to understand the effect of other herbal ingredients of APE on NP as well as to predict the herb-drug interaction in humans

  12. Structural specificity of chloroquine-hematin binding related to inhibition of hematin polymerization and parasite growth.

    Science.gov (United States)

    Vippagunta, S R; Dorn, A; Matile, H; Bhattacharjee, A K; Karle, J M; Ellis, W Y; Ridley, R G; Vennerstrom, J L

    1999-11-04

    Considerable data now support the hypothesis that chloroquine (CQ)-hematin binding in the parasite food vacuole leads to inhibition of hematin polymerization and parasite death by hematin poisoning. To better understand the structural specificity of CQ-hematin binding, 13 CQ analogues were chosen and their hematin binding affinity, inhibition of hematin polymerization, and inhibition of parasite growth were measured. As determined by isothermal titration calorimetry (ITC), the stoichiometry data and exothermic binding enthalpies indicated that, like CQ, these analogues bind to two or more hematin mu-oxo dimers in a cofacial pi-pi sandwich-type complex. Association constants (K(a)'s) ranged from 0.46 to 2.9 x 10(5) M(-1) compared to 4.0 x 10(5) M(-1) for CQ. Remarkably, we were not able to measure any significant interaction between hematin mu-oxo dimer and 11, the 6-chloro analogue of CQ. This result indicates that the 7-chloro substituent in CQ is a critical structural determinant in its binding affinity to hematin mu-oxo dimer. Molecular modeling experiments reinforce the view that the enthalpically favorable pi-pi interaction observed in the CQ-hematin mu-oxo dimer complex derives from a favorable alignment of the out-of-plane pi-electron density in CQ and hematin mu-oxo dimer at the points of intermolecular contact. For 4-aminoquinolines related to CQ, our data suggest that electron-withdrawing functional groups at the 7-position of the quinoline ring are required for activity against both hematin polymerization and parasite growth and that chlorine substitution at position 7 is optimal. Our results also confirm that the CQ diaminoalkyl side chain, especially the aliphatic tertiary nitrogen atom, is an important structural determinant in CQ drug resistance. For CQ analogues 1-13, the lack of correlation between K(a) and hematin polymerization IC(50) values suggests that other properties of the CQ-hematin mu-oxo dimer complex, rather than its association

  13. SL-01, an oral derivative of gemcitabine, inhibited human breast cancer growth through induction of apoptosis

    International Nuclear Information System (INIS)

    Li, Yuan-Yuan; Qin, Yi-Zhuo; Wang, Rui-Qi; Li, Wen-Bao; Qu, Xian-Jun

    2013-01-01

    Highlights: •SL-01 is an oral derivative of gemcitabine. •SL-01 possessed activity against human breast cancer growth via apoptotic induction. •SL-01’s activity was more potently than that of gemcitabine. •SL-01 inhibited cancer growth without toxicity to mice. -- Abstract: SL-01 is an oral derivative of gemcitabine that was synthesized by introducing the moiety of 3-(dodecyloxycarbonyl) pyrazine-2-carbonyl at N4-position on cytidine ring of gemcitabine. We aimed to evaluate the efficacy of SL-01 on human breast cancer growth. SL-01 significantly inhibited MCF-7 proliferation as estimated by colorimetric assay. Flow cytometry assay indicated the apoptotic induction and cell cycle arrest in G1 phase. SL-01 modulated the expressions of p-ATM, p53 and p21 and decrease of cyclin D1 in MCF-7 cells. Further experiments were performed in a MCF-7 xenografts mouse model. SL-01 by oral administration strongly inhibited MCF-7 xenografts growth. This effect of SL-01 might arise from its roles in the induction of apoptosis. Immunohistochemistry assay showed the increase of TUNEL staining cells. Western blotting indicated the modulation of apoptotic proteins in SL-01-treated xenografts. During the course of study, there was no evidence of toxicity to mice. In contrast, the decrease of neutrophil cells in peripheral and increase of AST and ALT levels in serum were observed in the gemcitabine-treated mice. Conclusion: SL-01 possessed similar activity against human breast cancer growth with gemcitabine, whereas, with lower toxicity to gemcitabine. SL-01 is a potent oral agent that may supplant the use of gemcitabine

  14. Chemotaxis-growth under the influence of lateral inhibition in a three-component reaction–diffusion system

    International Nuclear Information System (INIS)

    Kawaguchi, Satoshi

    2011-01-01

    In this study, we consider the effects of chemotaxis and lateral inhibition on an activator in a three-component reaction–diffusion system. Simulation results show that spot, planar and travelling front solutions in two dimensions are destabilized to form multibranch patterns. In order to analyse the stability of stationary solutions, a singular perturbation method is employed. The bifurcation diagrams suggest that chemotaxis and lateral inhibition cooperatively result in the destabilization of the stationary solutions. Our three-component model is compared with the two-component chemotaxis-growth model. Furthermore, the conditions for observing the cooperative effects of chemotaxis and lateral inhibition on an activator in experiments are inferred from the model

  15. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis

    International Nuclear Information System (INIS)

    Wang, Bing; Wang, Xin-bao; Chen, Li-yu; Huang, Ling; Dong, Rui-zen

    2013-01-01

    Highlights: •Belinostat activates AMPK in cultured pancreatic cancer cells. •Activation of AMPK is important for belinostat-induced cytotoxic effects. •ROS and TAK1 are involved in belinostat-induced AMPK activation. •AMPK activation mediates mTOR inhibition by belinostat. -- Abstract: Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancer cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-β-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells

  16. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bing, E-mail: wangbin69@yahoo.com; Wang, Xin-bao; Chen, Li-yu; Huang, Ling; Dong, Rui-zen

    2013-07-19

    Highlights: •Belinostat activates AMPK in cultured pancreatic cancer cells. •Activation of AMPK is important for belinostat-induced cytotoxic effects. •ROS and TAK1 are involved in belinostat-induced AMPK activation. •AMPK activation mediates mTOR inhibition by belinostat. -- Abstract: Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancer cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-β-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells.

  17. NO-donating aspirin inhibits the growth of leukemic Jurkat cells and modulates β-catenin expression

    International Nuclear Information System (INIS)

    Nath, Niharika; Labaze, Georges; Rigas, Basil; Kashfi, Khosrow

    2004-01-01

    β-Catenin has been implicated in leukemic cell proliferation. We compared the effects of aspirin (ASA) and the ortho, meta, and para positional isomers of NO-donating aspirin (NO-ASA) on cell growth and β-catenin expression in human Jurkat T leukemic cells. Cell growth inhibition was strong: IC 50 for p-, o-, and m- were 20 ± 1.6 (mean ± SEM), 15 ± 1.5, and 200 ± 12 μM, respectively, in contrast to that of ASA (3200 ± 375 μM). The para isomer of NO-ASA degraded β-catenin in a dose- and time-dependent manner coinciding with increasing expression of activated caspase-3. The caspase inhibitor ZVAD blocked β-catenin cleavage by p-NO-ASA and partially reversed cell growth inhibition by p-NO-ASA but not that by ASA. A denitrated analog of p-NO-ASA did not degrade β-catenin indicating the importance of the NO-donating moiety. Our findings suggest that NO-ASA merits further study as an agent against leukemia

  18. Inhibition of microbial growth by spice extracts and their effect of irradiation

    International Nuclear Information System (INIS)

    Ito, Hitoshi; Meixu, G.

    1994-01-01

    The antimicrobial activity of black pepper, rosemary and red pepper has been tested against 12 microorganisms. Alcoholic extracts of these spices were not exhibited strong activity against gram-negative bacteria in laboratory media. The growth of Bacillus subtilis and Clostridium botulinum type A was inhibited by 1% of black pepper, 0.5% rosemary and 0.03% red pepper. A little reduction of antimicrobial activity to B. subtilis was observed on extracts of gamma-irradiated black pepper or rosemary at 10 and 50 kGy. In the case of red pepper, irradiation of 10 or 50 kGy enhanced a little of antimicrobial activity to B. subtilis. Similar effect of irradiation was also observed on the inhibition of aflatoxin production by Aspergillus parasiticus in SL broth. (author)

  19. Synergistic Effects of Natural Medicinal Plant Extracts on Growth Inhibition of Carcinoma (KB) Cells under Oxidative Stress

    International Nuclear Information System (INIS)

    Kim, Jeong Hee; Ju, Eun Mi; Kim, Jin Kyu

    2000-01-01

    Medicinal plants with synergistic effects on growth inhibition of cancer cells under oxidative stress were screened in this study. Methanol extracts from 51 natural medicinal plants, which were reported to have anticancer effect on hepatoma, stomach cancer or colon cancers which are frequently found in Korean, were prepared and screened for their synergistic activity on growth inhibition of cancer cells under chemically-induced oxidative stress by using MTT assay. Twenty seven samples showed synergistic activity on the growth inhibition in various extent under chemically-induced oxidative stress. Among those samples, eleven samples, such as Melia azedarach, Agastache rugosa, Catalpa ovata, Prunus persica, Sinomenium acutum, Pulsatilla koreana, Oldenlandia diffiusa, Anthriscus sylvestris, Schizandra chinensis, Gleditsia sinensis, Cridium officinale, showed decrease in IC 50 values more than 50%, other 16 samples showed decrease in IC 50 values between 50-25%, compared with the value acquired when medicinal plant sample was used alone. Among those 11 samples, extract of Catalpa ovata showed the highest activity. IC 50 values were decrease to 61% and 28% when carcinoma cells were treated with Catalpa ovata extract in combination of 75 and 100 μM of hydrogen peroxide, respectively

  20. Nicotine-induced retardation of chondrogenesis through down-regulation of IGF-1 signaling pathway to inhibit matrix synthesis of growth plate chondrocytes in fetal rats

    International Nuclear Information System (INIS)

    Deng, Yu; Cao, Hong; Cu, Fenglong; Xu, Dan; Lei, Youying; Tan, Yang; Magdalou, Jacques; Wang, Hui; Chen, Liaobin

    2013-01-01

    Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotine exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis. - Highlights: ► Prenatal nicotine-exposure could induce delayed chondrogenesis in fetal rats. ► Nicotine inhibits matrix synthesis of fetal growth plate chondrocytes. ► Nicotine inhibits IGF-1 signaling pathway in fetal growth plate chondrocytes

  1. Nicotine-induced retardation of chondrogenesis through down-regulation of IGF-1 signaling pathway to inhibit matrix synthesis of growth plate chondrocytes in fetal rats

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yu; Cao, Hong; Cu, Fenglong [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Lei, Youying [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Tan, Yang [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Wang, Hui [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Chen, Liaobin, E-mail: lbchen@whu.edu.cn [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China)

    2013-05-15

    Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotine exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis. - Highlights: ► Prenatal nicotine-exposure could induce delayed chondrogenesis in fetal rats. ► Nicotine inhibits matrix synthesis of fetal growth plate chondrocytes. ► Nicotine inhibits IGF-1 signaling pathway in fetal growth plate chondrocytes.

  2. Improved Performance in Mammalian Cell Perfusion Cultures by Growth Inhibition.

    Science.gov (United States)

    Wolf, Moritz K F; Closet, Aurélie; Bzowska, Monika; Bielser, Jean-Marc; Souquet, Jonathan; Broly, Hervé; Morbidelli, Massimo

    2018-05-21

    Mammalian cell perfusion cultures represent a promising alternative to the current fed-batch technology for the production of various biopharmaceuticals. Long-term operation at a fixed viable cell density (VCD) requires a viable culture and a constant removal of excessive cells. Product loss in the cell removing bleed stream deteriorates the process yield. In this study, the authors investigate the use of chemical and environmental growth inhibition on culture performance by either adding valeric acid (VA) to the production media or by reducing the culture temperature (33.0 °C) with respect to control conditions (36.5 °C, no VA). Low temperature significantly reduces cellular growth, thus, resulting in lower bleed rates accompanied by a reduced product loss of 11% compared to 26% under control conditions. Additionally, the cell specific productivity of the target protein improves and maintained stable leading to media savings per mass of product. VA shows initially an inhibitory effect on cellular growth. However, cells seemed to adapt to the presence of the inhibitor resulting in a recovery of the cellular growth. Cell cycle and Western blot analyses support the observed results. This work underlines the role of temperature as a key operating variable for the optimization of perfusion cultures. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Inhibition of nuclear factor kappa-B signaling reduces growth in medulloblastoma in vivo

    Directory of Open Access Journals (Sweden)

    Deckard Lindsey A

    2011-04-01

    Full Text Available Abstract Background Medulloblastoma is a highly malignant pediatric brain tumor that requires surgery, whole brain and spine irradiation, and intense chemotherapy for treatment. A more sophisticated understanding of the pathophysiology of medulloblastoma is needed to successfully reduce the intensity of treatment and improve outcomes. Nuclear factor kappa-B (NFκB is a signaling pathway that controls transcriptional activation of genes important for tight regulation of many cellular processes and is aberrantly expressed in many types of cancer. Methods To test the importance of NFκB to medulloblastoma cell growth, the effects of multiple drugs that inhibit NFκB, pyrrolidine dithiocarbamate, diethyldithiocarbamate, sulfasalazine, curcumin and bortezomib, were studied in medulloblastoma cell lines compared to a malignant glioma cell line and normal neurons. Expression of endogenous NFκB was investigated in cultured cells, xenograft flank tumors, and primary human tumor samples. A dominant negative construct for the endogenous inhibitor of NFκB, IκB, was prepared from medulloblastoma cell lines and flank tumors were established to allow specific pathway inhibition. Results We report high constitutive activity of the canonical NFκB pathway, as seen by Western analysis of the NFκB subunit p65, in medulloblastoma tumors compared to normal brain. The p65 subunit of NFκB is extremely highly expressed in xenograft tumors from human medulloblastoma cell lines; though, conversely, the same cells in culture have minimal expression without specific stimulation. We demonstrate that pharmacological inhibition of NFκB in cell lines halts proliferation and leads to apoptosis. We show by immunohistochemical stain that phosphorylated p65 is found in the majority of primary tumor cells examined. Finally, expression of a dominant negative form of the endogenous inhibitor of NFκB, dnIκB, resulted in poor xenograft tumor growth, with average tumor volumes

  4. Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice

    Science.gov (United States)

    Xiang, Wei; Ke, Zhiyuan; Zhang, Yong; Ho-Yuet Cheng, Grace; Irwan, Ishak Darryl; Sulochana, K N; Potturi, Padma; Wang, Zhengyuan; Yang, He; Wang, Jingyu; Zhuo, Lang; Kini, R Manjunatha; Ge, Ruowen

    2011-01-01

    Abstract Anti-angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain–hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion-associated domain in MUC4 and other proteins (AMOP) domain at the C-terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C-terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)-basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF-stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase-dependent pathway. ISM binds to αvβ5 integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmen-tal vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis. PMID:19874420

  5. Growth inhibition and differentiation of murine melanoma B16-BL6 cells caused by the combination of cisplatin and caffeine.

    Science.gov (United States)

    Tsuchiya, H; Tomita, K; Yasutake, H; Ueda, Y; Tanaka, M; Sasaki, T

    1989-12-01

    We preliminarily investigated the combined effects of cisplatin and caffeine on murine melanoma B16-BL6 cells in vitro. When caffeine was added before or simultaneously with cisplatin, there was little growth inhibition. The addition of 2.0 mM caffeine after 1 h of exposure to cisplatin inhibited growth and induced cell differentiation. This treatment resulted in fewer cells, and the numbers of melanosomes and mitochondria and the amount of Golgi's complex and endoplasmic reticulum were increased. DNA histograms obtained by flow cytometry showed that cells treated with cisplatin alone accumulated in the G2/M phase, with a partial G2 block. The addition of 2.0 mM caffeine after 1 h of treatment with cisplatin reduced this block. Caffeine caused murine melanoma B16-BL6 cells treated with cisplatin to differentiate, and this inhibited growth.

  6. Improved microbial growth inhibition activity of bio-surfactant induced Ag–TiO{sub 2} core shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nithyadevi, D. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046 (India); Kumar, P. Suresh [Thin Film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Mangalaraj, D., E-mail: dmraj800@yahoo.com [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046 (India); Ponpandian, N.; Viswanathan, C. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046 (India); Meena, P. [Department of Physics, PSGR Krishnammal college for women, Coimbatore 641 004 (India)

    2015-02-01

    Graphical abstract: - Highlights: • TiO{sub 2} nanoparticles were synthesized by hydrolysis process and Ag nanoparticles were prepared by using hydrazine reduction method. • Ag–TiO{sub 2} core shell nanoparticles were synthesized by reverse micelle method. • Coatings of TiO{sub 2} shell leads to decrease the usage of silver particles and also it reduces the release of silver ions from the matrix. • Optimum ratio of TiO{sub 2} particles: Ag atoms are needed for better antibacterial activity. • Sodium alginate (Bio-copolymer) induced core shell nanoparticles results 100% cell growth inhibition toward Staphylococcus aureus. - Abstract: Surfactant induced silver–titanium dioxide core shell nanoparticles within the size range of 10–50 nm were applied in the antibacterial agent to inhibit the growth of bacterial cells. The single crystalline silver was located in the core part of the composite powder and the titanium dioxide components were uniformly distributed in the shell part. HRTEM and XRD results indicated that silver was completely covered by titanium dioxide and its crystal structure was not affected after being coated by titanium dioxide. The effect of silver–titanium dioxide nanoparticles in the inhibition of bacterial cell growth was studied by means of disk diffusion method. The inhibition zone results reveal that sodium alginate induced silver–titanium dioxide nanoparticles exhibit 100% more antibacterial activity than that with cetyltrimethylbromide or without surfactant. UV–vis spectroscopic analysis showed a large concentration of silver was rapidly released into phosphate buffer solution (PBS) within a period of 1 day, with a much smaller concentration being released after this 1-day period. It was concluded that sodium alginate induced silver–titanium dioxide core shell nanoparticles could enhance long term cell growth inhibition in comparison with cetyltrimethylbromide or without surfactant. The surfactant mediated core shell

  7. Splenectomy inhibits non-small cell lung cancer growth by modulating anti-tumor adaptive and innate immune response

    Science.gov (United States)

    Levy, Liran; Mishalian, Inbal; Bayuch, Rachel; Zolotarov, Lida; Michaeli, Janna; Fridlender, Zvi G

    2015-01-01

    It has been shown that inhibitors of the immune system reside in the spleen and inhibit the endogenous antitumor effects of the immune system. We hypothesized that splenectomy would inhibit the growth of relatively large non-small lung cancer (NSCLC) tumors by modulating the systemic inhibition of the immune system, and in particular Myeloid Derived Suppressor Cells (MDSC). The effect of splenectomy was evaluated in several murine lung cancer models. We found that splenectomy reduces tumor growth and the development of lung metastases, but only in advanced tumors. In immune-deficient NOD-SCID mice the effect of splenectomy on tumor growth and metastatic spread disappeared. Splenectomy significantly reduced the presence of MDSC, and especially monocytic-MDSC in the circulation and inside the tumor. Specific reduction of the CCR2+ subset of monocytic MDSC was demonstrated, and the importance of the CCL2-CCR2 axis was further shown by a marked reduction in CCL2 following splenectomy. These changes were followed by changes in the macrophages contents of the tumors to become more antitumorigenic, and by increased activation of CD8+ Cytotoxic T-cells (CTL). By MDSC depletion, and adoptive transfer of MDSCs, we demonstrated that the effect of splenectomy on tumor growth was substantially mediated by MDSC cells. We conclude that the spleen is an important contributor to tumor growth and metastases, and that splenectomy can blunt this effect by depletion of MDSC, changing the amount and characteristics of myeloid cells and enhancing activation of CTL. PMID:26137413

  8. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans.

    Science.gov (United States)

    Wasfi, Reham; Abd El-Rahman, Ola A; Zafer, Mai M; Ashour, Hossam M

    2018-03-01

    Streptococcus mutans contributes significantly to dental caries, which arises from homoeostasic imbalance between host and microbiota. We hypothesized that Lactobacillus sp. inhibits growth, biofilm formation and gene expression of Streptococcus mutans. Antibacterial (agar diffusion method) and antibiofilm (crystal violet assay) characteristics of probiotic Lactobacillus sp. against Streptococcus mutans (ATCC 25175) were evaluated. We investigated whether Lactobacillus casei (ATCC 393), Lactobacillus reuteri (ATCC 23272), Lactobacillus plantarum (ATCC 14917) or Lactobacillus salivarius (ATCC 11741) inhibit expression of Streptococcus mutans genes involved in biofilm formation, quorum sensing or stress survival using quantitative real-time polymerase chain reaction (qPCR). Growth changes (OD600) in the presence of pH-neutralized, catalase-treated or trypsin-treated Lactobacillus sp. supernatants were assessed to identify roles of organic acids, peroxides and bacteriocin. Susceptibility testing indicated antibacterial (pH-dependent) and antibiofilm activities of Lactobacillus sp. against Streptococcus mutans. Scanning electron microscopy revealed reduction in microcolony formation and exopolysaccharide structural changes. Of the oral normal flora, L. salivarius exhibited the highest antibiofilm and peroxide-dependent antimicrobial activities. All biofilm-forming cells treated with Lactobacillus sp. supernatants showed reduced expression of genes involved in exopolysaccharide production, acid tolerance and quorum sensing. Thus, Lactobacillus sp. can inhibit tooth decay by limiting growth and virulence properties of Streptococcus mutans. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  9. Organic Oils as Seed Treatments for Soybeans to Inhibit Fungal Growth

    OpenAIRE

    Burgett, Alison

    2015-01-01

    Producing organic crops has become essential to satisfy the desires of the end consumer. To completely fulfill this task and meet the requirements of the National Organic Program in the U.S., the seeds planted must be organic. Seeds succumb to fungal infections without seed treatments. Organic seed treatments are not common. The purpose of this study is to test the ability of three organic oils (tea tree, coconut, and lemon) to act as organic seed treatments to inhibit fungal growth on soybea...

  10. Combination treatment with ionising radiation and gefitinib ('Iressa', ZD1839), an epidermal growth factor receptor (EGFR) inhibitor, significantly inhibits bladder cancer cell growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Colquhoun, AJ; Mchugh, LA; Tulchinsky, E.; Kriajevska, M.; Mellon, JK

    2007-01-01

    External beam radiotherapy (EBRT) is the principal bladder-preserving monotherapy for muscle-invasive bladder cancer. Seventy percent of muscle-invasive bladder cancers express epidermal growth factor receptor (EGFR), which is associated with poor prognosis. Ionising radiation (IR) stimulates EGFR causing activation of cytoprotective signalling cascades and thus may be an underlying cause of radioresistance in bladder tumours. We assessed the ability of IR to activate EGFR in bladder cancer cells and the effect of the anti-EGFR therapy, gefitinib on potential radiation-induced activation. Subsequently we assessed the effect of IR on signalling pathways downstream of EGFR. Finally we assessed the activity of gefitinib as a monotherapy, and in combination with IR, using clonogenic assay in vitro, and a murine model in vivo. IR activated EGFR and gefitinib partially inhibited this activation. Radiation-induced activation of EGFR activated the MAPK and Akt pathways. Gefitinib partially inhibited activation of the MAPK pathway but not the Akt pathway. Treatment with combined gefitinib and IR significantly inhibited bladder cancer cell colony formation more than treatment with gefitinib alone (p=0.001-0.03). J82 xenograft tumours treated with combined gefitinib and IR showed significantly greater growth inhibition than tumours treated with IR alone (p=0.04). Combining gefitinib and IR results in significantly greater inhibition of invasive bladder cancer cell colony formation in vitro and significantly greater tumour growth inhibition in vivo. Given the high frequency of EGFR expression by bladder tumours and the low toxicity of gefitinib there is justification to translate this work into a clinical trial. (author)

  11. Curcumin Inhibits Growth of Human NCI-H292 Lung Squamous Cell Carcinoma Cells by Increasing FOXA2 Expression

    Directory of Open Access Journals (Sweden)

    Lingling Tang

    2018-02-01

    Full Text Available Lung squamous cell carcinoma (LSCC is a common histological lung cancer subtype, but unlike lung adenocarcinoma, limited therapeutic options are available for treatment. Curcumin, a natural compound, may have anticancer effects in various cancer cells, but how it may be used to treat LSCC has not been well studied. Here, we applied curcumin to a human NCI-H292 LSCC cell line to test anticancer effects and explored underlying potential mechanisms of action. Curcumin treatment inhibited NCI-H292 cell growth and increased FOXA2 expression in a time-dependent manner. FOXA2 expression was decreased in LSCC tissues compared with adjacent normal tissues and knockdown of FOXA2 increased NCI-H292 cells proliferation. Inhibition of cell proliferation by curcumin was attenuated by FOXA2 knockdown. Moreover inhibition of STAT3 pathways by curcumin increased FOXA2 expression in NCI-H292 cells whereas a STAT3 activator (IL-6 significantly inhibited curcumin-induced FOXA2 expression. Also, SOCS1 and SOCS3, negative regulators of STAT3 activity, were upregulated by curcumin treatment. Thus, curcumin inhibited human NCI-H292 cells growth by increasing FOXA2 expression via regulation of STAT3 signaling pathways.

  12. Biodegradable and bioactive CGP/PVA film for fungal growth inhibition.

    Science.gov (United States)

    Silva, Bárbara Dumas S; Ulhoa, Cirano J; Batista, Karla A; Di Medeiros, Maria Carolina; Da Silva Filho, Rômulo Roosevelt; Yamashita, Fabio; Fernandes, Kátia F

    2012-07-01

    In this study, chitinolytic enzymes produced by Trichoderma asperellum were immobilized on a biodegradable film manufactured with a blend of cashew gum polysaccharide (CGP) and polyvinyl alcohol (PVA), and tested as a fungal growth inhibitor. The film was produced by casting a blend of CGP and PVA solution on glass molds. The CGP/PVA film showed 68% water solubility, tensile strength of 23.7 MPa, 187.2% elongation and 52% of mass loss after 90 days in soil. The presence of T-CWD enzymes immobilized by adsorption or covalent attachment resulted in effective inhibition of fungal growth. Sclerotinia sclerotiorum was the most sensitive organism, followed by Aspergillus niger and Penicillium sp. SEM micrograph showed that the presence of immobilized T-CWD enzymes on CGP/PVA film produced morphological modifications on vegetative and germinative structures of the microorganisms, particularly hyphae disruption and changes of spores shape. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. N and P addition inhibits growth of rich fen bryophytes

    DEFF Research Database (Denmark)

    Andersen, Dagmar Kappel; Ejrnæs, Rasmus; Riis, Tenna

    2016-01-01

    vernicosus and paludella squarrosa) rich fen bryophytes were grown in mixed culture and subjected to rainwater or groundwater and three levels of N (0, 1 and 3 mg N L-1) and P (0, 0.05 and 0.1 mg P NL-1). All species responded negatively to higher N-levels and three of four species responded negatively...... to rainwater and higher P-levels. C. cuspidata had highest relative growth rate in all treatments, and the infrequently occurringrare species had lower relative growth rate and were more negatively affected by high levels of N than the frequently occurringcommon species. A negative effect of rainwater seemed...... to be caused by higher background levels of N in rainwater compared to groundwater rather than a pH-effect per se. We found a negative effect of high initial bryophyte density in three of four species indicating density dependent inhibition between species.We suggest that maintenance of oligotrophic conditions...

  14. Salt stress-induced protein pattern associated with photosynthetic parameters and andrographolide content in Andrographis paniculata Nees.

    Science.gov (United States)

    Talei, Daryush; Valdiani, Alireza; Maziah, Mahmood; Sagineedu, Sreenivasa Rao; Abiri, Rambod

    2015-01-01

    Andrographis paniculata is a multifunctional medicinal plant and a potent source of bioactive compounds. Impact of environmental stresses such as salinity on protein diversification, as well as the consequent changes in the photosynthetic parameters and andrographolide content (AG) of the herb, has not yet been thoroughly investigated. The present study showed that the salinity affects the protein pattern, and subsequently, it decreased the photosynthetic parameters, protein content, total dry weight, and total crude extract. Exceptionally, the AG content was increased (p ≤ 0.01). Moreover, it was noticed that the salinity at 12 dS m(-1) led to the maximum increase in AG content in all accessions. Interestingly, the leaf protein analysis revealed that the two polymorphic protein bands as low- and medium-sized of 17 and 45 kDa acted as the activator agents for the photosynthetic parameters and AG content. Protein sequencing and proteomic analysis can be conducted based on the present findings in the future.

  15. CASK inhibits ECV304 cell growth and interacts with Id1

    International Nuclear Information System (INIS)

    Qi Jie; Su Yongyue; Sun Rongju; Zhang Fang; Luo Xiaofeng; Yang Zongcheng; Luo Xiangdong

    2005-01-01

    Calcium/calmodulin-dependent serine protein kinase (CASK) is generally known as a scaffold protein. Here we show that overexpression of CASK resulted in a reduced rate of cell growth, while inhibition of expression of endogenous CASK via RNA-mediated interference resulted in an increased rate of cell growth in ECV304 cells. To explore the molecular mechanism, we identified a novel CASK-interacting protein, inhibitor of differentiation 1 (Id1) with a yeast two-hybrid screening. Furthermore, endogenous CASK and Id1 proteins were co-precipitated from the lysates of ECV304 cells by immunoprecipitation. Mammalian two-hybrid protein-protein interaction assays indicated that CASK possessed a different binding activity for Id1 and its alternative splicing variant. It is known that Id proteins play important roles in regulation of cell proliferation and differentiation. Thus, we speculate that the regulation of cell growth mediated by CASK may be involved in Id1. Our findings indicate a novel function of CASK, the mechanism that remains to be further investigated

  16. Differential oxidative and antioxidative response of duckweed Lemna minor toward plant growth promoting/inhibiting bacteria.

    Science.gov (United States)

    Ishizawa, Hidehiro; Kuroda, Masashi; Morikawa, Masaaki; Ike, Michihiko

    2017-09-01

    Bacteria colonizing the plant rhizosphere are believed to positively or negatively affect the host plant productivity. This feature has inspired researchers to engineer such interactions to enhance crop production. However, it remains to be elucidated whether rhizobacteria influences plant oxidative stress vis-a-vis other environmental stressors, and whether such influence is associated with their growth promoting/inhibiting ability. In this study, two plant growth-promoting bacteria (PGPB) and two plant growth-inhibiting bacteria (PGIB) were separately inoculated into axenic duckweed (Lemna minor) culture under laboratory conditions for 4 and 8 days in order to investigate their effects on plant oxidative stress and antioxidant activities. As previously characterized, the inoculation of PGPB and PGIB strains accelerated and reduced the growth of L. minor, respectively. After 4 and 8 days of cultivation, compared to the PGPB strains, the PGIB strains induced larger amounts of O 2 •- , H 2 O 2 , and malondialdehyde (MDA) in duckweed, although all bacterial strains consistently increased O 2 •- content by two times more than that in the aseptic control plants. Activities of five antioxidant enzymes were also elevated by the inoculation of PGIB, confirming the severe oxidative stress condition in plants. These results suggest that the surface attached bacteria affect differently on host oxidative stress and its response, which degree correlates negatively to their effects on plant growth. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Preirradiation of medium induces a subsequent stimulation or inhibition of growth according to the physiological state in Synechococcus lividus in culture

    International Nuclear Information System (INIS)

    Conter, A.

    1987-01-01

    The proliferation of Synechococcus lividus cells grown in preirradiated medium was compared with the proliferation of cells grown in a shielded or freshly prepared medium. Aging of medium in a shielded chamber resulted in a slight inhibiting effect on growth in every phase of the cell cycle which was used. Preirradiation of medium resulted in a stimulation of growth observed on Day 7 in cultures inoculated with cells selected in the deceleration phase and an inhibition of growth in cultures inoculated with exponentially growing cells. Addition of catalase (100 U X ml-1) counteracted the stimulating effect but did not modify the inhibiting effect induced by preirradiated medium. Results demonstrated the indirect effect of low doses of irradiation, implying the presence of hydrogen peroxide in radiostimulation and other radioproducts in the inhibitory effect

  18. Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves T-type calcium channels.

    Directory of Open Access Journals (Sweden)

    Carly A Buckner

    Full Text Available Electromagnetic field (EMF exposures affect many biological systems. The reproducibility of these effects is related to the intensity, duration, frequency, and pattern of the EMF. We have shown that exposure to a specific time-varying EMF can inhibit the growth of malignant cells. Thomas-EMF is a low-intensity, frequency-modulated (25-6 Hz EMF pattern. Daily, 1 h, exposures to Thomas-EMF inhibited the growth of malignant cell lines including B16-BL6, MDA-MB-231, MCF-7, and HeLa cells but did not affect the growth of non-malignant cells. Thomas-EMF also inhibited B16-BL6 cell proliferation in vivo. B16-BL6 cells implanted in syngeneic C57b mice and exposed daily to Thomas-EMF produced smaller tumours than in sham-treated controls. In vitro studies showed that exposure of malignant cells to Thomas-EMF for > 15 min promoted Ca(2+ influx which could be blocked by inhibitors of voltage-gated T-type Ca(2+ channels. Blocking Ca(2+ uptake also blocked Thomas-EMF-dependent inhibition of cell proliferation. Exposure to Thomas-EMF delayed cell cycle progression and altered cyclin expression consistent with the decrease in cell proliferation. Non-malignant cells did not show any EMF-dependent changes in Ca(2+ influx or cell growth. These data confirm that exposure to a specific EMF pattern can affect cellular processes and that exposure to Thomas-EMF may provide a potential anti-cancer therapy.

  19. Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves T-type calcium channels.

    Science.gov (United States)

    Buckner, Carly A; Buckner, Alison L; Koren, Stan A; Persinger, Michael A; Lafrenie, Robert M

    2015-01-01

    Electromagnetic field (EMF) exposures affect many biological systems. The reproducibility of these effects is related to the intensity, duration, frequency, and pattern of the EMF. We have shown that exposure to a specific time-varying EMF can inhibit the growth of malignant cells. Thomas-EMF is a low-intensity, frequency-modulated (25-6 Hz) EMF pattern. Daily, 1 h, exposures to Thomas-EMF inhibited the growth of malignant cell lines including B16-BL6, MDA-MB-231, MCF-7, and HeLa cells but did not affect the growth of non-malignant cells. Thomas-EMF also inhibited B16-BL6 cell proliferation in vivo. B16-BL6 cells implanted in syngeneic C57b mice and exposed daily to Thomas-EMF produced smaller tumours than in sham-treated controls. In vitro studies showed that exposure of malignant cells to Thomas-EMF for > 15 min promoted Ca(2+) influx which could be blocked by inhibitors of voltage-gated T-type Ca(2+) channels. Blocking Ca(2+) uptake also blocked Thomas-EMF-dependent inhibition of cell proliferation. Exposure to Thomas-EMF delayed cell cycle progression and altered cyclin expression consistent with the decrease in cell proliferation. Non-malignant cells did not show any EMF-dependent changes in Ca(2+) influx or cell growth. These data confirm that exposure to a specific EMF pattern can affect cellular processes and that exposure to Thomas-EMF may provide a potential anti-cancer therapy.

  20. Inhibition of Klebsiella pneumoniae growth by selected Australian plants: natural approaches for the prevention and management of ankylosing spondylitis.

    Science.gov (United States)

    Winnett, V; Sirdaarta, J; White, A; Clarke, F M; Cock, I E

    2017-04-01

    A wide variety of herbal remedies are used in traditional Australian medicine to treat inflammatory disorders, including autoimmune inflammatory diseases. One hundred and six extracts from 40 native Australian plant species traditionally used for the treatment of inflammation and/or to inhibit bacterial growth were investigated for their ability to inhibit the growth of a microbial trigger for ankylosing spondylitis (K. pneumoniae). Eighty-six of the extracts (81.1%) inhibited the growth of K. pneumoniae. The D. leichardtii, Eucalyptus spp., K. flavescens, Leptospermum spp., M. quinquenervia, Petalostigma spp., P. angustifolium, S. spinescens, S. australe, S. forte and Tasmannia spp. extracts were effective K. pneumoniae growth inhibitors, with MIC values generally <1000 µg/mL. The T. lanceolata peppercorn extracts were the most potent growth inhibitors, with MIC values as low as 16 µg/mL. These extracts were examined by non-biased GC-MS headspace analysis and comparison with a compound database. A notable feature was the high relative abundance of the sesquiterpenoids polygodial, guaiol and caryophyllene oxide, and the monoterpenoids linalool, cineole and α-terpineol in the T. lanceolata peppercorn methanolic and aqueous extracts. The extracts with the most potent K. pneumoniae inhibitory activity (including the T. lanceolata peppercorn extracts) were nontoxic in the Artemia nauplii bioassay. The lack of toxicity and the growth inhibitory activity of these extracts against K. pneumoniae indicate their potential for both preventing the onset of ankylosing spondylitis and minimising its symptoms once the disease is established.

  1. Expression of PML tumor suppressor in A 431 cells reduces cellular growth by inhibiting the epidermal growth factor receptor expression

    International Nuclear Information System (INIS)

    Vallian, S.; Chang, K.S.

    2004-01-01

    Our previous studies showed that the promyelocytic leukemia, PML, protein functions as a cellular and growth suppressor. Transient expression of PML was also found to repress the activity of the epidermal growth factor receptor gene promoter. In this study we have examined the effects of PML on A431 cells, which express a high level of + protein. The PML gene was introduced into the cells using the adenovirus-mediated gene transfer system. Western blot analysis on the extracts from the cells expressing PML showed a significant repression in the expression of the epidermal growth factor receptor protein. The cells were examined for growth and DNA synthesis. The data showed a marked reduction in both growth and DNA synthesis rate in the cells expressing PML compared with the control cells. Furthermore, in comparison with the controls, the cells expressing PML were found to be more in G1 phase, fewer in S and about the same number in the G2/M phase. This data clearly demonstrated that the repression of epidermal growth factor receptor expression in A 431 cells by PML was associated with inhibition of cell growth and alteration of the cell cycle distribution, suggesting a novel mechanism for the known growth inhibitory effects of PML

  2. Paeoniflorin inhibits cell growth and induces cell cycle arrest through inhibition of FoxM1 in colorectal cancer cells.

    Science.gov (United States)

    Yue, Meng; Li, Shiquan; Yan, Guoqiang; Li, Chenyao; Kang, Zhenhua

    2018-01-01

    Paeoniflorin (PF) exhibits tumor suppressive functions in a variety of human cancers. However, the function of PF and molecular mechanism in colorectal cancer are elusive. In the present study, we investigated whether PF could exert its antiproliferative activity, anti-migration, and anti-invasive function in colorectal cancer cells. We found that PF inhibited cell growth and induced apoptosis and blocked cell cycle progression in the G0/G1 phase in colorectal cancer cells. Moreover, we found that PF suppressed cell migration and invasion in colorectal cancer cells. FoxM1 has been reported to play an important oncogenic role in human cancers. We also determine whether PF inhibited the expression of FoxM1, leading to its anti-cancer activity. We found that PF treatment in colorectal cancer cells resulted in down-regulation of FoxM1. The rescue experiments showed that overexpression of FoxM1 abrogated the tumor suppressive function induced by PF treatment. Notably, depletion of FoxM1 promoted the anti-tumor activity of PF in colorectal cancer cells. Therefore, inhibition of FoxM1 could participate in the anti-tumor activity of PF in colorectal cancer cells.

  3. Metformin inhibits the proliferation of human prostate cancer PC-3 cells via the downregulation of insulin-like growth factor 1 receptor

    International Nuclear Information System (INIS)

    Kato, Haruo; Sekine, Yoshitaka; Furuya, Yosuke; Miyazawa, Yoshiyuki; Koike, Hidekazu; Suzuki, Kazuhiro

    2015-01-01

    Metformin is a biguanide drug that is widely used for the treatment of type 2 diabetes. Recent studies have shown that metformin inhibits cancer cell proliferation and tumor growth both in vitro and in vivo. The anti-tumor mechanisms of metformin include activation of the AMP-activated protein kinase/mTOR pathway and direct inhibition of insulin/insulin-like growth factor (IGF)-mediated cellular proliferation. However, the anti-tumor mechanism in prostate cancer remains unclear. Because activation of the IGF-1 receptor (IGF-1R) is required for prostate cell proliferation, IGF-1R inhibitors may be of therapeutic value. Accordingly, we examined the effects of metformin on IGF-1R signaling in prostate cancer cells. Metformin significantly inhibited PC-3 cell proliferation, migration, and invasion. IGF-1R mRNA expression decreased significantly after 48 h of treatment, and IGF-1R protein expression decreased in a similar manner. IGF-1R knockdown by siRNA transfection led to inhibited proliferation, migration and invasion of PC-3 cells. IGF-1 activated both ERK1/2 and Akt, but these effects were attenuated by metformin treatment. In addition, intraperitoneal treatment with metformin significantly reduced tumor growth and IGF-1R mRNA expression in PC-3 xenografts. Our results suggest that metformin is a potent inhibitor of the IGF-1/IGF-1R system and may be beneficial in prostate cancer treatment. - Highlights: • Metformin inhibited PC-3 cell proliferation, migration, and invasion. • Metformin decreased IGF-1R mRNA and protein expressions in PC-3 cells. • Metformin inhibited IGF-1 induced ERK and Akt phosphorylations in PC-3 cells. • Metformin treatment inhibited PC-3 cell growth and IGF-1R expression in vivo. • Metformin may be a potent inhibitor of the IGF-1/IGF-1R signaling

  4. Metformin inhibits the proliferation of human prostate cancer PC-3 cells via the downregulation of insulin-like growth factor 1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Haruo, E-mail: hal.kato@gunma-u.ac.jp; Sekine, Yoshitaka; Furuya, Yosuke; Miyazawa, Yoshiyuki; Koike, Hidekazu; Suzuki, Kazuhiro

    2015-05-22

    Metformin is a biguanide drug that is widely used for the treatment of type 2 diabetes. Recent studies have shown that metformin inhibits cancer cell proliferation and tumor growth both in vitro and in vivo. The anti-tumor mechanisms of metformin include activation of the AMP-activated protein kinase/mTOR pathway and direct inhibition of insulin/insulin-like growth factor (IGF)-mediated cellular proliferation. However, the anti-tumor mechanism in prostate cancer remains unclear. Because activation of the IGF-1 receptor (IGF-1R) is required for prostate cell proliferation, IGF-1R inhibitors may be of therapeutic value. Accordingly, we examined the effects of metformin on IGF-1R signaling in prostate cancer cells. Metformin significantly inhibited PC-3 cell proliferation, migration, and invasion. IGF-1R mRNA expression decreased significantly after 48 h of treatment, and IGF-1R protein expression decreased in a similar manner. IGF-1R knockdown by siRNA transfection led to inhibited proliferation, migration and invasion of PC-3 cells. IGF-1 activated both ERK1/2 and Akt, but these effects were attenuated by metformin treatment. In addition, intraperitoneal treatment with metformin significantly reduced tumor growth and IGF-1R mRNA expression in PC-3 xenografts. Our results suggest that metformin is a potent inhibitor of the IGF-1/IGF-1R system and may be beneficial in prostate cancer treatment. - Highlights: • Metformin inhibited PC-3 cell proliferation, migration, and invasion. • Metformin decreased IGF-1R mRNA and protein expressions in PC-3 cells. • Metformin inhibited IGF-1 induced ERK and Akt phosphorylations in PC-3 cells. • Metformin treatment inhibited PC-3 cell growth and IGF-1R expression in vivo. • Metformin may be a potent inhibitor of the IGF-1/IGF-1R signaling.

  5. Application of PCR-denaturing-gradient gel electrophoresis (DGGE) method to examine microbial community structure in asparagus fields with growth inhibition due to continuous cropping.

    Science.gov (United States)

    Urashima, Yasufumi; Sonoda, Takahiro; Fujita, Yuko; Uragami, Atsuko

    2012-01-01

    Growth inhibition due to continuous cropping of asparagus is a major problem; the yield of asparagus in replanted fields is low compared to that in new fields, and missing plants occur among young seedlings. Although soil-borne disease and allelochemicals are considered to be involved in this effect, this is still controversial. We aimed to develop a technique for the biological field diagnosis of growth inhibition due to continuous cropping. Therefore, in this study, fungal community structure and Fusarium community structure in continuously cropped fields of asparagus were analyzed by polymerase chain reaction/denaturing-gradient gel electrophoresis (PCR-DGGE). Soil samples were collected from the Aizu region of Fukushima Prefecture, Japan. Soil samples were taken from both continuously cropped fields of asparagus with growth inhibition and healthy neighboring fields of asparagus. The soil samples were collected from the fields of 5 sets in 2008 and 4 sets in 2009. We were able to distinguish between pathogenic and non-pathogenic Fusarium by using Alfie1 and Alfie2GC as the second PCR primers and PCR-DGGE. Fungal community structure was not greatly involved in the growth inhibition of asparagus due to continuous cropping. By contrast, the band ratios of Fusarium oxysporum f. sp. asparagi in growth-inhibited fields were higher than those in neighboring healthy fields. In addition, there was a positive correlation between the band ratios of Fusarium oxysporum f. sp. asparagi and the ratios of missing asparagus plants. We showed the potential of biological field diagnosis of growth inhibition due to continuous cropping of asparagus using PCR-DGGE.

  6. Cytostatic versus cytocidal activities of chloroquine analogues and inhibition of hemozoin crystal growth.

    Science.gov (United States)

    Gorka, Alexander P; Alumasa, John N; Sherlach, Katy S; Jacobs, Lauren M; Nickley, Katherine B; Brower, Jonathan P; de Dios, Angel C; Roepe, Paul D

    2013-01-01

    We report an improved, nonhazardous, high-throughput assay for in vitro quantification of antimalarial drug inhibition of β-hematin (hemozoin) crystallization performed under conditions that are more physiological relative to previous assays. The assay uses the differential detergent solubility of crystalline and noncrystalline forms of heme and is optimized via the use of lipid catalyst. Using this assay, we quantify the effect of pH on the crystal growth-inhibitory activities of current quinoline antimalarials, evaluate the catalytic efficiencies of different lipids, and test for a possible correlation between hemozoin inhibition by drugs versus their antiplasmodial activity. Consistent with several previous reports, we found a good correlation between hemozoin inhibition potency versus cytostatic antiplasmodial potency (50% inhibitory concentration) for a series of chloroquine (CQ) analogues. However, we found no correlation between hemozoin inhibition potency and cytocidal antiplasmodial potency (50% lethal dose) for the same drugs, suggesting that cellular targets for these two layers of 4-aminoquinoline drug activity differ. This important concept is also explored further for QN and its stereoisomers in the accompanying paper (A. P. Gorka, K. S. Sherlach, A. C. de Dios, and P. D. Roepe, Antimicrob. Agents Chemother. 57:365-374, 2013).

  7. Linear ubiquitin chain induces apoptosis and inhibits tumor growth.

    Science.gov (United States)

    Qin, Zhoushuai; Jiang, Wandong; Wang, Guifen; Sun, Ying; Xiao, Wei

    2018-01-01

    Ubiquitination of proliferating cell nuclear antigen (PCNA) plays an important role in DNA damage response. Ectopic expression of PCNA fused at either terminus with ubiquitin (Ub) lacking two C-terminal glycine residues induces translesion DNA synthesis which resembles synthesis mediated by PCNA monoubiquitination. PCNA fused with Ub containing the C-terminal Gly residues at the C-terminus can be further polyubiquitinated in a Gly-dependent manner, which inhibits cell proliferation and induces ATR-dependent replication checkpoint. In this study, we surprisingly found that PCNA fused to a head-to-tail linear Ub chain induces apoptosis in a Ub chain length-dependent manner. Further investigation revealed that the apoptotic effect is actually induced by the linear Ub chain independently from PCNA, as the Ub chain fused to GFP or an epitope tag still efficiently induces apoptosis. It is revealed that the artificial linear Ub chain differs from endogenously encoded linear Ub chains in that its Ubs contain a Ub-G76S substitution, making the Ub chain resistant to cleavage by deubiquitination enzymes. We demonstrated in this study that ectopic expression of the artificial Ub chain alone in cultured human cancer cells is sufficient to inhibit tumor growth in a xenograft mouse model, making the linear Ub chain a putative anti-cancer agent.

  8. Ganoderma lucidum suppresses growth of breast cancer cells through the inhibition of Akt/NF-kappaB signaling.

    Science.gov (United States)

    Jiang, Jiahua; Slivova, Veronika; Harvey, Kevin; Valachovicova, Tatiana; Sliva, Daniel

    2004-01-01

    Ganoderma lucidum (Reishi, Lingzhi) is a popular Asian mushroom that has been used for more than 2 millennia for the general promotion of health and was therefore called the "Mushroom of Immortality." Ganoderma lucidum was also used in traditional Chinese medicine to prevent or treat a variety of diseases, including cancer. We previously demonstrated that Ganoderma lucidum suppresses the invasive behavior of breast cancer cells by inhibiting the transcription factor NF-kappaB. However, the molecular mechanisms responsible for the inhibitory effects of Ganoderma lucidum on the growth of highly invasive and metastatic breast cancer cells has not been fully elucidated. Here, we show that Ganoderma lucidum inhibits proliferation of breast cancer MDA-MB-231 cells by downregulating Akt/NF-kappaB signaling. Ganoderma lucidum suppresses phosphorylation of Akt on Ser473 and downregulates the expression of Akt, which results in the inhibition of NF-kappaB activity in MDA-MB-231 cells. The biological effect of Ganoderma lucidum was demonstrated by cell cycle arrest at G0/G1, which was the result of the downregulation of expression of NF-kappaB-regulated cyclin D1, followed by the inhibition of cdk4. Our results suggest that Ganoderma lucidum inhibits the growth of MDA-MB-231 breast cancer cells by modulating Akt/NF-kappaB signaling and could have potential therapeutic use for the treatment of breast cancer.

  9. Fabrication and in vitro/in vivo evaluation of amorphous andrographolide nanosuspensions stabilized by D-α-tocopheryl polyethylene glycol 1000 succinate/sodium lauryl sulfate

    Directory of Open Access Journals (Sweden)

    Qiao H

    2017-02-01

    Full Text Available Hongzhi Qiao,1,2,* Lihua Chen,3,* Tianqi Rui,1,2 Jingxian Wang,1,2 Ting Chen,1,2 Tingming Fu,1,2 Junsong Li,1,2 Liuqing Di1,2 1College of Pharmacy, Nanjing University of Chinese Medicine, 2Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, 3Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China *These authors contributed equally to this work Abstract: Andrographolide (ADG is a diterpenoid isolated from Andrographis paniculata with a wide spectrum of biological activities, including anti-inflammatory, anticancer and hepatoprotective effects. However, its poor water solubility and efflux by P-glycoprotein have resulted in lower bioavailability. In this study, ADG nanosuspensions (ADG-NS were prepared using a wet media milling technique followed by freeze drying. D-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS, a surfactant that inhibits P-glycoprotein function, and sodium lauryl sulfate were used as surface stabilizers. A Box–Behnken design was used to optimize the nanosuspension preparation. The products of these optimal preparation conditions were amorphous and possessed much faster dissolution in vitro than a coarse powder of ADG. The particle size and redispersibility index of the freeze-dried ADG-NS were 244.6±3.0 nm and 113%±1.14% (n=3, respectively. A short-term stability study indicated that the freeze-dried ADG-NS could remain highly stable as nanosuspensions during the testing period. A test of transport across a Caco-2 cell monolayer revealed that the membrane permeability (Papp of ADG-NS was significantly higher than the permeability of the ADG coarse powder or ADG-NS without TPGS (P<0.01. Compared to the ADG coarse powder, a physical mixture, commercial dripping pills and ADG-NS without TPGS, ADG-NS exhibited significantly higher plasma exposure with significant enhancements in Cmax

  10. Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice.

    Science.gov (United States)

    Xiang, Wei; Ke, Zhiyuan; Zhang, Yong; Cheng, Grace Ho-Yuet; Irwan, Ishak Darryl; Sulochana, K N; Potturi, Padma; Wang, Zhengyuan; Yang, He; Wang, Jingyu; Zhuo, Lang; Kini, R Manjunatha; Ge, Ruowen

    2011-02-01

    Anti-angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain-hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion-associated domain in MUC4 and other proteins (AMOP) domain at the C-terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C-terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)-basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF-stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase-dependent pathway. ISM binds to αvβ(5) integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmental vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  11. Hormone activities and the cell cycle machinery in immunity-triggered growth inhibition.

    Science.gov (United States)

    Reitz, M U; Gifford, M L; Schäfer, P

    2015-04-01

    Biotic stress and diseases caused by pathogen attack pose threats in crop production and significantly reduce crop yields. Enhancing immunity against pathogens is therefore of outstanding importance in crop breeding. However, this must be balanced, as immune activation inhibits plant growth. This immunity-coupled growth trade-off does not support resistance but is postulated to reflect the reallocation of resources to drive immunity. There is, however, increasing evidence that growth-immunity trade-offs are based on the reconfiguration of hormone pathways, shared by growth and immunity signalling. Studies in roots revealed the role of hormones in orchestrating growth across different cell types, with some hormones showing a defined cell type-specific activity. This is apparently highly relevant for the regulation of the cell cycle machinery and might be part of the growth-immunity cross-talk. Since plants are constantly exposed to Immuno-activating microbes under agricultural conditions, the transition from a growth to an immunity operating mode can significantly reduce crop yield and can conflict our efforts to generate next-generation crops with improved yield under climate change conditions. By focusing on roots, we outline the current knowledge of hormone signalling on the cell cycle machinery to explain growth trade-offs induced by immunity. By referring to abiotic stress studies, we further introduce how root cell type-specific hormone activities might contribute to growth under immunity and discuss the feasibility of uncoupling the growth-immunity cross-talk. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Down-regulation of connective tissue growth factor by inhibition of transforming growth factor beta blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma.

    Science.gov (United States)

    Mazzocca, Antonio; Fransvea, Emilia; Dituri, Francesco; Lupo, Luigi; Antonaci, Salvatore; Giannelli, Gianluigi

    2010-02-01

    Tumor-stroma interactions in hepatocellular carcinoma (HCC) are of key importance to tumor progression. In this study, we show that HCC invasive cells produce high levels of connective tissue growth factor (CTGF) and generate tumors with a high stromal component in a xenograft model. A transforming growth factor beta (TGF-beta) receptor inhibitor, LY2109761, inhibited the synthesis and release of CTGF, as well as reducing the stromal component of the tumors. In addition, the TGF-beta-dependent down-regulation of CTGF diminished tumor growth, intravasation, and metastatic dissemination of HCC cells by inhibiting cancer-associated fibroblast proliferation. By contrast, noninvasive HCC cells were found to produce low levels of CTGF. Upon TGF-beta1 stimulation, noninvasive HCC cells form tumors with a high stromal content and CTGF expression, which is inhibited by treatment with LY2109761. In addition, the acquired intravasation and metastatic spread of noninvasive HCC cells after TGF-beta1 stimulation was blocked by LY2109761. LY2109761 interrupts the cross-talk between cancer cells and cancer-associated fibroblasts, leading to a significant reduction of HCC growth and dissemination. Interestingly, patients with high CTGF expression had poor prognosis, suggesting that treatment aimed at reducing TGF-beta-dependent CTGF expression may offer clinical benefits. Taken together, our preclinical results indicate that LY2109761 targets the cross-talk between HCC and the stroma and provide a rationale for future clinical trials.

  13. Simultaneous inhibition of key growth pathways in melanoma cells and tumor regression by a designed bidentate constrained helical peptide.

    Science.gov (United States)

    Dhar, Amlanjyoti; Mallick, Shampa; Ghosh, Piya; Maiti, Atanu; Ahmed, Israr; Bhattacharya, Seemana; Mandal, Tapashi; Manna, Asit; Roy, Koushik; Singh, Sandeep; Nayak, Dipak Kumar; Wilder, Paul T; Markowitz, Joseph; Weber, David; Ghosh, Mrinal K; Chattopadhyay, Samit; Guha, Rajdeep; Konar, Aditya; Bandyopadhyay, Santu; Roy, Siddhartha

    2014-07-01

    Protein-protein interactions are part of a large number of signaling networks and potential targets for drug development. However, discovering molecules that can specifically inhibit such interactions is a major challenge. S100B, a calcium-regulated protein, plays a crucial role in the proliferation of melanoma cells through protein-protein interactions. In this article, we report the design and development of a bidentate conformationally constrained peptide against dimeric S100B based on a natural tight-binding peptide, TRTK-12. The helical conformation of the peptide was constrained by the substitution of α-amino isobutyric acid--an amino acid having high helical propensity--in positions which do not interact with S100B. A branched bidentate version of the peptide was bound to S100B tightly with a dissociation constant of 8 nM. When conjugated to a cell-penetrating peptide, it caused growth inhibition and rapid apoptosis in melanoma cells. The molecule exerts antiproliferative action through simultaneous inhibition of key growth pathways, including reactivation of wild-type p53 and inhibition of Akt and STAT3 phosphorylation. The apoptosis induced by the bidentate constrained helix is caused by direct migration of p53 to mitochondria. At moderate intravenous dose, the peptide completely inhibits melanoma growth in a mouse model without any significant observable toxicity. The specificity was shown by lack of ability of a double mutant peptide to cause tumor regression at the same dose level. The methodology described here for direct protein-protein interaction inhibition may be effective for rapid development of inhibitors against relatively weak protein-protein interactions for de novo drug development. © 2014 Wiley Periodicals, Inc.

  14. High-resolution bacterial growth inhibition profiling combined with HPLC-HRMS-SPE-NMR for identification of antibacterial constituents in Chinese plants used to treat snakebites

    DEFF Research Database (Denmark)

    Liu, Yueqiu; Nielsen, Mia; Stærk, Dan

    2014-01-01

    Bacillus subtilis, Staphylococcus aureus, Escherichia coli or Pseudomonas aeruginosa. The biochromatograms demonstrated that tannins play a main role for the bacterial growth inhibition observed for all above-mentioned plants except for Polygonum cuspidatum. Furthermore, the high-resolution bacterial...... growth inhibition profiling combined with HPLC–HRMS–SPE–NMR allowed fast identification of three non-tannin active compounds, i.e., piceid, resveratrol and emodin from ethanol extract of Polygonum cuspidatum. Conclusion The high-resolution bacterial growth inhibition profiling allowed fast pinpointing...... of constituents responsible for the bioactivity, e.g., either showing tannins being the main bacterial growth inhibitors as observed for the majority of the active plants, or combined with HPLC–HRMS–SPE–NMR for fast structural identification of non-tannin constituents correlated with antibacterial activity....

  15. Growth inhibition of Aeromonas salmonicida and Yersinia ruckeri by disinfectants containing peracetic acid

    DEFF Research Database (Denmark)

    Meinelt, Thomas; Phan, T.; Behrens, S.

    2015-01-01

    contribute to sustainable aquaculture. The aim of our study was to compare the effectiveness of 6 commercial PAA products with different molecular PAA:H2O2 ratios to reduce bacterial growth of Aeromonas salmonicida and Yersinia ruckeri and to determine effective concentrations and exposure times. All...... products reduced colony-forming units (CFUs) of A. salmonicida and Y. ruckeri. Products with higher molecular PAA:H2O2 ratios inhibited growth better than products with lower molecular PAA:H2O2 ratios at the same PAA concentration; this indicates that H2O2 is not the driving force in the reduction of A....... salmonicida and Y. ruckeri growth by PAA in vitro. The practical application of the products with high molecular PAA:H2O2 ratios should be prioritized if these pathogens are diagnosed...

  16. Self-inhibiting growth of the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Langen, Peter Lang; Solgaard, Anne Munck; Hvidberg, Christine Schøtt

    2012-01-01

    The build-up of the Greenland Ice Sheet (GrIS) from ice-free conditions is studied in an ice sheet model (ISM) driven by fields from an atmospheric general circulation model (GCM) to demonstrate the importance of coupling between the two components. Experiments where the two are coupled off-line...... are augmented by one where an intermediate ice sheet configuration is coupled back to the GCM. Forcing the ISM with GCM fields corresponding to the ice-free state leads to extensive regrowth which, however, is halted when the intermediate recoupling step is included. This inhibition of further growth is due...... to a Föhn effect of moist air parcels being lifted over the intermediate ice sheet and arriving in the low-lying Greenland interior with high temperatures. This demonstrates that two-way coupling between the atmosphere and the ice sheet is essential for understanding the dynamics and that large scale...

  17. USP1 targeting impedes GBM growth by inhibiting stem cell maintenance and radioresistance.

    Science.gov (United States)

    Lee, Jin-Ku; Chang, Nakho; Yoon, Yeup; Yang, Heekyoung; Cho, Heejin; Kim, Eunhee; Shin, Yongjae; Kang, Wonyoung; Oh, Young Taek; Mun, Gyeong In; Joo, Kyeung Min; Nam, Do-Hyun; Lee, Jeongwu

    2016-01-01

    Clinical benefits from standard therapies against glioblastoma (GBM) are limited in part due to intrinsic radio- and chemoresistance of GBM and inefficient targeting of GBM stem-like cells (GSCs). Novel therapeutic approaches that overcome treatment resistance and diminish stem-like properties of GBM are needed. We determined the expression levels of ubiquitination-specific proteases (USPs) by transcriptome analysis and found that USP1 is highly expressed in GBM. Using the patient GBM-derived primary tumor cells, we inhibited USP1 by shRNA-mediated knockdown or its specific inhibitor pimozide and evaluated the effects on stem cell marker expression, proliferation, and clonogenic growth of tumor cells. USP1 was highly expressed in gliomas relative to normal brain tissues and more preferentially in GSC enrichment marker (CD133 or CD15) positive cells. USP1 positively regulated the protein stability of the ID1 and CHEK1, critical regulators of DNA damage response and stem cell maintenance. Targeting USP1 by RNA interference or treatment with a chemical USP1 inhibitor attenuated clonogenic growth and survival of GSCs and enhanced radiosensitivity of GBM cells. Finally, USP1 inhibition alone or in combination with radiation significantly prolonged the survival of tumor-bearing mice. USP1-mediated protein stabilization promotes GSC maintenance and treatment resistance, thereby providing a rationale for USP1 inhibition as a potential therapeutic approach against GBM. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Growth inhibition of thyroid follicular cell-derived cancers by the opioid growth factor (OGF) - opioid growth factor receptor (OGFr) axis

    International Nuclear Information System (INIS)

    McLaughlin, Patricia J; Zagon, Ian S; Park, Sunny S; Conway, Andrea; Donahue, Renee N; Goldenberg, David

    2009-01-01

    Carcinoma of the thyroid gland is an uncommon cancer, but the most frequent malignancy of the endocrine system. Most thyroid cancers are derived from the follicular cell. Follicular carcinoma (FTC) is considered more malignant than papillary thyroid carcinoma (PTC), and anaplastic thyroid cancer (ATC) is one of the most lethal human cancers. Opioid Growth Factor (OGF; chemical term - [Met 5 ]-enkephalin) and its receptor, OGFr, form an inhibitory axis regulating cell proliferation. Both the peptide and receptor have been detected in a wide variety of cancers, and OGF is currently used clinically as a biotherapy for some non-thyroid neoplasias. This study addressed the question of whether the OGF-OGFr axis is present and functional in human thyroid follicular cell - derived cancer. Utilizing human ATC (KAT-18), PTC (KTC-1), and FTC (WRO 82-1) cell lines, immunohistochemistry was employed to ascertain the presence and location of OGF and OGFr. The growth characteristics in the presence of OGF or the opioid antagonist naltrexone (NTX), and the specificity of opioid peptides for proliferation of ATC, were established in KAT-18 cells. Dependence on peptide and receptor were investigated using neutralization studies with antibodies and siRNA experiments, respectively. The mechanism of peptide action on DNA synthesis and cell survival was ascertained. The ubiquity of the OGF-OGFr axis in thyroid follicular cell-derived cancer was assessed in KTC-1 (PTC) and WRO 82-1 (FTC) tumor cells. OGF and OGFr were present in KAT-18 cells. Concentrations of 10 -6 M OGF inhibited cell replication up to 30%, whereas NTX increased cell growth up to 35% relative to cultures treated with sterile water. OGF treatment reduced cell number by as much as 38% in KAT-18 ATC in a dose-dependent and receptor-mediated manner. OGF antibodies neutralized the inhibitory effects of OGF, and siRNA knockdown of OGFr negated growth inhibition by OGF. Cell survival was not altered by OGF, but DNA synthesis

  19. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair

    International Nuclear Information System (INIS)

    Kang, Khong Bee; Zhu Congju; Wong Yinling; Gao Qiuhan; Ty, Albert; Wong, Meng Cheong

    2012-01-01

    Purpose: We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)–Akt-DNA–dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Methods and Materials: Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, γ-H 2 AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, γ-H 2 AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Results: Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G 2 /M arrest and increased γ-H 2 AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased γ-H 2 AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Conclusions: Stem-like gliomaspheres are resistant to irradiation

  20. Gefitinib radiosensitizes stem-like glioma cells: inhibition of epidermal growth factor receptor-Akt-DNA-PK signaling, accompanied by inhibition of DNA double-strand break repair.

    Science.gov (United States)

    Kang, Khong Bee; Zhu, Congju; Wong, Yin Ling; Gao, Qiuhan; Ty, Albert; Wong, Meng Cheong

    2012-05-01

    We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, γ-H(2)AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, γ-H(2)AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G(2)/M arrest and increased γ-H(2)AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased γ-H(2)AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Stem-like gliomaspheres are resistant to irradiation-induced cytotoxicity, G(2)/M arrest, and DNA DSBs, compared with nonstem