Sample records for anderson impurity model

  1. Multi-level Algorithm for the Anderson Impurity Model (United States)

    Chandrasekharan, S.; Yoo, J.; Baranger, H. U.


    We develop a new quantum Monte Carlo algorithm to solve the Anderson impurity model. Instead of integrating out the Fermions, we work in the Fermion occupation number basis and thus have direct access to the Fermionic physics. The sign problem that arises in this formulation can be solved by a multi-level technique developed by Luscher and Weisz in the context of lattice QCD [JHEP, 0109 (2001) 010]. We use the directed-loop algorithm to update the degrees of freedom. Further, this algorithm allows us to work directly in the Euclidean time continuum limit for arbitrary values of the interaction strength thus avoiding time discretization errors. We present results for the impurity susceptibility and the properties of the screening cloud obtained using the algorithm.

  2. Impurity-induced antiferromagnetic domains in the periodic Anderson model (United States)

    Benali, A.; Bai, Z. J.; Curro, N. J.; Scalettar, R. T.


    A central feature of the periodic Anderson model is the competition between antiferromagnetism, mediated by the Ruderman-Kittel-Kasuya-Yosida interaction at small conduction electron-local electron hybridization V , and singlet formation at large V . At zero temperature, and in dimension d >1 , these two phases are separated by a quantum critical point Vc. We use quantum Monte Carlo (QMC) simulations to explore the effect of impurities which have a local hybridization V*Vc . We measure the suppression of singlet correlations and the antiferromagnetic correlations which form around the impurity, as well as the size of the resulting domain. Exact diagonalization calculations for linear chains allow us to verify that the qualitative features obtained at intermediate coupling and finite T persist to strong coupling and T =0 , regimes which are difficult to access with QMC. Our calculations agree qualitatively with NMR measurements in CeCoIn5 -xCdx .

  3. The completeness problem in the impurity Anderson model

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, T. [Instituto de Fisica da, Universidade Federal Fluminense, Av. Litoranea s/n, 24210-346 Niteroi, Rio de Janeiro, Brasil (Brazil); Figueira, M.S. [Instituto de Fisica da, Universidade Federal Fluminense, Av. Litoranea s/n, 24210-346 Niteroi, Rio de Janeiro, Brasil (Brazil)]. E-mail:; Franco, R. [Departamento de Fisica, Universidad Nacional de Colombia, Ciudadela Universidad Nacional, Bogota (Colombia); Silva-Valencia, J. [Departamento de Fisica, Universidad Nacional de Colombia, Ciudadela Universidad Nacional, Bogota (Colombia); Foglio, M.E. [Instituto de Fisica Gleb Wataghin - Universidade Estadual de Campinas, Barao Geraldo 13083-970 Campinas-SP, Brasil (Brazil)


    With the recent development of the nanoscopic technology, the impurity Anderson model (AIM) was experimentally realized in quantum dot devices, and there is renewed interest in the study of the Kondo physics of the AIM. Several Green's functions approximations by the equation of motion method (EOM), that incorporates the Kondo effect through a digamma function, have been presented in the literature as an adequate tool to describe, at least qualitatively, the Kondo effect. However, these approximations present several drawbacks: they are no longer valid as the temperature decreases below the Kondo temperature, because the logarithmic divergence of the digamma function makes the spectral density at the chemical potential to vanish, and the Friedel sum rule and the completeness in the occupation numbers are not fulfilled. In this work we present a critical discussion comparing the results of digamma approximations GF with the atomic approach, recently developed by some of us, that satisfy the completeness and the Friedel sum rule. We present results for the density of states, the Friedel sum rule and the completeness.

  4. Electronic structure of vitamin B12 within the framework of the Haldane-Anderson impurity model (United States)

    Kandemir, Zafer; Mayda, Selma; Bulut, Nejat


    We study the electronic structure of vitamin B12 (cyanocobalamine C63H88CoN14O14P) by using the framework of the multi-orbital single-impurity Haldane-Anderson model of a transition-metal impurity in a semiconductor host. Here, our purpose is to understand the many-body effects originating from the transition-metal impurity. In this approach, the cobalt 3 d orbitals are treated as the impurity states placed in a semiconductor host which consists of the rest of the molecule. The parameters of the resulting effective Haldane-Anderson model are obtained within the Hartree-Fock approximation for the electronic structure of the molecule. The quantum Monte Carlo technique is then used to calculate the one-electron and magnetic correlation functions of this effective Haldane-Anderson model for vitamin B12. We find that new states form inside the semiconductor gap due to the on-site Coulomb interaction at the impurity 3 d orbitals and that these states become the highest occupied molecular orbitals. In addition, we present results on the charge distribution and spin correlations around the Co atom. We compare the results of this approach with those obtained by the density-functional theory calculations.

  5. Electronic structure and correlations of vitamin B12 studied within the Haldane-Anderson impurity model (United States)

    Kandemir, Zafer; Mayda, Selma; Bulut, Nejat


    We study the electronic structure and correlations of vitamin B12 (cyanocobalamine) by using the framework of the multi-orbital single-impurity Haldane-Anderson model of a transition-metal impurity in a semiconductor host. The parameters of the effective Haldane-Anderson model are obtained within the Hartree-Fock (HF) approximation. The quantum Monte Carlo (QMC) technique is then used to calculate the one-electron and magnetic correlation functions of this effective model. We observe that new states form inside the semiconductor gap found by HF due to the intra-orbital Coulomb interaction at the impurity 3d orbitals. In particular, the lowest unoccupied states correspond to an impurity bound state, which consists of states from mainly the CN axial ligand and the corrin ring as well as the Co eg-like orbitals. We also observe that the Co (3d) orbitals can develop antiferromagnetic correlations with the surrounding atoms depending on the filling of the impurity bound states. In addition, we make comparisons of the HF+QMC data with the density functional theory calculations. We also discuss the photoabsorption spectrum of cyanocobalamine.

  6. Kondo physics of the Anderson impurity model by distributional exact diagonalization (United States)

    Motahari, S.; Requist, R.; Jacob, D.


    The distributional exact diagonalization (DED) scheme is applied to the description of Kondo physics in the Anderson impurity model. DED maps Anderson's problem of an interacting impurity level coupled to an infinite bath onto an ensemble of finite Anderson models, each of which can be solved by exact diagonalization. An approximation to the self-energy of the original infinite model is then obtained from the ensemble-averaged self-energy. Using Friedel's sum rule, we show that the particle number constraint, a central ingredient of the DED scheme, ultimately imposes Fermi liquid behavior on the ensemble-averaged self-energy, and thus is essential for the description of Kondo physics within DED. Using the numerical renormalization group (NRG) method as a benchmark, we show that DED yields excellent spectra, both inside and outside the Kondo regime for a moderate number of bath sites. Only for very strong correlations (U /Γ ≫10 ) does the number of bath sites needed to achieve good quantitative agreement become too large to be computationally feasible.

  7. A Cartesian quasi-classical model to nonequilibrium quantum transport: the Anderson impurity model. (United States)

    Li, Bin; Levy, Tal J; Swenson, David W H; Rabani, Eran; Miller, William H


    We apply the recently proposed quasi-classical approach for a second quantized many-electron Hamiltonian in Cartesian coordinates [B. Li and W. H. Miller, J. Chem. Phys. 137, 154107 (2012)] to correlated nonequilibrium quantum transport. The approach provides accurate results for the resonant level model for a wide range of temperatures, bias, and gate voltages, correcting the flaws of our recently proposed mapping using action-angle variables. When electron-electron interactions are included, a Gaussian function scheme is required to map the two-electron integrals, leading to quantitative results for the Anderson impurity model. In particular, we show that the current mapping is capable of capturing quantitatively the Coulomb blockade effect and the temperature dependence of the current below and above the blockade.

  8. Analytic Flow Equations for the Fermi Liquid Parameters of the Anderson Impurity Model. (United States)

    Pandis, Vassilis; Hewson, Alex C


    The low temperature behavior of a Fermi liquid can be described in terms of quasiparticle excitations that are in 1-1 correspondence with those of the noninteracting system. Because of adiabatic continuity, the Landau parameters, which describe the interactions between the quasiparticles, must evolve continuously as the interactions are turned on and be described by a set of flow equations. For strongly correlated electron systems it is not possible to follow this flow in perturbation theory when the interactions become strong. We explore the idea here of overcoming this problem by renormalizing the quasiparticles in this flow using a renormalized perturbation theory. This approach is tested in the case of a single impurity Anderson model. Analytic flow equations are derived which give excellent results for the Landau parameters in the strong correlation regime.

  9. Effects of correlated hybridization in the single-impurity Anderson model (United States)

    Líbero, Valter; Veiga, Rodrigo


    The development of new materials often dependents on the theoretical foundations which study the microscopic matter, i.e., the way atoms interact and create distinct configurations. Among the interesting materials, those with partially filled d or f orbitals immersed in nonmagnetic metals have been described by the Anderson model, which takes into account Coulomb correlation (U) when a local level (energy Ed) is doubled occupied, and an electronic hybridization between local levels and conduction band states. In addition, here we include a correlated hybridization term, which depends on the local-level occupation number involved. This term breaks particle-hole symmetry (even when U + 2Ed = 0), enhances charge fluctuations on local levels and as a consequence strongly modifies the crossover between the Hamiltonian fixed-points, even suppressing one or other. We exemplify these behaviors showing data obtained from the Numerical Renormalization Group (NRG) computation for the impurity temperature-dependent specific heat, entropy and magnetic susceptibility. The interleaving procedure is used to recover the continuum spectrum after the NRG-logarithmic discretization of the conduction band. Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP.

  10. Bi-stability in single impurity Anderson model with strong electron–phonon interaction(polaron regime)

    Energy Technology Data Exchange (ETDEWEB)

    Eskandari-asl, Amir, E-mail:


    We consider a single impurity Anderson model (SIAM) in which the quantum dot(QD) is strongly coupled to a phonon bath in polaron regime. This coupling results in an effective e-e attraction. By computing the self energies using a current conserving approximation which is up to second order in this effective attraction, we show that if the interaction is strong enough, in non particle-hole (PH) symmetric case, the system would be bi-stable and we have hysteresis loop in the I–V characteristic. Moreover, the system shows negative differential conductance in some bias voltage intervals.

  11. Bi-stability in single impurity Anderson model with strong electron-phonon interaction(polaron regime) (United States)

    Eskandari-asl, Amir


    We consider a single impurity Anderson model (SIAM) in which the quantum dot(QD) is strongly coupled to a phonon bath in polaron regime. This coupling results in an effective e-e attraction. By computing the self energies using a current conserving approximation which is up to second order in this effective attraction, we show that if the interaction is strong enough, in non particle-hole (PH) symmetric case, the system would be bi-stable and we have hysteresis loop in the I-V characteristic. Moreover, the system shows negative differential conductance in some bias voltage intervals.

  12. GW approach to electron-electron interactions within the Anderson impurity model: Kondo correlated quantum transport through two coupled molecules (United States)

    Aksu, H.; Goker, A.


    We invoke the nonequilibrium self-consistent GW method within the Anderson impurity model to investigate the dynamical effects occurring in a nanojunction comprised of two coupled molecules. Contrary to the previous single impurity model calculations based on the GW approximation, we observe that the density of states manages to capture both the Kondo resonance and the Breit-Wigner resonances associated with the HOMO and LUMO levels of the molecule. Moreover, the prominence of the Kondo resonance grows dramatically upon switching from the intermediate to the weak coupling regime involving large U / Γ values. The conductance is calculated as a function of the HOMO level and the applied bias across the molecular nanojunction. Calculated conductance curves deviate from the monotonic decay behaviour as a function of the bias when the half-filling condition is not met. The importance of the effect of the molecule-molecule coupling for the electron transport phenomena is also investigated.

  13. Kinetics of local "magnetic" moment and non-stationary spin-polarized current in the single impurity Anderson-model (United States)

    Maslova, N. S.; Mantsevich, V. N.; Arseyev, P. I.


    We perform theoretical investigation of the localized state dynamics in the presence of interaction with the reservoir and Coulomb correlations. We analyze kinetic equations for electron occupation numbers with different spins taking into account high order correlation functions for the localized electrons. We reveal that in the stationary state electron occupation numbers with the opposite spins always have the same value - the stationary state is a "paramagnetic" one. "Magnetic" properties can appear only in the non-stationary characteristics of the single-impurity Anderson model and in the dynamics of the localized electrons second order correlation functions. We found, that for deep energy levels and strong Coulomb correlations, relaxation time for initial "magnetic" state can be several orders larger than for "paramagnetic" one. So, long-living "magnetic" moment can exist in the system. We also found non-stationary spin polarized currents flowing in opposite directions for the different spins in the particular time interval.

  14. Spin-current Seebeck effect in an interacting quantum dot: Atomic approximation for the Anderson impurity model (United States)

    Ramos, E.; Silva-Valencia, J.; Franco, R.; Siqueira, E. C.; Figueira, M. S.


    We study the spin-current Seebeck effect through an immersed gate defined quantum dot, employing the U-finite atomic method for the single impurity Anderson model. Our description qualitatively confirms some of the results obtained by an earlier Hartree-Fock work, but as our calculation includes the Kondo effect, some new features will appear in the spin-current Seebeck effect S, which as a function of the gate voltage present an oscillatory shape. At intermediate temperatures, our results show a three zero structure and at low temperatures, our results are governed by the emergence of the Kondo peak in the transmittance, which defines the behavior of the shape of the S coefficient as a function of the parameters of the model. The oscillatory behavior obtained by the Hartree-Fock approximation reproduces the shape obtained by us in a non-interacting system (U=0). The S sign is sensitive to different polarization of the quantum dot, and as a consequence the device could be employed to experimentally detect the polarization states of the system. Our results also confirm that the large increase of S upon increasing U, obtained by the mean field approximation, is correct only for low temperatures. We also discuss the role of the Kondo peak in defining the behavior of the spin thermopower at low temperatures.

  15. Inconsistencies with the single-impurity Anderson model in photoelectron spectra of cerium heavy fermion compounds

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, J.J.; Arko, A.J.; Lawrence, J.; Canfield, P.C.; Fisk, Z.; Bartlett, R.J.; Thompson, J.D.; Smith, J.L. (Los Alamos National Lab., NM (United States))


    A series of cerium heavy fermion compounds have been studied in order to check for the systematics with T{sub K} and the temperature dependence of the Kondo resonance predicted by the Kondo model. Neither the systematics nor the temperature dependence is found, the latter primarily determined from a detailed study in CeSi{sub 2}. The qualitative shapes of the features at E{sub F} remain nearly constant irrespectively of T{sub K}, while all the temperature dependence can be explained as resulting from phonon broadening of core-like states as well as Fermi function broadening. In addition, if the d electron contribution to the spectra is subtracted, one obtains a symmetric, lorentzian line shape for the ''main'' 4f peak. (orig.).

  16. Density of states of s+d-wave superconductor with Anderson impurities

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, L S, E-mail: lsb@man.poznan.p [Quantum Physics Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland)


    We present results for the density of states of a s+d-wave superconductor containing finite concentration of Anderson impurities within the self-consistent slave boson approximation. There may be zero, one or two peaks in the energy gap at low energies. The height of the peaks is controlled by the impurity concentration whereas their position depends on the strength of interaction between impurities and the conduction band. Experimental consequences are briefly discussed.

  17. Spectral density method to Anderson-Holstein model (United States)

    Chebrolu, Narasimha Raju; Chatterjee, Ashok


    Two-parameter spectral density function of a magnetic impurity electron in a non-magnetic metal is calculated within the framework of the Anderson-Holstein model using the spectral density approximation method. The effect of electron-phonon interaction on the spectral function is investigated.

  18. Thermoelectric transport properties through a single-walled zig–zag carbon nanotube side coupled to a correlated quantum dot: Atomic approach for the finite U-impurity Anderson model

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Edwin, E-mail: [Departamento de Física, Universidad Nacional de Colombia (UNAL), A. A. 5997, Bogotá (Colombia); Franco, Roberto, E-mail: [Departamento de Física, Universidad Nacional de Colombia (UNAL), A. A. 5997, Bogotá (Colombia); Instituto de Física de São Carlos-Universidade de São Paulo (IFSC-USP), 369 São Carlos, São Paulo (Brazil); Silva-Valencia, Jereson [Departamento de Física, Universidad Nacional de Colombia (UNAL), A. A. 5997, Bogotá (Colombia); Figueira, Marcos Sergio [Instituto de Física, Universidade Federal Fluminense (IF-UFF), Avenida litorânea s/n, CEP 24210-346, Niterói, Rio de Janeiro (Brazil)


    We study the thermopower S, linear thermal conductance κ, linear electric conductance G and thermoelectric figure of merit Z properties of a single-walled zig–zag carbon nanotube side coupled to a correlated quantum dot (QD). We employ the recently developed U-finite atomic approach for the Single Impurity Anderson model (SIAM). The quantum dot is linked to the localized states in the model, considering a finite Coulombic repulsion U, and the conduction band in the model is associated with the single walled zig–zag metallic carbon nanotube (n=3), and is described by a tight-binding approximation in order to obtain Green's function of the nanotube. The thermoelectric transport coefficients were obtained using the Keldysh non-equilibrium Green's function technique with the Onsager relation in the linear regime automatically satisfied. Results indicate that this system can be employed in possible thermoelectric device applications at low temperatures when strong charge fluctuations are present in the QD.

  19. Renormalization-group calculation of excitation properties for impurity models (United States)

    Yoshida, M.; Whitaker, M. A.; Oliveira, L. N.


    The renormalization-group method developed by Wilson to calculate thermodynamical properties of dilute magnetic alloys is generalized to allow the calculation of dynamical properties of many-body impurity Hamiltonians. As a simple illustration, the impurity spectral density for the resonant-level model (i.e., the U=0 Anderson model) is computed. As a second illustration, for the same model, the longitudinal relaxation rate for a nuclear spin coupled to the impurity is calculated as a function of temperature.

  20. Nonequilibrium Anderson model made simple with density functional theory (United States)

    Kurth, S.; Stefanucci, G.


    The single-impurity Anderson model is studied within the i-DFT framework, a recently proposed extension of density functional theory (DFT) for the description of electron transport in the steady state. i-DFT is designed to give both the steady current and density at the impurity, and it requires the knowledge of the exchange-correlation (xc) bias and on-site potential (gate). In this work we construct an approximation for both quantities which is accurate in a wide range of temperatures, gates, and biases, thus providing a simple and unifying framework to calculate the differential conductance at negligible computational cost in different regimes. Our results mark a substantial advance for DFT and may inform the construction of functionals applicable to other correlated systems.

  1. Mott transitions in the periodic Anderson model (United States)

    Logan, David E.; Galpin, Martin R.; Mannouch, Jonathan


    The periodic Anderson model (PAM) is studied within the framework of dynamical mean-field theory, with particular emphasis on the interaction-driven Mott transition it contains, and on resultant Mott insulators of both Mott-Hubbard and charge-transfer type. The form of the PAM phase diagram is first deduced on general grounds using two exact results, over the full range of model parameters and including metallic, Mott, Kondo and band insulator phases. The effective low-energy model which describes the PAM in the vicinity of a Mott transition is then shown to be a one-band Hubbard model, with effective hoppings that are not in general solely nearest neighbour, but decay exponentially with distance. This mapping is shown to have a range of implications for the physics of the problem, from phase boundaries to single-particle dynamics; all of which are confirmed and supplemented by NRG calculations. Finally we consider the locally degenerate, non-Fermi liquid Mott insulator, to describe which requires a two-self-energy description. This is shown to yield a number of exact results for the associated local moment, charge, and interaction-renormalised levels, together with a generalisation of Luttinger’s theorem to the Mott insulator.

  2. Hierarchical equations of motion approach to transport through an Anderson impurity coupled to interacting Luttinger liquid leads (United States)

    Okamoto, Jun-ichi; Mathey, Ludwig; Härtle, Rainer


    We generalize the hierarchical equations of motion method to study electron transport through a quantum dot or molecule coupled to one-dimensional interacting leads that can be described as Luttinger liquids. Such leads can be realized, for example, by quantum wires or fractional quantum Hall edge states. In comparison to noninteracting metallic leads, Luttinger liquid leads involve many-body correlations and the single-particle tunneling density of states shows a power-law singularity at the chemical potential. Using the generalized hierarchical equations of motion method, we assess the importance of the singularity and the next-to-leading order many-body correlations. To this end, we compare numerically converged results with second- and first-order results of the hybridization expansion that is inherent to our method. As a test case, we study transport through a single-level quantum dot or molecule that can be described by an Anderson impurity model. Cotunneling effects turn out to be most pronounced for attractive interactions in the leads or repulsive ones if an excitonic coupling between the dot and the leads is realized. We also find that an interaction-induced negative differential conductance near the Coulomb blockade thresholds is slightly suppressed as compared to a first-order and/or rate equation result. Moreover, we find that the two-particle (n -particle) correlations enter as a second-order (n -order) effect and are, thus, not very pronounced at the high temperatures and parameters that we consider.

  3. Topological approximation of the nonlinear Anderson model (United States)

    Milovanov, Alexander V.; Iomin, Alexander


    We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t →+∞. The second moment of the associated probability distribution grows with time as a power law ∝ tα, with the exponent α =1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the

  4. Understanding localisation in QCD through an Ising-Anderson model

    CERN Document Server

    Giordano, Matteo; Pittler, Ferenc


    Above the QCD chiral crossover temperature, the low-lying eigenmodes of the Dirac operator are localised, while moving up in the spectrum states become extended. This localisation/delocalisation transition has been shown to be a genuine second-order phase transition, in the same universality class as that of the 3D Anderson model. The existence of localised modes and the effective dimensional reduction can be tentatively explained as a consequence of local fluctuations of the Polyakov loop, that provide 3D on-site disorder, in analogy to the on-site disorder of the Anderson model. To test the viability of this explanation we study a 3D effective, Anderson-like model, with on-site disorder provided by the spins of a spin model, which mimics the Polyakov loop dynamics. Our preliminary results show that localised modes are present in the ordered phase, thus supporting the proposed mechanism for localisation in QCD.

  5. The atomic approach to the Anderson model for the finite U case: application to a quantum dot. (United States)

    Lobo, T; Figueira, M S; Foglio, M E


    In the present work we apply the atomic approach to the single-impurity Anderson model (SIAM). A general formulation of this approach, that can be applied both to the impurity and to the lattice Anderson Hamiltonian, was developed in a previous work (Foglio et al 2009 arxiv: 0903.0139v2 [cond-mat.str-el]). The method starts from the cumulant expansion of the periodic Anderson model, employing the hybridization as a perturbation. The atomic Anderson limit is analytically solved and its sixteen eigenenergies and eigenstates are obtained. This atomic Anderson solution, which we call the AAS, has all the fundamental excitations that generate the Kondo effect, and in the atomic approach is employed as a 'seed' to generate the approximate solutions for finite U. The width of the conduction band is reduced to zero in the AAS, and we choose its position such that the Friedel sum rule is satisfied, close to the chemical potential mu. We perform a complete study of the density of states of the SIAM over the whole relevant range of parameters: the empty dot, intermediate valence, Kondo and magnetic regimes. In the Kondo regime we obtain a density of states that characterizes well the structure of the Kondo peak. To show the usefulness of the method we have calculated the conductance of a quantum dot, side-coupled to a conduction band.

  6. An Anderson-like model of the QCD chiral transition

    CERN Document Server

    Giordano, Matteo; Pittler, Ferenc


    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the...

  7. Spectra of Anderson Type Models with Decaying Randomness

    Indian Academy of Sciences (India)

    M Krishna; K B Sinha


    In this paper we consider some Anderson type models, with free parts having long range tails with the random perturbations decaying at different rates in different directions and prove that there is a.c. spectrum in the model which is pure. In addition, we show that there is pure point spectrum outside some interval. Our models include potentials decaying in all directions in which case absence of singular continuous spectrum is also shown.

  8. Time-dependent Mott transition in the periodic Anderson model with nonlocal hybridization (United States)

    Hofmann, Felix; Potthoff, Michael


    The time-dependent Mott transition in a periodic Anderson model with off-site, nearest-neighbor hybridization is studied within the framework of nonequilibrium self-energy functional theory. Using the two-site dynamical-impurity approximation, we compute the real-time dynamics of the optimal variational parameter and of different observables initiated by sudden quenches of the Hubbard-U and identify the critical interaction. The time-dependent transition is orbital selective, i.e., in the final state, reached in the long-time limit after the quench to the critical interaction, the Mott gap opens in the spectral function of the localized orbitals only. We discuss the dependence of the critical interaction and of the final-state effective temperature on the hybridization strength and point out the various similarities between the nonequilibrium and the equilibrium Mott transition. It is shown that these can also be smoothly connected to each other by increasing the duration of a U-ramp from a sudden quench to a quasi-static process. The physics found for the model with off-site hybridization is compared with the dynamical Mott transition in the single-orbital Hubbard model and with the dynamical crossover found for the real-time dynamics of the conventional Anderson lattice with on-site hybridization.

  9. Classical mapping for Hubbard operators: application to the double-Anderson model. (United States)

    Li, Bin; Miller, William H; Levy, Tal J; Rabani, Eran


    A classical Cartesian mapping for Hubbard operators is developed to describe the nonequilibrium transport of an open quantum system with many electrons. The mapping of the Hubbard operators representing the many-body Hamiltonian is derived by using analogies from classical mappings of boson creation and annihilation operators vis-à-vis a coherent state representation. The approach provides qualitative results for a double quantum dot array (double Anderson impurity model) coupled to fermionic leads for a range of bias voltages, Coulomb couplings, and hopping terms. While the width and height of the conduction peaks show deviations from the master equation approach considered to be accurate in the limit of weak system-leads couplings and high temperatures, the Hubbard mapping captures all transport channels involving transition between many electron states, some of which are not captured by approximate nonequilibrium Green function closures.

  10. The parabolic Anderson model random walk in random potential

    CERN Document Server

    König, Wolfgang


    This is a comprehensive survey on the research on the parabolic Anderson model – the heat equation with random potential or the random walk in random potential – of the years 1990 – 2015. The investigation of this model requires a combination of tools from probability (large deviations, extreme-value theory, e.g.) and analysis (spectral theory for the Laplace operator with potential, variational analysis, e.g.). We explain the background, the applications, the questions and the connections with other models and formulate the most relevant results on the long-time behavior of the solution, like quenched and annealed asymptotics for the total mass, intermittency, confinement and concentration properties and mass flow. Furthermore, we explain the most successful proof methods and give a list of open research problems. Proofs are not detailed, but concisely outlined and commented; the formulations of some theorems are slightly simplified for better comprehension.

  11. Lifshitz Transitions in Magnetic Phases of the Periodic Anderson Model (United States)

    Kubo, Katsunori


    We investigate the reconstruction of a Fermi surface, which is called a Lifshitz transition, in magnetically ordered phases of the periodic Anderson model on a square lattice with a finite Coulomb interaction between f electrons. We apply the variational Monte Carlo method to the model by using the Gutzwiller wavefunctions for the paramagnetic, antiferromagnetic, ferromagnetic, and charge-density-wave states. We find that an antiferromagnetic phase is realized around half-filling and a ferromagnetic phase is realized when the system is far away from half-filling. In both magnetic phases, Lifshitz transitions take place. By analyzing the electronic states, we conclude that the Lifshitz transitions to large ordered-moment states can be regarded as itinerant-localized transitions of the f electrons.

  12. Chiral transition, eigenmode localisation and Anderson-like models

    CERN Document Server

    Giordano, Matteo; Pittler, Ferenc


    We discuss chiral symmetry restoration and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We argue that the features of QCD relevant to both phenomena are the presence of order in the Polyakov line configuration, and the correlations that this induces between spatial links across time slices. This ties the fate of chiral symmetry and of localisation of the lowest Dirac eigenmodes to the confining properties of the theory. We then show numerical results obtained in a QCD-inspired Anderson-like toy model, derived by radically simplifying the QCD dynamics while keeping the important features mentioned above. The toy model reproduces all the important qualitative aspects of chiral symmetry breaking and localisation in QCD, thus supporting the central role played by the confinement/deconfinement transition in triggering both phenomena.

  13. The topological Anderson insulator phase in the Kane-Mele model. (United States)

    Orth, Christoph P; Sekera, Tibor; Bruder, Christoph; Schmidt, Thomas L


    It has been proposed that adding disorder to a topologically trivial mercury telluride/cadmium telluride (HgTe/CdTe) quantum well can induce a transition to a topologically nontrivial state. The resulting state was termed topological Anderson insulator and was found in computer simulations of the Bernevig-Hughes-Zhang model. Here, we show that the topological Anderson insulator is a more universal phenomenon and also appears in the Kane-Mele model of topological insulators on a honeycomb lattice. We numerically investigate the interplay of the relevant parameters, and establish the parameter range in which the topological Anderson insulator exists. A staggered sublattice potential turns out to be a necessary condition for the transition to the topological Anderson insulator. For weak enough disorder, a calculation based on the lowest-order Born approximation reproduces quantitatively the numerical data. Our results thus considerably increase the number of candidate materials for the topological Anderson insulator phase.

  14. Parabolic Anderson model with a finite number of moving catalysts

    CERN Document Server

    Castell, Fabienne; Maillard, Grégory


    We consider the parabolic Anderson model (PAM) which is given by the equation $\\partial u/\\partial t = \\kappa\\Delta u + \\xi u$ with $u\\colon\\, \\Z^d\\times [0,\\infty)\\to \\R$, where $\\kappa \\in [0,\\infty)$ is the diffusion constant, $\\Delta$ is the discrete Laplacian, and $\\xi\\colon\\,\\Z^d\\times [0,\\infty)\\to\\R$ is a space-time random environment that drives the equation. The solution of this equation describes the evolution of a ``reactant'' $u$ under the influence of a ``catalyst'' $\\xi$. In the present paper we focus on the case where $\\xi$ is a system of $n$ independent simple random walks each with step rate $2d\\rho$ and starting from the origin. We study the \\emph{annealed} Lyapunov exponents, i.e., the exponential growth rates of the successive moments of $u$ w.r.t.\\ $\\xi$ and show that these exponents, as a function of the diffusion constant $\\kappa$ and the rate constant $\\rho$, behave differently depending on the dimension $d$. In particular, we give a description of the intermittent behavior of the sys...

  15. Attractive Hubbard model with disorder and the generalized Anderson theorem

    Energy Technology Data Exchange (ETDEWEB)

    Kuchinskii, E. Z., E-mail:; Kuleeva, N. A., E-mail:; Sadovskii, M. V., E-mail: [Russian Academy of Sciences, Institute for Electrophysics, Ural Branch (Russian Federation)


    Using the generalized DMFT+Σ approach, we study the influence of disorder on single-particle properties of the normal phase and the superconducting transition temperature in the attractive Hubbard model. A wide range of attractive potentials U is studied, from the weak coupling region, where both the instability of the normal phase and superconductivity are well described by the BCS model, to the strong-coupling region, where the superconducting transition is due to Bose-Einstein condensation (BEC) of compact Cooper pairs, formed at temperatures much higher than the superconducting transition temperature. We study two typical models of the conduction band with semi-elliptic and flat densities of states, respectively appropriate for three-dimensional and two-dimensional systems. For the semi-elliptic density of states, the disorder influence on all single-particle properties (e.g., density of states) is universal for an arbitrary strength of electronic correlations and disorder and is due to only the general disorder widening of the conduction band. In the case of a flat density of states, universality is absent in the general case, but still the disorder influence is mainly due to band widening, and the universal behavior is restored for large enough disorder. Using the combination of DMFT+Σ and Nozieres-Schmitt-Rink approximations, we study the disorder influence on the superconducting transition temperature T{sub c} for a range of characteristic values of U and disorder, including the BCS-BEC crossover region and the limit of strong-coupling. Disorder can either suppress T{sub c} (in the weak-coupling region) or significantly increase T{sub c} (in the strong-coupling region). However, in all cases, the generalized Anderson theorem is valid and all changes of the superconducting critical temperature are essentially due to only the general disorder widening of the conduction band.

  16. Parabolic Anderson Model in a Dynamic Random Environment: Random Conductances (United States)

    Erhard, D.; den Hollander, F.; Maillard, G.


    The parabolic Anderson model is defined as the partial differential equation ∂ u( x, t)/ ∂ t = κ Δ u( x, t) + ξ( x, t) u( x, t), x ∈ ℤ d , t ≥ 0, where κ ∈ [0, ∞) is the diffusion constant, Δ is the discrete Laplacian, and ξ is a dynamic random environment that drives the equation. The initial condition u( x, 0) = u 0( x), x ∈ ℤ d , is typically taken to be non-negative and bounded. The solution of the parabolic Anderson equation describes the evolution of a field of particles performing independent simple random walks with binary branching: particles jump at rate 2 d κ, split into two at rate ξ ∨ 0, and die at rate (- ξ) ∨ 0. In earlier work we looked at the Lyapunov exponents λ p(κ ) = limlimits _{tto ∞} 1/t log {E} ([u(0,t)]p)^{1/p}, quad p in {N} , qquad λ 0(κ ) = limlimits _{tto ∞} 1/2 log u(0,t). For the former we derived quantitative results on the κ-dependence for four choices of ξ : space-time white noise, independent simple random walks, the exclusion process and the voter model. For the latter we obtained qualitative results under certain space-time mixing conditions on ξ. In the present paper we investigate what happens when κΔ is replaced by Δ𝓚, where 𝓚 = {𝓚( x, y) : x, y ∈ ℤ d , x ˜ y} is a collection of random conductances between neighbouring sites replacing the constant conductances κ in the homogeneous model. We show that the associated annealed Lyapunov exponents λ p (𝓚), p ∈ ℕ, are given by the formula λ p({K} ) = {sup} {λ p(κ ) : κ in {Supp} ({K} )}, where, for a fixed realisation of 𝓚, Supp(𝓚) is the set of values taken by the 𝓚-field. We also show that for the associated quenched Lyapunov exponent λ 0(𝓚) this formula only provides a lower bound, and we conjecture that an upper bound holds when Supp(𝓚) is replaced by its convex hull. Our proof is valid for three classes of reversible ξ, and for all 𝓚

  17. Numerical renormalization group study of probability distributions for local fluctuations in the Anderson-Holstein and Holstein-Hubbard models. (United States)

    Hewson, Alex C; Bauer, Johannes


    We show that information on the probability density of local fluctuations can be obtained from a numerical renormalization group calculation of a reduced density matrix. We apply this approach to the Anderson-Holstein impurity model to calculate the ground state probability density ρ(x) for the displacement x of the local oscillator. From this density we can deduce an effective local potential for the oscillator and compare its form with that obtained from a semiclassical approximation as a function of the coupling strength. The method is extended to the infinite dimensional Holstein-Hubbard model using dynamical mean field theory. We use this approach to compare the probability densities for the displacement of the local oscillator in the normal, antiferromagnetic and charge ordered phases.

  18. Bound States in Boson Impurity Models (United States)

    Shi, Tao; Wu, Ying-Hai; González-Tudela, A.; Cirac, J. I.


    The formation of bound states involving multiple particles underlies many interesting quantum physical phenomena, such as Efimov physics or superconductivity. In this work, we show the existence of an infinite number of such states for some boson impurity models. They describe free bosons coupled to an impurity and include some of the most representative models in quantum optics. We also propose a family of wave functions to describe the bound states and verify that it accurately characterizes all parameter regimes by comparing its predictions with exact numerical calculations for a one-dimensional tight-binding Hamiltonian. For that model, we also analyze the nature of the bound states by studying the scaling relations of physical quantities, such as the ground-state energy and localization length, and find a nonanalytical behavior as a function of the coupling strength. Finally, we discuss how to test our theoretical predictions in experimental platforms, such as photonic crystal structures and cold atoms in optical lattices.

  19. Brownian motion and parabolic Anderson model in a renormalized Poisson potential


    Chen, Xia; Kulik, Alexey M.


    A method known as renormalization is proposed for constructing some more physically realistic random potentials in a Poisson cloud. The Brownian motion in the renormalized random potential and related parabolic Anderson models are modeled. With the renormalization, for example, the models consistent to Newton’s law of universal attraction can be rigorously constructed.

  20. Strongly correlated electron systems: Photoemission and the single-impurity model

    Energy Technology Data Exchange (ETDEWEB)

    Arko, A.J.; Joyce, J.J.; Andrews, A.B.; Thompson, J.D.; Smith, J.L.; Mandrus, D.; Hundley, M.F.; Cornelius, A.L. [Los Alamos National Laboratories, Los Alamos, New Mexico 87545 (United States); Moshopoulou, E.; Fisk, Z. [NHMFL, Florida State University, Tallahassee, Florida 32306-4005 (United States); Canfield, P.C. [Iowa State University/Ames Laboratory, Ames, Iowa 50011 (United States); Menovsky, A. [Natuurkundig Laboratorium, University of Amsterdam, Amsterdam (The Netherlands)


    We present high-resolution, angle-resolved photoemission spectra for Ce-based and U-based strongly correlated electron systems. The experimental results are irreconcilable with the long-accepted single-impurity model, which predicts a narrow singlet state, in close proximity to the Fermi energy, whose linewidth and binding energy are a constant determined by a characteristic temperature T{sub K} for the material. We report that both 4f and 5f photoemission features disperse with crystal momentum at temperatures both above and below T{sub K}; these are characteristics consistent with narrow bands but not with the single-impurity model. Inclusion of the lattice must be considered at all temperatures. Variants of the periodic Anderson model are consistent with this approach. {copyright} {ital 1997} {ital The American Physical Society}

  1. Adaptive and self-averaging Thouless-Anderson-Palmer mean-field theory for probabilistic modeling

    DEFF Research Database (Denmark)

    Opper, Manfred; Winther, Ole


    We develop a generalization of the Thouless-Anderson-Palmer (TAP) mean-field approach of disorder physics. which makes the method applicable to the computation of approximate averages in probabilistic models for real data. In contrast to the conventional TAP approach, where the knowledge of the d......We develop a generalization of the Thouless-Anderson-Palmer (TAP) mean-field approach of disorder physics. which makes the method applicable to the computation of approximate averages in probabilistic models for real data. In contrast to the conventional TAP approach, where the knowledge...... distributions in the thermodynamic limit. On the other hand, simulations on a real data model demonstrate that the method achieves more accurate predictions as compared to conventional TAP approaches....

  2. On Absence of Pure Singular Spectrum of Random Perturbations and in Anderson Model at Low Disorde

    CERN Document Server

    Grinshpun, V


    Absence of singular component, with probability one, in the conductivity spectra of bounded random perturbations of multidimensional finite-difference Hamiltonians, is for the first time rigorously established under certain conditions ensuring either absence of pure point, or absence of pure absolutely continuous component in the corresponding regions of spectra. The main technical tool applied is the theory of rank-one perturbations of singular spectra. The respective new result (the non-mixing property) is applied to establish existence and bounds of the (non-empty) pure absolutely continuous component in the spectrum of the Anderson model with bounded random potential in dimension 2 at low disorder. The new (1999) result implies, via the trace-class perturbation analysis, the Anderson model with the unbounded potential to have only pure point spectrum (complete system of localized wave-functions) with probability one in arbitrary dimension. The new technics, based on the resolvent reduction formula, and ex...

  3. Perturbation theory for Lyapunov exponents of an Anderson model on a strip

    CERN Document Server

    Schulz-Baldes, H


    It is proven that the localization length of an Anderson model on a strip of width $L$ is bounded above by $L/\\lambda^2$ for small values of the coupling constant $\\lambda$ of the disordered potential. For this purpose, a new formalism is developed in order to calculate the bottom Lyapunov exponent associated with random products of large symplectic matrices perturbatively in the coupling constant of the randomness.

  4. Entanglement in One-Dimensional Anderson Model with Long-Range Correlated Disorder

    Institute of Scientific and Technical Information of China (English)

    GUO Zi-Zheng


    @@ By using the measure of concurrence,the entanglement of the ground state in the one-dimensional Anderson model is studied with consideration of the long-range correlations. Three kinds of correlations are discussed.We compare the effects of the long-rang Gaussian and power-law correlations between the site energies on the concurrence,and demonstrate the existence of the band structure of the concurrence in the power-law case.

  5. Tractable approximations for probabilistic models: The adaptive Thouless-Anderson-Palmer mean field approach

    DEFF Research Database (Denmark)

    Opper, Manfred; Winther, Ole


    We develop an advanced mean held method for approximating averages in probabilistic data models that is based on the Thouless-Anderson-Palmer (TAP) approach of disorder physics. In contrast to conventional TAP. where the knowledge of the distribution of couplings between the random variables is r...... is required. our method adapts to the concrete couplings. We demonstrate the validity of our approach, which is so far restricted to models with nonglassy behavior? by replica calculations for a wide class of models as well as by simulations for a real data set....

  6. Conduction in quasiperiodic and quasirandom lattices: Fibonacci, Riemann, and Anderson models (United States)

    Varma, V. K.; Pilati, S.; Kravtsov, V. E.


    We study the ground state conduction properties of noninteracting electrons in aperiodic but nonrandom one-dimensional models with chiral symmetry and make comparisons against Anderson models with nondeterministic disorder. The first model we consider is the Fibonacci lattice, which is a paradigmatic model of quasicrystals; the second is the Riemann lattice, which we define inspired by Dyson's proposal on the possible connection between the Riemann hypothesis and a suitably defined quasicrystal. Our analysis is based on Kohn's many-particle localization tensor defined within the modern theory of the insulating state. In the Fibonacci quasicrystal, where all single-particle eigenstates are critical (i.e., intermediate between ergodic and localized), the noninteracting electron gas is found to be an insulator, due to spectral gaps, at various specific fillings ρ , including the values ρ =1 /gn , where g is the golden ratio and n is any integer; however away from these spectral anomalies, the system is found to be a conductor, including the half-filled case. In the Riemann lattice metallic behavior is found at half filling as well; however, in contrast to the Fibonacci quasicrystal, the Riemann lattice is generically an insulator due to single-particle eigenstate localization, likely at all other fillings. Its behavior turns out to be alike that of the off-diagonal Anderson model, albeit with different system-size scaling of the band-center anomalies. The advantages of analyzing the Kohn's localization tensor instead of other measures of localization familiar from the theory of Anderson insulators (such as the participation ratio or the Lyapunov exponent) are highlighted.

  7. Exact Solution for Perk-Schultz Model with Boundary Impurities *

    Institute of Scientific and Technical Information of China (English)

    LI Guang-Liang; YUE Rui-Hong; SHI Kang-Jie; HOU Bo-Yu


    The Perk-Schultz model with SUq(m|n) spin boundary impurities is constructed by dressing the c-number reflecting K-matrix with the local L-matrix which acts non-trivially on an impurity Hilbert space. The eigenvalue of the transfer matrix and the corresponding Bethe ansatz equations with different c-number reflecting K-matrices are obtained by using the nested Bethe ansatz method (m ≠ n). When m = 1,n = 2, our results come back to that of supersymmetric t - J model with SUq(1|2) spin boundary impurities.

  8. The exhaustion problem in the periodic Anderson model: An X-boson approach

    Energy Technology Data Exchange (ETDEWEB)

    Franco, R. [Departamento de Fisica, Universidad Nacional de Colombia, Ciudadela Universidad Nacional, Bogota (Colombia)]. E-mail:; Silva-Valencia, J. [Departamento de Fisica, Universidad Nacional de Colombia, Ciudadela Universidad Nacional, Bogota (Colombia); Figueira, M.S. [Instituto de Fisica da Universidade Federal Fluminense, Av. Litoranea s/n, 24210-340 Niteroi, Rio de Janeiro C.P.100.093 (Brazil)


    We study the thermodynamical properties of the periodic Anderson model (PAM), within the X-boson approach. The exhaustion problem is studied and we calculate the entropy and the specific heat for the heavy fermion Kondo regime (HF-K) of the PAM. We compute numerically the evolution of the Kondo lattice T{sub KL} and the Fermi liquid T{sup *} temperatures as function of the conduction electron occupation number n{sub c}. The results obtained are consistent with others reported in the literature for the Kondo lattice.

  9. Variational Monte Carlo study of magnetic states in the periodic Anderson model (United States)

    Kubo, Katsunori


    We study the magnetic states of the periodic Anderson model with a finite Coulomb interaction between f electrons on a square lattice by applying variational Monte Carlo method. We consider Gutzwiller wavefunctions for the paramagnetic, antiferromagnetic, ferromagnetic, and charge density wave states. We find an antiferromagnetic phase around half-filling. There is a phase transition accompanying change in the Fermi-surface topology in this antiferromagnetic phase. We also study a case away from half-filling, and find a ferromagnetic state as the ground state there.

  10. Correlation-driven d -wave superconductivity in Anderson lattice model: Two gaps (United States)

    Wysokiński, Marcin M.; Kaczmarczyk, Jan; Spałek, Józef


    Superconductivity in heavy-fermion systems has an unconventional nature and is considered to originate from the universal features of the electronic structure. Here, the Anderson lattice model is studied by means of the full variational Gutzwiller wave function incorporating nonlocal effects of the on-site interaction. We show that the d -wave superconducting ground state can be driven solely by interelectronic correlations. The proposed microscopic mechanism leads to a multigap superconductivity with the dominant contribution due to f electrons and in the dx2-y2-wave channel. Our results rationalize several important observations for CeCoIn5.

  11. Extending the Newns-Anderson model to molecules with floppy degrees of freedom. Validation by electronic structure calculations

    CERN Document Server

    Baldea, Ioan


    In cases where reorganization is important, present theoretical studies of molecular transport have inherently to resort to models. The Newns-Anderson model is ubiquitous for this purpose but, to author's knowledge, attempts to validate/challenge this model by microscopic calculations are missing in the literature. In this work, results of electronic structure calculations are presented, which demonstrate that the conventional Newns-Anderson model fails to describe redox-active tunneling junctions of recent experimental interest. For the case considered, the ($4, 4^\\prime$)-bipyridine molecule, the failure traces back to the floppy degree of freedom represented by the relative rotation of the two pyridine rings. Expressions that generalize the Newns-Anderson model are deduced, which include significant anharmonicities. These expressions can be straightforwardly utilized as input information in calculations of the partially coherent transport.

  12. Impurity modes in the one-dimensional XXZ Heisenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, J.M. [Departamento de Física, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, 57072-970 Teresina, Piauí (Brazil); Leite, R.V. [Centro de Ciências Exatas e Tecnologia, Curso de Física, Universidade Estadual Vale do Acaraú, Av. Dr. Guarany 317, Campus Cidao, 62040-730 Sobral, Ceará (Brazil); Landim, R.R. [Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-760 Fortaleza, Ceará (Brazil); Costa Filho, R.N., E-mail: [Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-760 Fortaleza, Ceará (Brazil)


    A Green's function formalism is used to calculate the energy of impurity modes associated with one and/or two magnetic impurities in the one-dimensional Heisenberg XXZ magnetic chain. The system can be tuned from the Heisenberg to the Ising model varying a parameter λ. A numerical study is performed showing two types of localized modes (s and p). The modes depend on λ and the degeneracy of the acoustic modes is broken.

  13. Positivity of Lyapunov exponents for Anderson-type models on two coupled strings

    Directory of Open Access Journals (Sweden)

    Hakim Boumaza


    Full Text Available We study two models of Anderson-type random operators on two deterministically coupled continuous strings. Each model is associated with independent, identically distributed four-by-four symplectic transfer matrices, which describe the asymptotics of solutions. In each case we use a criterion by Gol'dsheid and Margulis (i.e. Zariski denseness of the group generated by the transfer matrices in the group of symplectic matrices to prove positivity of both leading Lyapunov exponents for most energies. In each case this implies almost sure absence of absolutely continuous spectrum (at all energies in the first model and for sufficiently large energies in the second model. The methods used allow for singularly distributed random parameters, including Bernoulli distributions.

  14. An Ising-Anderson model of localisation in high-temperature QCD

    CERN Document Server

    Giordano, Matteo; Pittler, Ferenc


    We discuss a possible mechanism leading to localisation of the low-lying Dirac eigenmodes in high-temperature lattice QCD, based on the spatial fluctuations of the local Polyakov lines in the partially ordered configurations above $T_c$. This mechanism provides a qualitative explanation of the dependence of localisation on the temperature and on the lattice spacing, and also of the phase diagram of QCD with an imaginary chemical potential. To test the viability of this mechanism we propose a three-dimensional effective, Anderson-like model, mimicking the effect of the Polyakov lines on the quarks. The diagonal, on-site disorder is governed by a three-dimensional Ising-like spin model with continuous spins. Our numerical results show that localised modes are indeed present in the ordered phase of the Ising model, thus supporting the proposed mechanism for localisation in QCD.

  15. Conductance distribution at criticality: one-dimensional Anderson model with random long-range hopping

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A. [Instituto de Fisica, Universidad Autonoma de Puebla, Apartado Postal J-48, Puebla 72570 (Mexico); Gopar, V. [Departamento de Fisica Teorica and Instituto de Biocomputacion y Fisica de Sistemas Complejos (BIFI), Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Varga, I. [Elmeleti Fizika Tanszek, Fizikai Intezet, Budapesti Mueszaki es Gazdasagtudomanyi Egyetem, 1521 Budapest (Hungary); Fachbereich Physik und Wissenschaftliches Zentrum fuer Materialwissenschaften, Philipps Universitaet Marburg, 35032 Marburg (Germany)


    We study numerically the conductance distribution function w(T) for the one-dimensional Anderson model with random long-range hopping described by the Power-law Banded Random Matrix model at criticality. We concentrate on the case of two single-channel leads attached to the system. We observe a smooth transition from localized to delocalized behavior in the conductance distribution by increasing b, the effective bandwidth of the model. Also, for b < 1 we show that w(ln T/T{sub typ}) is scale invariant, where T{sub typ} = exp left angle ln T right angle is the typical value of T. Moreover, we find that for T < T{sub typ}, w(ln T/T{sub typ}) shows a universal behavior proportional to (T/T{sub typ}){sup -1/2}. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  16. Decoherence-induced conductivity in the one-dimensional Anderson model

    Energy Technology Data Exchange (ETDEWEB)

    Stegmann, Thomas; Wolf, Dietrich E. [Department of Physics, University of Duisburg-Essen and CENIDE, 47048 Duisburg (Germany); Ujsághy, Orsolya [Department of Theoretical Physics, Budapest University of Technology and Economics, Budafoki út 8., H-1521 Budapest (Hungary)


    We study the effect of decoherence on the electron transport in the one-dimensional Anderson model by means of a statistical model [1, 2, 3, 4, 5]. In this model decoherence bonds are randomly distributed within the system, at which the electron phase is randomized completely. Afterwards, the transport quantity of interest (e.g. resistance or conductance) is ensemble averaged over the decoherence configurations. Averaging the resistance of the sample, the calculation can be performed analytically. In the thermodynamic limit, we find a decoherence-driven transition from the quantum-coherent localized regime to the Ohmic regime at a critical decoherence density, which is determined by the second-order generalized Lyapunov exponent (GLE) [4].

  17. Evidence of Non-Mean-Field-Like Low-Temperature Behavior in the Edwards-Anderson Spin-Glass Model (United States)

    Yucesoy, Burcu; Katzgraber, Helmut G.; Machta, Jonathan


    The three and four-dimensional Edwards-Anderson and mean-field Sherrington-Kirkpatrick Ising spin glasses are studied via large-scale Monte Carlo simulations at low temperatures, deep within the spin-glass phase. Performing a careful statistical analysis of several thousand independent disorder realizations and using an observable that detects peaks in the overlap distribution, we show that the Sherrington-Kirkpatrick and Edwards-Anderson models have a distinctly different low-temperature behavior. The structure of the spin-glass overlap distribution for the Edwards-Anderson model suggests that its low-temperature phase has only a single pair of pure states. J. M. and B. Y. are supported in part by the NSF (Grant No. DMR-0907235 and DMR-1208046).

  18. Anderson-Holstein model in two flavors of the noncrossing approximation (United States)

    Chen, Hsing-Ta; Cohen, Guy; Millis, Andrew J.; Reichman, David R.


    The dynamical interplay between electron-electron interactions and electron-phonon coupling is investigated within the Anderson-Holstein model, a minimal model for open quantum systems that embody these effects. The influence of phonons on spectral and transport properties is explored in equilibrium, for nonequilibrium steady state and for transient dynamics after a quench. Both the particle-hole symmetric and the more generic particle-hole asymmetric cases are studied. The treatment is based on two complementary noncrossing approximations, the first of which is constructed around the weak-coupling limit and the second around the polaron limit. In general, the two methods disagree in nontrivial ways, indicating that more reliable approaches to the problem are needed. The frameworks used here can form the starting point for numerically exact methods based on bold-line continuous-time quantum Monte Carlo algorithms capable of treating open systems simultaneously coupled to multiple fermionic and bosonic baths.

  19. Delocalization and Sensitivity of Quantum Wavepacket in Coherently Perturbed Kicked Anderson Model

    Directory of Open Access Journals (Sweden)

    Hiroaki Yamada


    Full Text Available Abstract: We consider quantum diffusion of the initially localized wavepacket in one-dimensional kicked disordered system with classical coherent perturbation. The wavepacket localizes in the unperturbed kicked Anderson model. However, the wavepacket get delocalized even by coupling with monochromatic perturbation. We call the state "dynamically delocalized state". It is numerically shown that the delocalized wavepacket spread obeying diffusion law, and the perturbation strength dependence of the diffusion rate is given. The sensitivity of the delocalized state is also shown by the time-reversal experiment after random change in phase of the wavepacket. Moreover, it is found that the diffusion strongly depend on the initial phase of the perturbation. We discuss a relation between the "classicalization" of the quantum wave packet and the time-dependence of the initial phase dependence. The complex structure of the initial phase dependence is related to the entropy production in the quantum system.

  20. ARPES in strongly correlated 4f and 5f systems: Comparison to the Periodic Anderson Model

    Energy Technology Data Exchange (ETDEWEB)

    Arko, A.J.; Joyce, J.J.; Cox, L.E. [and others


    The electronic structure of both Ce and U heavy fermions appears to consist of extremely narrow, nearly temperature independent bands (i.e., no spectral weight loss or transfer with temperature). A small dispersion of the f-bands above the Kondo temperature is easily measurable so that a Kondo resonance, as defined by NCA, is not evident. Preliminary results, however, indicate that the Periodic Anderson Model captures some of the essential physics. Angle-integrated resonant photoemission results on {delta}-Pu indicate a narrow 5f feature at E{sub F}, similar in width to f-states in Ce and U compounds, but differing in that cross-section behavior of the near-E{sub F} feature suggests substantial 6D admixture.

  1. Quantum critical phase and Lifshitz transition in an extended periodic Anderson model. (United States)

    Laad, M S; Koley, S; Taraphder, A


    We study the quantum phase transition in f-electron systems as a quantum Lifshitz transition driven by selective-Mott localization in a realistic extended Anderson lattice model. Using dynamical mean-field theory (DMFT), we find that a quantum critical phase with anomalous ω/T scaling separates a heavy Landau-Fermi liquid from ordered phase(s). This non-Fermi liquid state arises from a lattice orthogonality catastrophe originating from orbital-selective Mott localization. Fermi surface reconstruction occurs via the interplay between and penetration of the Green function zeros to the poles, leading to violation of Luttinger's theorem in the strange metal. We show how this naturally leads to scale-invariant responses in transport. Thus, our work represents a specific DMFT realization of the hidden-FL and FL* theories, and holds promise for the study of 'strange' metal phases in quantum matter.

  2. Numerical results for the Edwards-Anderson spin-glass model at low temperature (United States)

    Fernández, Julio F.; Alonso, Juan J.


    We have simulated Edwards-Anderson (EA) as well as Sherrington-Kirkpatrick systems of L3 spins. After averaging over large sets of EA system samples of 3≤L≤10, we obtain accurate numbers for distributions p(q) of the overlap parameter q at very low-temperature T. We find p(0)/T→0.233(4) as T→0. This is in contrast with the droplet scenario of spin glasses. We also study the number of mismatched links—between replica pairs—that come with large scale excitations. Contributions from small scale excitations are discarded. We thus obtain for the fractal dimension of outer surfaces of q˜0 excitations in the EA model ds→2.59(3) as T→0. This is in contrast with ds→3 as T→0 that is predicted by mean-field theory for the macroscopic limit.

  3. Anderson localization in the multi-particle tight-binding model at low energies or with weak interaction

    CERN Document Server

    Ekanga, Trésor


    We consider the multi-particle lattice Anderson model with an i.i.d. random external potential and a short-range interaction. Using the multi-particle multiscale analysis (MPMSA) developed by Chulaevsky and Suhov (2009), we prove spectral localization for such Hamiltonians at low energies under the assumption of log-H\\"{o}lder continuity of the marginal probability distribution of the random potential. Under a stronger assumption of H\\"older continuity, Anderson localization for such systems at low energies was established earlier by Aizenman and Warzel (2009) with the help of the multi-particle Fractional-Moment Method.

  4. Phase diagram and reentrance for the 3D Edwards–Anderson model using information theory

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, V. [Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avenida Diagonal las Torres 2640, Peñalolén, Santiago (Chile); Saravia, G.; Vogel, E.E. [Departamento de Ciencias Físicas, Universidad de La Frontera, Casilla 54-D, Temuco (Chile)


    Data compressor techniques are used to study the phase diagram of the generalized Edwards–Anderson model in three dimensions covering the full range of mixture between ferromagnetic (concentration 1−x) and antiferromagnetic interactions (concentration x). The recently proposed data compressor wlzip is used to recognize criticality by the maximum information content in the files storing the simulation processes. The method allows not only the characterization of the ferromagnetic to paramagnetic (FP) transition (x<0.22, or x>0.78) but also it equally well yields the spin-glass to paramagnetic (SP) transition (0.22Anderson model. • Ferromagnetic to paramagnetic and spin-glass to paramagnetic transitions are found. • A reentrant behavior is reported near the triple point. • Data compressor wlzip can operate for the full range of the phase diagram. • Results are robust with respect to equilibration and lattices size effects are small.

  5. Modeling Electronegative Impurity Concentrations in Liquid Argon Detectors (United States)

    Tang, Wei; Li, Yichen; Thorn, Craig; Qian, Xin


    Achieving long electron lifetime is crucial to reach the high performance of large Liquid Argon Time Projection Chamber (LArTPC) envisioned for next generation neutrino experiments. We have built up a quantitative model to describe the impurity distribution and transportation in a cryostat. Henrys constants of Oxygen and water, which describe the partition of impurities between gas argon and liquid argon, have been deduced through this model with the measurements in BNL 20-L LAr test stand. These results indicate the importance of the gas purification system and prospects on large LArTPC detectors will be discussed.

  6. Matrix product state calculations for one-dimensional quantum chains and quantum impurity models

    Energy Technology Data Exchange (ETDEWEB)

    Muender, Wolfgang


    involving a Kondo exciton and population switching in quantum dots. It turns out that both phenomena rely on the various manifestations of Anderson orthogonality (AO), which describes the fact that the response of the Fermi sea to a quantum quench (i.e. an abrupt change of some property of the impurity or quantum dot) is a change of the scattering phase shifts of all the single-particle wave functions, therefore drastically changing the system. In this context, we demonstrate that NRG, a highly accurate method for quantum impurity models, allows for the calculation of all static and dynamic quantities related to AO and present an extensive NRG study for population switching in quantum dots. (orig.)

  7. Numerical evidence against both mean field and droplet scenarios of the Edwards-Anderson model (United States)

    Fernandez, Julio F.; Alonso, Juan J.


    From tempered Monte Carlo simulations, we have obtained accurate probability distributions p (q) of the spin-overlap parameter q for finite Edwards-Anderson (EA) and Sherrington-Kirkpatrick (SK) spin-glass systems at low temperatures. Our results for p (q) follow from averages over 105 disordered samples of linear sizes L = 4 - 8 and over 15 000 samples for L = 10 . In both the SK and EA models, at temperatures as low as 0 . 2Tsg , where Tsg is the transition temperature, p (q) varies insignificantly with L. This does not fit the trend that the droplet model predicts for large L. We have also calculated correlation functions, F (q1 ,q2) , from which rms deviations, δp , over different realizations of quenched disorder, as well as thermal fluctuations, w, of q values, follow. Our numerical results for δp and w scale as √{ L} and 1 / L , respectively, in the SK model. This fits in well with mean field predictions. On the other hand, our data for w and δp vary little, if at all, for the EA model.

  8. General derivation of the Green's functions for the atomic approach of the Anderson model: application to a single electron transistor (SET

    Directory of Open Access Journals (Sweden)

    M. E. Foglio


    Full Text Available We consider the cumulant expansion of the periodic Anderson model (PAM in the case of a finite electronic correlation U, employing the hybridization as perturbation, and obtain a formal expression of the exact one-electron Green's function (GF. This expression contains effective cumulants that are as difficult to calculate as the original GF, and the atomic approach consists in substituting the effective cumulants by the ones that correspond to the atomic case, namely by taking a conduction band of zeroth width and local hybridization. In a previous work (T. Lobo, M. S. Figueira, and M. E. Foglio, Nanotechnology 21, 274007 (201010.1088/0957-4484/21/27/274007 we developed the atomic approach by considering only one variational parameter that is used to adjust the correct height of the Kondo peak by imposing the satisfaction of the Friedel sum rule. To obtain the correct width of the Kondo peak in the present work, we consider an additional variational parameter that guarantees this quantity. The two constraints now imposed on the formalism are the satisfaction of the Friedel sum rule and the correct Kondo temperature. In the first part of the work, we present a general derivation of the method for the single impurity Anderson model (SIAM, and we calculate several density of states representative of the Kondo regime for finite correlation U, including the symmetrical case. In the second part, we apply the method to study the electronic transport through a quantum dot (QD embedded in a quantum wire (QW, which is realized experimentally by a single electron transistor (SET. We calculate the conductance of the SET and obtain a good agreement with available experimental and theoretical results.

  9. Type-I integrable quantum impurities in the Heisenberg model

    CERN Document Server

    Doikou, Anastasia


    Type-I quantum impurities are investigated in the context of the integrable Heisenberg model. This type of defects is associated to the (q)-harmonic oscillator algebra. The transmission matrices associated to this particular type of defects are computed via the Bethe ansatz methodology for the XXX model, as well as for the critical and non-critical XXZ spin chain. In the attractive regime of the critical XXZ spin chain the transmission amplitudes for the breathers are also identified.

  10. Type-I integrable quantum impurities in the Heisenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Doikou, Anastasia, E-mail:


    Type-I quantum impurities are investigated in the context of the integrable Heisenberg model. This type of defects is associated to the (q)-harmonic oscillator algebra. The transmission matrices associated to this particular type of defects are computed via the Bethe ansatz methodology for the XXX model, as well as for the critical and non-critical XXZ spin chain. In the attractive regime of the critical XXZ spin chain the transmission amplitudes for the breathers are also identified.

  11. Eigenfunction structure and scaling of two interacting particles in the one-dimensional Anderson model (United States)

    Frahm, Klaus M.


    The localization properties of eigenfunctions for two interacting particles in the one-dimensional Anderson model are studied for system sizes up to N = 5000 sites corresponding to a Hilbert space of dimension ≈107 using the Green function Arnoldi method. The eigenfunction structure is illustrated in position, momentum and energy representation, the latter corresponding to an expansion in non-interacting product eigenfunctions. Different types of localization lengths are computed for parameter ranges in system size, disorder and interaction strengths inaccessible until now. We confirm that one-parameter scaling theory can be successfully applied provided that the condition of N being significantly larger than the one-particle localization length L1 is verified. The enhancement effect of the two-particle localization length L2 behaving as L2 ~ L21 is clearly confirmed for a certain quite large interval of optimal interactions strengths. Further new results for the interaction dependence in a very large interval, an energy value outside the band center, and different interaction ranges are obtained.

  12. Quenched Lyapunov exponent for the parabolic Anderson model in a dynamic random environment

    CERN Document Server

    Gärtner, Jürgen; Maillard, Grégory


    We continue our study of the parabolic Anderson equation $\\partial u/\\partial t = \\kappa\\Delta u + \\gamma\\xi u$ for the space-time field $u\\colon\\,\\Z^d\\times [0,\\infty)\\to\\R$, where $\\kappa \\in [0,\\infty)$ is the diffusion constant, $\\Delta$ is the discrete Laplacian, $\\gamma\\in (0,\\infty)$ is the coupling constant, and $\\xi\\colon\\,\\Z^d\\times [0,\\infty)\\to\\R$ is a space-time random environment that drives the equation. The solution of this equation describes the evolution of a "reactant" $u$ under the influence of a "catalyst" $\\xi$, both living on $\\Z^d$. In earlier work we considered three choices for $\\xi$: independent simple random walks, the symmetric exclusion process, and the symmetric voter model, all in equilibrium at a given density. We analyzed the \\emph{annealed} Lyapunov exponents, i.e., the exponential growth rates of the successive moments of $u$ w.r.t.\\ $\\xi$, and showed that these exponents display an interesting dependence on the diffusion constant $\\kappa$, with qualitatively different beha...

  13. Pseudospin representation of the two-site Anderson-Hubbard model (United States)

    Wortis, Rachel; Kennett, Malcolm

    The state of an Anderson localized system can be described in terms of the occupation of a set of single-particle wave functions which are localized in space. When interactions are added, single-particle wave functions are no longer well defined, so what is a useful description of the state of a many-body localized system and what about it is localized? Given that any system with Hilbert-space dimension 2N may be described by an Ising-type Hamiltonian, it has been proposed that in a fully many-body localized system the Ising pseudospins in this representation may be chosen to be local. Actually constructing these spins is non-trivial. While a number of approaches have been proposed, few explicit examples exist and almost all work has been on spin systems. Here we present the Hamiltonian of a two-site Hubbard model with disorder and nearest-neighbor interactions written in terms of pseudospins, and we explore the form of these pseudospins and their evolution as a function of hopping amplitude. Supported by NSERC of Canada.

  14. Itinerant-Localized Transitions in Magnetic Phases of the Periodic Anderson Model (United States)

    Kubo, Katsunori

    To clarify the characteristics of Fermi-surface reconstruction, called Lifshitz transitions, in magnetic phases of f-electron materials, we investigate magnetically ordered states of the periodic Anderson model by applying the variational Monte Carlo method. As variational wavefunctions, we use the Gutzwiller wavefunctions for the paramagnetic, antiferromagnetic, and ferromagnetic states. Around half-filling, we find an antiferromagnetic phase, and far away from half-filling, we find a ferromagnetic phase as the ground state. Inside both magnetic phases, Lifshitz transitions take place. At the Lifshitz transitions, the sizes of the ordered moments change. In order to understand the Lifshitz transitions further, we also analyze the f -electron contribution to the Fermi surface by evaluating the jump in the momentum distribution function at the Fermi momentum. Then, we find that, in the large ordered-moment states, the f -electron contribution to the Fermi surface becomes small. This observation clearly shows that these Lifshitz transitions are itinerant-localized transitions of the f electrons.

  15. An effective medium approach to the asymptotics of the statistical moments of the parabolic Anderson model and Lifshitz tails

    CERN Document Server

    Metzger, Bernd


    Originally introduced in solid state physics to model amorphous materials and alloys exhibiting disorder induced metal-insulator transitions, the Anderson model $H_{\\omega}= -\\Delta + V_{\\omega} $ on $l^2(\\bZ^d)$ has become in mathematical physics as well as in probability theory a paradigmatic example for the relevance of disorder effects. Here $\\Delta$ is the discrete Laplacian and $V_{\\omega} = \\{V_{\\omega}(x): x \\in \\bZ^d\\}$ is an i.i.d. random field taking values in $\\bR$. A popular model in probability theory is the parabolic Anderson model (PAM), i.e. the discrete diffusion equation $\\partial_t u(x,t) =-H_{\\omega} u(x,t)$ on $ \\bZ^d \\times \\bR_+$, $u(x,0)=1$, where random sources and sinks are modelled by the Anderson Hamiltonian. A characteristic property of the solutions of (PAM) is the occurrence of intermittency peaks in the large time limit. These intermittency peaks determine the thermodynamic observables extensively studied in the probabilistic literature using path integral methods and the theo...

  16. Gutzwiller wave-function solution for Anderson lattice model: Emerging universal regimes of heavy quasiparticle states (United States)

    Wysokiński, Marcin M.; Kaczmarczyk, Jan; Spałek, Jozef


    The recently proposed diagrammatic expansion (DE) technique for the full Gutzwiller wave function (GWF) is applied to the Anderson lattice model. This approach allows for a systematic evaluation of the expectation values with full Gutzwiller wave function in finite-dimensional systems. It introduces results extending in an essential manner those obtained by means of the standard Gutzwiller approximation (GA), which is variationally exact only in infinite dimensions. Within the DE-GWF approach we discuss the principal paramagnetic properties and their relevance to heavy-fermion systems. We demonstrate the formation of an effective, narrow f band originating from atomic f -electron states and subsequently interpret this behavior as a direct itineracy of f electrons; it represents a combined effect of both the hybridization and the correlations induced by the Coulomb repulsive interaction. Such a feature is absent on the level of GA, which is equivalent to the zeroth order of our expansion. Formation of the hybridization- and electron-concentration-dependent narrow f band rationalizes the common assumption of such dispersion of f levels in the phenomenological modeling of the band structure of CeCoIn5. Moreover, it is shown that the emerging f -electron direct itineracy leads in a natural manner to three physically distinct regimes within a single model that are frequently discussed for 4 f - or 5 f -electron compounds as separate model situations. We identify these regimes as (i) the mixed-valence regime, (ii) Kondo/almost-Kondo insulating regime, and (iii) the Kondo-lattice limit when the f -electron occupancy is very close to the f -state half filling, →1 . The nonstandard features of the emerging correlated quantum liquid state are stressed.

  17. Magnetic impurity transition in a (d + s)-wave superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, L.S. [Quantum Physics Division, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland)


    We consider the superconducting state of d + s symmetry with finite concentration of Anderson impurities in the limit {delta}{sub s} /{delta}{sub d} << 1. The model consists of a BCS-like term in the Hamiltonian and the Anderson impurity treated in the self-consistent large-N mean field approximation. Increasing impurity concentration or lowering the ratio {delta}{sub s} /{delta}{sub d} drives the system through a transition from a state with two sharp peaks at low energies and exponentially small density of states at the Fermi level to one with N(0) {approx_equal}({delta}{sub s} /{delta}{sub d}){sup 2}. This transition is discontinuous if the energy of the impurity resonance is the smallest energy scale in the problem. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. Anderson-Stuart Model to Analyze DC Conductivity of Fluormica Glassceramics (United States)

    Jogad, Mahantappa S.; Krishnamurthy, B. S.; Saraswati, V.


    The Glassceramics (GC) are essentially polycrystalline solids in the matrix of residual glass phase. They are interesting in view of the scientific and technological importance. The fluormica glass system (K2O MgO Al2O3 MgF2 B2O3 SiO2) was prepared for a specific composition by melt quench technique, and the fluormica GC phase was obtained by giving heat treatment at 1123 K to the glass sample [1]. The transition from glass to GC was confirmed using XRD. The fluormica are structural analogues of natural mica. Here the K+ ions are weakly cross-bonded in tetrahedral sheet. Fluormica exhibits an unusual combination of properties like machinability, resistance to withstand high temperatures, high dielectric constant with low loss, and high DC resistivity [2]. We have measured the DC conductivity (s) as a function of temperature (T) using the two-probe method. These measurements have been analyzed using the Anderson-Stuart (AS) model [3]. The Arrhenius plots of s vs T exhibit two linear regions, and the activation energy of the GC is found to be larger than that of glass [1]. The physical parameters selected to fit s vs T using the AS model which describes fairly well the ionic conduction in the fluormica glass system, are found to be reasonable. However, it appeared that a distribution of activation energies instead of single activation energy is necessary, to explain the experimental data. Dr Mahntappa S Jogad would like to acknowledge the American Physical Society’s Kilambi Ramavataram Committee and the Fulbright Foreign Scholarship Board, for a visiting fellowship. References: 1. M S Jogad, B S Krishnamurthy and V Saraswati, Asian Journal of Physics, 6, Nos, 142, 158 (1997) 2. Mahantappa S Jogad, B S Krishnamurthy and V Saraswati, J Non Crystalline Solids (Communicated). 3. M. D. Ingram, Phys. Chem. Glasses, 28, 215 (1987).

  19. Magnetic states of single impurity in disordered environment

    Directory of Open Access Journals (Sweden)

    G.W. Ponedilok


    Full Text Available The charged and magnetic states of isolated impurities dissolved in amorphous metallic alloy are investigated. The Hamiltonian of the system under study is the generalization of Anderson impurity model. Namely, the processes of elastic and non-elastic scattering of conductive electrons on the ions of a metal and on a charged impurity are included. The configuration averaged one-particle Green's functions are obtained within Hartree-Fock approximation. A system of self-consistent equations is given for calculation of an electronic spectrum, the charged and the spin-polarized impurity states. Qualitative analysis of the effect of the metallic host structural disorder on the observed values is performed. Additional shift and broadening of virtual impurity level is caused by a structural disorder of impurity environment.

  20. Monte Carlo method for magnetic impurities in metals (United States)

    Hirsch, J. E.; Fye, R. M.


    The paper discusses a Monte Carlo algorithm to study properties of dilute magnetic alloys; the method can treat a small number of magnetic impurities interacting wiith the conduction electrons in a metal. Results for the susceptibility of a single Anderson impurity in the symmetric case show the expected universal behavior at low temperatures. Some results for two Anderson impurities are also discussed.

  1. Quantum Entanglement in the Two Impurity Kondo Model

    CERN Document Server

    Cho, S Y; Cho, Sam Young; Kenzie, Ross H. Mc


    In order to quantify quantum entanglement in two impurity Kondo systems, we calculate the concurrence, negativity, and von Neumann entropy. The entanglement of the two Kondo impurities is shown to be determined by two competing many-body effects, the Kondo effect and the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, $I$. Due to the spin-rotational invariance of the ground state, the concurrence and negativity are uniquely determined by the spin-spin correlation between the impurities. It is found that there exists a critical minimum value of the antiferromagnetic correlation between the impurity spins which is necessary for entanglement of the two impurity spins. The critical value is discussed in relation with the unstable fixed point in the two impurity Kondo problem. Specifically, at the fixed point there is no entanglement between the impurity spins. Entanglement will only be created (and quantum information processing (QIP) be possible) if the RKKY interaction exchange energy, $I$, is at least severa...

  2. A scaling limit theorem for the parabolic Anderson model with exponential potential

    CERN Document Server

    Lacoin, Hubert


    The parabolic Anderson problem is the Cauchy problem for the heat equation with random potential and localized initial condition. In this paper we consider potentials which are constant in time and independent exponentially distributed in space. We study the growth rate of the total mass of the solution in terms of weak and almost sure limit theorems, and the spatial spread of the mass in terms of a scaling limit theorem. The latter result shows that in this case, just like in the case of heavy tailed potentials, the mass gets trapped in a single relevant island with high probability.

  3. Entanglement in Anderson Nanoclusters

    CERN Document Server

    Samuelsson, Peter


    We investigate the two-particle spin entanglement in magnetic nanoclusters described by the periodic Anderson model. An entanglement phase diagram is obtained, providing a novel perspective on a central property of magnetic nanoclusters, namely the temperature dependent competition between local Kondo screening and nonlocal Ruderman-Kittel-Kasuya-Yoshida spin ordering. We find that multiparticle entangled states are present for finite magnetic field as well as in the mixed valence regime and away from half filling. Our results emphasize the role of charge fluctuations.

  4. Impurity doping effects on the orbital thermodynamic properties of hydrogenated graphene, graphane, in Harrison model (United States)

    Yarmohammadi, Mohsen


    Using the Harrison model and Green's function technique, impurity doping effects on the orbital density of states (DOS), electronic heat capacity (EHC) and magnetic susceptibility (MS) of a monolayer hydrogenated graphene, chair-like graphane, are investigated. The effect of scattering between electrons and dilute charged impurities is discussed in terms of the self-consistent Born approximation. Our results show that the graphane is a semiconductor and its band gap decreases with impurity. As a remarkable point, comparatively EHC reaches almost linearly to Schottky anomaly and does not change at low temperatures in the presence of impurity. Generally, EHC and MS increases with impurity doping. Surprisingly, impurity doping only affects the salient behavior of py orbital contribution of carbon atoms due to the symmetry breaking.

  5. Modelling of turbulent impurity transport in fusion edge plasmas using measured and calculated ionization cross sections

    CERN Document Server

    Kendl, Alexander


    Turbulent transport of trace impurities impurities in the edge and scrape-off-layer of tokamak fusion plasmas is modelled by three dimensional electromagnetic gyrofluid computations including evolution of plasma profile gradients. The source function of impurity ions is dynamically computed from pre-determined measured and calculated electron impact ionization cross section data. The simulations describe the generation and further passive turbulent E-cross-B advection of the impurities by intermittent fluctuations and coherent filamentary structures (blobs) across the scrape-off-layer.

  6. ARPES in strongly correlated 4f and 5f systems: comparison to the periodic Anderson model (PAM)

    Energy Technology Data Exchange (ETDEWEB)

    Arko, A.J.; Joyce, J.J.; Cox, L.E.; Morales, L.; Sarrao, J.; Smith, J.L. [Los Alamos National Lab., NM (United States); Fisk, Z. [NHMFL, Florida State University, Tallahassee, FL 32306 (United States); Menovsky, A. [Natuurkundig Laboratorium, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands); Tahvildar-Zadeh, A.; Jarrell, M. [University of Cincinnati, Cincinnati, OH 45221-0011 (United States)


    The electronic structure of both Ce and U heavy fermions appears to consist of extremely narrow, nearly temperature-independent bands (i.e., no spectral weight loss or transfer with temperature). A small dispersion of the f-bands above the Kondo temperature is easily measurable so that a Kondo resonance, as defined by NCA, is not evident. Preliminary results, however, indicate that the periodic Anderson model (PAM) captures some of the essential physics. Angle-integrated resonant photoemission results on {delta}-Pu indicate a narrow 5f feature at E{sub F}, similar in width to f-states in Ce and U compounds, but differing in that PES cross-section as a function of h{nu} suggests substantial 6d admixture. (orig.) 36 refs.

  7. Toward understanding and modeling of impurity gettering in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Teh Y.; Gafiteanu, R.; Goesele, U.M. [Duke Univ., Durham, NC (United States)


    Gettering of harmful impurities away from the device active regions has already become an integral part of manufacturing integrated circuits (IC) using Czochralski (CZ) Si wafers, and is experiencing an increasing importance in Si solar cell fabrications for improving the cell efficiency. Gettering consists of (1) the creation of suitable gettering sites; and (2) the gettering processes of contaminants. Requirements for successful gettering differ between the IC and solar cell cases, because ICs are monolithic devices situated at the Si wafer surfaces while solar cells are bulk devices, and because the Si substrate materials used are different. For IC fabrications, the method used is that of intrinsic or internal gettering (IG) which utilizes oxygen precipitates and their associated defects in the CZ Si wafer bulk as gettering sites. Because of the bulk nature of IG sites, the scheme cannot be used also for solar cells. Only some kind of extrinsic or external gettering (EG) schemes with gettering sites located at the wafer surface regions can be used for solar cells. The gettering of the harmful contaminants, usually metals, to the gettering region involves the metal dissolution from precipitated state, the metal atom diffusion to and the stabilization at the gettering sites. A mathematical model of the gettering process is presented.

  8. Extended numerical modeling of impurity neoclassical transport in tokamak edge plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, H.; Yamoto, S.; Hatayama, A. [Graduate School of Science and Technology, Keio University, Hiyoshi, Yokohama (Japan); Homma, Y. [Graduate School of Science and Technology, Keio University, Hiyoshi, Yokohama (Japan); Research Fellow of Japan Society for the Promotion of Science, Tokyo (Japan)


    Understanding of impurity transport in tokamaks is an important issue in order to reduce the impurity contamination in fusion core plasmas. Recently, a new kinetic numerical scheme of impurity classical/neoclassical transport has been developed. This numerical scheme makes it possible to include classical self-diffusion (CL SD), classical inward pinch (CL IWP), and classical temperature screening effect (CL TSE) of impurity ions. However, impurity neoclassical transport has been modeled only in the case where background plasmas are in the Pfirsch-Schluter (PS) regime. The purpose of this study is to extend our previous model to wider range of collisionality regimes, i.e., not only the PS regime, but also the plateau regime. As in the previous study, a kinetic model with Binary Collision Monte-Carlo Model (BMC) has been adopted. We focus on the modeling of the neoclassical self-diffusion (NC SD) and the neoclassical inward pinch (NC IWP). In order to simulate the neoclassical transport with the BCM, velocity distribution of background plasma ions has been modeled as a deformed Maxwell distribution which includes plasma density gradient. Some test simulations have been done. As for NC SD of impurity ions, our scheme reproduces the dependence on the collisionality parameter in wide range of collisionality regime. As for NC IWP, in cases where test impurity ions and background ions are in the PS and plateau regimes, parameter dependences have been reproduced. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Discrete Anderson Speckle

    CERN Document Server

    Kondakci, H Esat; Saleh, Bahaa E A


    When a disordered array of coupled waveguides is illuminated with an extended coherent optical field, discrete speckle develops: partially coherent light with a granular intensity distribution on the lattice sites. The same paradigm applies to a variety of other settings in photonics, such as imperfectly coupled resonators or fibers with randomly coupled cores. Through numerical simulations and analytical modeling, we uncover a set of surprising features that characterize discrete speckle in one- and two-dimensional lattices known to exhibit transverse Anderson localization. Firstly, the fingerprint of localization is embedded in the fluctuations of the discrete speckle and is revealed in the narrowing of the spatial coherence function. Secondly, the transverse coherence length (or speckle grain size) is frozen during propagation. Thirdly, the axial coherence depth is independent of the axial position, thereby resulting in a coherence voxel of fixed volume independently of position. We take these unique featu...

  10. A Model of Irregular Impurity at the Surface of Nanoparticle and Catalytic Activity

    Institute of Scientific and Technical Information of China (English)

    I.V.Blinova; V.V.Gusarov; I.Yu.Popov


    A problem of nanocatalyst improvement is considered. The existence of irregularities at the surface of nanoparticle leads to the increasing of the surface/volume ratio and, correspondingly, to the improvement of the catalytic activity. But this impurity gives one an additional effect due to the change of the electronic density at the surface. We suggest simple model for the description of this effect. The model allows one to find the discrete spectrum of the Schrdinger operator for nanoparticle. Due to this impurity induced bound states the electron density increases near the surface. It leads to the increase of the catalytic activity of nanoparticles with surface impurities.

  11. Modeling of soluble impurities distribution in the steam generator secondary water

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O.; Simo, T. [Energovyzkum s.r.o., Brno (Switzerland); Kucak, L.; Urban, F. [Slovak Technical Univ., Bratislava (Slovakia)


    A model was developed to compute concentration of impurities in the WWER 440 steam generator (SG) secondary water along the tube bundle. Calculated values were verified by concentration values obtained from secondary water sample chemical analysis. (orig.). 2 refs.

  12. Parallel tempering simulation of the three-dimensional Edwards-Anderson model with compact asynchronous multispin coding on GPU (United States)

    Fang, Ye; Feng, Sheng; Tam, Ka-Ming; Yun, Zhifeng; Moreno, Juana; Ramanujam, J.; Jarrell, Mark


    Monte Carlo simulations of the Ising model play an important role in the field of computational statistical physics, and they have revealed many properties of the model over the past few decades. However, the effect of frustration due to random disorder, in particular the possible spin glass phase, remains a crucial but poorly understood problem. One of the obstacles in the Monte Carlo simulation of random frustrated systems is their long relaxation time making an efficient parallel implementation on state-of-the-art computation platforms highly desirable. The Graphics Processing Unit (GPU) is such a platform that provides an opportunity to significantly enhance the computational performance and thus gain new insight into this problem. In this paper, we present optimization and tuning approaches for the CUDA implementation of the spin glass simulation on GPUs. We discuss the integration of various design alternatives, such as GPU kernel construction with minimal communication, memory tiling, and look-up tables. We present a binary data format, Compact Asynchronous Multispin Coding (CAMSC), which provides an additional 28.4% speedup compared with the traditionally used Asynchronous Multispin Coding (AMSC). Our overall design sustains a performance of 33.5 ps per spin flip attempt for simulating the three-dimensional Edwards-Anderson model with parallel tempering, which significantly improves the performance over existing GPU implementations.

  13. Quantum impurity in a Luttinger liquid: Exact solution of the Kane-Fisher model (United States)

    Rylands, Colin; Andrei, Natan


    A Luttinger liquid coupled to a quantum impurity describes a large number of physical systems. The Hamiltonian consists of left- and right-moving fermions interacting among themselves via a density-density coupling and scattering off a localized transmitting and reflecting impurity. We solve exactly the Hamiltonian by means of an incoming-outgoing scattering Bethe basis which properly incorporates all scattering processes. A related model, the weak-tunneling model, wherein the impurity is replaced by a tunnel junction, is solved by the same method. The consistency of the construction is established through a generalized Yang-Baxter relation. Periodic boundary conditions are imposed and the resulting Bethe ansatz equations are derived by means of the off-diagonal Bethe ansatz approach. We derive the spectrum of the model for all coupling constant regimes and calculate the impurity free energy. We discuss the low energy behavior of the systems for both repulsive and attractive interactions.

  14. Dirac eigenmodes at the QCD Anderson transition

    CERN Document Server

    Giordano, Matteo; Pittler, Ferenc; Ujfalusi, Laszlo; Varga, Imre


    Recently we found an Anderson-type localization-delocalization transition in the QCD Dirac spectrum at high temperature. Using spectral statistics we obtained a critical exponent compatible with that of the corresponding Anderson model. Here we study the spatial structure of the eigenmodes both in the localized and the transition region. Based on previous studies in the Anderson model, at the critical point, the eigenmodes are expected to have a scale invariant multifractal structure. We verify the scale invariance of Dirac eigenmodes at the critical point.

  15. Gyrokinetic modelling of stationary electron and impurity profiles in tokamaks

    CERN Document Server

    Skyman, Andreas; Tegnered, Daniel


    Particle transport due to Ion Temperature Gradient/Trapped Electron (ITG/TE) mode turbulence is investigated using the gyrokinetic code GENE. Both a reduced quasilinear (QL) treatment and nonlinear (NL) simulations are performed for typical tokamak parameters corresponding to ITG dominated turbulence. A selfconsistent treatment is used, where the stationary local profiles are calculated corresponding to zero particle flux simultaneously for electrons and trace impurities. The scaling of the stationary profiles with magnetic shear, safety factor, electron-to-ion temperature ratio, collisionality, toroidal sheared rotation, triangularity, and elongation is investigated. In addition, the effect of different main ion mass on the zero flux condition is discussed. The electron density gradient can significantly affect the stationary impurity profile scaling. It is therefore expected, that a selfconsistent treatment will yield results more comparable to experimental results for parameter scans where the stationary b...

  16. Monte Carlo Simulation of three dimensional Edwards Anderson model with multi-spin coding and parallel tempering using MPI and CUDA (United States)

    Feng, Sheng; Fang, Ye; Tam, Ka-Ming; Thakur, Bhupender; Yun, Zhifeng; Tomko, Karen; Moreno, Juana; Ramanujam, Jagannathan; Jarrell, Mark


    The Edwards Anderson model is a typical example of random frustrated system. It has been a long standing problem in computational physics due to its long relaxation time. Some important properties of the low temperature spin glass phase are still poorly understood after decades of study. The recent advances of GPU computing provide a new opportunity to substantially improve the simulations. We developed an MPI-CUDA hybrid code with multi-spin coding for parallel tempering Monte Carlo simulation of Edwards Anderson model. Since the system size is relatively small, and a large number of parallel replicas and Monte Carlo moves are required, the problem suits well for modern GPUs with CUDA architecture. We use the code to perform an extensive simulation on the three-dimensional Edwards Anderson model with an external field. This work is funded by the NSF EPSCoR LA-SiGMA project under award number EPS-1003897. This work is partly done on the machines of Ohio Supercomputer Center.

  17. Functional Integrals and Free Energy in sine-Gordon-Thirring Model with Impurity Coupling

    Institute of Scientific and Technical Information of China (English)


    The free energy at low temperature in ID sine-Gordon-Thirring model with impurity coupling is studied by means of functional integrals method. For massive free sine-Gordon-Thirring model, free energy is obtained from perturbation expansion of functional determinant. Moreover, the free energy of massive model is calculated by use of an auxiliary Bose Geld method.

  18. Dynamical critical behavior of the Ziff-Gulari-Barshad model with quenched impurities (United States)

    de Andrade, M. F.; Figueiredo, W.


    The simplest model to explain the CO oxidation in some catalytic processes is the Ziff-Gulari-Barshad (ZGB) model. It predicts a continuous phase transition between an active phase and an absorbing phase composed of O atoms. By employing Monte Carlo simulations we investigate the dynamical critical behavior of the model as a function of the concentration of fixed impurities over the catalytic surface. By means of an epidemic analysis we calculate the critical exponents related to the survival probability Ps (t), the number of empty sites nv (t), and the mean square displacement R2 (t). We show that the critical exponents depend on the concentration of impurities over the lattice, even for small values of this quantity. We also show that the exponents do not belong to the Directed Percolation universality class and are in agreement with the Harris criterion since the quenched impurities behave as a weak disorder in the system.

  19. Ground-state energy and entropy of the two-dimensional Edwards-Anderson spin-glass model with different bond distributions (United States)

    Perez-Morelo, D. J.; Ramirez-Pastor, A. J.; Romá, F.


    We study the two-dimensional Edwards-Anderson spin-glass model using a parallel tempering Monte Carlo algorithm. The ground-state energy and entropy are calculated for different bond distributions. In particular, the entropy is obtained by using a thermodynamic integration technique and an appropriate reference state, which is determined with the method of high-temperature expansion. This strategy provides accurate values of this quantity for finite-size lattices. By extrapolating to the thermodynamic limit, the ground-state energy and entropy of the different versions of the spin-glass model are determined.

  20. Hubbard Model for Atomic Impurities Bound by the Vortex Lattice of a Rotating Bose-Einstein Condensate. (United States)

    Johnson, T H; Yuan, Y; Bao, W; Clark, S R; Foot, C; Jaksch, D


    We investigate cold bosonic impurity atoms trapped in a vortex lattice formed by condensed bosons of another species. We describe the dynamics of the impurities by a bosonic Hubbard model containing occupation-dependent parameters to capture the effects of strong impurity-impurity interactions. These include both a repulsive direct interaction and an attractive effective interaction mediated by the Bose-Einstein condensate. The occupation dependence of these two competing interactions drastically affects the Hubbard model phase diagram, including causing the disappearance of some Mott lobes.

  1. The Polyakov Loop of Anti-symmetric Representations as a Quantum Impurity Model

    CERN Document Server

    Mueck, Wolfgang


    The Polyakov loop of an operator in the anti-symmetric representation in N=4 SYM theory is calculated, to leading order in 1/N and at large 't Hooft coupling, by solving the saddle point equations of the corresponding quantum impurity model. Agreement is found with previous results from the supergravity dual, which is given by a D5-brane embedded in a Schwarzschild-AdS_5 x S^5 background. It is shown that the azimuth angle, at which the dual D5-brane wraps the S^5, is related to the spectral asymmetry angle in the spectral density associated with the Green's function of the impurity fermions.

  2. Quantum dissipative effects on non-equilibrium transport through a single-molecular transistor: The Anderson-Holstein-Caldeira-Leggett model (United States)

    Raju, Ch. Narasimha; Chatterjee, Ashok


    The Anderson-Holstein model with Caldeira-Leggett coupling with environment is considered to describe the damping effect in a single molecular transistor (SMT) which comprises a molecular quantum dot (with electron-phonon interaction) mounted on a substrate (environment) and coupled to metallic electrodes. The electron-phonon interaction is first eliminated using the Lang-Firsov transformation and the spectral density function, charge current and differential conductance are then calculated using the non-equilibrium Keldysh Green function technique. The effects of damping rate, and electron-electron and electron-phonon interactions on the transport properties of SMT are studied at zero temperature.

  3. Microscopic Derivation of the Ginzburg-Landau Equations for the Periodic Anderson Model in the Coexistence Phase of Superconductivity and Antiferromagnetism (United States)

    Val'kov, V. V.; Zlotnikov, A. O.


    On the basis of the periodic Anderson model, the microscopic Ginzburg-Landau equations for heavy-fermion superconductors in the coexistence phase of superconductivity and antiferromagnetism have been derived. The obtained expressions are valid in the vicinity of quantum critical point of heavy-fermion superconductors when the onset temperatures of antiferromagnetism and superconductivity are sufficiently close to each other. It is shown that the formation of antiferromagnetic ordering causes a decrease of the critical temperature of superconducting transition and order parameter in the phase of coexisting superconductivity and antiferromagnetism.

  4. Persistence of energy-dependent localization in the Anderson-Hubbard model with increasing system size and doping (United States)

    Daley, P.; Wortis, R.


    Non-interacting systems with bounded disorder have been shown to exhibit sharp density of state peaks at the band edge which coincide with an energy range of abruptly suppressed localization. Recent work has shown that these features also occur in the presence of on-site interactions in ensembles of two-site Anderson-Hubbard systems at half filling. Here we demonstrate that this effect in interacting systems persists away from half filling, and moreover that energy regions with suppressed localization continue to appear in ensembles of larger systems despite a loss of sharp features in the density of states.

  5. Anderson localization in QCD-like theories

    CERN Document Server

    Giordano, Matteo; Pittler, Ferenc


    We review the present status of the Anderson transition in the spectrum of the Dirac operator of QCD-like theories on the lattice. Localized modes at the low-end of the spectrum have been found in SU(2) Yang-Mills theory with overlap and staggered valence fermions as well as in Nf=2+1 QCD with staggered quarks. We draw an analogy between the transition from localized to delocalized modes in the Dirac spectrum and the Anderson transition in electronic systems. The QCD transition turns out to be in the same universality class as the transition in the corresponding Anderson model. We also speculate on the possible physical relevance of this transition to QCD at high temperature and the possible finite temperature phase transition in QCD-like models with different fermion contents.

  6. Characterization and validation of an in silico toxicology model to predict the mutagenic potential of drug impurities*

    Energy Technology Data Exchange (ETDEWEB)

    Valerio, Luis G., E-mail: [Science and Research Staff, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993–0002 (United States); Cross, Kevin P. [Leadscope, Inc., 1393 Dublin Road, Columbus, OH, 43215–1084 (United States)


    Control and minimization of human exposure to potential genotoxic impurities found in drug substances and products is an important part of preclinical safety assessments of new drug products. The FDA's 2008 draft guidance on genotoxic and carcinogenic impurities in drug substances and products allows use of computational quantitative structure–activity relationships (QSAR) to identify structural alerts for known and expected impurities present at levels below qualified thresholds. This study provides the information necessary to establish the practical use of a new in silico toxicology model for predicting Salmonella t. mutagenicity (Ames assay outcome) of drug impurities and other chemicals. We describe the model's chemical content and toxicity fingerprint in terms of compound space, molecular and structural toxicophores, and have rigorously tested its predictive power using both cross-validation and external validation experiments, as well as case studies. Consistent with desired regulatory use, the model performs with high sensitivity (81%) and high negative predictivity (81%) based on external validation with 2368 compounds foreign to the model and having known mutagenicity. A database of drug impurities was created from proprietary FDA submissions and the public literature which found significant overlap between the structural features of drug impurities and training set chemicals in the QSAR model. Overall, the model's predictive performance was found to be acceptable for screening drug impurities for Salmonella mutagenicity. -- Highlights: ► We characterize a new in silico model to predict mutagenicity of drug impurities. ► The model predicts Salmonella mutagenicity and will be useful for safety assessment. ► We examine toxicity fingerprints and toxicophores of this Ames assay model. ► We compare these attributes to those found in drug impurities known to FDA/CDER. ► We validate the model and find it has a desired predictive

  7. Kondo decoherence : finding the right spin model for iron impurities in gold and silver.

    Energy Technology Data Exchange (ETDEWEB)

    Costi, T. A.; Bergqvist, L.; Weichselbaum, A.; von Delft, J.; Micklitz, T.; Rosch, A.; Mavropoulos, P.; Dederichs, P. H.; Mallet, F.; Saminadayar, L.; Bauerle, C. (Materials Science Division); (Forschungszentrum Julich); (Ludwig-Maximilians-Univ. Munchen); (Univ. of Cologne); (CNRS); (Univ. Joseph Fourier); (Inst. Univ. de France)


    We exploit the decoherence of electrons due to magnetic impurities, studied via weak localization, to resolve a long-standing question concerning the classic Kondo systems of Fe impurities in the noble metals gold and silver: which Kondo-type model yields a realistic description of the relevant multiple bands, spin, and orbital degrees of freedom? Previous studies suggest a fully screened spin S Kondo model, but the value of S remained ambiguous. We perform density functional theory calculations that suggest S=3/2. We also compare previous and new measurements of both the resistivity and decoherence rate in quasi-one-dimensional wires to numerical renormalization group predictions for S=1/2, 1, and 3/2, finding excellent agreement for S=3/2.

  8. Quantum-classical correspondence in multimensional nonlinear systems: Anderson localization and "superdiffusive" solitons

    KAUST Repository

    Brambila, Danilo


    We have theoretically studied Anderson localization in a 2D+1 nonlinear kicked rotor model. The system shows a very rich dynamical behavior, where the Anderson localization is suppressed and soliton wave-particles undergo a superdiffusive motion.

  9. Non-Fermi-liquid behavior in quantum impurity models with superconducting channels (United States)

    Žitko, Rok; Fabrizio, Michele


    We study how the non-Fermi-liquid nature of the overscreened multichannel Kondo impurity model affects the response to a BCS pairing term that, in the absence of the impurity, opens a gap Δ . We find that the low-energy spectrum in the limit Δ →0 actually does not correspond to the spectrum strictly at Δ =0 . In particular, in the two-channel Kondo model, the Δ →0 ground state is an orbitally degenerate spin singlet, while it is an orbital singlet with a residual spin degeneracy at Δ =0 . In addition, there are fractionalized spin-1/2 subgap excitations whose energy in units of Δ tends toward a finite and universal value when Δ →0 , as if the universality of the anomalous power-law exponents that characterize the overscreened Kondo effect turned into universal energy ratios when the scale invariance is broken by Δ ≠0 . This intriguing phenomenon can be explained by the renormalization flow toward the overscreened fixed point and the gap cutting off the orthogonality catastrophe singularities. We also find other non-Fermi-liquid features at finite Δ : the local density of states lacks coherence peaks, the states in the continuum above the gap are unconventional, and the boundary entropy is a nonmonotonic function of temperature. The persistent subgap excitations are characteristic of the non-Fermi-liquid fixed point of the model, and thus depend on the impurity spin and the number of screening channels.

  10. Validation of gyrokinetic modelling of light impurity transport including rotation in ASDEX Upgrade

    CERN Document Server

    Casson, F J; Angioni, C; Camenen, Y; Dux, R; Fable, E; Fischer, R; Geiger, B; Manas, P; Menchero, L; Tardini, G


    Upgraded spectroscopic hardware and an improved impurity concentration calculation allow accurate determination of boron density in the ASDEX Upgrade tokamak. A database of boron measurements is compared to quasilinear and nonlinear gyrokinetic simulations including Coriolis and centrifugal rotational effects over a range of H-mode plasma regimes. The peaking of the measured boron profiles shows a strong anti-correlation with the plasma rotation gradient, via a relationship explained and reproduced by the theory. It is demonstrated that the rotodiffusive impurity flux driven by the rotation gradient is required for the modelling to reproduce the hollow boron profiles at higher rotation gradients. The nonlinear simulations validate the quasilinear approach, and, with the addition of perpendicular flow shear, demonstrate that each symmetry breaking mechanism that causes momentum transport also couples to rotodiffusion. At lower rotation gradients, the parallel compressive convection is required to match the mos...

  11. Kondo behavior and conductance through 3d impurities in gold chains doped with oxygen (United States)

    Barral, M. A.; Di Napoli, S.; Blesio, G.; Roura-Bas, P.; Camjayi, A.; Manuel, L. O.; Aligia, A. A.


    Combining ab initio calculations and effective models derived from them, we discuss the electronic structure of oxygen doped gold chains when one Au atom is replaced by any transition-metal atom of the 3d series. The effect of O doping is to bring extended Au 5dxz and 5dyz states to the Fermi level, which together with the Au states of zero angular momentum projection leads to three possible channels for the screening of the magnetism of the impurity. For most 3d impurities the expected physics is similar to that of the underscreened Kondo model, with singular Fermi liquid behavior. For Fe and Co under a tetragonal crystal field introduced by leads, the system might display a non-Fermi liquid behavior. Ni and Cu impurities are described by a S = 1 two channel Kondo model and an SU(4) impurity Anderson model in the intermediate valence regime, respectively. In both cases, the system is a Fermi liquid, but the conductance shows some observable differences with the ordinary SU(2) Anderson model.

  12. Extrinsic Spin Hall Effect Due to Transition-Metal Impurities (United States)

    Tanaka, T.; Kontani, H.


    We investigate the extrinsic spin Hall effect in the electron gas model due to transition-metal impurities based on the single-impurity Anderson model with orbital degrees of freedom. Both the skew scattering and side jump mechanisms are analyzed in a unified way, and the significant role of orbital degrees of freedom are clarified. The obtained spin Hall conductivities are in proportion to the spin-orbit polarization at the Fermi level _{μ} as is the case with the intrinsic spin Hall effect: skew scattering term {SH}^{ss} ∝ _{μ} δ_1 σ_{xx}, and side jump term σ_{SH}^{sj} ∝ _{μ}, where δ_1 is the phase shift for p (l = 1) partial wave. Furthermore, the present study indicates the existence of a nontrivial close relationship between the intrinsic term σ_{SH}^{int} and the extrinsic side jump term σ_{SH}^{sj}.

  13. Ionic screening of charged impurities in electrolytically gated graphene: A partially linearized Poisson-Boltzmann model. (United States)

    Sharma, P; Mišković, Z L


    We present a model describing the electrostatic interactions across a structure that consists of a single layer of graphene with large area, lying above an oxide substrate of finite thickness, with its surface exposed to a thick layer of liquid electrolyte containing salt ions. Our goal is to analyze the co-operative screening of the potential fluctuation in a doped graphene due to randomness in the positions of fixed charged impurities in the oxide by the charge carriers in graphene and by the mobile ions in the diffuse layer of the electrolyte. In order to account for a possibly large potential drop in the diffuse later that may arise in an electrolytically gated graphene, we use a partially linearized Poisson-Boltzmann (PB) model of the electrolyte, in which we solve a fully nonlinear PB equation for the surface average of the potential in one dimension, whereas the lateral fluctuations of the potential in graphene are tackled by linearizing the PB equation about the average potential. In this way, we are able to describe the regime of equilibrium doping of graphene to large densities for arbitrary values of the ion concentration without restrictions to the potential drop in the electrolyte. We evaluate the electrostatic Green's function for the partially linearized PB model, which is used to express the screening contributions of the graphene layer and the nearby electrolyte by means of an effective dielectric function. We find that, while the screened potential of a single charged impurity at large in-graphene distances exhibits a strong dependence on the ion concentration in the electrolyte and on the doping density in graphene, in the case of a spatially correlated two-dimensional ensemble of impurities, this dependence is largely suppressed in the autocovariance of the fluctuating potential.

  14. Solution to the sign problem in a frustrated quantum impurity model

    CERN Document Server

    Hann, Connor T; Chandrasekharan, Shailesh


    In this work we solve the sign problem of a frustrated quantum impurity model consisting of three quantum spin-half chains interacting through an anti-ferromagnetic Heisenberg interaction at one end. We first map the model into a repulsive Hubbard model of spin-half fermions hopping on three independent one dimensional chains that interact through a triangular hopping at one end. We then convert the fermion model into an inhomogeneous one dimensional model and express the partition function as a weighted sum over fermion worldline configurations. By imposing a pairing of fermion worldlines in half the space we show that all negative weight configurations can be eliminated. This pairing naturally leads to the original frustrated quantum spin model at half filling and thus solves its sign problem.

  15. Lithuania 1940 / Herbert Foster Anderson

    Index Scriptorium Estoniae

    Foster Anderson, Herbert


    Stseenid Leedu ennesõjaaegsest pealinnast Kaunasest briti ärimehe H. Foster Andersoni silme läbi 1940. aastal. Lühikokkuvõte raamatust: Foster Anderson, Herbert. Borderline Russia. London : Cresset press, 1942

  16. Pattern selection in a boundary-layer model of dendritic growth in the presence of impurities (United States)

    Karma, A.; Kotliar, B. G.


    Presently analyzed, in the context of a boundary-layer model, is the problem of pattern selection in dendritic growth in a situation where impurities are present in the undercooled liquid. It is found that the tip-velocity selection criterion that has been proposed recently for the geometrical model and the boundary-layer model of a pure substance can be extended, in a nontrivial way, to this more complex situation where two coupled diffusion fields (temperature and solute) determine the interface dynamics. This model predicts a sharp enhancement of tip velocity in good qualitative agreement with experiment. This agreement is consistent with the conjecture that a solvability condition can be used to determine the operating point of the dendrite in the full nonlocal problem.

  17. Orbital magnetic moment and extrinsic spin Hall effect for iron impurities in gold (United States)

    Shick, Alexander B.; Kolorenč, Jindřich; Janiš, Václav; Lichtenstein, Alexander I.


    We report electronic structure calculations of an iron impurity in a gold host. The spin, orbital, and dipole magnetic moments were investigated using the local density approximation (LDA) + U correlated band theory. We show that the around-mean-field LDA + U reproduces the x-ray magnetic circular dichroism (XMCD) experimental data well and does not lead to the formation of a large orbital moment on the Fe atom. Furthermore, exact diagonalization of the multiorbital Anderson impurity model with the full Coulomb interaction matrix and the spin-orbit coupling is performed in order to estimate the spin Hall angle. The obtained value γS≈0.025 suggests that there is no giant extrinsic spin Hall effect due to scattering on iron impurities in gold.

  18. Competitive heterogeneous nucleation onto a microscopic impurity in a Potts model (United States)

    Asuquo, Cletus C.; McArthur, Danielle; Bowles, Richard K.


    Many metastable systems can nucleate to multiple competing stable or intermediate metastable states. In this work, a Potts model, subject to external fields, is used to study the competitive nucleation of two phases attempting to grow on a microscopic impurity. Monte Carlo simulations are used to calculate the free energy surfaces for the system under different conditions, where the relative stability of the phases is adjusted by changing the interaction parameters, and the nucleation rates obtained using multicomponent transition state theory (TST) are compared with the rates measured using the survival probability method. We find that the two methods predict similar nucleation rates when the free energy barrier used in the transition state theory is defined as the work required to form a critical embryo from the metastable phase. An analysis of the free energy surfaces also reveals that the competition between the nucleating phases leads to an effective drying of the impurity which slows down the nucleation rate compared to the single phase case.

  19. Zeroth Order Phase Transition in a Holographic Superconductor with Single Impurity

    CERN Document Server

    Zeng, Hua Bi


    We studied the single normal impurity effect in superconductor by using the holographic method. When the size of impurity is much smaller compared to the host superconductor, we reproduced the Anderson theorem, which states that a conventional s-wave superconductor is robust to a normal (non-magnetic) impurity with small impurity strength or impurities with small concentration. While by increasing the size of impurity in a fixed host superconductor we also find a decrease $T_c$ of the host superconductor, the phase transition at the critical impurity strength is of zeroth order.

  20. Experiments on the interactions between impurities and solitary waves in lattice model

    Institute of Scientific and Technical Information of China (English)

    ZHU; Yifei(朱逸斐); CHEN; Weizhong; (陈伟中); Lü; Lei; (吕镭)


    The interactions between solitary waves and impurities have been studied experimentally in a 1D nonlinear coupled pendulum chain under vertical excitation. The mass and the coupling are unique, except a single pendulum with length impurity in the chain. The experiment reveals: the long impurity repels breather and attracts kink while the short one attracts breather and repels kink under higher frequency driving, and the long impurity attracts breather and repels kink while the short one repels breather and attracts kink under the lower frequency driving. These results prove the current theoretical prediction based on continuum-limit approximation.

  1. Study on impurity desorption induced by femtosecond pulse laser based on a stochastic process model

    Institute of Scientific and Technical Information of China (English)


    With the advantages on non-equilibrium heating and desorption induced by electronic transition, the femtosecond pulse laser introduces a new way for solving the problem of impurity pollution adsorbed on a solid thin film in micro-electro-mechanical systems (MEMS). A model based on stochastic processes was established for stimulated desorption induced by the femtosecond pulse laser to interpret the interaction of the optically excited hot electrons with the adsorbed molecules in a metal substrate. Numerical simulation results reveal a time-dependent desorption probability of adsorbed molecules and indicate that how key parameters of femtosecond pulse laser, such as incident laser energy flux, pulse duration, and wavelength of pulse, have a great effect on the desorption probability.

  2. 50 Years of Anderson Localization

    CERN Document Server

    Abrahams, Elihu


    In his groundbreaking paper Absence of diffusion in certain random lattices (1958), Philip W. Anderson originated, described and developed the physical principles underlying the phenomenon of the localization of quantum objects due to disorder. Anderson's 1977 Nobel Prize citation featured that paper, which was fundamental for many subsequent developments in condensed matter theory and technical applications. After more than a half century, the subject continues to be of fundamental importance. In particular, in the last 25 years, the phenomenon of localization has proved to be crucial for the

  3. Impact of the neoclassical distribution function on turbulent impurity and momentum fluxes: fluid model and gyrokinetic simulations (United States)

    Manas, P.; Hornsby, W. A.; Angioni, C.; Camenen, Y.; Peeters, A. G.


    The impact of the neoclassical background on turbulent impurity transport is investigated by means of gyrokinetic simulations supported by fluid equations. The latter are derived, using a Laguerre polynomials expansion of the first order neoclassical distribution function, and analytical expressions of the turbulent momentum flux and impurity transport coefficients are assessed. Comparisons of gyrokinetic simulations including this neoclassical background (coupling between the codes GKW and NEO) and the fluid model are used to identify the main mechanisms behind the modification of the turbulent transport channels and benchmark the numerical implementation. These mechanisms include a modification of the parallel dynamics of the main ions and direct contributions stemming from the asymmetry in the parallel velocity space of the neoclassical distribution function. The latter which is found dominant for turbulent impurity transport, increases with increasing collisionality, R/{L}{Ti}, R/{L}n, impurity mass, safety factor and aspect ratio. These contributions to momentum and impurity fluxes are also found to depend on the directions of the toroidal magnetic field and plasma current.

  4. Refined computational modeling of SOFCs degradation due to trace impurities in coal syngas (United States)

    Sezer, Hayri

    The Solid Oxide Fuel Cell (SOFC) is a good alternative for clean and efficient power generation. These cells can be operated directly on a wide variety of fuels including biogas, hydrocarbon fuels and synthesized coal gas (syngas), which is a promising avenue for utilization of coal with much less environmental impact. One of the challenges in this technology is poisoning of SOFC anodes by trace impurities contained in coal syngas. One such impurity, phosphine is known to cause catastrophic failure of SOFC anode even at Simulations results showed good agreement with experimental data. Then, a sensitivity analysis, using dual numbers automatic differentiation (DNAD) is performed to investigate the influence of empirical model parameters on model outputs, electrical potential, ohmic and polarization losses. Further, the refined one-dimensional model is extended to a three-dimensional model to study the phosphine induced performance degradation in relatively large planar cells operating on hydrogen fuel. The empirical model parameters are calibrated using button cell experiments and sensitivity analysis as a guide. These parameters are then used in planar cell simulations. The results from the three dimensional model show that the contaminant coverage of nickel and fuel distribution inside the anode is highly non-uniform. These non-uniform distributions are caused by the geometrical alignment of gas channels and current collectors, as well as the variation of gas concentration along the flow direction. The non-uniform deactivation of anode gave rise to the altering of current distribution inside the planar cell such that the cell can still produce current even when some regions of the anode are partially inactive. In addition, to assess the overall cell performance at any given degradation stage, additional simulations are performed to evaluate the electrochemical behavior (polarization and impedance) of the cell. The simulation results are assessed in comparison to

  5. Anderson localization in one-dimensional quasiperiodic lattice models with nearest- and next-nearest-neighbor hopping (United States)

    Gong, Longyan; Feng, Yan; Ding, Yougen


    We explore the reduced relative Shannon information entropies SR for a quasiperiodic lattice model with nearest- and next-nearest-neighbor hopping, where an irrational number is in the mathematical expression of incommensurate on-site potentials. Based on SR, we respectively unveil the phase diagrams for two irrationalities, i.e., the inverse bronze mean and the inverse golden mean. The corresponding phase diagrams include regions of purely localized phase, purely delocalized phase, pure critical phase, and regions with mobility edges. The boundaries of different regions depend on the values of irrational number. These studies present a more complete picture than existing works.

  6. Phil Anderson and Gauge Symmetry Breaking (United States)

    Witten, Edward

    In this article, I describe the celebrated paper that Phil Anderson wrote in 1962 with early contributions to the idea of gauge symmetry breaking in particle physics. To set the stage, I describe the work of Julian Schwinger to which Anderson was responding, and also some of Anderson's own work on superconductivity that provided part of the context. After describing Anderson's work I describe the later work of others, leading to the modern understanding of gauge symmetry breaking in weak interactions...

  7. Lanczos transformation for quantum impurity problems in d-dimensional lattices: Application to graphene nanoribbons (United States)

    Büsser, C. A.; Martins, G. B.; Feiguin, A. E.


    We present a completely unbiased and controlled numerical method to solve quantum impurity problems in d-dimensional lattices. This approach is based on a canonical transformation, of the Lanczos form, where the complete lattice Hamiltonian is exactly mapped onto an equivalent one-dimensional system, in the same spirit as Wilson's numerical renormalization, and Haydock's recursion method. We introduce many-body interactions in the form of a Kondo or Anderson impurity and we solve the low-dimensional problem using the density matrix renormalization group. The technique is particularly suited to study systems that are inhomogeneous, and/or have a boundary. The resulting dimensional reduction translates into a reduction of the scaling of the entanglement entropy by a factor Ld-1, where L is the linear dimension of the original d-dimensional lattice. This allows one to calculate the ground state of a magnetic impurity attached to an L×L square lattice and an L×L×L cubic lattice with L up to 140 sites. We also study the localized edge states in graphene nanoribbons by attaching a magnetic impurity to the edge or the center of the system. For armchair metallic nanoribbons we find a slow decay of the spin correlations as a consequence of the delocalized metallic states. In the case of zigzag ribbons, the decay of the spin correlations depends on the position of the impurity. If the impurity is situated in the bulk of the ribbon, the decay is slow as in the metallic case. On the other hand, if the adatom is attached to the edge, the decay is fast, within few sites of the impurity, as a consequence of the localized edge states, and the short correlation length. The mapping can be combined with ab initio band structure calculations to model the system, and to understand correlation effects in quantum impurity problems starting from first principles.

  8. Integrative Medicine Program- MD Anderson Cancer Center

    Directory of Open Access Journals (Sweden)

    Richard T Lee


    Full Text Available The Integrative Medicine Program at MD Anderson Cancer Center was first established in 1998.  Our mission is to empower patients with cancer and their families to become active partners in their own physical, psycho-spiritual, and social health through personalized education and evidenced-based clinical care to optimize health, quality of life, and clinical outcomes across the cancer continuum.  The program consists of three main components: clinical care, research, and education.  The Integrative Medicine Center provides clinical services to patients through individual and group programs.  The clinical philosophy of the center is to work collaboratively with the oncology teams to build comprehensive and integrative care plans that are personalized, evidence-based, and safe with the goal of improving clinical outcomes.  The individual services comprise of integrative oncology consultation, acupuncture, meditation, music therapy, nutrition, and oncology massage.  The center also provides a variety of group programs including meditation, yoga, tai chi, cooking classes and others.  Over the past 13 years, over 70,000 patients and families have participated in services and programs offered by the center.  The research portfolio focuses on three main areas: mind-body interventions, acupuncture, and meditation.  This lecture will focus on providing an overview of the Integrative Medicine Program at MD Anderson with a focus on the clinical services provided.  Participants will learn about the integrative clinical model and how this is applied to the care of cancer patients at MD Anderson Cancer Center.  Current and future research topics will be discussed as well as patient cases.

  9. The Consultancy Activity on In Silico Models for Genotoxic Prediction of Pharmaceutical Impurities. (United States)

    Pavan, Manuela; Kovarich, Simona; Bassan, Arianna; Broccardo, Lorenza; Yang, Chihae; Fioravanzo, Elena


    The toxicological assessment of DNA-reactive/mutagenic or clastogenic impurities plays an important role in the regulatory process for pharmaceuticals; in this context, in silico structure-based approaches are applied as primary tools for the evaluation of the mutagenic potential of the drug impurities. The general recommendations regarding such use of in silico methods are provided in the recent ICH M7 guideline stating that computational (in silico) toxicology assessment should be performed using two (Q)SAR prediction methodologies complementing each other: a statistical-based method and an expert rule-based method.Based on our consultant experience, we describe here a framework for in silico assessment of mutagenic potential of drug impurities. Two main applications of in silico methods are presented: (1) support and optimization of drug synthesis processes by providing early indication of potential genotoxic impurities and (2) regulatory evaluation of genotoxic potential of impurities in compliance with the ICH M7 guideline. Some critical case studies are also discussed.

  10. Polarons in π-Conjugated Polymers: Anderson or Landau? (United States)

    Barford, William; Marcus, Max; Tozer, Oliver Robert


    Using both analytical expressions and the density matrix renormalization group method, we study the fully quantized disordered Holstein model to investigate the localization of charges and excitons by vibrational or torsional modes-i.e., the formation of polarons-in conformationally disordered π-conjugated polymers. We identify two distinct mechanisms for polaron formation, namely Anderson localization via disorder (causing the formation of Anderson polarons) and self-localization by self-trapping via normal modes (causing the formation of Landau polarons). We identify the regimes where either description is more valid. The key distinction between Anderson and Landau polarons is that for the latter the particle wave function is a strong function of the normal coordinates, and hence the "vertical" and "relaxed" wave functions are different. This has theoretical and experimental consequences for Landau polarons. Theoretically, it means that the Condon approximation is not valid, and so care needs to be taken when evaluating transition rates. Experimentally, it means that the self-localization of the particle as a consequence of its coupling to the normal coordinates may lead to experimental observables, e.g., ultrafast fluorescence depolarization. We apply these ideas to poly(p-phenylenevinylene). We show that the high frequency C-C bond oscillation only causes Landau polarons for a very narrow parameter regime; generally we expect disorder to dominate and Anderson polarons to be a more applicable description. Similarly, for the low frequency torsional fluctuations we show that Anderson polarons are expected for realistic parameters.

  11. EMC3-EIRENE modelling of edge impurity transport in the stochastic layer of the large helical device compared with extreme ultraviolet emission measurements (United States)

    Dai, Shuyu; Kobayashi, M.; Kawamura, G.; Morita, S.; Zhang, H. M.; Oishi, T.; Feng, Y.; Wang, D. Z.; Suzuki, Y.; the LHD Experimental Group


    The transport properties and line emissions of carbon impurity in the stochastic layer of the Large Helical Device have been investigated with the 3D edge transport code EMC3-EIRENE. A parameter study has been performed to examine the sensitivity of the simulation results on each transport term in the impurity transport model and the impurity source characteristics, i.e. the source amount and the location. The modelling has revealed that in order to reproduce the experimental results of the emission distribution, the impurity perpendicular transport coefficient (D imp) and the first wall source play important roles, while changes to the ion thermal and the friction forces are rather irrelevant. The detailed study of flux tube tracing and magnetic field structure in the edge stochastic layer, in relation to impurity transport, has shown that the deeper penetration of impurity into the higher plasma density region due to the enhanced D imp and the first wall source is responsible for the change of emission pattern as well as the intensity. The analysis indicates that D imp might be larger than that of background plasma by a few factors and also that there probably exists a substantial amount of first wall impurity source.

  12. A novel QSAR model of Salmonella mutagenicity and its application in the safety assessment of drug impurities

    Energy Technology Data Exchange (ETDEWEB)

    Valencia, Antoni; Prous, Josep; Mora, Oscar [Prous Institute for Biomedical Research, Rambla de Catalunya, 135, 3-2, Barcelona 08008 (Spain); Sadrieh, Nakissa [Office of Pharmaceutical Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993-0002 (United States); Valerio, Luis G., E-mail: [Office of Pharmaceutical Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993-0002 (United States)


    As indicated in ICH M7 draft guidance, in silico predictive tools including statistically-based QSARs and expert analysis may be used as a computational assessment for bacterial mutagenicity for the qualification of impurities in pharmaceuticals. To address this need, we developed and validated a QSAR model to predict Salmonella t. mutagenicity (Ames assay outcome) of pharmaceutical impurities using Prous Institute's Symmetry℠, a new in silico solution for drug discovery and toxicity screening, and the Mold2 molecular descriptor package (FDA/NCTR). Data was sourced from public benchmark databases with known Ames assay mutagenicity outcomes for 7300 chemicals (57% mutagens). Of these data, 90% was used to train the model and the remaining 10% was set aside as a holdout set for validation. The model's applicability to drug impurities was tested using a FDA/CDER database of 951 structures, of which 94% were found within the model's applicability domain. The predictive performance of the model is acceptable for supporting regulatory decision-making with 84 ± 1% sensitivity, 81 ± 1% specificity, 83 ± 1% concordance and 79 ± 1% negative predictivity based on internal cross-validation, while the holdout dataset yielded 83% sensitivity, 77% specificity, 80% concordance and 78% negative predictivity. Given the importance of having confidence in negative predictions, an additional external validation of the model was also carried out, using marketed drugs known to be Ames-negative, and obtained 98% coverage and 81% specificity. Additionally, Ames mutagenicity data from FDA/CFSAN was used to create another data set of 1535 chemicals for external validation of the model, yielding 98% coverage, 73% sensitivity, 86% specificity, 81% concordance and 84% negative predictivity. - Highlights: • A new in silico QSAR model to predict Ames mutagenicity is described. • The model is extensively validated with chemicals from the FDA and the public domain.

  13. Breatherlike impurity modes in discrete nonlinear lattices

    DEFF Research Database (Denmark)

    Hennig, D.; Rasmussen, Kim; Tsironis, G. P.


    We investigate the properties of a disordered generalized discrete nonlinear Schrodinger equation, containing both diagonal and nondiagonal nonlinear terms. The equation models a Linear host lattice doped with nonlinear impurities. We find different types of impurity states that form itinerant...

  14. Photoemission in YbCu sub 2 Si sub 2 : Problems with the Kondo impurity model

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.M. (California Univ., Irvine (United States)); Arko, A.J.; Joyce, J.J.; Canfield, P.C.; Fisk, Z.; Thompson, J.D. (Los Alamos National Lab., NM (United States))


    We report valence band photoemission results for YbCu{sub 2}Si{sub 2}. The 4f{sup 13}(J=7/2) final state peak, centered 60meV below the Fermi level {epsilon}{sub F}, lacks the temperature dependence and is broader than predicted for a Kondo resonance. Together with the recent photoemission results for cerium compounds, these results raise serious doubts about the Kondo impurity explanation of heavy fermion photoemission. 7 refs., 3 figs.

  15. Photoemission in YbCu sub 2 Si sub 2 : problem with the Kondo impurity model

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.M.; Arko, A.J.; Joyce, J.J.; Canfield, P.C.; Fisk, Z.; Thompson, J.D.; Bartlett, R.J. (Los Alamos National Lab., NM (United States))


    We report valence band photoemission results for YbCu{sub 2}Si{sub 2}. The 4f{sup 13}(J = 7/2) final state peak, centered 60 meV below the Fermi level element of{sub F}, lacks the temperature dependence and is broader than predicted for a Kondo resonance. Together with recent photoemission results for cerium compounds, these results raise serious doubts about the Kondo impurity explanation of heavy fermion photoemission. (orig.).

  16. Numerical study of Kondo impurity models with strong potential scattering: - reverse Kondo effect and antiresonance -


    Kiss, Annamaria; Kuramoto, Yoshio; Hoshino, Shintaro


    Accurate numerical results are derived for transport properties of Kondo impurity systems with potential scattering and orbital degeneracy. Using the continuous-time quantum Monte Carlo (CT-QMC) method, static and dynamic physical quantities are derived in a wide temperature range across the Kondo temperature T_K. With strong potential scattering, the resistivity tends to decrease with decreasing temperature, in contrast to the ordinary Kondo effect. Correspondingly, the quasi-particle densit...

  17. Anderson Localization in Nonlocal Nonlinear Media

    CERN Document Server

    Folli, Viola; 10.1364/OL.37.000332


    The effect of focusing and defocusing nonlinearities on Anderson localization in highly nonlocal media is theoretically and numerically investigated. A perturbative approach is developed to solve the nonlocal nonlinear Schroedinger equation in the presence of a random potential, showing that nonlocality stabilizes Anderson states.

  18. Interplay of Anderson localization and strong interaction in disordered systems

    Energy Technology Data Exchange (ETDEWEB)

    Henseler, Peter


    We study the interplay of disorder localization and strong local interactions within the Anderson-Hubbard model. Taking into account local Mott-Hubbard physics and static screening of the disorder potential, the system is mapped onto an effective single-particle Anderson model, which is studied within the self-consistent theory of electron localization. For fermions, we find rich nonmonotonic behavior of the localization length {xi}, particularly in two-dimensional systems, including an interaction-induced exponential enhancement of {xi} for small and intermediate disorders and a strong reduction of {xi} due to hopping suppression by strong interactions. In three dimensions, we identify for half filling a Mott-Hubbard-assisted Anderson localized phase existing between the metallic and the Mott-Hubbard-gapped phases. For small U there is re-entrant behavior from the Anderson localized phase to the metallic phase. For bosons, the unrestricted particle occupation number per lattice site yields a monotonic enhancement of {xi} as a function of decreasing interaction, which we assume to persist until the superfluid Bose-Einstein condensate phase is entered. Besides, we study cold atomic gases expanding, by a diffusion process, in a weak random potential. We show that the density-density correlation function of the expanding gas is strongly affected by disorder and we estimate the typical size of a speckle spot, i.e., a region of enhanced or depleted density. Both a Fermi gas and a Bose-Einstein condensate (in a mean-field approach) are considered. (orig.)

  19. Interplay of quantum impurities and topological surface modes

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Shi-Han; Deng, Ming-Xun; Qiu, Jian-Ming; Zhong, Qing-Hu; Yang, Mou; Wang, Rui-Qiang, E-mail:


    The interplay of an Anderson quantum impurity with topological surface modes is studied. We find that the quantum impurity scattering can locally destroy the Dirac electron spectra by creating a significant resonance exactly at the Dirac point, in stark contrast to the case of classic impurities. When an external magnetic field is applied to the topological insulator (TI) surfaces, a bound state is found either at the gap edges or within the gap. We discuss the coexistence of the Kondo resonance and the bound state and their effect on TI local density of states. - Highlights: • A resonance at the Dirac point is found, differing from classic impurity theory. • A magnetic field-induced bound state is found within the energy gap. • Impurity Kondo resonance can cause corresponding signatures in the LDOS of TIs. • The results can be tuned by a gate voltage or a chemical potential.

  20. Non-linear model of impurity diffusion in nanoporous materials upon ultrasonic treatment

    Directory of Open Access Journals (Sweden)

    R.M. Peleshchak


    Full Text Available Non-linear theory of diffusion of impurities in porous materials upon ultrasonic treatment is described. It is shown that at a defined value of deformation amplitude, an average concentration of vacancies and temperature as a result of the effect of ultrasound possibly leads to the formation of nanoclusters of vacancies and to their periodic educations in porous materials. It is shown that at a temperature smaller than some critical value, a significant growth of a diffusion coefficient is observed in porous materials.

  1. Dynamic behavior of impurities and native components in model LSM microelectrodes on YSZ

    DEFF Research Database (Denmark)

    Norrman, Kion; Hansen, Karin Vels; Jacobsen, Torben


    Strontium-doped lanthanum manganite is a widely used cathode material in solid oxide fuel cells. Segregation phenomena can have a critical impact on performance and durability, especially when they cause active interfaces to degrade. The segregation behavior in polarized and non-polarized strontium...... behavior of the native components (La, Sr, Mn) and selected impurities (Si, K, Na) both laterally and in-depth. Manganese was found to be especially mobile and showed both segregation onto the electrolyte as a result of temperature and polarization and dissolution into the electrolyte below...

  2. Lindblad-driven discretized leads for nonequilibrium steady-state transport in quantum impurity models: Recovering the continuum limit (United States)

    Schwarz, F.; Goldstein, M.; Dorda, A.; Arrigoni, E.; Weichselbaum, A.; von Delft, J.


    The description of interacting quantum impurity models in steady-state nonequilibrium is an open challenge for computational many-particle methods: the numerical requirement of using a finite number of lead levels and the physical requirement of describing a truly open quantum system are seemingly incompatible. One possibility to bridge this gap is the use of Lindblad-driven discretized leads (LDDL): one couples auxiliary continuous reservoirs to the discretized lead levels and represents these additional reservoirs by Lindblad terms in the Liouville equation. For quadratic models governed by Lindbladian dynamics, we present an elementary approach for obtaining correlation functions analytically. In a second part, we use this approach to explicitly discuss the conditions under which the continuum limit of the LDDL approach recovers the correct representation of thermal reservoirs. As an analytically solvable example, the nonequilibrium resonant level model is studied in greater detail. Lastly, we present ideas towards a numerical evaluation of the suggested Lindblad equation for interacting impurities based on matrix product states. In particular, we present a reformulation of the Lindblad equation, which has the useful property that the leads can be mapped onto a chain where both the Hamiltonian dynamics and the Lindblad driving are local at the same time. Moreover, we discuss the possibility to combine the Lindblad approach with a logarithmic discretization needed for the exploration of exponentially small energy scales.

  3. Snow Metamorphism and Albedo Process (SMAP) model for climate studies: Model validation using meteorological and snow impurity data measured at Sapporo, Japan (United States)

    Niwano, Masashi; Aoki, Teruo; Kuchiki, Katsuyuki; Hosaka, Masahiro; Kodama, Yuji


    We developed a multilayered physical snowpack model named Snow Metamorphism and Albedo Process (SMAP), which is intended to be incorporated into general circulation models for climate simulations. To simulate realistic physical states of snowpack, SMAP incorporates a state-of-the-art physically based snow albedo model, which calculates snow albedo and solar heating profile in snowpack considering effects of snow grain size and snow impurities explicitly. We evaluated the performance of SMAP with meteorological and snow impurities (black carbon and dust) input data measured at Sapporo, Japan during two winters: 2007-2008 and 2008-2009, and found SMAP successfully reproduced all observed variations of physical properties of snowpack for both winters. We have thus confirmed that SMAP is suitable for climate simulations. With SMAP, we also investigated the effects of snow impurities on snowmelt at Sapporo during the two winters. We found that snowpack durations at Sapporo were shortened by 19 days during the 2007-2008 winter and by 16 days during the 2008-2009 winter due to radiative forcings caused by snow impurities. The estimated radiative forcings due to snow impurities during the accumulation periods were 3.7 W/m2 (it corresponds to albedo reduction in 0.05) and 3.2 W/m2 (albedo reduction in 0.05) for the 2007-2008 and 2008-2009 winters, respectively. While during the ablation periods they were 25.9 W/m2 (albedo reduction in 0.18) and 21.0 W/m2 (albedo reduction in 0.17) for each winter, respectively.


    Directory of Open Access Journals (Sweden)



    Full Text Available Generalization of the Anderson model to describe the states of electronegative impurities in liquid-metal alloys is the main aim of the present paper. The effects of the random inner field on the charge impurity states is accounted for selfconsistently. Qualitative and quantitative estimation of hamiltonian parameters has been carried out. The limits of the proposed model applicability to a description of real systems are considered. Especially, the case of the oxygen impurity in liquid sodium is studied. The modelling of the proper electron-ionic interaction potential is the main goal of the paper. The parameters of the proposed pseudopotential are analyzed in detail. The comparison with other model potentials have been carried out. Resistivity of liquid sodium containing the oxygen impurities is calculated with utilizing the form-factor of the proposed model potential. Dependence of the resistivity on impurity concentration and on the charge states is received.

  5. Modeling of limiter heat loads and impurity transport in Wendelstein 7-X startup plasmas (United States)

    Effenberg, Florian; Feng, Y.; Frerichs, H.; Schmitz, O.; Hoelbe, H.; Koenig, R.; Krychowiak, M.; Pedersen, T. S.; Bozhenkov, S.; Reiter, D.


    The quasi-isodynamic stellarator Wendelstein 7-X starts plasma operation in a limiter configuration. The field consists of closed magnetic flux surfaces avoiding magnetic islands in the plasma boundary. Because of the small size of the limiters and the absence of wall-protecting elements in this phase, limiter heat loads and impurity generation due to plasma surface interaction become a concern. These issues are studied with the 3D fluid plasma edge and kinetic neutral transport code EMC3-Eirene. It is shown that the 3D SOL consists of three separate helical magnetic flux bundles of different field line connection lengths. A density scan at input power of 4MW reveals a strong modulation of the plasma paramters with the connection length. The limiter peak heat fluxes drop from 14 MWm-2 down to 10 MWm-2 with raising the density from 1 ×1018m-3 to 1.9 ×1019m-3, accompanied by an increase of the heat flux channel widths λq. Radiative power losses can help to avoid thermal overloads of the limiters at the upper margin of the heating power. The power removal feasibility of the intrinsic carbon and other extrinsic light impurities via active gas injection is discussed as a preparation of this method for island divertor operation. Work supported in part by start up funds of the Department of Engineering Physics at the University of Wisconsin - Madison, USA and by the U.S. Department of Energy under grant DE-SC0013911.

  6. Light focusing in the Anderson Regime

    CERN Document Server

    Leonetti, Marco; Mafi, Arash; Conti, Claudio


    Anderson localization is a regime in which diffusion is inhibited and waves (also electromagnetic waves) get localized. Here we exploit adaptive optics to achieve focusing in disordered optical fibers in the Anderson regime. By wavefront shaping and optimization, we observe the generation of a propagation invariant beam, where light is trapped transversally by disorder, and show that Anderson localizations can be also excited by extended speckled beams. We demonstrate that disordered fibers allow a more efficient focusing action with respect to standard fibers in a way independent of their length, because of the propagation invariant features and cooperative action of transverse localizations.

  7. Student trainee report of Walter L. Anderson (United States)

    US Fish and Wildlife Service, Department of the Interior — The following report is intended to summarize the activities of Walter L. Anderson, Student Trainee (Wildlife Biology) at Malheur National Wildlife Refuge during the...

  8. Anderson localization in metallic nanoparticle arrays

    CERN Document Server

    Mai, Zhijie; Pang, Wei; Xu, Haitao; Tan, Suiyan; Fu, Shenhe; Li, Yongyao


    Anderson localization has been observed in various types of waves, such as matter waves, optical waves and acoustic waves. Here we reveal that the effect of Anderson localization can be also induced in metallic nonlinear nanoparticle arrays excited by a random electrically driving field. We find that the dipole-induced nonlinearity results in ballistic expansion of dipole intensity during evolution; while the randomness of the external driving field can suppress such an expansion. Increasing the strength of randomness above the threshold value, a localized pattern of dipole intensity can be generated in the metallic nanoparticle arrays. By means of statistics, the mean intensity distribution of the dipoles reveals the formation of Anderson localization. We further show that the generated Anderson localization is highly confined, with its size down to the scale of incident wavelength. The reported results might facilitate the manipulations of electromagnetic fields in the scale of wavelength.

  9. Perturbative Interpretation of Adaptive Thouless-Anderson-Palmer Free Energy (United States)

    Yasuda, Muneki; Takahashi, Chako; Tanaka, Kazuyuki


    In conventional well-known derivation methods for the adaptive Thouless-Anderson-Palmer (TAP) free energy, special assumptions that are difficult to mathematically justify except in some mean-field models, must be made. Here, we present a new adaptive TAP free energy derivation method. Using this derivation technique, without any special assumptions, the adaptive TAP free energy can be simply obtained as a high-temperature expansion of the Gibbs free energy.

  10. Transverse Anderson localization of light: a tutorial review

    CERN Document Server

    Mafi, Arash


    This tutorial review gives an overview of the transverse Anderson localization of light in one and two transverse dimensions. A pedagogical approach is followed throughout the presentation, where many aspects of localization are illustrated by means of a few simple models. The tutorial starts with some basic aspects of random matrix theory, and light propagation through and reflection from a random stack of dielectric slabs. Transverse Anderson localization of light in one- and two-dimensional coupled waveguide arrays is subsequently established and discussed. Recent experimental observations of localization and image transport in disordered optical fibers are discussed. More advanced topics, such as hyper-transport in longitudinally varying disordered waveguides, the impact of nonlinearity, and propagation of partially coherent and quantum light, are also examined.

  11. Hamiltonian-based impurity solver for nonequilibrium dynamical mean-field theory (United States)

    Gramsch, Christian; Balzer, Karsten; Eckstein, Martin; Kollar, Marcus


    We derive an exact mapping from the action of nonequilibrium dynamical mean-field theory (DMFT) to a single-impurity Anderson model (SIAM) with time-dependent parameters, which can be solved numerically by exact diagonalization. The representability of the nonequilibrium DMFT action by a SIAM is established as a rather general property of nonequilibrium Green functions. We also obtain the nonequilibrium DMFT equations using the cavity method alone. We show how to numerically obtain the SIAM parameters using Cholesky or eigenvector matrix decompositions. As an application, we use a Krylov-based time propagation method to investigate the Hubbard model in which the hopping is switched on, starting from the atomic limit. Possible future developments are discussed.

  12. Centrifugal Distortion Causes Anderson Localization in Laser Kicked Molecules (United States)

    Floss, Johannes; Averbukh, Ilya Sh.


    The periodically kicked 2D rotor is a textbook model in nonlinear dynamics. The classical kicked rotor can exhibit truly chaotic motion, whilst in the quantum regime this chaotic motion is suppressed by a mechanism similar to Anderson Localization. Up to now, these effects have been mainly observed in an atom optics analogue of a quantum rotor: cold atoms in a standing light wave. We demonstrate that common linear molecules (like N2, O2, CO2, ...), kicked by a train of short linearly polarized laser pulses, can exhibit a new mechanism for dynamical Anderson Localization due to their non-rigidity. When the pulses are separated by the rotational revival time trev = πℏ / B , the angular momentum J grows ballistically (Quantum Resonance). We show that, due to the centrifugal distortion of fast spinning molecules, above some critical value J =Jcr the Quantum Resonance is suppressed via the mechanism of Anderson Localization. This leads to a non-sinusoidal oscillation of the angular momentum distribution, which may be experimentally observed even at ambient conditions by using current techniques for laser molecular alignment.

  13. Impurity-induced divertor plasma oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, R. D., E-mail:; Krasheninnikov, S. I.; Pigarov, A. Yu. [University of California, San Diego, La Jolla, California 92093 (United States); Kukushkin, A. S. [NRC “Kurchatov Institute”, Moscow 123182 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Rognlien, T. D. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)


    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ion transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. The implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.

  14. Impurity-induced divertor plasma oscillations (United States)

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.


    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ion transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. The implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.

  15. Investigation of the influence of quenched nonmagnetic impurities on phase transitions in the three-dimensional Potts model (United States)

    Murtazaev, A. K.; Babaev, A. B.; Aznaurova, G. Ya.


    The influence of quenched nonmagnetic impurities on phase transitions in the three-dimensional Potts model with the number of spin states q = 3 is investigated using the Wolff single-cluster algorithm of the Monte Carlo method. The systems with linear sizes L = 20-44 at the spin concentrations p = 1.0, 0.9, 0.8, and 0.7 are analyzed. It is demonstrated with the use of the method of fourth-order Binder cumulants that the second-order phase transition occurs in the model under consideration at the spin concentrations p = 0.9, 0.8, and 0.7 and that the first-order phase transition is observed in the pure model ( p = 1.0). The static critical exponents α (heat capacity), γ (susceptibility), β (magnetization), and ν (correlation length) are calculated in the framework of the finite-size scaling theory. The problem regarding the universality classes of the critical behavior of weakly diluted systems is discussed.

  16. The GOddard SnoW Impurity Module (GOSWIM) for the NASA GEOS-5 Earth System Model: Preliminary Comparisons with Observations in Sapporo, Japan (United States)

    Yasunari, Teppei J.; Lau, K.-M.; Mahanama, Sarith P. P.; Colarco, Peter R.; daSilva, Arlindo M.; Aoki, Teruo; Aoki, Kazuma; Murao, Naoto; Yamagata, Sadamu; Kodama, Yuji


    The snow darkening module evaluating dust, black carbon, and organic carbon depositions on mass and albedo has been developed for the NASA Goddard Earth Observing System, Version 5 (GEOS-5) Earth System Model, as the GOddard SnoW Impurity Module (GOSWIM). GOSWIM consists of the snow albedo scheme from a previous study (Yasunari et al. 2011) with updates and a newly developed mass concentration scheme, using aerosol depositions from the chemical transport model (GOCART) in GEOS-5. Compared to observations at Sapporo, the numerical experiments, forced by observation-based meteorology and aerosol depositions from GOES-5, better simulated the seasonal migration of snow depth, albedos, and impurities of dust, BC, and OC in the snow surface. However, the magnitude of the impurities is underestimated, compared to the sporadic snow impurity measurements. Increasing the deposition rates of dust and BC could explain the differences on the snow darkening effect between observation and simulation. Ignoring BC deposition can possibly lead to an extension of snow cover duration in Sapporo for four days. Comparing the off-line GOSWIM and the GEOS-5 global simulations, we found that determining better local precipitation and deposition rates of the aerosols are key factors in generating better GOSWIM snow darkening simulation in NASA GEOS-5.

  17. Preliminary Modelling of the Effect of Impurity in CO2 Streams on the Storage Capacity and the Plume Migration in Pohang Basin, Korea (United States)

    Park, Yongchan; Choi, Byoungyoung; Shinn, Youngjae


    Captured CO2 streams contain various levels of impurities which vary depending on the combustion technology and CO2 sources such as a power plant and iron and steel production processes. Common impurities or contaminants are non-condensable gases like nitrogen, oxygen and hydrogen, and are also air pollutants like sulphur and nitrogen oxides. Specifically for geological storage, the non-condensable gases in CO2 streams are not favourable because they can decrease density of the injected CO2 stream and can affect buoyancy of the plume. However, separation of these impurities to obtain the CO2 purity higher than 99% would greatly increase the cost of capture. In 2010, the Korean Government announced a national framework to develop CCS, with the aim of developing two large scale integrated CCS projects by 2020. In order to achieve this goal, a small scale injection project into Pohang basin near shoreline has begun which is seeking the connection with a capture project, especially at a steel company. Any onshore sites that are suitable for the geological storage are not identified by this time so we turned to the shallow offshore Pohang basin where is close to a large-scale CO2 source. Currently, detailed site surveys are being undertaken and the collected data were used to establish a geological model of the basin. In this study, we performed preliminary modelling study on the effect of impurities on the geological storage using the geological model. Using a potential compositions of impurities in CO2 streams from the steel company, we firstly calculated density and viscosity of CO2 streams as a function of various pressure and temperature conditions with CMG-WINPROP and then investigated the effect of the non-condensable gases on storage capacity, injectivity and plume migrations with CMG-GEM. Further simulations to evaluate the areal and vertical sweep efficiencies by impurities were perform in a 2D vertical cross section as well as in a 3D simulation grid. Also

  18. Modelling the firn thickness evolution during the last deglaciation: constrains on sensitivity to temperature and impurities



    The transformation of snow into ice is a complex phenomenon difficult to model. Depending on surface temperature and accumulation rate, it may take several decades to millennia for air to be entrapped in ice. The air is thus always younger that the surrounding ice. The resulting gas-ice age difference is essential to document the phasing between CO2 and temperature changes especially during deglaciations. The air trapping depth can be inferred in the past using a firn densification model, or ...

  19. Quantum criticality of a spin-1 XY model with easy-plane single-ion anisotropy via a two-time Green function approach avoiding the Anderson-Callen decoupling (United States)

    Mercaldo, M. T.; Rabuffo, I.; De Cesare, L.; Caramico D'Auria, A.


    In this work we study the quantum phase transition, the phase diagram and the quantum criticality induced by the easy-plane single-ion anisotropy in a d-dimensional quantum spin-1 XY model in absence of an external longitudinal magnetic field. We employ the two-time Green function method by avoiding the Anderson-Callen decoupling of spin operators at the same sites which is of doubtful accuracy. Following the original Devlin procedure we treat exactly the higher order single-site anisotropy Green functions and use Tyablikov-like decouplings for the exchange higher order ones. The related self-consistent equations appear suitable for an analysis of the thermodynamic properties at and around second order phase transition points. Remarkably, the equivalence between the microscopic spin model and the continuous O(2) -vector model with transverse-Ising model (TIM)-like dynamics, characterized by a dynamic critical exponent z=1, emerges at low temperatures close to the quantum critical point with the single-ion anisotropy parameter D as the non-thermal control parameter. The zero-temperature critic anisotropy parameter Dc is obtained for dimensionalities d > 1 as a function of the microscopic exchange coupling parameter and the related numerical data for different lattices are found to be in reasonable agreement with those obtained by means of alternative analytical and numerical methods. For d > 2, and in particular for d=3, we determine the finite-temperature critical line ending in the quantum critical point and the related TIM-like shift exponent, consistently with recent renormalization group predictions. The main crossover lines between different asymptotic regimes around the quantum critical point are also estimated providing a global phase diagram and a quantum criticality very similar to the conventional ones.

  20. Two-particle Anderson localization at low energies

    CERN Document Server

    Ekanga, Trésor


    We prove exponential spectral localization in a two-particle lattice Anderson model, with a short-range interaction and external random i.i.d. potential, at sufficiently low energies. The proof is based on the multi-particle multi-scale analysis developed earlier by Chulaevsky and Suhov (2009) in the case of high disorder. Our method applies to a larger class of random potentials than in Aizenman and Warzel (2009) where dynamical localization was proved with the help of the fractional moment method.

  1. An Anderson-localized random nanolaser

    CERN Document Server

    Liu, Jin; Ek, Sara; Gregersen, Niels; Suhr, Troels; Schubert, Martin; Mørk, Jesper; Stobbe, Søren; Lodahl, Peter


    Precision is a virtue throughout science in general and in optics in particular where carefully fabricated nanometer-scale devices hold great promise for both classical and quantum photonics [1-6]. In such nanostructures, unavoidable imperfections often impose severe performance limits but, in certain cases, disorder may enable new functionalities [7]. Here we demonstrate on-chip random nanolasers where the cavity feedback is provided by the intrinsic disorder in a semiconductor photonic-crystal waveguide, leading to Anderson localization of light [8]. This enables highly e?cient and broadband tunable lasers with very small mode volumes. We observe an intriguing interplay between gain, dispersion-controlled slow light, and disorder, which determines the cross-over from ballistic transport to Anderson localization. Such a behavior is a unique feature of non-conservative random media that enables the demonstration of all-optical control of random lasing. Our statistical analysis shows a way towards ultimate thr...

  2. Linear Rashba Model of a Hydrogenic Donor Impurity in GaAs/GaAlAs Quantum Wells

    Directory of Open Access Journals (Sweden)

    Li Shu-Shen


    Full Text Available Abstract The Rashba spin-orbit splitting of a hydrogenic donor impurity in GaAs/GaAlAs quantum wells is investigated theoretically in the framework of effective-mass envelope function theory. The Rashba effect near the interface between GaAs and GaAlAs is assumed to be a linear relation with the distance from the quantum well side. We find that the splitting energy of the excited state is larger and less dependent on the position of the impurity than that of the ground state. Our results are useful for the application of Rashba spin-orbit coupling to photoelectric devices.

  3. Hybrid Bloch-Anderson localization of light

    CERN Document Server

    Stutzer, Simon; Vysloukh, Victor A; Konotop, Vladimir V; Nolte, Stefan; Torner, Lluis; Szameit, Alexander


    We investigate the interplay of Bloch oscillations and Anderson localization in optics. Gradual washing out of Bloch oscillations and the formation of nearly stationary averaged intensity distributions, which are symmetric for narrow and strongly asymmetric for broad input excitations, are observed experimentally in laser-written waveguide arrays. At large disorder levels Bloch oscillations are completely destroyed and both narrow and wide excitations lead to symmetric stationary averaged intensity distributions with exponentially decaying tails.

  4. Hybrid Bloch-Anderson localization of light. (United States)

    Stützer, Simon; Kartashov, Yaroslav V; Vysloukh, Victor A; Konotop, Vladimir V; Nolte, Stefan; Torner, Lluis; Szameit, Alexander


    We investigate the interplay of Bloch oscillations and Anderson localization in optics. Gradual washing out of Bloch oscillations and the formation of nearly stationary averaged intensity distributions, which are symmetric for narrow and strongly asymmetric for broad input excitations, are observed experimentally in laser-written waveguide arrays. At large disorder levels Bloch oscillations are completely destroyed and both narrow and wide excitations lead to symmetric stationary averaged intensity distributions with exponentially decaying tails.

  5. Hybrid Bloch-Anderson localization of light


    Stutzer, Simon; Yaroslav V. Kartashov; Vysloukh, Victor A.; Konotop, Vladimir V.; Nolte, Stefan; Torner, Lluis; Szameit, Alexander


    We investigate the interplay of Bloch oscillations and Anderson localization in optics. Gradual washing out of Bloch oscillations and the formation of nearly stationary averaged intensity distributions, which are symmetric for narrow and strongly asymmetric for broad input excitations, are observed experimentally in laser-written waveguide arrays. At large disorder levels Bloch oscillations are completely destroyed and both narrow and wide excitations lead to symmetric stationary averaged int...

  6. Local thermodynamic equilibrium modeling of ionization of impurities in argon inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Serapinas, Petras, E-mail: serapinas@pfi.l [Institute of Theoretical Physics and Astronomy, Vilnius University, A. Gostauto 12, 01108 Vilnius (Lithuania); Salkauskas, Julius; Ezerinskis, Zilvinas; Acus, Arturas [Institute of Theoretical Physics and Astronomy, Vilnius University, A. Gostauto 12, 01108 Vilnius (Lithuania)


    Essentially higher ionization degree of small concentrations of elements in inductively coupled plasma in comparison to the ionization of pure elements is emphasized. This conclusion is used to determine the relative dependence of the sensitivity of the inductively coupled plasma mass spectrometer on the atomic mass. The possibility of evaluation of the ionization temperature and electron density from mass spectrometric signals is proposed. Temperatures about 7000 K and 8000 K were obtained from the ionization ratio dependences on ionization potentials. Electron densities of the order of magnitude 10{sup 15} cm{sup -3}, in excess to the local thermodynamic equilibrium values, follow from the application of the Saha equation to the measurement results and indicate the recombining character of the plasma in the mass spectrometer measurement region. Effects due to additional ionization from matrix were discussed. The effect is largest on minor abundant ionization state components. Matrix effect is restricted to some temperature interval, which depends on the whole matrix composition and the plasma state. The results show that the local thermodynamic equilibrium modeling, if adequately matching the sample composition, can be useful as a quantitative basis for both description of the plasma state and indication of the character of the nonequilibrium effects.

  7. Spectral Approach to Anderson Localization in a Disordered 2D Complex Plasma Crystal (United States)

    Kostadinova, Eva; Liaw, Constanze; Matthews, Lorin; Busse, Kyle; Hyde, Truell


    In condensed matter, a crystal without impurities acts like a perfect conductor for a travelling wave-particle. As the level of impurities reaches a critical value, the resistance in the crystal increases and the travelling wave-particle experiences a transition from an extended to a localized state, which is called Anderson localization. Due to its wide applicability, the subject of Anderson localization has grown into a rich field in both physics and mathematics. Here, we introduce the mathematics behind the spectral approach to localization in infinite disordered systems and provide physical interpretation in context of both quantum mechanics and classical physics. We argue that the spectral analysis is an important contribution to localization theory since it avoids issues related to the use of boundary conditions, scaling, and perturbation. To test accuracy and applicability we apply the spectral approach to the case of a 2D hexagonal complex plasma crystal used as a macroscopic analog for a graphene-like medium. Complex plasma crystals exhibit characteristic distance and time scales, which are easily observable by video microscopy. As such, these strongly coupled many-particle systems are ideal for the study of localization phenomena. The goal of this research is to both expand the spectral method into the classical regime and show the potential of complex plasma as a macroscopic tool for localization experiments. NSF / DOE funding is gratefully acknowledged - PHY1414523 & PHY1262031.

  8. Anderson localization and ergodicity on random regular graphs (United States)

    Tikhonov, K. Â. S.; Mirlin, A. Â. D.; Skvortsov, M. Â. A.


    A numerical study of Anderson transition on random regular graphs (RRGs) with diagonal disorder is performed. The problem can be described as a tight-binding model on a lattice with N sites that is locally a tree with constant connectivity. In a certain sense, the RRG ensemble can be seen as an infinite-dimensional (d →∞ ) cousin of the Anderson model in d dimensions. We focus on the delocalized side of the transition and stress the importance of finite-size effects. We show that the data can be interpreted in terms of the finite-size crossover from a small (N ≪Nc ) to a large (N ≫Nc ) system, where Nc is the correlation volume diverging exponentially at the transition. A distinct feature of this crossover is a nonmonotonicity of the spectral and wave-function statistics, which is related to properties of the critical phase in the studied model and renders the finite-size analysis highly nontrivial. Our results support an analytical prediction that states in the delocalized phase (and at N ≫Nc ) are ergodic in the sense that their inverse participation ratio scales as 1 /N .

  9. Dimensionality effects on spin-polarized quantum beats in ferromagnetic hosts with a pair of side-coupled impurities

    Energy Technology Data Exchange (ETDEWEB)

    Guessi, L.H.; Leandro, S.C.; Seridonio, A.C.; Siqueira, E.C. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil). Dept. de Fisico Quimica; Souza, F.M.; Vernek, E. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Fisica; Yoshida, M. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Rio Claro, SP (Brazil); Figueira, M.S. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica


    Full text: In this work, we report a theoretical description of the differential conductance in the low bias regime, for a normal scanning tunneling microscope (STM) probe in the presence of ferromagnetic (FM) hosts with impurities. The hosts are treated as a spin-polarized electron gas hybridized to a pair of side-coupled impurities. Two setups of different dimensionalities are considered, a quantum wire (QW) and a metallic surface (MS). In order to deal with the non-interacting and the Coulomb blockade regimes of these systems, the analysis is done in the framework of the two-impurity Anderson model (TIAM) in combination with the equation of motion (EOM) approach for the Hamiltonian Green functions (GFs). The Fano effect appears in such setups, due to the quantum interference between the transport channels composed by the spin-polarized conduction bands and the electron tunneling into (or out of) the impurities. Thus the conductance of the STM reveals as a function of the probe position, a Fano interference strong dependent on the host dimensionality. It leads to the emergence of spin-polarized quantum beats in the Friedel oscillations for the conductance signal, which are uniform in the QW system in opposite to those found in the MS case, characterized by a long-range damped behavior. We remark that, the energy levels of the impurities and the Coulomb repulsion, modulate these beats. As a result, they establish a scenario where the interplay between the Coulomb blockade and the ferromagnetism of a metallic environment, can be useful for future quantum computation devices. (author)

  10. Effect of coulomb interaction on Anderson localization; Effet de l'interaction coulombienne sur la localisation d'Anderson dans des systemes de basses dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Waintal, X


    We study the quantum mechanics of interacting particles in a disordered system, and in particular, what happens to Anderson localisation when interaction is taken into account. In the first part,one looks at the excited states of two particles in one dimension. For this model, it has been shown (Shepelyansky 1994) that a local repulsive interaction can partially destroy Anderson localisation. Here, we show that this model has similarities with the three-dimensional Anderson model at the metal-insulator transition. In particular, the maximum of rigidity obtained in the spectral statistics correspond to some intermediary statistics that cannot be described by random matrix theory neither by a Poisson statistics. The wave functions show a multifractal behaviour and the spreading of the center of mass of a wave packet is logarithmic in time. The second part deals with the ground state of a finite density of spinless fermions in two dimensions. After the scaling theory of localisation, it was commonly accepted that there was no metal in two dimensions. This idea has been challenged by the observation of a metal-insulator transition in low density electron gas (Kravchenko et al. 1994). We propose a scenario in which a metallic phase occurs between the Anderson insulator and the pinned Wigner crystal. This intermediate phase is characterized by an alignment of the local currents flowing in the system. (author)

  11. Evaluation of host inflammatory responses of β-tricalcium phosphate bioceramics caused by calcium pyrophosphate impurity using a subcutaneous model. (United States)

    Lin, Kaili; Yuan, Wei; Wang, Lu; Lu, Jianxi; Chen, Lei; Wang, Zhen; Chang, Jiang


    Implantation of synthetic materials into body elicits inflammatory host responses that limit medical device integration and biological performance. Since the effective use of biomaterials in vivo requires good biocompatibility and bio-functionality, it is vital that we assess the inflammatory reactions provoked by various implanted biomaterials. In chemical precipitation of β-tricalcium phosphate [β-Ca₃(PO₄)₂, β-TCP], the impurity of calcium pyrophosphate (Ca₂P₂O₇, CPP) will easily appear if the preparation conditions are not well controlled. To test the influences of CCP-impurity on the biocompatibility of the material, four groups of β-TCP ceramic samples doped with 0.5-10 wt % of CCP impurity, and pure β-TCP and CCP samples were fabricated and implanted in rat subcutaneous site for one, two, and four weeks. The host tissue responses to the ceramics were evaluated by histomorphometric analysis, and the results were compared with pure β-TCPbioceramics. The results show that the CPP impurity can elicit and stimulate the inflammatory responses at the tissue/implant interface. Moreover, with the increase of CPP doping amount, the inflammation increases apparently. However, the pure β-TCP bioceramics only present slight post-implantation inflammatory responses. The influence of the CPP doping on the inflammatory responses is mainly related to a microparticles release because of an insufficient sintering of β-TCP by CPP doping. The microparticle release could be at the origin of local inflammation and cell/tissue damages. Therefore, to obtain perfect biocompatibility and high quality β-TCP bioceramics, it is important to avoid and control the CPP impurity in the preparation of β-TCP powders and bioceramics.

  12. Phil Anderson's Magnetic Ideas in Science

    CERN Document Server

    Coleman, Piers


    In Philip W. Anderson's research, magnetism has always played a special role, providing a prism through which other more complex forms of collective behavior and broken symmetry could be examined. I discuss his work on magnetism from the 1950s, where his early work on antiferromagnetism led to the pseudospin treatment of superconductivity - to the 70s and 80s, highlighting his contribution to the physics of local magnetic moments. Phil's interest in the mechanism of moment formation, and screening evolved into the modern theory of the Kondo effect and heavy fermions.

  13. Evaluating the Anderson-Darling Distribution

    Directory of Open Access Journals (Sweden)

    George Marsaglia


    Full Text Available Except for n = 1, only the limit as n approaches infinity for the distribution of the Anderson-Darling test for uniformity has been found, and that in so complicated a form that published values for a few percentiles had to be determined by numerical integration, saddlepoint or other approximation methods. We give here our method for evaluating that asymptotic distribution to great accuracy--directly, via series with two-term recursions. We also give, for any particular n, a procedure for evaluating the distribution to the fourth digit, based on empirical CDF's from samples of size 1010 .

  14. Quantum non-Markovianity induced by Anderson localization (United States)

    Lorenzo, Salvatore; Lombardo, Federico; Ciccarello, Francesco; Palma, G. Massimo


    As discovered by P. W. Anderson, excitations do not propagate freely in a disordered lattice, but, due to destructive interference, they localise. As a consequence, when an atom interacts with a disordered lattice, one indeed observes a non-trivial excitation exchange between atom and lattice. Such non-trivial atomic dynamics will in general be characterised also by a non-trivial quantum information backflow, a clear signature of non-Markovian dynamics. To investigate the above scenario, we consider a quantum emitter, or atom, weakly coupled to a uniform coupled-cavity array (CCA). If initially excited, in the absence of disorder, the emitter undergoes a Markovian spontaneous emission by releasing all its excitation into the CCA (initially in its vacuum state). By introducing static disorder in the CCA the field normal modes become Anderson-localized, giving rise to a non-Markovian atomic dynamics. We show the existence of a functional relationship between a rigorous measure of quantum non-Markovianity and the CCA localization. We furthermore show that the average non-Markovianity of the atomic dynamics is well-described by a phenomenological model in which the atom is coupled, at the same time, to a single mode and to a standard - Markovian - dissipative bath.

  15. Quantum non-Markovianity induced by Anderson localization (United States)

    Lorenzo, Salvatore; Lombardo, Federico; Ciccarello, Francesco; Palma, G. Massimo


    As discovered by P. W. Anderson, excitations do not propagate freely in a disordered lattice, but, due to destructive interference, they localise. As a consequence, when an atom interacts with a disordered lattice, one indeed observes a non-trivial excitation exchange between atom and lattice. Such non-trivial atomic dynamics will in general be characterised also by a non-trivial quantum information backflow, a clear signature of non-Markovian dynamics. To investigate the above scenario, we consider a quantum emitter, or atom, weakly coupled to a uniform coupled-cavity array (CCA). If initially excited, in the absence of disorder, the emitter undergoes a Markovian spontaneous emission by releasing all its excitation into the CCA (initially in its vacuum state). By introducing static disorder in the CCA the field normal modes become Anderson-localized, giving rise to a non-Markovian atomic dynamics. We show the existence of a functional relationship between a rigorous measure of quantum non-Markovianity and the CCA localization. We furthermore show that the average non-Markovianity of the atomic dynamics is well-described by a phenomenological model in which the atom is coupled, at the same time, to a single mode and to a standard - Markovian - dissipative bath. PMID:28205542

  16. Controlling Anderson localization in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Garcia-Fernández, David; Smolka, Stephan; Stobbe, Søren;


    of a disordered photonic crystal waveguide and attributed to Anderson localization. We have tested this hypothesis by measuring the light localization length, ξloc, in a disordered photonic crystal waveguide and checked explicitly the criterion of one dimensional Anderson localization that ξloc is shorter than...... the waveguide length LS. Our measurements demonstrate for the first time the close relation between light localization and density of states, which can be used ultimately for controlling Anderson localized modes....

  17. Simulated impurity transport in LHD from MIST

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J.E. [National Inst. for Fusion Science, Toki, Gifu (Japan)


    The impurity transport code MIST and atomic physics package LINES are used to calculate the time evolution of charge state density profiles, individual line emissivity profiles and total radiated power profiles for impurities in LHD plasmas. Three model LHD plasmas are considered; a high density, low temperature case, a low density, high temperature case and the initial LHD start-up plasma (500 kW ECH), using impurity transport coefficient profiles from Heliotron E. The elements oxygen, neon, scandium, iron, nickel and molybdenum are considered, both injected and in steady state. (author)

  18. Renormalization Group Approach to the X-Ray Absorption Problem and Application to the Vigman-Finkelshtein Model for Magnetic Impurities in Metals. (United States)

    Nunes de Oliveira, Luiz

    The renormalization group techniques developed by Wilson for the Kondo problem are applied to three related problems: the absorption of x-rays by metals, the absorption of x-rays by impurities in metals, and the specific heat of dilute magnetic alloys. In the first problem considered, the x-ray absorption problem, the metal is represented by a half-filled conduction band and a deep level representing a core state. The absorption of an x-ray photon excites an electron from this core level to the conduction band creating a core hole whose positive charge interacts with the conduction electrons. The absorption spectrum is, for the first time, calculated in the energy range 10('-10)D ) (omega)(,T)) expression to seven decimal places; the prefactor (mu)(,o) is calculated for the first time. For (omega)-(omega)(,T) (TURNEQ) D, remarkably small deviations (e.g., deviations of 15% for (omega)-(omega)(,T) = .3D) from the Nozieres-De Dominicis power law are found. As a second application of the renormalization group techniques, the x-ray absorption spectrum for the resonant level model for impurities in metals is calculated. In this model, the metal is represented by a half-filled conduction band and the impurity by two levels: a core level from which an electron is excited to the conduction band by the absorption of an x-ray photon, and a resonant level, coupled to the conduction electrons, whose energy is lowered by the interaction with the core hole created by the absorption of the x-ray. In the x-ray absorption process, the resonant level is thus shifted to lower energy. The absorption spectrum approaches a power law in the energy range (omega)-(omega)(,T) >> (GAMMA), where (GAMMA) is the width of the resonant level, and a different power law in the range (omega)-(omega)(,T) body effect found in the spectrum of certain systems having a discrete level coupled to a continuum of energies) is elaborated. The problem of the specific heat of dilute magnetic alloys is attacked

  19. Power Radiated from ITER and CIT by Impurities (United States)

    Cummings, J.; Cohen, S. A.; Hulse, R.; Post, D. E.; Redi, M. H.; Perkins, J.


    The MIST code has been used to model impurity radiation from the edge and core plasmas in ITER and CIT. A broad range of parameters have been varied, including Z{sub eff}, impurity species, impurity transport coefficients, and plasma temperature and density profiles, especially at the edge. For a set of these parameters representative of the baseline ITER ignition scenario, it is seen that impurity radiation, which is produced in roughly equal amounts by the edge and core regions, can make a major improvement in divertor operation without compromising core energy confinement. Scalings of impurity radiation with atomic number and machine size are also discussed.

  20. Slow Relaxation in Anderson Critical Systems (United States)

    Choi, Soonwon; Yao, Norman; Choi, Joonhee; Kucsko, Georg; Lukin, Mikhail


    We study the single particle dynamics in disordered systems with long range hopping, focusing on the critical cases, i.e., the hopping amplitude decays as 1 /rd in d-dimension. We show that with strong on-site potential disorder, the return probability of the particle decays as power-law in time. As on-site potential disorder decreases, the temporal profile smoothly changes from a simple power-law to the sum of multiple power-laws with exponents ranged from 0 to νmax. We analytically compute the decay exponents using a simple resonance counting argument, which quantitatively agrees with exact numerical results. Our result implies that the dynamics in Anderson Critical systems are dominated by resonances. Harvard-MIT CUA, Kwanjeong Educational Fellowship, AFOSR MURI, Samsung Scholarship.

  1. The Role of Contrast in the Perception of Achromatic Transparency: Comment on Singh and Anderson (2002) and Anderson (2003) (United States)

    Albert, Marc K.


    M. Singh and B. L. Anderson proposed a perceptual theory of achromatic transparency in which the perceived transmittance of a perceived transparent filter is determined by the ratio of the Michelson contrast seen in the region of transparency to that of the background seen directly. Subsequently, B. L. Anderson, M. Singh, and J. Meng proposed that…

  2. Motion of a Distinguishable Impurity in the Bose Gas: Arrested Expansion Without a Lattice and Impurity Snaking (United States)

    Robinson, Neil J.; Caux, Jean-Sébastien; Konik, Robert M.


    We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. When the impurity is injected with a finite center-of-mass momentum, the impurity moves through the background gas in a snaking manner, arising from a quantum Newton's cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.

  3. Measurements and modeling of transport and impurity radial profiles in the EXTRAP T2R reversed field pinch (United States)

    Kuldkepp, M.; Brunsell, P. R.; Cecconello, M.; Dux, R.; Menmuir, S.; Rachlew, E.


    Radial impurity profiles of oxygen in the rebuilt reversed field pinch EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] have been measured with a multichannel spectrometer. Absolute ion densities for oxygen peak between 1-4×1010cm-3 for a central electron density of 1×1013cm-3. Transport simulations with the one-dimensional transport code STRAHL with a diffusion coefficient of 20m2 s-1 yield density profiles similar to those measured. Direct measurement of the ion profile evolution during pulsed poloidal current drive suggests that the diffusion coefficient is reduced by a factor ˜2 in the core but remains unaffected toward the edge. Core transport is not significantly affected by the radial magnetic field growth seen at the edge in discharges without feedback control. This indicates that the mode core amplitude remains the same while the mode eigenfunction increases at the edge.

  4. Quantum Hall criticality and localization in graphene with short-range impurities at the Dirac point. (United States)

    Gattenlöhner, S; Hannes, W-R; Ostrovsky, P M; Gornyi, I V; Mirlin, A D; Titov, M


    We explore the longitudinal conductivity of graphene at the Dirac point in a strong magnetic field with two types of short-range scatterers: adatoms that mix the valleys and "scalar" impurities that do not mix them. A scattering theory for the Dirac equation is employed to express the conductance of a graphene sample as a function of impurity coordinates; an averaging over impurity positions is then performed numerically. The conductivity σ is equal to the ballistic value 4e2/πh for each disorder realization, provided the number of flux quanta considerably exceeds the number of impurities. For weaker fields, the conductivity in the presence of scalar impurities scales to the quantum-Hall critical point with σ≃4×0.4e2/h at half filling or to zero away from half filling due to the onset of Anderson localization. For adatoms, the localization behavior is also obtained at half filling due to splitting of the critical energy by intervalley scattering. Our results reveal a complex scaling flow governed by fixed points of different symmetry classes: remarkably, all key manifestations of Anderson localization and criticality in two dimensions are observed numerically in a single setup.

  5. Anderson localization and colocalization of spatially entangled photons (United States)

    Abouraddy, Ayman F.; Di Giuseppe, Giovanni; Christodoulides, Demetrios N.; Saleh, Bahaa E. A.


    We explore the propagation of light in a two-photon state in disordered optical systems that induce Anderson localization. We show that entangled-photon pairs demonstrate a surprising behavior that we call Anderson colocalization: While neither photon exhibits Anderson localization, the spatial correlations of the pair remain intact. Furthermore, we show that entangled-photon pairs colocalize faster than classical light localizes in the same system. We also explore the propagation of anticorrelated and partially entangled photon pairs in such systems. The results are developed using a linear systems theory that extends the scope of quantum imaging to incorporate disordered systems.

  6. Controlling Anderson localization in disordered photonic crystal waveguides

    CERN Document Server

    Garcia, P D; Stobbe, S; Lodahl, P


    We prove Anderson localization in a disordered photonic crystal waveguide by measuring the ensemble-averaged localization length which is controlled by the dispersion of the photonic crystal waveguide. In such structures, the localization length shows a 10-fold variation between the fast- and the slow-light regime and, in the latter case, it becomes shorter than the sample length thus giving rise to strongly confined modes. The dispersive behavior of the localization length demonstrates the close relation between Anderson localization and the photon density of states in disordered photonic crystals, which opens a promising route to controlling and exploiting Anderson localization for efficient light confinement.

  7. Geology of the Anderson Mesa quadrangle, Colorado (United States)

    Cater, Fred W.; Withington, C.F.


    The Anderson Mesa quadrangle is one of the eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of the southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteenth quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quarternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-tending folds. Conspicuous among the folds are large anticlines having cores of intrusive slat and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing many thousands of tons. The ore consists of largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  8. Fractal growth in impurity-controlled solidification in lipid monolayers

    DEFF Research Database (Denmark)

    Fogedby, Hans C.; Sørensen, Erik Schwartz; Mouritsen, Ole G.


    A simple two-dimensional microscopic model is proposed to describe solidifcation processes in systems with impurities which are miscible only in the fluid phase. Computer simulation of the model shows that the resulting solids are fractal over a wide range of impurity concentrations and impurity...... diffusional constants. A fractal-forming mechanism is suggested for impurity-controlled solidification which is consistent with recent experimental observations of fractal growth of solid phospholipid domains in monolayers. The Journal of Chemical Physics is copyrighted by The American Institute of Physics....


    Directory of Open Access Journals (Sweden)



    Full Text Available The article generalizes way of relevant segment of media sphere of the first half of 20 cent. “The Little Review” (1914-1929, a literary magazine founded by Margaret Caroline Anderson, which has become a model of “uncompromising” periodicals, provide a forum for writers, artists, musicians, anarchists, radicals, socialists. Inviting to cooperate Jane Heap and Ezra Pound, Anderson created a magazine, featuring a wide range of contemporary and early experimental literature. She edited many verses of M. Moor and some poet experiences of E. Pound. For his influence the magazine got flow of international experimentations inviting J. Barns, Th.S. Elliot, U. Lewis, M. Loy, F. Picabia, D. Richardson, M. Sinclair, G. Stine, W.C. Williams, W.B. Yeats. M. Anderson represented for readers “Ulises” by J. Joyce and showed the best persons of imagism and modernism. “The Little Review” made all for demonstrate 23 art schools from 19 countries. Instead of colloquial tone editing articles of Anderson became the reflection of early period of modernism. She wrote long articles criticized the society. The magazine activity of the editor is connected with literature: M. Anderson leave a trace in modernist prose. She published three autobiographic tomes: “My Thirty Years' War: The Autobiography”, 1930; “The Fiery Fountains: The Autobiography», 1951, and “The Strange Necessity: The Autobiography”, 1962. She also wrote two books: “The Little Review Anthology”, 1953, and “The Unknowable Gurdjieff”, 1962.

  10. Martin Anderson valis "Joonase lähetamise" / Priit Kuusk

    Index Scriptorium Estoniae

    Kuusk, Priit, 1938-


    M. Anderson kommenteeris ameerika muusikaajakirjas "Fanfare" viit talle kõige enam mõju avaldanud heliplaati, sh. R. Tobiase oratooriumi "Joonase lähetamine" CD-plaati (BIS). M. Andersoni huvist eesti muusika vastu

  11. Cavity quantum electrodynamics in the Anderson-localized regime

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren;


    We experimentally measure, by means of time-resolved photoluminescence spectroscopy, a 15-fold enhancement of the spontaneous emission decay rate of single semiconductor quantum dots coupled to disorder-induced Anderson-localized modes with efficiencies reaching 94%....

  12. Tight-Binding Description of Impurity States in Semiconductors (United States)

    Dominguez-Adame, F.


    Introductory textbooks in solid state physics usually present the hydrogenic impurity model to calculate the energy of carriers bound to donors or acceptors in semiconductors. This model treats the pure semiconductor as a homogeneous medium and the impurity is represented as a fixed point charge. This approach is only valid for shallow impurities…

  13. Real-time dynamics induced by quenches across the quantum critical points in gapless Fermi systems with a magnetic impurity (United States)

    Kleine, Christian; Mußhoff, Julian; Anders, Frithjof B.


    The energy-dependent scattering of fermions from a localized orbital at an energy-dependent rate Γ (ɛ ) ∝|ɛ| r gives rise to quantum critical points (QCPs) in the pseudogap single-impurity Anderson model separating a local moment phase with an unscreened spin moment from a strong-coupling phase which slightly deviates from the screened phase of standard Kondo problem. Using the time-dependent numerical renormalization group (TD-NRG) approach we show that local dynamic properties always equilibrate towards a steady-state value even for quenches across the QCP but with systematic deviations from the thermal equilibrium depending on the distance to the critical coupling. Local nonequilibrium properties are presented for interaction quenches and hybridization quenches. We augment our numerical data by an analytical calculation that becomes exact at short times and find excellent agreement between the numerics and the analytical theory. For interaction quenches within the screened phase we find a universal function for the time-dependent local double occupancy. We trace back the discrepancy between our results and the data obtained by a time-dependent Gutzwiller variational approach to restrictions of the wave-function ansatz in the Gutzwiller theory: while the NRG ground states properly account for the formation of an extended spin moment which decouples from the system in the unscreened phase, the Gutzwiller ansatz only allows the formation of the spin moment on the local impurity orbital.

  14. Impurity solitons with quadratic nonlinearities

    DEFF Research Database (Denmark)

    Clausen, Carl A. Balslev; Torres, Juan P-; Torner, Lluis


    We fmd families of solitary waves mediated by parametric mixing in quadratic nonlinear media that are localized at point-defect impurities. Solitons localized at attractive impurities are found to be dynamically stable. It is shown that localization at the impurity modifies strongly the soliton p...

  15. Observation of interactions between impurities and hydrodynamics solitons

    Institute of Scientific and Technical Information of China (English)

    L(U) Lei; CHEN Weizhong; ZHU Yifei; LIN Han


    We have experimentally investigated interactions between impurities and hydrodynamic solitons in a shallow water trough subject to vertical vibration. The impurities are minor convex and concave defects located on the bottom of the trough, slightly varying the water depth. The experiments show that a shallow impurity will attract breathers and kinks while a deep one will repel them. These observations are consistent with the theoretical prediction proposed in the continuous Frankel-Kontorova model with impurities and can also be explained in the view of energy absorption.


    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin


    Science is impure in two ways. There is not a 'pure' science. By this I mean that physics impinges on astronomy, on the one hand, and chemistry on biology on the other. And not only does each support its neighbors but derives sustenance from them. The same can be said of chemistry. Biology is, perhaps, the example par excellence today of an 'impure' science. Beyond this, there is no 'pure' science itself divorced from human values. The importance of science to the humanities and the humanities to science in their complementary contribution to the variety of human life grows daily. The need for men familiar with both is imperative. We are faced today with a social decision resulting from our progress in molecular genetics at least equal to, and probably greater than, that required of us twenty years ago with the maturity of nuclear power.

  17. Absorption and Emission in quantum dots: Fermi surface effects of Anderson excitons


    Helmes, R. W.; Sindel, M.; Borda, L.; von Delft, J.


    Recent experiments measuring the emission of exciton recombination in a self-organized single quantum dot (QD) have revealed that novel effects occur when the wetting layer surrounding the QD becomes filled with electrons, because the resulting Fermi sea can hybridize with the local electron levels on the dot. Motivated by these experiments, we study an extended Anderson model, which describes a local conduction band level coupled to a Fermi sea, but also includes a local valence band level. ...

  18. Zero Energy Anomaly in One-Dimensional Anderson Lattice with Exponentially Correlated Weak Diagonal Disorder

    Institute of Scientific and Technical Information of China (English)

    王宗国; 覃绍京; 康凯; 王垂林


    We calculated numerically the localization length of one-dimensional Anderson model with correlated diagonal disorder. For zero energy point in the weak disorder limit, we showed that the localization length changes continuously as the correlation of the disorder increases. We found that higher order terms of the correlation must be included into the current perturbation result in order to give the correct localization length, arid to connect smoothly the anomaly at zero correlation with the perturbation result for large correlation.

  19. Steady-state organization of binary mixtures by active impurities

    DEFF Research Database (Denmark)

    Sabra, Mads Christian; Gilhøj, Henriette; Mouritsen, Ole G.


    The structural reorganization of a phase-separated binary mixture in the presence of an annealed dilution of active impurities is studied by computer-simulation techniques via a simple two-dimensional lattice-gas model. The impurities, each of which has two internal states with different affinity...

  20. Novel Bound States in Graphene with Impurities

    CERN Document Server

    Gupta, Kumar S


    We obtain a novel bound state spectrum of the low energy excitations near the Fermi points of graphene in the presence of a charge impurity. The effects of possible short range interactions induced by the impurity are modelled by suitable boundary conditions. The spectrum in the subcritical region of the effective Coulomb coupling is labelled by a parameter which characterizes the boundary conditions and determines the inequivalent quantizations of the system. In the supercritical region we obtain a renormalization group flow for the effective Coulomb coupling.

  1. Magnetic impurities in spin-split superconductors (United States)

    van Gerven Oei, W.-V.; Tanasković, D.; Žitko, R.


    Hybrid semiconductor-superconductor quantum dot devices are tunable physical realizations of quantum impurity models for a magnetic impurity in a superconducting host. The binding energy of the localized subgap Shiba states is set by the gate voltages and external magnetic field. In this work we discuss the effects of the Zeeman spin splitting, which is generically present both in the quantum dot and in the (thin-film) superconductor. The unequal g factors in semiconductor and superconductor materials result in respective Zeeman splittings of different magnitude. We consider both classical and quantum impurities. In the first case we analytically study the spectral function and the subgap states. The energy of bound states depends on the spin-splitting of the Bogoliubov quasiparticle bands as a simple rigid shift. For the case of collinear magnetization of impurity and host, the Shiba resonance of a given spin polarization remains unperturbed when it overlaps with the branch of the quasiparticle excitations of the opposite spin polarization. In the quantum case, we employ numerical renormalization group calculations to study the effect of the Zeeman field for different values of the g factors of the impurity and of the superconductor. We find that in general the critical magnetic field for the singlet-doublet transition changes nonmonotonically as a function of the superconducting gap, demonstrating the existence of two different transition mechanisms: Zeeman splitting of Shiba states or gap closure due to Zeeman splitting of Bogoliubov states. We also study how in the presence of spin-orbit coupling, modeled as an additional noncollinear component of the magnetic field at the impurity site, the Shiba resonance overlapping with the quasiparticle continuum of the opposite spin gradually broadens and then merges with the continuum.

  2. Controlling Anderson localization in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Garcia-Fernández, David; Smolka, Stephan; Stobbe, Søren

    at two different wavelengths in the fast- (black) and slow-light (red) regimes, respectively. From these fits we extract a strongly dispersive localization length (Fig. 1b). We attribute this effect to the dispersion in the electromagnetic density of states of the waveguide mode which determines ng...... of the waveguide. Our measurements demonstrate for the first time the close relation between light localization and density of states [5], which can be used ultimately for controlling the extension and spectral position of Anderson-localized modes....... structures [1,2]. Originally proposed for electrons by P. W. Anderson [3], only completely random systems without any long-range correlation between the scattering sites have been used so far, meaning that the Anderson-localized modes cannot be controlled. In disordered photonic crystals, these modes...

  3. Anderson wall and Bloch oscillations in molecular rotation

    CERN Document Server

    Floß, Johannes


    We describe a universal behavior of linear molecules excited by a periodic train of short laser pulses under quantum resonance conditions. In a rigid rotor the resonance causes an unlimited ballistic growth of the angular momentum. We show that the centrifugal distortion of rotating molecules eventually halts the growth, by causing Anderson localization beyond a critical value of the angular momentum -- the Anderson wall. Its position solely depends on the molecular rotational constants and lies in the range of a few tens of hbar. Below the wall, rotational excitation oscillates with the number of pulses due to a mechanism similar to Bloch oscillations in crystalline solids. We suggest optical experiments capable of observing the rotational Anderson wall and Bloch oscillations at ambient conditions with the help of existing laser technology.

  4. Anderson wall and BLOCH oscillations in molecular rotation. (United States)

    Floß, Johannes; Averbukh, Ilya Sh


    We describe a universal behavior of linear molecules excited by a periodic train of short laser pulses under quantum resonance conditions. In a rigid rotor, the resonance causes an unlimited ballistic growth of the angular momentum. We show that the centrifugal distortion of rotating molecules eventually halts the growth, by causing Anderson localization beyond a critical value of the angular momentum--the Anderson wall. Its position solely depends on the molecular rotational constants and lies in the range of a few tens of ℏ. Below the wall, rotational excitation oscillates with the number of pulses due to a mechanism similar to Bloch oscillations in crystalline solids. We suggest optical experiments capable of observing the rotational Anderson wall and Bloch oscillations at near-ambient conditions with the help of existing laser technology.

  5. Critical properties of the Anderson localization transition and the high-dimensional limit (United States)

    Tarquini, E.; Biroli, G.; Tarzia, M.


    In this paper we present a thorough study of transport, spectral, and wave-function properties at the Anderson localization critical point in spatial dimensions d =3 , 4, 5, 6. Our aim is to analyze the dimensional dependence and to assess the role of the d →∞ limit provided by Bethe lattices and treelike structures. Our results strongly suggest that the upper critical dimension of Anderson localization is infinite. Furthermore, we find that dU=∞ is a much better starting point compared to dL=2 to describe even three-dimensional systems. We find that critical properties and finite-size scaling behavior approach by increasing d those found for Bethe lattices: the critical state becomes an insulator characterized by Poisson statistics and corrections to the thermodynamics limit become logarithmic in the number N of lattice sites. In the conclusion, we present physical consequences of our results, propose connections with the nonergodic delocalized phase suggested for the Anderson model on infinite-dimensional lattices, and discuss perspectives for future research studies.

  6. Impurity sources in TEXTOR (United States)

    Pospieszczyk, A.; Bay, H. L.; Bogen, P.; Hartwig, H.; Hintz, E.; Konen, L.; Ross, G. G.; Rusbuldt, D.; Samm, U.; Schweer, B.


    The deuterium, oxygen and carbon fluxes from the main limiter and the deuterium fluxes from the wall are measured in TEXTOR for an "all carbon" surrounding as a function of central density ne, of applied ICRH-power and of different wall conditions (carbonization). For this purpose, emission spectroscopy both with filter systems and spectrometers has been used. It is found that a major release mechanism for light impurities is via the formation of molecules. Oxygen seems to enter the discharge from the liner via O-D containing molecules, whereas the limiter acts as the main carbon source by the release of hydro-carbons as indicated by the observed CD-band spectra. Both oxygen and carbon fluxes are reduced by about a factor of two after a fresh carbonization. Above a certain critical density the plasma detaches from the limiter and forms a stable discharge with a radiation cooled boundary layer and with a major fraction of particles now reaching the wall instead of the limiter. The critical density rises with decreasing impurity fluxes or with increasing heating powers.

  7. Multiple-beam Propagation in an Anderson Localized Optical Fiber

    CERN Document Server

    Karbasi, Salman; Mafi, Arash


    We investigate the simultaneous propagation of multiple beams in a disordered Anderson localized optical fiber. The profiles of each beam fall off exponentially, enabling multiple channels at high-density. We examine the influence of fiber bends on the movement of the beam positions, which we refer to as drift. We investigate the extent of the drift of localized beams induced by macro-bending and show that it is possible to design Anderson localized optical fibers which can be used for practical beam-multiplexing applications.

  8. Anderson Transition for Classical Transport in Composite Materials (United States)

    Murphy, N. Benjamin; Cherkaev, Elena; Golden, Kenneth M.


    The Anderson transition in solids and optics is a wave phenomenon where disorder induces localization of the wave functions. We find here that the hallmarks of the Anderson transition are exhibited by classical transport at a percolation threshold—without wave interference or scattering effects. As long range order or connectedness develops, the eigenvalue statistics of a key random matrix governing transport cross over toward universal statistics of the Gaussian orthogonal ensemble, and the field eigenvectors delocalize. The transition is examined in resistor networks, human bone, and sea ice structures.

  9. Two independent pivotal statistics that test location and misspecification and add-up to the Anderson-Rubin statistic

    NARCIS (Netherlands)

    Kleibergen, F.R.


    We extend the novel pivotal statistics for testing the parameters in the instrumental variables regression model. We show that these statistics result from a decomposition of the Anderson-Rubin statistic into two independent pivotal statistics. The first statistic is a score statistic that tests loc

  10. Development of a quantitative approach using surface-enhanced Raman chemical imaging: first step for the determination of an impurity in a pharmaceutical model. (United States)

    De Bleye, C; Sacré, P-Y; Dumont, E; Netchacovitch, L; Chavez, P-F; Piel, G; Lebrun, P; Hubert, Ph; Ziemons, E


    This publication reports, for the first time, the development of a quantitative approach using surface-enhanced Raman chemical imaging (SER-CI). A pharmaceutical model presented as tablets based on paracetamol, which is the most sold drug around the world, was used to develop this approach. 4-Aminophenol is the main impurity of paracetamol and is actively researched in pharmaceutical formulations because of its toxicity. As its concentration is generally very low (<0.1%, w/w), conventional Raman chemical imaging cannot be used. In this context, a SER-CI method was developed to quantify 4-aminophenol assessing a limit of quantification below its limit of specification of 1000 ppm. Citrate-reduced silver nanoparticles were used as SERS substrate and these nanoparticles were functionalized using 1-butanethiol. Different ways to cover the tablets surface by butanethiol-functionalized silver nanoparticles were tested and a homogeneity study of the silver nanoparticles covering was realized. This homogeneity study was performed in order to choose the best way to cover the surface of tablets by silver colloid. Afterwards, the optimization of the SER-CI approach was necessary and different spectral intensity normalizations were tested. Finally, a quantitative approach using SER-CI was developed enabling to quantify 4-aminophenol from 0.025% to 0.2% in paracetamol tablets. This quantitative approach was tested on two different series of tablets using different batches of silver nanoparticles.

  11. Quantum dynamics of impurities coupled to a Fermi sea (United States)

    Parish, Meera M.; Levinsen, Jesper


    We consider the dynamics of an impurity atom immersed in an ideal Fermi gas at zero temperature. We focus on the coherent quantum evolution of the impurity following a quench to strong impurity-fermion interactions, where the interactions are assumed to be short range like in cold-atom experiments. To approximately model the many-body time evolution, we use a truncated basis method, where at most two particle-hole excitations of the Fermi sea are included. When the system is initially noninteracting, we show that our method exactly captures the short-time dynamics following the quench, and we find that the overlap between initial and final states displays a universal nonanalytic dependence on time in this limit. We further demonstrate how our method can be used to compute the impurity spectral function, as well as describe many-body phenomena involving coupled impurity spin states, such as Rabi oscillations in a medium or highly engineered quantum quenches.

  12. Phase transitions and steady-state microstructures in a two-temperature lattice-gas model with mobile active impurities

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Sabra, Mads Christian; Mouritsen, Ole G.


    . The properties of the model are calculated by Monte Carlo computer-simulation techniques. The two temperatures and the external drive on the system lead to a rich phase diagram including regions of microstructured phases in addition to macroscopically ordered (phase-separated) and disordered phases. Depending...

  13. Cavity quantum electrodynamics with Anderson-localized modes

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren;


    by a factor of 15 on resonance with the Anderson-localized mode, and 94% of the emitted single photons coupled to the mode. Disordered photonic media thus provide an efficient platform for quantum electrodynamics, offering an approach to inherently disorder-robust quantum information devices....

  14. Anderson-Witting transport coefficients for flows in general relativity

    CERN Document Server

    Ambrus, Victor E


    The transport coefficients induced by the Anderson-Witting approximation of the collision term in the relativistic Boltzmann equation are derived for close to equilibrium flows in general relativity. Using the tetrad formalism, it is shown that the expression for these coefficients is the same as that obtained on flat space-time, in agreement with the generalized equivalence principle.

  15. A comment on the paper by Kym Anderson

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowicz, E. [Swedish University of Agricultural Sciences, Uppsala (Sweden). Dept. of Economics


    Comments are given on the preceding paper in this issue of Energy Policy (pp 485-496) entitled `The political economy of coal subsidies in Europe` by Kym Anderson. They focus on the analysis of coal subsidies using the political economy approach for the assessment of the current situation and of the prospects for the future. 5 refs.

  16. 75 FR 34170 - Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC... (United States)


    ... Employment and Training Administration Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium... Assistance on March 18, 2010, applicable to workers of Plastic Omnium Automotive Exteriors, LLC, Anderson... have occurred involving workers in support of the Anderson, South Carolina location of Plastic...

  17. 75 FR 8346 - Proposed CERCLA Administrative Settlement; Anderson-Calhoun Mine and Mill Site, Leadpoint, WA (United States)


    ... AGENCY Proposed CERCLA Administrative Settlement; Anderson-Calhoun Mine and Mill Site, Leadpoint, WA... settlement for costs associated with a removal action at the Anderson-Calhoun Mine and Mill Site in Leadpoint.... Comments should reference the Anderson-Calhoun Mine and Mill Site in Leadpoint, Washington, EPA Docket...

  18. Thermal quantum discord in the Heisenberg chain with impurity

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jia-Min, E-mail:; Hui, Zhan-Qiang


    We study thermal quantum discord (TQD) in the Heisenberg chain with spin site or magnetic impurity. The former one of which may induce inhomogeneous exchange interactions between the neighboring spins, while the latter one may model a spin chain with nonuniform magnetic field. In contrast to one's traditional understanding, we found that the spin impurity can be used to enhance the TQD greatly for all the bipartition schemes of the chain, while the magnetic impurity located on one spin can make the TQD between the other two spins approaching its maximum 1 for the antiferromagnetic chain.

  19. Fluid and gyrokinetic simulations of impurity transport at JET

    DEFF Research Database (Denmark)

    Nordman, H; Skyman, A; Strand, P;


    Impurity transport coefficients due to ion-temperature-gradient (ITG) mode and trapped-electron mode turbulence are calculated using profile data from dedicated impurity injection experiments at JET. Results obtained with a multi-fluid model are compared with quasi-linear and nonlinear gyrokinetic...... temperature gradient, collisionality, E × B shearing, and charge fraction are investigated. It is found that for the studied ITG dominated JET discharges, both the fluid and gyrokinetic results show an increase in the impurity peaking factor for low Z-values followed by a saturation at moderate values...

  20. The impact of neutral impurity concentration on charge drift mobility in germanium

    CERN Document Server

    Mei, H; Wang, G -J; Yang, G


    We report a new result of the neutral impurity scattering of electrons and holes that has impact on the charge drift mobility in high purity germanium crystals at 77 Kelvin. The charge carrier concentration, mobility and resistivity are measured by Hall Effect system at 77 Kelvin. We investigated the contribution to the total charge drift mobility from ionized impurity scattering, lattice scattering, and neutral impurity scattering with the best theoretical models and experimental data. Several samples with measured Hall mobility from the grown crystals are used for this investigation. With the measured Hall mobility and ionized impurity concentration as well as the theoretical models, we calculated the neutral impurity concentration by the Matthiessen's rule. As a result, the distributions of the neutral impurity concentrations with respect to the radius of the crystals are obtained. Consequently, we demonstrate that neutral impurity scattering is a significant contribution to the charge drift mobility, whic...

  1. Comparison of three prognostic scoring systems in a series of 146 cases of chronic myelomonocytic leukemia (CMML): MD Anderson prognostic score (MDAPS), CMML-specific prognostic scoring system (CPSS) and Mayo prognostic model. A detailed review of prognostic factors in CMML. (United States)

    Calvo, Xavier; Nomdedeu, Meritxell; Santacruz, Rodrigo; Martínez, Núria; Costa, Dolors; Pereira, Arturo; Estrada, Natalia; Xicoy, Blanca; Esteve, Jordi; Nomdedeu, Benet


    Although specific prognostic models for chronic myelomonocytic leukemia (CMML) exist, few are based on large series of patients. MD Anderson prognostic score (MDAPS) has been the most useful for CMML risk assessment. Due to recent emergence of CMML-specific prognostic scoring system (CPSS) and Mayo prognostic model, we compared the three scores. One hundred forty-six CMML patients diagnosed between 1998 and 2014 were retrospectively analyzed. Univariate analysis was performed to assess prognostic impact on overall survival (OS) and leukemia-free survival (LFS) of the variables composing the scores and all items showed prognostic value on OS with the exception of the presence of circulating immature myeloid cells. Regarding LFS, only CPSS variables, bone marrow blast ≥10% and an absolute monocyte count >10×10(9)/L had an impact. When the scores were applied, all showed an impact on OS and retained their significance in multivariate analysis. By using ROC curves and C-index, CPSS showed a slightly better predictive value for mortality and leukemia transformation. Variables composing the three indexes were compared in multivariate analysis and only CPSS parameters and platelets<100×10(9)/L retained their significance. Based on these findings, by adding platelet count to CPSS, a new score was implemented (CPSS-P) showing the best risk prediction capability in our series. This study reinforces the validity of the tested scores.

  2. Impurity Influence on Nitride LEDs

    Directory of Open Access Journals (Sweden)

    O.I. Rabinovich


    Full Text Available Light emitting diodes (LEDs are widely used nowadays. They are used in major parts of our life. But it is still necessary to improve their characteristics. In this paper the impurity and Indium atoms influence on the LEDs characteristics is investigated by computer simulation. Simulation was carried out in Sim Windows. The program was improved for this purpose by creating new files for AlGaInN heterostructure and devices including more than 25 basic parameters. It was found that characteristics depend on impurity and indium atoms changes a lot. The optimum impurity concentration for doping barriers between quantum wells was achieved. By varying impurity and Indium concentration the distribution in AlGaInN heterostructure LEDs characteristics could be improved.

  3. Photon transport enhanced by transverse Anderson localization in disordered superlattices

    CERN Document Server

    Hsieh, Pin-Chun; McMillan, James; Tsai, Min-An; Lu, Ming; Panoiu, Nicolae; Wong, Chee Wei


    One of the daunting challenges in optical physics is to accurately control the flow of light at the subwavelength scale, by patterning the optical medium one can design anisotropic media. The light transport can also be significantly affected by Anderson localization, namely the wave localization in a disordered medium, a ubiquitous phenomenon in wave physics. Here we report the photon transport and collimation enhanced by transverse Anderson localization in chip-scale dispersion engineered anisotropic media. We demonstrate a new type of anisotropic photonic structure in which diffraction is nearly completely arrested by cascaded resonant tunneling through transverse guided resonances. By perturbing the shape of more than 4,000 scatterers in these superlattices we add structural disordered in a controlled manner and uncover the mechanism of disorder-induced transverse localization at the chip-scale. Arrested spatial divergence is captured in the power-law scaling, along with exponential asymmetric mode profil...

  4. Absence of Anderson localization in certain random lattices

    CERN Document Server

    Choi, Wonjun; Hooper, Ian R; Bernes, William L; Bertolotti, Jacopo


    We report on the transition between an Anderson localized regime and a conductive regime in a 1D scattering system with correlated disorder. We show experimentally that when long-range correlations, in the form of a power-law spectral density with power larger than 2, are introduced the localization length becomes much bigger than the sample size and the transmission peaks typical of an Anderson localized system merge into a pass band. As other forms of long-range correlations are known to have the opposite effect, i.e. to enhance localization, our results show that care is needed when discussing the effects of correlations, as different kinds of long-range correlations can give rise to very different behavior.

  5. Cavity quantum electrodynamics with Anderson-localized modes. (United States)

    Sapienza, Luca; Thyrrestrup, Henri; Stobbe, Søren; Garcia, Pedro David; Smolka, Stephan; Lodahl, Peter


    A major challenge in quantum optics and quantum information technology is to enhance the interaction between single photons and single quantum emitters. This requires highly engineered optical cavities that are inherently sensitive to fabrication imperfections. We have demonstrated a fundamentally different approach in which disorder is used as a resource rather than a nuisance. We generated strongly confined Anderson-localized cavity modes by deliberately adding disorder to photonic crystal waveguides. The emission rate of a semiconductor quantum dot embedded in the waveguide was enhanced by a factor of 15 on resonance with the Anderson-localized mode, and 94% of the emitted single photons coupled to the mode. Disordered photonic media thus provide an efficient platform for quantum electrodynamics, offering an approach to inherently disorder-robust quantum information devices.

  6. Parallel impurity dynamics in the TJ-II stellarator (United States)

    Alonso, J. A.; Velasco, J. L.; Calvo, I.; Estrada, T.; Fontdecaba, J. M.; García-Regaña, J. M.; Geiger, J.; Landreman, M.; McCarthy, K. J.; Medina, F.; Van Milligen, B. Ph; Ochando, M. A.; Parra, F. I.; the TJ-II Team; the W7-X Team


    We review in a tutorial fashion some of the causes of impurity density variations along field lines and radial impurity transport in the moment approach framework. An explicit and compact form of the parallel inertia force valid for arbitrary toroidal geometry and magnetic coordinates is derived and shown to be non-negligible for typical TJ-II plasma conditions. In the second part of the article, we apply the fluid model including main ion-impurity friction and inertia to observations of asymmetric emissivity patterns in neutral beam heated plasmas of the TJ-II stellarator. The model is able to explain qualitatively several features of the radiation asymmetry, both in stationary and transient conditions, based on the calculated in-surface variations of the impurity density.

  7. Parallel impurity dynamics in the TJ-II stellarator

    CERN Document Server

    Alonso, J A; Estrada, T; Fontdecaba, J M; García-Regaña, J M; Geiger, J; Landreman, M; McCarthy, K J; Medina, F; Van Milligen, B Ph; Ochando, M A; Parra, F I; Velasco, J L


    We review in a tutorial fashion some of the causes of impurity density variations along field lines and radial impurity transport in the moment approach framework. An explicit and compact form of the parallel inertia force valid for arbitrary toroidal geometry and magnetic coordinates is derived and shown to be non-negligible for typical TJ-II plasma conditions. In the second part of the article, we apply the fluid model including main ion-impurity friction and inertia to observations of asymmetric emissivity patterns in neutral beam heated plasmas of the TJ-II stellarator. The model is able to explain qualitatively several features of the radiation asymmetry, both in stationary and transient conditions, based on the calculated in-surface variations of the impurity density.

  8. Anderson localization in Bragg-guiding arrays with negative defects

    CERN Document Server

    Lobanov, Valery E; Vysloukh, Victor A; Torner, Lluis


    We show that Anderson localization is possible in waveguide arrays with periodically-spaced defect waveguides having lower refractive index. Such localization is mediated by Bragg reflection, and it takes place even if diagonal or off-diagonal disorder affects only defect waveguides. For off-diagonal disorder the localization degree of the intensity distributions monotonically grows with increasing disorder. In contrast, under appropriate conditions, increasing diagonal disorder may result in weaker localization.

  9. Efficient implementation of the continuous-time hybridization expansion quantum impurity solver (United States)

    Hafermann, Hartmut; Werner, Philipp; Gull, Emanuel


    Strongly correlated quantum impurity problems appear in a wide variety of contexts ranging from nanoscience and surface physics to material science and the theory of strongly correlated lattice models, where they appear as auxiliary systems within dynamical mean-field theory. Accurate and unbiased solutions must usually be obtained numerically, and continuous-time quantum Monte Carlo algorithms, a family of algorithms based on the stochastic sampling of partition function expansions, perform well for such systems. With the present paper we provide an efficient and generic implementation of the hybridization expansion quantum impurity solver, based on the segment representation. We provide a complete implementation featuring most of the recently developed extensions and optimizations. Our implementation allows one to treat retarded interactions and provides generalized measurement routines based on improved estimators for the self-energy and for vertex functions. The solver is embedded in the ALPS-DMFT application package. Catalogue identifier: AEOL_v1_0 Program summary URL: Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Use of the hybridization expansion impurity solvers requires citation of this paper. Use of any ALPS program requires citation of the ALPS [1] paper. No. of lines in distributed program, including test data, etc.: 650044 No. of bytes in distributed program, including test data, etc.: 20553265 Distribution format: tar.gz Programming language: C++/Python. Computer: Desktop PC, high-performance computers. Operating system: Unix, Linux, OSX, Windows. Has the code been vectorized or parallelized?: Yes, MPI parallelized. RAM: 1 GB Classification: 7.3. External routines: ALPS [1, 2, 3], BLAS [4, 5], LAPACK [6], HDF5 [7] Nature of problem: Quantum impurity models were originally introduced to describe a magnetic transition metal ion in a non

  10. Theoretical investigation of formation of impurity bipolaronic states in covalent semiconductors and high temperature superconductors

    CERN Document Server

    Yavidov, B Y


    superconducting properties of doped HTSC compounds have been accounted for with framework of lattice and impurity bipolarons concepts. The theoretical results obtained are in satisfactory agreement with experiment. A theory has been developed of carrier localization around an impurity which takes account of correlation effect between carriers, short- and long range interaction in 'carrier-impurity-lattice' system within the framework of the continuum model in the adiabatic approximation. Possibility of impurity (bi)polaron formation in covalent semiconductors (Si) and high temperature superconductors (HTSC) (La sub 2 sub - sub x Sr sub x Cu sub 4) has been studied theoretically. The impurity bi polaron formation has been analyzed by two scenarios: paring and sequential localization of carriers in the vicinity of impurity atom. It is shown that the impurity bi polaron of large radius does not form in Si while its formation is possible in crystals with x<0.186, where x is the ratio of high frequency dielectr...

  11. Triaxially deformed relativistic point-coupling model for $\\Lambda$ hypernuclei: a quantitative analysis of hyperon impurity effect on nuclear collective properties

    CERN Document Server

    Xue, W X; Hagino, K; Li, Z P; Mei, H; Tanimura, Y


    The impurity effect of hyperon on atomic nuclei has received a renewed interest in nuclear physics since the first experimental observation of appreciable reduction of $E2$ transition strength in low-lying states of hypernucleus $^{7}_\\Lambda$Li. Many more data on low-lying states of $\\Lambda$ hypernuclei will be measured soon for $sd$-shell nuclei, providing good opportunities to study the $\\Lambda$ impurity effect on nuclear low-energy excitations. We carry out a quantitative analysis of $\\Lambda$ hyperon impurity effect on the low-lying states of $sd$-shell nuclei at the beyond-mean-field level based on a relativistic point-coupling energy density functional (EDF), considering that the $\\Lambda$ hyperon is injected into the lowest positive-parity ($\\Lambda_s$) and negative-parity ($\\Lambda_p$) states. We adopt a triaxially deformed relativistic mean-field (RMF) approach for hypernuclei and calculate the $\\Lambda$ binding energies of hypernuclei as well as the potential energy surfaces (PESs) in $(\\beta, \\g...

  12. Simulating the symmetron: domain walls and symmetry-restoring impurities

    CERN Document Server

    Pearson, Jonathan A


    In this paper we study the dynamics of relativistic domain walls in the presence of static symmetry-restoring impurities. The field theory is precisely the same as what is known to cosmologists as the "symmetron model", whereby the usual $\\mathbb{Z}_2$ symmetry breaking potential is appended with a space-varying mass-term (the space-variation is set by the profile of the impurity, which we take to be a "tanh"-function). After presenting the outcomes of a suite of different numerical experiments we have three main results: (1) domain walls pin to impurities, (2) domain wall necklaces can be energetically preferred configurations, and (3) impurities significantly modifies the usual ${N}_{\\rm dw}\\propto t^{-1}$ scaling law for random networks of domain walls.

  13. Fermionic impurities in Chern-Simons-matter theories (United States)

    Benincasa, Paolo; Ramallo, Alfonso V.


    We study the addition of quantum fermionic impurities to the mathcal{N} = 6 super-symmetric Chern-Simons-matter theories in 2 + 1 spacetime dimensions. The impurities are introduced by means of Wilson loops in the antisymmetric representation of the gauge group. In a holographic setup, the system is represented by considering D6-branes probing the AdS 4 × mathbb{C}mathbb{P} 3 background of type IIA supergravity. We study the thermodynamic properties of the system and show how a Kondo lattice model with holographic dimers can be constructed. By computing the Kaluza-Klein fluctuation modes of the probe brane we determine the complete spectrum of dimensions of the impurity operators. A very rich structure is found, depending both on the Kaluza-Klein quantum numbers and on the filling fraction of the impurities.

  14. Fermionic impurities in Chern-Simons-matter theories

    CERN Document Server

    Benincasa, Paolo


    We study the addition of quantum fermionic impurities to the N=6 supersymmetric Chern-Simons-matter theories in 2+1 spacetime dimensions. The impurities are introduced by means of Wilson loops in the antisymmetric representation of the gauge group. In a holographic setup, the system is represented by considering D6-branes probing the AdS_4 x CP^3 background of type IIA supergravity. We study the thermodynamic properties of the system and show how a Kondo lattice model with holographic dimers can be constructed. By computing the Kaluza-Klein fluctuation modes of the probe brane we determine the complete spectrum of dimensions of the impurity operators. A very rich structure is found, depending both on the Kaluza-Klein quantum numbers and on the filling fraction of the impurities.

  15. Multi-Particle Anderson Localisation: Induction on the Number of Particles

    CERN Document Server

    Chulaevsky, Victor


    This paper is a follow-up of our recent papers \\cite{CS08} and \\cite{CS09} covering the two-particle Anderson model. Here we establish the phenomenon of Anderson localisation for a quantum $N$-particle system on a lattice $\\Z^d$ with short-range interaction and in presence of an IID external potential with sufficiently regular marginal cumulative distribution function (CDF). Our main method is an adaptation of the multi-scale analysis (MSA; cf. \\cite{FS}, \\cite{FMSS}, \\cite{DK}) to multi-particle systems, in combination with an induction on the number of particles, as was proposed in our earlier manuscript \\cite{CS07}. Similar results have been recently obtained in an independent work by Aizenman and Warzel \\cite{AW08}: they proposed an extension of the Fractional-Moment Method (FMM) developed earlier for single-particle models in \\cite{AM93} and \\cite{ASFH01} (see also references therein) which is also combined with an induction on the number of particles. An important role in our proof is played by a varian...

  16. Impurity bubbles in a BEC (United States)

    Timmermans, Eddy; Blinova, Alina; Boshier, Malcolm


    Polarons (particles that interact with the self-consistent deformation of the host medium that contains them) self-localize when strongly coupled. Dilute Bose-Einstein condensates (BECs) doped with neutral distinguishable atoms (impurities) and armed with a Feshbach-tuned impurity-boson interaction provide a unique laboratory to study self-localized polarons. In nature, self-localized polarons come in two flavors that exhibit qualitatively different behavior: In lattice systems, the deformation is slight and the particle is accompanied by a cloud of collective excitations as in the case of the Landau-Pekar polarons of electrons in a dielectric lattice. In natural fluids and gases, the strongly coupled particle radically alters the medium, e.g. by expelling the host medium as in the case of the electron bubbles in superfluid helium. We show that BEC-impurities can self-localize in a bubble, as well as in a Landau-Pekar polaron state. The BEC-impurity system is fully characterized by only two dimensionless coupling constants. In the corresponding phase diagram the bubble and Landau-Pekar polaron limits correspond to large islands separated by a cross-over region. The same BEC-impurity species can be adiabatically Feshbach steered from the Landau-Pekar to the bubble regime. This work was funded by the Los Alamos LDRD program.

  17. Dynamical Process of Dissociation of Excitons in Polymer Chains with Impurities

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hong-Xia; ZHAO Hui; CHEN Yu-Guang


    @@ Within an extended Su-Schrieffer-Heeger model including impurity interactions,the dynamical process of exciton dissociation in the presence of an external electric field is investigated by using a non-adiabatic evolution method Under the action of impurities,the stability as well as the effective mass of the exciton is reduced.Our results show that the field required to dissociate the excitons depends sensitively on the strength of the impurity potential.As the impurity potential strength increases,the dissociation field decreases effectively.The theoretical results are expected to provide useful predictions concerning which polymers with properly impurity-assisted interactions are likely to be more suitable for use in organic solar cells.%Within an extended Su-Schrieffer-Heeger model including impurity interactions, the dynamical process ofexciton dissociation in the presence of an external electric field is investigated by using a non-adiabatic evolution method. Under the action of impurities, the stability as well as the effective mass of the exciton is reduced. Our results show that the field required to dissociate the excitons depends sensitively on the strength of the impurity potential. As the impurity potential strength increases, the dissociation field decreases effectively. The theoretical results are expected to provide useful predictions concerning which polymers with properly impurity-assisted interactions are likely to be more suitable for use in organic solar cells.

  18. Signatures of Anderson localization excited by an optical frequency comb

    KAUST Repository

    Gentilini, S.


    We investigate Anderson localization of light as occurring in ultrashort excitations. A theory based on time dependent coupled-mode equations predicts universal features in the spectrum of the transmitted pulse. In particular, the process of strong localization of light is shown to correspond to the formation of peaks in both the amplitude and in the group delay of the transmitted pulse. Parallel ab initio simulations made with finite-difference time-domain codes and molecular dynamics confirm theoretical predictions, while showing that there exists an optimal degree of disorder for the strong localization. © 2010 The American Physical Society.

  19. Forward approximation as a mean-field approximation for the Anderson and many-body localization transitions (United States)

    Pietracaprina, Francesca; Ros, Valentina; Scardicchio, Antonello


    In this paper we analyze the predictions of the forward approximation in some models which exhibit an Anderson (single-body) or many-body localized phase. This approximation, which consists of summing over the amplitudes of only the shortest paths in the locator expansion, is known to overestimate the critical value of the disorder which determines the onset of the localized phase. Nevertheless, the results provided by the approximation become more and more accurate as the local coordination (dimensionality) of the graph, defined by the hopping matrix, is made larger. In this sense, the forward approximation can be regarded as a mean-field theory for the Anderson transition in infinite dimensions. The sum can be efficiently computed using transfer matrix techniques, and the results are compared with the most precise exact diagonalization results available. For the Anderson problem, we find a critical value of the disorder which is 0.9 % off the most precise available numerical value already in 5 spatial dimensions, while for the many-body localized phase of the Heisenberg model with random fields the critical disorder hc=4.0 ±0.3 is strikingly close to the most recent results obtained by exact diagonalization. In both cases we obtain a critical exponent ν =1 . In the Anderson case, the latter does not show dependence on the dimensionality, as it is common within mean-field approximations. We discuss the relevance of the correlations between the shortest paths for both the single- and many-body problems, and comment on the connections of our results with the problem of directed polymers in random medium.

  20. Impurity doping processes in silicon

    CERN Document Server

    Wang, FFY


    This book introduces to non-experts several important processes of impurity doping in silicon and goes on to discuss the methods of determination of the concentration of dopants in silicon. The conventional method used is the discussion process, but, since it has been sufficiently covered in many texts, this work describes the double-diffusion method.

  1. Numerical calculation of impurity charge state distributions

    Energy Technology Data Exchange (ETDEWEB)

    Crume, E. C.; Arnurius, D. E.


    The numerical calculation of impurity charge state distributions using the computer program IMPDYN is discussed. The time-dependent corona atomic physics model used in the calculations is reviewed, and general and specific treatments of electron impact ionization and recombination are referenced. The complete program and two examples relating to tokamak plasmas are given on a microfiche so that a user may verify that his version of the program is working properly. In the discussion of the examples, the corona steady-state approximation is shown to have significant defects when the plasma environment, particularly the electron temperature, is changing rapidly.

  2. Interplay of light and heavy impurities in a fusion device (United States)

    Gaja, M.; Tokar, M. Z.


    ‘Breathing’ activity observed in the Large Helical Device stellarator is characterized by macro-scale oscillations of diverse plasma parameters such as the radiation losses from heavy (iron) and light (carbon and oxygen) impurities, electron density, temperature and the power absorbed in the plasma from neutral beam. They provide an example of a complex behavior in fusion plasmas triggered by the synergy effects from impurities of different species. A one-dimensional non-stationary model, describing the transport across flux surfaces in the plasma of the main and impurity neutral and charged particles, as well as of the thermal energy with the heat absorption from the neutral beam, radiation of high-Z ions from the plasma core and of low-Z impurities from the edge, is elaborated. The model is numerically realized, by applying the finite volume and ‘progonga’ methods to integrate the system of non-linearly coupled transport equations. The results of simulations presented reproduce qualitatively and essentially quantitatively the observations. The model allows prediction of the plasma and impurity environment conditions under which one has to expect ‘breathing’ oscillations.

  3. Fundamental aspects of metallic impurities and impurity interactions in silicon during device processing

    Energy Technology Data Exchange (ETDEWEB)

    Graff, K. [TEMIC, TELEFUNKEN, Heilbronn (Germany)


    A review on the behavior of metallic impurities in silicon can be considerably simplified by a restriction on pure, dislocation-free, monocrystalline silicon. In this case interactions between different impurities and between impurities and grown-in lattice defects can be reduced. This restriction is observed in Chapter 1 for discussing the general behavior of metallic impurities in silicon.

  4. University of Texas MD Anderson: Phenotypic Examination of PIK3CA Allelic Series using In Vitro/In Vivo Sensor Platforms | Office of Cancer Genomics (United States)

    The CTD2 Center at the University of Texas MD Anderson Cancer Center utilized an established and operational MCF10A normal breast epithelial cell model to assess the ability of candidate driver aberrations to promote cell grow in anchorage-independent conditions (soft agar assay) and proliferate in the absence of insulin and epidermal growth factor (EGF).

  5. Interactions between impurities and breather-pairs in a nonlinear lattice

    Energy Technology Data Exchange (ETDEWEB)

    Lin Han; Chen Weizhong; Lu Lei; Wei Rongjue


    Based on the Frenkel-Kontorova (FK) model with a {delta}-impurity, this Letter investigates the interactions between impurities and breather-pairs in a nonlinear pendulum chain driven by a vertical vibration. The numerical results show that a long impurity in pendulum length can absorb more energy into the chain and upgrade the energy level of the breather-pair, when the driving frequency is slight lower than that of parametric resonance of the perfect pendulums, while a short one plays a counteractive role. As the chain is driven at a higher frequency, the effect of impurities turns reverse, which shows a clear symmetry and equivalency between long and short impurities. The main results including the effect and the symmetry of impurities generalize the conclusion on the single breather to the breather-pair.

  6. Interactions between impurities and breather-pairs in a nonlinear lattice (United States)

    Lin, Han; Chen, Weizhong; Lu, Lei; Wei, Rongjue


    Based on the Frenkel-Kontorova (FK) model with a δ-impurity, this Letter investigates the interactions between impurities and breather-pairs in a nonlinear pendulum chain driven by a vertical vibration. The numerical results show that a long impurity in pendulum length can absorb more energy into the chain and upgrade the energy level of the breather-pair, when the driving frequency is slight lower than that of parametric resonance of the perfect pendulums, while a short one plays a counteractive role. As the chain is driven at a higher frequency, the effect of impurities turns reverse, which shows a clear symmetry and equivalency between long and short impurities. The main results including the effect and the symmetry of impurities generalize the conclusion on the single breather to the breather-pair.

  7. Modelling of impurity transport and plasma-wall interaction in fusion devices with the ERO code: basics of the code and examples of application

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, A.; Borodin, D.; Brezinsek, S.; Linsmeier, C.; Romazanov, J. [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Plasmaphysik, Juelich (Germany); Tskhakaya, D. [Fusion rate at OeAW, Institute of Applied Physics, TU Wien (Austria); Institute of Theoretical Physics, University of Innsbruck (Austria); Kawamura, G. [National Institute for Fusion Science, Gifu (Japan); Ding, R. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China)


    The 3D ERO code, which simulates plasma-wall interaction and impurity transport in magnetically confined fusion-relevant devices is described. As application, prompt deposition of eroded tungsten has been simulated at surfaces with shallow magnetic field of 3 T. Dedicated PIC simulations have been performed to calculate the characteristics of the sheath in front of plasma-exposed surfaces to use as input for these ERO simulations. Prompt deposition of tungsten reaches 100% at the highest electron temperature and density. In comparison to more simplified assumptions for the sheath the amount of prompt deposition is in general smaller if the PIC-calculated sheath is used. Due to friction with the background plasma the impact energy of deposited tungsten can be significantly larger than the energy gained in the sheath potential. (copyright 2016 The Authors. Contributions to Plasma Physics published by Wiley-VCH Verlag GmbH and Co. KGaA Weinheim. This)

  8. Localized magnetic excitations for a line of magnetic impurities in a transverse Ising thin film ferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Leite, R.V., E-mail: valmir.leite@uvanet.b [Universidade Estadual Vale do Acarau, Centro de Ciencias Exatas e Tecnologia, Av. Dr. Guarany, 317, Campus do Cidao, 62040-730 Sobral, Ceara (Brazil); Oliveira Filho, L.O. de [Universidade Estadual Vale do Acarau, Centro de Ciencias Exatas e Tecnologia, Av. Dr. Guarany, 317, Campus do Cidao, 62040-730 Sobral, Ceara (Brazil); Milton Pereira, J. [Instituto de Fisica, Universidade Federal de Alagoas, 57072-970 Maceio, Alagoas (Brazil)] [Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, Campus do Pici, 60455-760 Fortaleza, Ceara (Brazil); Cottam, M.G. [Department of Physics and Astronomy, University of Western Ontario, London, Ontario, N6A 3K7 (Canada); Costa Filho, R.N. [Department of Physics and Astronomy, University of Western Ontario, London, Ontario, N6A 3K7 (Canada)] [Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, Campus do Pici, 60455-760 Fortaleza, Ceara (Brazil)


    A Green's function method is used to obtain the spectrum of spin excitations associated with a linear array of magnetic impurities implanted in a ferromagnetic thin film. The equations of motion for the Green's functions of the anisotropic film are written in the framework of the Ising model in a transverse field. The frequencies of localized modes are calculated as a function of the interaction parameters for the exchange coupling between impurity-spin pairs, host-spin pairs, and impurity-host neighbors, as well as the effective field parameter at the impurity sites.

  9. Impact of diffusion limited aggregates of impurities on nematic ordering (United States)

    Harkai, S.; Ambrožič, M.; Kralj, S.


    We study the impact of random bond-type disorder on two-dimensional (2D) orientational ordering of nematic liquid crystal (LC) configurations. The lattice Lebwohl-Lasher pseudospin model is used to model orientational ordering perturbed by frozen-in rod-like impurities of concentration p exhibiting the isotropic orientational probability distribution. The impurities are either (i) randomly spatially distributed or (ii) form diffusion limited aggregation (DLA)-type patterns characterized by the fractal dimensions df, where we consider cases df ∼ 1.7 and df ∼ 1.9. The degree of orientational ordering is quantified in terms of the orientational pair correlation function G(r) . Simulations reveal that the DLA pattern imposed disorder has a significantly weaker impact for a given concentration of impurities. Furthermore, if samples are quenched from the isotropic LC phase, then the fractal dimension is relatively strongly imprinted on quantitative characteristics of G(r) .

  10. All-solid-state cavity QED using Anderson-localized modes in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lodahl, Peter; Sapienza, Luca; Nielsen, Henri Thyrrestrup;


    We employ Anderson-localized modes in deliberately disordered photonic crystal waveguides to confine light and enhance the interaction with matter. A 15-fold enhancement of the decay rate of a single quantum dot is observed meaning that 94% of the emitted single photons are coupled to an Anderson...

  11. Award for Distinguished Scientific Early Career Contributions to Psychology: Adam K. Anderson (United States)

    American Psychologist, 2009


    Adam K. Anderson, recipient of the Award for Distinguished Scientific Early Career Contributions to Psychology, is cited for his outstanding contribution to understanding the representation of emotion and its influence on cognition. By combining psychological and neuroscience techniques with rigorous and creative experimental designs, Anderson has…

  12. Anderson localisation of visible light on a nanophotonic chip

    CERN Document Server

    Crane, Tom; Sapienza, Luca


    Controlling the propagation of visible light on a chip is of tremendous interest in research areas such as energy harvesting, imaging, sensing and biology. Technological advances allow us to control light at the nanoscale and to strongly enhance the light-matter interaction in highly engineered devices. However, compared to state-of-the-art two-dimensional optical cavities operating at longer wavelengths, the quality factor of on-chip visible light confinement is several orders of magnitude lower. Our approach makes use of fabrication imperfections to trap light: we demonstrate, for the first time, Anderson localisation of visible light on a chip. Remarkably, compared to quality factors of engineered cavities, disorder-induced localisation proves to be more efficient in trapping light than highly engineered devices, thus reversing the trend observed so far. We measure light-confinement quality factors as high as 7600 and, by implementing a sensitive imaging technique, we directly visualise the localised modes...

  13. Anderson Localization with Second Quantized Fields: Quantum Statistical Aspects

    CERN Document Server

    Thompson, Clinton; Agarwal, G S


    We report a theoretical study of Anderson localization of nonclassical light with emphasis on the quantum statistical aspects of localized light. We demonstrate, from the variance in mean intensity of localized light, as well as site-to-site correlations, that the localized light carries signatures of quantum statistics of input light. For comparison, we also present results for input light with coherent field statistics and thermal field statistics. Our results show that there is an enhancement in fluctuations of localized light due to the medium's disorder. We also find superbunching of the localized light, which may be useful for enhancing the interaction between radiation and matter. Another important consequence of sub-Poissonian statistics of the incoming light is to quench the total fluctuations at the output. Finally, we compare the effects of Gaussian and Rectangular distributions for the disorder, and show that Gaussian disorder accelerates the localization of light.

  14. Permittivity disorder induced Anderson localization in magnetophotonic crystals (United States)

    Abdi-Ghaleh, R.; Namdar, A.


    This theoretical study was carried out to investigate the permittivity disorder induced Anderson localization of light in one-dimensional magnetophotonic crystals. It was shown that the disorder create the resonant transmittance modes associated with enhanced Faraday rotations inside the photonic band gap. The average localization length of the right- and left-handed circular polarizations (RCP and LCP), the total transmittance together with the ensemble average of the RCP and LCP phases, and the Faraday rotation of the structure were also investigated. For this purpose, the off-diagonal elements of the permittivity tensor were varied for various wavelengths of incident light. The obtained results revealed the nonreciprocal property of circular eigen modes. This study can potentially open up a new aspect for utilizing the disorder magnetophotonic structures in nonreciprocal systems such as isolators and circulators.

  15. Anderson localization in metamaterials and other complex media

    CERN Document Server

    Gredeskul, Sergey A; Asatrian, Ara A; Bliokh, Konstantin Y; Bliokh, Yuri P; Freilikher, Valentin D; Shadrivov, Ilya V


    We review some recent (mostly ours) results on the Anderson localization of light and electron waves in complex disordered systems, including: (i) left-handed metamaterials, (ii) magneto-active optical structures, (iii) graphene superlattices, and (iv) nonlinear dielectric media. First, we demonstrate that left-handed metamaterials can significantly suppress localization of light and lead to an anomalously enhanced transmission. This suppression is essential at the long-wavelength limit in the case of normal incidence, at specific angles of oblique incidence (Brewster anomaly), and in the vicinity of the zero-epsilon or zero-mu frequencies for dispersive metamaterials. Remarkably, in disordered samples comprised of alternating normal and left-handed metamaterials, the reciprocal Lyapunov exponent and reciprocal transmittance increment can differ from each other. Second, we study magneto-active multilayered structures, which exhibit nonreciprocal localization of light depending on the direction of propagation ...

  16. Multifractality at non-Anderson disorder-driven transitions in Weyl semimetals and other systems (United States)

    Syzranov, S. V.; Gurarie, V.; Radzihovsky, L.


    Systems with the power-law quasiparticle dispersion ɛk ∝kα exhibit non-Anderson disorder-driven transitions in dimensions d > 2 α, as exemplified by Weyl semimetals, 1D and 2D arrays of ultracold ions with long-range interactions, quantum kicked rotors, and semiconductor models in high dimensions. We study the wavefunction structure in such systems and demonstrate that at these transitions they exhibit fractal behaviour with an infinite set of multifractal exponents. The multifractality persists even when the wavefunction localisation is forbidden by symmetry or topology and occurs as a result of elastic scattering between all momentum states in the band on length scales shorter than the mean free path. We calculate explicitly the multifractal spectra in semiconductors and Weyl semimetals using one-loop and two-loop renormalisation-group approaches slightly above the marginal dimension d = 2 α.

  17. Information Transmission and Anderson Localization in two-dimensional networks of firing-rate neurons (United States)

    Natale, Joseph; Hentschel, George

    Firing-rate networks offer a coarse model of signal propagation in the brain. Here we analyze sparse, 2D planar firing-rate networks with no synapses beyond a certain cutoff distance. Additionally, we impose Dale's Principle to ensure that each neuron makes only or inhibitory outgoing connections. Using spectral methods, we find that the number of neurons participating in excitations of the network becomes insignificant whenever the connectivity cutoff is tuned to a value near or below the average interneuron separation. Further, neural activations exceeding a certain threshold stay confined to a small region of space. This behavior is an instance of Anderson localization, a disorder-induced phase transition by which an information channel is rendered unable to transmit signals. We discuss several potential implications of localization for both local and long-range computation in the brain. This work was supported in part by Grants JSMF/ 220020321 and NSF/IOS/1208126.

  18. PWA90 Workshop : Marking the Scientific Accomplishments of Philip W. Anderson

    CERN Document Server

    Coleman, PIers; Kotliar, Gabi; Ong, Phuan; Stein, Daniel L; Yu, Clare; PWA90 : a lifetime of emergence


    In a remarkable career spanning more than six decades, Philip W Anderson has made many fundamental contributions to physics. As codified in his oft-quoted phrase "More is Different", Anderson has been the most forceful and persuasive proponent of the radical, but now ubiquitous, viewpoint of emergent phenomena: truly fundamental concepts that can and do emerge from studies of Nature at each layer of complexity or energy scale. Anderson's ideas have also extended deeply into other areas of physics, including the Anderson–Higgs mechanism and the dynamics of pulsars. PWA90: A Lifetime of Emergence is a volume of original scientific essays and personal reminiscences of Philip W Anderson by experts in the field, that were presented as part of "PWA90: Emergent Frontiers of Condensed Matter" meeting held at Princeton in December 2013 to highlight Anderson's contributions to physics.

  19. Identification and Manipulations of Impurity Ions in Magnesium Ion Plasma (United States)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.; Dubin, D. H. E.


    A nominally ``pure'' Mg24+ ion plasma accumulates impurity ions over periods of hours to days by charge exchange with residual background gas (P ~10-10 Torr) in a Penning-Malmberg trap. We use thermal cyclotron spectroscopy (TCS) to identify ion impurities, and observe spatial separation at low temperatures. TCS consists of applying rf bursts at the impurity cyclotron frequencies, with LIF measurement of the majority species heating due to collisions with the heated impurites. We find that for short bursts the heating is proportional to the burst amplitude squared, and to the square of the burst duration, as predicted by a simple single particle model. We spatially separate the impurities from the Magnesium ions by two different techniques: a) With laser cooling to T ions at larger radii. We typically observe a 5-20% ``hole'' in the center of the Mg plasma where the ``dark'' lower-mass impurities reside; and we directly observe the Mg25 and Mg26 at the outer edge of the Mg24 column. b) Resonant laser pressure in the z-direction pushes on the Mg24, and the species separates longitudinally when this laser force is greater than the mass-dependent centrifugal force. Supported by NSF PHY-0903877 and DOE DE-SC0002451.


    Energy Technology Data Exchange (ETDEWEB)

    Colon-Mercado, H.


    A fuel cell is an electrochemical energy conversion device that produces electricity during the combination of hydrogen and oxygen to produce water. Proton exchange membranes fuel cells are favored for portable applications as well as stationary ones due to their high power density, low operating temperature, and low corrosion of components. In real life operation, the use of pure fuel and oxidant gases results in an impractical system. A more realistic and cost efficient approach is the use of air as an oxidant gas and hydrogen from hydrogen carriers (i.e., ammonia, hydrocarbons, hydrides). However, trace impurities arising from different hydrogen sources and production increases the degradation of the fuel cell. These impurities include carbon monoxide, ammonia, sulfur, hydrocarbons, and halogen compounds. The International Organization for Standardization (ISO) has set maximum limits for trace impurities in the hydrogen stream; however fuel cell data is needed to validate the assumption that at those levels the impurities will cause no degradation. This report summarizes the effect of selected contaminants tested at SRNL at ISO levels. Runs at ISO proposed concentration levels show that model hydrocarbon compound such as tetrahydrofuran can cause serious degradation. However, the degradation is only temporary as when the impurity is removed from the hydrogen stream the performance completely recovers. Other molecules at the ISO concentration levels such as ammonia don't show effects on the fuel cell performance. On the other hand carbon monoxide and perchloroethylene shows major degradation and the system can only be recovered by following recovery procedures.

  1. Strong impact of impurity bands on domain formation in superlattices

    DEFF Research Database (Denmark)

    Wacker, Andreas; Jauho, Antti-Pekka


    The formation of electric field domains in doped semiconductor superlattices is described within a microscopic model. Due to the presence of impurity bands in low-doped samples the current-voltage characteristic is essentially different compared to medium-doped samples. (C) 1998 Published by Else...

  2. Lipopolysaccharide contamination in intradermal DNA vaccination : toxic impurity or adjuvant?

    NARCIS (Netherlands)

    Berg, J.H. van den; Quaak, S.G.L.; Beijnen, J.H.; Hennink, W.E.; Storm, G.; Schumacher, T.N.; Haanen, J.B.A.G.; Nuijen, B.


    Purpose: Lipopolysaccharides (LPS) are known both as potential adjuvants for vaccines and as toxic impurity in pharmaceutical preparations. The aim of this study was to assess the role of LPS in intradermal DNA vaccination administered by DNA tattooing. Method: Micewere vaccinated with a model DNA v

  3. Recovery of surfaces from impurity poisoning during crystal growth (United States)

    Land, Terry A.; Martin, Tracie L.; Potapenko, Sergey; Palmore, G. Tayhas; de Yoreo, James J.


    Growth and dissolution of crystal surfaces are central to processes as diverse as pharmaceutical manufacturing,, corrosion, single-crystal production and mineralization in geochemical and biological environments,. Impurities are either unavoidable features of these processes or intentionally introduced to modify the products. Those that act as inhibiting agents induce a so-called `dead zone', a regime of low supersaturation where growth ceases. Models based on the classic theory of Cabrera and Vermilyea explain behaviour near the dead zone in terms of the pinning of elementary step motion by impurities,. Despite general acceptance of this theory, a number of commonly investigated systems exhibit behaviour not predicted by such models. Moreover, no clear microscopic picture of impurity-step interactions currently exists. Here we use atomic force microscopy to investigate the potassium dihydrogen phosphate {100} surface as it emerges from the dead zone. We show that traditional models are not able to account for the behaviour of this system because they consider only elementary steps, whereas it is the propagation of macrosteps (bunches of monolayer steps) that leads to resurrection of growthout of the dead zone. We present a simple physical model of this process that includes macrosteps and relates characteristics of growth near the dead zone to the timescale for impurity adsorption.

  4. Effect of impurities on kinetic transport processes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Stefanie


    Within the framework of this thesis, different problems arising in connection with impurities have been investigated. Collisional damping of zonal flows in tokamaks: Since the Coulomb collision frequency increases with increasing ion charge, heavy, highly charged impurities play an important role in this process. The effect of such impurities on the linear response of the plasma to an external potential perturbation, as caused by zonal flows, is calculated with analytical methods. In comparison with a pure plasma, the damping of the flows occurs, as expected, considerably faster; for experimentally relevant parameters, the enhancement exceeds the effective charge Z{sub eff} of the plasma. Impurity transport driven by microturbulence in tokamaks: With regard to impurities, it is especially important whether the resulting flows are directed inwards or outwards, since they are deleterious for core energy confinement on the one hand, but on the other hand help protecting plasma-facing components from too high energy fluxes in the edge region. A semi-analytical model is presented describing the resulting impurity fluxes and the stability boundary of the underlying mode. The main goal is to bridge the gap between, on the one hand, costly numerical simulations, which are applicable to a broad range of problems but yield scarcely traceable results, and, on the other hand, analytical theory, which might ease the interpretation of the results but is so far rather rudimentary. The model is based on analytical formulae whenever possible but resorts to a numerical treatment when the approximations necessary for an analytical solution would lead to a substantial distortion of the results. Both the direction of the impurity flux and the stability boundary are found to depend sensitively on the plasma parameters such as the impurity density and the temperature gradient. Pfirsch-Schlueter transport in stellarators: Due to geometry effects, collisional transport plays a much more

  5. Moessbauer Studies of Implanted Impurities in Solids

    CERN Multimedia


    Moessbauer studies were performed on implanted radioactive impurities in semiconductors and metals. Radioactive isotopes (from the ISOLDE facility) decaying to a Moessbauer isotope were utilized to investigate electronic and vibrational properties of impurities and impurity-defect structures. This information is inferred from the measured impurity hyperfine interactions and Debye-Waller factor. In semiconductors isoelectronic, shallow and deep level impurities have been implanted. Complex impurity defects have been produced by the implantation process (correlated damage) or by recoil effects from the nuclear decay in both semiconductors and metals. Annealing mechanisms of the defects have been studied. \\\\ \\\\ In silicon amorphised implanted layers have been recrystallized epitaxially by rapid-thermal-annealing techniques yielding highly supersaturated, electrically-active donor concentrations. Their dissolution and migration mechanisms have been investigated in detail. The electronic configuration of Sb donors...

  6. Overview of genotoxic impurities in pharmaceutical development. (United States)

    Bercu, Joel P; Dobo, Krista L; Gocke, Elmar; McGovern, Timothy J


    This symposium focuses on the management of genotoxic impurities in the synthesis of pharmaceuticals. Recent developments in both Europe and United States require sponsors of new drug applications to develop processes to control the risks of potential genotoxic impurities. Genotoxic impurities represent a special case relative to the International Conference on Harmonisation Q3A/Q3B guidances, because genotoxicity tests used to qualify the drug substance may not be sufficient to demonstrate safety of a potentially genotoxic impurity. The default risk management approach for a genotoxic impurity is the threshold of toxicological concern unless a more specific risk characterization is appropriate. The symposium includes descriptions of industry examples where impurities are introduced and managed in the synthesis of a pharmaceutical. It includes recent regulatory developments such as the "staged threshold of toxicological concern" when administration is of short duration (eg, during clinical trials).

  7. Impure placebo is a useless concept. (United States)

    Louhiala, Pekka; Hemilä, Harri; Puustinen, Raimo


    Placebos are allegedly used widely in general practice. Surveys reporting high level usage, however, have combined two categories, 'pure' and 'impure' placebos. The wide use of placebos is explained by the high level usage of impure placebos. In contrast, the prevalence of the use of pure placebos has been low. Traditional pure placebos are clinically ineffective treatments, whereas impure placebos form an ambiguous group of diverse treatments that are not always ineffective. In this paper, we focus on the impure placebo concept and demonstrate problems related to it. We also show that the common examples of impure placebos are not meaningful from the point of view of clinical practice. We conclude that the impure placebo is a scientifically misleading concept and should not be used in scientific or medical literature. The issues behind the concept, however, deserve serious attention in future research.

  8. Anderson localisation and optical-event horizons in rogue-soliton generation

    CERN Document Server

    Saleh, Mohammed F; Biancalana, Fabio


    We show that the true origin of rogue solitons in optical fibres is due to the combined action of linear Anderson localisation and the formation of optical-event horizons. Anderson localised modes are formed in certain temporal locations due to the random background noise. Such localised modes seed the formation of solitary waves at those preferred locations, while the strongest Anderson mode generates the rogue soliton. The event horizon effect between dispersive waves and solitons produces an artificial collective acceleration that favours the collision of solitons during the rogue wave formation.

  9. Analytical advances in pharmaceutical impurity profiling. (United States)

    Holm, René; Elder, David P


    Impurities will be present in all drug substances and drug products, i.e. nothing is 100% pure if one looks in enough depth. The current regulatory guidance on impurities accepts this, and for drug products with a dose of less than 2g/day identification of impurities is set at 0.1% levels and above (ICH Q3B(R2), 2006). For some impurities, this is a simple undertaking as generally available analytical techniques can address the prevailing analytical challenges; whereas, for others this may be much more challenging requiring more sophisticated analytical approaches. The present review provides an insight into current development of analytical techniques to investigate and quantify impurities in drug substances and drug products providing discussion of progress particular within the field of chromatography to ensure separation of and quantification of those related impurities. Further, a section is devoted to the identification of classical impurities, but in addition, inorganic (metal residues) and solid state impurities are also discussed. Risk control strategies for pharmaceutical impurities aligned with several of the ICH guidelines, are also discussed.

  10. Behavior of impurities in TRIAM-IM

    Energy Technology Data Exchange (ETDEWEB)

    Takashiri, Masayuki; Nakamura, Kazuo; Kawasaki, Shoji; Jotaki, Eriko; Makino, Kenichi; Ito, Sanae; Ito, Satoshi [Kyushu Univ., Fukuoka (Japan)


    This research is the spectroscopic research on the behavior of impurities in the superconducting strong magnetic field tokamak, TRIAM-1M. In the experiment at the TRIAM-1M, the steady operation of the tokamak by the current drive using 8.2 GHz low hybrid waves has been aimed at toward the practical use of nuclear fusion reactors. In this research, the design and manufacture of the spectroscope system for diagnosing the behavior of impurities and the evaluation of the amount of impurities and effective charge number were carried out. The main impurities were metallic impurities of molybdenum, iron and chrome, and light element impurity of oxygen. The spatial distribution measurement was performed by using a multi-channel vacuum ultraviolet spectroscope system for the spectrum line intensity, and the change with time lapse of the radial distribution of impurity amount was derived. As the results, the amounts of iron and chrome which are the impurities of stainless steel system rapidly increased at plasma center in the latter half of discharge. The increase of the molybdenum amount which is the limiter material was small as compared with iron and chrome, and the amount of oxygen impurity hardly changed throughout discharge. The change with time lapse of the effective charge number in radial distribution was from 4 to 6 during discharge. (K.I.).

  11. Method for detecting trace impurities in gases (United States)

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Beattie, W.H.

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (approx. 2 ppM) present in commercial Xe and ppM levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  12. The Monte Carlo validation framework for the discriminant partial least squares model extended with variable selection methods applied to authenticity studies of Viagra® based on chromatographic impurity profiles. (United States)

    Krakowska, B; Custers, D; Deconinck, E; Daszykowski, M


    The aim of this work was to develop a general framework for the validation of discriminant models based on the Monte Carlo approach that is used in the context of authenticity studies based on chromatographic impurity profiles. The performance of the validation approach was applied to evaluate the usefulness of the diagnostic logic rule obtained from the partial least squares discriminant model (PLS-DA) that was built to discriminate authentic Viagra® samples from counterfeits (a two-class problem). The major advantage of the proposed validation framework stems from the possibility of obtaining distributions for different figures of merit that describe the PLS-DA model such as, e.g., sensitivity, specificity, correct classification rate and area under the curve in a function of model complexity. Therefore, one can quickly evaluate their uncertainty estimates. Moreover, the Monte Carlo model validation allows balanced sets of training samples to be designed, which is required at the stage of the construction of PLS-DA and is recommended in order to obtain fair estimates that are based on an independent set of samples. In this study, as an illustrative example, 46 authentic Viagra® samples and 97 counterfeit samples were analyzed and described by their impurity profiles that were determined using high performance liquid chromatography with photodiode array detection and further discriminated using the PLS-DA approach. In addition, we demonstrated how to extend the Monte Carlo validation framework with four different variable selection schemes: the elimination of uninformative variables, the importance of a variable in projections, selectivity ratio and significance multivariate correlation. The best PLS-DA model was based on a subset of variables that were selected using the variable importance in the projection approach. For an independent test set, average estimates with the corresponding standard deviation (based on 1000 Monte Carlo runs) of the correct

  13. Estimate of the Critical Exponent of the Anderson Transition in the Three and Four-Dimensional Unitary Universality Classes (United States)

    Slevin, Keith; Ohtsuki, Tomi


    Disordered non-interacting systems are classified into ten symmetry classes, with the unitary class being the most fundamental. The three and four-dimensional unitary universality classes are attracting renewed interest because of their relation to three-dimensional Weyl semi-metals and four-dimensional topological insulators. Determining the critical exponent of the correlation/localisation length for the Anderson transition in these classes is important both theoretically and experimentally. Using the transfer matrix technique, we report numerical estimations of the critical exponent in a U(1) model in three and four dimensions.


    Directory of Open Access Journals (Sweden)



    Full Text Available Breast cancer is the second leading cause of cancer death after lung cancer among women. It is very essential to detect breast cancer at an early stage so as to cure it efficiently. This paper mainly focuses on detecting impurities of small dimensions in circular plastic phantom which relate small tumors in breast. Benign cancertumor is analogous to non conducting impurity while malignant tumor is analogous to conducting impurity. Electrical Impedance Tomography (EIT based conductivity images are obtained for both conducting as well as non conducting impurities using Electrical Impedance and Diffused Optical Reconstruction Software (EIDORS. Different factors affecting the shape and size of reconstructed impurity like frequency of current source, type of forward model, material of electrodes, are discussed and compared.

  15. Strain field due to transition metal impurities in Ni and Pd

    Indian Academy of Sciences (India)

    Hitesh Sharma; S Prakash


    The strain field due to body centered substitutional transition metal impurities in Ni and Pd metals are investigated. The calculations are carried out in the discrete lattice model of the metal using Kanzaki lattice static method. The effective ion–ion interaction potential due to Wills and Harrison is used to evaluate dynamical matrix and the impurity-induced forces. The results for atomic displacements due to 3d, 4d and 5d impurities (Fe, Co, Cu, Nb, Mo, Pd, Pt and Au) in Ni and (Fe, Co, Cu, Ni, Nb, Mo, Pt and Au) impurities in Pd are given up to 25 NN’s of impurity and these are compared with the available experimental data. The maximum displacements of 4.6% and 3.8% of 1NN distance are found for NiNb and PdNb alloys respectively, while the minimum displacements of 0.63% and 0.23% of 1NN distance are found for NiFe and PdFe alloys respectively. Except for Cu, the atomic displacements are found to be proportional to the core radii and d state radius. The relaxation energies for 3d impurities are found less than those for 4d and 5d impurities in Ni and Pd metals. Therefore, 3d impurities may easily be solvable in these metals.

  16. Wyodak-Anderson clinker in the Powder River Basin, Wyoming and Montana (prbclkg.shp) (United States)

    U.S. Geological Survey, Department of the Interior — This ArcView shapefile contains a polygon representation of the Wyodak-Anderson clinker in the Powder River Basin, Wyoming and Montana. This theme was created...

  17. Die Welt als Puppenhaus. Die verzauberten Filme des Wes Anderson als Retrospektive im Kino Xenix


    Binotto, Johannes


    Nur gerade sieben Filme hat der Regisseur und Autor Wes Anderson bisher gemacht, damit aber ein einzigartiges Œuvre geschaffen. Das Xenix zeigt diese melancholischen und verspielten Kunstwerke, zusammen mit Filmen, die als Inspiration dienten.

  18. Wyodak-Anderson net coal thickness in the Gillette coalfield, Wyoming (gilcatg.shp) (United States)

    U.S. Geological Survey, Department of the Interior — This shapefile contains a polygon representation of the Wyodak-Anderson net coal thickness in the Gillette coalfield study area. This theme was created specifically...

  19. Modified Anderson orthogonality catastrophe power law in the presence of shell structure (United States)

    Bandopadhyay, Swarnali; Hentschel, Martina


    We study Anderson orthogonality catastrophe (AOC) for parabolic quantum dots and focus on the effects of degeneracies, realized through the inherent shell structure of their energy levels that can be lifted through an external magnetic field, on the Anderson overlap. We find rich and interesting behaviors as a function of the strength and position of the perturbation, the system size, and the applied magnetic field. In particular, even for weak perturbations, we observe a pronounced AOC that is related to the degeneracy of energy levels. Most importantly, the power-law decay of the Anderson overlap as a function of the number of particles is modified in comparison to the metallic case due to the rearrangement of the energy-level shell structure. We support our analytical results by numerical calculations and also study the distribution of Anderson overlaps.

  20. Plasma Interactions with Mixed Materials and Impurity Transport

    Energy Technology Data Exchange (ETDEWEB)

    Rognlien, T. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Beiersdorfer, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chernov, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frolov, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Magee, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rudd, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Umansky, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The project brings together three discipline areas at LLNL to develop advanced capability to predict the impact of plasma/material interactions (PMI) on metallic surfaces in magnetic fusion energy (MFE) devices. These areas are (1) modeling transport of wall impurity ions through the edge plasma to the core plasma, (2) construction of a laser blow-off (LBO) system for injecting precise amounts of metallic atoms into a tokamak plasma, and (3) material science analysis of fundamental processes that modify metallic surfaces during plasma bombardment. The focus is on tungsten (W), which is being used for the ITER divertor and in designs of future MFE devices. In area (1), we have worked with the University of California, San Diego (UCSD) on applications of the UEDGE/DUSTT coupled codes to predict the influx of impurity ions from W dust through the edge plasma, including periodic edge-plasma oscillations, and revived a parallel version of UEDGE to speed up these simulations. In addition, the impurity transport model in the 2D UEDGE code has been implemented into the 3D BOUT++ turbulence/transport code to allow fundamental analysis of the impact of strong plasma turbulence on the impurity transport. In area (2), construction and testing of the LBO injection system has been completed. The original plan to install the LBO on the National Spherical Torus Experiment Upgrade (NSTX-U) at Princeton and its use to validate the impurity transport simulations is delayed owing to NSTX-U being offline for substantial magnetic coil repair period. In area (3), an analytic model has been developed to explain the growth of W tendrils (or fuzz) observed for helium-containing plasmas. Molecular dynamics calculations of W sputtering by W and deuterium (D) ions shows that a spatial blending of interatomic potentials is needed to describe the near-surface and deeper regions of the material.

  1. Grotesque's Loneliness and George's Growth In "Winesburg, Ohio" by Sherwood Anderson

    Institute of Scientific and Technical Information of China (English)



    Sherwood Anderson is called the first of American psychological writers. "Winesburg, Ohio" is the first work of fiction to expose the frustration, and inhibition behind the typical small town. Every grotesque in Winesburg had such a kind of tragic experience. Winesburg is the epitome of all mid-western small towns. Anderson explores the damages by industrialization to the middle westerners. George with all grotesques' hopes and wishes to leave Winesburg, just like a moment of illustration in the darkness.

  2. Cryogenic Laser Calorimetry for Impurity Analysis (United States)

    Swimm, R. T.


    The results of a one-year effort to determine the applicability of laser-calorimetric spectroscopy to the study of deep-level impurities in silicon are presented. Critical considerations for impurity analysis by laser-calorimetric spectroscopy are discussed, the design and performance of a cryogenic laser calorimeter is described, and measurements of background absorption in high-purity silicon are presented.

  3. Neoclassical impurity transport in stellarator geometry

    CERN Document Server

    García-Regaña, J M; Beidler, C D; berg, H Maaß; Helander, P; Turkin, Y


    The impurity dynamics in stellarators has become an issue of moderate concern due to the, \\textit{a priori}, inherent tendency of the impurities to accumulate in the core when the neoclassical ambipolar radial electric field points radially inwards (ion root regime). This accumulation can lead to collapse of the plasma due to radiative losses, and thus limit high performance plasma discharges in non-axisymmetric devices. Theoretically, a quantitative description of the neoclassical impurity transport is complicated by the breakdown of the assumption of small $q \\tilde{\\Phi}/T$ for impurities, where $q$ is the electric charge, $T$ the temperature in energy units, and $\\tilde{\\Phi}$ the electrostatic potential variation within the flux surface. The present work describes quantitatively the particle transport of impurities in the frame of local neoclassical theory when $q\\tilde{\\Phi}/T=O(1)$ in the Large Helical Device (LHD) stellarator. %and the Wendelstein 7-X stellarators. The central numerical tool used is t...

  4. Analytical control of process impurities in Pazopanib hydrochloride by impurity fate mapping. (United States)

    Li, Yan; Liu, David Q; Yang, Shawn; Sudini, Ravinder; McGuire, Michael A; Bhanushali, Dharmesh S; Kord, Alireza S


    Understanding the origin and fate of organic impurities within the manufacturing process along with a good control strategy is an integral part of the quality control of drug substance. Following the underlying principles of quality by design (QbD), a systematic approach to analytical control of process impurities by impurity fate mapping (IFM) has been developed and applied to the investigation and control of impurities in the manufacturing process of Pazopanib hydrochloride, an anticancer drug approved recently by the U.S. FDA. This approach requires an aggressive chemical and analytical search for potential impurities in the starting materials, intermediates and drug substance, and experimental studies to track their fate through the manufacturing process in order to understand the process capability for rejecting such impurities. Comprehensive IFM can provide elements of control strategies for impurities. This paper highlights the critical roles that analytical sciences play in the IFM process and impurity control. The application of various analytical techniques (HPLC, LC-MS, NMR, etc.) and development of sensitive and selective methods for impurity detection, identification, separation and quantification are highlighted with illustrative examples. As an essential part of the entire control strategy for Pazopanib hydrochloride, analytical control of impurities with 'meaningful' specifications and the 'right' analytical methods is addressed. In particular, IFM provides scientific justification that can allow for control of process impurities up-stream at the starting materials or intermediates whenever possible.

  5. Effect of Impurities in Description of Surface Nanobubbles

    CERN Document Server

    Das, Siddhartha; Lohse, Detlef


    Surface nanobubbles emerging at solid-liquid interfaces of submerged hydrophobic surfaces show extreme stability and very small (gas-side) contact angles. In a recent study Ducker (W. A. Ducker, Langmuir 25, 8907 (2009).) conjectured that these effects may arise from the presence of impurities at the air-water interface of the nanobubbles. In this paper we present a quantitative analysis of this hypothesis by estimating the dependence of the contact angle and the Laplace pressure on the fraction of impurity coverage at the liquid-gas interface. We first develop a general analytical framework to estimate the effect of impurities (ionic or non-ionic) in lowering the surface tension of a given air-water interface. We then employ this model to show that the (gas-side) contact angle and the Laplace pressure across the nanobubbles indeed decrease considerably with an increase in the fractional coverage of the impurities, though still not sufficiently small to account for the observed surface nanobubble stability. T...

  6. The Writing Features of "The Egg" by Sherwood Anderson%The Writing Features of "The Egg" by Sherwood Anderson

    Institute of Scientific and Technical Information of China (English)



    Sherwood Anderson is an important writer in American literary history, whose short story The Egg is well known for its distinctive style and elusive form. This paper is an attempt to explore the narrative art, symbols and deep implications in The Egg form perspectives of narrative point of view,narrative language.

  7. Final Report - Effects of Impurities on Fuel Cell Performance and Durability

    Energy Technology Data Exchange (ETDEWEB)

    Trent Molter


    This program is focused on the experimental determination of the effects of key hydrogen side impurities on the performance of PEM fuel cells. Experimental data has been leveraged to create mathematical models that predict the performance of PEM fuel cells that are exposed to specific impurity streams. These models are validated through laboratory experimentation and utilized to develop novel technologies for mitigating the effects of contamination on fuel cell performance. Results are publicly disseminated through papers, conference presentations, and other means.

  8. Paramagnetic Attraction of Impurity-Helium Solids (United States)

    Bernard, E. P.; Boltnev, R. E.; Khmelenko, V. V.; Lee, D. M.


    Impurity-helium solids are formed when a mixture of impurity and helium gases enters a volume of superfluid helium. Typical choices of impurity gas are hydrogen deuteride, deuterium, nitrogen, neon and argon, or a mixture of these. These solids consist of individual impurity atoms and molecules as well as clusters of impurity atoms and molecules covered with layers of solidified helium. The clusters have an imperfect crystalline structure and diameters ranging up to 90 angstroms, depending somewhat on the choice of impurity. Immediately following formation the clusters aggregate into loosely connected porous solids that are submerged in and completely permeated by the liquid helium. Im-He solids are extremely effective at stabilizing high concentrations of free radicals, which can be introduced by applying a high power RF dis- charge to the impurity gas mixture just before it strikes the super fluid helium. Average concentrations of 10(exp 19) nitrogen atoms/cc and 5 x 10(exp 18) deuterium atoms/cc can be achieved this way. It shows a typical sample formed from a mixture of atomic and molecular hydrogen and deuterium. It shows typical sample formed from atomic and molecular nitrogen. Much of the stability of Im-He solids is attributed to their very large surface area to volume ratio and their permeation by super fluid helium. Heat resulting from a chance meeting and recombination of free radicals is quickly dissipated by the super fluid helium instead of thermally promoting the diffusion of other nearby free radicals.

  9. Influence of iron impurities on defected graphene

    Energy Technology Data Exchange (ETDEWEB)

    Faccio, Ricardo; Pardo, Helena [Centro NanoMat, Cryssmat-Lab, DETEMA, Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Cno. Saravia s/n, CP 91000 Pando (Uruguay); Centro Interdisciplinario en Nanotecnología, Química y Física de Materiales, Espacio Interdisciplinario, Universidad de la República, Montevideo (Uruguay); Araújo-Moreira, Fernando M. [Materials and Devices Group, Department of Physics, Universidade Federal de São Carlos, SP 13565-905 (Brazil); Mombrú, Alvaro W., E-mail: [Centro NanoMat, Cryssmat-Lab, DETEMA, Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Cno. Saravia s/n, CP 91000 Pando (Uruguay); Centro Interdisciplinario en Nanotecnología, Química y Física de Materiales, Espacio Interdisciplinario, Universidad de la República, Montevideo (Uruguay)


    Highlights: • The interaction among a multivacancy graphene system and iron impurities is studied. • The studied iron impurities were single atom and tetrahedral and octahedral clusters. • DFT calculations using the VASP code were performed. • The embedding of Fe affects the structure and electronic behavior in the graphene. • Half metal or semimetal behavior can be obtained, depending on the Fe impurities. - Abstract: The aim of this work is to study the interaction of selected iron cluster impurities and a multivacancy graphene system, in terms of the structural distortion that the impurities cause as well as their magnetic response. While originally, the interaction has been limited to vacancies and isolated metallic atoms, in this case, we consider small iron clusters. This study was undertaken using Density Functional Theory (DFT) calculations. The influence of the iron impurities in the electronic structure of the vacant graphene system is discussed. The main conclusion of this work is that the presence of iron impurities acts lowering the magnetic signal due to the occurrence of spin pairing between carbon and iron, instead of enhancing the possible intrinsic carbon magnetism.

  10. Tunneling spectroscopy of a phosphorus impurity atom on the Ge(111)-(2 × 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Savinov, S. V.; Oreshkin, A. I., E-mail:, E-mail: [Moscow State University (Russian Federation); Oreshkin, S. I. [Moscow State University, Sternberg Astronomical Institute (Russian Federation); Haesendonck, C. van [Laboratorium voor Stoffysica en Magnetisme (Belgium)


    We numerically model the Ge(111)-(2 × 1) surface electronic properties in the vicinity of a P donor impurity atom located near the surface. We find a notable increase in the surface local density of states (LDOS) around the surface dopant near the bottom of the empty surface state band π*, which we call a split state due to its limited spatial extent and energetic position inside the band gap. We show that despite the well-established bulk donor impurity energy level position at the very bottom of the conduction band, a surface donor impurity on the Ge(111)-(2 × 1) surface might produce an energy level below the Fermi energy, depending on the impurity atom local environment. It is demonstrated that the impurity located in subsurface atomic layers is visible in a scanning tunneling microscope (STM) experiment on the Ge(111)-(2 × 1) surface. The quasi-1D character of the impurity image, observed in STM experiments, is confirmed by our computer simulations with a note that a few π-bonded dimer rows may be affected by the presence of the impurity atom. We elaborate a model that allows classifying atoms on the experimental low-temperature STM image. We show the presence of spatial oscillations of the LDOS by the density-functional theory method.

  11. The three-dimensional Edwards-Anderson spin glass in an external magnetic field (United States)

    Yllanes, David; Janus Collaboration


    Spin glasses are a longstanding model for the sluggish dynamics that appears at the glass transition. However, in order for spin glasses to be a faithful model for general glassy physics, we need to introduce an external magnetic field to eliminate their time-reversal symmetry. Unfortunately, little is known about the critical behavior of a spin glass in a field in three spatial dimensions. We have carried out a dynamical study combining equilibrium and non-equilibrium data. In particular, using the Janus computer, we have been able to simulate one thousand samples, each with half a million spins, along a time window spanning ten orders of magnitude for several magnetic fields and temperature protocols. Our main conclusion is that the system has a clearly identifiable dynamical transition, which we discuss in terms of different possibilities for the underlying physics (from a thermodynamical spin-glass transition to a mode-coupling crossover). In fact, we are able to make quantitative connections between the Edwards-Anderson spin glass and the physics of supercooled liquids. We also discuss ongoing work in equilibrium from parallel tempering simulations. Supported by the ERC, grant agreement no. 247328.

  12. Anderson localization to enhance light-matter interaction (Conference Presentation) (United States)

    Garcia, Pedro David


    Deliberately introducing disorder in low-dimensional nanostructures like photonic crystal waveguides (PCWs) [1] or photonic crystals (PCs) [2] leads to Anderson localization where light is efficiently trapped by random multiple scattering with the lattice imperfections. These disorder-induced optical modes hace been demonstrated to be very promising for cavity-quantum electrodynamics (QED) experiments where the radiative emission rate of single quantum emitters can be controlled when tuned through resonance with one of these random cavities. Our statistical analysis of the emission dynamics from single quantum dots embeded in disordered PCWs [3] provides detailed insigth about the statistical properties of QED in these complex nanostructures. In addition, using internal light sources reveals new physics in the form of nonuniversal intensity correlations between the different scattered paths within the structure which imprint the local QED properties deep inside the complex structure onto the far-field intensity pattern [2]. Finally, increasing the optical gain in PCWs allows on-chip random nanolasing where the cavity feedback is provided by the intrinsic disorder which enables highly efficient, stable, and broadband tunable lasers with very small mode volumes [4]. The figure of merit of these disorder-induced cavities is their localization length which determines to a large degree the coupling efficiency of a quantum emitter to a disorder-induced cavity as well as the efficiency of random lasing and reveals a strongly dispersive behavior and a non-trivial dependence on disorder in PCWs [5]. [1] L. Sapienza, H. Thyrrestrup, S. Stobbe, P.D. Garcia, S. Smolka, and P. Lodahl, Science 327, 1352 (2010). [2] P. D. García, S. Stobbe, I. Soellner and P. Lodahl, Physical Review Letters 109, 253902 (2012). [3] A. Javadi, S. Maibom, L. Sapienza, H. Thyrrestrup, P.D. Garcia, and P. Lodahl, Opt. Express 22, 30992 (2014). [4] J. Liu, P. D. Garcia, S. Ek, N. Gregersen, T. Suhr, M

  13. Non-Fermi-liquid behavior: Exact results for ensembles of magnetic impurities

    CERN Document Server

    Zvyagin, A A


    In this work we consider several exactly solvable models of magnetic impurities in critical quantum antiferromagnetic spin chains and multichannel Kondo impurities. Their ground state properties are studied and the finite set of nonlinear integral equations, which exactly describe the thermodynamics of the models, is constructed. We obtain several analytic low-energy expressions for the temperature, magnetic field, and frequency dependences of important characteristics of exactly solvable disordered quantum spin models and disordered multichannel Kondo impurities with essential many-body interactions. We show that the only low-energy parameter that gets renormalized is the velocity of the low-lying excitations (or the effective crossover scale connected with each impurity); the others appear to be universal. In our study several kinds of strong disorder important for experiments were used. Some of them produce low divergences in certain characteristics of our strongly disordered critical systems (compared wit...

  14. Impurity atoms on view in cuprates

    Directory of Open Access Journals (Sweden)

    J.C. Séamus Davis


    Full Text Available Impurity atoms in a material are usually viewed as a problem because they can result in non-ideal properties. However, they can sometimes be used to advantage when attempting to understand new materials. This is because the interactions of an impurity atom with the material reveal detailed information on the local electronic environment. In this paper we discuss scanning tunneling microscopy studies of the atomic-scale effects of individual Ni and Zn impurity atoms on the cuprate high critical temperature superconductors.

  15. Coulomb impurity effects on the zero-Landau level splitting of graphene on polar substrates (United States)

    Xiao, Yao; Li, Wei-Ping; Li, Zhi-Qing; Wang, Zi-Wu


    We theoretically investigate the effects of the Coulomb impurity on the zero-Landau level splitting of graphene on different polar substrates basing on the Fröhlich polaron model, in which the polaron is formed due to the carriers-surface optical phonon coupling. We discuss the influence of Coulomb impurity on the zero-Landau level splitting in the case of weak and strong coupling limits. We find that the splitting energy can be varied in a large scale due to the Coulomb impurity, which provides the possible theoretical explanation for the experimental measurements regarding the energy gap opened and zero-Landau level splitting in Landau quantized graphene.

  16. Effects of Solvent and Impurities on Crystal Morphology of Zinc Lactate Trihydrate

    Institute of Scientific and Technical Information of China (English)

    杨芗钰; 钱刚; 张相洋; 段学志; 周兴贵


    The crystal morphology of zinc lactate trihydrate in the absence or presence of impurities (viz. succinic acid, L-malic acid and D-malic acid) is investigated by molecular simulation based on surface docking model and COMPASS force field. Combing simulation results with our previous experimental results, it is found that the solvent mainly has an inhibition effect on the (0 0 2) surface, and succinic acid impurity will inhibit the growth of (0 0 2) and (0 1 1) surfaces while two enantiomers of malic acid impurity will inhibit the (0 0 2) and (1 0 0) surfaces, which are in good agreement with the experimental results.

  17. Verification of Anderson Superexchange in MnO via Magnetic Pair Distribution Function Analysis and ab initio Theory (United States)

    Frandsen, Benjamin A.; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J.; Staunton, Julie B.; Billinge, Simon J. L.


    We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ˜1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.

  18. Nailing the coffin shut on doubts that violent video games stimulate aggression: comment on Anderson et al. (2010). (United States)

    Huesmann, L Rowell


    Over the past half century the mass media, including video games, have become important socializers of children. Observational learning theory has evolved into social-cognitive information processing models that explain that what a child observes in any venue has both short-term and long-term influences on the child's behaviors and cognitions. C. A. Anderson et al.'s (2010) extensive meta-analysis of the effects of violent video games confirms what these theories predict and what prior research about other violent mass media has found: that violent video games stimulate aggression in the players in the short run and increase the risk for aggressive behaviors by the players later in life. The effects occur for males and females and for children growing up in Eastern or Western cultures. The effects are strongest for the best studies. Contrary to some critics' assertions, the meta-analysis of C. A. Anderson et al. is methodologically sound and comprehensive. Yet the results of meta-analyses are unlikely to change the critics' views or the public's perception that the issue is undecided because some studies have yielded null effects, because many people are concerned that the implications of the research threaten freedom of expression, and because many people have their identities or self-interests closely tied to violent video games.

  19. Determining factors for the presence of impurities in selectively collected biowaste. (United States)

    Puig-Ventosa, Ignasi; Freire-González, Jaume; Jofra-Sora, Marta


    The presence of impurities in biodegradable waste (biowaste) causes problems with the management of waste, among which are additional costs derived from the need to improve pre-treatment of biowaste, loss of treatment capacity and the difficulty selling treated biowaste as compost owing to its low quality. When treated biowaste is used for soil conditioning it can also cause soil pollution. Understanding the reasons why impurities are in biowaste and the factors affecting the percentage of impurities present can be used to determine ways to minimise these negative effects. This article attempts to identify the main causes for the presence of impurities in biowaste. In order to do so, it carries out an empirical analysis of the level of impurities in biowaste from municipal waste collection in two steps. First, a bivariate analysis focuses on significant correlations between the presence of impurities and several variables. Second, the construction of an explanatory model based on the significant relations obtained in the first step, and on literature research, are used to check the stated hypothesis. The estimates demonstrate that the collection system, the global levels of separate collection, the urban density of the municipality and the requirement to use compostable bags may be the main drivers of impurity levels in biowaste.

  20. Quantum-Mechanical Variant of the Thouless-Anderson-Palmer Equation for Error-Correcting Codes (United States)

    Inoue, J.; Saika, Y.; Okada, M.

    Statistical mechanics of information has been applied to problems in various research topics of information science and technology [1],[2]. Among those research topics, error-correcting code is one of the most developed subjects. In the research field of error-correcting codes, Nicolas Sourlas showed that the so-called convolutional codes can be constructed by spin glass with infinite range p-body interactions and the decoded message should be corresponded to the ground state of the Hamiltonian [3]. Ruján pointed out that the bit error can be suppressed if one uses finite temperature equilibrium states as the decoding result, instead of the ground state [4], and the so-called Bayes-optimal decoding at some specific condition was proved by Nishimori [5] and Nishimori and Wong [6]. Kabashima and Saad succeeded in constructing more practical codes, namely low-density parity check (LDPC) codes by using the infinite range spin glass model with finite connectivities [7]. They used the so-called TAP (Thouless-Anderson-Palmer) equations to decode the original message for a given parity check.

  1. Absorption and emission in quantum dots: Fermi surface effects of Anderson excitons (United States)

    Helmes, R. W.; Sindel, M.; Borda, L.; von Delft, J.


    Recent experiments measuring the emission of exciton recombination in a self-organized single quantum dot (QD) have revealed that different effects occur when the wetting layer surrounding the QD becomes filled with electrons because the resulting Fermi sea can hybridize with the local electron levels on the dot. Motivated by these experiments, we study an extended Anderson model, which describes a local conduction band level coupled to a Fermi sea, but also includes a local valence band level. We are interested, in particular, in how many-body correlations resulting from the presence of the Fermi sea affect the absorption and emission spectra. Using Wilson’s numerical renormalization group method, we calculate the zero-temperature absorption (emission) spectrum of a QD, which starts from (ends up in) a strongly correlated Kondo ground state. We predict two features: First, we find that the spectrum shows a power-law divergence close to the threshold, with an exponent that can be understood by analogy to the well-known x-ray edge absorption problem. Second, the threshold energy ω0 —below which no photon is absorbed (above which no photon is emitted)—shows a marked, monotonic shift as a function of the exciton binding energy Uexc .

  2. Random Walks in Anderson's Garden: A Journey from Cuprates to Cooper Pair Insulators and Beyond

    CERN Document Server

    Baskaran, G


    Anderson's Garden is a drawing presented to Philip W. Anderson on the eve of his 60th birthday celebration, in 1983. This cartoon (Fig. 1), whose author is unknown, succinctly depicts some of Anderson's pre-1983 works, as a blooming garden. As an avid reader of Anderson's papers, random walk in Anderson's garden had become a part of my routine since graduate school days. This was of immense help and prepared me for a wonderful collaboration with the gardener himself, on the resonating valence bond (RVB) theory of High Tc cuprates and quantum spin liquids, at Princeton. The result was bountiful - the first (RVB mean field) theory for i) quantum spin liquids, ii) emergent fermi surfaces in Mott insulators and iii) superconductivity in doped Mott insulators. Beyond mean field theory - i) emergent gauge fields, ii) Ginzbuerg Landau theory with RVB gauge fields, iii) prediction of superconducting dome, iv) an early identification and study of a non-fermi liquid normal state of cuprates and so on. Here I narrate th...

  3. Effects of helium impurities on superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Selle, J.E.


    A review of the literature on the effects of helium impurities on superalloys at elevated temperatures was undertaken. The actual effects of these impurities vary depending on the alloy, composition of the gas atmosphere, and temperature. In general, exposure in helium produces significant but not catastrophic changes in the structure and properties of the alloys. The effects of these treatments on the structure, creep, fatigue, and mechanical properties of the various alloys are reviewed and discussed. Suggestions for future work are presented.

  4. Parametrically Driven Nonlinear Oscillators with an Impurity

    Institute of Scientific and Technical Information of China (English)

    张卓; 唐翌


    By virtue of the method of multiple scales, we study a chain of parametrically driven nonlinear oscillators with a mass impurity. An equation is presented to describe the nonlinear wave of small amplitude in the chain.In our derivation, the equation is applicable to any eigenmode of coupled pendulum. Our result shows that a nonpropagation soliton emerges as the lowest or highest eigenmode of coupled pendulum is excited, and the impurity tends to pin the nonpropagation soliton excitation.


    Institute of Scientific and Technical Information of China (English)

    侯小琳; 张永保


    Twenty five impurity elements in aluminium applied as reactor material are determined.Titanium and nickel are determined with epithermal neutron activation analysis(NAA),magnesium and silicon by inductance coupling plasma emission spectra(ICP),other elements by thermal NAA.The fission coefficient of uranium is given by an experiment,the interferences of uranium to Ce,Nd,Mo,Zr,La,Sm are subtracted.The detection limits of these methods to all of impurity elements in aluminium are calculated.

  6. Characteristics of the magnetic control of separable ferrous impurities contained in raw construction materials

    Directory of Open Access Journals (Sweden)

    A.V. Sandulyak


    Full Text Available Currency of using the method of magnetic control of ferrous impurities for construction materials was noted. Especially it is important because of magnetic separators which are widely used for elimination of these impurities. There were shown the necessity of upgrading the present approach in order to realize the method of magnetic control. For example, it is necessary to take into account not only the rest of ferrous impurities (that is inevitable after limited numbers of operations but also a factor of involving sand particles. The concrete proposal how to develop the existing system of magnetic control of ferrous impurities in construction materials subjected to magnetic separation, is stated. The experimental-calculation model for such control is also shown. The main parameters of such model were estimated on the example of quartz sand and feldspar. The errors of standard methods of magnetic control were revealed for the first time.

  7. Local chemistry of Al and P impurities in silica

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Stokbro, Kurt


    The local structure around Al and P impurities in silica is investigated using density-functional theory. Two distinct cases are considered: impurities substituting for a Si atom in alpha quartz, and impurities implanted in a stoichiometric alpha-quartz crystal. Both impurity elements are found t...

  8. Susceptibility of the 2D spin-1 / 2 Heisenberg antiferromagnet with an impurity. (United States)

    Höglund, Kaj H; Sandvik, Anders W


    We use a quantum Monte Carlo method (stochastic series expansion) to study the effects of a magnetic or nonmagnetic impurity on the magnetic susceptibility of the two-dimensional Heisenberg antiferromagnet. At low temperatures, we find a log-divergent contribution to the transverse susceptibility. We also introduce an effective few-spin model that can quantitatively capture the differences between magnetic and nonmagnetic impurities at high and intermediate temperatures.

  9. Segregation of anion (Cl−) impurities at transparent polycrystalline α-alumina interfaces


    Tewari, Abhishek; Nabiei, Farhang; Cantoni, Marco; Bowen, Paul; Hébert, Cécile


    Small amounts of anion impurities (e.g. Cl), which are incorporated during the synthesis of ceramic powders, can affect the properties and microstructure of the final sintered ceramic. The effect of anion impurities is a little studied and poorly understood phenomenon. In this work a combination of STEM-EDX analysis and atomistic modeling approach was used to understand the segregation of Cl in transparent alumina ceramics. A high resolution analytical electron microscopy study showed the pre...

  10. Impurity profiles at the JET divertor targets compared with the DIVIMP code

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, G.F.; Gottardi, N.A.C.; Harbour, P.J.; Horton, L.D.; Jackel, H.J.; De Kock, L.; Loarte, A.; Maggi, C.F.; O' Brien, D.P.J.; Simonini, R.; Spence, J.; Stamp, M.F.; Stott, P.E.; Summers, H.P.; Tagle, J.; Von Hellerman, M. (JET Joint Undertaking, Abingdon (United Kingdom)); Stangeby, P.C.; Elder, J.D. (Univ. Toronto, Inst. for Aerospace Studies, Downsview, Ontario (Canada))


    In this paper we describe the simulation of edge diagnostics in JET using the DIVIMP (divertor impurity) Monte Carlo code. We concentrate on two ohmic pulses and show how the results are influenced by a variety of modeling assumptions. Our results show that a wall source must be included to explain the diagnostic signals. The wall source is shown to be a significant source of impurity in the discharges studied and more generally. (orig.).

  11. Green's function theory for a magnetic impurity layer in a ferromagnetic Ising film with transverse field


    Leite, R. V.; Morais, B. T. F.; Pereira Jr, J. Milton; Filho, R. N. Costa


    A Green's function formalism is used to calculate the spectrum of localized modes of an impurity layer implanted within a ferromagnetic thin film. The equations of motion for the Green's functions are determined in the framework of the Ising model in a transverse field. We show that depending on the thickness, exchange and effective field parameters, there is a ``crossover'' effect between the surface modes and impurity localized modes. For thicker films the results show that the degeneracy o...

  12. Anderson Localization from the Berry-Curvature Interchange in Quantum Anomalous Hall Systems (United States)

    Qiao, Zhenhua; Han, Yulei; Zhang, Lei; Wang, Ke; Deng, Xinzhou; Jiang, Hua; Yang, Shengyuan A.; Wang, Jian; Niu, Qian


    We theoretically investigate the localization mechanism of the quantum anomalous Hall effect (QAHE) in the presence of spin-flip disorders. We show that the QAHE stays quantized at weak disorders, then enters a Berry-curvature mediated metallic phase at moderate disorders, and finally goes into the Anderson insulating phase at strong disorders. From the phase diagram, we find that at the charge neutrality point although the QAHE is most robust against disorders, the corresponding metallic phase is much easier to be localized into the Anderson insulating phase due to the interchange of Berry curvatures carried, respectively, by the conduction and valence bands. In the end, we provide a phenomenological picture related to the topological charges to better understand the underlying physical origin of the QAHE Anderson localization.

  13. Exciting Molecules Close to the Rotational Quantum Resonance: Anderson Wall and Rotational Bloch Oscillations. (United States)

    Floß, Johannes; Averbukh, Ilya Sh


    We describe a universal behavior of linear molecules excited by a periodic train of short laser pulses under conditions close to the quantum resonance. The quantum resonance effect causes an unlimited ballistic growth of the angular momentum. We show that a disturbance of the quantum resonance, either by the centrifugal distortion of the rotating molecules or a controlled detuning of the pulse train period from the so-called rotational revival time, eventually halts the growth by causing Anderson localization beyond a critical value of the angular momentum, the Anderson wall. Below the wall, the rotational excitation oscillates with the number of pulses due to a mechanism similar to Bloch oscillations in crystalline solids. We suggest optical experiments capable of observing the rotational Anderson wall and Bloch oscillations at near-ambient conditions with the help of existing laser technology.

  14. Modeling CO{sub 2}-Brine-Rock Interaction Including Mercury and H{sub 2}S Impurities in the Context of CO{sub 2} Geologic Storage

    Energy Technology Data Exchange (ETDEWEB)

    Spycher, N.; Oldenburg, C. M.


    This study uses modeling and simulation approaches to investigate the impacts on injectivity of trace amounts of mercury (Hg) in a carbon dioxide (CO{sub 2}) stream injected for geologic carbon sequestration in a sandstone reservoir at ~2.5 km depth. At the range of Hg concentrations expected (7-190 ppbV, or ~ 0.06-1.6 mg/std.m{sup 3}CO{sub 2}), the total volumetric plugging that could occur due to complete condensation of Hg, or due to complete precipitation of Hg as cinnabar, results in a very small porosity change. In addition, Hg concentration much higher than the concentrations considered here would be required for Hg condensation to even occur. Concentration of aqueous Hg by water evaporation into CO{sub 2} is also unlikely because the higher volatility of Hg relative to H{sub 2}O at reservoir conditions prevents the Hg concentration from increasing in groundwater as dry CO{sub 2} sweeps through, volatilizing both H{sub 2}O and Hg. Using a model-derived aqueous solution to represent the formation water, batch reactive geochemical modeling show that the reaction of the formation water with the CO{sub 2}-Hg mixture causes the pH to drop to about 4.7 and then become buffered near 5.2 upon reaction with the sediments, with a negligible net volume change from mineral dissolution and precipitation. Cinnabar (HgS(s)) is found to be thermodynamically stable as soon as the Hg-bearing CO{sub 2} reacts with the formation water which contains small amounts of dissolved sulfide. Liquid mercury (Hg(l)) is not found to be thermodynamically stable at any point during the simulation. Two-dimensional radial reactive transport simulations of CO{sub 2} injection at a rate of 14.8 kg/s into a 400 m-thick formation at isothermal conditions of 106°C and average pressure near 215 bar, with varying amounts of Hg and H{sub 2}S trace gases, show generally that porosity changes only by about ±0.05% (absolute, i.e., new porosity = initial porosity ±0.0005) with Hg predicted to readily

  15. Impurity Trapping of Positive Muons in Metals

    CERN Multimedia


    Polarized positive muons are implanted into metal samples. In an applied magnetic field the muon spin precession is studied. The line width in the precession frequency spectrum gives information about the static and dynamic properties of muons in a metal lattice. At temperatures where the muon is immobile within its lifetime the line width gives information about the site of location. At temperatures where the muon is mobile, the line width gives information on the diffusion process. It is known from experiments on quasi-elastic neutron scattering on hydrogen in niobium that interstitial impurities like nitrogen tend to act as traps for hydrogen. These trapping effects have now been studied systematically for muons in both f.c.c. metals (aluminium and copper) and b.c.c. metals (mainly niobium). Direct information on the trapping rates and the nature of the diffusion processes can be obtained since the muonic lifetime covers a time range where many of these processes occur.\\\\ \\\\ Mathematical models are set up ...

  16. Impurity trapped excitons under high hydrostatic pressure (United States)

    Grinberg, Marek


    Paper summarizes the results on pressure effect on energies of the 4fn → 4fn and 4fn-15d1 → 4fn transitions as well as influence of pressure on anomalous luminescence in Lnα+ doped oxides and fluorides. A model of impurity trapped exciton (ITE) was developed. Two types of ITE were considered. The first where a hole is localized at the Lnα+ ion (creation of Ln(α+1)+) and an electron is attracted by Coulomb potential at Rydberg-like states and the second where an electron captured at the Lnα+ ion (creation of Ln(α-1)+) and a hole is attracted by Coulomb potential at Rydberg-like states. Paper presents detailed analysis of nonlinear changes of energy of anomalous luminescence of BaxSr1-xF2:Eu2+ (x > 0.3) and LiBaF3:Eu2+, and relate them to ITE-4f65d1 states mixing.

  17. Giant extrinsic spin Hall effect due to rare-earth impurities (United States)

    Tanaka, T.; Kontani, H.


    We investigate the extrinsic spin Hall effect (SHE) in the electron gas model due to magnetic impurities, by focusing on Ce- and Yb-impurities. In the dilute limit, the skew scattering term dominates the side jump term. For Ce-impurities, the spin Hall angle αSH due to skew scattering is given by -8πδ2/7, where δ2 (Lt1) is the phase shift for the d (l=2) partial wave. Since αSH reaches O(10-1) if δ2gsim0.03, considerably large SHE is expected to emerge in metals with rare-earth impurities. The present study provides a highly efficient way to generate a spin current.

  18. Giant extrinsic spin Hall effect due to rare-earth impurities

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T; Kontani, H [Department of Physics, Nagoya University, Furo-cho, Nagoya 464-8602 (Japan)], E-mail:


    We investigate the extrinsic spin Hall effect (SHE) in the electron gas model due to magnetic impurities, by focusing on Ce- and Yb-impurities. In the dilute limit, the skew scattering term dominates the side jump term. For Ce-impurities, the spin Hall angle {alpha}{sub SH} due to skew scattering is given by -8{pi}{delta}{sub 2}/7, where {delta}{sub 2} (<<1) is the phase shift for the d (l=2) partial wave. Since {alpha}{sub SH} reaches O(10{sup -1}) if {delta}{sub 2}{approx}>0.03, considerably large SHE is expected to emerge in metals with rare-earth impurities. The present study provides a highly efficient way to generate a spin current.

  19. Classification of illicit heroin by UPLC-Q-TOF analysis of acidic and neutral manufacturing impurities. (United States)

    Liu, Cuimei; Hua, Zhendong; Bai, Yanping


    The illicit manufacture of heroin results in the formation of trace levels of acidic and neutral manufacturing impurities that provide valuable information about the manufacturing process used. In this work, a new ultra performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF) method; that features high resolution, mass accuracy and sensitivity for profiling neutral and acidic heroin manufacturing impurities was developed. After the UPLC-Q-TOF analysis, the retention times and m/z data pairs of acidic and neutral manufacturing impurities were detected, and 19 peaks were found to be evidently different between heroin samples from "Golden Triangle" and "Golden Crescent". Based on the data set of these 19 impurities in 150 authentic heroin samples, classification of heroin geographic origins was successfully achieved utilizing partial least squares discriminant analysis (PLS-DA). By analyzing another data set of 267 authentic heroin samples, the developed discrimiant model was validated and proved to be accurate and reliable.

  20. Resonant States in High-Temperature Superconductors with Impurities

    CERN Document Server

    Kovacevic, Z L; Hayn, R


    A microscopic theory of resonant states for the Zn-doped CuO_2 plane in superconducting phase is formulated within the effective t-J model. In the model derived from the original p-d model Zn impurities are considered as vacancies for the d states on Cu sites. In the superconducting phase in addition to the local static perturbation induced by the vacancy a dynamical perturbation appears which results in frequency-dependent perturbation matrix. By employing the T-matrix formalism for the Green functions in terms of the Hubbard operators the local density of electronic states with d-, p- and s-symmetry is calculated.

  1. Theoretical Studies of the Interaction of Excitons with Charged Impurities in Single-Walled Carbon Nanotubes (United States)

    Tayo, Benjamin O.

    A fundamental theory of the electronic and optical properties of semiconductors shows the importance of impurities, which are often unavoidable and can alter intrinsic properties of semiconductor materials substantially. While the subject of impurity doping is well understood in bulk semiconductors, the role and impact of doping in low dimensional materials like carbon nanotubes is still under investigation and there exists significant debate on the exact nature of electronic impurity levels in single-walled carbon nanotubes associated with adatoms. In this work, we address the role of impurities in single-walled carbon nanotubes. A simple model is developed for studying the interaction of bright (singlet) excitons in semiconducting single-wall nanotubes with charged impurities. The model reveals a red shift in the energy of excitonic states in the presence of an impurity, thus indicating binding of excitons in the impurity potential well. Signatures of several bound states were found in the absorption spectrum below the onset of excitonic optical transitions in the bare nanotube. The dependence of the binding energy on the model parameters, such as impurity charge and position, was determined and analytical fits were derived for a number of tubes of different diameter. The nanotube family splitting is seen in the diameter dependence, gradually decreasing with the diameter. By calculating the partial absorption coefficient for a small segment of nanotube the local nature of the wave function of the bound states was derived. Our studies provide useful insights into the role of the physical environment (here, a charged impurity atom) in the manipulation of the excited states of carbon nanotubes. We performed very detailed calculations of the electronic and optical properties of carbon nanotubes in the presence of an immobile impurity atom, thus going beyond previous many-body perturbation theory (MBPT) studies in which the carbon nanotubes were considered in vacuum

  2. Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides

    NARCIS (Netherlands)

    Javadi, A.; Maibom, S.; Sapienza, L.; Thyrrestrup Nielsen, H.; Garcia, P.D.; Lodahl, P.


    We present a statistical study of the Purcell enhancement of the light emission from quantum dots coupled to Anderson-localized cavities formed in disordered photonic-crystal waveguides. We measure the time-resolved light emission from both single quantum emitters coupled to Anderson-localized cavit

  3. Satellite Water Impurity Marker (SWIM) for predicting seasonal cholera outbreaks (United States)

    Jutla, A. S.; Akanda, A. S.; Islam, S.


    Prediction of outbreaks of cholera, a deadly water related disease, remains elusive. Since coastal brackish water provides a natural ecological niche for cholera bacteria and because a powerful evidence of new biotypes is emerging, it is highly unlikely that cholera will be fully eradicated. Therefore, it is necessary to develop cholera prediction model with several months' of lead time. Satellite based estimates of chlorophyll, a surrogate for phytoplankton abundance, has been associated with proliferation of cholera bacteria. However, survival of cholera bacteria in a variety of coastal ecological environment put constraints on predictive abilities of chlorophyll algorithm since it only measures greenness in coastal waters. Here, we propose a new remote sensing reflectance based statistical index: Satellite Water Impurity Marker, or SWIM. This statistical index estimates impurity levels in the coastal waters and is based on the variability observed in the difference between the blue (412nm) and green (555nm) wavelengths in coastal waters. The developed index is bounded between clear and impure water and shows the ability to predict cholera outbreaks in the Bengal Delta with a predicted r2 of 78% with two months lead time. We anticipate that a predictive system based on SWIM will provide essential lead time allowing effective intervention and mitigation strategies to be developed for other cholera endemic regions of the world.

  4. Simulating W Impurity Transport in Tokamaks (United States)

    Younkin, Timothy R.; Green, David L.; Lasa, Ane; Canik, John M.; Wirth, Brian D.


    The extreme heat and charged particle flux to plasma facing materials in magnetically confined fusion devices has motivated Tungsten experiments such as the ``W-Ring'' experiment on the DIII-D tokamak to investigate W divertor viability. In this domain, the transport of W impurities from their tile locations to other first-wall tiles is highly relevant to material lifetimes and tokamak operation. Here we present initial results from a simulation of this W transport. Given that sputtered impurities may experience prompt redeposition near the divertor strikepoint, or migrate far from its origin to the midplane, there is a need to track the global, 3-D, impurity redistribution. This is done by directly integrating the 6-D Lorentz equation of motion (plus thermal gradient terms and relevant Monte-Carlo operators) for the impurity ions and neutrals under background plasma parameters determined by the SOLPS edge plasma code. The geometric details of the plasma facing components are represented to a fidelity sufficient to examine the global impurity migration trends with initial work also presented on advanced surface meshing capabilities targeting high fidelity simulation. This work is supported by U.S. DOE Office of Science SciDAC project on plasma-surface interactions under US DOE contract DE-AC05-00OR22725.

  5. Gettering of metal impurities in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Schroeter, W.; Spiecker, E.; Apel, M. [Universitaet Goettingen (Germany)


    Gettering means the removal of metallic impurities from the device-active area of the wafer by transport to a predesigned region-called gettering layer (GL). We introduce an interface at z = d{sub GL}, at which the effect of the gettering mechanism on the metal impurity distribution in the wafer is quantified, e.g. by specifying currents or by interfacial reactions of metal impurities, self interstitials etc. between GL and wafer. In response metal impurities will diffuse out of the wafer into the gettering layer. Following such a concept, in general three species of the metal impurity (M) are involved in gettering: M{sub p} {l_arrow} M{sub i} {l_arrow} M{sub GL}. M{sub p} denotes immobile species in the wafer, which are precipitated into suicides or segregated at extended defects or whose diffusivity is too small to contribute noticeably to transport during the gettering procedure - like many substitutional metal species.

  6. Impact of impurities on IC50 values of P450 inhibitors. (United States)

    Huang, Zeqi


    During early drug discovery, the synthetic pathways for test compounds are not well defined and impurities in the test compounds are inevitable. Compounds undergo serial screening tests at this stage to assess their biological activities and drug-like properties. Impurities in the test compounds can produce false positive results and therefore complicate the interpretation of data. P450 inhibition is one of the screens used in the early drug discovery process to assess the potential of drug-drug interactions caused by the inhibition of P450 enzymes. The impact of impurities on P450 inhibition has not been investigated. In this study, the impact of impurities on CYP2D6 IC(50) values was evaluated using model compounds. Cimetidine was chosen as the test compound. Quinidine, fluoxetine, fluvoxamine, and ibuprofen were chosen to represent impurities as they inhibit CYP2D6 to varying degrees. The IC(50) values of these model impurities for CYP2D6 were 0.11 µM, 0.98 µM, 13.4 µM, and >100 µM, respectively. Impurities with potent CYP2D6 inhibition, such as quinidine, can significantly decrease the apparent IC(50) value for the mixture. With the addition of only 2% quinidine to cimetidine (mol/mol), the apparent IC(50) value of cimetidine decreased from 98 µM to 4.4 µM. With the addition of 10% quinidine, the apparent IC(50) decreased to 1.04 µM. Such a significant decrease in apparent IC(50) values can produce a false alert and cause the inappropriate elimination of good compounds at an early stage. Impur6ities with low inhibitory potential, such as fluvoxamine and ibuprofen, did not cause a significant change in apparent IC(50) values. An impurity can have a similar effect on the IC(50) values for inhibition of other biological activities. The effect of an impurity on apparent IC(50) values can be predicted by using a simulation curve if the potency of the impurity is characterized.

  7. Dystopian Visions of Global Capitalism: Philip Reeve's "Mortal Engines" and M.T Anderson's "Feed" (United States)

    Bullen, Elizabeth; Parsons, Elizabeth


    This article examines Philip Reeve's novel for children, "Mortal Engines", and M.T. Anderson's young adult novel, "Feed", by assessing these dystopias as prototypical texts of what Ulrich Beck calls risk society. Through their visions of a fictional future, the two narratives explore the hazards created by contemporary techno-economic progress,…

  8. Mott-Hubbard and Anderson transitions in dynamical mean-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Byczuk, Krzysztof [Institute of Theoretical Physics, Warsaw University, ul. Hoza 69, PL-00-681 Warsaw (Poland)]. E-mail:; Hofstetter, Walter [Condensed Matter Theory Group, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Vollhardt, Dieter [Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute for Physics, University of Augsburg, D-86135 Augsburg (Germany)


    The Anderson-Hubbard Hamiltonian at half-filling is investigated within dynamical mean-field theory at zero temperature. The local density of states is calculated by taking the geometric and arithmetic mean, respectively. The non-magnetic ground state phase diagrams obtained within the different averaging schemes are compared.

  9. The Egg as a Symbol——Analysis of Sherwood Anderson's The Egg

    Institute of Scientific and Technical Information of China (English)

    孙慧春; 李伟


    @@ A naive narrator in Sherwood Anderson's The Egg leads the reader to witness the various experiences of his family related with eggs.The egg is a dominant theme in their living and an inseparable part of their family.The egg means something that he could only feel directly as a na(i)ve boy.

  10. Quantum resonance, Anderson localisation and selective rotational excitation in periodically kicked molecules

    Directory of Open Access Journals (Sweden)

    Averbukh I. Sh.


    Full Text Available We show that molecules kicked periodically by laser pulses currently used in molecular alignment experiments allow to observe effects of the periodically kicked quantum rotor in a real rotational system. Among these effects are Anderson localisation in angular momentum and the scaling of the quantum resonance. Based on this, we propose a new scheme for selective molecular rotational excitation.

  11. Ago Anderson pälvis Helmi Tohvelmani preemia / Karin Klaus

    Index Scriptorium Estoniae

    Klaus, Karin


    13. oktoobril anti Endla teatri näitlejale Ago Andersonile üle Helmi Tohvelmani auhind. Pidulik sündmus toimus Väätsa põhikoolis, Tohvelmani kodukohas. Anderson pälvis tunnustuse kui kerge kehakeelega näitleja

  12. Ilu võitlus koleduse välja vastu / Rebekka Lotman ; kommenteerinud Mart Anderson

    Index Scriptorium Estoniae

    Lotman, Rebekka, 1978-


    Konkursside "25 kauneimat Eesti raamatut" ja "Viis kauneimat Eesti lasteraamatut" võidutööde näitus Eesti Rahvusraamatukogus. Võidutööde valikut kommenteerib žürii esimees Mart Anderson. Loetletud 2008. aasta 25 kaunimat raamatut. Nimekiri: 2008. aasta 25 kauneimat raamatut

  13. Strong quantum scarring by local impurities (United States)

    Luukko, Perttu J. J.; Drury, Byron; Klales, Anna; Kaplan, Lev; Heller, Eric J.; Räsänen, Esa


    We discover and characterise strong quantum scars, or quantum eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremise the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of quantum wave packets across the perturbed potential landscape. Assisted by the scars, wave-packet recurrences are significantly stronger than in the unperturbed system. Together with the controllability of the preferred orientations, this property may be very useful for quantum transport applications.

  14. Removal Of Volatile Impurities From Copper Concentrates

    Energy Technology Data Exchange (ETDEWEB)

    Winkel, L.; Schuler, A.; Frei, A.; Sturzenegger, M.


    To study the removal of volatile impurities from two different copper concentrates they have been heated on a thermo balance to temperatures between 900 and 1500 C. This sample treatment revealed that both concentrates undergo strong weight losses at 500 and 700 C. They were attributed to the removal of sulfur. Elemental analyses of the residues by ICP spectrometry have shown that the thermal treatment efficiently removes the volatile impurities. Already below 900 C most of the arsenic is removed by evaporation, the largest fraction of lead and zinc is removed in the temperature interval of 1300-1500 C. It was observed that quartz in the concentrate leads to the formation of a silicon-enriched phase besides a metal rich sulfide phase. The former is interpreted as an early stage of a silicate slag. Elemental analysis showed that the formation of this distinct slag phase does not hinder the efficient removal of volatile impurities. (author)

  15. Ionization of impurities in silicon (United States)

    Kuźmicz, Wiesław


    A model for calculation of the percentage of ionized dopant atoms as a function of the doping concentration and temperature is proposed. The results are compared with experiment. Analytical approximations that facilitate practical applications of the model are given.

  16. The electronic structure of impurities in semiconductors

    CERN Multimedia

    Nylandsted larsen, A; Svane, A


    The electronic structure of isolated substitutional or interstitial impurities in group IV, IV-IV, and III-V compound semiconductors will be studied. Mössbauer spectroscopy will be used to investigate the incorporation of the implanted isotopes on the proper lattice sites. The data can be directly compared to theoretical calculations using the LMTO scheme. Deep level transient spectroscopy will be used to identify the band gap levels introduced by metallic impurities, mainly in Si~and~Si$ _{x}$Ge$_{1-x}$. \\\\ \\\\

  17. Correlations between locked modes and impurity influxes

    Energy Technology Data Exchange (ETDEWEB)

    Fishpool, G.M. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Lawson, K.D. [UKAEA Culham Lab., Abingdon (United Kingdom)


    An analysis of pulses that were disturbed by medium Z impurity influxes (Cl, Cr, Fe and Ni) recorded during the 91/92 JET operations, has demonstrated that such influxes can result in MHD modes which subsequently ``lock``. A correlation is found between the power radiated by the influx and the time difference between the start of the influx and the beginning of the locked mode. The growth in the amplitude of the locked mode itself can lead to further impurity influxes. A correlation is noted between intense influxes (superior to 10 MW) and the mode ``unlocking``. (authors). 4 refs., 4 figs.

  18. Sputtering of a silicon surface: Preferential sputtering of surface impurities

    Energy Technology Data Exchange (ETDEWEB)

    Nietiadi, Maureen L. [Physics Department and Research Center OPTIMAS, University Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern (Germany); Rosandi, Yudi [Physics Department and Research Center OPTIMAS, University Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern (Germany); Department of Physics, Universitas Padjadjaran, Jatinangor, Sumedang 45363 (Indonesia); Lorinčík, Jan [Faculty of Science, J. E. Purkinje University, České mládeže 8, 400 96 Ústí nad Labem (Czech Republic); Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 182 51 Praha (Czech Republic); Urbassek, Herbert M., E-mail: [Physics Department and Research Center OPTIMAS, University Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern (Germany)


    We present molecular-dynamics simulations of the sputtering of an impurity atom off a Si 2×1 (100) surface by 2 keV Ar ions. The impurity is characterized by its mass and its binding energy to the Si substrate. We find that sputtering strongly decreases with the mass and even more strongly with the binding energy of the impurity atom to the matrix. The velocity of the impurity perpendicular to the surface is reduced with increasing impurity mass and binding energy. In terms of available ionization theories we can conclude that heavier impurities will have a smaller ionization probability.

  19. The influence of a homologous protein impurity on lysozyme crystal growth (United States)

    Bhamidi, V.; Hanson, B. L.; Edmundson, A.; Skrzypczak-Jankun, E.; Schall, C.


    The effect of a structurally similar protein impurity, turkey ( Meleagris gallopavo) egg-white lysozyme (TEWL) on crystallization of the host protein, hen-egg-white lysozyme (HEWL) from chicken ( Gallus gallus) was studied under varying impurity and host solution concentrations. A change in morphology is observed when crystals of HEWL are grown in the presence of TEWL. As the relative amount of TEWL increases, HEWL crystals become more elongated in the [0 0 1] direction. Elongation is more pronounced in samples with lower initial concentrations of HEWL than in samples with higher initial concentrations. This behavior is consistent with that of impurities in small molecule crystal growth and with predictions based on the Kubota-Mullin model. The observed effect on the growth process can be attributed to the apparent inhibition in the [1 1 0] crystal growth direction of HEWL by TEWL since slowly growing faces become dominant faces in crystal growth. Incorporation of TEWL into HEWL crystals grown in a sitting drop batch method was measured using cation exchange chromatography. The results indicate that impurity incorporation is associated with increasing supersaturation. This conclusion is consistent with a kinetically controlled process of impurity incorporation. The observed impurity effects are most probably associated with the interchange of glutamine in position 41 of HEWL by histidine in TEWL.

  20. Periodic trends governing the interactions between impurity atoms [H-Ar] and (alpha)-U

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Christopher David [Los Alamos National Laboratory


    The binding energies, geometries, charges and electronic structures of a series of impurity atoms [H-Ar] interacting with the {alpha}-U lattice in various configurations were assessed by means of density functional theory calculations. Periodic trends governing the binding energy were highlighted and related to the electronic properties of the impurity atoms, with some consideration given to the band-structure of {alpha}-U. The strongest bound impurity atoms include [C, N, O] and [Si, P, S]. The general trends in the binding energy can be reproduced by a simple parameterisation in terms of the electronegativity (charge-transfer) and covalent radius (elasticity theory) of the impurity atom. The strongest bound atoms deviate from this model, due to their ability to bind with an optimum mixture of covalency and ionicity. This last point is evidenced by the partial overlap of the impurity atom p-band with the hybrid d-/f-band of {alpha}-U. It is expected that the trends and general behaviour reported in this work can be extended to the interactions of impurity atoms with other metallic systems.

  1. Wildlife Protection, Mitigation, and Enhancement Plans, Anderson Ranch and Black Canyon Facilities: Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Meuleman, G. Allyn


    Under direction of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, and the subsequent Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program, projects have been developed in Idaho to mitigate the impacts to wildlife habitat and production due to the development and operation of the Anderson Ranch and Black Canyon Facilities (i.e., dam, power plant, and reservoir areas). The Anderson Ranch Facility covered about 4812 acres of wildlife habitat while the Black Canyon Facility covered about 1115 acres. These acreages include dam and power plant staging areas. A separate mitigation plan has been developed for each facility. A modified Habitat Evaluation Procedure (HEP) was used to assess the benefits of the mitigation plans to wildlife. The interagency work group used the target species Habitat Units (HU's) lost at each facility as a guideline during the mitigation planning process, while considering the needs of wildlife in the areas. Totals of 9619 and 2238 target species HU's were estimated to be lost in the Anderson Ranch and Black Canyon Facility areas, respectively. Through a series of projects, the mitigation plans will provide benefits of 9620 target species HU's to replace Anderson Ranch wildlife impacts and benefits of 2195 target species HU's to replace Black Canyon wildlife impacts. Target species to be benefited by the Anderson Ranch and/or Black Canyon mitigation plans include the mallard, Canada goose, mink, yellow warbler, black-capped chickadee, ruffed grouse, mule deer, blue grouse, sharp-tailed grouse, ring-necked pheasant, and peregrine falcon.

  2. Development of Impurity Profiling Methods Using Modern Analytical Techniques. (United States)

    Ramachandra, Bondigalla


    This review gives a brief introduction about the process- and product-related impurities and emphasizes on the development of novel analytical methods for their determination. It describes the application of modern analytical techniques, particularly the ultra-performance liquid chromatography (UPLC), liquid chromatography-mass spectrometry (LC-MS), high-resolution mass spectrometry (HRMS), gas chromatography-mass spectrometry (GC-MS) and high-performance thin layer chromatography (HPTLC). In addition to that, the application of nuclear magnetic resonance (NMR) spectroscopy was also discussed for the characterization of impurities and degradation products. The significance of the quality, efficacy and safety of drug substances/products, including the source of impurities, kinds of impurities, adverse effects by the presence of impurities, quality control of impurities, necessity for the development of impurity profiling methods, identification of impurities and regulatory aspects has been discussed. Other important aspects that have been discussed are forced degradation studies and the development of stability indicating assay methods.

  3. Parallel Impurity Spreading During Massive Gas Injection (United States)

    Izzo, V. A.


    Extended-MHD simulations of disruption mitigation in DIII-D demonstrate that both pre-existing islands (locked-modes) and plasma rotation can significantly influence toroidal spreading of impurities following massive gas injection (MGI). Given the importance of successful disruption mitigation in ITER and the large disparity in device parameters, empirical demonstrations of disruption mitigation strategies in present tokamaks are insufficient to inspire unreserved confidence for ITER. Here, MHD simulations elucidate how impurities injected as a localized jet spread toroidally and poloidally. Simulations with large pre-existing islands at the q = 2 surface reveal that the magnetic topology strongly influences the rate of impurity spreading parallel to the field lines. Parallel spreading is largely driven by rapid parallel heat conduction, and is much faster at low order rational surfaces, where a short parallel connection length leads to faster thermal equilibration. Consequently, the presence of large islands, which alter the connection length, can slow impurity transport; but the simulations also show that the appearance of a 4/2 harmonic of the 2/1 mode, which breaks up the large islands, can increase the rate of spreading. This effect is seen both for simulations with spontaneously growing and directly imposed 4/2 modes. Given the prevalence of locked-modes as a cause of disruptions, understanding the effect of large islands is of particular importance. Simulations with and without islands also show that rotation can alter impurity spreading, even reversing the predominant direction of spreading, which is toward the high-field-side in the absence of rotation. Given expected differences in rotation for ITER vs. DIII-D, rotation effects are another important consideration when extrapolating experimental results. Work supported by US DOE under DE-FG02-95ER54309.

  4. Overview of SOFC Anode Interactions with Coal Gas Impurities

    Energy Technology Data Exchange (ETDEWEB)

    O. A. Marina; L. R. Pederson; R. Gemmen; K. Gerdes; H. Finklea; I. B. Celik


    An overview of the results of SOFC anode interactions with phosphorus, arsenic, selenium, sulfur, antimony, and hydrogen chloride as single contaminants or in combinations is discussed. Tests were performed using both anode- and electrolyte-supported cells in synthetic and actual coal gas for periods greater than 1000 hours. Post-test analyses were performed to identify reaction products formed and their distribution, and compared to phases expected from thermochemical modeling. The ultimate purpose of this work is to establish maximum permissible concentrations for impurities in coal gas, to aid in the selection of appropriate coal gas clean-up technologies.

  5. Acceptor and donor impurities in GaN nanocrystals


    Echeverría-Arrondo, C.; Pérez-Conde, J.; Bhattacharjee, A. K.


    We investigate acceptor and donor states in GaN nanocrystals doped with a single substitutional impurity. Quantum dots (QD's) of zinc-blende structure and spherical shape are considered with the radius ranging from 4.5 to 67.7 A. The size-dependent energy spectra are calculated within the sp3d5s* tight-binding model, which yields a good agreement with the confinement-induced blue shifts observed in undoped QD's. The computed binding energy is strongly enhanced with respect to the experimental...


    Directory of Open Access Journals (Sweden)

    V. A. Bondarev


    Full Text Available Analytical formulae for calculating simultaneous diffusion of two impurities in silicon are presented. The formulae are based on analytical solutions of diffusion equations that have been obtained for the first time by the author while using some special mathematical functions. In contrast to usual formal mathematical approaches, new functions are determined in the process of investigation of real physical models. Algorithms involve some important relations from thermodynamics of irreversible processes and also variational thermodynamic functionals that were previously obtained by the author for transfer processes. Calculations considerably reduce the time required for development of new integrated circuits. 

  7. A mechanistic study of impurity segregation at silicon grain boundaries (United States)

    Käshammer, Peter; Sinno, Talid


    The segregation behavior of carbon and oxygen atoms at various silicon grain boundaries was studied using a combination of atomistic simulation and analytical modeling. First, quasi-lattice Grand Canonical Monte Carlo simulations were used to compute segregation isotherms as a function of grain boundary type, impurity atom loading level, and temperature. Next, the atomistic results were employed to regress different analytical segregation models and extract thermodynamic and structural properties. The multilayer Brunauer-Emmett-Teller (BET) isotherm was found to quantitatively capture all the simulation conditions probed in this work, while simpler, single layer models such as the Langmuir-McLean model did not. Some of the BET parameters, namely, the binding free energy of the first adsorption layer and the impurity holding capacity of each layer, were tested for correlation with various measures of grain boundary structure and/or mechanical properties. It was found that certain measures of the atomistic stress distribution correlate strongly with the first-layer binding free energy for substitutional carbon atoms, while common grain boundary identifiers such as sigma value and energy density are not useful in this regard. Preliminary analysis of the more complex case of interstitial oxygen segregation showed that similar measures based on atomistic stress also may be useful here, but more systematic correlative studies are needed to develop a comprehensive picture.

  8. Metal-based impurities in graphenes: application for electroanalysis. (United States)

    Chee, Sze Yin; Pumera, Martin


    We show here that metallic impurities presented in graphenes prepared from graphite can be usefully employed for electroanalysis. We demonstrate that cumene hydroperoxide electrochemical reduction on graphene containing iron-based impurities provides significantly larger voltammetric currents than the same experiment using iron oxide nanoparticles. This opens doors for turning metallic impurities into potentially useful components of graphene based electrochemical systems.

  9. Linear and Non-linear Rabi Oscillations of a Two-Level System Resonantly Coupled to an Anderson-Localized Mode

    CERN Document Server

    Bachelard, Nicolas; Sebbah, Patrick; Vanneste, Christian


    We use time-domain numerical simulations of a two-dimensional (2D) scattering system to study the interaction of a collection of emitters resonantly coupled to an Anderson-localized mode. For a small electric field intensity, we observe the strong coupling between the emitters and the mode, which is characterized by linear Rabi oscillations. Remarkably, a larger intensity induces non-linear interaction between the emitters and the mode, referred to as the dynamical Stark effect, resulting in non-linear Rabi oscillations. The transition between both regimes is observed and an analytical model is proposed which accurately describes our numerical observations.

  10. Scaling analysis of transverse Anderson localization in a disordered optical waveguide

    CERN Document Server

    Abaie, Behnam


    The intention of this manuscript is twofold. First, the mode-width probability density function (PDF) is introduced as a powerful statistical tool to study and compare the transverse Anderson localization properties of a disordered one dimensional optical waveguide. Second, by analyzing the scaling properties of the mode-width PDF with the transverse size of the waveguide, it is shown that the mode-width PDF gradually converges to a terminal configuration. Therefore, it may not be necessary to study a real-sized disordered structure in order to obtain its statistical localization properties and the same PDF can be obtained for a substantially smaller structure. This observation is important because it can reduce the often demanding computational effort that is required to study the statistical properties of Anderson localization in disordered waveguides. Using the mode-width PDF, substantial information about the impact of the waveguide parameters on its localization properties is extracted. This information ...

  11. Experimental observation of Anderson localization in laser-kicked molecular rotors (United States)

    Bitter, Martin; Milner, Valery


    For the first time, the phenomenon of Anderson localization is observed and studied in a system of true quantum kicked rotors. Nitrogen molecules in a supersonic molecular jet are cooled down to 27 K and are rotationally excited by a periodic train of 24 high-intensity femtosecond pulses. Exponential distribution of the molecular angular momentum - the most unambiguous signature of Anderson localization - is measured directly by means of coherent Raman scattering. We demonstrate the suppressed growth of the molecular rotational energy with the number of laser kicks and study the dependence of the localization length on the kick strength. Both timing and amplitude noise in the pulse train is shown to destroy the localization and revive the diffusive growth of angular momentum.

  12. Experimental observation of Anderson localization in laser-kicked molecular rotors

    CERN Document Server

    Bitter, Martin


    We observe and study the phenomenon of Anderson localization in a system of true quantum kicked rotors. Nitrogen molecules in a supersonic molecular jet are cooled down to 27~K and are rotationally excited by a periodic train of 24~high-intensity femtosecond pulses. Exponential distribution of the molecular angular momentum - the most unambiguous signature of Anderson localization - is measured directly by means of coherent Raman scattering. We demonstrate the suppressed growth of the molecular rotational energy with the number of laser kicks and study the dependence of the localization length on the kick strength. Both timing and amplitude noise in the pulse train is shown to destroy the localization and revive the diffusive growth of angular momentum.

  13. Wildlife Impact Assessment: Anderson Ranch, Black Canyon, and Boise Diversion Projects, Idaho. Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Meuleman, G. Allyn


    This report presents an analysis of impacts on wildlife and their habitats as a result of construction and operation of the US Bureau of Reclamation's Anderson Ranch, Black Canyon, and Boise Diversion Projects in Idaho. The objectives were to: (1) determine the probable impacts of development and operation of the Anderson Ranch, Black Canyon, and Boise Diversion Projects to wildlife and their habitats; (2) determine the wildlife and habitat impacts directly attributable to hydroelectric development and operation; (3) briefly identify the current major concerns for wildlife in the vicinities of the hydroelectric projects; and (4) provide for consultation and coordination with interested agencies, tribes, and other entities expressing interest in the project.

  14. The astronomizings of Dr. Anderson and the curious case of his disappearing nova

    CERN Document Server

    Shears, Jeremy


    Dr. Thomas David Anderson (1853-1932) was a Scottish amateur astronomer famed for his discovery of two bright novae: Nova Aurigae 1891 and Nova Persei 1901. He also discovered more than 50 variable stars as well as making independent discoveries of Nova Aquilae 1918 and comet 17P/Holmes in 1892. At the age of seventy, in 1923, he reported his discovery of a further nova, this time in Cygnus. This was set to be the culmination of a lifetime devoted to scanning the night sky, but unfortunately no one was able to confirm it. This paper discusses Anderson's life leading up to the discovery and considers whether it was real or illusory.

  15. Anderson's absolute objects and constant timelike vector hidden in Dirac matrices



    Anderson's theorem asserting, that symmetry of dynamic equations written in the relativisitically covariant form is determined by symmetry of its absolute objects, is applied to the free Dirac equation. Dirac matrices are the only absolute objects of the Dirac equation. There are two ways of the Dirac matrices transformation: (1) Dirac matrices form a 4-vector and wave function is a scalar, (2) Dirac matrices are scalars and the wave function is a spinor. In the first case the Dirac equation ...

  16. Effect of impurities and electrolyte thickness on degradation of pure magnesium: A finite element study

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, R., E-mail: [Centro Nacional de Investigaciones Metalurgicas, CENIM, CSIC, Avda. Gregorio del Amo 8, 28040 Madrid (Spain); Departamento de Matematicas, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, UNAM, Ciudad Universitaria, 04510 Mexico D.F. (Mexico); Departamento de Ingenieria Metalurgica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, UNAM, Ciudad Universitaria, 04510 Mexico D.F. Mexico (Mexico); Escudero, M.L., E-mail: [Centro Nacional de Investigaciones Metalurgicas, CENIM, CSIC, Avda. Gregorio del Amo 8, 28040 Madrid (Spain); Garcia-Alonso, M.C., E-mail: [Centro Nacional de Investigaciones Metalurgicas, CENIM, CSIC, Avda. Gregorio del Amo 8, 28040 Madrid (Spain)


    Highlights: Black-Right-Pointing-Pointer Degradation of Mg due to the presence of impurities by finite element method. Black-Right-Pointing-Pointer A thin film of electrolyte causes galvanic corrosion focused only close on impurities. Black-Right-Pointing-Pointer A thick layer of electrolyte provokes galvanic corrosion extended the whole surface. Black-Right-Pointing-Pointer A higher number of impurities causes galvanic corrosion on the Mg surface independently of electrolyte thickness. Black-Right-Pointing-Pointer The electrolyte thickness is an important variable that affects the in vivo degradation. - Abstract: The aim of this work is to study the degradation of magnesium due to the presence of impurities, by finite element method (FEM), when different thickness of physiological medium bathes the surface. The electrochemical experimental data obtained from polarization curves are used to model mathematically the corrosion process by solving the Laplace equation and the proper boundary conditions by means of FEM. The results show that when Mg is covered by a thin film of electrolyte, galvanic corrosion is focused only on the areas located really close to the cathodic sites, and far from the impurities, the Mg matrix remains near to its corrosion potential with a natural corrosion process. However, if the Mg matrix is completely covered by a thick layer of electrolyte the potentials obtained in the Mg surface far from the impurity are higher than its corrosion potential, so the Mg suffers more severe galvanic corrosion. On the other hand, when a higher number of impurities is considered, the Mg matrix is anodically polarized and it suffers severe galvanic corrosion, independently of h. The thickness of the electrolyte h must be considered as an important variable that affects the in vivo degradation.

  17. A Spectroscopic Study of Impurity Behavior in Neutral-beam and Ohmically Heated TFTR Discharges (United States)

    Stratton, B. C.; Ramsey, A. T.; Boody, F. P.; Bush, C. E.; Fonck, R. J.; Groenbner, R. J.; Hulse, R. A.; Richards, R. K.; Schivell, J.


    Quantitative spectroscopic measurements of Z{sub eff}, impurity densities, and radiated power losses have been made for ohmic- and neutral-beam-heated TFTR discharges at a plasma current of 2.2 MA and toroidal field of 4.7 T. Variations in these quantities with line-average plasma density (anti n{sub e}) and beam power up to 5.6 MW are presented for discharges on a graphite movable limiter. A detailed discussion of the use of an impurity transport model to infer absolute impurity densities and radiative losses from line intensity and visible continuum measurements is given. These discharges were dominated by low-Z impurities with carbon having a considerably higher density than oxygen, except in high-anti n{sub e} ohmic discharges, where the densities of carbon and oxygen were comparable. Metallic impurity concentrations and radiative losses were small, resulting in hollow radiated power profiles and fractions of the input power radiated being 30 to 50% for ohmic heating and 30% or less with beam heating. Spectroscopic estimates of the radiated power were in good agreement with bolometrically measured values. Due to an increase in the carbon density, Z{sub eff} rose from 2.0 to 2.8 as the beam power increased from 0 to 5.6 MW, pointing to a potentially serious dilution of the neutron-producing plasma ions as the beam power increased. Both the low-Z and metallic impurity concentrations were approximately constant with minor radius, indicating no central impurity accumulation in these discharges.

  18. Analysis of the characteristics of patients with open tibial fractures of Gustilo and Anderson type III

    Directory of Open Access Journals (Sweden)

    Frederico Carlos Jaña Neto


    Full Text Available OBJECTIVE: To analyze the characteristics of patients with Gustilo-Anderson Type III open tibial fractures treated at a tertiary care hospital in São Paulo between January 2013 and August 2014. METHODS: This was a cross-sectional retrospective study. The following data were gathered from the electronic medical records: age; gender; diagnosis; trauma mechanism; comorbidities; associated fractures; Gustilo and Anderson, Tscherne and AO classifications; treatment (initial and definitive; presence of compartment syndrome; primary and secondary amputations; MESS (Mangled Extremity Severity Score index; mortality rate; and infection rate. RESULTS: 116 patients were included: 81% with fracture type IIIA, 12% IIIB and 7% IIIC; 85% males; mean age 32.3 years; and 57% victims of motorcycle accidents. Tibial shaft fractures were significantly more prevalent (67%. Eight patients were subjected to amputation: one primary case and seven secondary cases. Types IIIC (75% and IIIB (25% predominated among the patients subjected to secondary amputation. The MESS index was greater than 7 in 88% of the amputees and in 5% of the limb salvage group. CONCLUSION: The profile of patients with open tibial fracture of Gustilo and Anderson Type III mainly involved young male individuals who were victims of motorcycle accidents. The tibial shaft was the segment most affected. Only 7% of the patients underwent amputation. Given the current controversy in the literature about amputation or salvage of severely injured lower limbs, it becomes necessary to carry out prospective studies to support clinical decisions.

  19. Analysis of the characteristics of patients with open tibial fractures of Gustilo and Anderson type III☆ (United States)

    Jaña Neto, Frederico Carlos; de Paula Canal, Marina; Alves, Bernardo Aurélio Fonseca; Ferreira, Pablício Martins; Ayres, Jefferson Castro; Alves, Robson


    Objective To analyze the characteristics of patients with Gustilo–Anderson Type III open tibial fractures treated at a tertiary care hospital in São Paulo between January 2013 and August 2014. Methods This was a cross-sectional retrospective study. The following data were gathered from the electronic medical records: age; gender; diagnosis; trauma mechanism; comorbidities; associated fractures; Gustilo and Anderson, Tscherne and AO classifications; treatment (initial and definitive); presence of compartment syndrome; primary and secondary amputations; MESS (Mangled Extremity Severity Score) index; mortality rate; and infection rate. Results 116 patients were included: 81% with fracture type IIIA, 12% IIIB and 7% IIIC; 85% males; mean age 32.3 years; and 57% victims of motorcycle accidents. Tibial shaft fractures were significantly more prevalent (67%). Eight patients were subjected to amputation: one primary case and seven secondary cases. Types IIIC (75%) and IIIB (25%) predominated among the patients subjected to secondary amputation. The MESS index was greater than 7 in 88% of the amputees and in 5% of the limb salvage group. Conclusion The profile of patients with open tibial fracture of Gustilo and Anderson Type III mainly involved young male individuals who were victims of motorcycle accidents. The tibial shaft was the segment most affected. Only 7% of the patients underwent amputation. Given the current controversy in the literature about amputation or salvage of severely injured lower limbs, it becomes necessary to carry out prospective studies to support clinical decisions. PMID:27069881

  20. Abrupt physical and chemical changes during 1992-1999, Anderson Springs, SE Geyser Geothermal Field, California (United States)

    Janik, Cathy J.; Goff, Fraser; Walter, Stephen R.; Sorey, Michael L.; Counce, Dale; Colvard, Elizabeth M.


    The Anderson Springs area is located about 90 miles (145 kilometers) north of San Francisco, California, in the southwestern part of Lake County. The area was first developed in the late 1800s as a health resort, which was active until the 1930s. Patrons drank a variety of cool to hot mineral waters from improved springs, swam in various baths and pools, and hiked in the rugged hills flanking Anderson Creek and its tributaries. In the bluffs to the south of the resort were four small mercury mines of the eastern Mayacmas quicksilver district. About 1,260 flasks of mercury were produced from these mines between 1909 and 1943. By the early 1970s, the higher ridges south and west of Anderson Springs became part of the southeast sector of the greater Geysers geothermal field. Today, several electric power plants are built on these ridges, producing energy from a vapor-dominated 240 °C reservoir. Only the main hot spring at Anderson Springs has maintained a recognizable identity since the 1930s. The hot spring is actually a cluster of seeps and springs that issue from a small fault in a ravine southwest of Anderson Creek. Published and unpublished records show that the maximum temperature (Tm) of this cluster fell gradually from 63°C in 1889 to 48°C in 1992. However, Tm of the cluster climbed to 77°C in 1995 and neared boiling (98°C) in 1998. A new cluster of boiling vents and small fumaroles (Tm = 99.3°C) formed in 1998 about 30 m north of the old spring cluster. Several evergreen trees on steep slopes immediately above these vents apparently were killed by the new activity. Thermal waters at Anderson Hot Springs are mostly composed of near-surface ground waters with some added gases and condensed steam from The Geysers geothermal system. Compared to gas samples from Southeast Geysers wells, the hot spring gases are higher in CO2 and lower in H2S and NH3. As the springs increased in temperature, however, the gas composition became more like the mean composition

  1. Unioned layer for the Wyodak-Anderson coal zone in the Powder River Basin, Montana and Wyoming (wafing.shp) (United States)

    U.S. Geological Survey, Department of the Interior — This ArcView shapefile contains a polygon representation of numerous themes associated with the Wyodak-Anderson coal zone. The purpose for this theme is to allow the...

  2. Wyodak-Anderson coal zone study limit in the Powder River Basin, Wyoming and Montana (wabndg.shp) (United States)

    U.S. Geological Survey, Department of the Interior — This ArcView shapefile contains a polygon representing the study area for the Wyodak-Anderson coal zone in the Powder River Basin, Wyoming and Montana. This theme...

  3. Overburden above the Wyodak-Anderson coal zone in the Powder River Basin, Wyoming and Montana, 1999 (waovbg.shp) (United States)

    U.S. Geological Survey, Department of the Interior — This shapefile contains a representation of the overburden above the Wyodak-Anderson coal zone. This theme was created specifically for the National Coal Resource...

  4. Extrinsic germanium Blocked Impurity Bank (BIB) detectors (United States)

    Krabach, Timothy N.; Huffman, James E.; Watson, Dan M.


    Ge:Ga blocked-impurity-band (BIB) detectors with long wavelength thresholds greater than 190 microns and peak quantum efficiencies of 4 percent, at an operating temperature of 1.8 K, have been fabricated. These proof of concept devices consist of a high purity germanium blocking layer epitaxially grown on a Ga-doped Ge substrate. This demonstration of BIB behavior in germanium enables the development of far infrared detector arrays similar to the current silicon-based devices. Present efforts are focussed on improving the chemical vapor deposition process used to create the blocking layer and on the lithographic processing required to produce monolithic detector arrays in germanium. Approaches to test the impurity levels in both the blocking and active layers are considered.

  5. Turbulent transport of impurities and their effect on energy confinement

    CERN Document Server

    Pusztai, I; Fulop, T; Candy, J


    By presenting linear and nonlinear gyrokinetic similarity studies, based on a balanced neutral beam injection deuterium discharge from the DIII-D tokamak, we demonstrate that impurities alter the scaling of the transport on the charge and mass of the main species, and even more importantly, they can dramatically change the energy transport even in relatively small quantities. A poloidally varying equilibrium electrostatic potential can lead to a strong reduction or sign change of the impurity peaking factor due to the combined effect of the in-out impurity density asymmetry and the EXB drift of impurities. We present an approximate expression for the impurity peaking factor and demonstrate that impurity peaking is not significantly affected by impurity self-collisions.

  6. Removal of iron from impure graphites

    Energy Technology Data Exchange (ETDEWEB)

    Growcock, F.B.; Heiser, J.


    Iron-impregnated and ash-rich graphites have been purified by leaching with gaseous I/sub 2/ at 900/sup 0/C. With addition of H/sub 2/, the rate of removal of impurity iron can be markedly increased and becomes comparable to that obtained with Cl/sub 2/. I/sub 2/ has an advantage in that it can also volatilize Ca and perhaps Ba and Sr.

  7. Effect of impurities and processing on silicon solar cells. Volume 1: Characterization methods for impurities in silicon and impurity effects data base (United States)

    Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Campbell, R. B.; Blais, P. D.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.


    Two major topics are treated: methods to measure and evaluate impurity effects in silicon and comprehensive tabulations of data derived during the study. Discussions of deep level spectroscopy, detailed dark I-V measurements, recombination lifetime determination, scanned laser photo-response, conventional solar cell I-V techniques, and descriptions of silicon chemical analysis are presented and discussed. The tabulated data include lists of impurity segregation coefficients, ingot impurity analyses and estimated concentrations, typical deep level impurity spectra, photoconductive and open circuit decay lifetimes for individual metal-doped ingots, and a complete tabulation of the cell I-V characteristics of nearly 200 ingots.

  8. Engineering estimates of impurity fluxes on the ITER port plugs (United States)

    Kotov, Vladislav


    Predictions of impurity fluxes are required for design analysis of the ITER optical diagnostics. In the present paper a simplified model is proposed for calculation of the neutral impurity fluxes on the recessed surfaces which are not in direct contact with plasma. The method is based on the Monte-Carlo simulation of the neutral particles transport in prescribed and fixed plasma background. The plasma parameters are projected from experimental observations, scalings and ITER modelling results. Blobs are approximated as stationary hot species. Results of 2D simulations with toroidally uniform wall and of the ‘2.5D model’ are presented. In this latter the 3D geometry of ports is implemented, but details of the incident ion flux distribution on the first wall panels are neglected. The calculated worst case gross deposition rate of Be in the middle of the port plug faces reaches almost 0.1 nm s-1. At the same time, the obtained Be erosion to deposition ratio at those locations is always larger than 5, indicating high probability of net erosion conditions there.

  9. Characteristics of impurity-induced pseudogap

    Energy Technology Data Exchange (ETDEWEB)

    Numata, Yoshinori, E-mail:; Uto, Tatsuro; Matuda, Azusa


    Highlights: • We have studied characteristics of the pseudogap states of Co substituted Bi2212 crystals used by STM/STS. • The pseudogap of Co 4% samples have temperature dependence. • We observed a disappearance of a 4a periodic modulation and a development of 1D modulation in the DOS. • An intimate relation between the DOS modulation and the pseudogap is confirmed. - Abstract: We have performed STM/STS measurements on a single crystal of Bi{sub 2.1}Sr{sub 1.9}Ca (Cu{sub 1−x}Co{sub x}) {sub 2}O{sub 8+δ} (Co-Bi2212), to reveal impurity effects on the pseudogap in cuprate high-T{sub c} superconductors. We report a drastic change in the temperature dependence of a pseudogap and in the density of states (DOS) modulation with a 4a period, in a certain doping range. In the Co 4% substituted samples, the pseudogap gradually closed like a gap of a BCS superconductor for slightly overdoped and overdoped regime, while their low temperature values were enhanced due to impurity. In addition, a disappearance of a 4a periodic modulation and a development of new modulation were observed in the DOS spatial distribution. These results indicate an intimate relation between the DOS modulation and the pseudogap, and qualitative difference in the impurity enhanced pseudogap and conventional one.

  10. Electrophobic interaction induced impurity clustering in metals

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hong-Bo; Wang, Jin-Long; Jiang, W.; Lu, Guang-Hong; Aguiar, J. A.; Liu, Feng


    We introduce the concept of electrophobic interaction, analogous to hydrophobic interaction, for describing the behavior of impurity atoms in a metal, a 'solvent of electrons'. We demonstrate that there exists a form of electrophobic interaction between impurities with closed electron shell structure, which governs their dissolution behavior in a metal. Using He, Be and Ar as examples, we predict by first-principles calculations that the electrophobic interaction drives He, Be or Ar to form a close-packed cluster with a clustering energy that follows a universal power-law scaling with the number of atoms (N) dissolved in a free electron gas, as well as W or Al lattice, as Ec is proportional to (N2/3-N). This new concept unifies the explanation for a series of experimental observations of close-packed inert-gas bubble formation in metals, and significantly advances our fundamental understanding and capacity to predict the solute behavior of impurities in metals, a useful contribution to be considered in future material design of metals for nuclear, metallurgical, and energy applications.

  11. Electronic Theoretical Study of the Interaction between Rare Earth Elements and Impurities at Grain Boundaries in Steel

    Institute of Scientific and Technical Information of China (English)

    刘贵立; 张国英; 李荣德


    The model of dislocations was used to construct the model of grain boundary (GB) with pure rare earths, and rare earth elements and impurities. The influence of the interaction between rare earth elements and impurities on the cohesive properties of 5.3° low angle GB of Fe was investigated by the recursion method. The calculated results of environment sensitive embeding energy(EESE) show that the preferential segregation of rare earth elements towards GBs exists. Calculations of bond order integrals (BOI) show that rare earth elements increase the cohesive strength of low angle GB, and impurities such as S, P weaken the intergranular cohesion of the GB. So rare earth element of proper quantity added in steel not only cleanses other harmful impurities off the GBs, but also enhances the intergranular cohesion. This elucidates the action mechanism of rare earth elements in steel from electronic level and offers theoretical evidence for applications of rare earth elements in steels.

  12. Impurities in a non-axisymmetric plasma: Transport and effect on bootstrap current

    Energy Technology Data Exchange (ETDEWEB)

    Mollén, A., E-mail: [Department of Applied Physics, Chalmers University of Technology, Göteborg (Sweden); Max-Planck-Institut für Plasmaphysik, 17491 Greifswald (Germany); Landreman, M. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Smith, H. M.; Helander, P. [Max-Planck-Institut für Plasmaphysik, 17491 Greifswald (Germany); Braun, S. [Max-Planck-Institut für Plasmaphysik, 17491 Greifswald (Germany); German Aerospace Center, Institute of Engineering Thermodynamics, Pfaffenwaldring 38-40, D-70569 Stuttgart (Germany)


    Impurities cause radiation losses and plasma dilution, and in stellarator plasmas the neoclassical ambipolar radial electric field is often unfavorable for avoiding strong impurity peaking. In this work we use a new continuum drift-kinetic solver, the SFINCS code (the Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver) [M. Landreman et al., Phys. Plasmas 21, 042503 (2014)] which employs the full linearized Fokker-Planck-Landau operator, to calculate neoclassical impurity transport coefficients for a Wendelstein 7-X (W7-X) magnetic configuration. We compare SFINCS calculations with theoretical asymptotes in the high collisionality limit. We observe and explain a 1/ν-scaling of the inter-species radial transport coefficient at low collisionality, arising due to the field term in the inter-species collision operator, and which is not found with simplified collision models even when momentum correction is applied. However, this type of scaling disappears if a radial electric field is present. We also use SFINCS to analyze how the impurity content affects the neoclassical impurity dynamics and the bootstrap current. We show that a change in plasma effective charge Z{sub eff} of order unity can affect the bootstrap current enough to cause a deviation in the divertor strike point locations.

  13. Radiated Power and Impurity Concentrations in the EXTRAP-T2R Reversed-Field Pinch (United States)

    Corre, Y.; Rachlew, E.; Cecconello, M.; Gravestijn, R. M.; Hedqvist, A.; Pégourié, B.; Schunke, B.; Stancalie, V.


    A numerical and experimental study of the impurity concentration and radiation in the EXTRAP-T2R device is reported. The experimental setup consists of an 8-chord bolometer system providing the plasma radiated power and a vacuum-ultraviolet spectrometer providing information on the plasma impurity content. The plasma emissivity profile as measured by the bolometric system is peaked in the plasma centre. A one dimensional Onion Skin Collisional-Radiative model (OSCR) has been developed to compute the density and radiation distributions of the main impurities. The observed centrally peaked emissivity profile can be reproduced by OSCR simulations only if finite particle confinement time and charge-exchange processes between plasma impurities and neutral hydrogen are taken into account. The neutral hydrogen density profile is computed with a recycling code. Simulations show that recycling on metal first wall such as in EXTRAP-T2R (stainless steel vacuum vessel and molybdenum limiters) is compatible with a rather high neutral hydrogen density in the plasma centre. Assuming an impurity concentration of 10% for oxygen and 3% for carbon compared with the electron density, the OSCR calculation including lines and continuum emission reproduces about 60% of the total radiated power with a similarly centrally peaked emissivity profile. The centrally peaked emissivity profile is due to low ionisation stages and strongly radiating species in the plasma core, mainly O4+ (Be-like) and C3+ Li-like.

  14. Local destruction of superconductivity by non-magnetic impurities in mesoscopic iron-based superconductors. (United States)

    Li, Jun; Ji, Min; Schwarz, Tobias; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Yuan, Jie; Pereira, Paulo J; Huang, Ya; Zhang, Gufei; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Kleiner, Reinhold; Koelle, Dieter; Chibotaru, Liviu F; Yamaura, Kazunari; Wang, Hua-Bing; Wu, Pei-Heng; Takayama-Muromachi, Eiji; Vanacken, Johan; Moshchalkov, Victor V


    The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm(2) cross-section. The impurities suppress superconductivity in a three-dimensional 'Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ∼1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities.

  15. Correlated impurities and intrinsic spin-liquid physics in the kagome material herbertsmithite (United States)

    Han, Tian-Heng; Norman, M. R.; Wen, J.-J.; Rodriguez-Rivera, Jose A.; Helton, Joel S.; Broholm, Collin; Lee, Young S.


    Low energy inelastic neutron scattering on single crystals of the kagome spin-liquid compound ZnCu3(OD) 6Cl2 (herbertsmithite) reveals antiferromagnetic correlations between impurity spins for energy transfers ℏ ω kagome spins. The low energy fluctuations are characterized by diffuse scattering near wave vectors (100) and (00 3/2 ), which is consistent with antiferromagnetic correlations between pairs of nearest-neighbor Cu impurities on adjacent triangular (Zn) interlayers. The corresponding impurity lattice resembles a simple cubic lattice in the dilute limit below the percolation threshold. Such an impurity model can describe prior neutron, NMR, and specific heat data. The low energy neutron data are consistent with the presence of a small spin gap (Δ ˜0.7 meV ) in the kagome layers, similar to that recently observed by NMR. The ability to distinguish the scattering due to Cu impurities from that of the planar kagome Cu spins provides an important avenue for probing intrinsic spin-liquid physics.

  16. Impurity-related nonlinear optical properties in delta-doped quantum rings: Electric field effects

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, R.L., E-mail: [Escuela de Ingeniería de Antioquia-EIA, Medellín (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Morales, A.L. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Martínez-Orozco, J.C. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, CP 98060, Zacatecas (Mexico); Baghramyan, H.M.; Barseghyan, M.G. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Mora-Ramos, M.E. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)


    Using a variational procedure within the effective mass approximation, we have calculated the donor impurity binding energy for the ground (1s-like) and the excited (2p{sub z}-like) states as well as the impurity-related nonlinear optical absorption and relative changes in the refraction index in a GaAs single quantum ring with axial n-type delta-doping. The delta-like potential along the z-direction is an approximate model analytically described using a Lorentzian function with two parameters. Additionally we consider the application of an electric field along the z-direction. It is found that the changes in the geometry of the quantum ring, the change in the 2D impurity density of the delta-like doping, and different values of the electric field lead to a shifting of the resonant peaks of the optical responses spectrum.


    Institute of Scientific and Technical Information of China (English)


    According to the Average Lattice and Atom Models of the Empirical Electron Theory of Solids and Molecules(EET), effects of interstitial impurities on valence electron structures and phase transformation of Ti-Al alloys are analyzed, and descendant degree of bond energy, melting point and liquidus temperatures affected by interstitial impurities are calculated by the bond energy formula of the EET, and then the main experimental results which are not confirmed about phase transformation in Ti-Al alloys are explained.The results are that, because of the effects of interstitial impurities, atom states increase, bond structures are seriously anisotropic, β→α transformation is hindered, and the phase transformation in an intermediate content is very complex. Also, the melting point and liquidus temperatures decrease, and average decreased degree is estimated through approximation by the EET.

  18. Emergence of magnetic topological states in topological insulators doped with magnetic impurities (United States)

    Tran, Minh-Tien; Nguyen, Hong-Son; Le, Duc-Anh


    Emergence of the topological invariant and the magnetic moment in topological insulators doped with magnetic impurities is studied based on a mutual cooperation between the spin-orbit coupling of electrons and the spin exchange of these electrons with magnetic impurity moments. The mutual cooperation is realized based on the Kane-Mele model in the presence of magnetic impurities. The topological invariants and the spontaneous magnetization are self-consistently determined within the dynamical mean-field theory. We find different magnetic topological phase transitions, depending on the electron filling. At half filling an antiferromagnetic topological insulator, which exhibits the quantum spin Hall effect, exists in the phase region between the paramagnetic topological insulator and the trivially topological antiferromagnetic insulator. At quarter and three-quarter fillings, a ferromagnetic topological insulator, which exhibits the quantum anomalous Hall effect, occurs in the strong spin-exchange regime.

  19. Crossover physics in the nonequilibrium dynamics of quenched quantum impurity systems. (United States)

    Vasseur, Romain; Trinh, Kien; Haas, Stephan; Saleur, Hubert


    A general framework is proposed to tackle analytically local quantum quenches in integrable impurity systems, combining a mapping onto a boundary problem with the form factor approach to boundary-condition-changing operators introduced by Lesage and Saleur [Phys. Rev. Lett. 80, 4370 (1998)]. We discuss how to compute exactly the following two central quantities of interest: the Loschmidt echo and the distribution of the work done during the quantum quench. Our results display an interesting crossover physics characterized by the energy scale T(b) of the impurity corresponding to the Kondo temperature. We discuss in detail the noninteracting case as a paradigm and benchmark for more complicated integrable impurity models and check our results using numerical methods.

  20. Optical absorption spectra as a useful tool to find parameters of deep impurity centers in semiconductors. (United States)

    Makhniy, Viktor P; Horley, Paul P; Kinzerskaya, Oksana V; Stets, Elena V


    We analyze physical models accounting for deep-level conduction band transitions to describe impurity absorption spectra in tetrahedral-structured semiconductors. The investigations were carried out for ZnSe crystals doped with transition metals (Ti, V, Cr, Mn, Fe, Co, Ni) from a vapor phase. It was shown that the impurities provide acceptor centers with ground state energy offset by 0.3-0.6 eV from the edge of the conduction band, forming long-wave bands in the absorption spectra of the materials studied.

  1. Vacuum ultraviolet spectroscopy in detached plasmas with impurity gas seeding in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, C., E-mail:; Murakami, I.; Akiyama, T.; Masuzaki, S.; Funaba, H.; Yoshinuma, M.


    We have carried out vacuum ultraviolet (VUV) spectroscopy of impurity ions in detached plasmas with impurity gas seeding in the Large Helical Device (LHD). In neon (Ne) gas seeding experiments, temporal evolutions of VUV spectral lines from Ne IV–VIII were recorded by a grazing incidence spectrometer. In addition, spatial profiles of fully ionized Ne density were measured by charge exchange spectroscopy. An electron temperature range where each ion emits is inferred based on the comparisons of the measured line intensity ratios with the calculations using collisional-radiative models.

  2. Theoretical visualization of atomic-scale impurity states in Fe-based superconductors (United States)

    Choubey, Peayush; Hirschfeld, Peter; Berlijn, Tom; Cao, Chao


    We study the impurity induced local density of states (LDOS) in Fe-based superconductors, incorporating Wannier functions to obtain a higher resolution derived from a downfolding of density functional theory bands onto a 10-Fe tight-binding model. This enables us to compare our results with those obtained experimentally using STM. We solve the ten orbital Bogoliubov-de Gennes (BdG) equations for the single impurity problem and obtain the superconducting state lattice space Green's function, which is then transformed to the Wannier basis. The utility and limitations of this approximation are discussed. PJH and PC were supported by DOE DE-FG02-05ER46236.

  3. Structural Identification and Characterization of Potential Impurities of Azelnidipine

    Directory of Open Access Journals (Sweden)

    Sureshbabu Kapavarapu


    Full Text Available Azelnidipine (AZL is a pale yellowish white tablet (16mg with diameter of 9.2mm and thickness of 3.3mm. A reverse phase performance liquid chromatographic method was developed for the determination of AZL in bulk and pharmaceutical dosage form. During the synthesis of bulk drug of AZL, we observed four impurities. All the impurities were detected by a gradient high performance liquid chromatographic (HPLC method. LC-MS was performed to identify the mass number of these impurities. A thorough study was carried out to characterize the impurities. These impurities were synthesized, characterized and were co-injected with the sample containing impurities and are found to be matching with the impurities present in the sample. Based on the complete spectral analysis (UV, IR, NMR and MS these impurities were characterized as 1 Azelnidipine Stage-I para impurity [Impurity 1], whose molecular formula is C14 H15 NO5 and molecular weight is 277.27, 2 Azelnidipine Intermediate [Impurity 2], whose molecular formula is C14H15NO5 and molecular weight is 277.27, 3 4-Nitro Azelnidipine [Impurity 3], whose molecular formula is C33H34N4O6 and molecular weight is 582.65 and, 4 2-Nitro Azelnidipine [Impurity 4], whose molecular formula is C33H34N4O6 and molecular weight is 582.65. The proposed method was validated as per International Conference on Harmonization (ICH guidelines. The method was accurate, precise, specific and rapid found to be suitable for the quantitative analysis of the drug and dosage form.

  4. Heat flux mitigation by impurity seeding in high-field tokamaks (United States)

    Reinke, M. L.


    The ability for tokamaks to exhaust power in the boundary via impurity radiation is explored using empirical scalings and a simple 0D exhaust model, focusing on the scaling with toroidal field and major radius. By combining a scaling for the heat flux width and the L-H threshold power, the parallel heat flux in the SOL is shown to scale strongly with magnetic field, {{q}\\parallel}∼ B\\text{T}2.52 while having little to no scaling with machine size, {{q}\\parallel}∼ {{R}0.16} . Despite the increased heat flux at high field, it is shown that target temperatures relevant to detachment can be reached with finite main-ion dilution for a variety of impurity seeding gases, although non-equilibrium ionization balance is required in most cases. The necessary impurity fractions are estimated to scale like {{f}Z}∼ B\\text{T}0.88{{R}1.33} , a result that is facilitated by an increase in upstream temperature at high {{q}\\parallel} relative to peaks in the impurity cooling-curves. This scaling indicates that for optimizing reactors, minimizing device size while maximizing toroidal field, an approach shown to be consistent with energy confinement scaling, will also maximize the feasibility of reaching detachment at the lowest dilution. Despite this, analysis suggests an increase in the impurity fractions relative to existing devices will be required to exhaust power in a reactor-scale tokamak, with validation of impurity radiation physics required before both simple and detailed models can make reliable predictions of absolute f Z .

  5. Magnetic, optical, and electron transport properties of n -type CeO2: Small polarons versus Anderson localization (United States)

    Kolodiazhnyi, Taras; Charoonsuk, Thitirat; Seo, Yu-Seong; Chang, Suyong; Vittayakorn, Naratip; Hwang, Jungseek


    We report magnetic susceptibility, electrical conductivity and optical absorption of Ce1 -xMxO2 where M = Nb,Ta and 0 ≤x ≤0.03 . The dc conductivity follows a simple thermally activated Arrhenius-type behavior in the T =70 -700 K range with a change in slope at T*≈155 K. The high-temperature activation energy shows gradual increase from ≈170 to 220 meV as the dopant concentration increases. The activation energy of the low-temperature conductivity shows a broad minimum of ≈77 meV at x ≈0.01 . Electron transport and localization mechanisms are analyzed in the framework of the Holstein small polaron, Anderson localization, and Jahn-Teller distortion models. The fit to the small polaron mobility is dramatically improved when, instead of the longitudinal phonons, the transverse optical phonons are considered in the phonon-assisted electron transport. This serves as an indirect evidence of a strong 4 f1 orbital interaction with the oxygen ligands, similar to the case of PrO2. Based on comparison of the experimental data to the models, it is proposed that the defect-induced random electric fields make the dominant contribution to the electron localization in donor-doped ceria.

  6. Impurity Distribution Behavior in Caprolactam Extraction with Environmentally Benign Mixed Solvents

    NARCIS (Netherlands)

    Delden, van M.L.; Drumm, C.; Kuipers, N.J.M.; Haan, de A.B.


    In a previous study a solvent mixture of heptane containing 40 mass % heptanol was selected as an alternative in the industrial extraction of caprolactam to replace benzene, toluene, or chlorinated hydrocarbons. This work reports the equilibrium distribution ratio of caprolactam and four model impur

  7. Anatomy of quantum critical wave functions in dissipative impurity problems (United States)

    Blunden-Codd, Zach; Bera, Soumya; Bruognolo, Benedikt; Linden, Nils-Oliver; Chin, Alex W.; von Delft, Jan; Nazir, Ahsan; Florens, Serge


    Quantum phase transitions reflect singular changes taking place in a many-body ground state; however, computing and analyzing large-scale critical wave functions constitutes a formidable challenge. Physical insights into the sub-Ohmic spin-boson model are provided by the coherent-state expansion (CSE), which represents the wave function by a linear combination of classically displaced configurations. We find that the distribution of low-energy displacements displays an emergent symmetry in the absence of spontaneous symmetry breaking while experiencing strong fluctuations of the order parameter near the quantum critical point. Quantum criticality provides two strong fingerprints in critical low-energy modes: an algebraic decay of the average displacement and a constant universal average squeezing amplitude. These observations, confirmed by extensive variational matrix-product-state (VMPS) simulations and field theory arguments, offer precious clues into the microscopics of critical many-body states in quantum impurity models.

  8. Role of Spin-Orbit Interaction and Impurity Doping in Thermodynamic Properties of Monolayer MoS2 (United States)

    Yarmohammadi, Mohsen


    Using linear response theory, a tight-binding Hamiltonian model, and the Green's function technique, the influences of spin-orbit interaction (SOI) and impurity doping on the electronic heat capacity (EHC) and magnetic susceptibility (MS) of monolayer MoS2 have been investigated. The effect of scattering on dilute charged impurities is discussed in terms of the self-consistent Born approximation. We have calculated the temperature dependence of the EHC and MS for different values of SOI, concentration, and scattering strength of dopant impurity. The results show that, in the presence of impurities, the heat capacity of MoS2 decreases (increases) before (after) the Schottky anomaly, as does the MS. It is also found that the EHC and MS of the doped MoS2 reduce with the SOI in all temperature ranges.

  9. Exact solution of a t-J chain with impurity

    Energy Technology Data Exchange (ETDEWEB)

    Beduerftig, G. [Hannover Univ. (Germany). Inst. fuer Theoretische Physik; Essler, F.H.L. [Oxford Univ. (United Kingdom). Dept. of Theoretical Physics; Frahm, H. [Hannover Univ. (Germany). Inst. fuer Theoretische Physik


    We study the effects of an integrable impurity in a periodic t-J chain. The impurity couples to both spin and charge degrees of freedom and has the interesting feature that the interaction with the bulk can be varied continuously without losing integrability. We first consider ground state properties close to half-filling in the presence of a small bulk magnetic field. We calculate the impurity contributions to the (zero-temperature) susceptibilities and the low-temperature specific heat and determine the high-temperature characteristics of the impurity. We then investigate transport properties by computing the spin and charge stiffnesses at zero temperature. Finally the impurity phase shifts are calculated and the existence of an impurity bound state in the holon sector is established. (orig.).

  10. Impurity binding energy for -doped quantum well structures

    Indian Academy of Sciences (India)

    V Tulupenko; C A Duque; R Demediuk; O Fomina; V Akimov; V Belykh; T Dmitrichenko; V Poroshin


    The binding energy of an impurity delta layer situated either in the centre or at the edge of a quantum well (QW) is theoretically considered for the example of -type Si0.8Ge0.2/Si/Si0.8Ge0.2 QW doped with phosphorus. Calculations are made for the case of not so big impurity concentrations, when impurity bands are not yet formed and it is still possible to treat impurity as isolated ones. It is shown on the base of self-consistent solution of Schrödinger, Poisson and electro-neutrality equations that impurity binding energy is dependent on the degree of impurity ionization and the most noticeably for the case of edge-doped QWs.

  11. Transitions and excitations in a superfluid stream passing small impurities

    KAUST Repository

    Pinsker, Florian


    We analyze asymptotically and numerically the motion around a single impurity and a network of impurities inserted in a two-dimensional superfluid. The criticality for the breakdown of superfluidity is shown to occur when it becomes energetically favorable to create a doublet—the limiting case between a vortex pair and a rarefaction pulse on the surface of the impurity. Depending on the characteristics of the potential representing the impurity, different excitation scenarios are shown to exist for a single impurity as well as for a lattice of impurities. Depending on the lattice characteristics it is shown that several regimes are possible: dissipationless flow, excitations emitted by the lattice boundary, excitations created in the bulk, and the formation of large-scale structures.

  12. Some aspects of impurity trapping of muons

    CERN Document Server

    Karlsson, E


    Several aspects of muon trapping in metals have been studied during the last two years, but the situation is still far from clear. The precise nature of the traps as well as the mechanisms leading to trapping seem to require more detailed investigations than those carried out so far. This review contains therefore a certain number of ideas which should be regarded as working hypotheses rather than established facts or descriptions of positive muon behaviour. The author considers muons in FCC metals (Al:Mn and Cu), and impurity trapping in BCC metals (V, Nb, Ta, Fe). (21 refs).

  13. Germanium Blocked Impurity Band (BIB) detectors (United States)

    Haller, E. E.; Baumann, H.; Beeman, J. W.; Hansen, W. L.; Luke, P. N.; Lutz, M.; Rossington, C. S.; Wu, I. C.


    Information is given in viewgraph form. The advantages of the Si blocked impurity band (BIB) detector invented by M. D. Petroff and M. G. Stabelbroek are noted: smaller detection volume leading to a reduction of cosmic ray interference, extended wavelength response because of dopant wavefunction overlap, and photoconductive gain of unity. It is argued that the stated advantages of Si BIB detectors should be realizable for Ge BIB detectors. Information is given on detector development, subtrate choice and preparation, wafer polising, epitaxy, characterization of epi layers, and preliminary Ge BIB detector test results.

  14. Eigenmodal analysis of Anderson localization: Applications to photonic lattices and Bose-Einstein condensates (United States)

    Ying, Guanwen; Kouzaev, Guennadi


    We present the eigenmodal analysis techniques enhanced towards calculations of optical and non-interacting Bose-Einstein condensate (BEC) modes formed by random potentials and localized by Anderson effect. The results are compared with the published measurements and verified additionally by the convergence criterion. In 2-D BECs captured in circular areas, the randomness shows edge localization of the high-order Tamm-modes. To avoid strong diffusive effect, which is typical for BECs trapped by speckle potentials, a 3-D-lattice potential with increased step magnitudes is proposed, and the BECs in these lattices are simulated and plotted.

  15. Data Center Energy Efficiency and Renewable Energy Site Assessment: Anderson Readiness Center; Salem, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, I.; Van Geet, O.


    This report summarizes the results from the data center energy efficiency and renewable energy site assessment conducted for the Oregon Army National Guard in Salem, Oregon. A team led by NREL conducted the assessment of the Anderson Readiness Center data centers March 18-20, 2014 as part of ongoing efforts to reduce energy use and incorporate renewable energy technologies where feasible. Although the data centers in this facility account for less than 5% of the total square footage, they are estimated to be responsible for 70% of the annual electricity consumption.

  16. Weak Anderson localisation in reverberation rooms and its effect on the uncertainty of sound power measurements

    DEFF Research Database (Denmark)

    Jacobsen, Finn


    The effect known as ‘weak Anderson localisation’, ‘coherent backscattering’ or ‘enhanced backscattering’ is a physical phenomenon that occurs in random systems, e.g., disordered media and linear wave systems, including reverberation rooms: the mean square response is increased at the drive point....... In a reverberation room this means that one can expect an increase of the reverberant sound field at the position of the source that generates the sound field. This affects the sound power output of the source and is therefore of practical concern. However, because of the stronger direct sound field at the source...... for the uncertainty of sound power measurements....

  17. Localización de Anderson e hipertransporte transversales de la luz


    García Ruiz, Andrés


    [ES]En este trabajo se investigan distintos fenómenos de transporte transversal de un haz de luz que emergen en función de la periodicidad del índice de refracción del medio que este haz atraviesa. Se extienden así los estudios existentes sobre localización de Anderson y sobre hipertransporte transversales de la luz en sistemas de una y dos dimensiones transversales a un sistema de dos dimensiones transversales al que se le ha impuesto una simetría de revolución entorno al eje de propagación ...

  18. Density of states controls Anderson localization in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Garcia-Fernández, David; Smolka, Stephan; Stobbe, Søren


    -of-plane losses are non-negligible, ℓe can be approximated to be the localization length ξ. The extinction mean-free path shows a fivefold variation between the low- and the high-DOS regime, and it becomes shorter than the sample length thus giving rise to strongly confined modes. The dispersive behavior of ℓe......We prove Anderson localization in a disordered photonic crystal waveguide by measuring the ensemble-averaged extinction mean-free path, ℓe, which is controlled by the dispersion in the photon density of states (DOS) of the photonic crystal waveguide. Except for the very low DOS case, where out...

  19. Classical Coset Hamiltonian for the Electronic Motion and its Application to Anderson Localization and Hammett Equation

    Institute of Scientific and Technical Information of China (English)

    XING Guan; WU Guo-Zhen


    A classical coset Hamiltonian is introduced for the system of one electron in multi-sites. By this Hamiltonian, thedynamical behaviour of the electronic motion can be readily simulated. The simulation reproduces the retardation of the electron density decay in a lattice with site energies randomly distributed - an analogy with Anderson localization. This algorithm is also applied to reproduce the Hammett equation which relates the reaction rate with the property of the substitutions in the organic chemical reactions. The advantages and shortcomings ofthis algorithm, as contrasted with traditional quantum methods such as the molecular orbital theory, are also discussed.

  20. The Anderson-Darling test of fit for the power law distribution from left censored samples

    CERN Document Server

    Coronel-Brizio, H F


    Maximum likelihood estimation and a test of fit based on the Anderson-Darling statistic is presented for the case of the power law distribution when the parameters are estimated from a left-censored sample. Expressions for the maximum likelihood estimators and tables of asymptotic percentage points for the A^2 statistic are given. The technique is illustrated for data from the Dow Jones Industrial Average index, an example of high theoretical and practical importance in Econophysics, Finance, Physics, Biology and, in general, in other related Sciences such as Complexity Sciences.

  1. Coalescence of Anderson-localized modes at an exceptional point in 2D random media

    CERN Document Server

    Bachelard, Nicolas; Arlandis, Julien; Touzani, Rachid; Sebbah, Patrick


    In non-hermitian systems, the particular position at which two eigenstates coalesce under a variation of a parameter in the complex plane is called an exceptional point. A non-perturbative theory is proposed which describes the evolution of modes in 2D open dielectric systems when permittivity distribution is modified. We successfully test this theory in a 2D disordered system to predict the position in the parameter space of the exceptional point between two Anderson-localized states. We observe that the accuracy of the prediction depends on the number of localized states accounted for. Such an exceptional point is experimentally accessible in practically relevant disordered photonic systems

  2. Anomalous screening of quantum impurities by a neutral environment


    Yakaboylu, Enderalp; Lemeshko, Mikhail


    It is a common knowledge that an effective interaction of a quantum impurity with an electromagnetic field can be screened by surrounding charge carriers, whether mobile or static. Here we demonstrate that very strong, `anomalous' screening can take place in the presence of a neutral, weakly-polarizable environment, due to an exchange of orbital angular momentum between the impurity and the bath. Furthermore, we show that it is possible to generalize all phenomena related to isolated impuriti...

  3. Recommended methods for purification of solvents and tests for impurities

    CERN Document Server

    Coetzee, J F


    Recommended Methods for Purification of Solvents and Tests for Impurities is a compilation of recommended procedures for purification of solvents and tests for solvent impurities. Ten solvents are covered: acetonitrile, sulfolane, propylene carbonate, dimethyl sulfoxide, dimethylformamide, hexamethylphosphoramide, pyridine, ethylenediamine, N-methylacetamide, and N-methylpropionamide. This book is comprised of 12 chapters and opens with an introduction to general aspects of impurity effects. The rationale for the selection of solvent is explained, and the relative reactivities of solutes in di

  4. Interactions of Ultracold Impurity Particles with Bose-Einstein Condensates (United States)


    AFRL-OSR-VA-TR-2015-0141 INTERACTIONS OF ULTRACOLD IMPURITY PARTICLES WITH BOSE- EINSTEIN CONDENSATES Georg Raithel UNIVERSITY OF MICHIGAN Final...SUBTITLE Interactions of ultracold impurity particles with Bose- Einstein Condensates 5a. CONTRACT NUMBER FA9550-10-1-0453 5b. GRANT NUMBER 5c...Interactions of ultracold impurity particles with Bose- Einstein Condensates Contract/Grant #: FA9550-10-1-0453 Reporting Period: 8/15/2010 to 2/14

  5. Electric Effect of Impurity in Square Quantum Wires

    Institute of Scientific and Technical Information of China (English)

    LI Kui-Hua; ZHANG Ying-Tao; LI You-Cheng


    @@ In the presence of an electric fidd perpendicular to the axes of the wire, the binding energy of shallow donor impurity in finite square quantum well wires is calculated. For different impurity positions and aspect ratios of the wires, we investigate the Stark shift of the 1s-like state energy of the impurity by expanding the wavefunction into a two-dimensional Fourier series and by using the variational scheme.

  6. Anderson Anderson,美国

    Institute of Scientific and Technical Information of China (English)


    @@ Design Concept: "Wuhan Blue Prototype" A highlight of the concept is its integration with the local neighbourhood.The building and site planning will be coordinated with the existing planned facilities with a great lawn leading up from the community entrance toward a community gym and shopping centre. The Blue Sky Prototype itself is planned as an open-air network of pedestrian streets and public gardens at ground level winding up to vertical floor plates. The front doors of each unit will open to wide open-air streets and the sky.

  7. Impurity modes in Frenkel exciton systems with dipolar interactions and cubic symmetry. (United States)

    Avgin, I; Huber, D L


    We introduce a continuum model for impurity modes of Frenkel excitons in fully occupied face-centered and body-centered cubic lattices with dipole-dipole interactions and parallel moments. In the absence of impurities, the model reproduces the small-k behavior found in numerical calculations of dipolar lattice sums. The exciton densities of states near the upper and lower band edges are calculated and compared with the corresponding results for a random array of dipoles. The Green function obtained with the continuum model, together with a spherical approximation to the Brillouin zone, is used to determine the conditions for the formation of a localized exciton mode associated with a shift in the transition energy of a single chromophore. The dependence of the local mode energy on the magnitude of the shift is ascertained. The formation of impurity bands at high concentrations of perturbed sites is investigated using the coherent potential approximation. The contribution of the impurity bands to the optical absorption is calculated in the coherent potential approximation. The locations of the optical absorption peaks of the dipolar system are shown to depend on the direction of propagation of the light relative to the dipolar axis, a property that is maintained in the presence of short-range interactions.

  8. Silicon materials task of the low-cost solar-array project. Effect of impurities and processing on silicon solar cells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Hanes, M.H.; Rai-Choudhury, P.; Mollenkopf, H.C.


    The object of the program has been to investigate the effects of various processes, metal contaminants, and contaminant-process interactions on the properties of silicon and on the performance of terrestrial silicon solar cells. The study has encompassed topics such as thermochemical (gettering) treatments, base-doping concentration, base-doping type (n vs. p), grain boundary-impurity interaction in polycrystalline devices, and long-term effects of impurities and impurity impacts on high-efficiency cells, as well as a preliminary evaluation of some potential low-cost silicon materials. The effects have been studied of various metallic impurities, introduced singly or in combination into Czochralski, float zone, and polycrystalline silicon ingots and into silicon ribbons grown by the dendritic web process. The solar cell data indicate that impurity-induced performance loss is caused primarily by a reduction in base diffusion length. An analytical model based on this observation has been developed and verified experimentally for both n- and p-base material. Studies of polycrystalline ingots containing impurities indicate that solar cell behavior is species sensitive and that a fraction of the impurities are segregated to the grain boundaries. HCl and POCl gettering improve the performance of single-crystal solar cells containing Fe, Cr, and Ti. In contrast Mo-doped material is barely affected. The efficiencies of solar cells fabricated on impurity-doped wafers is lower when the front junction is formed by ion implantation than when conventional diffusion techniques are used. For most impurity-doped solar cells stability is expected for projected times beyond 20 years. Feedstock impurity concentrations below one part per million for elements like V, or 100 parts per million for more benign impurities like Cu or Ni, will be required.

  9. Cramer-von Mises and Anderson-Darling goodness of fit tests for extreme value distributions with unknown parameters (United States)

    Laio, Francesco


    The use of goodness of fit tests based on Cramer-von Mises and Anderson-Darling statistics is discussed, with reference to the composite hypothesis that a sample of observations comes from a distribution, FH, whose parameters are unspecified. When this is the case, the critical region of the test has to be redetermined for each hypothetical distribution FH. To avoid this difficulty, a transformation is proposed that produces a new test statistic which is independent of FH. This transformation involves three coefficients that are determined using the asymptotic theory of tests based on the empirical distribution function. A single table of coefficients is thus sufficient for carrying out the test with different hypothetical distributions; a set of probability models of common use in extreme value analysis is considered here, including the following: extreme value 1 and 2, normal and lognormal, generalized extreme value, three-parameter gamma, and log-Pearson type 3, in all cases with parameters estimated using maximum likelihood. Monte Carlo simulations are used to determine small sample corrections and to assess the power of the tests compared to alternative approaches.

  10. Portuguese validation of the Symptom Inventory of the M.D. Anderson Cancer Center

    Directory of Open Access Journals (Sweden)

    Adriane Cristina Bernat Kolankiewicz


    Full Text Available Objective To analyze the reliability and validity of the psychometric properties of the Brazilian version of the instrument for symptom assessment, titled MD Anderson Symptom Inventory - core. Method A cross-sectional study with 268 cancer patients in outpatient treatment, in the municipality of Ijuí, state of Rio Grande do Sul, Brazil. Results The Cronbach’s alpha for the MDASI general, symptoms and interferences was respectively (0.857, (0.784 and (0.794. The factor analysis showed adequacy of the data (0.792. In total, were identified four factors of the principal components related to the symptoms. Factor I: sleep problems, distress (upset, difficulties in remembering things and sadness. Factor II: dizziness, nausea, lack of appetite and vomiting. Factor III: drowsiness, dry mouth, numbness and tingling. Factor IV: pain, fatigue and shortness of breath. A single factor was revealed in the component of interferences with life (0.780, with prevalence of activity in general (59.7%, work (54.9% and walking (49.3%. Conclusion The Brazilian version of the MD Anderson Symptom Inventory - core showed adequate psychometric properties in the studied population.

  11. Dr Walter Henry Anderson (1870-1937) and the mission hospital at Safed, Palestine. (United States)

    Stokes, Gordon S


    Walter Henry Anderson, a brewer's clerk in Burton-upon-Trent, became a missionary doctor, supported by a society promoting welfare and evangelism in Jewish communities abroad. His family background was rich in pastoral ministry at home and adventure abroad. Arguably, this background played a part in his decision to serve the Jews of Safed. His life in Palestine entailed much enterprise and hardship as he raised a family, fought disease and set up a mission hospital serving not only the Jewish community but persons of all faiths. His years in Palestine, from 1894 to 1915, were times of peace in the Middle East before the turmoil unleashed by the Great War. Jews from the Diaspora were gaining an increasing foothold in Palestine, their 'Promised Land'. Themes of that era - the rise of Zionism, confrontation between Judaism and evangelical Christianity, conflict between immigrant Jew and Palestinian Arab and the remarkable travels of Lawrence of Arabia were interwoven with the lives of Dr Anderson and his family.

  12. Scaling analysis of transverse Anderson localization in a disordered optical waveguide (United States)

    Abaie, Behnam; Mafi, Arash


    The intention of this paper is twofold. First, the mode-width probability density function (PDF) is introduced as a powerful statistical tool to study and compare the transverse Anderson localization properties of a disordered quasi-one-dimensional optical waveguide. Second, by analyzing the scaling properties of the mode-width PDF with the transverse size of the waveguide, it is shown that the mode-width PDF gradually converges to a terminal configuration. Therefore, it may not be necessary to study a real-sized disordered structure in order to obtain its statistical localization properties and the same PDF can be obtained for a substantially smaller structure. This observation is important because it can reduce the often demanding computational effort that is required to study the statistical properties of Anderson localization in disordered waveguides. Using the mode-width PDF, substantial information about the impact of the waveguide parameters on its localization properties is extracted. This information is generally obscured when disordered waveguides are analyzed using other techniques such as the beam propagation method. As an example of the utility of the mode-width PDF, it is shown that the cladding refractive index can be used to quench the number of extended modes, hence improving the contrast in image transport properties of disordered waveguides.

  13. Influence of impurity on electronic properties of carbon nanotube superlattices

    Directory of Open Access Journals (Sweden)

    AA Shokri


    Full Text Available   In this paper, electronic properties of single-wall armchair and zigzag carbon nanotubes (CNTs superlattices, n(12,0/m(6,6 and n(12,0/m(11,0 are investigated. For this reason, the topological defects of pentagon–heptagon pairs at interfaces of carbon hexagonal network appear. These defects break the symmetry of the system, and then change the electrical properties. The calculations include two parts: investigation of the structures in the absence and presence of the impurity effect, which are calculated by the nearest-neighbor tight binding model . Out numerical results can be useful in designing nanoelectronic devices based on carbon nanotubes.

  14. The effect of working gas impurities on plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. Y.; He, M. B., E-mail: [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, WuHan, HuBei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu, D. W. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, WuHan, HuBei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an, Shanxi 710049 (China)


    Air intrusion reduced the purity of working gas inside the tube for plasma jet, and thereby, affected the discharge dynamics. In this paper, the effect of using working gas with different purity level (helium purity 99.99999%, 99.99%, 99.9%, and 99%) on photoionization and the chemical reactivity of plasma jet were studied using a 2 dimensional plasma jet model. Photoionization of air species acted as a source of pre-ionization in front of the ionization region, which facilitated the transition from localized discharge to streamers inside the tube. The density of reactive species inside the tube was found to increase with the concentration of working gas impurities. For the highest purity helium (99.99999%), despite a low photoionization rate and the distance between the photoionization region and ionization region inside the tube, by increasing the applied voltage and decreasing the distance between the electrode and nozzle, plasma jets were formed.


    Directory of Open Access Journals (Sweden)

    S. Yu. Nikitina


    Full Text Available The static model of the hydroselection column that describes the concentration variation of the main components was proposed. The purpose of this work is an optimization of the shared mixture input-position and evaluation of efficiency of the digestion and the impurity compound concentration during the epuration process. To this end, the author developed a static model of epuration columns, which allows to reveal the dependence of the degree of digestion and the degree of concentration of the main impurities in the column of the number of plates in each of these parts. It’s proved that with the increasing of theoretical plates number in the concentration part of the column the concentration effect tends to the limit value. The effects of the head impurities digestion increase indefinitely with the growth of exhausting part. The proportion of the output from the condenser impurities depends more from the digestion effect than from the condensation effect. The effect of alcohol cleaning from the fusel oil components depends strongly from the ratio of the number of plates in the digestion and concentration parts (the optimal ratio for isopropanol, isoamyl, butanol is 1.5, for the propanol, isobutanol is 0.45.

  16. Polarons and Mobile Impurities Near a Quantum Phase Transition (United States)

    Shadkhoo, Shahriar

    This dissertation aims at improving the current understanding of the physics of mobile impurities in highly correlated liquid-like phases of matter. Impurity problems pose challenging and intricate questions in different realms of many-body physics. For instance, the problem of ''solvation'' of charged solutes in polar solvents, has been the subject of longstanding debates among chemical physicists. The significant role of quantum fluctuations of the solvent, as well as the break down of linear response theory, render the ordinary treatments intractable. Inspired by this complicated problem, we first attempt to understand the role of non-specific quantum fluctuations in the solvation process. To this end, we calculate the dynamic structure factor of a model polar liquid, using the classical Molecular Dynamics (MD) simulations. We verify the failure of linear response approximation in the vicinity of a hydrated electron, by comparing the outcomes of MD simulations with the predictions of linear response theory. This nonlinear behavior is associated with the pronounced peaks of the structure factor, which reflect the strong fluctuations of the local modes. A cavity picture is constructed based on heuristic arguments, which suggests that the electron, along with the surrounding polarization cloud, behave like a frozen sphere, for which the linear response theory is broken inside and valid outside. The inverse radius of the spherical region serves as a UV momentum cutoff for the linear response approximation to be applicable. The problem of mobile impurities in polar liquids can be also addressed in the framework of the ''polaron'' problem. Polaron is a quasiparticle that typically acquires an extended state at weak couplings, and crossovers to a self-trapped state at strong couplings. Using the analytical fits to the numerically obtained charge-charge structure factor, a phenomenological approach is proposed within the Leggett's influence functional formalism, which

  17. Alternating Anderson-Richardson method: An efficient alternative to preconditioned Krylov methods for large, sparse linear systems

    CERN Document Server

    Suryanarayana, Phanish; Pask, John E


    We generalize the recently proposed Alternating Anderson-Jacobi (AAJ) method (Pratapa et al., J. Comput. Phys. (2016), 306, 43--54) to include preconditioning, and demonstrate its efficiency and scaling in the solution of large, sparse linear systems on parallel computers. The resulting preconditioned Alternating Anderson-Richardson (AAR) method reduces to the AAJ method for a particular choice of preconditioner. The AAR method employs Anderson extrapolation at periodic intervals within a preconditioned Richardson iteration to accelerate convergence. In this work, we develop a version of the method that is particularly well suited for scalable high-performance computing. In applications to Helmholtz and Poisson equations, we show that the strong and weak parallel scaling of AAR is superior to both Generalized Minimal Residual (GMRES) and Conjugate Gradient (CG) methods, using the same preconditioning, in large-scale parallel calculations employing up to 110,592 computational cores. Moreover, we find that the ...

  18. Aproximació a l'univers fílmic de Wes Anderson: existeix una marca autoral?


    Cadena Hernández, Adrià


    Al llarg del anys Wes Anderson s'ha postulat com un dels directors contemporanis més importants i influents. Aquest estudi revisa la totalitat de la seva filmografia, centrant-se en la seva última pel·lícula "The Grand Budapest Hotel". L'anàlisi pretén verificar si Wes Anderson pot ser considerat o no autor de les seves pel·lícules en base a les pautes estipulades per la política d'autors provinent de la Nouvelle Vague. A lo largo de los últimos años Wes Anderson se ha postulado como uno d...

  19. Spin-spin correlations of magnetic adatoms on graphene (United States)

    Güçlü, A. D.; Bulut, Nejat


    We study the interaction between two magnetic adatom impurities in graphene using the Anderson model. The two-impurity Anderson Hamiltonian is solved numerically by using the quantum Monte Carlo technique. We find that the interimpurity spin susceptibility is strongly enhanced at low temperatures, significantly diverging from the well-known Ruderman-Kittel-Kasuya-Yoshida result which decays as R-3.

  20. Simulation of runaway electron generation during plasma shutdown by impurity injection

    Energy Technology Data Exchange (ETDEWEB)

    Feher, Tamas


    Disruptions are dangerous instabilities in tokamaks that should be avoided or mitigated. One possible disruption mitigation method is to inject impurities into the plasma to shut it down in a controlled way. Runaway Electrons (REs) can be generated after the plasma is cooled down by the impurities and these electrons can damage the tokamak. In this work a simulation code is developed to investigate different disruption mitigation scenarios. The response of the bulk plasma, more precisely the temperature evolution of electrons, deuterium and impurity ions are described by energy balance equations in a 1D cylindrical plasma model. The induction and resistive diffusion of electric field is calculated. RE generation rates are used to calculate the runaway current. The Dreicer, hot-tail and avalanche effect is taken into account and a simple model for RE losses is also included. RE generation is studied in JET-like plasmas during pellet injection. Carbon pellets cause effective cooling but these scenarios are prone to runaway generation. A mixture of argon and deuterium gas could be used for safe shutdown without RE generation. In ITER the hot-tail RE generation process becomes important, and the simulation is therefore extended to take this into account. Shutdown scenarios with different concentration of neon and argon impurities were tested in ITER-like plasmas. To simplify the problem the impurity injection into the plasma is not modeled in these cases, only the response of the bulk plasma. The avalanche process cannot be suppressed in a simple way and would produce high runaway current. It can be avoided if some runaway loss phenomenon is included in the simulations, like diffusion due to magnetic perturbations

  1. Silicon materials task of the low cost solar array project (Phase III). Effect of impurities and processing on silicon solar cells. Phase III summary and seventeenth quarterly report, Volume 1: characterization methods for impurities in silicon and impurity effects data base

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Campbell, R.B.; Blais, P.D.; Rai-Choudhury, P.; Stapleton, R.E.; Mollenkopf, H.C.; McCormick, J.R.


    The object of Phase III of the program has been to investigate the effects of various processes, metal contaminants and contaminant-process interactions on the performance of terrestrial silicon solar cells. The study encompassed a variety of tasks including: (1) a detailed examination of thermal processing effects, such as HCl and POCl/sub 3/ gettering on impurity behavior, (2) completion of the data base and modeling for impurities in n-base silicon, (3) extension of the data base on p-type material to include elements likely to be introduced during the production, refining, or crystal growth of silicon, (4) effects on cell performance on anisotropic impurity distributions in large CZ crystals and silicon webs, and (5) a preliminary assessment of the permanence of the impurity effects. Two major topics are treated: methods to measure and evaluate impurity effects in silicon and comprehensive tabulations of data derived during the study. For example, discussions of deep level spectroscopy, detailed dark I-V measurements, recombination lifetime determination, scanned laser photo-response, and conventional solar cell I-V techniques, as well as descriptions of silicon chemical analysis are included. Considerable data are tabulated on the composition, electrical, and solar cell characteristics of impurity-doped silicon.

  2. Impurity Conductivity in Semiconductors Resulting from Radiant Excitation


    TOULANOV, Vakhab T.; DAVLETOVA, Aziza SH.


    This paper deals with the derivation of common formulae for induced impurity photosensibility with an arbitrary set of energy levels in the semiconductor gap. We give the expression for the real recombinational situation with two types of impurity levels as well. The basic properties and certain common peculiarities concerning induced photoconductivity in semiconductors are under consideration.

  3. Effects of impurities on growth habit of KDP crystal

    Institute of Scientific and Technical Information of China (English)


    The effects of metaphosphate, boric acid and quaternary ammonium cations with different concentration on the growth habit of KDP crystal are reported. The results are analyzed and discussed, which show that the effects of different impurities on the growth habit of KDP are not the same. It is due to the different adsorption mechanism of the impurities.

  4. The Discovery of Anti-Matter The Autobiography of Carl David Anderson, the Youngest Man to Win the Nobel Prize

    CERN Document Server


    In 1936, at age 31, Carl David Anderson became the second youngest Nobel laureate for his discovery of antimatter when he observed positrons in a cloud chamber.He is responsible for developing rocket power weapons that were used in World War II.He was born in New York City in 1905 and was educated in Los Angeles. He served for many years as a physics professor at California Institute of Technology. Prior to Oppenheimer, Anderson was offered the job of heading the Los Alamos atomic bomb program but could not assume the role because of family obligations.He was a pioneer in studying cosmic rays

  5. Wes Andersons färgstarka värld : En studie av färg i film


    Hallenquist, Peter


      Abstract The focus of this essay is the american director Wes Anderson and the use of colour in his films. I also put some focus on colour as a neglected element in film studies, and what has caused this neglect. In my own research, I have analysed three of Anderson's films: Bottle Rocket (1996), The Royal Tenenbaums (2001) and The Darjeeling Limited (2007). To get a broad sense of a films use of colour, I have investigated the colour scheme, the colours of the costumes, as well as colour p...

  6. Light-absorbing impurities in Arctic snow

    Directory of Open Access Journals (Sweden)

    S. J. Doherty


    Full Text Available Absorption of radiation by ice is extremely weak at visible and near-ultraviolet wavelengths, so small amounts of light-absorbing impurities in snow can dominate the absorption of solar radiation at these wavelengths, reducing the albedo relative to that of pure snow, contributing to the surface energy budget and leading to earlier snowmelt. In this study Arctic snow is surveyed for its content of light-absorbing impurities, expanding and updating the 1983–1984 survey of Clarke and Noone. Samples were collected in Alaska, Canada, Greenland, Svalbard, Norway, Russia, and the Arctic Ocean during 2005–2009, on tundra, glaciers, ice caps, sea ice, frozen lakes, and in boreal forests. Snow was collected mostly in spring, when the entire winter snowpack is accessible for sampling. Sampling was carried out in summer on the Greenland ice sheet and on the Arctic Ocean, of melting glacier snow and sea ice as well as cold snow. About 1200 snow samples have been analyzed for this study.

    The snow is melted and filtered; the filters are analyzed in a specially designed spectrophotometer system to infer the concentration of black carbon (BC, the fraction of absorption due to non-BC light-absorbing constituents and the absorption Ångstrom exponent of all particles. The reduction of snow albedo is primarily due to BC, but other impurities, principally brown (organic carbon, are typically responsible for ~40% of the visible and ultraviolet absorption. The meltwater from selected snow samples was saved for chemical analysis to identify sources of the impurities. Median BC amounts in surface snow are as follows (nanograms of carbon per gram of snow: Greenland 3, Arctic Ocean snow 7, melting sea ice 8, Arctic Canada 8, Subarctic Canada 14, Svalbard 13, Northern Norway 21, Western Arctic Russia 26, Northeastern Siberia 17. Concentrations are more variable in the European Arctic than in Arctic Canada or the Arctic Ocean, probably because of the proximity

  7. Impurity transport in trapped electron mode driven turbulence

    CERN Document Server

    Mollén, A; Moradi, S; Fülöp, T


    Collisionless trapped electron mode turbulence is studied by gyrokinetic simulations with the GYRO code. Its impact on radial transport of high-Z trace impurities close to the core is thoroughly investigated, including the situation when a poloidally varying equilibrium electrostatic potential is present, and the dependence of the zero-flux impurity density gradient (peaking factor) on local plasma parameters is presented. Parameters such as ion-to-electron temperature ratio, electron temperature gradient and main species density gradient mainly affect the impurity peaking through their impact on mode characteristics. The poloidal asymmetry, the safety factor and magnetic shear have the strongest effect on impurity peaking, and it is shown that under certain scenarios where trapped electron modes are dominant, core accumulation of high-Z impurities can be avoided.

  8. Spectroscopic Analysis of Impurity Precipitates in CdS Films

    Energy Technology Data Exchange (ETDEWEB)

    Webb, J. D.; Keane, J.; Ribelin, R.; Gedvilas, L.; Swartzlander, A.; Ramanathan, K.; Albin, D. S.; Noufi, R.


    Impurities in cadmium sulfide (CdS) films are a concern in the fabrication of copper (indium, gallium) diselenide (CIGS) and cadmium telluride (CdTe) photovoltaic devices. Devices incorporating chemical-bath-deposited (CBD) CdS are comparable in quality to devices incorporating purer CdS films grown using vacuum deposition techniques, despite the higher impurity concentrations typically observed in the CBD CdS films. In this paper, we summarize and review the results of Fourier transform infrared (FTIR), Auger, electron microprobe, and X-ray photoelectron spectroscopic (XPS) analyses of the impurities in CBD CdS films. We show that these impurities differ as a function of substrate type and film deposition conditions. We also show that some of these impurities exist as 10{sup 2} micron-scale precipitates.

  9. [Impurity removal technology of Tongan injection in liquid preparation process]. (United States)

    Yang, Xu-fang; Wang, Xiu-hai; Bai, Wei-rong; Kang, Xiao-dong; Liu, Jun-chao; Wu, Yun; Xiao, Wei


    In order to effectively remove the invalid impurities in Tongan injection, optimize the optimal parameters of the impurity removal technology of liquid mixing process, in this paper, taking Tongan injection as the research object, with the contents of celandine alkali, and sinomenine, solids reduction efficiency, and related substances inspection as the evaluation indexes, the removal of impurities and related substances by the combined process of refrigeration, coction and activated carbon adsorption were investigated, the feasibility of the impurity removal method was definited and the process parameters were optimized. The optimized process parameters were as follows: refrigerated for 36 h, boiled for 15 min, activated carbon dosage of 0.3%, temperature 100 degrees C, adsorption time 10 min. It can effectively remove the tannin, and other impurities, thus ensure the quality and safety of products.

  10. Impurity-related electronic properties in quantum dots under electric and magnetic fields

    Institute of Scientific and Technical Information of China (English)

    Zhang Hong; Zhai Li-Xue; Wang Xue; Zhang Chun-Yuan; Liu Jian-Jun


    This paper presents a systematic study of the ground-state binding energies of a hydrogenic impurity in quantum dots subjected to external electric and magnetic fields. The quantum dot is modeled by superposing a lateral parabolic potential, a Gaussian potential and the energies are calculated via the finite-difference method within the effective-mass approximation. The variation of the binding energy with the lateral confinement, external field, position of the impurity, and quantum-size is studied in detail. All these factors lead to complicated binding energies of the donor, and the following results are found: (1) the binding energies of the donor increase with the increasing magnetic strength and lateral confinement, and reduce with the increasing electric strength and the dot size; (2) there is a maximum value of the binding energies as the impurity placed in different positions along the z direction; (3) the electric field destroys the symmetric behaviour of the donor binding energies as the position of the impurity.

  11. Effects of argon flow on impurities transport in a directional solidification furnace for silicon solar cells (United States)

    Li, Zaoyang; Liu, Lijun; Ma, Wencheng; Kakimoto, Koichi


    A global simulation including coupled oxygen and carbon transport was carried out to study the argon flow effects on the impurities transport in a directional solidification furnace for silicon solar cells. The simulation is based on a fully coupled calculation of the thermal and flow fields in a furnace including argon gas flow and melt convection. Five chemical reactions are considered in the impurity transport model. The effects of both the argon flow rate and the furnace pressure were examined. It was found that the argon flow has an important effect on the silicon melt convection, which will further influence the evaporation characteristic of SiO at the melt free surface. The amount of SiO carried away by the argon flow increases with increase in the argon flow rate while the CO gas can be prevented from being transported to the melt free surface. There exists a peak value for the concentration of impurities in the furnace chamber regarding argon flow rate due to the correlation among SiO evaporated, reacted and taken away. The pressure also influences the impurity transport in the furnace by modifying the pattern of argon flow. The numerical results demonstrate a method to control the oxygen and carbon transport in a directional solidification furnace by adjusting the argon flow rate and the furnace pressure.

  12. Tuning oxygen impurities and microstructure of nanocrystalline silicon photovoltaic materials through hydrogen dilution. (United States)

    Wen, Chao; Xu, Hao; He, Wei; Li, Zhengping; Shen, Wenzhong


    As a great promising material for third-generation thin-film photovoltaic cells, hydrogenated nanocrystalline silicon (nc-Si:H) thin films have a complex mixed-phase structure, which determines its defectful nature and easy residing of oxygen impurities. We have performed a detailed investigation on the microstructure properties and oxygen impurities in the nc-Si:H thin films prepared under different hydrogen dilution ratio treatment by the plasma-enhanced chemical vapor deposition (PECVD) process. X-ray diffraction, transmission electron microscopy, Raman spectroscopy, and optical transmission spectroscopy have been utilized to fully characterize the microstructure properties of the nc-Si:H films. The oxygen and hydrogen contents have been obtained from infrared absorption spectroscopy. And the configuration state of oxygen impurities on the surface of the films has been confirmed by X-ray photoelectron spectroscopy, indicating that the films were well oxidized in the form of SiO2. The correlation between the hydrogen content and the volume fraction of grain boundaries derived from the Raman measurements shows that the majority of the incorporated hydrogen is localized inside the grain boundaries. Furthermore, with the detailed information on the bonding configurations acquired from the infrared absorption spectroscopy, a full explanation has been provided for the mechanism of the varying microstructure evolution and oxygen impurities based on the two models of ion bombardment effect and hydrogen-induced annealing effect.

  13. Roles of blocking layer and anode bias in processes of impurity-band transition and transport for GaAs-based blocked-impurity-band detectors (United States)

    Wang, Xiaodong; Wang, Bingbing; Chen, Xiaoyao; Chen, Yulu; Hou, Liwei; Xie, Wei; Pan, Ming


    Recently, GaAs-based BIB detector has attracted a lot of attention in the area of THz photovoltaic detection due to potential application values in security check and drug inspection. However, the physical mechanisms involving in carrier transition and transport are still unclear due to the poor material quality and immature processing technique. In this paper, the dark current and THz response characteristics have thus been numerically studied for GaAs-based blocked-impurity-band (BIB) detectors. The key parameters and physical models are constructed by simultaneously considering carrier freeze-out and impurity-band broadening effects. Roles of blocking layer and anode bias in processes of impurity-band transition and transport are intensively investigated, and the results can be well explained by numerical models. It is demonstrated that the effective electric field for the detector is only located in the absorbing layer, and can determine to a large extent the magnitude of the dark current and THz response. While the blocking layer not only can suppress dark current but also can attenuate responsivity due to its electric-field modulation effect.

  14. IEEE Milestone at CERN - W Cleon Anderson (right), president of the Institute of Electrical and Electronics Engineers, unveils the Milestone plaque at CERN, together with Georges Charpak

    CERN Multimedia

    Maximilien Brice


    At a ceremony on 26 September at CERN, W Cleon Anderson, president of the Institute of Electrical and Electronics Engineers (IEEE), formally dedicated a "Milestone" plaque in recognition of the invention of electronic particle detectors at CERN. The plaque was unveiled by Anderson and Georges Charpak, the Nobel-prize winning inventor of wire-chamber technology at CERN.

  15. One-Dimensional Discrete Stark Hamiltonian and Resonance Scattering by Impurities

    CERN Document Server

    Dmitrieva, L A; Melnikov, Yu B; Kuperin, Yu.A.; Melnikov, Yu.B.


    A one-dimensional discrete Stark Hamiltonian with a continuous electric field is constructed by extension theory methods. In absence of the impurities the model is proved to be exactly solvable, the spectrum is shown to be simple, continuous, filling the real axis; the eigenfunctions, the resolvent and the spectral measure are constructed explicitly. For this (unperturbed) system the resonance spectrum is shown to be empty. The model considering impurity in a single node is also constructed using the operator extension theory methods. The spectral analysis is performed and the dispersion equation for the resolvent singularities is obtained. The resonance spectrum is shown to contain infinite discrete set of resonances. One-to-one correspondence of the constructed Hamiltonian to some Lee-Friedrichs model is established.

  16. Impurity induced neutralization of MeV energy protons in JET plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gondhalekar, A. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Korotkov, A.A. [AF Ioffe Institute, Saint Petersburg (Russian Federation)


    A model elucidating the role of carbon and beryllium, the main impurities in JET plasmas, in neutralizing MeV energy protons, which arise during ICRF heating of deuterium plasmas in the hydrogen minority heating mode D(H), and from D-D fusion reactions, is presented. The model establishes charge transfer from hydrogen-like impurity ions to protons as the main process for neutralization. Calculations for deducing the proton energy distribution function from measured hydrogen flux are described. The validity of the model is tested by using it to described the measured flux in different conditions of plasma heating and fueling. Further, it is used to deduce the background thermal deuterium atom density at the plasma center. 9 refs., 6 figs.

  17. Numerical study of Anderson localization of terahertz waves in disordered waveguides

    CERN Document Server

    Lapointe, C P; Enderli, F; Feurer, T; Skipetrov, S E; Scheffold, F


    We present a numerical study of electromagnetic wave transport in disordered quasi-one-dimensional waveguides at terahertz frequencies. Finite element method calculations of terahertz wave propagation within LiNbO$_{3}$ waveguides with randomly arranged air-filled circular scatterers exhibit an onset of Anderson localization at experimentally accessible length scales. Results for the average transmission as a function of waveguide length and scatterer density demonstrate a clear crossover from diffusive to localized transport regime. In addition, we find that transmission fluctuations grow dramatically when crossing into the localized regime. Our numerical results are in good quantitative agreement with theory over a wide range of experimentally accessible parameters both in the diffusive and localized regime opening the path towards experimental observation of terahertz wave localization.

  18. Anderson's absolute objects and constant timelike vector hidden in Dirac matrices

    CERN Document Server

    Rylov, Yu A


    Anderson's theorem asserting, that symmetry of dynamic equations written in the relativisitically covariant form is determined by symmetry of its absolute objects, is applied to the free Dirac equation. Dirac matrices are the only absolute objects of the Dirac equation. There are two ways of the Dirac matrices transformation: (1) Dirac matrices form a 4-vector and wave function is a scalar, (2) Dirac matrices are scalars and the wave function is a spinor. In the first case the Dirac equation is nonrelativistic, in the second one it is relativistic. Transforming Dirac equation to another scalar-vector variables, one shows that the first way of transformation is valid, and the Dirac equation is not relativistic

  19. Anderson Localization in high temperature QCD: background configuration properties and Dirac eigenmodes

    CERN Document Server

    Cossu, Guido


    We investigate the properties of the background gauge field configurations that act as disorder for the Anderson localization mechanism in the Dirac spectrum of QCD at high temperatures. We compute the eigenmodes of the M\\"obius domain-wall fermion operator on configurations generated for the $SU(3)$ gauge theory with two flavors of fermions, in the temperature range $[0.9,1.9]T_c$. We identify the source of localization of the eigenmodes with gauge configurations that are self-dual and support negative fluctuations of the Polyakov loop $P_L$, in the high temperature sea of $P_L\\sim 1$. The dependence of these observations on the boundary conditions of the valence operator is studied. We also investigate the spatial overlap of the left-handed and right-handed projected eigenmodes in correlation with the localization and the corresponding eigenvalue. We discuss an interpretation of the results in terms of monopole-instanton structures.

  20. Anderson localization and saturable nonlinearity in one-dimensional disordered lattices

    CERN Document Server

    Nguyen, Ba Phi


    We investigate numerically the propagation and the Anderson localization of plane waves in a one-dimensional lattice chain, where disorder and saturable nonlinearity are simultaneously present. Using a calculation scheme for solving the stationary discrete nonlinear Schr\\"{o}dinger equation in the fixed input case, the disorder-averaged logarithmic transmittance and the localization length are calculated in a numerically precise manner. The localization length is found to be a nonmonotonic function of the incident wave intensity, acquiring a minimum value at a certain finite intensity, due to saturation effects. For low incident intensities where the saturation effect is ineffective, the enhancement of localization due to Kerr-type nonlinearity occurs in a way similar to the case without saturation. For sufficiently high incident intensities, we find that the localization length is an increasing function of the incident wave intensity, which implies that localization is suppressed for stronger input intensiti...

  1. Analysis of transverse Anderson localization in refractive index structures with customized random potential

    CERN Document Server

    Boguslawski, Martin; Armijo, Julien; Diebel, Falko; Rose, Patrick; Denz, Cornelia


    We present a method to demonstrate Anderson localization in an optically induced randomized potential. By usage of computer controlled spatial light modulators, we are able to implement fully randomized nondiffracting beams of variable structural size in order to control the modulation length (photonic grain size) as well as the depth (disorder strength) of a random potential induced in a photorefractive crystal. In particular, we quantitatively analyze the localization length of light depending on these two parameters and find that they are crucial influencing factors on the propagation behavior leading to variably strong localization. Thus, we corroborate that transverse light localization in a random refractive index landscape strongly depends on the character of the potential, allowing for a flexible regulation of the localization strength by adapting the optical induction configuration.

  2. VizieR Online Data Catalog: Radio observations of Galactic WISE HII regions (Anderson+, 2015) (United States)

    Anderson, L. D.; Armentrout, W. P.; Johnstone, B. M.; Bania, T. M.; Balser, D. S.; Wenger, T. V.; Cunningham, V.


    We draw our targets from the MIR objects in the WISE catalog of Anderson+, 2014, J/ApJS/212/1. We also include in our sample Sharpless H II regions (Sharpless 1959, VII/20). See section 2 for further details. Our observations were made with the GBT 100m telescope from 2012 July through 2014 August. There are seven radio recombination lines (RRLs) that can be cleanly observed simultaneously with the GBT in the X-band: H87α to H93α. We average these seven RRLs (each at two orthogonal polarizations) to create a single average RRL spectrum. We followed the same GBT observational procedure as in the original HRDS (Green Bank Telescope H II Region Discovery Survey (GBT HRDS; Bania et al. 2010ApJ...718L.106B). (3 data files).

  3. Recent trends in the impurity profile of pharmaceuticals

    Directory of Open Access Journals (Sweden)

    Kavita Pilaniya


    Full Text Available Various regulatory authorities such as the International Conference on Harmonization (ICH, the United States Food and Drug administration (FDA, and the Canadian Drug and Health Agency (CDHA are emphasizing on the purity requirements and the identification of impurities in Active Pharmaceutical Ingredients (APIs. The various sources of impurity in pharmaceutical products are - reagents, heavy metals, ligands, catalysts, other materials like filter aids, charcoal, and the like, degraded end products obtained during \\ after manufacturing of bulk drugs from hydrolysis, photolytic cleavage, oxidative degradation, decarboxylation, enantiomeric impurity, and so on. The different pharmacopoeias such as the British Pharmacopoeia, United State Pharmacopoeia, and Indian Pharmacopoeia are slowly incorporating limits to allowable levels of impurities present in APIs or formulations. Various methods are used to isolate and characterize impurities in pharmaceuticals, such as, capillary electrophoresis, electron paramagnetic resonance, gas-liquid chromatography, gravimetric analysis, high performance liquid chromatography, solid-phase extraction methods, liquid-liquid extraction method, Ultraviolet Spectrometry, infrared spectroscopy, supercritical fluid extraction column chromatography, mass spectrometry, Nuclear magnetic resonance (NMR spectroscopy, and RAMAN spectroscopy. Among all hyphenated techniques, the most exploited techniques for impurity profiling of drugs are Liquid Chromatography (LC-Mass Spectroscopy (MS, LC-NMR, LC-NMR-MS, GC-MS, and LC-MS. This reveals the need and scope of impurity profiling of drugs in pharmaceutical research.

  4. Atomic spectroscopy on fusion relevant ions and studies of light impurities in the JET tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Tunklev, M


    The spectrum and energy levels of C IV and the 3l-4l system of the Mg-like ions in the iron group elements have been investigated. This has led to several hundred identified transitions, many of them previously unknown. Using the Charge Exchange Diagnostic system at JET, ion temperatures, rotation velocities and densities have been derived from visible spectroscopic measurements on fully ionised light impurities, such as He, C, N and Ne. The existence of plume contribution from beam produced hydrogen-like ions has been proven beyond any doubt to affect the deduction of the active charge exchange signal of He II. In the case of C VI the plume signal was estimated to be at least a factor of five lower than the active charge exchange signal. Line integrated passive charge exchange emission between neutral background atoms and fully stripped impurity ions has been investigated and modelled. When the synthetic spectrum is fitted into the experimentally detected spectra the neutral background density can be deduced. The importance of including background atoms (H, D and T) as charge exchange donors, not only in state 2s, but also in state 1s, has shown to be crucial in high temperature shots. Transport of light impurities has been studied with gas puff injections into steady state H-mode plasmas. The results suggest that light impurities are transported as described by the neo-classical Pfirsch-Schlueter regime at the edge, whilst in the centre, sawtoothing, preferably to Banana transport, is mixing the plasma and increases the measured values on the diffusion. For the peaking of impurities in a steady state plasma an anomalous treatment was more in agreement with the experimental data. Certain confinement information, previously predicted theoretically as a part of the peaking equation, has been experimentally verified

  5. Oblique Axis Body Fracture: An Unstable Subtype of Anderson Type III Odontoid Fractures—Apropos of Two Cases

    Directory of Open Access Journals (Sweden)

    Hirokazu Takai


    Full Text Available Purpose. Anderson type III odontoid fractures have traditionally been considered stable and treated conservatively. However, unstable cases with unfavorable results following conservative treatment have been reported. Methods. We present the cases of two patients who sustained minimally displaced Anderson type III fractures with a characteristic fracture pattern that we refer to as “oblique type axis body fracture.” Results. The female patients aged 90 and 72 years, respectively, were both diagnosed with minimally displaced Anderson type III fractures. Both fractures had a characteristic “oblique type” fracture pattern. The first patient was treated conservatively with cervical spine immobilization in a semirigid collar. However, gross displacement was noted at the 6-week follow-up visit. The second patient was therefore treated operatively by C1–C3/4 posterior fusion and the course was uneventful. Conclusions. Oblique type axis body fractures resemble a highly unstable subtype of Anderson type III fractures with the potential of severe secondary deformity following conservative treatment, irrespective of initial grade of displacement. The authors therefore warrant a high index of suspicion for this injury and suggest early operative stabilization.

  6. 77 FR 72906 - Chessie Logistics Co., LLC-Acquisition and Operation Exemption-J. Emil Anderson & Son, Inc. (United States)


    ... Surface Transportation Board Chessie Logistics Co., LLC--Acquisition and Operation Exemption-- J. Emil Anderson & Son, Inc. Chessie Logistics Co., LLC (Chessie), a noncarrier, has filed a verified notice of... copy of each pleading must be served on Ariel A. Erbacher, Legal Counsel, Chessie Logistics Co.,...

  7. Scully : võin ka lolli mängida / Gillian Anderson ; tõlk. Triin Tael

    Index Scriptorium Estoniae

    Anderson, Gillian


    USA sarjale "The X-Files" põhinev teine järjefilm "Salatoimikud: Ma tahan uskuda" ("The X-Files: I Want to Believe") : režissöör Chris Carter : peaosades David Duchovny, Gillian Anderson : Ameerika Ühendriigid - Kanada 2008. Intervjuu ilmus juulis portaalis USA Weekend

  8. Impurity-limited resistance and phase interference of localized impurities under quasi-one dimensional nano-structures

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Nobuyuki, E-mail: [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan)


    The impurity-limited resistance and the effect of the phase interference among localized multiple impurities in the quasi-one dimensional (quasi-1D) nanowire structures are systematically investigated under the framework of the scattering theory. We derive theoretical expressions of the impurity-limited resistance in the nanowire under the linear response regime from the Landauer formula and from the Boltzmann transport equation (BTE) with the relaxation time approximation. We show that the formula from the BTE exactly coincides with that from the Landauer approach with the weak-scattering limit when the energy spectrum of the in-coming electrons from the reservoirs is narrow and, thus, point out a possibility that the distinction of the impurity-limited resistances derived from the Landauer formula and that of the BTE could be made clear. The derived formulas are applied to the quasi-1D nanowires doped with multiple localized impurities with short-range scattering potential and the validity of various approximations on the resistance are discussed. It is shown that impurity scattering becomes so strong under the nanowire structures that the weak-scattering limit breaks down in most cases. Thus, both phase interference and phase randomization simultaneously play a crucial role in determining the impurity-limited resistance even under the fully coherent framework. When the impurity separation along the wire axis direction is small, the constructive phase interference dominates and the resistance is much greater than the average resistance. As the separation becomes larger, however, it approaches the series resistance of the single-impurity resistance due to the phase randomization. Furthermore, under the uniform configuration of impurities, the space-average resistance of multiple impurities at room temperature is very close to the series resistance of the single-impurity resistance, and thus, each impurity could be regarded as an independent scattering center. The

  9. Impurities that cause difficulty in stripping actinides from commercial tetraalkylcarbamoylmethylphosphonates

    Energy Technology Data Exchange (ETDEWEB)

    Bahner, C. T.; Shoun, R. R.; McDowell, W. J.


    Dihexyl((diethylcarbamoyl)methyl)phosphonate (DHDECMP) in diethylbenzene extracts actinides well from 6 M nitric acid solution, but commercially available DHDECMP contains impurities which interfere with stripping the actinides from the organic extract. DHDECMP purified by molecular distillation does not contain these impurities, but the pot residue contains increased concentrations of them. Heating the purified DHDECMP causes the formation of products which interfere with stripping in the same way, suggesting that high temperatures employed in the manufacture of DHDECMP may produce the offending impurities. These impurities can be separated from the heat-decomposed material or the pot residues by dilution with a large volume of hexanes (causing part of the impurities to separate as a second liquid phase) followed by equilibration of the hexane solution with dilute alkali. After the treatment with hexane and dilute alkali, the DHDECMP is readily recovered and functions well in the actinide extraction process. Dibutyl((dibutylcarbamoyl)methyl)-phosphonate (DBDBCMP) and di(2-ethylhexyl)((diethylcarbamoyl)-methyl)phosphonate (DEHDECMP) are purified less effectively by these methods. Similar separation methods using diethylbenzene or CCl/sub 4/ as solvent do not remove impurities as completely as the hexane process. Impurities can also be removed from a benzene solution of the DHDECMP pot residue by passing it through a column packed with silica gel or diethylaminoethyl cellulose. These impurities have been separated into fractions for analytical examination by use of various solvents and by column chromatography. Hexyl hydrogen ((diethylcarbamoyl)methyl)-phosphonate has been identified tentatively as a principal objectionable impurity. Dihexyl phosphoric acid and possibly dihexylphosphonate have been identified in other fractions.

  10. Impurity effects on trapped electron mode in tokamak plasmas (United States)

    Du, Huarong; Wang, Zheng-Xiong; Dong, J. Q.


    The effects of impurity ions on the trapped electron mode (TEM) in tokamak plasmas are numerically investigated with the gyrokinetic integral eigenmode equation. It is shown that in the case of large electron temperature gradient ( η e ), the impurity ions have stabilizing effects on the TEM, regardless of peaking directions of their density profiles for all normalized electron density gradient R / L n e . Here, R is the major radius and L n e is the electron density gradient scale length. In the case of intermediate and/or small η e , the light impurity ions with conventional inwardly (outwardly) peaked density profiles have stabilizing effects on the TEM for large (small) R / L n e , while the light impurity ions with steep inwardly (outwardly) peaked density profiles can destabilize the TEM for small (large) R / L n e . Besides, the TEM driven by density gradient is stabilized (destabilized) by the light carbon or oxygen ions with inwardly (outwardly) peaked density profiles. In particular, for flat and/or moderate R / L n e , two independent unstable modes, corresponding respectively to the TEM and impurity mode, are found to coexist in plasmas with impurity ions of outwardly peaked density profiles. The high Z tungsten impurity ions play a stronger stabilizing role in the TEM than the low Z impurity ions (such as carbon and oxygen) do. In addition, the effects of magnetic shear and collision on the TEM instability are analyzed. It is shown that the collisionality considered in this work weakens the trapped electron response, leading to a more stable TEM instability, and that the stabilizing effects of the negative magnetic shear on the TEM are more significant when the impurity ions with outwardly peaked density profile are taken into account.

  11. Extrinsic Spin Hall Effect Induced by Iridium Impurities in Copper (United States)

    Niimi, Y.; Morota, M.; Wei, D. H.; Deranlot, C.; Basletic, M.; Hamzic, A.; Fert, A.; Otani, Y.


    We study the extrinsic spin Hall effect induced by Ir impurities in Cu by injecting a pure spin current into a CuIr wire from a lateral spin valve structure. While no spin Hall effect is observed without Ir impurity, the spin Hall resistivity of CuIr increases linearly with the impurity concentration. The spin Hall angle of CuIr, (2.1±0.6)% throughout the concentration range between 1% and 12%, is practically independent of temperature. These results represent a clear example of predominant skew scattering extrinsic contribution to the spin Hall effect in a nonmagnetic alloy.

  12. Long-range exchange interaction between magnetic impurities in graphene (United States)

    Agarwal, M.; Mishchenko, E. G.


    The effective spin exchange RKKY coupling between impurities (adatoms) on graphene mediated by conduction electrons is studied as a function of the strength of the potential part of the on-site energy U of the electron-adatom interaction. With increasing U , the exchange coupling becomes long range, determined largely by the impurity levels with energies close to the Dirac points. When adatoms reside on opposite sublattices, their exchange coupling, normally antiferromagnetic, becomes ferromagnetic and resonantly enhanced at a specific distance where an impurity level crosses the Dirac point.

  13. Impurity effects on the band structure of one-dimensional photonic crystals: experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Luna-Acosta, G A [Instituto de Fisica, BUAP Apartado Postal J-48, 72570 Puebla (Mexico); Schanze, H; Kuhl, U; Stoeckmann, H-J [Fachbereich Physik der Philipps-Universitaet Marburg, Renthof 5, D-35032 (Germany)], E-mail:


    We study the effects of single impurities on the transmission in microwave realizations of the photonic Kronig-Penney model, consisting of arrays of Teflon pieces alternating with air spacings in a microwave guide. As only the first propagating mode is considered, the system is essentially one-dimensional (1D) obeying the Helmholtz equation. We derive analytical closed form expressions from which the band structure, frequency of defect modes and band profiles can be determined. These agree very well with experimental data for all types of single defects considered (e.g. interstitial and substitutional) and show that our experimental set-up serves to explore some of the phenomena occurring in more sophisticated experiments. Conversely, based on the understanding provided by our formulae, information about the unknown impurity can be determined by simply observing certain features in the experimental data for the transmission. Further, our results are directly applicable to the closely related quantum 1D Kronig-Penney model.

  14. On Clustering Impurities by Liquid Density Fluctuations

    Directory of Open Access Journals (Sweden)

    Alexander L. Shimkevich


    Full Text Available Recent developments in liquid technology have created a new class of fluids called “nanofluids” which are two-phase mixtures of a non-metal-liquid matrix and addon particles usually less than 100 nm in size. It is reputed that such liquids have a great potential for application. Indeed, many tests have shown that their thermal conductivity can be increased by almost 20% compared to that of the base fluids for a relatively low particle loading (of 1 up to 5% in volume. It is confirmed by experimental data and simulation results. In this study, the author considers an effect of impurity clustering by liquid density fluctuations as a natural mechanism for stabilizing microstructure of the colloidal solution and estimates the effect of fractal structure of colloidal particles on thermal conductivity of water. The results of this study may be useful for motivating choosing the composition of heat-transfer suspension and developing technology for making the appropriate nanofluid.

  15. Ionized impurity induced photocarrier generation in organic energy conversion systems (United States)

    Popovic, Z. D.


    The present study has the objective to investigate the influence of the discrete nature of ionized impurities in a Schottky barrier on the field dependent carrier generation of an organic photovoltaic cell. Attention is given to the influence of the local ionized impurity field on the carrier generation, compared to the influence of the average field in the barrier. It is assumed that exciton dissociation into electron-hole pairs can be adequately described as a function of the local electric field. The proposal is made that thermal regeneration of ionized impurities can lead to continuous charge production based on the proposed mechanism. The study has been motivated by a significant discrepancy observed between the measured and calculated carrier generation efficiencies in x-metal-free phthalocyanine photovoltaic cells. The proposed mechanism of ionized impurity-assisted carrier generation offers an explanation for the observed enhancement in x-metal-free phthalocyanine photovoltaic cells.

  16. Radiative instabilities in plasmas: impurity motion and recombination effects

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, D.K.; Herrera, J.J.E. [Instituto de Ciencias y Artes, Chiapas (Mexico). Escuela de Biologia


    Radiative instabilities in an impurity-seeded plasma are investigated when the plasma is supposed to be highly but partially ionized. Since in such plasmas radiative losses strongly depend on neutral and impurity densities, their dynamics are taken into account. As a result, a new radiative-recombination instability is found and described. We show that the influence of the ionization-recombination balance on plasma stability is sufficient for plasma densities above 10{sup 14} cm{sup -3}. The effects of a finite impurity Larmor radius are not small and play a stabilizing role as well as the thermal forces. On the other hand, compressibility of the magnetic field leads to plasma destabilization. We note that this radiative-recombination instability accumulates impurities in a cold zone while cleaning other regions. (Author).

  17. A bijection theorem for domino tiling with diagonal impurities

    CERN Document Server

    Nakano, Fumihiko


    We consider the dimer problem on a non-bipartite graph $G$, where there are two types of dimers one of which we regard impurities. Results of simulations using Markov chain seem to indicate that impurities are tend to distribute on the boundary, which we set as a conjecture. We first show that there is a bijection between the set of dimer coverings on $G$ and the set of spanning forests on two graphs which are made from $G$, with configuration of impurities satisfying a pairing condition. This bijection can be regarded as a extension of the Temperley bijection. We consider local move consisting of two operations, and by using the bijection mentioned above, we prove local move connectedness. We further obtained some bound of the number of dimer coverings and the probability finding an impurity at given edge, by extending the argument in our previous result.

  18. Effect of impurities in industrial salts on aluminum scrap melting

    Energy Technology Data Exchange (ETDEWEB)

    Ye, J.; Sahai, Y. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering; Revet, A. [Kalium Canada, ltd., Regina, Saskatchewan (Canada)


    Aluminum scrap such as Used Beverage Containers (UBC) is melted under a protective molten salt cover. An appropriate salt protects metal from oxidation, promotes coalescence of molten droplets, and separates clean metal from the oxide contamination. Generally, the salt compositions for aluminum scrap recycling are based on equimolar mixtures of NaCl and KCl. A small amount of fluoride is also added in the salt. In the past, laboratory research at universities and industrial laboratories have been limited to pure salts. However, the industrial salts have impurities such as sulfates and other insoluble materials. These impurities have a pronounced effect on the efficiency of the scrap remelting process. In this paper, the role of impurities in industrial salts in terms of their chemical interactions with the metal are summarized. The efficiency of different industrial grade salts containing varying amounts of sulfates and other insoluble impurities for scrap recycling is compared.

  19. Runaway electron dynamics in tokamak plasmas with high impurity content (United States)

    Martín-Solís, J. R.; Loarte, A.; Lehnen, M.


    The dynamics of high energy runaway electrons is analyzed for plasmas with high impurity content. It is shown that modified collision terms are required in order to account for the collisions of the relativistic runaway electrons with partially stripped impurity ions, including the effect of the collisions with free and bound electrons, as well as the scattering by the full nuclear and the electron-shielded ion charge. The effect of the impurities on the avalanche runaway growth rate is discussed. The results are applied, for illustration, to the interpretation of the runaway electron behavior during disruptions, where large amounts of impurities are expected, particularly during disruption mitigation by massive gas injection. The consequences for the electron synchrotron radiation losses and the resulting runaway electron dynamics are also analyzed.

  20. Surface Kondo Impurities in the Slave-Boson Approach (United States)

    Anda, Enrique; Vernek, Edson


    Transport properties of magnetic impurities on surfaces have captured a great deal of attention lately. Atom manipulation and topographic imaging techniques using scanning tunneling microscope have confirmed some theoretical predictions on Kondo physics and at the same time revealed other interesting behavior in these systems. For example, experiments have reported unexpectedly high Kondo temperatures for multi-impurity and molecular structures on metallic surfaces. Motivated by these experimental results we apply slave boson techniques for finite Coulomb interaction (finite U) to study the transport properties of magnetic impurities on a metallic surface in the Kondo regime. We report here on our studies of the role of fluctuations on the slave boson number for the case of one impurity on metallic surfaces. We compare our results to other theoretical approaches and to experimental results. Supported by CAPES-Brazil and NSF-IMC and NSF-NIRT.

  1. Energy levels of isoelectronic impurities by large scale LDA calculations

    CERN Document Server

    Li, J


    Isoelectronic impurity states are localized states induced by stoichiometric single atom substitution in bulk semiconductor. Photoluminescence spectra indicate deep impurity levels of 0.5 to 0.9eV above the top of valence band for systems like: GaN:As, GaN:P, CdS:Te, ZnS:Te. Previous calculations based on small supercells seemingly confirmed these experimental results. However, the current ab initio calculations based on thousand atom supercells indicate that the impurity levels of the above systems are actually much shallower(0.04 to 0.23 eV), and these impurity levels should be compared with photoluminescence excitation spectra, not photoluminescence spectra.

  2. Energy levels of isoelectronic impurities by large scale LDA calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jingbo; Wang, Lin-Wang


    Isoelectronic impurity states are localized states induced by stoichiometric single atom substitution in bulk semiconductor. Photoluminescence spectra indicate deep impurity levels of 0.5 to 0.9eV above the top of valence band for systems like: GaN:As, GaN:P, CdS:Te, ZnS:Te. Previous calculations based on small supercells seemingly confirmed these experimental results. However, the current ab initio calculations based on thousand atom supercells indicate that the impurity levels of the above systems are actually much shallower(0.04 to 0.23 eV), and these impurity levels should be compared with photoluminescence excitation spectra, not photoluminescence spectra.

  3. Mechanisms, kinetics, impurities and defects: consequences in macromolecular crystallization


    McPherson, Alexander; Kuznetsov, Yurii G


    New imaging techniques, particularly AFM, permitted the elucidation of the mechanisms for protein and virus crystal growth. They have also allowed direct visualization of crystal defect structure and the consequences of impurity incorporation.

  4. Band selection and disentanglement using maximally localized Wannier functions: the cases of Co impurities in bulk copper and the Cu(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Korytar, Richard; Pruneda, Miguel; Ordejon, Pablo; Lorente, Nicolas [Centre d' Investigacio en Nanociencia i Nanotecnologia (CSIC-ICN), Campus de la UAB, E-08193 Bellaterra (Spain); Junquera, Javier, E-mail: rkorytar@cin2.e [Departamento de Ciencias de la Tierra y Fisica de la Materia Condensada, Universidad de Cantabria, E-39005 Santander (Spain)


    We have adapted the maximally localized Wannier function approach of Souza et al (2002 Phys. Rev. B 65 035109) to the density functional theory based SIESTA code (Soler et al 2002 J. Phys.: Condens. Mater. 14 2745) and applied it to the study of Co substitutional impurities in bulk copper as well as to the Cu(111) surface. In the Co impurity case, we have reduced the problem to the Co d-electrons and the Cu sp-band, permitting us to obtain an Anderson-like Hamiltonian from well defined density functional parameters in a fully orthonormal basis set. In order to test the quality of the Wannier approach to surfaces, we have studied the electronic structure of the Cu(111) surface by again transforming the density functional problem into the Wannier representation. An excellent description of the Shockley surface state is attained, permitting us to be confident in the application of this method to future studies of magnetic adsorbates in the presence of an extended surface state.

  5. The effect of magnetic impurity scattering in Au films

    Institute of Scientific and Technical Information of China (English)


    The magnetic impurity scattering plays an important role in the phase coherence behavior of thin films.By using the thickness and disorder dependences of the low temperature logarithmic anomaly in resistivity we are able to determine the concentration of magnetic impurities in Au films and demonstrate that the low temperature saturation or plateau in phase decoherence time is closely related with the Kondo effect.

  6. The effects of naturally occurring impurities in rock salt

    Indian Academy of Sciences (India)

    Alina-Mihaela Badescu; Alexandra Saftoiu


    In this paper we investigate the effect that naturally occurring impurities in salt mines have both on effective permittivity of the medium and on radio wave propagation at ∼200 MHz. The effective permittivity is determined based on the dielectric properties of salt and the characteristics of the main impurities. We conclude that at such frequencies the scattering is negligible compared to absorptions. The effect of trapped water in different forms is also evaluated.

  7. Thermal Conductivity of Nanotubes: Effects of Chirality and Isotope Impurity


    Gang, Zhang; Li, Baowen


    We study the dependence of thermal conductivity of single walled nanotubes (SWNT) on chirality and isotope impurity by nonequilibrium molecular dynamics method with accurate potentials. It is found that, contrary to electronic conductivity, the thermal conductivity is insensitive to the chirality. The isotope impurity, however, can reduce the thermal conductivity up to 60% and change the temperature dependence behavior. We also study the dependence of thermal conductivity on tube length for t...

  8. Phase Transition of Spin-Peierls Systems with Impurities

    Institute of Scientific and Technical Information of China (English)

    XU Bo-Wei; DING Guo-Hui; YE Fei


    The quasi-one-dimensional spin-Peierls(SP) systems with impurities are studied in their bosonized form. The spins of the dimerized state are bounded into singlets with an SP gap, while the impurities of doped systems will induce fluctuations of the coupling strength between the spins at different sites and break some pairs of spin singlets. The doping suppresses the dimerized SP state and induces a Kosterlitz-Thouless phase transition from the dimerized state into the undimerized one.

  9. Leaching kinetics of ionic rare-earth in ammonia-nitrogen wastewater system added with impurity inhibitors

    Institute of Scientific and Technical Information of China (English)

    邱廷省; 朱冬梅; 方夕辉; 曾清华; 高广阔; 朱华磊


    Ammonia-nitrogen wastewater is produced during the dressing and smelting process of rare-earth ores. Such wastewater includes a very high concentration of NH4+, as well as other ions (e.g., NH4+, RE3+, Al3+, Fe3+, Ca2+, Cl–, and SiO32–) with a pH of 5.4–5.6. Its direct discharge will pollute, yet it can be recycled and used as a leaching reagent for ionic rare-earth ores. In this study, leaching kinetics studies of both rare earth ions and impurity ion Al3+were conducted in the ammonia-nitrogen wastewater system with the aid of impurity inhibitors. Results showed that the leaching process of rare-earth followed the internal diffusion kinetic model. When the temperature was 298 K and the concentration of NH4+was 0.3 mol/L, the leaching reaction rate constant of ionic rare-earth was 1.72 and the apparent activation energy was 9.619 kJ/mol. The leaching rate was higher than that of conventional leaching system with ammonium sulfate, which indicated that ammonia-nitrogen wastewater system and the addition of impurity inhibitors could pro-mote ionic rare-earth leaching. The leaching kinetic process of impurity Al3+did not follow either internal diffusion kinetic model or chemical reaction control, but the hybrid control model which was affected by a number of process factors. Thus, during the industrial production the leaching of impurity ions could be reduced by increasing the concentration of impurity inhibitors, reducing the leach-ing temperature to a proper range, accelerating the seepage velocity of leaching solution, or increasing the leaching rate of rare earths.

  10. Classical impurities and boundary Majorana zero modes in quantum chains (United States)

    Müller, Markus; Nersesyan, Alexander A.


    We study the response of classical impurities in quantum Ising chains. The Z2 degeneracy they entail renders the existence of two decoupled Majorana modes at zero energy, an exact property of a finite system at arbitrary values of its bulk parameters. We trace the evolution of these modes across the transition from the disordered phase to the ordered one and analyze the concomitant qualitative changes of local magnetic properties of an isolated impurity. In the disordered phase, the two ground states differ only close to the impurity, and they are related by the action of an explicitly constructed quasi-local operator. In this phase the local transverse spin susceptibility follows a Curie law. The critical response of a boundary impurity is logarithmically divergent and maps to the two-channel Kondo problem, while it saturates for critical bulk impurities, as well as in the ordered phase. The results for the Ising chain translate to the related problem of a resonant level coupled to a 1d p-wave superconductor or a Peierls chain, whereby the magnetic order is mapped to topological order. We find that the topological phase always exhibits a continuous impurity response to local fields as a result of the level repulsion of local levels from the boundary Majorana zero mode. In contrast, the disordered phase generically features a discontinuous magnetization or charging response. This difference constitutes a general thermodynamic fingerprint of topological order in phases with a bulk gap.

  11. Synthesis, Isolation and Characterization of Process-Related Impurities in Oseltamivir Phosphate

    Directory of Open Access Journals (Sweden)

    Yogesh Kumar Sharma


    Full Text Available Three known impurities in oseltamivir phosphate bulk drug at level 0.1% (ranging from 0.05-0.1% were detected by gradient reverse phase high performance liquid chromatography. These impurities were preliminarily identified by the mass number of the impurities. Different experiments were conducted and finally the known impurities were synthesized and characterized.

  12. Dressed topological insulators. Rashba impurity, Kondo effect, magnetic impurities, proximity-induced superconductivity, hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Posske, Thore Hagen


    Topological insulators are electronic phases that insulate in the bulk and accommodate a peculiar, metallic edge liquid with a spin-dependent dispersion. They are regarded to be of considerable future use in spintronics and for quantum computation. Besides determining the intrinsic properties of this rather novel electronic phase, considering its combination with well-known physical systems can generate genuinely new physics. In this thesis, we report on such combinations including topological insulators. Specifically, we analyze an attached Rashba impurity, a Kondo dot in the two channel setup, magnetic impurities on the surface of a strong three-dimensional topological insulator, the proximity coupling of the latter system to a superconductor, and hybrid systems consisting of a topological insulator and a semimetal. Let us summarize our primary results. Firstly, we determine an analytical formula for the Kondo cloud and describe its possible detection in current correlations far away from the Kondo region. We thereby rely on and extend the method of refermionizable points. Furthermore, we find a class of gapless topological superconductors and semimetals, which accommodate edge states that behave similarly to the ones of globally gapped topological phases. Unexpectedly, we also find edge states that change their chirality when affected by sufficiently strong disorder. We regard the presented research helpful in future classifications and applications of systems containing topological insulators, of which we propose some examples.

  13. A new dataset of Wood Anderson magnitude from the Trieste (Italy) seismic station (United States)

    Sandron, Denis; Gentile, G. Francesco; Gentili, Stefania; Rebez, Alessandro; Santulin, Marco; Slejko, Dario


    The standard torsion Wood Anderson (WA) seismograph owes its fame to the fact that historically it has been used for the definition of the magnitude of an earthquake (Richter, 1935). With the progress of the technology, digital broadband (BB) seismographs replaced it. However, for historical consistency and homogeneity with the old seismic catalogues, it is still important continuing to compute the so called Wood Anderson magnitude. In order to evaluate WA magnitude, the synthetic seismograms WA equivalent are simulated convolving the waveforms recorded by a BB instrument with a suitable transfer function. The value of static magnification that should be applied in order to simulate correctly the WA instrument is debated. The original WA instrument in Trieste operated from 1971 to 1992 and the WA magnitude (MAW) estimates were regularly reported in the seismic station bulletins. The calculation of the local magnitude was performed following the Richter's formula (Richter, 1935), using the table of corrections factor unmodified from those calibrated for California and without station correction applied (Finetti, 1972). However, the WA amplitudes were computed as vector sum rather than arithmetic average of the horizontal components, resulting in a systematic overestimation of approximately 0.25, depending on the azimuth. In this work, we have retrieved the E-W and N-S components of the original recordings and re-computed MAW according to the original Richter (1935) formula. In 1992, the WA recording were stopped, due to the long time required for the daily development of the photographic paper, the costs of the photographic paper and the progress of the technology. After a decade of interruption, the WA was recovered and modernized by replacing the recording on photographic paper with an electronic device and it continues presently to record earthquakes. The E-W and N-S components records were memorized, but not published till now. Since 2004, next to the WA (few


    Directory of Open Access Journals (Sweden)



    Full Text Available BACKGROUND: Open tibia diaphysis fractures are complex injuries a ssociated with a high incidence of soft tissue complications and union. Management of it varies with soft tissue and its outcome requires an aggressive approach towards patient along with revision surgery, so study was conducted to assess the outcome of cl osed proximal tibia fracture management. AIM AND OBJECTIVES: The study was conducted to assess the outcome of compound fractures of tibia managed by interlocking Intra - medullary nailing or External Fixator, to evaluate the incidence of complications and ne ed for secondary procedures in these open fractures and to assess various factors/variables that may affect the outcome of such fractures when treated by these implants. STUDY DESIGN: Prospective type , MATERIALS AND METHODS : 50 consecutive closed tibial pl ateau fractures were included in this study. All fractures were classified according to Gustilo Anderson classification.There were 42 men and 8 women The study was conducted between June 2009 and October 2011 at the Department of Orthopaedics, New Civil hospital, Surat after the Ethical committee approval. The final outcome was assessed using the Modified Ketenjian’s Criteria. The results were analysed using different parameters; male vs. female, age distribution, mode of trauma, functional outcomes and c omplications etc. RESULTS AND CONCLUSION: The average age was 35.6 years with the fracture being more common in the 2 nd to 5th decades. 90 % sustained fracture due to road traffic accident. The most common location of fracture was middle 3rd shaft of tibia (50% and most common type was Open Grade 2 (52% fracture according to Gustilo - Anderson classification. Patients treated by Interlocking nailing(n=33 group had high (90.9% chances of union at final follow up, while only 70.58% of patients had union tre ated by external fixator group(n=17. Functional evaluation were assessed by modified Ketenjian’s criteria, with

  15. Dynamics of impurity attraction and repulsion of an intrinsic localized mode in a driven 1-D cantilever array

    CERN Document Server

    Sato, M; Shi, W; Shige, S; Ishikawa, T; Soga, Y; Hubbard, B E; Ilic, B; Sievers, A J


    Both low frequency and high frequency impurity modes have been produced in a SiN micromechanical cantilever array by illumination with either an infrared or visible laser. When such laser-induced impurities are placed near a driven intrinsic localized mode (ILM) it is either repelled or attracted. By measuring the linear response spectrum for these two cases it was found that vibrational hopping of the ILM takes place when the natural frequency of the ILM and an even symmetry linear local mode are symmetrically located about the driven ILM frequency so that parametric excitation of these two linear modes is enhanced, amplifying the lateral motion of the ILM. Numerical simulations are consistent with these signature findings. It is also demonstrated that the correct sign of the observed interaction can be found with a harmonic lattice-impurity model but the magnitude of the effect is enhanced in a nonlinear lattice.

  16. Probing the dynamic structure factor of a neutral Fermi superfluid along the BCS-BEC crossover using atomic impurity qubits (United States)

    Mitchison, Mark T.; Johnson, Tomi H.; Jaksch, Dieter


    We study an impurity atom trapped by an anharmonic potential, immersed within a cold atomic Fermi gas with attractive interactions that realizes the crossover from a Bardeen-Cooper-Schrieffer superfluid to a Bose-Einstein condensate. Considering the qubit comprising the lowest two vibrational energy eigenstates of the impurity, we demonstrate that its dynamics probes the equilibrium density fluctuations encoded in the dynamic structure factor of the superfluid. Observing the impurity's evolution is thus shown to facilitate nondestructive measurements of the superfluid order parameter and the contact between collective and single-particle excitation spectra. Our setup constitutes a model of an open quantum system interacting with a thermal reservoir, the latter supporting both bosonic and fermionic excitations that are also coupled to each other.

  17. Projection-reduction method applied to deriving non-linear optical conductivity for an electron-impurity system

    Directory of Open Access Journals (Sweden)

    Nam Lyong Kang


    Full Text Available The projection-reduction method introduced by the present authors is known to give a validated theory for optical transitions in the systems of electrons interacting with phonons. In this work, using this method, we derive the linear and first order nonlinear optical conductivites for an electron-impurity system and examine whether the expressions faithfully satisfy the quantum mechanical philosophy, in the same way as for the electron-phonon systems. The result shows that the Fermi distribution function for electrons, energy denominators, and electron-impurity coupling factors are contained properly in organized manners along with absorption of photons for each electron transition process in the final expressions. Furthermore, the result is shown to be represented properly by schematic diagrams, as in the formulation of electron-phonon interaction. Therefore, in conclusion, we claim that this method can be applied in modeling optical transitions of electrons interacting with both impurities and phonons.

  18. Electron Distributions in Hexagonal Selenium and Tellurium and Monoclinic Selenium with Dilute Impurities and Associated Nuclear Quadrupole Interactions*. (United States)

    Maharjan, N. B.; Paudyal, D. D.; Mishra, D. R.; Byahut, S.; Aryal, M. M.; Cho, Hwa-Suck; Scheicher, R. H.; Chow, Lee; Jeong, Junho; Das, T. P.


    The electron structures of Selenium chains and rings with Te impurities in hexagonal and monoclinic structures respectively and Se impurities in Te chains in hexagonal lattice have been studied using Hartree-Fock cluster model including many-body effects, including lattice relaxation effects. The calculated electronic wave-functions are utilized to obtain ^77Se and ^125Te nuclear quadrupole coupling constants e^2qQ and asymmetry parameters η and compared with available experimental data from Mossbauer and perturbed angular correlation measurements. From our results, the expected nature of nuclear quadrupole interactions associated with Sb impurities will be discussed. *Supported by NSF US-Nepal Program and UGC Nepal **Also at UCF, Orlando

  19. Probe of local impurity states by bend resistance measurements in graphene cross junctions (United States)

    Du, J.; Li, J. Y.; Kang, N.; Lin, Li; Peng, Hailin; Liu, Zhongfan; Xu, H. Q.


    We report on low-temperature transport measurements on four-terminal cross junction devices fabricated from high-quality graphene grown by chemical vapor deposition. At high magnetic fields, the bend resistance reveals pronounced peak structures at the quantum Hall plateau transition, which can be attributed to the edge state transport through the junctions. We further demonstrate that the bend resistance is drastically affected by the presence of local impurity states in the junction regions, and exhibits an unusual asymmetric behavior with respect to the magnetic field direction. The observations can be understood in a model taking into account the combination of the edge transport and an asymmetric scatterer. Our results demonstrate that a graphene cross junction may serve as a sensitive probe of local impurity states in graphene at the nanoscale.

  20. Defects and impurities in silicon materials an introduction to atomic-level silicon engineering

    CERN Document Server

    Langouche, Guido


    This book emphasizes the importance of the fascinating atomistic insights into the defects and the impurities as well as the dynamic behaviors in silicon materials, which have become more directly accessible over the past 20 years. Such progress has been made possible by newly developed experimental methods, first principle theories, and computer simulation techniques. The book is aimed at young researchers, scientists, and technicians in related industries. The main purposes are to provide readers with 1) the basic physics behind defects in silicon materials, 2) the atomistic modeling as well as the characterization techniques related to defects and impurities in silicon materials, and 3) an overview of the wide range of the research fields involved.

  1. Influence of Impurities on the Radiation Response of the TlBr Semiconductor Crystal

    Directory of Open Access Journals (Sweden)

    Robinson Alves dos Santos


    Full Text Available Two commercially available TlBr salts were used as the raw material for crystal growths to be used as radiation detectors. Previously, TlBr salts were purified once, twice, and three times by the repeated Bridgman method. The purification efficiency was evaluated by inductively coupled plasma mass spectroscopy (ICP-MS, after each purification process. A compartmental model was proposed to fit the impurity concentration as a function of the repetition number of the Bridgman growths, as well as determine the segregation coefficients of impurities in the crystals. The crystalline structure, the stoichiometry, and the surface morphology of the crystals were evaluated, systematically, for the crystals grown with different purification numbers. To evaluate the crystal as a radiation semiconductor detector, measurements of its resistivity and gamma-ray spectroscopy were carried out, using 241Am and 133Ba sources. A significant improvement of the radiation response was observed in function of the crystal purity.

  2. Developing strategies for isolation of minor impurities with mass spectrometry-directed fractionation. (United States)

    Niessen, Wilfried M A; Lin, Jing; Bondoux, Gérard C


    Efficient and automated purification of new chemical entities/potential drug substances and isolation of minor impurities are important aspects of early drug discovery and development strategies, especially when combinatorial synthesis is applied. LC-MS controlled preparative LC and automated fraction collection have been developed for this purpose. The success of such an approach is greatly determined by the quality of the software controlling the application, the coordination between software and hardware, and the reliability of the hardware. The performance of a commercially-available LC-MS controlled autopurification system was evaluated by fractionating four impurities of buspirone as a model compound, eluting closely to the major component under both acidic and basic mobile-phase conditions. A purification strategy for these four components is proposed.

  3. The role of MHD in causing impurity peaking in JET Hybrid plasmas

    CERN Document Server

    Hender, T C; Casson, F J; Alper, B; Baranov, Yu; Baruzzo, M; Challis, C D; Koechl, F; Marchetto, C; Nave, M F F; Pütterich, T; Cortes, S Reyes; Contributors, JET


    In Hybrid plasma operation in JET with its ITER-like wall (JET-ILW) it is found that n>1 tearing activity can significantly enhance the rate of on-axis peaking of tungsten impurities, which in turn significantly degrades discharge performance. Core n=1 instabilities can be beneficial in removing tungsten impurities from the plasma core (e.g. sawteeth or fishbones), but can conversely also degrade core confinement (particularly in combination with simultaneous n=3 activity). The nature of MHD instabilities in JET Hybrid discharges, with both its previous Carbon wall and subsequent JET-ILW, is surveyed statistically and the character of the instabilities is examined. Possible qualitative models for how the n>1 islands can enhance on-axis tungsten transport accumulation processes are presented.

  4. Impurity effects on the band structure of one-dimensional photonic crystals: Experiment and theory

    CERN Document Server

    Luna-Acosta, G A; Kuhl, U; Stoeckmann, H -J


    We study the effects of single impurities on the transmission in microwave realizations of the photonic Kronig-Penney model, consisting of arrays of Teflon pieces alternating with air spacings in a microwave guide. As only the first propagating mode is considered, the system is essentially one dimensional obeying the Helmholtz equation. We derive analytical closed form expressions from which the band structure, frequency of defect modes, and band profiles can be determined. These agree very well with experimental data for all types of single defects considered (e. g. interstitial, substitutional) and shows that our experimental set-up serves to explore some of the phenomena occurring in more sophisticated experiments. Conversely, based on the understanding provided by our formulas, information about the unknown impurity can be determined by simply observing certain features in the experimental data for the transmission. Further, our results are directly applicable to the closely related quantum 1D Kronig-Penn...

  5. Lateral manipulation and interplay of local Kondo resonances in a two-impurity Kondo system

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jindong; Wu, Xu; Guo, Haiming, E-mail:; Pan, Jinbo; Du, Shixuan; Gao, Hong-Jun [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Luo, Hong-Gang [Center for Interdisciplinary Studies and Key Laboratory for Magnetism and Magnetic Materials of the MoE, Lanzhou University, Lanzhou 730000 (China); Beijing Computational Science Research Center, Beijing 100084 (China)


    The atomic-scale spatial relationship of a two-impurity Kondo system has been determined at varying lateral distance by scanning tunneling microscopy (STM) and spectroscopy. The localized spins of two cobalt magnetic adatoms that are placed on different electrodes of an STM form two individual Kondo singlet states, each showing quite different Kondo coupling, i.e., the tip-Kondo with low Kondo temperature and the sample-Kondo with high Kondo temperature. The differential conductance dI/dV spectra show the continuous changes of the resonance peak feature when approaching the Kondo tip laterally to the local sample-Kondo impurity on the surface. The result indicates a notable interplay between these two Kondo systems. We propose a convolution model based on the q factor of the sample-Kondo (q{sub s}) and tip-Kondo (q{sub t}) to interpret the change of various tunneling channels and the evolution of the experimental spectra.

  6. Mass concentration and aging in the parabolic Anderson model with doubly-exponential tails


    Biskup, Marek; Koenig, Wolfgang; Santos, Renato Soares dos


    We study the solutions $u=u(x,t)$ to the Cauchy problem on $\\mathbb Z^d\\times(0,\\infty)$ for the parabolic equation $\\partial_t u=\\Delta u+\\xi u$ with initial data $u(x,0)=1_{\\{0\\}}(x)$. Here $\\Delta$ is the discrete Laplacian on $\\mathbb Z^d$ and $\\xi=(\\xi(z))_{z\\in\\mathbb Z^d}$ is an i.i.d.\\ random field with doubly-exponential upper tails. We prove that, for large $t$ and with large probability, a majority of the total mass $U(t):=\\sum_x u(x,t)$ of the solution resides in a bounded neighbo...

  7. Eigenfunction statistics for Anderson model with Hölder continuous single site potential

    Indian Academy of Sciences (India)



    We consider random Schrödinger operators on ${\\mathcal l}^{2} ({\\mathbb Z}^d)$ with $\\alpha$-Hölder continuous $(0 \\lt \\alpha \\leq 1)$ single site distribution. In localized regime, we study the distribution of eigenfunctions in space and energy simultaneously. In a certain scaling limit, we prove limit points are Poisson.

  8. Characterization of a novel impurity in bulk drug of lisinopril by multidimensional NMR technique

    Institute of Scientific and Technical Information of China (English)


    During the routine impurity profile of lisinopril bulk drug by HPLC (high-performance liquid chromatography), a potential impurity was detected. Using multidimensional NMR (nuclear magnetic resonance) technique, the trace-level impurity was unambiguously identified to be 2-(-2-oxo-azocan-3-ylamino)-4-phenyl-butyric acid after isolation from lisinopril bulk drug by semi-preparative HPLC. Formation of the impurity was also discussed. To our knowledge, this is a novel impurity and not reported elsewhere.

  9. Analgesic, Anti-Inflammatory, and Antioxidant Activities of Byrsonima duckeana W. R. Anderson (Malpighiaceae) (United States)

    Verdam, Maria Christina dos Santos; de Andrade, Kleyton Cardoso; Fernandes, Karina Lorena Meira; Machado, Tallita Marques; de Souza, Mayane Pereira; Koolen, Hector Henrique Ferreira; Miyazaki, Cristina Mayumi Sasaki; Kalegari, Milena; Miguel, Marilis Dallarmi; Stuelp-Campelo, Patricia Maria; Miguel, Obdulio Gomes


    Background. Byrsonima is a promising neotropical genus, rich in flavonoids and triterpenes, with several proven pharmacological properties. Nevertheless, Byrsonima duckeana W. R. Anderson is an Amazonian species almost not studied. Objective. To assess the antioxidant, anti-inflammatory, and analgesic activities of Byrsonima duckeana leaves. Materials and Methods. We analyzed an ethanol extract and its fractions for polyphenol content and UHPLC-MS/MS, phosphomolybdenum, DPPH, TBARS antioxidant tests, formalin-induced pain, carrageenan-induced peritonitis, acetic acid-induced abdominal writhings, and hot plate assays. Results. All the samples showed high polyphenol content and antioxidant capacity in the phosphomolybdenum, DPPH, and TBARS tests. We identified ethyl gallate, quinic acid, gallic acid, catechin, epicatechin, quercetrin, and quercetin in the samples. B. duckeana was able to reduce leukocyte migration in the carrageenan-induced peritonitis by 43% and the licking time in the formalin test by 57%. In the acetic acid-induced writhing test, the chloroform (FCL) and ethyl acetate (FEA) fractions were the most active samples. FEA was selected for the hot plate test, where all the dosages tested (5, 50, and 200 mg·kg−1) showed significant analgesic activity. Conclusion. B. duckeana has interesting analgesic and antioxidant activities, due to its high phenolic content, especially phenolic acids.

  10. Analgesic, Anti-Inflammatory, and Antioxidant Activities of Byrsonima duckeana W. R. Anderson (Malpighiaceae

    Directory of Open Access Journals (Sweden)

    Maria Christina dos Santos Verdam


    Full Text Available Background. Byrsonima is a promising neotropical genus, rich in flavonoids and triterpenes, with several proven pharmacological properties. Nevertheless, Byrsonima duckeana W. R. Anderson is an Amazonian species almost not studied. Objective. To assess the antioxidant, anti-inflammatory, and analgesic activities of Byrsonima duckeana leaves. Materials and Methods. We analyzed an ethanol extract and its fractions for polyphenol content and UHPLC-MS/MS, phosphomolybdenum, DPPH, TBARS antioxidant tests, formalin-induced pain, carrageenan-induced peritonitis, acetic acid-induced abdominal writhings, and hot plate assays. Results. All the samples showed high polyphenol content and antioxidant capacity in the phosphomolybdenum, DPPH, and TBARS tests. We identified ethyl gallate, quinic acid, gallic acid, catechin, epicatechin, quercetrin, and quercetin in the samples. B. duckeana was able to reduce leukocyte migration in the carrageenan-induced peritonitis by 43% and the licking time in the formalin test by 57%. In the acetic acid-induced writhing test, the chloroform (FCL and ethyl acetate (FEA fractions were the most active samples. FEA was selected for the hot plate test, where all the dosages tested (5, 50, and 200 mg·kg−1 showed significant analgesic activity. Conclusion. B. duckeana has interesting analgesic and antioxidant activities, due to its high phenolic content, especially phenolic acids.

  11. Impurity microsegregation due to periodic changes in the temperature and pulling rate of crystal grown by the Stepanov method

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, A.V.; Nikolaeva, L.P.; Red`kin, B.S. [Institute of Solid-State Physics, Chernogolovka (Russian Federation)


    A mathematical model is proposed to describe the behavior of a doping impurity concentration in a crystal grown by the Stepanov method from a melt and subjected to periodic changes in its pulling rate and temperature of the thermal node. Various modes of these effects are discussed. The results obtained are given by graphs that characterize their influence on concentration distribution.

  12. Effect of Cd and Pb impurities on the optical properties of fresh evaporated amorphous (As2Se3)90Ge10 thin films (United States)

    Sharma, P.; Katyal, S. C.


    Transmission spectra (400-1500 nm) of thermally evaporated amorphous [(As2Se3)90Ge10]95M5 thin films have been analyzed to study the effect of impurities (M = Cd and Pb) on their optical properties. The refractive index increases with addition of metal impurities. The dispersion of refractive index has been studied using Wemple-DiDomenico single oscillator model. The optical gap has been estimated using Tauc’s extrapolation and was found to decrease with the addition of metal impurities from 1.46 to 1.36 eV (Cd) and 1.41 eV (Pb) with an uncertainty of ±0.01 eV. The change in optical properties with metal impurities has been explained on the basis of density, polarizability and bond energy of the system.

  13. The Paean of Old People’s Love--The Appreciation and Analysis of Burns’John Anderson, My Jo

    Institute of Scientific and Technical Information of China (English)



    Robert Burns is a great Romanticism poet in Scotland; his poem absorbs the essence of Scotland ballad, and has the national feature. The poem John Anderson, My Jo, Burns chooses the subject matter from the old people’s love and praises their love as if praises the beautiful setting sun. This paper aims to appreciate this poem from the perspective of rhythm, content and form.

  14. DNA barcoding of the Bryde’s Whale Balaenoptera edeni Anderson (Cetacea: Balaenopteridae washed ashore along Kerala coast, India

    Directory of Open Access Journals (Sweden)

    A Bijukumar


    Full Text Available Three whales washed ashore along Kerala coast of southwest India were identified as Bryde’s Whale Balaenoptera edeni Anderson based on sequencing of mitochondrial cytochrome c oxidase subunit 1 and cytochrome b genes. The results of mtDNA sequencing in the present study confirm the presence of B. edeni species of ‘Bryde’s Whale complex’ in the coastal waters of India.

  15. Anderson-Hynes pyeloplasty with isthmotomy and lateropexy in horseshoe kidneys with pelviureteric junction obstruction in children

    Directory of Open Access Journals (Sweden)

    Shasanka Shekhar Panda


    Full Text Available Objective: The objective of this study was to evaluate the results of Anderson-Hynes pyeloplasty with isthmotomy and lateropexy in horseshoe kidney with pelviureteric junction obstruction (PUJO. Materials and Methods: Medical records of patients of horseshoe kidney with PUJO operated in our institute between June 1998 and June 2012 were reviewed. Anderson-Hynes pyeloplasty with isthmotomy and lateropexy was performed in all patients. The surgical outcome was evaluated with emphasis on the changes in degree of hydronephrosis by ultrasonography, renal drainage and function assessed by diuretic renal scans. Results: We studied the records of eight children of horseshoe kidney having unilateral PUJO. Obstruction was caused by a crossing lower-pole vessel in two cases, a high ureteral insertion in three and narrowing of the PUJ in three cases. Post-operative follow-up (median 4.4 years, range 18 months to 10 years revealed improved renal function and good drainage in all cases. Hydronephrosis disappeared in 3, 4 showed Grade 1 and one showed Grade 2 hydronephrosis. All children are doing well and have no symptoms. Conclusion: Anderson-Hynes pyeloplasty with isthmotomy and lateropexy is a highly effective and safe procedure for treating PUJO in horseshoe kidney in children.

  16. Impurities in Silicon Nanocrystals: The intentional and the inherent (United States)

    Rowe, David J.

    Silicon nanocrystals (SiNCs) have become an important class of materials in the fields of photovoltaics, thermoelectrics, lighting, and medicine. Impurities within SiNCs dramatically alter the electrical and optical properties of the host material, whether the impurity is intentionally added in an attempt to manipulate properties, or is inherent to the material and its natural state. Despite such remarkable changes, impurity incorporation within SiNCs remains poorly understood, since concepts applied to understanding impurities in bulk materials may not completely translate to nanomaterials. Understanding the effect of SiNC impurities requires new technologies to produce materials suitable for study combined with new insights to expound the differences in the nanoscale physics. Nonthermal plasma-assisted gas-phase synthesis provides an excellent route to producing and investigating impurities within SiNCs due to the unique chemical reaction environment of the plasma. The robustness of such a technique allows for the production of very pure SiNCs or SiNCs with added impurities simply by adding different chemicals to the plasma. The chapters in this document focus on the effect that different impurities have on the properties of SiNCs. Chapter 2 focuses on heavily P-doped SiNCs exhibiting the first known observation of a unique electrical and optical property known as localized surface plasmon resonance (LSPR) within free-standing SiNCs. Chapter 3 explains the synthesis of B- and P-doped SiGeNC alloys and their deposition into thin films for thermoelectric applications. Chapter 4 highlights research which uses P-doped SiNCs to form emitter layers for pn-junction type solar cells, including device fabrication and optical characterization. Chapter 5 examines inherent impurities in the form of dangling bond defects which may be responsible for the quenching of SiNC photoluminescence, and their evolution during the process of air-ambient oxidation. Several appendices at

  17. Anderson, S.C., Woman Gets Prison for Extensive Bank Fraud Scam and Environmental Crime Nancy Stein operated American Screw and Rivet Corporation which was also sentenced (United States)

    ATLANTA - United States Attorney Bill Nettles stated late yesterday that Nancy Marie Stein, age 62, of Anderson, South Carolina , was sentenced by Senior United States District Judge Henry M. Herlong in federal court in Greenville, to a total of 73

  18. Net coal thickness in the Wyodak-Anderson coal zone in the Powder River Basin, Wyoming and Montana (wacatg.shp) (United States)

    U.S. Geological Survey, Department of the Interior — This shapefile contains a representation of the total net coal thickness in the Wyodak-Anderson coal zone. This theme was created specifically for the National Coal...

  19. Clinical use of the combined Sclarovsky Birnbaum Severity and Anderson Wilkins Acuteness scores from the pre-hospital ECG in ST-segment elevation myocardial infarction

    DEFF Research Database (Denmark)

    Fakhri, Yama; Schoos, Mikkel M; Clemmensen, Peter


    This review summarizes the electrocardiographic changes during an evolving ST segment elevation myocardial infarction and discusses associated electrocardiographic scores and the potential use of these indices in clinical practice, in particular the ECG scores developed by Anderson and Wilkins...

  20. Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center

    Energy Technology Data Exchange (ETDEWEB)

    Hoyos, Jaime H. [Departamento de Ciencias Básicas, Universidad de Medellín, Cra. 87 No. 30-65, Medellín (Colombia); Correa, J.D., E-mail: [Departamento de Ciencias Básicas, Universidad de Medellín, Cra. 87 No. 30-65, Medellín (Colombia); Mora-Ramos, M.E. [Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)


    We calculate the nonlinear optical absorption coefficient of a cylindrical zincblende GaN-based quantum dot. For this purpose, we consider Coulomb interactions between electrons and an impurity ionized donor atom. The electron-donor-impurity spectrum and the associated quantum states are calculated using the effective mass approximation with a parabolic potential energy model describing both the radial and axial electron confinement. We also include the effects of the hydrostatic pressure and external electrostatic fields. The energy spectrum is obtained through an expansion of the eigenstates as a linear combination of Gaussian-type functions which reduces the computational effort since all the matrix elements are obtained analytically. Therefore, the numerical problem is reduced to the direct diagonalization of the Hamiltonian. The obtained energies are used in the evaluation of the dielectric susceptibility and the nonlinear optical absorption coefficient within a modified two-level approach in a rotating wave approximation. This quantity is investigated as a function of the quantum dot dimensions, the impurity position, the external electric field intensity and the hydrostatic pressure. The results of this research could be important in the design and fabrication of zincblende GaN-quantum-dot-based electro-optical devices.