WorldWideScience

Sample records for andean southern volcanic

  1. Holocene tephrostratigraphy of southern Chiloé Continental (Andean southern volcanic zone; ~43°S), Chile

    Science.gov (United States)

    Lachowycz, S.; Smith, V. C.; Pyle, D. M.; Mather, T. A.

    2012-12-01

    The eruptive history of the volcanoes in the southern part of the Andean Southern Volcanic Zone (42.5-45°S) is very poorly constrained: only several late Quaternary eruptions have been identified, mostly from study of sparse roadcuts [1]. In this study, we further constrain the Holocene explosive eruption history around 43°S by identifying and analysing tephra layers preserved in a ~3.25m long peat core from Cuesta Moraga [2], ~35km east of Yanteles volcano. Cryptotephra was extracted following the method of [3], in addition to macrotephra; owing to the vicinity of the sampling site to the tephra sources, cryptotephra was found throughout the core stratigraphy, but was sufficiently variable in concentration that discrete layers were identifiable and attributed to specific eruptions. Chemical analysis of the glass by electron microprobe shows that the tephra layers originate from a number of volcanoes in the region. This new tephrostratigraphy improves our knowledge of the important history of explosive volcanism in this area, potentially tying the tephrostratigraphies of surrounding areas (e.g., [4]) and allowing improved evaluation of regional volcanic risk. [1] Naranjo, J.A.., and C. R. Stern, 2004. Holocene tephrochronology of the southernmost part (42°30'-45°S) of the Andean Southern Volcanic Zone. Revista geológica de Chile, 31, pp. 225-240. [2] Heusser, C.J., et al., 1992. Paleoecology of late Quaterary deposits in Chiloé Continental, Chile. Revista Chilena de Historia Natural, 65, pp. 235-245. [3] Blockley, S.P.E., et al., 2005. A new and less destructive laboratory procedure for the physical separation of distal glass tephra shards from sediments. Quaternary Science Reviews, 24, pp. 1952-1960. [4] Watt, S.F.L., et al., 2011. Holocene tephrochronology of the Hualaihue region (Andean southern volcanic zone, ~42°S), southern Chile. Quaternary International, 246, pp. 324-343.

  2. Volcanism and associated hazards: The Andean perspective

    Science.gov (United States)

    Tilling, R.I.

    2009-01-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (Chile, Colombia, Ecuador, and Peru has spurred significant improvements in reducing volcano risk in the Andean region. But much remains to be done.

  3. Volcanism and associated hazards: the Andean perspective

    Directory of Open Access Journals (Sweden)

    R. I. Tilling

    2009-12-01

    Full Text Available Andean volcanism occurs within the Andean Volcanic Arc (AVA, which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions" recognized worldwide that have occurred from the Ordovician to the Pleistocene.

    The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru. The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (<0.05 km3 in 1985 of Nevado del Ruiz (Colombia killed about 25 000 people – the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent

  4. Crustal xenoliths from Calbuco Volcano, Andean Southern Volcanic Zone: implications for crustal composition and magma-crust interaction

    Science.gov (United States)

    Hickey-Vargas, Rosemary; Abdollahi, Mohammad J.; Parada, Miguel A.; López-Escobar, Leopoldo; Frey, Fred A.

    1995-04-01

    Crustal xenoliths in the 1961 andesite flow of Calbuco Volcano, in the southern Southern Volcanic Zone (SSVZ) of the Andes, consist predominantly of pyroxene granulites and hornblende gabbronorites. The granulites contain plagioclase+pyroxene+magnetite±amphibole, and have pronounced granoblastic textures. Small amounts of relict amphibole surrounded by pyroxene-plagioclase-magnetite-glass symplectites are found in some specimens. These and similar textures in the gabbronorites are interpreted as evidence of dehydration melting. Mineral and bulk rock geochemical data indicate that the granulites are derived from an incompatible trace element depleted basaltic protolith that underwent two stages of metamorphism: a moderate pressure, high temperature stage accompanied by melting and melt extraction from some samples, followed by thermal metamorphism after entrainment in the Calbuco andesite lavas. High ɛNd T values (+4.0 to +8.6), Nd-isotope model ages of 1.7 2.0 Ga, and trace element characteristics like chondrite normalized La/YbCalbuco. Crystallization pressures for the gabbros based on total Al contents in amphibole are 6 8 kbar. These pressures point to middle to lower crustal storage of the Calbuco magma. Neither granulite nor gabbro xenoliths have the appropriate geochemical characteristics to be contaminants of Calbuco andesites, although an ancient sedimentary contaminant is indicated by the lava compositions. The presence of oceanic metabasaltic xenoliths, together with the sedimentary isotopic imprint, suggests that the lower crust beneath the volcano is analogous to the coastal metamorphic belt, which is an accretionary complex of intercalated basalts and sediments that formed along the Paleozoic Gondwanan margin. If this is the case, the geochemical composition of the lower and middle crust beneath the SSVZ is significantly different from that of most recent SSVZ volcanic rocks.

  5. Along-strike variability of primitive magmas (major and volatile elements) inferred from olivine-hosted melt inclusions, southernmost Andean Southern Volcanic Zone, Chile

    Science.gov (United States)

    Weller, D. J.; Stern, C. R.

    2018-01-01

    Glass compositions of melt inclusions in olivine phenocrysts found in tephras derived from explosive eruptions of the four volcanoes along the volcanic front of the southernmost Andean Southern Volcanic Zone (SSVZ) are used to constrain primitive magma compositions and melt generation parameters. Primitive magmas from Hudson, Macá, and Melimoyu have similar compositions and are formed by low degrees (8-18%) of partial melting. Compared to these other three centers, primitive magmas from Mentolat have higher Al2O3 and lower MgO, TiO2 and other incompatible minor elements, and are generated by somewhat higher degrees (12-20%) of partial melting. The differences in the estimated primitive parental magma compositions between Mentolat and the other three volcanic centers are consistent with difference in the more evolved magmas erupted from these centers, Mentolat magmas having higher Al2O3 and lower MgO, TiO2 and other incompatible minor element contents, suggesting that these differences are controlled by melting processes in the mantle source region above the subducted oceanic plate. Parental magma S = 1430-594 and Cl = 777-125 (μg/g) contents of Hudson, Macá, and Melimoyu are similar to other volcanoes further north in the SVZ. However, Mentolat primitive magmas have notably higher concentrations of S = 2656-1227 and Cl = 1078-704 (μg/g). The observed along-arc changes in parental magma chemistry may be due to the close proximity below Mentolat of the subducted Guamblin Fracture Zone that could efficiently transport hydrous mineral phases, seawater, and sediment into the mantle, driving enhanced volatile fluxed melting beneath this center compared to the others. Table S2. Olivine-hosted melt inclusion compositions, host-olivine compositions, and the post-entrapment crystallization corrected melt inclusion compositions. Table S3. Olivine-hosted melt inclusion modeling information. Table S4. Major element compositions of the fractionation corrected melt inclusion

  6. Constraints on the origin and evolution of magmas in the Payún Matrú Volcanic Field, Quaternary Andean back-arc of western Argentina

    DEFF Research Database (Denmark)

    Hernadno, I R; Aragón, E; Frei, Robert

    2014-01-01

    The Payún Matrú Volcanic Field (Pleistocene–Holocene) is located in the Andean back-arc of the Southern Volcanic Zone, western Argentina, and is contemporaneous with the Andean volcanic arc at the same latitude. It includes two polygenetic, mostly trachytic volcanoes: Payún Matrú (with a summit c...

  7. Enrichments of the mantle sources beneath the Southern Volcanic Zone (Andes) by fluids and melts derived from abraded upper continental crust

    DEFF Research Database (Denmark)

    Holm, Paul Martin; Søager, Nina; Dyhr, Charlotte Thorup

    2014-01-01

    Mafic basaltic-andesitic volcanic rocks from the Andean Southern Volcanic Zone (SVZ) exhibit a northward increase in crustal components in primitive arc magmas from the Central through the Transitional and Northern SVZ segments. New elemental and Sr–Nd-high-precision Pb isotope data from the Quat...

  8. Temporal and geochemical evolution of Miocene volcanism in the Andean back-arc between 36°S and 38°S and U-series analyses of young volcanic centers in the arc and back-arc, Argentina

    DEFF Research Database (Denmark)

    Dyhr, Charlotte Thorup

    New 40Ar/39Ar, major and trace element, and Sr, Nd and Pb isotopic data for the c. 24-7 Ma volcanic rocks from the Andean back-arc (35°S – 38°S) in the Mendoza and Neuquén (Argentina) regions shed light on the Miocene evolution of the back-arc of the Southern Volcanic Zone. Incipient shallowing....... Geochemical characteristics indicate a back-arc mantle devoid of arc-like components and with a strong OIB-like signature. They erupted at a time of extension along the Andean margin. After 20 Ma, basaltic – trachyandesitic lavas with a more depleted isotopic and incompatible trace element signature...... and showing evidence of a weak, but temporally increasing, arc component in the mantle source were erupted in a contractional regime. The increasing arc-influence in lavas erupted up to 500 km east of the trench indicates a shallowing of the subducting zone. A long period of volcanic quiescence followed...

  9. Tectonic meaning of anomalous fault-slip strain solutions in the Southern Volcanic Zone of the Andes: insights to assess the structural permeability of the Liquiñe-Ofqui Fault System and the Andean Transverse Faults (39°-40°S)

    Science.gov (United States)

    Sepúlveda, J.; Roquer, T.; Arancibia, G.; Veloso, E. A.; Morata, D.; Molina Piernas, E.

    2017-12-01

    Oblique subduction between the Nazca and South American plates produces the Southern Volcanic Zone (33-46°S) (SVZ), an active tectono-magmatic-hydrothermal setting. Tectonics of the SVZ is controlled by the Liquiñe-Ofqui Fault System (LOFS) and the Andean Transverse Faults (ATF). The LOFS is an active intra-arc 1200-km-long fault system, with dextral and dextral-normal faults that strike NS-NNE to NE-ENE. The ATF include a group of active NW-striking sinistral faults and morphotectonic lineaments. Here, deformation is partitioned into a margin-parallel and a margin-orthogonal components, accommodated along and across the arc and forearc, respectively. In the inter-seismic period, shortening in the arc is NE-trending, whereas in the co- and post-seismic periods shortening switches to NW-trending. In order to determine the kinematics and style of deformation in the northern termination of the LOFS and its interaction with the ATF, we measured 81 fault-slip data at the Liquiñe (39ºS) and Maihue (40ºS) areas. Here, hot springs occur above fractured granitic rocks, where structural permeability given by fracture meshes is the main hydraulic conductivity. Considering the high sensitivity of fault systems regarding the rupture under prevailing stress and/or fluid overpressure conditions, to stablish past and present strain conditions is critical to assess a potential fractured geothermal system. Results at Liquiñe display two strain regimes (P and T axes): 1) P=259/01, T=169/01; 2) P= 182/23, T= 275/07. Likewise, Maihue shows two regimes: 1) P= 143/12, T=235/07; 2) P=228/12, T= 136/07. In both areas, the first solutions agree with the regional regime within the SVZ, i.e. NE-trending shortening in the arc. However, the second solutions seem to be anomalous with respect to the regional strain regime. At Liquiñe, NS-trending shortening may be associated with a buttress effect at the northern termination of the LOFS. At Maihue, NW-trending shortening may be related to

  10. Stable carbon and oxygen isotope chronologies from Araucaria angustifolia trees as proxies for investigating the impacts of Andean volcanism on South-Eastern American climate

    Science.gov (United States)

    Churakova (Sidorova), Olga; Saurer, Matthias; Evangelista da Silva, Heitor; Prestes, Alan; Corona, Christophe; Guillet, Sèbastien; Siegwolf, Rolf; Stoffel, Markus

    2017-04-01

    Stratospheric volcanic eruptions may lead to global cooling effects due to decreasing incoming solar radiation and perturbation of atmospheric circulation masses. Tree rings as indirect climate proxies, are able to capture information about temperature and precipitation changes from seasonal to annual scale. During past decades, studies of the impact of volcanic eruptions on tree-rings as well as stable isotopes in tree rings were focused mostly on the Northern Hemisphere. However, little attention has been paid to the Southern Hemisphere, particular to South America. Therefore, our goal is to quantify the impacts of Andean volcanism on Eastern South American climate in terms of temperature and hydrological changes over the past half millennium. To reconstruct past hydroclimatic and temperature changes after the 12 largest volcanic eruptions of the past 500 years we analyzed carbon and oxygen stable isotopes from cellulose chronologies from Araucaria angustifolia, indigenous climate sensitive conifer species from General Carneiro, State of Paraná, Brazil. The species distribution in southern Brazil is limited between the latitudes of 18° and 30° south, where species occurrence is often associated with Atlantic forest remnants, in mono dominant or mixed forest matrices. To date, a database of 20 tree-ring width chronologies is currently available and spans the last 634 years. We analyzed that material for precipitation and temperature anomalies, and model allocation of atmospheric circulation patterns after major volcanic eruptions. This will improve our understanding of driving factors of Southern Hemispheric climate over the past centuries. Acknowledgements: This work was supported by Brazilian-Swiss Joint Research Programme (BSJRP).

  11. Tectonic Constraints on the Evolution of Geothermal Systems in the Central Andean Volcanic Zone (CAVZ)

    Science.gov (United States)

    Veloso, E. E.; Tardani, D.; Aron, F.; Elizalde, J. D.; Sanchez-Alfaro, P.; Godoy, B.

    2017-12-01

    South of 19°S, geothermal fields and Pliocene-to-Holocene volcanic centers of the Central Andean Volcanic Zone are spatially associated with distinct, large-scale fault systems disrupting the volcanic arc, which control the architecture and dynamics of the fluids reservoirs at shallow crustal levels. Based on an extensive compilation of structural, lithological and isotopic data, and satellite imagery band-ratio analyses, we produced detailed maps of 13 areas comprising 19 identified and/or potential geothermal fields, to examine if particular local-scale tectonic configurations are associated to fluids migrating from different crustal levels. We defined three main tectonic environments according to the specific, kilometer-scale structural arrangement and its spatial relation to the geothermal surface manifestations. T1, dominated by left-lateral, pure strike-slip motion on a NW-trending duplex-like geometry with geothermal fields located along the faults - in turn distributed into five major subparallel zones cutting across the orogenic belt between ca. 20° and 27°S. T2, dominated by shortening on a series of N-trending thrust faults and fault-propagated folds, cut and displaced by the above mentioned NW-trending faults, with geothermal fields hosted at fault intersections and at fold hinges. And T3, characterized by transtension accommodated by NW-to-WNW-trending left-lateral/normal faults, with hot-springs lying along the fault traces. Interestingly, each of the independently defined tectonic environments has distinctive helium (in fluids) and strontium (in lavas) isotopic signatures and estimated geothermal reservoir temperatures. T1 shows a large 4He contribution, low 87Sr/86Sr ratio and temperatures varying between ca. 220°-310°C; T3 low 4He and high 87Sr/86Sr ratio and temperature (260°-320°C); T2 isotopic values fall between T1 and T3, yet showing the lowest (130°-250°C) temperatures. We suggest that these particular isotopic signatures are due to

  12. Isotopic clues to magmatic source regions for neogene Andean volcanic rocks in the El Teniente area near 38oS latitude

    International Nuclear Information System (INIS)

    Kay, Suzanne Mahlburg; Kurtz, A.C

    2001-01-01

    The origin of isotopic variations in Central Andean arc lavas is a long-standing problem that involves identifying mantle and crustal source regions. Advances have come from analyzing temporal and spatial variations in constrained tectonic settings. The purpose here is to highlight the similarities of temporal variations in an east-west transect of Neogene magmatic units near 34 O S latitude with those from a south-north transect along the modern Southern Volcanic Zone (SVZ, e.g. Hildreth and Moorbath 1988, Tormey et al. 1991). The comparison shows the importance of crustal thickening processes associated with compressional shortening and of lithospheric scale adjustments associated with eastward migration of the arc front on magma sources. Sr, Nd and Pb isotopic analyses of 27 Neogene volcanic and plutonic samples from the El Teniente area are presented in Table 1 and plotted along with some analyses from Skewes and Stern (1994) and Stern and Skewes (1995) in Figure 2. The data show a clear progression from older samples with more 'depleted' isotopic signatures (lower 87 Sr/ 86 Sr and Pb isotopic ratios, higher εNd) to younger samples with more 'enriched' signatures (higher 87 Sr/ 86 Sr and Pb isotopic ratios, lower εNd). In detail, four temporal and spatial groups marked by discontinuities in isotopic trends can be defined. Within each group, εNd tends to decrease and 87 Sr/ 86 Sr ratios to increase with SiO2 concentration (au)

  13. Payenia volcanic province, southern Mendoza, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin; Llambias, Eduardo Jorge

    2013-01-01

    The Pleistocene to Holocene Payenia volcanic province is a backarc region of 60,000 km2 in Mendoza, Argentina, which is dominated by transitional to alkaline basalts and trachybasalts. We present major and trace element compositions of 139 rocks from this area of which the majority are basaltic r...

  14. Birth of two volcanic islands in the southern Red Sea

    KAUST Repository

    Xu, Wenbin

    2015-05-26

    Submarine eruptions that lead to the formation of new volcanic islands are rare and far from being fully understood; only a few such eruptions have been witnessed since Surtsey Island emerged to the south of Iceland in the 1960s. Here we report on two new volcanic islands that were formed in the Zubair archipelago of the southern Red Sea in 2011–2013. Using high-resolution optical satellite images, we find that the new islands grew rapidly during their initial eruptive phases and that coastal erosion significantly modified their shapes within months. Satellite radar data indicate that two north–south-oriented dykes, much longer than the small islands might suggest, fed the eruptions. These events occurred contemporaneously with several local earthquake swarms of the type that typically accompany magma intrusions. Earthquake activity has been affecting the southern Red Sea for decades, suggesting the presence of a magmatically active zone that has previously escaped notice.

  15. Compositional variations revealed by ASTER image analysis of the Viedma Volcano, southern Andes Volcanic Zone

    OpenAIRE

    Kobayashi,Chiaki; Orihashi,Yuji; Hiarata,Daiji; Naranjo,José A; Kobayashi,Makoto; Anma,Ryo

    2010-01-01

    We conducted a lithological mapping of the Viedma volcano, one of five volcanoes in the Andean Austral Volcanic Zone (AVZ), using remote sensing techniques. We used data of the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) sensor which is highly effective in geological research, to understand build-up processes and to deduce compositional variation of the Viedma volcano emerging from the South Patagonian ice field. The volcanic edifice was divided into bright parts th...

  16. The effect of offset on fracture permeability of rocks from the Southern Andes Volcanic Zone, Chile

    Science.gov (United States)

    Pérez-Flores, P.; Wang, G.; Mitchell, T. M.; Meredith, P. G.; Nara, Y.; Sarkar, V.; Cembrano, J.

    2017-11-01

    The Southern Andes Volcanic Zone (SVZ) represents one of the largest undeveloped geothermal provinces in the world. Development of the geothermal potential requires a detailed understanding of fluid transport properties of its main lithologies. The permeability of SVZ rocks is altered by the presence of fracture damage zones produced by the Liquiñe-Ofqui Fault System (LOFS) and the Andean Transverse Faults (ATF). We have therefore measured the permeability of four representative lithologies from the volcanic basement in this area: crystalline tuff, andesitic dike, altered andesite and granodiorite. For comparative purposes, we have also measured the permeability of samples of Seljadalur basalt, an Icelandic rock with widely studied and reported hydraulic properties. Specifically, we present the results of a systematic study of the effect of fractures and fracture offsets on permeability as a function of increasing effective pressure. Baseline measurements on intact samples of SVZ rocks show that the granodiorite has a permeability (10-18 m2), two orders of magnitude higher than that of the volcanic rocks (10-20 m2). The presence of throughgoing mated macro-fractures increases permeability by between four and six orders of magnitude, with the highest permeability recorded for the crystalline tuff. Increasing fracture offset to produce unmated fractures results in large increases in permeability up to some characteristic value of offset, beyond which permeability changes only marginally. The increase in permeability with offset appears to depend on fracture roughness and aperture, and these are different for each lithology. Overall, fractured SVZ rocks with finite offsets record permeability values consistent with those commonly found in geothermal reservoirs (>10-16 m2), which potentially allow convective/advective flow to develop. Hence, our results demonstrate that the fracture damage zones developed within the SVZ produce permeable regions, especially within the

  17. Assessing the effects of climate and volcanism on diatom and chironomid assemblages in an Andean lake near Quito, Ecuador

    Directory of Open Access Journals (Sweden)

    Neal Michelutti

    2015-12-01

    Full Text Available The tropical Andes are undergoing climate changes that rival those occurring anywhere else on the planet, and are likely to have profound consequences for ecosystems. Paleolimnological investigations of remote mountain lakes can provide details of past environmental change, especially where monitoring data are absent. Here, we reconstruct fossil diatom and chironomid communities spanning the last several hundred years from an Andean lake located in an ecological reserve near Quito, Ecuador. Both diatoms and chironomids recorded assemblage shifts reflective of changing climate conditions. The diatoms are likely responding primarily to temperature-related limnological changes, recording an increase in the number of planktonic taxa in the most recent sediments. This change is consistent with warmer conditions that result in enhanced periods of thermal stratification, allowing planktonic species to proliferate. The chironomids appear to respond mainly to a change in precipitation regime, recording a greater number of terrestrial and semi-terrestrial taxa that have been transported to the lake. A thick tephra deposit at the base of the sediment core affected both diatom and chironomid assemblages. The diatoms registered a change in species composition highlighting the ability of certain taxa to rapidly colonize new environments. In contrast, the chironomids showed a marked drop in abundance immediately following the tephra, but no change in species composition. In both cases the ecological response was short-lived, illustrating the resiliency of the lake to return to baseline conditions following volcanic inputs.

  18. Mantle enrichment by volatiles as the Nazca plate subducts beneath the Payenia backarc of the Southern Volcanic Zone, Argentina

    DEFF Research Database (Denmark)

    Brandt, Frederik Ejvang

    , minerals, fluid and melt inclusions from the Payenia backarc province of the Andean Southern Volcanic Zone. Major emphasis has been on olivine hosted melt inclusions. The study gives evidence for the role of fluids in the metasomatism of the backarc mantle, and outlines the trend of the variation...... of the metasomatism in Payenia, which is also characterized by a variation in oxidation state and other geochemical parameters of the melt inclusions, and is moreover related to mantle lithological variations. The mantle metasomatism by melts of subducted crust and fluid-borne enrichment is quantitatively modelled......, the origin of Chlorine is explained via slab-derived fluids, and the contrast between backarc and frontal arc magmas is discussed. These results add to the understanding of the origin of the complexities in the mantle wedge under arc-backarc in a subduction zone which has transition to flat slab conditions...

  19. Two new Liolaemus lizards from the Andean highlands of Southern Chile (Squamata, Iguania, Liolaemidae)

    Science.gov (United States)

    Troncoso-Palacios, Jaime; Diaz, Hugo A.; Puas, German I.; Riveros-Riffo, Edvin; Elorza, Alvaro A.

    2016-01-01

    Abstract Liolaemus is a diverse genus of lizards, subdivided into two subgenera: Liolaemus (sensu stricto) and Eulaemus, distributed mainly in Chile and Argentina. The Liolaemus elongatus-kriegi complex is the most diverse group within Liolaemus (sensu stricto), especially the species closely related to Liolaemus elongatus, which form a clade currently comprising nine species. Several Chilean species of this group have been recently described, mainly from volcanoes and poorly explored mountains. Here molecular and morphological evidence are provided for a new species of the Liolaemus elongatus clade, which is characterized by its small size and lack of dorsal pattern, unusual features for the species of this group of lizards. Additionally, the lack of precloacal pores in males of Liolaemus (sensu stricto) is a trait found in few species, which do not constitute a monophyletic group. A second new southern Chilean species is also described, without precloacal pores and supported by molecular phylogenetics to be related to Liolaemus villaricensis. Both new species were found in the same locality, near a lake located in a pre-Andean zone with Araucaria and Nothofagus forest. The two species are dedicated to prominent Lonkos (tribal chiefs) of the Mapuche and Pehuenche people: Janequeo and Leftraru. Additionally, the phylogenetic results suggest that Liolaemus lonquimayensis is a synonym of Liolaemus elongatus. PMID:27920609

  20. Two newLiolaemuslizards from the Andean highlands of Southern Chile (Squamata, Iguania, Liolaemidae).

    Science.gov (United States)

    Troncoso-Palacios, Jaime; Diaz, Hugo A; Puas, German I; Riveros-Riffo, Edvin; Elorza, Alvaro A

    2016-01-01

    Liolaemus is a diverse genus of lizards, subdivided into two subgenera: Liolaemus ( sensu stricto ) and Eulaemus , distributed mainly in Chile and Argentina. The Liolaemus elongatus-kriegi complex is the most diverse group within Liolaemus ( sensu stricto ), especially the species closely related to Liolaemus elongatus , which form a clade currently comprising nine species. Several Chilean species of this group have been recently described, mainly from volcanoes and poorly explored mountains. Here molecular and morphological evidence are provided for a new species of the Liolaemus elongatus clade, which is characterized by its small size and lack of dorsal pattern, unusual features for the species of this group of lizards. Additionally, the lack of precloacal pores in males of Liolaemus ( sensu stricto ) is a trait found in few species, which do not constitute a monophyletic group. A second new southern Chilean species is also described, without precloacal pores and supported by molecular phylogenetics to be related to Liolaemus villaricensis . Both new species were found in the same locality, near a lake located in a pre-Andean zone with Araucaria and Nothofagus forest. The two species are dedicated to prominent Lonkos (tribal chiefs) of the Mapuche and Pehuenche people: Janequeo and Leftraru. Additionally, the phylogenetic results suggest that Liolaemus lonquimayensis is a synonym of Liolaemus elongatus .

  1. Two new Liolaemus lizards from the Andean highlands of Southern Chile (Squamata, Iguania, Liolaemidae

    Directory of Open Access Journals (Sweden)

    Jaime Troncoso-Palacios

    2016-11-01

    Full Text Available Liolaemus is a diverse genus of lizards, subdivided into two subgenera: Liolaemus (sensu stricto and Eulaemus, distributed mainly in Chile and Argentina. The L. elongatus-kriegi complex is the most diverse group within Liolaemus (sensu stricto, especially the species closely related to L. elongatus, which form a clade currently comprising nine species. Several Chilean species of this group have been recently described, mainly from volcanoes and poorly explored mountains. Here molecular and morphological evidence are provided for a new species of the L. elongatus clade, which is characterized by its small size and lack of dorsal pattern, unusual features for the species of this group of lizards. Additionally, the lack of precloacal pores in males of Liolaemus (sensu stricto is a trait found in few species, which do not constitute a monophyletic group. A second new southern Chilean species is also described, without precloacal pores and supported by molecular phylogenetics to be related to Liolaemus villaricensis. Both new species were found in the same locality, near a lake located in a pre-Andean zone with Araucaria and Nothofagus forest. The two species are dedicated to prominent Lonkos (tribal chiefs of the Mapuche and Pehuenche people: Janequeo and Leftraru. Additionally, the phylogenetic results suggest that L. lonquimayensis is a synonym of L. elongatus.

  2. Low Herbivory among Targeted Reforestation Sites in the Andean Highlands of Southern Ecuador.

    Directory of Open Access Journals (Sweden)

    Marc-Oliver Adams

    Full Text Available Insect herbivory constitutes an important constraint in the viability and management of targeted reforestation sites. Focusing on young experimental stands at about 2000 m elevation in southern Ecuador, we examined foliar damage over one season as a function of tree species and habitat. Native tree species (Successional hardwood: Cedrela montana and Tabebuia chrysantha; fast-growing pioneer: Heliocarpus americanus have been planted among prevailing local landcover types (abandoned pasture, secondary shrub vegetation, and a Pinus patula plantation in 2003/4. Plantation trees were compared to conspecifics in the spontaneous undergrowth of adjacent undisturbed rainforest matched for height and foliar volume. Specifically, we tested the hypotheses that H. americanus as a pioneer species suffers more herbivory compared to the two successional tree species, and that damage is inversely related to habitat complexity. Overall leaf damage caused by folivorous insects (excluding leafcutter ants was low. Average leaf loss was highest among T. chrysantha (7.50% ± 0.19 SE of leaf area, followed by H. americanus (4.67% ± 0.18 SE and C. montana (3.18% ± 0.15 SE. Contrary to expectations, leaf area loss was highest among trees in closed-canopy natural rainforest, followed by pine plantation, pasture, and secondary shrub sites. Harvesting activity of leafcutter ants (Acromyrmex sp. was strongly biased towards T. chrysantha growing in open habitat (mean pasture: 2.5%; shrub: 10.5% where it could result in considerable damage (> 90.0%. Insect folivory is unlikely to pose a barrier for reforestation in the tropical Andean mountain forest zone at present, but leafcutter ants may become problematic if local temperatures increase in the wake of global warming.

  3. Low Herbivory among Targeted Reforestation Sites in the Andean Highlands of Southern Ecuador.

    Science.gov (United States)

    Adams, Marc-Oliver; Fiedler, Konrad

    2016-01-01

    Insect herbivory constitutes an important constraint in the viability and management of targeted reforestation sites. Focusing on young experimental stands at about 2000 m elevation in southern Ecuador, we examined foliar damage over one season as a function of tree species and habitat. Native tree species (Successional hardwood: Cedrela montana and Tabebuia chrysantha; fast-growing pioneer: Heliocarpus americanus) have been planted among prevailing local landcover types (abandoned pasture, secondary shrub vegetation, and a Pinus patula plantation) in 2003/4. Plantation trees were compared to conspecifics in the spontaneous undergrowth of adjacent undisturbed rainforest matched for height and foliar volume. Specifically, we tested the hypotheses that H. americanus as a pioneer species suffers more herbivory compared to the two successional tree species, and that damage is inversely related to habitat complexity. Overall leaf damage caused by folivorous insects (excluding leafcutter ants) was low. Average leaf loss was highest among T. chrysantha (7.50% ± 0.19 SE of leaf area), followed by H. americanus (4.67% ± 0.18 SE) and C. montana (3.18% ± 0.15 SE). Contrary to expectations, leaf area loss was highest among trees in closed-canopy natural rainforest, followed by pine plantation, pasture, and secondary shrub sites. Harvesting activity of leafcutter ants (Acromyrmex sp.) was strongly biased towards T. chrysantha growing in open habitat (mean pasture: 2.5%; shrub: 10.5%) where it could result in considerable damage (> 90.0%). Insect folivory is unlikely to pose a barrier for reforestation in the tropical Andean mountain forest zone at present, but leafcutter ants may become problematic if local temperatures increase in the wake of global warming.

  4. Geochemical constraints on the relationship between the Miocene-Pliocene volcanism and tectonics in the Palaoco and Fortunoso volcanic fields, Mendoza Region, Argentina

    DEFF Research Database (Denmark)

    Dyhr, Charlotte Thorup; Holm, Paul Martin; Llambias, Eduardo J.

    2013-01-01

    New 40Ar/39Ar analyses constrain the formation of the volcanic succession of Sierra de Palaoco in the present back-arc of the Andean Southern Volcanic Zone (SVZ), near 36°S, to the Late Miocene and assigns them to the Huincán II Formation. The composition of major and trace elements, Sr, Nd and P...

  5. Late Neogene Volcanic Stratigraphy in the Southern Puertecitos Volcanic Province of Baja California: Time Constraints and Vent Source Location

    Science.gov (United States)

    Garcia-Carrillo, P.; Martin, A.; Lopez-Martinez, M.; Cañon, E.

    2007-05-01

    Late Neogene syn-rift explosive volcanism occurred in the Puertecitos Volcanic Province along the western margin of the Gulf of California. This volcanic episode is possibly related to extension during opening of the lower Delfin basin in mid-late Pliocene time. The volcanic stratigraphy in the southern Puertecitos Volcanic Province comprises three main groups: group 1 is a mid-Miocene, arc-related volcanic and sedimentary apron. Groups 2 and 3 are syn-rift volcanic units interstratified within alluvial conglomerate. Group 2 includes a non-welded, crystal-rich pyroclastic flow deposit, and a dark glassy dacite lava flow. Distinctive mineralogy of the crystal tuff is augite, sanidine-microcline and quartz. Two 39Ar/40Ar laser step-heating experiments on sanidine grains yielded an 6.18 ± 0.03 Ma isochron age, consistent with a 6.1 ± 0.4 Ma plateau age obtained in the dacite lava. Thickness of the crystal tuff varies from 35 m in the northeast to 10 m in the southwest along 5 km of distance. Group 3 is characterized by the lack of quartz and potassic feldspar phenocrysts. Three laser step heating experiments on groundmass samples constrain this pulse of explosive volcanism between 2.9 ± 0.1 and 2.3 ± 0.03 Ma. Thicknesses of individual units increase to the northeast and collectively reach up to 150 m. Isopath maps for distinctive flow-units indicate consistent dispersion direction to the SW (average azimuth 210° ± 15°). This inferred flow direction is similar to the orientation of magnetic susceptibility axes measured in 20 oriented samples that yield a mean azimuth of 214°± 24°. In group 3 flow-units eutaxitic foliation is concordant and dips 8-20° to the ENE. Tilting of the volcanic sequence is produced by a series of NNW-trending, west-dipping, high-angle normal faults with less than 40 m of throw. Balanced cross- sections in the southern Puertecitos Volcanic Province indicates that post-2.8 Ma extension is less than 15% suggesting that major deformation

  6. Evolving metasomatic agent in the North Andean subduction, deduced from magma composition of the long-lived Pichincha volcanic complex (Ecuador)

    Science.gov (United States)

    Samaniego, P.; Robin, C.; Chazot, G.; Bourdon, E. P.; Jo, C.

    2009-12-01

    Geochemical studies of long-lived volcanic complexes are crucial for the understanding of the nature and composition of the subduction component of arc magmatism. The Pichincha Volcanic Complex (Northern Andean Volcanic Zone) consists of: (1) an older, highly eroded edifice, the Rucu Pichincha, whose lavas are mostly andesites, erupted from 1100 to 150 ka; and (2) a younger, essentially dacitic, Guagua Pichincha composite edifice, with three main construction phases (Basal Guagua Pichincha, Toaza and Cristal) which formed over the last 60 ka. This structural evolution was accompanied by a progressive increase of most incompatible trace element abundances and ratios, as well as by a sharp decrease of fluid-mobile to fluid-immobile element ratios. Geochemical data indicate that fractional crystallization of an amphibole-rich cumulate could account for the evolution from the Guagua Pichincha andesites to dacites. However, in order to explain the passage from the Rucu Pichincha andesites to Guagua Pichincha dacites, the mineralogical and geochemical data indicate the predominance of magma mixing processes between a mafic, trace-element depleted, mantle-derived end-member, and a siliceous, trace-element enriched, adakitic end-member. The systematic variation of trace element abundances and ratios in primitive samples of this volcanic complex leads us to propose that the Rucu Pichincha magmas came from a hydrous-fluid metasomatized mantle wedge, whereas Guagua Pichincha magmas are related to partial melting of a siliceous-melt metasomatized mantle. This temporal evolution implies a change from dehydration to partial melting of the slab, which may be associated with an increase in the geothermal gradient along the slab due to the presence of the subducted Carnegie Ridge at the subduction system. This work emphasizes the importance of studying arc-magma systems over long periods of time (of at least 1 million of years), in order to evaluate the potential variations of the

  7. Quaternary basaltic volcanism in the Golden Trout Volcanic Field, southern Sierra Nevada, California

    Science.gov (United States)

    Browne, Brandon L.; Becerra, Raul; Campbell, Colin; Saleen, Phillip; Wille, Frank R.

    2017-09-01

    The Golden Trout Volcanic Field (GTVF) produced the only Quaternary eruptions of mafic magma within the southern Sierra Nevada block. Approximately 38 × 106 m3 of basalt, trachy-basalt, basaltic trachy-andesite, and basaltic andesite (50.1-56.1% SiO2, 1.1-1.9% K2O, and 5.4-9.1% MgO) was erupted from four vents within a 10 km2 portion of the GTVF, which also includes rhyolite domes that are not considered in this study. The vents include, from oldest to youngest: Little Whitney Cone, South Fork Cone, Tunnel Cone, and unglaciated Groundhog Cone. Little Whitney Cone is a 120 m-high pile of olivine-CPX-phyric scoria produced during a Strombolian-style eruption overlying two columnar jointed lava flows. Tunnel Cone formed through a Hawaiian-style eruption along a 400 m-long north-south trending fissure that excavated at least three 25-65 m-wide craters. Crater walls up to 12 m high are composed of plagioclase-olivine-phyric spatter-fed flows that dip radially away from the crater center and crumble to form Tunnel Cone's steep unconsolidated flanks. South Fork Cone is a 170 m-high pile of plagioclase-olivine-phyric scoria that formed during Strombolian to violent Strombolian eruptions. South Fork Cone overlies the South Fork Cone lava, a 9.5 km-long flow ( 12 × 106 km3) that reached the Kern River Canyon to the west. Scoria and airfall deposits originating from South Fork Cone are located up to 2 km from the vent. Groundhog Cone is a 140 m-tall cinder and spatter cone breached on the north flank by a 13 × 106 m3 lava flow that partially buried the South Fork Cone lava and extends 7.5 km west to Kern River Canyon. Incompatible trace element concentrations and ratios show vent-specific trends but are unsystematic when plotted in terms of all mafic GTVF vents, implying that GTVF basalts were derived from a lithospheric mantle source and ascended through thick granitic Sierra Nevada crust as discrete batches that underwent different degrees of crustal contamination

  8. Volcanism and tectonics in action along the Southern Andes: space-time analysis of current deformation recorded by GNSS and seismicity

    Science.gov (United States)

    Tassara, Andres; Giorgis, Scott; Yáñez, Vicente; Garcia, Francisco; Baez, Juan Carlos; Lara, Luis

    2016-04-01

    The Southern Andean margin is perhaps the best natural laboratory on Earth to study the relationship between volcanism and active tectonics. Convergence between Nazca and Southamerican plates along the Southern Andes is relatively rapid (66 mm/yr) and slightly oblique (15-20°) with respect to the continental margin. The trench-normal component of convergence is mainly released along the megathrust fault by great subduction earthquakes. At the time scale of millions of years, the trench-parallel component has been mostly released by dextral strike-slip along the Liquiñe-Ofqui Fault Zone (LOFZ), a long-lived (Eocene-Recent) crustal-scale structure more than 1000 km long which is intimately related to the Southern Volcanic Zone (SVZ) of the Andes. Volcanic systems of the SVZ are clustered near intersections of the LOFZ with oblique and inherited basement structures. In contrast with this clear relationship between crustal tectonics and volcanism at long time-scales, little is still known (here and elsewhere) at the time scale of earthquakes and eruptions about the mechanisms by which they actually interact to create the observed long-term relationship. Into this framework, we are taking advantage of the largely unpublished and very unique geodetic and seismic database that is available for us via the project Active Tectonics and Volcanism at the Southern Andes (ACT&VO-SA) in order to gain understanding about the physical link between contemporary tectono-volcanic processes occurred recently along the southern Andean margin and the long-term construction of the LOFZ-SVZ. We will present a characterization of the current surface velocity field along this region deduced from a kinematic analysis of a network of continuous GNSS stations operating since 2007 and relate this with the spatio-temporal evolution of crustal seismicity recorded by seismic networks maintained by Chilean institutions in order to analyze the possible connection between crustal deformation and

  9. Evolving metasomatic agent in the Northern Andean subduction zone, deduced from magma composition of the long-lived Pichincha volcanic complex (Ecuador)

    Science.gov (United States)

    Samaniego, Pablo; Robin, Claude; Chazot, Gilles; Bourdon, Erwan; Cotten, Joseph

    2010-08-01

    Geochemical studies of long-lived volcanic complexes are crucial for the understanding of the nature and composition of the subduction component of arc magmatism. The Pichincha Volcanic Complex (Northern Andean Volcanic Zone) consists of: (1) an old, highly eroded edifice, the Rucu Pichincha, whose lavas are mostly andesites, erupted from 1,100 to 150 ka; and (2) a younger, essentially dacitic, Guagua Pichincha composite edifice, with three main construction phases (Basal Guagua Pichincha, Toaza, and Cristal) which developed over the last 60 ka. This structural evolution was accompanied by a progressive increase of most incompatible trace element abundances and ratios, as well as by a sharp decrease of fluid-mobile to fluid-immobile element ratios. Geochemical data indicate that fractional crystallization of an amphibole-rich cumulate may account for the evolution from the Guagua Pichincha andesites to dacites. However, in order to explain the transition between the Rucu Pichincha andesites and Guagua Pichincha dacites, the mineralogical and geochemical data indicate the predominance of magma mixing processes between a mafic, trace-element depleted, mantle-derived end-member, and a siliceous, trace-element enriched, adakitic end-member. The systematic variation of trace element abundances and ratios in primitive samples leads us to propose that the Rucu Pichincha magmas came from a hydrous-fluid metasomatized mantle wedge, whereas Guagua Pichincha magmas are related to partial melting of a siliceous-melt metasomatized mantle. This temporal evolution implies a change from dehydration to partial melting of the slab, which may be associated with an increase in the geothermal gradient along the slab due to the presence of the subducted Carnegie Ridge at the subduction system. This work emphasizes the importance of studying arc-magma systems over long periods of time (of at least 1 million of years), in order to evaluate the potential variations of the slab contribution

  10. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    in basalts from all the studied volcanic fields in Payenia is signs of lower crustal contamination indicating assimilation of, in some cases, large amounts of trace element depleted, mafic, plagioclase-bearing rocks. The northern Payenia is dominated by backarc basalts erupted between late Pliocene to late...... are isotopically similar to the Andean Southern Volcanic Zone arc rocks and their mantle source possibly resembled the source of South Atlantic N-MORB prior to addition of fluids and melts from the subduction channel. However, it must have been more enriched than the estimates of depleted upper mantle from...

  11. Towards understanding of carbon stocks and stabilization in volcanic ash soils in natural Andean ecosystems of northern Ecuador

    NARCIS (Netherlands)

    Tonneijck, F.H.; Jansen, B.; Nierop, K.G.J.; Verstraten, J.M.; Sevink, J.; de Lange, L.

    2010-01-01

    Volcanic ash soils contain very large stocks of soil organic matter (SOM) per unit area. Consequently, they constitute potential sources or sinks for the greenhouse gas carbon dioxide. Whether soils become a net carbon source or sink with climate and/or land-use change depends on the stability of

  12. Managing the effects of accelerated glacial melting on volcanic collapse and debris flows: Planchon-Peteroa Volcano, Southern Andes

    Science.gov (United States)

    Tormey, Daniel

    2010-11-01

    Glaciated mountains are among the most sensitive environments to climatic changes, and recent work has shown that large-scale glacial melting, including at the end of the Pleistocene, caused a significant increase in the incidence of large volcanic sector collapse and debris flows on then-active volcanoes. With current accelerated rates of glacial melting, glaciated active volcanoes are at an increasing risk of sector collapse, debris flow and landslide. These catastrophic events are Earth's most damaging erosion phenomenon, causing extensive property damage and loss of life. This paper illustrates these effects in well-studied settings, focusing on the end-Pleistocene to Holocene glaciovolcanic growth and destruction of the cone of the active volcano Planchon-Peteroa in the Andean Southern Volcanic Zone at latitude 35° 15' S, along the border between Chile and Argentina. The development of the volcano over the last 14,000 years illustrates how glacial melting and magmatic activity can trigger landslides and sector collapses. Planchon had a large sector collapse that produced a highly mobile and erosive debris avalanche 11,000 years BP, and other slope instabilities during the end-Pleistocene/early Holocene deglaciation. The summit amphitheater left after the sector collapse was subject to alternating periods of glaciation and melting-induced lake formation. Breaching of the moraine dams then formed lahars and landslides originating at the western edge of the summit amphitheater, and the deposits are preserved along the western flank of the volcano. Deep incision of moraine deposits further down the western slope of the volcano indicates that the lahars and landslides were water-rich and had high erosive power. As illustrated by Planchon-Peteroa, the interplay among glacial growth and melting, magmatic activity, and slope stability is complex, but must be accounted for in volcanic hazard assessment. Planchon-Peteroa currently has the southernmost temperate zone

  13. Late Cretaceous tectonothermal evolution of the southern Lhasa terrane, South Tibet: Consequence of a Mesozoic Andean-type orogeny

    Science.gov (United States)

    Dong, Xin; Zhang, Ze-ming; Klemd, Reiner; He, Zhen-yu; Tian, Zuo-lin

    2018-04-01

    The Lhasa terrane of the southern Tibetan Plateau participated in a Mesozoic Andean-type orogeny caused by the northward subduction of the Neo-Tethyan oceanic lithosphere. However, metamorphic rocks, which can unravel details of the geodynamic evolution, are rare and only exposed in the south-eastern part of the Lhasa terrane. Therefore, we conducted a detailed petrological, geochemical and U-Pb zircon geochronological study of the late Cretaceous metamorphic rocks and associated gabbros from the Nyemo inlier of the southern Lhasa terrane. The Nyemo metamorphic rocks including gneisses, schists, marbles and calc-silicate rocks, experienced peak amphibolite-facies contact metamorphism under P-T conditions of 3.5-4.0 kbar and 642-657 °C with a very high geothermal gradient of 45-50 °C/km, revealing a distinct deflection from the steady-state geotherm during low-pressure metamorphism. Inherited magmatic zircon cores from the metamorphic rocks yielded protolith ages of 197-194 Ma, while overgrowth zircon rims yielded metamorphic ages of ca. 86 Ma. Whole-rock chemistry and zircon Hf isotopes suggest that the protoliths of the gneisses and schists are andesites and tuffs of the early Jurassic Sangri Group, which were derived from a depleted mantle source of a continental arc affinity. The coeval intimately-associated gabbro (ca. 86 Ma) crystallized under P-T conditions of 3.5-5.3 kbar and 914-970 °C, supplying the heat flux high enough to cause the contact metamorphism of the Sangri Group rock types. We propose that the intrusion of the gabbro and a simultaneous pressure increase of up to 4.0 kbar, which is related to crustal thickening due to crustal overthrusting and the intrusion of mafic material, resulted in the late Cretaceous metamorphism of the early Jurassic Sangri Group during an Andean-type orogeny. Furthermore the Nyemo metamorphic rocks, which have previously been considered to represent slivers of the Precambrian metamorphic basement of the Lhasa terrane

  14. Nature and origin of secondary mineral coatings on volcanic rocks of the Black Mountain, Stonewall Mountain, and Kane Springs Wash volcanic centers, southern, Nevada

    Science.gov (United States)

    Taranik, James V.; Hsu, Liang C.; Spatz, David M.; Chenevey, Michael J.

    1989-10-01

    The following subject areas are covered: (1) genetic, spectral, and LANDSAT Thematic Mapper imagery relationship between desert varnish and tertiary volcanic host rocks, southern Nevada; (2) reconnaissance geologic mapping of the Kane Springs Wash Volcanic Center, Lincoln County, Nevada, using multispectral thermal infrared imagery; (3) interregional comparisons of desert varnish; and (4) airborne scanner (GERIS) imagery of the Kane Springs Wash Volcanic Center, Lincoln County, Nevada.

  15. Nature and origin of secondary mineral coatings on volcanic rocks of the Black Mountain, Stonewall Mountain, and Kane Springs Wash volcanic centers, southern, Nevada

    Science.gov (United States)

    Taranik, James V.; Hsu, Liang C.; Spatz, David M.; Chenevey, Michael J.

    1989-01-01

    The following subject areas are covered: (1) genetic, spectral, and LANDSAT Thematic Mapper imagery relationship between desert varnish and tertiary volcanic host rocks, southern Nevada; (2) reconnaissance geologic mapping of the Kane Springs Wash Volcanic Center, Lincoln County, Nevada, using multispectral thermal infrared imagery; (3) interregional comparisons of desert varnish; and (4) airborne scanner (GERIS) imagery of the Kane Springs Wash Volcanic Center, Lincoln County, Nevada.

  16. Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau

    Science.gov (United States)

    Purinton, Benjamin; Bookhagen, Bodo

    2017-04-01

    In this study, we validate and compare elevation accuracy and geomorphic metrics of satellite-derived digital elevation models (DEMs) on the southern Central Andean Plateau. The plateau has an average elevation of 3.7 km and is characterized by diverse topography and relief, lack of vegetation, and clear skies that create ideal conditions for remote sensing. At 30 m resolution, SRTM-C, ASTER GDEM2, stacked ASTER L1A stereopair DEM, ALOS World 3D, and TanDEM-X have been analyzed. The higher-resolution datasets include 12 m TanDEM-X, 10 m single-CoSSC TerraSAR-X/TanDEM-X DEMs, and 5 m ALOS World 3D. These DEMs are state of the art for optical (ASTER and ALOS) and radar (SRTM-C and TanDEM-X) spaceborne sensors. We assessed vertical accuracy by comparing standard deviations of the DEM elevation versus 307 509 differential GPS measurements across 4000 m of elevation. For the 30 m DEMs, the ASTER datasets had the highest vertical standard deviation at > 6.5 m, whereas the SRTM-C, ALOS World 3D, and TanDEM-X were all radar DEMs (e.g., TanDEM-X) for geomorphometry are promising, but airborne or terrestrial data are still necessary for meter-scale analysis.

  17. A new species of Andean semiaquatic lizard of the genus Potamites (Sauria, Gymnophtalmidae from southern Peru

    Directory of Open Access Journals (Sweden)

    Germán Chávez

    2012-01-01

    Full Text Available We describe a new lizard species of the genus Potamites from the montane forests of the Cordillera de Vilcabamba (Cusco region and Apurimac River valley (Ayacucho region, between 1500 and 2000 meters of elevation, in southern Peru. The new species is distinguishable from all other species of the genus mainly byhighly keeled scattered scales on dorsum and females lacking femoral pores.

  18. A new species of Andean semiaquatic lizard of the genus Potamites (Sauria, Gymnophtalmidae) from southern Peru.

    Science.gov (United States)

    Chávez, Germán; Vásquez, Diego

    2012-01-01

    We describe a new lizard species of the genus Potamites from the montane forests of the Cordillera de Vilcabamba (Cusco region) and Apurimac River valley (Ayacucho region), between 1500 and 2000 meters of elevation, in southern Peru. The new species is distinguishable from all other species of the genus mainly by having highly keeled scattered scales on dorsum and females lacking femoral pores.

  19. Application of ASAR-ENVISAT Data for Monitoring Andean Volcanic Activity : Results From Lastarria-Azufre Volcanic Complex (Chile-Argentina)

    Science.gov (United States)

    Froger, J.; Remy, D.; Bonvalot, S.; Franco Guerra, M.

    2005-12-01

    Since the pioneer study on Mount Etna by Massonnet et al., in 1995, several works have illustrated the promising potentiality of Synthetic Aperture Radar Interferometry (INSAR) for the monitoring of volcanoes. In the case of wide, remote or hazardous volcanic areas, in particular, INSAR represents a safer and more economic way to acquire measurements than from ground based geodetic networks. Here we present the preliminary results of an interferometric survey made with ASAR-ENVISAT data on a selection of South American volcanoes where deformation signals had been previously evidenced or are expected. An interesting result is the detection of a present-day active ground deformation on the Azufre-Lastarria area (Chile-Argentina) indicating that process, identified during 1998-2000 by Pritchard and Simmons (2004) from ERS data, is still active. The phase signal visible on ASAR interferograms (03/2003-06/2005) is roughly elliptical with a 45 km NNE-SSW major axis. Its amplitude increases as a function of time and is compatible with ground uplift in the line of sight of the satellite. The ASAR time series (up to 840 days, 7 ASAR images) indicates variable deformation rate that might confirm the hypothesis of a non uniform deformation process. We investigated the origin and the significance of the deformation using various source modelling strategies (analytical and numerical). The observed deformation can be explained by the infilling of an elliptical magmatic reservoir lying between 7 and 10 km depth. The deformation could represent the first stage of a new caldera forming as it is correlated with a large, although subtle, topographic depression surrounded by a crown of monogenetic centers. A short wavelength inflation has also been detected on Lastaria volcano. It could result from the on-going infilling of a small subsurface magmatic reservoir, eventually supplied by the deeper one. All these observations point out the need of a closer monitoring of this area in

  20. Ancient volcanic rocks identification the Western part of Yogyakarta Southern mountains based on geoelectrical measurement

    International Nuclear Information System (INIS)

    Winarti; Hill Gendoet Hartono

    2015-01-01

    The study area is located between western part of Yogyakarta plains and Southern Mountains. The morphology and lithology along the Berbah-Imogiri show the existence of an ancient volcano. This is proven by outcrop of volcanic rock like lava, breccia and tuff. The aim of this study is to identify the existence of ancient volcanic rocks along Berbah-Imogiri based on geoelectrical data. The method used to perform measurements at four locations geoelectrical mapping with dipole-dipole configuration a long stretch of track for every 500 meters. Geoelectrical measurement results showed on track 1 in Source Kulon-Kalitirto, District Berbah, interpreted as volcanic rocks such as basalt lava and tuff. Tracks 2 in Pilang-Srimulyo, District Piyungan, interpreted as volcanic rocks of scoria breccia. Tracks 3 in Ngeblak-Bawuran, District Pleret, interpreted as lava and tuff. And track 4 on Guyangan-Wonolelo, District Pleret interpreted as form of tuff and lava. Volcanic rocks are generally having a high resistivity value > 300 Ωm. The content of water or mineralization tends to reduce the resistivity value of resistant volcanic rock. (author)

  1. Intra-arc Seismicity: Geometry and Kinematic Constraints of Active Faulting along Northern Liquiñe-Ofqui and Andean Transverse Fault Systems [38º and 40ºS, Southern Andes

    Science.gov (United States)

    Sielfeld, G.; Lange, D.; Cembrano, J. M.

    2017-12-01

    Intra-arc crustal seismicity documents the schizosphere tectonic state along active magmatic arcs. At oblique-convergent margins, a significant portion of bulk transpressional deformation is accommodated in intra-arc regions, as a consequence of stress and strain partitioning. Simultaneously, crustal fluid migration mechanisms may be controlled by the geometry and kinematics of crustal high strain domains. In such domains shallow earthquakes have been associated with either margin-parallel strike-slip faults or to volcano-tectonic activity. However, very little is known on the nature and kinematics of Southern Andes intra-arc crustal seismicity and its relation with crustal faults. Here we present results of a passive seismicity study based on 16 months of data collected from 33 seismometers deployed along the intra-arc region of Southern Andes between 38˚S and 40˚S. This region is characterized by a long-lived interplay among margin-parallel strike-slip faults (Liquiñe-Ofqui Fault System, LOFS), second order Andean-transverse-faults (ATF), volcanism and hydrothermal activity. Seismic signals recorded by our network document small magnitude (0.2P and 2,796 S phase arrival times have been located with NonLinLoc. First arrival polarities and amplitude ratios of well-constrained events, were used for focal mechanism inversion. Local seismicity occurs at shallow levels down to depth of ca. 16 km, associated either with stratovolcanoes or to master, N10˚E, and subsidiary, NE to ENE, striking branches of the LOFS. Strike-slip focal mechanisms are consistent with the long-term kinematics documented by field structural-geology studies. Unexpected, well-defined NW-SE elongated clusters are also reported. In particular, a 72-hour-long, N60˚W-oriented seismicity swarm took place at Caburgua Lake area, describing a ca. 36x12x1km3 faulting crustal volume. Results imply a unique snapshot on shallow crustal tectonics, contributing to the understanding of faulting processes

  2. High Andean butterflies from southern Peru, I. Dry puna Satyrinae, with the description of two new taxa and three new records from Peru (Lepidoptera: Nymphalidae

    Directory of Open Access Journals (Sweden)

    José Alfredo Cerdeña

    2014-12-01

    Full Text Available This is the first part of a series of contributions to the knowledge of the high Andean butterfly fauna in southern Peru. In this work the butterfly species of the subfamily Satyrinae present in the dry puna of Peru are reviewed. A new species, Pampasatyrus gorkyi sp. nov. and a new subspecies Argyrophorus lamna cuzcoensis ssp. nov. are described from the department Cusco, Peru. Three species are recorded for the first time for Peru, Argyrophorus gustavi Staudinger, Faunula euripides (Weymer and Faunula eleates (Weymer previously reported from Chile and Bolivia. Ecological and biogeographical data are provided.

  3. Addressing Human Rights in the Court of Justice of the Andean Community and the Tribunal of the Southern African Development Community

    Directory of Open Access Journals (Sweden)

    Stephen Kingah

    2014-08-01

    Full Text Available The article compares how the regional tribunals of the Andean Community (CAN and the Southern African Development Community (SADC have dealt with human rights issues in order to explore options for South-South judicial cooperation through adjudicative cross-fertilization, while taking into account specificities that characterize both regions. In doing so, focus is placed on four elements: a the scope of human rights covered by each of the regional tribunals; b the locus standi of individuals before the tribunals; c the added value of the regional tribunals; and d the restrictive role of politics in the functioning of the tribunals.

  4. The nature and origin of mineral coatings on volcanic rocks of the Black Mountain, Stonewall Mountain and Kane Springs Wash volcanic centers in southern Nevada

    Science.gov (United States)

    Taranik, J. V.; Noble, D. D.; Hsu, L. C.; Hutsinpiller, A.

    1986-01-01

    Four LANDSAT thematic mapping scenes in southern Nevada were requested at two different acquisition times in order to assess the effect of vegetation on the signature of the volcanic units. The remote sensing data acquisition and analysis portion are nearly completed. The LANDSAT thematic mapping data is of good quality, and image analysis techniques are so far successful in delineating areas with distinct spectral characteristics. Spectrally distinct areas were correlated with variations in surface coating and lithologies of the volcanic rocks.

  5. U–Pb geochronology and geochemistry of late Palaeozoic volcanism in Sardinia (southern Variscides

    Directory of Open Access Journals (Sweden)

    L. Gaggero

    2017-11-01

    Full Text Available The latest Carboniferous to lower Permian volcanism of the southern Variscides in Sardinia developed in a regional continental transpressive and subsequent transtensile tectonic regime. Volcanism produced a wide range of intermediate–silicic magmas including medium- to high-K calc-alkaline andesites, dacites, and rhyolites. A thick late Palaeozoic succession is well exposed in the four most representative Sardinian continental basins (Nurra, Perdasdefogu, Escalaplano, and Seui–Seulo, and contains substantial stratigraphic, geochemical, and geochronological evidence of the area's complex geological evolution from the latest Carboniferous to the beginning of the Triassic. Based on major and trace element data and LA-ICP-MS U–Pb zircon dating, it is possible to reconstruct the timing of post-Variscan volcanism. This volcanism records active tectonism between the latest Carboniferous and Permian, and post-dates the unroofing and erosion of nappes in this segment of the southern Variscides. In particular, igneous zircon grains from calc-alkaline silicic volcanic rocks yielded ages between 299 ± 1 and 288 ± 3 Ma, thereby constraining the development of continental strike-slip faulting from south (Escalaplano Basin to north (Nurra Basin. Notably, andesites emplaced in medium-grade metamorphic basement (Mt. Cobingius, Ogliastra show a cluster of older ages at 332 ± 12 Ma. Despite the large uncertainty, this age constrains the onset of igneous activity in the mid-crust. These new radiometric ages constitute: (1 a consistent dataset for different volcanic events; (2 a precise chronostratigraphic constraint which fits well with the biostratigraphic data and (3 insights into the plate reorganization between Laurussia and Gondwana during the late Palaeozoic evolution of the Variscan chain.

  6. Holocene tephra-fall deposits of southern and austral Andes volcanic zones (33-54oS): eruption recurrence

    International Nuclear Information System (INIS)

    Naranjo, J.A.; Polanco, E.; Lara, L; Moreno, H; Stern, C.R

    2001-01-01

    Radiometric 14 C dating is a very useful tool to study the chronostratigraphy of pyroclastic deposits. In addition, 14 C ages are essential parameters for the estimation of the recurrence time of the explosive volcanic activity. The origin, distribution and relative age of mappable Holocene tephra-fall deposits of the Southern Andes Volcanic Zone (SVZ) and Austral Andes Volcanic Zone (AVZ) from 33 o S-54 o S, were studied and their recurrence period is analysed (au)

  7. Influence of rifting episodes on seismic and volcanic activity in the southern Red Sea region

    Science.gov (United States)

    Viltres, Renier; Ruch, Joël; Doubre, Cécile; Reilinger, Rob; Ogubazghi, Ghebrebrhan; Jónsson, Sigurjón

    2017-04-01

    Rifting episodes cause large changes to the state of stress in the surrounding crust, both instantaneously (elastic stress transfer) and in the years following the episodes (viscoelastic stress transfer), and can significantly influence occurrence of future earthquakes and volcanic eruptions. Here we report on a new project that aims at studying the stress impact of rifting episodes and focuses on the southern Red Sea, Afar and Gulf of Aden region, which has seen a significant increase in rifting activity during the past decade. The Afar rift system experienced a major rifting episode (Dabbahu segment) in 2005-2010 and the southern Red Sea also appears to have had one, indicated by three volcanic eruptions in 2007, 2011-12, and 2013 (the first in the area in over a century), accompanied by several seismic swarms. In addition, Gulf of Aden had an exceptionally strong seismic swarm activity starting in late 2010 that was associated with intrusion of magma in a separate rifting episode. To explore the influence of these recent rifting episodes in the region we will use new geodetic observations, seismicity analysis and modeling. We have analyzed new GPS data collected in Eritrea, in Afar, and in southern Saudi Arabia. Comparisons with older surveys has not only resulted in better GPS velocities for the observed sites, but also revealed changes to velocities at some sites influenced by the rifting activity. We use the results along with seismic data to better constrain the timing, magnitude and duration of the rifting activity in the region. We will then apply elastic and visco-elastic stress transfer modeling to assess the associated stress changes, in particular at locations where volcanic eruptions or intrusions have occurred or where significant seismicity has been detected. The project should provide new information about the impact rifting events and episodes can have on regional volcanic and earthquake activity and how rifting episodes may influence one another.

  8. Glacial recession in the Tropical Andes from the Little Ice Age: the case of Ampato Volcanic Complex (Southern Peru

    Science.gov (United States)

    Alcalá, J.; Palacios, D.; Zamorano, J. J.

    2010-03-01

    . Annals of Glaciology, 50. Stern, C. R. (2004): Active Andean volcanism: it’s geologic and tectonic setting. Revista Geológica de Chile, 31: 161-206. Úbeda, J., Palacios D., Vazquez L. (2009 a) Reconstruction of Equilibrium Line Altitudes of Nevado Coropuna Glaciers (Southern Peru) from the Late Pleistocene to the present. Geophysical Research Abstracts, 11, EGU2009-8067-2, Vuille, M.; Francou, B.; Wagnon, P.; Juen, I. ; Kaser, G. ; Mark, B. ; y Bradley, R. (2008) : Climate change and tropical Andean glaciers : Past, present and future. Earth-Science Reviews, 89: 79-96.

  9. Paleoproterozoic volcanism in the southern Amazon Craton (Brazil): insight into its origin and deposit textures

    Science.gov (United States)

    Roverato, Matteo; Juliani, Caetano

    2014-05-01

    style that produced them. The aim of this work is to provide a preliminary detailed description of the textural facies of this old volcanic units that outcrop in the southern region of Tapajós to better understand its origins, mechanisms of genesis, and, even possible, stratigraphic relationships. Acknowledgments: we acknowledge the CNPq/CT-Mineral (Proc. 550.342/2011-7) and the INCT-Geociam (573733/2008-2) - CNPq/MCT/FAPESPA/PETROBRAS).

  10. Rhyolitic ignimbrites in the Rogerson Graben, southern Snake River Plain volcanic province: volcanic stratigraphy, eruption history and basin evolution

    Science.gov (United States)

    Andrews, Graham D. M.; Branney, Michael J.; Bonnichsen, Bill; McCurry, Michael

    2008-01-01

    The 80 km long NNE-trending Rogerson Graben on the southern margin of the central Snake River Plain, Idaho, USA, hosts a rhyolitic pyroclastic succession, 200 m thick, that records a period of successive, late-Miocene, large-volume explosive eruptions from the Yellowstone-Snake River Plain volcanic province, and contemporaneous extension. The succession, here termed the Rogerson Formation, comprises seven members (defined herein) and records at least eight large explosive eruptions with numerous repose periods. Five high-grade and extremely high-grade ignimbrites are intercalated with three non-welded ignimbrites and two volcaniclastic deposits, with numerous repose periods (palaeosols) throughout. Two of the ignimbrites are dominantly rheomorphic and lava-like but contain subordinate non-welded pyroclastic layers. The ignimbrites are typical Snake River Plain high-silica rhyolites, with anhydrous crystal assemblages and high inferred magmatic temperatures (≤ 1,025°C). We tentatively infer that the Jackpot and Rabbit Springs Members may have been emplaced from the Bruneau-Jarbidge eruptive centre on the basis of: (1) flow lineation trends, (2) crystal assemblage, and (3) radiometric age. We infer that the overlying Brown’s View, Grey’s Landing, and Sand Springs Members may have been emplaced from the Twin Falls eruptive centre on the basis of: (1) kinematic indicators (from the east), and (2) crystal assemblage. Furthermore, we have established the contemporaneous evolution of the Rogerson Graben from the emplacement of the Jackpot Member onwards, and infer that it is similar to younger half-graben along the southern margin of the Snake River Plain, formed by local reactivation of Basin and Range structures by the northeastwardly migration of the Yellowstone hot-spot.

  11. Volcanic Eruptions in the Southern Red Sea During 2007–2013

    KAUST Repository

    Jonsson, Sigurjon

    2015-04-03

    The first volcanic eruption known to occur in the southern Red Sea in over a century started on Jebel at Tair Island in September 2007. The early phase of the eruption was energetic, with lava reaching the shore of the small island within hours, destroying a Yemeni military outpost and causing a few casualties. The eruption lasted several months, producing a new summit cone and lava covering an area of 5.9 km2, which is about half the area of the island. The Jebel at Tair activity was followed by two more eruptions within the Zubair archipelago, about 50 km to the southeast, in 2011–2012 and 2013, both of which started on the seafloor and resulted in the formation of new islands. The first of these eruptions started in December 2011 in the northern part of the archipelago and lasted for about one month, generating a small (0.25 km2) oval-shaped island. Coastal erosion during the first two years following the end of the eruption has reduced the size of the island to 0.19 km2. The second event occurred in the central part of the Zubair Islands and lasted roughly two months (September–November, 2013), forming a larger (0.68 km2) island. The recent volcanic eruptions in the southern Red Sea are a part of increased activity seen in the entire southern Red Sea region following the onset of a rifting episode in Afar (Ethiopia) in 2005.

  12. Preliminary assessment of the risk of volcanism at a proposed nuclear-waste repository in the southern Great Basin

    International Nuclear Information System (INIS)

    Crowe, B.M.; Carr, W.J.

    1980-01-01

    Volcanic hazard studies of the southern Great Basin are being conducted on behalf of the Nevada Nuclear Waste Storage Investigations program. Current work is chiefly concerned with characterizing the geology, chronology, and tectonic setting of Pliocene and Quaternary volcanism in the Nevada Test Site region, and assessing volcanic risk through consequence and probability studies, particularly with respect to a potential site in the southwestern Nevada Test Site. Young ( - 6 volcanic events per year. Based on this rate, the annual probability of disruption of a 10-km 2 repository located within a 25-km radius circle centered at Yucca Mountain, southwestern Nevada Test Site, is 10 - 8 . A larger area, 50-km radius, yields a disruption probability of 10 - 9 per year. Current tectonic zonation studies of the southern Great Basin will reduce the calculated probabilities of basaltic eruption for certain areas. 21 references, 3 figures

  13. Sr and Nd isotopic and trace element compositions of Quaternary volcanic centers of the Southern Andes

    Science.gov (United States)

    Futa, K.; Stern, C.R.

    1988-01-01

    Isotopic compositions of samples from six Quaternary volcanoes located in the northern and southern extremities of the Southern Volcanic Zone (SVZ, 33-46??S) of the Andes and from four centers in the Austral Volcanic Zone (AVZ, 49-54??S) range for 87Sr 86Sr from 0.70280 to 0.70591 and for 143Nd 144Nd from 0.51314 to 0.51255. The ranges are significantly greater than previously reported from the southern Andes but are different from the isotopic compositions of volcanoes in the central and northern Andes. Basalts and basaltic andesites from three centers just north of the Chile Rise-Trench triple junction have 87Sr 86Sr, 143Nd 144Nd, La Yb, Ba La, and Hf Lu that lie within the relatively restricted ranges of the basic magmas erupted from the volcanic centers as far north as 35??S in the SVZ of the Andes. The trace element and Sr and Nd isotopic characteristics of these magmas may be explained by source region contamination of subarc asthenosphere, with contaminants derived from subducted pelagic sediments and seawater-altered basalts by dehydration of subducted oceanic lithosphere. In the northern extremity of the SVZ between 33?? and 34??S, basaltic andesites and andesites have higher 87Sr 86Sr, Rb Cs, and Hf Lu, and lower 143Nd 144Nd than basalts and basaltic andesites erupted farther south in the SVZ, which suggests involvement of components derived from the continental crust. In the AVZ, the most primitive sample, high-Mg andesite from the southernmost volcanic center in the Andes (54??S) has Sr and Nd isotopic compositions and K Rb and Ba La similar to MORB. The high La Yb of this sample suggests formation by small degrees of partial melting of subducted MORB with garnet as a residue. Samples from centers farther north in the AVZ show a regionally regular northward increase in SiO2, K2O, Rb, Ba, Ba La, and 87Sr 86Sr and decrease in MgO, Sr, K Rb, Rb Cs, and 143Nd 144Nd, suggesting increasingly greater degrees of fractional crystallization and associated intra

  14. The Marsili Volcanic Seamount (Southern Tyrrhenian Sea: A Potential Offshore Geothermal Resource

    Directory of Open Access Journals (Sweden)

    Francesco Italiano

    2014-06-01

    Full Text Available Italy has a strong geothermal potential for power generation, although, at present, the only two geothermal fields being exploited are Larderello-Travale/Radicondoli and Mt. Amiata in the Tyrrhenian pre-Apennine volcanic district of Southern Tuscany. A new target for geothermal exploration and exploitation in Italy is represented by the Southern Tyrrhenian submarine volcanic district, a geologically young basin (Upper Pliocene-Pleistocene characterised by tectonic extension where many seamounts have developed. Heat-flow data from that area show significant anomalies comparable to those of onshore geothermal fields. Fractured basaltic rocks facilitate seawater infiltration and circulation of hot water chemically altered by rock/water interactions, as shown by the widespread presence of hydrothermal deposits. The persistence of active hydrothermal activity is consistently shown by many different sources of evidence, including: heat-flow data, gravity and magnetic anomalies, widespread presence of hydrothermal-derived gases (CO2, CO, CH4, 3He/4He isotopic ratios, as well as broadband OBS/H seismological information, which demonstrates persistence of volcano-tectonic events and High Frequency Tremor (HFT. The Marsili and Tyrrhenian seamounts are thus an important—and likely long-lasting-renewable energy resource. This raises the possibility of future development of the world’s first offshore geothermal power plant.

  15. Andean waterways

    DEFF Research Database (Denmark)

    Rasmussen, Mattias Borg

    Andean Waterways explores the politics of natural resource use in the Peruvian Andes in the context of climate change and neoliberal expansion. It does so through careful ethnographic analysis of the constitution of waterways, illustrating how water becomes entangled in a variety of political...

  16. Andean waterways

    DEFF Research Database (Denmark)

    Rasmussen, Mattias Borg

    Andean Waterways explores the politics of natural resource use in the Peruvian Andes in the context of climate change and neoliberal expansion. It does so through careful ethnographic analysis of the constitution of waterways, illustrating how water becomes entangled in a variety of political, so...

  17. Recognizing Andean Uplift and the Growth of Continuous Topographic Barriers

    Science.gov (United States)

    Horton, B. K.

    2014-12-01

    Although long debated, the timing of Andean uplift and establishment of a continuous topographic barrier along western South America remains critical to biogeographic assessments of the influence of mountain uplift and erosion on Neotropical biodiversity. Recent methodological advances allow independent geologic estimates of barrier uplift and river drainage shifts that can be compared with molecular-clock calculations of genetic divergence times for various Andean and Amazonian populations. Emerging results from U-Pb geochronology and stable-isotope paleoaltimetry suggest a nearly continuous western barrier since the late Eocene-Oligocene and a complex yet decipherable Miocene-Quaternary history of eastward advancing Andean deformation, upper-crustal erosion, and foreland-directed fluvial transport. In the central Andes, U-Pb ages for detrital zircon minerals from multiple sedimentary basins suggest continuous contributions of Cenozoic-age volcanic detritus from the Western Cordillera since late Eocene-Oligocene time. Hydrogen stable isotopic signatures from volcanic glasses further suggest that the long-lived Western Cordillera magmatic arc attained modern elevations by 19-16 Ma in southern Peru. In the northern Andes, major shifts in detrital age signatures, sandstone compositions, and sediment dispersal for hinterland basins of southern Colombia and Ecuador record punctuated 12-6 Ma uplift of the Eastern Cordillera fold-thrust belt. This eastward advance of deformation helped establish the modern Amazon, Magdalena, and Orinoco river drainage systems, terminating any significant west-directed sediment transport and likely explaining late Miocene vicariance events among taxa of the northern Andes, western forearc slope, and Amazonian foreland basin.

  18. Mesozoic and cenozoic volcanic rocks from central and southern Tibet: 39Ar-40Ar dating, petrological characteristics and geodynamical significance

    International Nuclear Information System (INIS)

    Coulon, C.; Bollinger, C.; Wang, S.

    1986-01-01

    Field relations, radiometric ages and mineralogical and chemical characteristics of the orogenic volcanic rocks from the Lhasa block (Tibet) are studied. Volcanic activity started before the deposition of the Albian-Aptian sedimentary units (Takena Formation and Xigaze Group). Volcanism is volumetrically limited in the northern part of the Lhasa block: basalts, andesites and dacites are present while ignimbrites are scarce. Radiometric ages of these rocks range between 110 and 80 Ma. Conversely, in the southern part of the Lhasa block, volcanism is largely developed (Gangdese belt). There, paroxysmal activity occurred later than in the north, between 60 and 50 Ma (Lingzizong Formation). This volcanism is mainly represented by andesites and ignimbrites. A younger episode at about 15-10 Ma took place in this southern region. The mineralogical and geochemical characteristics indicate that, as a whole, the volcanic rocks from the Lhasa block belong to a calc-alkaline continental-margin series, enriched in K 2 O and other incompatible elements. Subordinate potassic alkaline lavas are present in the northern margin of the Gangdese belt; some basalts exhibit a tholeiitic affinity (Daquin area, southern region). The geodynamic significance of these Cenozoic volcanic rocks lies in the relative motion of India and the Lhasa block, after accretion of the latter to the northern Qantang block. A geodynamic model based on changes of the type of subduction of the Indian oceanic crust beneath the Lhasa block, for the period 120-40 Ma, is proposed to account for the abundance, age, and magmatic affinity of the volcanic products. (orig.)

  19. The Aysen (Southern Chile) 2007 Seismic Swarm: Volcanic or Tectonic Origin?

    Science.gov (United States)

    Comte, D.; Gallego, A.; Russo, R.; Mocanu, V.; Murdie, R.; Vandecar, J.

    2007-05-01

    The Aysen seismic swarm began January 23, 2007, with a magnitude 5.2 (USGS) earthquake and, after an apparent decrease in activity, continued with a magnitude 5.6 event on February 26. The swarm is characterized by numerous felt earthquakes of small to moderate magnitude, located at crustal depths beneath the Aysen Canal, a prominent fiord of the Chilean littoral. The region is characterized by the subduction of an active oceanic spreading ridge: the Chile Ridge, the divergent Nazca-Antarctic plate boundary, is currently subducting beneath continental South America along the Chile Trench at approximately 46.5°S, forming a plate triple junction in the vicinity of the Taitao Peninsula, somewhat south and west of the swarm. Also, the Liquine-Ofqui dextral strike- slip fault traverses the Aysen Canal in the vicinity of the swarm. This fault has been interpreted as a 1000 km long dextral intra-arc strike-slip fault zone, consisting of two major strands which extend north from the Chile Margin triple junction. The Liquiñe-Ofqui system is marked by several pull-apart basins along its trace through the area. Seismic activity along the Liquiñe-Ofqui fault zone has been poorly studied to date, largely because teleseismic events clearly related to the fault have been few, and southern hemisphere seismic stations are lacking. However, we deployed a dense temporary broad-band seismic network both onland and on the islands in the Aysen region, which allowed us to capture the initial phases of the swarm on some 20 stations, and to determine the background seismicity patterns in this area for the two years preceding the swarm. The swarm could be caused by several processes: the spatial and depth distribution of the events suggests that they are well correlated with reactivation of the southern end of the Liquiñe-Ofqui fault, as defined by geologic studies and onshore gravity data collected in southern Chile. The swarm may be related to formation of new volcanic center between

  20. Crustal seismicity associated to rpid surface uplift at Laguna del Maule Volcanic Complex, Southern Volcanic Zone of the Andes

    Science.gov (United States)

    Cardona, Carlos; Tassara, Andrés; Gil-Cruz, Fernando; Lara, Luis; Morales, Sergio; Kohler, Paulina; Franco, Luis

    2018-03-01

    Laguna del Maule Volcanic Complex (LMVC, Southern Andes of Chile) has been experiencing large rates (ca. 30 cm/yr) of surface uplift as detected since 2008 by satellite geodetic measurements. Previous works have modeled the source of this deformation as an inflating rectangular sub-horizontal sill underlying LMVC at 5 km depth, which is supposedly related to an active process of magmatic replenishment of a shallow silicic reservoir. However little is known about the tectonic context on which this activity is taking place, particularly its relation with crustal seismicity that could help understanding and monitoring the current deformation process. Here we present the first detailed characterization of the seismic activity taking place at LMVC and integrate it with structural data acquired in the field in order to illuminate the possible connection between the ongoing process of surface uplift and the activation of crustal faults. Our main finding is the recognition of repetitive volcano-tectonic (VT) seismic swarms that occur periodically between 2011 and 2014 near the SW corner of the sill modeled by InSAR studies. A cross-correlation analysis of the waveforms recorded for these VT events allows identifying three different seismic families. Families F1 and F3 share some common features in the stacked waveform and its locations, which markedly differ from those of family F2. Swarms belonging to this later family are more energetic and its energy was increasing since 2011 to a peak in January 2013, which coincide with maximum vertical velocities detected by local GPS stations. This points to a common process relating both phenomena. The location of VT seismic swarms roughly coincides with the intersection of a NE-SW lineament with a WNW-ESE lineament. The former shows clear field evidences of dextral strike-slip that are fully consistent with one nodal plane of focal mechanism for well-recorded F2 events. The conjugate nodal plane of these focal mechanisms could

  1. Active transpressional tectonics in the Andean forearc of southern Peru quantified by 10Be surface exposure dating of an active fault scarp

    Science.gov (United States)

    Benavente, Carlos; Zerathe, Swann; Audin, Laurence; Hall, Sarah R.; Robert, Xavier; Delgado, Fabrizio; Carcaillet, Julien; Team, Aster

    2017-09-01

    Our understanding of the style and rate of Quaternary tectonic deformation in the forearc of the Central Andes is hampered by a lack of field observations and constraints on neotectonic structures. Here we present a detailed analysis of the Purgatorio fault, a recently recognized active fault located in the forearc of southern Peru. Based on field and remote sensing analysis (Pléiades DEM), we define the Purgatorio fault as a subvertical structure trending NW-SE to W-E along its 60 km length, connecting, on its eastern end, to the crustal Incapuquio Fault System. The Purgatorio fault accommodates right-lateral transpressional deformation, as shown by the numerous lateral and vertical plurimetric offsets recorded along strike. In particular, scarp with a 5 m cumulative throw is preserved and displays cobbles that are cut and covered by slickensides. Cosmogenic radionuclide exposure dating (10Be) of quartzite cobbles along the vertical fault scarp yields young exposure ages that can be bracketed between 0 to 6 ka, depending on the inheritance model that is applied. Our preferred scenario, which takes in account our geomorphic observations, implies at least two distinct rupture events, each associated with 3 and 2 m of vertical offset. These two events plausibly occurred during the last thousand years. Nevertheless, an interpretation invoking more tectonic events along the fault cannot be ruled out. This work affirms crustal deformation along active faults in the Andean forearc of southern Peru during the last thousand years.

  2. Rift-related volcanism and karst geohydrology of the southern Ozark Dome

    Science.gov (United States)

    Harrison, Richard W.; Weary, David J.; Orndorff, Randall C.; Repetski, John E.; Pierce, Herbert A.; Lowell, Gary R.; Evans, Kevin R.; Aber, James S.

    2010-01-01

    This field trip examines the geology and geohydrology of a dissected part of the Salem Plateau in the Ozark Plateaus province of south-central Missouri. Rocks exposed in this area include karstified, flat-lying, lower Paleozoic carbonate platform rocks deposited on Mesoproterozoic basement. The latter is exposed as an uplift located about 40 mi southwest of the St. Francois Mountains and form the core of the Ozark dome. On day 1, participants will examine and explore major karst features developed in Paleozoic carbonate strata on the Current River; this will include Devil's Well and Round Spring Cavern as well as Montauk, Round, Alley, and Big Springs. The average discharge of the latter is 276 × 106 gpd and is rated in the top 20 springs in the world. Another, Alley Spring, is equally spectacular with an average discharge of 81 × 106 gpd. Both are major contributors to the Current and Eleven Point River drainage system which includes about 50 Mesoproterozoic volcanic knobs and two granite outcrops. These knobs are mainly caldera-erupted ignimbrites with a total thickness of 7–8 km. They are overlain by post-collapse lavas and intruded by domes dated at 1470 Ma. Volcaniclastic sediment and air-fall lapilli tuff are widely distributed along this synvolcanic unconformity. On day 2, the group will examine the most important volcanic features and the southernmost granite exposure in Missouri. The trip concludes with a discussion of the Missouri Gravity Low, the Eminence caldera, and the volcanic history of southern Missouri as well as a discussion of geologic controls on regional groundwater flow through this part of the Ozark aquifer.

  3. Volcanic-Plutonic Connection in the Tilzapotla Caldera Ignimbrites in Southern Mexico

    Science.gov (United States)

    Martiny, B. M.; Moran Zenteno, D. J.; Roberge, J.; Zuñiga-Lagunes, L.; Flores-Huerta, D.; Solari, L.; Lopez-Martinez, M.

    2011-12-01

    Age and compositional similarities in broad exposures of volcanic and plutonic rocks in the central sector of the late Eocene-early Oligocene silicic volcanic province in southern Mexico provide an excellent opportunity for studying the genetic connection between the volcanic and plutonic realms. The Taxco-Tilzapotla sector is of particular interest given the presence of a NW-SE oriented elliptical dome structure (50 x 35 km) that encloses the Tilzapotla caldera, three medium-grained plutons one of which contains mafic magmatic enclaves, hypabyssal intrusive bodies, rhyolitic domes, and voluminous ignimbrites. North-south trending Laramide folds in Cretaceous marine sedimentary rocks were disrupted when late Eocene magmas intruded into the upper crust, forming the dome and producing opposite plunges in pre-dome fold axes north and south of the elliptical structure. We have obtained LA-ICPMS zircon U-Pb and Ar-Ar mineral ages as well as electron microscope analyses of different magmatic facies in order to: better understand the chronology of magmatic evolution in the area; examine the possible genetic relationship between the plutonic rocks and the principal ignimbritic units, in particular the crystal-rich units; and determine possible compositional differences that might suggest the injection of different batches of magma. U-Pb crystallization ages of 37-36 Ma were determined on zircons from different facies of the Coxcatlan granodiorite. Slightly younger zircon U-Pb crystallization ages were obtained for ignimbrites from the Tilzapotla caldera (36-35 Ma) and for the more mafic Chiautle pluton (34.6 Ma) that is exposed near the southern boundary of the dome structure. Earlier work by our group established caldera collapse and extrusion of the Tilzapotla ignimbrite at 34.3 Ma. Ar-Ar dating gives cooling ages of 33 Ma in sanidine for an intracaldera ignimbrite and some late stage silicic and intermediate magmas yielded mainly between 33-32 Ma. The new and previous

  4. Stratigraphical framework of basaltic lavas in Torres Syncline main valley, southern Parana-Etendeka Volcanic Province

    Science.gov (United States)

    Rossetti, Lucas M.; Lima, Evandro F.; Waichel, Breno L.; Scherer, Claiton M.; Barreto, Carla J.

    2014-12-01

    The Paraná-Etendeka Volcanic Province records the volcanism of the Early Cretaceous that precedes the fragmentation of the South-Gondwana supercontinent. Traditionally, investigations of these rocks prioritized the acquisition of geochemical and isotopic data, considering the volcanic stack as a monotonous succession of tabular flows. Torres Syncline is a tectonic structure located in southern Brazil and where the Parana-Etendeka basalts are well preserved. This work provides a detailed analysis of lithofacies and facies architecture, integrated to petrographic and geochemical data. We identified seven distinct lithofacies grouped into four facies associations related to different flow morphologies. The basaltic lava flows in the area can be divided into two contrasting units: Unit I - pahoehoe flow fields; and Unit II - simple rubbly flows. The first unit is build up by innumerous pahoehoe lava flows that cover the sandstones of Botucatu Formation. These flows occur as sheet pahoehoe, compound pahoehoe, and ponded lavas morphologies. Compound lavas are olivine-phyric basalts with intergranular pyroxenes. In ponded lavas and cores of sheet flows coarse plagioclase-phyric basalts are common. The first pahoehoe lavas are more primitive with higher contents of MgO. The emplacement of compound pahoehoe flows is related to low volume eruptions, while sheet lavas were emplaced during sustained eruptions. In contrast, Unit II is formed by thick simple rubbly lavas, characterized by a massive core and a brecciated/rubbly top. Petrographically these flows are characterized by plagioclase-phyric to aphyric basalts with high density of plagioclase crystals in the matrix. Chemically they are more differentiated lavas, and the emplacement is related to sustained high effusion rate eruptions. Both units are low TiO2 and have geochemical characteristics of Gramado magma type. The Torres Syncline main valley has a similar evolution when compared to other Large Igneous Provinces

  5. Using faults for PSHA in a volcanic context: the Etna case (Southern Italy)

    Science.gov (United States)

    Azzaro, Raffaele; D'Amico, Salvatore; Gee, Robin; Pace, Bruno; Peruzza, Laura

    2016-04-01

    At Mt. Etna volcano (Southern Italy), recurrent volcano-tectonic earthquakes affect the urbanised areas, with an overall population of about 400,000 and with important infrastructures and lifelines. For this reason, seismic hazard analyses have been undertaken in the last decade focusing on the capability of local faults to generate damaging earthquakes especially in the short-term (30-5 yrs); these results have to be intended as complementary to the regulatory seismic hazard maps, and devoted to establish priority in the seismic retrofitting of the exposed municipalities. Starting from past experience, in the framework of the V3 Project funded by the Italian Department of Civil Defense we performed a fully probabilistic seismic hazard assessment by using an original definition of seismic sources and ground-motion prediction equations specifically derived for this volcanic area; calculations are referred to a new brand topographic surface (Mt. Etna reaches more than 3,000 m in elevation, in less than 20 km from the coast), and to both Poissonian and time-dependent occurrence models. We present at first the process of defining seismic sources that includes individual faults, seismic zones and gridded seismicity; they are obtained by integrating geological field data with long-term (the historical macroseismic catalogue) and short-term earthquake data (the instrumental catalogue). The analysis of the Frequency Magnitude Distribution identifies areas in the volcanic complex, with a- and b-values of the Gutenberg-Richter relationship representative of different dynamic processes. Then, we discuss the variability of the mean occurrence times of major earthquakes along the main Etnean faults estimated by using a purely geologic approach. This analysis has been carried out through the software code FISH, a Matlab® tool developed to turn fault data representative of the seismogenic process into hazard models. The utilization of a magnitude-size scaling relationship

  6. Additions of angiosperms to the Flora of Peru from the Andean-Amazonian forests of southern Peru

    Directory of Open Access Journals (Sweden)

    Isau Huamantupa

    2014-10-01

    Full Text Available We present 25 new records of angiosperms for the Peruvian flora, as a result of different botanical explorations conducted in southern Peru, mainly in the areas of the departments of Cusco, Apurimac and Madre de Dios.

  7. Populations of Odontesthes (Teleostei: Atheriniformes in the Andean region of Southern South America: body shape and hybrid individuals

    Directory of Open Access Journals (Sweden)

    Cecilia Conte-Grand

    Full Text Available The original distribution area of the Patagonian 'pejerrey' Odontesthes hatcheri has been subjected to the introduction of a related species; the Bonaerensean 'pejerrey' Odontesthes bonariensis. This species currently coexists with O. hatcheri in lakes and reservoirs, and can interbreed and produce fertile hybrid offspring. The purposes of this study were; a the extensive sampling of Patagonian and Andean-Cuyan populations of pejerrey, b the species identification according to taxonomic key, c validation of taxonomic results on the basis of mitochondrial DNA composition, and d applying morphometric analysis to explore the effects of hybridization and environmental conditions on body shape. Cytochrome b sequence analysis showed a high degree of genetic divergence between species and low intraspecific variation in O. hatcheri. Geometric Morphometric Analyses detected shape differences in agreement with diagnostic characteristics of each species. Putative hybrids exhibiting intermediate diagnostic characteristics were identified by Geometric Morphometric Analysis. Significant regressions between body shape and total phosphorus and altitude were found, suggesting a dependence on trophic web structure. This multi-level approach suggests the introgression of O. bonariensis into several O. hatcheri populations throughout Patagonia. Managers should take this into account when considering further exotic introductions into regions where non-native fishes have not yet become established.

  8. Two new species of Andean gymnophthalmid lizards of the genus Euspondylus (Reptilia, Squamata from central and southern Peru

    Directory of Open Access Journals (Sweden)

    Germán Chávez

    2011-06-01

    Full Text Available Two new species of lizards assigned to the genus Euspondylus from the montane forests of the Peruvian Andes in the Pasco Department (central Peru and Ayacucho Department (southern Peru both at elevations of 2550 and 3450 m, respectively, are described. The new species are distinguishable from all other Peruvian and Ecuadorian species of Euspondylus by a unique combination of morphometric, scalation and color pattern characteristics. Natural history data for the new species and for E. spinalis are also provided.

  9. Two new species of Andean gymnophthalmid lizards of the genus Euspondylus (Reptilia, Squamata) from central and southern Peru.

    Science.gov (United States)

    Chávez, Germán; Siu-Ting, Karen; Duran, Vilma; Venegas, Pablo J

    2011-01-01

    Two new species of lizards assigned to the genus Euspondylus from the montane forests of the Peruvian Andes in the Pasco Department (central Peru) and Ayacucho Department (southern Peru) both at elevations of 2550 and 3450 m, respectively, are described. The new species are distinguishable from all other Peruvian and Ecuadorian species of Euspondylus by a unique combination of morphometric, scalation and color pattern characteristics. Natural history data for the new species and for Euspondylus spinalis are also provided.

  10. Temporal and geochemical evolution of Miocene volcanism in the Andean back-arc between 36°S and 38°S and U-series analyses of young volcanic centers in the arc and back-arc, Argentina

    DEFF Research Database (Denmark)

    Dyhr, Charlotte Thorup

    . Geochemical characteristics indicate a back-arc mantle devoid of arc-like components and with a strong OIB-like signature. They erupted at a time of extension along the Andean margin. After 20 Ma, basaltic – trachyandesitic lavas with a more depleted isotopic and incompatible trace element signature...... the fluid-enriched nature of arc-related rocks (U-excess are found in most rocks) and the more OIB-like nature of the Payún Matrú complex (Th-exsess is observed in all rocks). The fluid addition to the mantle source is modeled revealing timescales of 10 – 100 ka for the fluid enrichment. For the back...

  11. People living under threat of volcanic hazard in southern Iceland: vulnerability and risk perception

    Science.gov (United States)

    Jóhannesdóttir, G.; Gísladóttir, G.

    2010-02-01

    Residents in the village of Vík and in the farming community of Álftaver in southern Iceland are living with the threat of volcanic hazards. The highly active subglacial volcano Katla has erupted approximately twice per century since the beginning of settlement around 874 AD. The last major eruption was in 1918 and Katla has recently entered an agitated stage. The purpose of this research was to (1) review residents' responses in relation to vulnerability, (2) examine their risk perception, preparedness and mitigation in relation to an eruption of Katla, and (3) investigate the public and the representative of the local authorities and emergency manager's knowledge of the official evacuation plan. In 2004, we conducted in-depth, face-to-face interviews with local residents using a snowball sample technique. All participants were permanent residents of the two communities, between the ages of 25-95 and most had lived in the area their entire lives. Regardless of the residents' knowledge about past volcanic activity of Katla and the associated future risk, many residents were doubtful about the imminent eruption forecast by scientists and they believed that the volcano is no longer active. In both communities, different social, cultural and economic factors played a central role in how people perceived natural hazards and how they dealt with the fact that their lives and livelihoods could be at risk. The participants had good knowledge about the existing evacuation plan and had participated in evacuation exercises. However, they had not made personal mitigation or preparedness plans in the event of a future eruption. In contrast to the residents of Vík, the inhabitants in Álftaver are concerned about the evacuation process and found it very confusing; they neither found the emergency plan nor the proposed methods for risk communication relevant for their farming community. The perception of the inhabitants, especially in Álftaver, does not correspond to those

  12. K-Ar ages of the Nyuto-Takakura volcanic products, southern part of the Sengan geothermal area, northeast Japan

    International Nuclear Information System (INIS)

    Suto, Shigeru; Uto, Kozo; Uchiumi, Shigeru

    1990-01-01

    The K-Ar age determination of the volcanic rocks from the Nyuto-Takakura volcano group, northeast Japan, was carried out. Nyuto-Takakura volcanoes are situated in the southern part of the Sengan geothermal area. And the Young Volcanic Rocks in the area were already divided into the Early stage volcanics (erupted in Matsuyama reversed epoch or more older epoch) and the Later stage volcanics (erupted in Brunhes normal epoch) by accumulated paleomagnetic and K-Ar age data. The results in this study are as follows; Nyuto Volcano: 0.63±0.06, 0.36±0.07 Ma, Sasamoriyama Volcano: 0.09±0.07, 0.3±0.3 Ma, Marumori Lava Dome: 0.4±0.3, 0.31±0.12 Ma, Mikadoyama Lava Dome: <1 Ma, Takakurayama-Kotakakurayama volcano: 1.4±0.5, 1.0±0.4, <0.4 Ma. The determinated ages are concordant with the volcanic stratigraphy and the paleomagnetic data. Nyuto Volcano, Sasamoriyama Volcano, Marumori Lava Dome, Mikadoyama Lava Dome and upper part of the Takakurayama-Kotakakurayama Volcano are interpreted to be erupted in Brunhes normal epoch. The volcanic rocks from the lower part of the Takakurayama-Kotakakurayama volcano show normal magnetic polarity, so they are interpreted to be erupted in Jaramillo normal polarity event. The Early stage volcanics and the Later stage volcanics in the studied area are tend to be distributed in the central part and the outer part of the area, respectively. But the determinated ages in this study show that there is no simple migration of the eruption center of the volcanic rocks from the central part to the peripheral part. There is no geothermal manifestation or alteration area around the Sasamoriyama Volcano and the Marumori Lava Dome, which are the youngest volcanoes in the studied area. So it is concluded that there is no direct correlation between the eruption age of the nearest volcano and the geothermal activity. (author)

  13. Submarine Arc Volcanism in the Southern Mariana Arc: Results of Recent ROV studies

    Science.gov (United States)

    Nichols, A. R.; Tamura, Y.; Stern, R. J.; Embley, R. W.; Hein, J. R.; Jordan, E.; Ribeiro, J. M.; Sica, N.; Kohut, E. J.; Whattam, S. A.; Hirahara, Y.; Senda, R.; Nunokawa, A.

    2009-12-01

    The submarine Diamante cross-arc volcanoes (~16°N) and the Sarigan-Zealandia Bank Multi-Volcano Complex (SZBMVC; ~16°45’N), north and south, respectively, of Anatahan Island in the southern Mariana Arc, were studied during several dives in June 2009 using the ROV Hyper-Dolphin, cruise NT09-08 (R/V Natsushima); neither has been studied in detail before. The data collected provide a new perspective on how the subduction factory operates to complement previous studies on other cross-arc volcanic chains in the Izu-Bonin-Mariana Arc. The Diamante complex consists of three major edifices, two cones (West and Central Diamante) and a more complex caldera-like edifice at the volcanic front (East Diamante). West and Central Diamante are basaltic volcanoes but East Diamante has a more complex history. Our studies indicate initial construction of a basaltic volcano. Magmatic evolution led to a violent caldera-forming and quieter dome-building events. Post-caldera quiescence allowed a carbonate platform to grow, now preserved on the eastern caldera wall. Felsic magma or hot rock provides a heat source for an active hydrothermal field associated with felsic domes in the caldera, which NOAA investigators discovered in 2004. A new type of hydrothermal deposit was discovered in the hydrothermal field, consisting of large sulfide-sulfate mounds topped by bulbous constructions of low-temperature Fe and Mn oxides. Vents on the mounds were observed to emit shimmering water. The SZBMVC consists of six closely spaced edifices whose loci are aligned along two parallel trends, one along the volcanic front (Zealandia Bank, Sarigan and South Sarigan), and one about 15 km west towards the rear-arc (Northwest Zealandia, West Zealandia and West Sarigan). Zealandia Bank dives revealed that, as with East Diamante, initial activity was basaltic and became more evolved with time. The western half of Zealandia Bank is dominated by felsic lavas centered on a small (~2 km diameter) caldera and

  14. Origin of the ca. 50 Ma Linzizong shoshonitic volcanic rocks in the eastern Gangdese arc, southern Tibet

    Science.gov (United States)

    Liu, An-Lin; Wang, Qing; Zhu, Di-Cheng; Zhao, Zhi-Dan; Liu, Sheng-Ao; Wang, Rui; Dai, Jin-Gen; Zheng, Yuan-Chuan; Zhang, Liang-Liang

    2018-04-01

    The origin of the Eocene shoshonitic rocks within the upper part of the extensive Linzizong volcanic succession (i.e., the Pana Formation) in the Gangdese arc, southern Tibet remains unclear, inhibiting the detailed investigations on the crust-mantle interaction and mantle dynamics that operate the generation of the coeval magmatic flare-up in the arc. We report mineral composition, zircon U-Pb age and zircon Hf isotope, whole-rock element and Sr-Nd-Hf isotope data for the Pana Formation volcanic rocks from Pangduo, eastern Gangdese arc in southern Tibet. The Pana volcanic rocks from Pangduo include basalts, basaltic andesites, and dacites. SIMS and LA-ICPMS zircon U-Pb dating indicates that the Pangduo dacites were erupted at 50 ± 1 Ma, representing the volcanic equivalent of the coeval Gangdese Batholith that define a magmatic flare-up at 51 ± 1 Ma. The Pangduo volcanic rocks are exclusively shoshonitic, differing from typical subduction-related calc-alkaline volcanic rocks. The basalts have positive whole-rock ƐNd(t) (+1.7) and ƐHf(t) (+3.8) with high Zr abundances (121-169 ppm) and Zr/Y ratios (4.3-5.2), most likely derived from the partial melting of an enriched garnet-bearing lithospheric mantle that was metasomatized by subduction-related components with input from asthenosphere. Compared to the basalts, similar trace elemental patterns and decreased whole-rock ƐNd(t) (-3.5 to -3.3) and ƐHf(t) (-2.5 to -1.6) of the basaltic andesites can be attributed to the input of the ancient basement-derived material of the central Lhasa subterrane into the basaltic magmas. The coherent whole-rock Sr-Nd-Hf isotopic compositions ((87Sr/86Sr)i = 0.7064-0.7069, ƐNd(t) = -6.0 to -5.2, ƐHf(t) = -5.6 to -5.0) and varying zircon ƐHf(t) (-6.0 to +4.1) of the dacites can be interpreted by the partial melting of a hybrid lower crust source (juvenile and ancient lower crust) with incorporation of basement-derived components. Calculations of zircon-Ti temperature and whole

  15. Nature and origin of mineral coatings on volcanic rocks of the Black Mountain, Stonewall Mountain, and Kane Springs Wash volcanic centers, Southern Nevada

    Science.gov (United States)

    Taranik, James V.; Hsu, Liang C.; Spatz, David

    1988-01-01

    Comparative lab spectra and Thematic Mapper imagery investigations at 3 Tertiary calderas in southern Nevada indicate that desert varnish is absorbant relative to underlying host rocks below about 0.7 to 1.3 microns, depending on mafic affinity of the sample, but less absorbant than mafic host rocks at higher wavelengths. Desert varnish occurs chiefly as thin impregnating films. Distribution of significant varnish accumulations is sparse and localized, occurring chiefly in surface recesses. These relationships result in the longer wavelength bands and high 5/2 values over felsic units with extensive desert varnish coatings. These lithologic, petrochemical, and desert varnish controlled spectral responses lead to characteristic TM band relationships which tend to correlate with conventionally mappable geologic formations. The concept of a Rock-Varnish Index (RVI) is introduced to help distinguish rocks with a potentially detectable varnish. Felsic rocks have a high RVI, and those with extensive desert varnish behave differently, spectrally, from those without extensive varnish. The spectrally distinctive volcanic formations at Stonewall Mountain provide excellent statistical class segregation on supervised classification images. A binary decision rule flow-diagram is presented to aid TM imagery analysis over volcanic terrane in semi-arid environments.

  16. Late Cenozoic volcanism, subduction, and extension in the Lassen Region of California, southern Cascade Range

    Science.gov (United States)

    Guffanti, Marianne; Clynne, Michael A.; Smith, James G.; Muffler, L. J. P.; Bullen, Thomas D.

    1990-11-01

    Hundreds of short-lived, small- to moderate-volume, mostly mafic volcanoes occur throughout the Lassen region of NE California and surround five longer-lived, large-volume, intermediate to silicic volcanic centers younger than 3 Ma. Volcanic rocks older than 7 Ma are scarce in the Lassen region. We identify 537 volcanic vents younger than 7 Ma, and we classify these into five age intervals and five compositional categories based on SiO2 content. Maps of vents by age and composition illustrate regionally representative volcanic trends. By 2 Ma, the eastern limit of voicanism had contracted westward toward the late Quaternary arc. Late Quaternary volcanism is concentrated around and north of the silicic Lassen volcanic center. The belt of most recent volcanism (25-0 ka) has been active since at least 2 Ma. Most mafic volcanism is cakalkaline basalt and basaltic andésite. However, lesser volume of low-potassium olivine tholeiite (LKOT), a geochemically distinctive basalt type found in the northern Basin and Range province, also has erupted throughout the Lassen segment of the Cascade arc since the Pliocene. Thus models of the mantle source and tectonic control of LKOT magmatism should be applicable both within and behind the subduction-related arc. Normal faults and linear groups of vents are evidence of widespread crustal extension throughout most of the Lassen region. NNW alignments of these features indicate NNW orientation of maximum horizontal stress (ENE extension), which is similar to the stress regime in the adjacent northwestern Basin and Range and northern Sierra Nevada provinces. The large, long-lived volcanic centers developed just west of a zone of closely spaced NNW trending normal faults. Within that zone of faulting, pervasive ENE extension has precluded growth of large, long-lived crustal magma systems. We interpret the western limit of the zone of NNW trending normal faults as the western boundary of the Basin and Range province where it overlaps

  17. Pioneer study of population genetics of Rhodnius ecuadoriensis (Hemiptera: Reduviidae) from the central coastand southern Andean regions of Ecuador.

    Science.gov (United States)

    Villacís, Anita G; Marcet, Paula L; Yumiseva, César A; Dotson, Ellen M; Tibayrenc, Michel; Brenière, Simone Frédérique; Grijalva, Mario J

    2017-09-01

    Effective control of Chagas disease vector populations requires a good understanding of the epidemiological components, including a reliable analysis of the genetic structure of vector populations. Rhodnius ecuadoriensis is the most widespread vector of Chagas disease in Ecuador, occupying domestic, peridomestic and sylvatic habitats. It is widely distributed in the central coast and southern highlands regions of Ecuador, two very different regions in terms of bio-geographical characteristics. To evaluate the genetic relationship among R. ecuadoriensis populations in these two regions, we analyzed genetic variability at two microsatellite loci for 326 specimens (n=122 in Manabí and n=204 in Loja) and the mitochondrial cytochrome b gene (Cyt b) sequences for 174 individuals collected in the two provinces (n=73 and=101 in Manabí and Loja respectively). The individual samples were grouped in populations according to their community of origin. A few populations presented positive F IS, possible due to Wahlund effect. Significant pairwise differentiation was detected between populations within each province for both genetic markers, and the isolation by distance model was significant for these populations. Microsatellite markers showed significant genetic differentiation between the populations of the two provinces. The partial sequences of the Cyt b gene (578bp) identified a total of 34 haplotypes among 174 specimens sequenced, which translated into high haplotype diversity (Hd=0.929). The haplotype distribution differed among provinces (significant Fisher's exact test). Overall, the genetic differentiation of R. ecuadoriensis between provinces detected in this study is consistent with the biological and phenotypic differences previously observed between Manabí and Loja populations. The current phylogenetic analysis evidenced the monophyly of the populations of R. ecuadoriensis within the R. pallescens species complex; R. pallescens and R. colombiensis were more

  18. Late Cenozoic volcanism, subduction, and extension in the Lassen region of California, Southern Cascade Range

    Energy Technology Data Exchange (ETDEWEB)

    Guffanti, M. (Geological Survey, Reston, VA (USA)); Clynne, M.A.; Smith, J.G.; Muffler, L.J.P.; Bullen, T.D. (Geological Survey, Menlo Park, CA (USA))

    1990-11-10

    The authors identify 537 volcanic vents younger than 7 Ma, and they classify these into five age intervals and five compositional categories based on SiO{sub 2} content. Maps of vents by age and composition illustrate regionally representative volcanic trends. Most mafic volcanism is calcalkaline basalt and basaltic andesite. However, lesser volume of low-potassium olivine tholeiite (LKOT), a geochemically distinctive basalt type found in the northern Basin and Range province, also has erupted throughout the Lassen segment of the Cascade arc since the Pliocene. Normal faults and linear groups of vents are evidence of widespread crustal extension throughout most of the Lassen region. NNW alignments of these features indicate NNW orientation of maximum horizontal stress (ENE extension), which is similar to the stress regime in the adjacent northwestern Basin and Range and northern Sierra Nevada provinces. They interpret the western limit of the zone of NNW trending normal faults as the western boundary of the Basin and Range province where it overlaps the Lassen segment of the Cascade arc. The Lassen volcanic region occurs above the subducting Gorda North plate but also lies within a broad zone of distributed extension that occurs in the North American lithosphere east and southeast of the present Cascadia subduction zone. The scarcity of volcanic rocks older than 7 Ma suggests that a more compressive lithospheric stress regime prior to the late Miocene extensional episode may have suppressed volcanism, even though subduction probably was occurring beneath the Lassen region.

  19. The subduction erosion and mantle source region contamination model of Andean arc magmatism: Isotopic evidence from igneous rocks of central Chile

    International Nuclear Information System (INIS)

    Stern, Charles R

    2001-01-01

    Continental crust may be incorporated in mantle-derived Andean magmas as these magmas rise through the crust (Hildreth and Moorbath, 1988), or alternatively, crust may be tectonically transported into the mantle by subduction of trench sediments and subduction erosion of the continental margin, and then added into the mantle source region of Andean magmas (Stern, 1991). Since the mantle has relatively low Sr, Nd, and Pb concentrations compared to continental crust, differences in the isotopic compositions of magmas erupted in different region of the Andes may be produced by relatively small differences in the amount of subducted crust added to the mantle source region of these magmas. By comparison, significantly larger amounts of crust must be assimilated by mantle-derived magmas to produce isotopic differences of similar magnitude. Therefore, constraining the process by which continental crust is incorporated in Andean magmas has important implications for understanding the chemical cycling that takes place in the Andean subduction-related magma factory. Isotopic data suggest the incorporation of a greater proportion of crust in Andean magmas erupted at the northern portion of the Southern Volcanic Zone of central Chile compared to those erupted in the southern portion of the Southern Volcanic Zone of south central Chile (SSVZ) (Stern et al., 1984; Futa and Stern, 1988; Hildreth and Moorbath, 1988). The NSVZ occurs just south of the current locus of the subduction of the Juan Fernandez Ridge. The southward migration of the locus of subduction of this ridge has resulted in decreasing subduction angle below the NSVZ, the eastward migration of the volcanic front of the Andean arc, and an increase in the crustal thickness below the arc. These factors together have caused changes, since the middle Miocene, in the isotopic composition of Andean igneous rocks of central Chile. The data indicate a close chronologic relation between the southward migrations of the locus

  20. Volcanic risk and tourism in southern Iceland: Implications for hazard, risk and emergency response education and training

    Science.gov (United States)

    Bird, Deanne K.; Gisladottir, Gudrun; Dominey-Howes, Dale

    2010-01-01

    This paper examines the relationship between volcanic risk and the tourism sector in southern Iceland and the complex challenge emergency management officials face in developing effective volcanic risk mitigation strategies. An early warning system and emergency response procedures were developed for communities surrounding Katla, the volcano underlying the Mýrdalsjökull ice cap. However, prior to and during the 2007 tourist season these mitigation efforts were not effectively communicated to stakeholders located in the tourist destination of Þórsmörk despite its location within the hazard zone of Katla. The hazard zone represents the potential extent of a catastrophic jökulhlaup (glacial outburst flood). Furthermore, volcanic risk mitigation efforts in Þórsmörk were based solely on information derived from physical investigations of volcanic hazards. They did not consider the human dimension of risk. In order to address this gap and provide support to current risk mitigation efforts, questionnaire surveys were used to investigate tourists' and tourism employees' hazard knowledge, risk perception, adoption of personal preparedness measures, predicted behaviour if faced with a Katla eruption and views on education. Results indicate that tourists lack hazard knowledge and they do not adopt preparedness measures to deal with the consequences of an eruption. Despite a high level of risk perception, tourism employees lack knowledge about the early warning system and emergency response procedures. Results show that tourists are positive about receiving information concerning Katla and its hazards and therefore, the reticence of tourism employees with respect to disseminating hazard information is unjustified. In order to improve the tourism sector's collective capacity to positively respond during a future eruption, recommendations are made to ensure adequate dissemination of hazard, risk and emergency response information. Most importantly education campaigns

  1. Polychronous Zirconology of Navysh Volcanics of the Ai Formation (Southern Urals)

    Science.gov (United States)

    Krasnobaev, A. A.; Puchkov, V. N.; Sergeeva, N. D.

    2018-01-01

    In order to resolve the age of Navysh volcanics (NV), which is usually attributed to the Lower Riphean of the Ai Formation, we have used geochronological, petrologic, and mineralogical methods of zirconology, apart from the SHRIMP isotopic data of single zircon grains. Moreover, TIMS isotope age analyses have been conducted, the results of which can be regarded as both controlling and providing the most correct information. The TIMS and SHRIMP data make it possible to suggest a polychronous character of the NV, which include not only Riphean, but also Paleozoic groups of volcanics. In this situation, an assessment of the scales of such polychroneity of NV and, correspondingly, of the Ai Formation as a whole becomes urgent.

  2. Can a primary remanence be retrieved from partially remagnetized Eocence volcanic rocks in the Nanmulin Basin (southern Tibet) to date the India-Asia collision?

    NARCIS (Netherlands)

    Huang, Wentao; Dupont-Nivet, Guillaume; Lippert, Peter C.; van Hinsbergen, Douwe J J; Dekkers, Mark J.; Guo, Zhaojie; Waldrip, Ross; Li, Xiaochun; Zhang, Xiaoran; Liu, Dongdong; Kapp, Paul

    2015-01-01

    Paleomagnetic dating of the India-Asia collision hinges on determining the Paleogene latitude of the Lhasa terrane (southern Tibet). Reported latitudes range from 5°N to 30°N, however, leading to contrasting paleogeographic interpretations. Here we report new data from the Eocene Linzizong volcanic

  3. Tephrostratigraphy and potassium-argon age determinations of seven volcanic ash layers in the Muddy Creek formation of southern Nevada

    International Nuclear Information System (INIS)

    Metcalf, L.A.

    1982-04-01

    Seven silicic tephra layers occur in alluvial deposits of the Muddy Creek and equivalent formations at three localities in southern Nevada. Chemical and petrographic characterization indicate the tephra were derived from seven different volcanic eruptions and do not represent any previously known tephra layers. K-Ar age determinations on minerals or glass from each layer yielded 6 to 12 m.y. ages. Discordant ages were obtained on multiple mineral phases due to incorporation of detrital contaminants. The tephra are sufficiently distinctive to constitute stratigraphic marker horizons in the Muddy Creek and equivalent formations. Derivation from the southwestern Nevada volcanic field, active 16 to 6 m.y., is highly likely for some of the tephra. The K-Ar results suggest substantial parts of the Muddy Creek Formation and equivalent basin-fill are 6 to 12 m.y., indicating basin-range faulting began prior to 12 m.y. Little tectonic deformation or physiographic change has occurrred in the past 6 m.y

  4. Paleomagnetism of Late Paleozoic and Mesozoic volcanic rocks of Southern Siberia

    Science.gov (United States)

    Fedyukin, I.; Shatsillo, A.

    2016-12-01

    The main objects of the present study are late Permian and Mesozoic volcanic rocks from Selengin-Vitim volcano-plutonic belt (South Siberia). The belt was formed in the back area of Siberian continent active margin. Volcanic rocks are presented by contrastive volcanites more than 5 km thick. The deposits are subdivided into three suits: Ungurkuy (basalts and andesites), Chernoyar (basalts, andesites and tuffs) and Hilok (basalts, pyroclastic flows and tuffs). The age of Ungurkuy suite is deemed to be between Late Carboniferous and Late Permian. The age of Chernoyar suite is Middle-late Triassic. The age og Hilok suite is Late Jurassic. Volcanic deposits of the three suits were studied to create APWP for the Siberian craton. 250 oriented samples from 40 sites were collected from the Chikoy river valley within South Siberia. All samples were characterized by interpretable paleomagnetic signal. The Ungurkuy suite has different dip and strike: from subhorizontal to 40 degrees inclination and NE course. Chernoyar rocks were collected from monoclinal structure with the dip and strike around NW declination and 5-10 degrees inclination. Hilok suite represents large subhorizontal eruptive bodies. Volcanic rocks of Ungurkuy suite show mostly monopolar (normal polarity) magnetization direction between Early Permian and Permian-Triassic Siberian poles, which indicates its Late Permian age. The normal polarity of the deposits indicates its formation in the period between Kiama superchron, characterized by reversal polarity, and Illavara hyperchron with mixed polarity - 265 Ma. Direction from Chernoyar suite is well-correlated with Late Triassic APWP of Europe, directions of magnetization are bipolar. From Hilok suite several sites show direction of magnetization similar to directions revealed from Early Cretaceous volcanites from nearby area. The magnetization is metachronous. In the other sites the directions of magnetization well-correlated with Late Jurassic APWP of Europe

  5. Ciclos tectónicos, volcánicos y sedimentarios del Cenozoico del sur de Mendoza-Argentina (35°-37°S y 69°30'W Cenozoic tectonic, volcanic and sedimentary cycles in southern Mendoza Province, Argentina (35°-37°S y 69°30'W

    Directory of Open Access Journals (Sweden)

    Ana María Combina

    2011-01-01

    Full Text Available En este trabajo se describe la estratigrafía sedimentaria y volcánica asociada a los procesos de deformación de las unidades con edades del Cretácico Tardío al Plioceno Tardío aflorantes en el sur de Mendoza, Argentina, entre los ríos Atuel y Barrancas en el ámbito de la Cordillera Principal. Se proponen tres ciclos tectovolcano-sedimentarios, limitados por discordancias regionales generadas por la acción de las Fases Incaica, Quechua, Pehuenche y Diaguita. El primer ciclo comprende las unidades volcánicas y sedimentarias del Cretácico Superior hasta el Oligoceno Superior (Formaciones Roca y Pircala-Coihueco y el Ciclo Eruptivo Molle. El segundo abarca desde el Oligoceno Tardío al Mioceno Tardío (Formación Agua de la Piedra y las Andesitas Huincán. Por último, el tercer ciclo comprende desde el Mioceno Tardío al Plioceno (Formaciones Butaló, Pincheiras, Loma Fiera, Río Diamante y las Andesitas La Brea.This article describes the volcanic and sedimentary stratigraphy and their associated proces-ses with the Andean deformation during the Late Cretaceous to Late Pliocene. The studied área is located between the Atuel and Barrancas rivers and the Main Cordillera, in southern Mendoza, Argentina. Three tectovolcano-sedimentary cycles limited by regional discordances (Inca, Quechua, Pehuenche and Diaguita are proposed. The first comprises Upper Oligocene to Upper Miocene volcanic and sedimentary units (Roca and Pircala-Coihueco formations and the Volcanic Cycle Molle. The second extends from the Late Oligocene to Late Miocene (Agua de la Piedra Formation and the Huincán Andesites volcanic cycle. Finally, the third cycle ranges from the Late Miocene to Pliocene (Butaló, Pincheiras, Loma Fiera and Rio Diamante formations and La Brea Andesites.

  6. Ductile extension of syn-magmatic lower crusts, with application to volcanic passive margins: the Ivrea Zone (Southern Alps, Italy)

    Science.gov (United States)

    Bidault, Marie; Geoffroy, Laurent; Arbaret, Laurent; Aubourg, Charles

    2017-04-01

    Deep seismic reflection profiles of present-day volcanic passive margins often show a 2-layered lower crust, from top to bottom: an apparently ductile 12 km-thick middle-lower layer (LC1) of strong folded reflectors and a 4 km-thick supra-Moho layer (LC2) of horizontal and parallel reflectors. Those layers appear to be structurally disconnected and to develop at the early stages of margins evolution. A magmatic origin has been suggested by several studies to explain those strong reflectors, favoring mafic sills intrusion hypothesis. Overlying mafic and acidic extrusives (Seaward Dipping Reflectors sequences) are bounded by continentward-dipping detachment faults rooting in, and co-structurated with, the ductile part of the lower crust (LC1). Consequently the syn-rift to post-rift evolution of volcanic passive margins (and passive margins in general) largely depends on the nature and the properties of the lower crust, yet poorly understood. We propose to investigate the properties and rheology of a magma-injected extensional lower crust with a field analogue, the Ivrea Zone (Southern Alps, Italy). The Ivrea Zone displays a complete back-thrusted section of a Variscan continental lower crust that first underwent gravitational collapse, and then lithospheric extension. This Late Paleozoic extension was apparently associated with the continuous intrusion of a large volume of mafic to acid magma. Both the magma timing and volume, and the structure of the Ivrea lower crust suggest that this section represents an adequate analogue of a syn-magmatic in-extension mafic rift zone which aborted at the end of the Permian. Notably, we may recognize the 2 layers LC1 and LC2. From a number of tectonic observations, we reconstitute the whole tectonic history of the area, focusing on the strain field evolution with time, in connection with mafic magma injection. We compare those results with available data from extensional mafic lower crusts at rifts and margins.

  7. Young volcanoes in the Chilean Southern Volcanic Zone: A statistical approach to eruption prediction based on time series

    Science.gov (United States)

    Dzierma, Y.; Wehrmann, H.

    2010-03-01

    Forecasting volcanic activity has long been an aim of applied volcanology with regard to mitigating consequences of volcanic eruptions. Effective disaster management requires both information on expected physical eruption behaviour such as types and magnitudes of eruptions as typical for the individual volcano, usually reconstructed from deposits of past eruptions, and the likelihood that a new eruption will occur within a given time. Here we apply a statistical procedure to provide a probability estimate for future eruptions based on eruption time series, and discuss the limitations of this approach. The statistical investigation encompasses a series of young volcanoes of the Chilean Southern Volcanic Zone. Most of the volcanoes considered have been active in historical times, in addition to several volcanoes with a longer eruption record from Late-Pleistocene to Holocene. Furthermore, eruption rates of neighbouring volcanoes are compared with the aim to reveal possible regional relations, potentially resulting from local to medium-scale tectonic dynamics. One special focus is directed to the two currently most active volcanoes of South America, Llaima and Villarrica, whose eruption records comprise about 50 historical eruptions over the past centuries. These two front volcanoes are considered together with Lanín Volcano, situated in the back-arc of Villarrica, for which the analysis is based on eight eruptions in the past 10 ka. For Llaima and Villarrica, affirmed tests for independence of the repose times between successive eruptions permit to assume Poisson processes; which is hampered for Lanín because of the more limited availability of documented eruptions. The assumption of stationarity reaches varying degrees of confidence depending on the time interval considered, ameliorating towards the more recent and hence probably more complete eruption record. With these pre-requisites of the time series, several distribution functions are fit and the goodness of

  8. Generation of early Archean felsic volcanics and TTG gneisses through crustal melting, eastern Kaapvaal craton, southern Africa

    Science.gov (United States)

    Kröener, A.; Hoffmann, J.; Xie, H.; Wu, F.; Münker, C.; Hegner, E.; Wong, J.; Wan, Y.; Liu, D.

    2012-12-01

    An unresolved question in early Archean granite-gneiss-greenstone terranes is whether they evolved in oceanic environments or whether older continental crust was involved. We investigated felsic volcanic rocks of the 3.55-3.2 Ga Barberton Greenstone Belt (BGB) and adjacent 3.66-3.45 TTGs in the Ancient Gneiss Complex (AGC) of Swaziland, southern Africa, using SHRIMP zircon dating as well as whole-rock Nd-Hf and Hf-in-zircon isotopes. Xenocrystic zircons in BGB felsic rocks and negative whole-rock ɛNd(t)-values with model ages of 3.6-3.7 Ga question models whereby these rocks resulted from differentiation of mafic precursors. Involvement of older crust was also likely in the formation of several TTGs and is supported by rare zircon xenocrysts and Hf-in-zircon isotopic data suggesting at least partial cannibalistic recycling of older continental crust. The felsic volcanics, interlayered with basalts and komatiites, exhibit REE patterns with distinct negative Eu-anomalies. 3 samples from the oldest felsic unit (Theespruit Fm.) have zircon ages of 3529-3552 Ma, whole-rock Nd isotopic values of -1.1 to +1.1, and model ages of 3.55-3.73 Ga. Hf isotopic data were acquired on concordant or near-concordant zircon domains analyzed on SHRIMP, and most analyses show negative ɛHf(t)-values, suggesting zircon derivation from older crustal protoliths, whereas a few analyses suggest input from a juvenile source. Hf crustal model ages are 3.60-3.95 Ga and imply a heterogeneous crustal source. The younger felsic rocks (Hoogenoeg Fm.) display well-preserved volcanic and/or sedimentary textures, and some are high in K2O and contain primary magmatic K-feldspar. 4 samples have zircon ages of 3447-3462 Ma, and 3 samples contain 3499-3541 Ma xenocrysts. Whole-rock Nd isotopic values are around -1.5 with a model age of ca. 3.69 Ga. Hf-in-zircon isotopic data are similar to those of the Theespruit rocks, and most analyses show negative ɛHf(t)-values, suggesting zircon derivation from a

  9. Buried volcanic structures in the Gulf of Naples (Southern Tyrrhenian Sea, Italy resulting from high resolution magnetic survey and seismic profiling

    Directory of Open Access Journals (Sweden)

    S. Ruggieri

    2005-06-01

    Full Text Available In this paper we present a correlation between volcanic structures and magnetic anomalies in the Gulf of Naples (Southern Tyrrhenian Sea based on high resolution magnetic profiling. A densely spaced grid of magnetic profiles coupled with multichannel seismics (seismic source Watergun 15 cubic inch was recorded in the Gulf of Naples, representing an active volcanic area during the Late Quaternary (volcanic centers of Somma-Vesuvius, Phlegraean Fields and Ischia and Procida islands. The dataset was collected during the oceanographic cruise GMS00-05 which took place during October-November 2000 in the South Tyrrhenian Sea onboard of the R/V Urania (National Research Council, Italy. Shallow volcanic structures in the subsurface of the gulf were recognized by seismo-stratigraphic analysis of high resolution profiles; the volcanic nature of some of these structures was inferred identifying the magnetic anomalies on a high resolution magnetic anomaly map of the gulf. Even if qualitative, the correlations between seismic and magnetic profiles allow us to better assess the geological structure of the Gulf of Naples.

  10. Age and duration of intra-oceanic arc volcanism built on a suprasubduction zone type oceanic crust in southern Neotethys, SE Anatolia

    Directory of Open Access Journals (Sweden)

    Fatih Karaoğlan

    2013-07-01

    Full Text Available The southeastern Anatolia comprises numbers of tectono-magmatic/stratigraphic units such as the metamorphic massifs, the ophiolites, the volcanic arc units and the granitoid rocks. All of them play important role for the late Cretaceous evolution of the southern Neotethys. The spatial and temporal relations of these units suggest the progressive development of coeval magmatism and thrusting during the late Cretaceous northward subduction/accretion. Our new U-Pb zircon data from the rhyolitic rocks of the wide-spread volcanic arc unit show ages of (83.1 ± 2.2–(74.6 ± 4.4 Ma. Comparison of the ophiolites, the volcanic arc units and the granitoids suggest following late Cretaceous geological evolution. The ophiolites formed in a suprasubduction zone (SSZ setting as a result of northward intra-oceanic subduction. A wide-spread island-arc tholeiitic volcanic unit developed on the top of the SSZ-type crust during 83–75 Ma. Related to regional plate convergence, northward under-thrusting of SSZ-type ophiolites and volcanic arc units was initiated beneath the Tauride platform (Malatya-Keban and followed by the intrusion of I-type calc-alkaline volcanic arc granitoids during 84–82 Ma. New U-Pb ages from the arc-related volcanic-sedimentary unit and granitoids indicate that under-thrusting of ophiolites together with the arc-related units beneath the Malatya-Keban platform took place soon after the initiation of the volcanic arc on the top of the SSZ-type crust. Then the arc-related volcanic-sedimentary unit continued its development and lasted at ∼75 Ma until the deposition of the late Campanian–Maastrichtian shallow marine limestone. The subduction trench eventually collided with the Bitlis-Pütürge massif giving rise to HP-LT metamorphism of the Bitlis massif. Although the development of the volcanic arc units and the granitoids were coeval at the initial stage of the subduction/accretion both tectono-magmatic units were

  11. Temporal variability and annual budget of inorganic dissolved matter in Andean Pacific Rivers located along a climate gradient from northern Ecuador to southern Peru

    Science.gov (United States)

    Moquet, Jean-Sébastien; Guyot, Jean-Loup; Morera, Sergio; Crave, Alain; Rau, Pedro; Vauchel, Philippe; Lagane, Christelle; Sondag, Francis; Lavado, Casimiro Waldo; Pombosa, Rodrigo; Martinez, Jean-Michel

    2018-01-01

    In Ecuador and Peru, geochemical information from Pacific coastal rivers is limited and scarce. Here, we present an unedited database of major element concentrations from five HYBAM observatory stations monitored monthly between 4 and 10 years, and the discrete sampling of 23 Andean rivers distributed along the climate gradient of the Ecuadorian and Peruvian Pacific coasts. Concentration (C) vs. discharge (Q) relationships of the five monitored basins exhibit a clear dilution behavior for evaporites and/or pyrite solutes, while the solute concentrations delivered by other endmembers are less variable. Spatially, the annual specific fluxes for total dissolved solids (TDS), Ca2+, HCO3-, K+, Mg2+, and SiO2 are controlled on the first order by runoff variability, while Cl-, Na+ and SO42- are controlled by the occurrence of evaporites and/or pyrite. The entire Pacific basin in Ecuador and Peru exported 30 Mt TDS·yr-1, according to a specific flux of ∼70 t·km-2·yr-1. This show that, even under low rainfall conditions, this orogenic context is more active, in terms of solute production, than the global average.

  12. Geology, geochronology, and paleogeography of the southern Sonoma volcanic field and adjacent areas, northern San Francisco Bay region, California

    Science.gov (United States)

    Wagner, David L.; Saucedo, George J.; Clahan, Kevin B.; Fleck, Robert J.; Langenheim, Victoria E.; McLaughlin, Robert J.; Sarna-Wojcicki, Andrei M.; Allen, James R.; Deino, Alan L.

    2011-01-01

    Recent geologic mapping in the northern San Francisco Bay region (California, USA) supported by radiometric dating and tephrochronologic correlations, provides insights into the framework geology, stratigraphy, tectonic evolution, and geologic history of this part of the San Andreas transform plate boundary. There are 25 new and existing radiometric dates that define three temporally distinct volcanic packages along the north margin of San Pablo Bay, i.e., the Burdell Mountain Volcanics (11.1 Ma), the Tolay Volcanics (ca. 10–8 Ma), and the Sonoma Volcanics (ca. 8–2.5 Ma). The Burdell Mountain and the Tolay Volcanics are allochthonous, having been displaced from the Quien Sabe Volcanics and the Berkeley Hills Volcanics, respectively. Two samples from a core of the Tolay Volcanics taken from the Murphy #1 well in the Petaluma oilfield yielded ages of 8.99 ± 0.06 and 9.13 ± 0.06 Ma, demonstrating that volcanic rocks exposed along Tolay Creek near Sears Point previously thought to be a separate unit, the Donnell Ranch volcanics, are part of the Tolay Volcanics. Other new dates reported herein show that volcanic rocks in the Meacham Hill area and extending southwest to the Burdell Mountain fault are also part of the Tolay Volcanics. In the Sonoma volcanic field, strongly bimodal volcanic sequences are intercalated with sediments. In the Mayacmas Mountains a belt of eruptive centers youngs to the north. The youngest of these volcanic centers at Sugarloaf Ridge, which lithologically, chemically, and temporally matches the Napa Valley eruptive center, was apparently displaced 30 km to the northwest by movement along the Carneros and West Napa faults. The older parts of the Sonoma Volcanics have been displaced at least 28 km along the Rodgers Creek fault since ca. 7 Ma. The Petaluma Formation also youngs to the north along the Rodgers Creek–Hayward fault and the Bennett Valley fault. The Petaluma basin formed as part of the Contra Costa basin in the Late Miocene and

  13. Geochemistry and tectonomagatic setting of Tertiary volcanic rocks of the Kangan area, northeast of Sarbisheh, southern Khorasan

    Directory of Open Access Journals (Sweden)

    Mahshid Malekian Dastjerdi

    2017-02-01

    Full Text Available Introduction The study area is located 12km away from the north east of Sarbisheh at the eastern border of the Lut block (Karimpour et al., 2011; Richards et al., 2012. The magmatic activity in the Lut blockhas begun in the middle Jurassic (165-162 Ma and reached its peak in the Tertiary age (Jung et al., 1983; Karimpour et al., 2011. Volcanic and subvolcanic rocks in the Tertiary age cover over half of the Lut block with up to 2000 m thickness and they were formed due to subduction prior to the collision of the Arabian and Asian plates (Jung et al., 1983; Karimpour et al., 2011. In the Kangan area, the basaltic lavas cropped out beyond the above intermediate to acid volcanic rocks. In this area, bentonite and perlite deposits have an economic importance. The main purpose of this paper is to present a better understanding of the tectono-magmatic settings of volcanic rocks in the northeast of Sarbisheh, east of Iran based on their geochemical characteristics. Materials and methods Fifteen samples were analyzed for major elements by inductively coupled plasma (ICP technologies and trace elements by using inductively coupled plasma mass spectrometry (ICP-MS, following a lithium metaborate/tetraborate fusion and nitric acid total digestion, at the Acme laboratories, Vancouver, Canada. Results The Kangan area is located at the northeast of Sarbishe, Southern Khorasan and the eastern border of the Lut block. In this area, basaltic lavas have cropped out above intermediate to acid lavas such as andesite, dacite, rhyolite (sometimes perlitic .The main minerals in the basalt are plagioclase, olivine and pyroxene, in andesite contain plagioclase, pyroxene, biotite and amphibole and in acid rocks include plagioclase, quartz, sanidine, biotite and amphibole. Intermediate to acid rocks have medium to high-K calc-alkaline nature and basalt is alkaline. Enrichment in LREE relative to HREE (Ce/Yb= 21.14-28.7, high ratio of Zr/Y(4.79- 10.81, enrichment in LILE

  14. Andean shrublands of Moquegua, South Peru: Prepuna plant communities

    NARCIS (Netherlands)

    Montesinos, D.B.; Cleef, A.M.; Sykora, K.V.

    2012-01-01

    A syntaxonomic overview of shrubland vegetation in the southern Andean regions of Peru is presented. For each plant community, information is given on physiognomy, floristic diversity, ecology and geographical distribution. The shrub vegetation on the slopes of the upper Tambo river valley includes

  15. Magma evolution and ascent at the Craters of the Moon and neighboring volcanic fields, southern Idaho, USA: implications for the evolution of polygenetic and monogenetic volcanic fields

    Science.gov (United States)

    Putirka, Keith D.; Kuntz, Mel A.; Unruh, Daniel M.; Vaid, Nitin

    2009-01-01

    The evolution of polygenetic and monogenetic volcanic fields must reflect differences in magma processing during ascent. To assess their evolution we use thermobarometry and geochemistry to evaluate ascent paths for neighboring, nearly coeval volcanic fields in the Snake River Plain, in south-central Idaho, derived from (1) dominantly Holocene polygenetic evolved lavas from the Craters of the Moon lava field (COME) and (2) Quaternary non-evolved, olivine tholeiites (NEOT) from nearby monogenetic volcanic fields. These data show that NEOT have high magmatic temperatures (1205 + or - 27 degrees C) and a narrow temperature range (50 degrees C). Prolonged storage of COME magmas allows them to evolve to higher 87Sr/86Sr and SiO2, and lower MgO and 143Nd/144Nd. Most importantly, ascent paths control evolution: NEOT often erupt near the axis of the plain where high-flux (Yellowstone-related), pre-Holocene magmatic activity replaces granitic middle crust with basaltic sills, resulting in a net increase in NEOT magma buoyancy. COME flows erupt off-axis, where felsic crustal lithologies sometimes remain intact, providing a barrier to ascent and a source for crustal contamination. A three-stage ascent process explains the entire range of erupted compositions. Stage 1 (40-20 km): picrites are transported to the middle crust, undergoing partial crystallization of olivine + or - clinopyroxene. COME magmas pass through unarmored conduits and assimilate 1% or less of ancient gabbroic crust having high Sr and 87Sr/86Sr and low SiO2. Stage 2 (20-10 km): magmas are stored within the middle crust, and evolve to moderate MgO (10%). NEOT magmas, reaching 10% MgO, are positively buoyant and migrate through the middle crust. COME magmas remain negatively buoyant and so crystallize further and assimilate middle crust. Stage 3 (15-0 km): final ascent and eruption occurs when volatile contents, increased by differentiation, are sufficient (1-2 wt % H2O) to provide magma buoyancy through the

  16. Petrogenesis and tectonic implications of Late Devonian arc volcanic rocks in southern Beishan orogen, NW China: Geochemical and Nd-Sr-Hf isotopic constraints

    Science.gov (United States)

    Guo, Qian-Qian; Chung, Sun-Lin; Xiao, Wen-Jiao; Hou, Quan-Lin; Li, Shan

    2017-05-01

    Late Devonian (ca. 370 Ma) volcanic rocks provide important information about the nature of magmatism during the tectonic transition between the Early and Late Paleozoic in the Beishan orogen, southern Central Asian Orogenic Belt. They are predominantly an andesitic-dacitic-rhyolitic assemblage, characterized by alkali contents ranging from slightly calcic to slightly alkaline. The rhyolitic rocks are generally ferroan, whereas the andesitic rocks are magnesian. These volcanic rocks exhibit similar trace element characteristics to those of continental arcs. Strongly negative εNd(t) values (- 2.8 to - 3.6) and high Sr isotopic compositions (initial 87Sr/86Sr = 0.7036-0.7108) suggest that they are mainly derived from an ancient crust. However, the positive zircon εHf(t) values (+ 1.4 to + 16.4) support the role of juvenile components in their genesis, indicating the significant input of new mantle-derived magmas. These characteristics imply a hybrid derivation, from an ancient crustal source with the addition of juvenile materials during magma genesis, or perhaps heterogeneous contamination or hybridization during magma emplacement. Combined with the regional geology, our results indicate that the Late Devonian magmatism resulted from a southward retreat of the subduction zone, which records significant continental crustal growth in a transitional arc or an accretionary arc setting. The distinct geochemical compositions, especially the Nd-Hf isotope decoupling of the Dundunshan volcanic rocks, imply a significant change in the geodynamic setting in the Late Paleozoic.

  17. Activity and population characteristics of Andean Condors in southern Chile Actividad y características poblacionales de los Cóndores Andinos en el sur de Chile

    Directory of Open Access Journals (Sweden)

    RONALD J. SARNO

    2000-03-01

    Full Text Available Data were collected on general activity patterns and population characteristics of free-ranging Andean Condors Vultur gryphus in Torres del Paine National Park, Chile from July 1992 to June 1994 during 3,680 h of observation. Seasonal differences were evident in relative abundance and activity patterns. The mean number of condors sighted/ observation significantly higher in fall-winter than in spring-summer. There was a significant decrease from spring-summer to fall-winter in the percentage of observations during which we sighted solitary condors and a significant increase in the number of groups of condors. In addition, mean monthly maximum group size was significantly larger in fall-winter than spring-summer. The sex ratio (males:females of juveniles was significantly skewed in favor of females, and that of adults was significantly skewed in favor of males. The significantly different adult:juvenile ratio of condors visiting the park could have resulted from differences in distribution and habitat use and/or low breeding rates. Differential juvenile mortality and dispersal could also have produced skewed age and sex ratios, but more research is needed. Condor activity seemed related to wind speed. The greatest proportion of condors was observed flying in calm and low winds and less frequently in moderate to very strong winds. Temperature seemed to have an important effect on aerial activity because the greatest proportion of condors was sighted flying and soaring on warm days. Temperature and wind speed were weakly correlated.Se recolectaron datos sobre los patrones generales de actividad y caractersticas de la población del Cóndor Andino Vultur gryphus. El estudio se realizó en el Parque Nacional Torres del Paine, Chile, entre julio 1992 y junio de 1994, totalizando 3680 horas de observación. Durante el estudio fueron evidentes diferencias estacionales en los patrones de actividad y abundancia relativa de estas aves. El numero promedio

  18. Volcanic impediments in the progressive development of pre-Columbian civilizations in the Ecuadorian Andes

    Science.gov (United States)

    Hall, Minard L.; Mothes, Patricia A.

    2008-10-01

    Archaeological investigations in Ecuador have proposed that there appear to be hiatus or anomalous jumps in the progressive development of pre-Columbian indigenous cultures, based upon the fact that their ceramics and tools demonstrate abrupt advances in their sophistication at several horizons in the soil profile. Because some of these horizons are clearly associated with volcanic ash layers, archaeologists have sought a causal relation with volcanism, that is, the eruptive events or their products severely interfered with the early inhabitants, resulting in their abandonment of certain areas. Geological studies of the young volcanoes in the Ecuadorian Andes carried out during the past two decades now allow us to make a more thorough evaluation of the role of volcanism during the Holocene. This contribution briefly describes the principal Holocene volcanic events and the distribution of the corresponding eruptive products found along the InterAndean Valley, from southern Colombia to central Ecuador. Only those events that were sufficiently large that they could have had a detrimental effect on the valley's early residents are discussed. Dacitic and rhyolitic ash flows, as well as numerous debris flows (lahars) have occurred frequently and their deposits cover many valleys and floodplains, where early inhabitants probably settled. The enormous Chillos Valley lahar, associated with the 4500 yBP eruption of Cotopaxi volcano, buried soils containing ceramics of the early Formative Period. However, the greatest impact upon mankind was probably not these short-lived violent events, but rather the burying of settlements and agricultural fields by ash fallout, the effect of which may have lasted hundreds of years. Ash fall layers are observed in pre-Columbian cultural horizons in the soil profile, occurring in the InterAndean Valley, the lower flanks of the Andes, and along Ecuador's Pacific coast, the oldest corresponding to the 5800 yBP eruption of Cotopaxi. This brief

  19. Late sodic metasomatism evidences in bimodal volcanic rocks of the Acampamento Velho Alloformation, Neoproterozoic III, southern Brazil

    Directory of Open Access Journals (Sweden)

    Delia Del Pilar M. de Almeida

    2007-12-01

    Full Text Available A mineralogical study was carried out in mafic and felsic volcanic rocks of the Acampamento Velho Alloformation at Cerro do Bugio, Perau and Serra de Santa Bárbara areas (Camaquã Basin in southern Brazil. The Acampamento Velho bimodal event consists of two associations: lower mafic at the base and upper felsic at the top. Plagioclase and alkali-feldspar were studied using an electronic microprobe, and magnetite, ilmenite, rutile, illite and alkali-feldspar were investigated through scanning electron microscopy. The rocks were affected by a process of late sodic autometasomatism. In mafic rocks, Ca-plagioclase was transformed to albite and pyroxenes were altered. In felsic rocks, sanidine was partially pseudomorphosed, generating heterogeneous alkali-feldspar. In this association, unstable Ti-rich magnetite was replaced by rutile and ilmenite. In mafic rocks, the crystallization sequence was: (1 Ti-rich magnetite (?, (2 pyroxene and Ca-plagioclase, (3 albite (alteration to Ca-plagioclase, (4 sericite, chlorite and calcite (alteration to pyroxene, and kaolinite (alteration to plagioclase/albite. In felsic rocks: (1 zircon, (2 Ti-rich magnetite, (3 sanidine, (4 quartz. The introduction of late Na-rich fluids, generated the formation of (5 heterogeneous alkali-feldspar, (6 ilmenite and rutile from the Ti-rich magnetite, (7 albite in the spherulites. Finally, alteration of sanidine, vitroclasts and pumice to (8 illite.Um estudo mineralógico de detalhe foi realizado nas rochas vulcânicas da Aloformação Acampamento Velho nos Cerros do Bugio, Perau e Serra de Santa Bárbara (Bacia do Camaquã, sudeste do Brasil. Este evento bimodal é constituído por duas associações: máfica inferior na base e félsica superior no topo. Foram estudados grãos de plagioclásio e feldspato alcalino com o uso de microssonda eletrônica, sendo que, magnetita,ilmenita, rutilo e ilita além de feldspato alcalino foram pesquisados através do microscópio eletr

  20. Contrasting origin of two A-type rhyolite series from the Early Permian Nomgon bimodal volcanic association (Southern Mongolia)

    Science.gov (United States)

    Kozlovsky, A. M.; Yarmolyuk, V. V.; Savatenkov, V. M.; Kudryashova, E. A.

    2017-08-01

    A-type rhyolites of contrasting compositions and eruption characters were revealed among two volcanic series of the Early Permian bimodal association in the Nomgon graben. Rhyolites of the lower volcanic series formed extrusions, lava domes, and tuff horizons. They had low FeOt, Zr, Hf, Nb, Ta, Y, and REE concentrations and also a moderately depleted Nd isotope composition (ɛNd( T) = 6.7-7.1). Their formation was related to anatexis of the juvenile continental crust, triggered by the thermal effect of mafic magmas. Rhyolites of the upper volcanic series formed extensive lava flows and dikes. Their composition was characterized by high FeOt, Zr, Hf, Nb, Ta, Y, and REE concentrations, and also depleted Nd isotope characteristics (ɛNd( T) = 7.7-9.0). These rhyolite melts formed under long-term crystallizational differentiation of basaltoids in the intracrustal magmatic chambers, with limited participation of crustal contamination. The source of magmas for the upper volcanic series was the sublithospheric mantle.

  1. Andean region study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    New opportunities for climate change mitigation arising from a higher energy integration among Andean Pact nations were analysed within the framework of the UNEP/GEF Project. Apart from the search for regional mitigation actions, the study was mainly aimed at detecting methodological problems which arise when passing from a strictly national view to the co-ordination of regional actions to deal with climate change. In accordance with the available resources and data, and in view of the mainly methodological nature of the project, it was decided to analyse the opportunities to delve into the energy integration of the Region as regards electricity and natural gas industries and their eventual impact on the emission of greenhouse gases. Although possibilities of setting up electricity and natural gas markets are real, their impacts on GHG emission from the energy system would not prove substantially higher than those which the nations could achieve through the use of their own energy resources, in view that the Andean systems are competitive rather than complementary. More in-depth studies and detail information will be required - unavailable for the present study - to be able to properly evaluate all benefits associated with higher energy integration. Nevertheless, the supply of natural gas to Ecuador seems to be the alternative with the highest impact on GHG emission. If we were to analyse the supply and final consumption of energy jointly, we would most certainly detect additional mitigation options resulting from higher co-operation and co-ordination in the energy field. (EHS)

  2. Seismic reflection data processing in active volcanic areas: an application to Campi Flegrei and Somma Vesuvius offshore (Southern Italy

    Directory of Open Access Journals (Sweden)

    A. Rapolla

    2002-06-01

    Full Text Available The Campanian volcanism develops near the sea. Therefore, the geophysical study of the marine environment is a key to a better understanding of the tectonic evolution and the origin of volcanism in the area. An abundance of high quality seismic data in the marine sector, where little direct information is available, is critical to the study of Campanian volcanism. This paper concerns the reprocessing of a seismic reflection dataset acquired in Naples Bay and processed during 1973. Even though the overall data quality was high for that time, of course their acquisition technological limits have been overcome by the new processing. Our reprocessing aimed at: 1 reduction of random noise in the data; 2 removal of unwanted coherent events; 3 reduction of spatial aliasing by means of trace interpolation on Commod Shot Point (CSP gathering; 4 improvement of resolution of the seismic wavelet with spiking deconvolution algorithms and finally 5 reposition of reflectors in their correct locations in the space-TWT domain by means of dip moveout and post-stack time migration. A comparison between the new and old data shows that the new sections are characterized by a much higher S/N ratio. Diffraction hyperbole has been collapsed. Reverberations, ghosts and multiples have been removed or greatly attenuated, especially between the reflectors of interest, allowing us to follow them with more detail and with greater continuity. Furthermore, data resolution has been boosted by the reprocessing, allowing the interpreter to evaluate reflector position and continuity in greater detail. The reinterpretation phase of such lines, that is already in an advanced stage, will therefore allow us to gain new insights into the structural setting of the bay, with the aim of exploring the connection between tectonics and volcanism.

  3. Sphene and zircon in the Highland Range volcanic sequence (Miocene, southern Nevada, USA): Elemental partitioning, phase relations, and influence on evolution of silicic magma

    Science.gov (United States)

    Colombini, L.L.; Miller, C.F.; Gualda, G.A.R.; Wooden, J.L.; Miller, J.S.

    2011-01-01

    Sphene is prominent in Miocene plutonic rocks ranging from diorite to granite in southern Nevada, USA, but it is restricted to rhyolites in coeval volcanic sequences. In the Highland Range volcanic sequence, sphene appears as a phenocryst only in the most evolved rocks (72-77 mass% SiO2; matrix glass 77-78 mass% SiO2). Zr-in-sphene temperatures of crystallization are mostly restricted to 715 and 755??C, in contrast to zircon (710-920??C, Ti-in-zircon thermometry). Sphene rim/glass Kds for rare earth elements are extremely high (La 120, Sm 1200, Gd 1300, Lu 240). Rare earth elements, especially the middle REE (MREE), decrease from centers to rims of sphene phenocrysts along with Zr, demonstrating the effect of progressive sphene fractionation. Whole rocks and glasses have MREE-depleted, U-shaped REE patterns as a consequence of sphene fractionation. Within the co-genetic, sphene-rich Searchlight pluton, only evolved leucogranites show comparable MREE depletion. These results indicate that sphene saturation in intruded and extruded magmas occurred only in highly evolved melts: abundant sphene in less silicic plutonic rocks represents a late-stage 'bloom' in fractionated interstitial melt. ?? 2011 Springer-Verlag.

  4. Energy Exploitation of High-Temperature Geothermal Sources in Volcanic Areas—a Possible ORC Application in Phlegraean Fields (Southern Italy

    Directory of Open Access Journals (Sweden)

    Angelo Algieri

    2018-03-01

    Full Text Available This work aims to investigate the energy performances of small-scale Organic Rankine Cycles (ORCs for the exploitation of high temperature geothermal sources in volcanic areas. For this purpose, a thermodynamic model has been developed, and a parametric analysis has been performed that considers subcritical and transcritical configurations, and different organic fluids (isobutane, isopentane, and R245ca. The investigation illustrates the significant effect of the temperature at the entrance of the expander on the ORC behaviour and the rise in system effectiveness when the internal heat exchange (IHE is adopted. As a possible application, the analysis has focused on the active volcanic area of Phlegraean Fields (Southern Italy where high temperature geothermal reservoirs are available at shallow depths. The work demonstrates that ORC systems represent a very interesting option for exploiting geothermal sources and increasing the share of energy production from renewables. In particular, the investigation has been performed considering a 1 kg/s geothermal mass flow rate at 230 °C. The comparative analysis highlights that transcritical configurations with IHE guarantee the highest performance. Isopentane is suggested to maximise the ORC electric efficiency (17.7%, while R245ca offers the highest electric power (91.3 kWel. The selected systems are able to fulfil a significant quota of the annual electric load of domestic users in the area.

  5. The River Mountains Volcanic Section - Wilson Ridge Pluton, a Long Lived Multiphase Mid- Tertiary Igneous System in Southern Nevada and Northwestern Arizona, USA

    Science.gov (United States)

    Honn, D. K.; Simon, A. C.; Smith, E. I.; Spell, T. L.

    2007-12-01

    206Pb/238U zircon dates (LA-ICPMS) from 106-40 μm spots on 49 zircons suggest the Wilson Ridge Pluton in northwestern Arizona and its corresponding volcanic cover in the River Mountains of southern Nevada represent a complex multiphase igneous system active for 4.2 million years (based on a zircon core-rim pair) to a maximum of 7.2 million years (from two zircon rim dates 18.9 ± 0.8 to 13.1 ± 0.6 Ma). This period of activity is significantly longer than the 500 thousand year interval (12.99 ± 0.02 to 13.45 ± 0.02) determined by 40Ar/39Ar sanidine, biotite, hornblende, and whole rock dates. The 40Ar/39Ar dates only reflect the time when the igneous system cooled to mineral closure temperatures during emplacement in the upper crust. Zircon xenocrysts identified in cathodoluminescence images range in age from 1517.5 ± 11.2 Ma to 21.3 ± 0.8 Ma. Inherited zircon cores are as much as 8.9 million years older than their rims. Zircon dates correspond to pluton stratigraphy with late stage dikes at 15.3 Ma (mean age based on 9 dates), quartz monzonite intermediate in composition and age (mean age 15.5 Ma based on 20 dates), and the oldest unit, the Horsethief Canyon diorite (mean age 17.5 Ma based on 6 dates). Although the mean ages correspond to stratigraphy, the spread of ages for each unit overlaps, therefore these correlations are preliminary. The River Mountains volcanic section lies 20 km to the west of the pluton and may have been separated from it by west directed motion along the Saddle Island detachment fault. The River Mountains volcanic section and the Wilson Ridge Pluton are considered a single igneous system as demonstrated by major and trace element geochemistry, whole rock isotopic analyses (Sr and Nd), previous 40Ar/39Ar and K-Ar dates, mafic enclave chemistry, extensive magnesio-riebeckite alteration unique to both the River Mountains volcanic and Wilson Ridge Plutonic sections, and the location of the Saddle Island fault. Preliminary zircon dates

  6. Regional importance of post-6 M.Y. old vocanism in the southern Great Basin: Implications for risk assessment of volcanism at the proposed Nuclear Waste Repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    1988-01-01

    This report summarizes our activities during the period July 1, 1987 to June 30, 1988. Our goal was to develop an understanding of late-Miocene and Pliocene volcanism in the Great Basin by studying late-Tertiary volcanic rocks to the north and south of the Nevada Test Site (Figure 1). We especially concentrated on detailed stratigraphic studies and geochemistry to determine the nature of chemical changes during the lifetime of a volcanic field, and on structural studies to determine the nature of the structures that control vent location. Also, K-Ar age dating provided important new information on the duration of activity at a single volcanic center. Geologic studies were concentrated in the Fortification basalt field in southern Nevada and in the Reveille Range in central Nevada. Our studies provide three important conclusions that have implications for volcanism about the proposed Nuclear Waste Repository at Yucca Mountain. There are no easily recognized geochemical characteristics that signify the termination of volcanism. The location of vent areas of basaltic volcanoes are not necessarily controlled by pre-existing structures. Volcanism at an individual basaltic center may last as long as 500,000 years. 32 refs., 34 figs., 6 tabs

  7. Cryptic crustal events during the Taconic Orogeny elucidated through LA-ICPMS studies of volcanic zircons, southern Appalachians, Alabama

    Science.gov (United States)

    Herrmann, A. D.; Leslie, S.; Haynes, J.

    2017-12-01

    Despite a long history of stratigraphic work, many questions remain about the tectonic setting of the Taconic orogeny during the early late Ordovician. Several different global paleogeographic hypotheses exist about the driving force that led to this orogeny. While some studies suggest that the closing of the Iapetus ocean was caused by the collision of the North American and South American plates, most studies suggest that island arc systems collided with the passive continental margin of North America. Nevertheless, disagreement exists on how to explain the stratigraphic architecture of the siliciclastic sequences representing the erosion of the Taconic Highlands in an island arc setting. Some studies suggest the collision was analogous to the modern Banda Arc system with the development of a foreland basin and a sedimentary wedge, while other studies call for the presence of a back arc basin. Here we present U-Pb results of volcanic zircons that are associated with the magmatic activity during this time. Previous studies focused on slender zircons for age dating. However, in this study we analyzed several large zircons from close to the volcanic center in Alabama that have inherited cores in order to test for the presence of geochemical evidence for multiple crustal events. While the rims have ages consistent with the Taconic Orogeny ( 450 my), the cores have much older ages ( 1000 my). Our results support the hypothesis that during the closing of the Iapetus ocean, Precambrian and Cambrian sediments from the passive continental margin were subducted and incorporated into the volcanic system. This led to the inclusion of Precambrian zircons into melts associated with the Taconic Orogeny. Overall, our study supports the presence of subduction of preexisting sedimentary rocks and potentially the presence of a sedimentary wedge.

  8. Tectonomagmatic Associations on the Central Andean Plateau

    Science.gov (United States)

    de Silva, S. L.; Viramonte, J. G.

    2012-12-01

    The Neogene evolution of the Central Andes is characterized by a strong association between plate convergence, mountain building and plateau formation, and magmatism. Plateau uplift by crustal shortening and thickening in the lower crust is broadly coincident with large scale silicic magmatism defined by the Neogene Central Andean ignimbrite province. Of particular interest here are the spatiotemporal correlations between silicic magmatism and tectonic evolution of the Altiplano-Puna plateau. Although magmatism is driven by the subduction-related flux from mantle to crust, the shift to "crustal" magmatism as indicated by elevated crustal isotopic indices after ~10Ma suggests a link between crustal thickening, plateau formation and silicic magmatism. In particular, elevated geotherms associated with crustal thickening and enhanced mantle flux associated with lithospheric delamination may have played a role in thermally preparing the Central Andean crust for enhanced silicic magma production during the extensive Neogene ignimbrite flare-up. Emplacement of these magmas in the upper crust throughout the Neogene may have fuelled a period of significant interaction between magmatism and tectonism on the plateau. With particular reference to the 21° to 24°S segment of the Central Andes, spatial and structural coincidence of calderas of the Altiplano Puna Volcanic Complex with the NW-SE striking Calama-Olacapata-El Toro fault zone suggests significant tectonomagmatic interaction. Location of calderas suggest that these regional faults focused magma intrusion and storage, while spatially and temporally correlated eruption pulses connote a tectonic control. Indeed, current thermomechanical models of magma chamber development and eruption triggering promote a role for external triggering of "perched" upper crustal magma chambers. This might have been achieved by melt-enhanced deformation, or alternatively, significant uplift (~1km) associated with the development of large

  9. Rapid pre-eruptive thermal rejuvenation in a large silicic magma body: the case of the Masonic Park Tuff, Southern Rocky Mountain volcanic field, CO, USA

    Science.gov (United States)

    Sliwinski, J. T.; Bachmann, O.; Dungan, M. A.; Huber, C.; Deering, C. D.; Lipman, P. W.; Martin, L. H. J.; Liebske, C.

    2017-05-01

    Determining the mechanisms involved in generating large-volume eruptions (>100 km3) of silicic magma with crystallinities approaching rheological lock-up ( 50 vol% crystals) remains a challenge for volcanologists. The Cenozoic Southern Rocky Mountain volcanic field, in Colorado and northernmost New Mexico, USA, produced ten such crystal-rich ignimbrites within 3 m.y. This work focuses on the 28.7 Ma Masonic Park Tuff, a dacitic ( 62-65 wt% SiO2) ignimbrite with an estimated erupted volume of 500 km3 and an average of 45 vol% crystals. Near-absence of quartz, titanite, and sanidine, pronounced An-rich spikes near the rims of plagioclase, and reverse zoning in clinopyroxene record the reheating (from 750 to >800 °C) of an upper crustal mush in response to hotter recharge from below. Zircon U-Pb ages suggest prolonged magmatic residence, while Yb/Dy vs temperature trends indicate co-crystallization with titanite which was later resorbed. High Sr, Ba, and Ti concentrations in plagioclase microlites and phenocryst rims require in-situ feldspar melting and concurrent, but limited, mass addition provided by the recharge, likely in the form of a melt-gas mixture. The larger Fish Canyon Tuff, which erupted from the same location 0.7 m.y. later, also underwent pre-eruptive reheating and partial melting of quartz, titanite, and feldspars in a long-lived upper crustal mush following the underplating of hotter magma. The Fish Canyon Tuff, however, records cooler pre-eruptive temperatures ( 710-760 °C) and a mineral assemblage indicative of higher magmatic water contents (abundant resorbed sanidine and quartz, euhedral amphibole and titanite, and absence of pyroxene). These similar pre-eruptive mush-reactivation histories, despite differing mineral assemblages and pre-eruptive temperatures, indicate that thermal rejuvenation is a key step in the eruption of crystal-rich silicic volcanics over a wide range of conditions.

  10. The Carrán-Los Venados volcanic field and its relationship with coeval and nearby polygenetic volcanism in an intra-arc setting

    Science.gov (United States)

    Bucchi, Francisco; Lara, Luis E.; Gutiérrez, Francisco

    2015-12-01

    Understanding the relationship between monogenetic and polygenetic volcanism has been a long-standing goal in volcanology, especially in cases where these two styles of volcanism are coeval and geographically adjacent. We studied the Carrán-Los Venados (CLV) volcanic field and made comparisons with published data on CLV's polygenetic neighbor Puyehue-Cordón Caulle (PCC) in the Southern Andean arc, using quantitative tools and recent numerical simulations of magma reservoir formation. CLV is a basaltic to basaltic andesitic volcanic field composed of 65 post-glacial scoria cones and maars and a 1-km-high Pleistocene stratovolcano, whereas PCC is a basaltic to rhyolitic composite volcano. Our results point to three main differences between CLV and PCC: (1) the CLV magmas differentiate at low-crustal reservoirs, followed by rapid ascent to the surface, while the PCC magmas stagnate and differentiate in lower- and upper-crustal reservoirs; (2) CLV is elongated in the NE direction while PCC is elongated in the NW direction. Under the current stress field (N60°E σHmax), these two volcanic alignments correspond, respectively, to local extensional and compressive deformation zones within the arc; and (3), the post-glacial CLV magma flux was estimated to be 3.1 ± 1.0 km3/ky, which is similar to the average magma flux estimated for PCC; however, the PCC magma flux is estimated at approximately twice this value during peak eruptive periods (5.5 ± 1.1 km3/ky). Based on numerical simulations, CLV is in a limit situation to create and sustain a mush-type upper-crustal reservoir containing highly crystalline magma, which is however not eruptible. The PCC volcanic system would have been able to create a stable reservoir containing eruptible silicic magma during periods of peak magma flux. We postulate that monogenetic volcanism occurs at CLV due to both low magma flux and an extensional/transtensional regime that favors rapid magma rise without storage and differentiation in

  11. Neotectonic deformation in the transition zone between the Dead Sea Transform and the East Anatolian Fault Zone, Southern Turkey: a palaeomagnetic study of the Karasu Rift Volcanism

    Science.gov (United States)

    Tatar, O.; Piper, J. D. A.; Gürsoy, H.; Heimann, A.; Koçbulut, F.

    2004-07-01

    In southern Turkey ongoing differential impingement of Arabia into the weak Anatolian collisional collage resulting from subduction of the Neotethyan Ocean has produced one of the most complex crustal interactions along the Alpine-Himalayan Orogen. Several major transforms with disputed motions, including the northward extension of the Dead Sea Fault Zone (DSFZ), meet in this region. To evaluate neotectonic motion on the Amanos and East Hatay fault zones considered to be northward extensions of the DSFZ, the palaeomagnetism of volcanic fields in the Karasu Rift between these faults has been studied. Remanence carriers are low-Ti magnetites and all except 5 of 51 basalt lavas have normal polarity. Morphological, polarity and K-Ar evidence show that rift formation occurred largely during the Brunhes chron with volcanism concentrated at 0.66-0.35 Ma and a subsidiary episode at ˜0.25-0.05. Forty-four units of normal polarity yield a mean of D/ I=8.8°/54.7° with inclination identical to the present-day field and declination rotated clockwise by 8.8±4.0°. Within the ˜15-km-wide Hassa sector of the Karasu Rift, the volcanic activity is concentrated between the Amanos and East Hatay faults, both with left lateral motions, which have rotated blocks bounded by NW-SE cross faults in a clockwise sense as the Arabian Block has moved northwestwards. An average lava age of ˜0.5 Ma yields a minimum cumulative slip rate on the system bounding faults of 0.46 cm/year according with the rate deduced from the Africa-Arabia Euler vector and reduced rates of slip on the southern extension of the DSFZ during Plio-Quaternary times. Estimates deduced from offsets of dated lavas flows and morphological features on the Amanos Fault Zone [Tectonophysics 344 (2002) 207] are lower (0.09-0.18 cm/year) probably because they are limited to surface fault breaks and do not embrace the seismogenic crust. Results of this study suggest that most strike slip on the DSFZ is taken up by the Amanos

  12. Hemoglobin affinity in Andean rodents

    Directory of Open Access Journals (Sweden)

    HRVOJ OSTOJIC

    2002-01-01

    Full Text Available Blood hemoglobin oxygen affinity (P50 was measured in three Andean species and in the laboratory rat (control, all raised near sea level. Chinchilla lanigera (Molina, 1792 has an altitudinal habitat range from low Andean slopes up to 3000 m., while Chinchilla brevicaudata (Waterhouse, 1848 has an altitudinal range from 3000 to 5000 m. The laboratory type guinea pig, wild type guinea pig (Cavia porcellus, (Waterhouse, 1748, and laboratory rat (Rattus norvegicus were also raised at sea level. The Andean species had high hemoglobin oxygen affinities (low P50 compared with the rat. Chinchilla brevicaudata had a higher affinity than Chinchilla lanigera. The wild type guinea pig had a higher affinity than the laboratory type. As has been shown in other species, this is another example of an inverse correlation between the altitude level and the P50 values. This is the first hemoglobin oxygen affinity study in Chinchilla brevicaudata.

  13. Emplacement history and inflation evidence of a long basaltic lava flow located in Southern Payenia Volcanic Province, Argentina

    Science.gov (United States)

    Bernardi, Mauro I.; Bertotto, Gustavo W.; Jalowitzki, Tiago L. R.; Orihashi, Yuji; Ponce, Alexis D.

    2015-02-01

    The El Corcovo lava flow, from the Huanul shield volcano in the southern Mendoza province (central-western Argentina) traveled a distance of 70 km and covered a minimum area of ~ 415 km2. The flow emplacement was controlled both by extrinsic (e.g., topography) and intrinsic (e.g., lava supply rate, lava physicochemical characteristics) factors. The distal portion of the lava flow reached the Colorado River Valley, in La Pampa Province, where it spread and then was confined by earlier river channels. Cross-sections through the flow surveyed at several localities show two vesicular layers surrounding a dense central section, where vesicles are absent or clustered in sheet-shaped and cylindrical-shaped structures. Lavas of the El Corcovo flow are alkaline basalts with low values of viscosity. The morphological and structural characteristics of the flow and the presence of landforms associated with lava accumulation are the evidence of inflation. This process involved the formation of a tabular sheet flow up to 4 m of thick with a large areal extent in the proximal sectors, while at terminal sectors frontal lobes reached inflation values up to 10 m. The numerous swelling structures present at these portions of the flow suggest the movement of lava in lava tubes. We propose that this aspect and the low viscosity of the lava allowed the flow travel to a great distance on a gentle slope relief.

  14. Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr-Nb-Pb isotope data from Roman Province and Southern Tuscany

    International Nuclear Information System (INIS)

    Conticelli, S.; D'Antonio, M.; Pinarelli, L.; Civetta, L.

    2002-01-01

    The Tyrrhenian border of the Italian peninsula has been the site of intense magmatism from Pliocene to recent times. Although calc-alkaline, potassic and ultrapotassic volcanism overlaps in space and time, a decrease of alkaline character in time and space (southward) is observed. Alkaline ultrapotassic and potassic volcanic rocks are characterized by variable enrichment in K and incompatible elements, coupled with consistently high LILE/IFSE values, similar to those of calc-alkaline volcanic rocks from the nearby Aeolian arc. On the basis of mineralogy and major and trace element chemistry two different arrays can be recognized among primitive rocks; a silica saturated trend, which resulted in formation of leucite-free mafic rocks, and a silica under saturated trend, characterized by leucite-bearing rocks. Initial 87 Sr/ 87 Sr and 143 Nd/ 144 Nd values of Italian ultrapotassic and potassic mafic rocks range from 0.70506 to 0.71672 and from 0.51173 to 0.51273, respectively. 207 Pb/ 204 Pb values range between 18.50 and 19.15, 207 Pb/ 204 Pb values range between 15.63 and 15.70, and 208 Pb/ 204 Pb values range between 38.35 and 39.20. The general ε Sr vs. ε Nd array, along with crustal lead isotopic values, clearly indicates that a continental crustal component has played an important role in the genesis of those magmas. The main question is where this continental crustal component has been acquired by the magmas. Volcanological and petrologic data indicate continental crustal contamination to be a leading process along with fractional crystallization and magma mixing. Considering, however, only the samples thought to represent primary magmas, which have been in equilibrium with their mantle source, a clearer picture emerges. A large variation of ε Sr vs. ε Nd is still observed, with ε Sr from -2 to +180 and ε Nd from +2 to -12. A bifurcation of this array is observed in the samples that plot in the lower right quadrant, with mafic leucite-bearing Roman

  15. A new genetic interpretation for the Caotaobei uranium deposit associated with the shoshonitic volcanic rocks in the Hecaokeng ore field, southern Jiangxi, China

    Directory of Open Access Journals (Sweden)

    Dong-Sheng Yang

    2017-03-01

    Full Text Available Combined with in-situ laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS zircon UPb geochronology, published and unpublished literature on the Caotaobei uranium deposit in southern Jiangxi province, China, is re-examined to provide an improved understanding of the origin of the main ore (103 Ma. The Caotaobei deposit lies in the Hecaokeng ore field and is currently one of China's largest, volcanic-related uranium producers. Unlike commonly known volcanogenic uranium deposits throughout the world, it is spatially associated with intermediate lavas with a shoshonitic composition. Uranium mineralization (pitchblende occurs predominantly as veinlets, disseminations, and massive ores, hosted by the cryptoexplosive breccias rimming the Caotaobei crater. Zircons from one latite define four distinct 206Pb/238U age groups at 220–235 Ma (Triassic, 188 Ma (Early Jurassic, 131–137 Ma (Early Cretaceous, and 97–103 Ma (Early-Late Cretaceous transition, hereafter termed mid-Cretaceous. The integrated age (134 ± 2 Ma of Early Cretaceous zircons (group III is interpreted as representing the time of lava emplacement. The age data, together with the re-examination of literature, does not definitively support a volcanogenic origin for the generation of the deposit, which was proposed by the previous workers based mainly on the close spatial relationship and the age similarity between the main ore and volcanic lavas. Drill core and grade-control data reveal that rich concentrations of primary uranium ore are common around the granite porphyry dikes cutting the lavas, and that the cryptoexplosive breccias away from the dikes are barren or unmineralized. These observations indicate that the emplacement of the granite porphyries exerts a fundamental control on ore distribution and thus a genetic link exists between main-stage uranium mineralization and the intrusions of the dikes. Zircon overgrowths of mid-Cretaceous age (99.6

  16. Magnetic Fabric Investigations of the Sapinero Mesa and Fish Canyon Tuffs, Northern Part of the Southern Rocky Mountain Volcanic Field, Colorado

    Science.gov (United States)

    Harper, C.; Martin, M.; Geissman, J. W.

    2013-12-01

    Exposures of two laterally extensive ignimbrites in the northern part of the Southern Rocky Mountain Volcanic Field (SRMVF) allow examination of the emplacement mechanisms of these pyroclastic deposits as a function of deposition on irregular preexisting topography using magnetic fabric techniques. The Sapinero Mesa Tuff (28.19 × 0.03 Ma) was erupted from the San Juan/Uncompahgre Caldera Complex and the Fish Canyon tuff (ca. 28.02 × 0.16 Ma) was erupted from the La Garita caldera. These ignimbrites are major components of the SRMVF and were emplaced on highly irregular paleotopography. The Sapinero Mesa Tuff was emplaced directly on the late Eocene West Elk Breccia near and west of the Blue Mesa reservoir and directly on Precambrian crystalline rocks south of the Blue Mesa reservoir. The Fish Canyon Tuff was emplaced directly on Precambrian crystalline rocks south and southwest of Gunnison. Our study of these two ignimbrites is concentrated in the northern part of the SRMVF and examines how these deposits were emplaced on different topographic features. To date, a total of 16 sites in the Fish Canyon and Sapinero Mesa tuffs have been collected and analyzed for determination of magnetic fabrics through measurements of anisotropy of magnetic susceptibility (AMS). These samples are currently being analyzed for measurements of anisotropy of anhysteretic remanent magnetization (AARM). Initial analyses indicate transport directions that generally coincide with the inferred regional north-northwest transport direction. Additional sampling includes a greater spatial extent and a more focused method of collection with an emphasis on localities chosen with careful consideration of relationships to paleotopographic features present during emplacement of the ignimbrites. Specifically, we have selected linear features of varying scales with strikes that vary significantly from the regional, inferred transport directions. Our work provides a means to compare regional inferred

  17. Predicting Polylepis distribution: vulnerable and increasingly important Andean woodlands

    Directory of Open Access Journals (Sweden)

    Brian R. Zutta

    2012-11-01

    Full Text Available Polylepis woodlands are a vital resource for preserving biodiversity and hydrological functions, which will be altered by climate change and challenge the sustainability of local human communities. However, these highaltitude Andean ecosystems are becoming increasingly vulnerable due to anthropogenic pressure including fragmentation, deforestation and the increase in livestock. Predicting the distribution of native woodlands has become increasingly important to counteract the negative effects of climate change through reforestation and conservation. The objective of this study was to develop and analyze the distribution models of two species that form extensive woodlands along the Andes, namely Polylepis sericea and P. weberbaueri. This study utilized the program Maxent, climate and remotely sensed environmental layers at 1 km resolution. The predicted distribution model for P. sericea indicated that the species could be located in a variety of habitats along the Andean Cordillera, while P. weberbaueri was restricted to the high elevations of southern Peru and Bolivia. For both species, elevation and temperature metrics were the most significant factors for predicted distribution. Further model refinement of Polylepis and other Andean species using increasingly available satellite data demonstrate the potential to help define areas of diversity and improve conservation strategies for the Andes.

  18. Exploring the potential of an Andean fruit

    NARCIS (Netherlands)

    Olivares Tenorio, Mary Luz

    2017-01-01

    Cape gooseberry is a fruit cultivated in Andean countries. Currently it is available some international markets, besides the domestic Andean market. Colombia is the major producer and export country at the moment. The value chain of cape gooseberry faces several barriers of technological and

  19. Normal Fault and Tensile Fissure Network Development Around an Off-Axis Silica-Rich Volcanic Dome of the Alarcon Rise, Southern Gulf of California

    Science.gov (United States)

    Contreras, J.; Vega-Ramirez, L. A.; Spelz, R. M.; Portner, R. A.; Clague, D. A.

    2017-12-01

    The Monterey Bay Aquarium Research Institute collected in 2012 and 2015 high-resolution (1 m horizontal/0.2 m vertical) bathymetry data in the southern Gulf of California using an autonomous underwater vehicle (AUV) that bring to light an extensive array of normal faults and fissures cutting lava domes and smaller volcanic cones, pillow mounds and lava sheet flows of variable compositions along the Alarcon rise. Active faulting and fissure growth in the transition between the neovolcanic zone and adjacent axial summit trough, in a 6.9 x 1.5 km2 area at the NE segment of the rise, developed at some point between 6 Ka B.P. (14C) and the present time. We performed a population analysis of fracture networks imaged by the AUV that reveal contrasting scaling attributes between mode I (opening) and mode III (shearing) extensional structures. Opening-mode fractures are spatially constrained to narrow bands 400 m wide. The youngest set developed on pillow lavas 800 yr old (14C) of the neovolcanic zone. Regions of normal fault propagation by anti-plane shearing alternate with the tensile-fracture growth areas. This provides evidence for permutations in space of the stress field across the ridge axis. Moreover, fault-length frequency plots for both fracture networks show that opening-mode fractures are best fit using an exponential relationship whereas normal faults are best fit using a power-law relationship. These size distributions indicate tensile fractures rapidly reached a saturated state in which large fractures (102 m) accommodate most of the strain and appear to be constrained to a thin mechanical/thermal layer. Faults, by contrast, have slowly evolved to a state of self-organization characterized by growth by linkage with neighboring faults in the strike direction forming fault arrays with a maximum length of 2km. We also analyzed the development of faults in the vicinity of an off-axis rhyolitic dome. We find that faults have asymmetric, half-restricted slip

  20. Environment, vulnerability, and gender in Andean ethnomedicine.

    Science.gov (United States)

    Larme, A C

    1998-10-01

    In Cuyo Cuyo, in the southern Peruvian highlands, ethnomedicine is rife with images of human vulnerability to a hostile and unpredictable environment. This is represented in the ethnomedical system by a focus on wayras, air- or wind-borne illnesses that enter through vulnerable body openings such as the head, orifices, lower back, and feet. Women are viewed to be more vulnerable, or débil, than men to illness because they have an extra orifice, the vagina, they lose copious amounts of blood, which is thought to be irreplaceable, during childbirth. and because they suffer more negative emotions, which are thought to attract wayras and other illnesses to the body. The relationship of ethnomedical beliefs to the Andean physical and political economic environment is explored within the context of social and economic change. Negative beliefs about women's bodies have negative effects on women's roles and position vis-à-vis men in present day Cuyo Cuyo. Ethnomedical beliefs reflect and reinforce gender inequalities in present day Peru and are part of a cultural ideology that in general devalues women. This case study demonstrates that power is a key dimension in the cultural construction of medical knowledge. whether in non-Western or Western societies.

  1. The Andean Geotrail (1): A scientific adventure

    Science.gov (United States)

    Sassier, C.; Galland, O.; Raufaste, C.; Mair, K.

    2009-12-01

    The role of Geosciences in our society is of primary importance. Its implications for humanity relate to major challenges such as climate change, managing energy resources, natural hazard mitigation, and water scarcity. Despite these issues being familiar to specialists, this is in general not the case for the public. In a world, where the impact of human activity is beginning to be seen on the environment, knowledge of the Earth and its history is paramount to make informed decisions that will influence our future. The necessity to educate the global population and raise awareness of Geosciences has led UNESCO to designate 2009 the International Year of the Planet Earth. In this context and with the label of the UNESCO, we organized and performed a popular science adventure that was followed in real time by both school children and many adults around the world. The Andean Geotrail consisted of a cycling expedition through a spectacular geological environment, the Andean Cordillera. During the nine month expedition, we cycled 8000 km and walked 400 km from Ushuaia in the Southern tip of Argentina to Nazca in Peru to encounter a rich variety of geological environments: active volcanoes, earthquakes, mineral and hydrocarbon deposits, and fantastic geological scenery. All this makes the Andes a great pedagogical natural laboratory. During the expedition, we visited spectacular geological localities that illustrate key Earth Science phenomena (such as mines and hydrocarbon deposits, erupting volcanoes and seismogenically active areas, and national parks) and discovered their implications for the local people. Along the way, we interviewed local geologists and scientists who helped us understand the geology of their areas. We gathered our own observations with those of the local specialists and published essays, articles and photographs on our website and blog (www.georouteandine.fr/English, http://georouteandine.blogspot.com). Seventeen schools in France and Norway

  2. Mio Pliocene volcaniclastic deposits in the Famatina Ranges, southern Central Andes: A case of volcanic controls on sedimentation in broken foreland basins

    Science.gov (United States)

    Martina, Federico; Dávila, Federico M.; Astini, Ricardo A.

    2006-04-01

    A well-constrained record of Miocene-Pliocene explosive volcanism is preserved within the broken foreland of Western Argentina along the Famatina Ranges. This paper focuses on the volcaniclastic record known as the Río Blanco member of the El Durazno Formation. Three facies can be recognized in the study area: (1) massive tuffs; (2) volcaniclastic conglomerates and (3) pumiceous sandstones. These facies are interpreted as primary pyroclastic flow deposits (ignimbrites) and reworked volcanogenic deposits within interacting volcanic-fluvial depositional systems. Alternation between ignimbrites and volcanogenic sandstones and conglomerates suggest a recurrent pattern of sedimentation related to recurrent volcanic activity. Considering the facies mosaic and relative thicknesses of facies, short periods of syn-eruption sedimentation (volcaniclastic deposits) seem to have been separated by longer inter-eruption periods, where normal stream-flow processes were dominant. The volcaniclastic component decreases up-section, suggesting a gradual reduction in volcanic activity. The mean sedimentation rate of the Río Blanco member is higher (0.44 mm/year) than those obtained for the underlying and overlying units. This increase cannot be fully explained by foreland basement deformation and tectonic loading. Hence, we propose subsidence associated with volcanic activity as the causal mechanism. Volcanism would have triggered additional accommodation space through coeval pyroclastic deposition, modification of the stream equilibrium profile, flexural loading of volcanoes, and thermal processes. These mechanisms may have favored the preservation of volcaniclastic beds in the high-gradient foreland system of Famatina during the Mio-Pliocene. Thus, the Río Blanco member records the response of fluvial systems to large, volcanism-induced sediment loads.

  3. 77 FR 31039 - Andean Trade Preference Act: Impact on the U.S. Economy and on Andean Drug Crop Eradication

    Science.gov (United States)

    2012-05-24

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 332-352] Andean Trade Preference Act: Impact on the U.S. Economy and on Andean Drug Crop Eradication AGENCY: United States International Trade.... 332-352, Andean Trade Preference Act: Impact on the U.S. Economy and on Andean Drug Crop Eradication...

  4. Seasonality of volcanic eruptions

    Science.gov (United States)

    Mason, B.; Pyle, D.; Dade, B.; Jupp, T.

    2003-04-01

    An analysis of volcanic activity in the last three hundred years reveals that the frequency of onset of volcanic eruptions varies systematically with the time of year. We analysed the Smithsonian catalogue of more than 3200 subaerial eruptions recorded during the last 300 years. We also investigated continuous records, which are not part of the general catalogue, of individual explosions at Sakurajima volcano (Japan, 150 events per year since 1955) and Semeru (Indonesia, 100,000 events during the period 1997-2000). A higher proportion (as much as 18 percent of the average monthly rate) of eruptions occur worldwide between December and March. This observation is statistically significant at above the 99 percent level. This pattern is independent of the time interval considered, and emerges whether individual eruptions are counted with equal weight or with weights proportional to event explosivity. Elevated rates of eruption onset in boreal winter months are observed in northern and southern hemispheres alike, as well as in most volcanically-active regions including, most prominently, the 'Ring of Fire' surrounding the Pacific basin. Key contributors to this regional pattern include volcanoes in Central and South America, the volcanic provinces of the northwest Pacific rim, Indonesia and the southwest Pacific basin. On the smallest spatial scales, some individual volcanoes for which detailed histories exist exhibit peak levels in eruption activity during November-January. Seasonality is attributed to one or more mechanisms associated with the annual hydrological cycle, and may correspond to the smallest time-scale over which fluctuations in stress due to the redistribution of water-masses are felt by the Earth's crust. Our findings have important ramifications for volcanic risk assessment, and offer new insight into possible changes in volcanic activity during periods of long-term changes in global sea level.

  5. Administrative Law in the Andean Community of Nations

    OpenAIRE

    Santos Rodríguez, Jorge Enrique

    2013-01-01

    One of the contemporary tendencies of Administrative Law is the recognition of its existence beyond the borders of a State. Under such premise, this paper aims to demonstrate that in the Andean Community of Nations sufficient elements to consider the existence of an Andean administrative Law. In the Andean statutes and rules, it is possible to identify an administrative function, as well as an administrative organization inside the Andean Integration System; and a system of Andean administrat...

  6. A New Sulfur and Carbon Degassing Inventory for the Southern Central American Volcanic Arc: The Importance of Accurate Time-Series Data Sets and Possible Tectonic Processes Responsible for Temporal Variations in Arc-Scale Volatile Emissions

    Science.gov (United States)

    de Moor, J. M.; Kern, C.; Avard, G.; Muller, C.; Aiuppa, A.; Saballos, A.; Ibarra, M.; LaFemina, P.; Protti, M.; Fischer, T. P.

    2017-12-01

    This work presents a new database of SO2 and CO2 fluxes from the Southern Central American Volcanic Arc (SCAVA) for the period 2015-2016. We report ˜300 SO2 flux measurements from 10 volcanoes and gas ratios from 11 volcanoes in Costa Rica and Nicaragua representing the most extensive available assessment of this ˜500 km arc segment. The SO2 flux from SCAVA is estimated at 6,240 ± 1,150 T/d, about a factor of three higher than previous estimations (1972-2013). We attribute this increase in part to our more complete assessment of the arc. Another consideration in interpreting the difference is the context of increased volcanic activity, as there were more eruptions in 2015-2016 than in any period since ˜1980. A potential explanation for increased degassing and volcanic activity is a change in crustal stress regime (from compression to extension, opening volcanic conduits) following two large (Mw > 7) earthquakes in the region in 2012. The CO2 flux from the arc is estimated at 22,500 ± 4,900 T/d, which is equal to or greater than estimates of C input into the SCAVA subduction zone. Time-series data sets for arc degassing need to be improved in temporal and spatial coverage to robustly constrain volatile budgets and tectonic controls. Arc volatile budgets are strongly influenced by short-lived degassing events and arc systems likely display significant short-term variations in volatile output, calling for expansion of nascent geochemical monitoring networks to achieve spatial and temporal coverage similar to traditional geophysical networks.

  7. Ecological niche models and patterns of richness and endemism of the southern Andean genus Eurymetopum (Coleoptera, Cleridae Modelos de nicho ecológico y patrones de riqueza y endemismo del género andino austral Eurymetopum (Coleoptera, Cleridae

    Directory of Open Access Journals (Sweden)

    Tania Escalante

    2009-01-01

    Full Text Available Eurymetopum is an Andean clerid genus with 22 species. We modeled the ecological niches of 19 species with Maxent and used them as potential distributional maps to identify patterns of richness and endemicity. All modeled species maps were overlapped in a single map in order to determine richness. We performed an optimality analysis with NDM/VNDM in a grid of 1º latitude-longitude in order to identify endemism. We found a highly rich area, located between 32º and 41º south latitude, where the richest pixels have 16 species. One area of endemism was identified, located in the Maule and Valdivian Forest biogeographic provinces, which extends also to the Santiago province of the Central Chilean subregion, and contains four endemic species (E. parallelum, E. prasinum, E. proteus, and E. viride, as well as 16 non-endemic species. The sympatry of these phylogenetically unrelated species might indicate ancient vicariance processes, followed by episodes of dispersal. Based on our results, we suggest a close relationship between these provinces, with the Maule representing a complex area.Eurymetopum es un género de cléridos andinos con 22 especies. Modelamos los nichos ecológicos de 19 especies con Maxent y los utilizamos como mapas de distribución potencial para identificar patrones de riqueza y endemismo. Todos los mapas de las especies se superpusieron en un mapa único para determinar la riqueza. Realizamos un análisis de optimalidad con NDM/VNDM en una cuadrícula de 1º de latitud-longitud para identificar el endemismo. Hallamos un área de mayor riqueza, localizada entre los 32º y 41º de latitud sur, donde los pixeles más ricos poseen 16 especies. Se identificó un área de endemismo en las provincias biogeográficas del Maule y el Bosque Valdiviano, la cual se extiende también a la provincia de Santiago de la subregión Chilena Central, y que contiene cuatro especies endémicas (E. parallelum, E. prasinum, E. proteus y E. viride, as

  8. Prices and Politics in Andean Water Reforms

    NARCIS (Netherlands)

    Boelens, R.A.; Zwarteveen, M.Z.

    2005-01-01

    Water rights are best understood as politically contested and culturally embedded relationships among different social actors. In the Andean region, existing rights of irrigators¿ collectives often embody historical struggles over resources, rules, authorities and identities. This article argues,

  9. The Under-side of the Andes: Using Receiver Functions to Map the North Central Andean Subsurface

    Science.gov (United States)

    Ryan, J. C.; Beck, S. L.; Zandt, G.; Wagner, L. S.; Minaya, E.; Tavera, H.

    2012-12-01

    The Central Andean Uplift and Geodynamics of High Topography (CAUGHT) project is an interdisciplinary project to investigate connections between lithospheric removal, crustal shortening and surface uplift in the northern Bolivia and southern Peru region of the South American Andean orogen. The central Andes are defined by six major tectonomorphic provinces; the forearc, the volcanically active Western Cordillera (WC, ~6 km elevation), the internally drained Altiplano (~4 km elevation), an inactive fold and thrust belt in the Eastern Cordillera (EC, ~6 km elevation), a lower elevation active fold and thrust belt in the Subandean (SA) zone and the Beni, a foreland basin. Forty seismic stations installed for the CAUGHT project were deployed between 13° and 18° S latitude, covering the transition zone where the Altiplano region pinches out in southern Peru, in an effort to better constrain the changing character of the crust and mantle lithosphere. Geologic studies across the northern Bolivian portion of the eastern Andean margin (15-17° S) have documented a total of 275 km of upper crustal shortening (McQuarrie et al, Tectonics, v27, 2008), which may be associated with crustal thickening and/or the removal of lithospheric material as a thickened lithosphere root becomes unstable. For this receiver function (converted wave) study, we have little coverage in the forearc and foreland, ~75 km spacing in most of the array, and a relatively dense ~20 km spaced profile along the Charaña-La Paz-Yucumo transect, the eastern portion of which is nearly coincident with the balanced cross-section of McQuarrie et al. (2008). Using the first year of available data, more than 1200 receiver functions have been calculated using an iterative deconvolution method, and stacked using the common conversion point (CCP) method, along profiles parallel to and nearly coincident to those used for the geologic shortening estimates. We identified arrivals for the Moho and generated a 3D map of

  10. Exploring the potential of an Andean fruit

    OpenAIRE

    Olivares Tenorio, Mary Luz

    2017-01-01

    Cape gooseberry is a fruit cultivated in Andean countries. Currently it is available some international markets, besides the domestic Andean market. Colombia is the major producer and export country at the moment. The value chain of cape gooseberry faces several barriers of technological and governance nature.  This research is an interdisciplinary study on the Colombian cape gooseberry value chain. It aimed to evaluate quality attributes of the fruit during the supply chain, including t...

  11. Calbuco Volcano and minor eruptive centers distributed along the Liquiñe-Ofqui Fault Zone, Chile (41° 42° S): contrasting origin of andesitic and basaltic magma in the Southern Volcanic Zone of the Andes

    Science.gov (United States)

    López-Escobar, L.; Parada, M. A.; Hickey-Vargas, R.; Frey, F. A.; Kempton, P. D.; Moreno, H.

    1995-04-01

    Calbuco volcano is a Late Pleistocene-Holocene composite stratovolcano located at 41°20' S, in the southern region of the Southern Volcanic Zone of the Andes (SSVZ; 37° 46° S). In contrast to basalt and basaltic andesite, which are the dominant lava types on the volcanic front from 37° to 42° S, Calbuco lavas are porphyritic andesites which contain a wide variety of crustal xenoliths. They have SiO2 contents in the 55 60% range, and have comparatively low K2O, Rb, Ba, Th and LREF abundances relative to other SSVZ centers. Incompatible element abundance ratios are similar to those of most SSVZ volcanics, but 87Sr/86Sr and 143Nd/144Nd are respectively higher and lower than those of adjacent volcanic centers. Basalts from nearby Osorno stratovolcano, 25 km to the northeast, are similar to other basaltic SSVZ volcanoes. However, basalts from several minor eruptive centers (MEC), located east of Calbuco and Osorno volcano along the Liquiñe-Ofqui fault zone (LOFZ), are enriched in Ba, Nb, Th and LREE, and have higher La/Yb and lower Ba/La, K/La and Rb/La. 87Sr/86Sr and 143Nd/144Nd in MEC basalts are respectively lower and higher than those of Osorno and Calbuco lavas. We suggest that MEC basalts were produced by lower extents of mantle melting than basalts from Osorno and other SSVZ stratovolcanoes, probably as a result of lower water content in the source of MEC basalts. Calbuco andesites formed from basaltic parents similar to Osorno basalts, by moderate pressure crystallization of a hornblende-bearing assemblage accompanied by crustal assimilation. Hornblende stability in the Calbuco andesites was promoted by the assimilation of hydrous metasedimentary crustal rocks, which are also an appropriate endmember for isotopic trends, together with magma storage at mid-crustal depths. The unique characteristics of Calbuco volcano, i.e. the stability of hornblende at andesitic SiO2 contents, low 143Nd/144Nd and high 87Sr/86Sr, and abundant crustal xenoliths, provide

  12. Relative roles of rifting tectonics and magma ascent processes: Inferences from geophysical, structural, volcanological, and geochemical data for the Neapolitan volcanic region (southern Italy)

    Science.gov (United States)

    Piochi, Monica; Bruno, Pier Paolo; de Astis, Gianfilippo

    2005-07-01

    The Neapolitan volcanic region is located within the graben structure of the Campanian Plain (CP), which developed between the western sector of the Appenine Chain and the eastern margin of the Tyrrhenian Sea. Two volcanic areas, spaced less than 10 km apart, are situated within the CP: the Somma-Vesuvius Volcano (SVV) and the Phlegraean Volcanic District (PVD). SVV is a typical stratovolcano, whereas PVD, including Campi Flegrei, Procida, and Ischia, is composed mostly of monogenetic centers. This contrast is due to different magma supply systems: a widespread fissure-type system beneath the PVD and a central-type magma supply system for the SVV. Volcanological, geophysical, and geochemical data show that magma viscosity, magma supply rate, and depth of magma storage are comparable at PVD and SVV, whereas different structural arrangements characterize the two areas. On the basis of geophysical data and magma geochemistry, an oblique-extensional tectonic regime is proposed within the PVD, whereas in the SVV area a compressive stress regime dominates over extension. Geophysical data suggest that the area with the maximum deformation rate extends between the EW-running 41st parallel and the NE-running Magnaghi-Sebeto fault systems. The PVD extensional area is a consequence of the Tyrrhenian Sea opening and is decoupled from the surrounding areas (Roccamonfina and Somma-Vesuvius) which are still dominated by Adriatic slab dynamics. Spatially, we argue that the contribution of the asthenospheric wedge become much less important from W-NW to E-SE in the CP. The development of the two styles of volcanism in the CP reflects the different tectonic regimes acting in the area.

  13. Energy Exploitation of High-Temperature Geothermal Sources in Volcanic Areas—a Possible ORC Application in Phlegraean Fields (Southern Italy)

    OpenAIRE

    Angelo Algieri

    2018-01-01

    This work aims to investigate the energy performances of small-scale Organic Rankine Cycles (ORCs) for the exploitation of high temperature geothermal sources in volcanic areas. For this purpose, a thermodynamic model has been developed, and a parametric analysis has been performed that considers subcritical and transcritical configurations, and different organic fluids (isobutane, isopentane, and R245ca). The investigation illustrates the significant effect of the temperature at the entrance...

  14. Climate change forces new ecological states in tropical Andean lakes.

    Directory of Open Access Journals (Sweden)

    Neal Michelutti

    Full Text Available Air temperatures in the tropical Andes have risen at an accelerated rate relative to the global average over recent decades. However, the effects of climate change on Andean lakes, which are vital to sustaining regional biodiversity and serve as an important water resource to local populations, remain largely unknown. Here, we show that recent climate changes have forced alpine lakes of the equatorial Andes towards new ecological and physical states, in close synchrony to the rapid shrinkage of glaciers regionally. Using dated sediment cores from three lakes in the southern Sierra of Ecuador, we record abrupt increases in the planktonic thalassiosiroid diatom Discostella stelligera from trace abundances to dominance within the phytoplankton. This unprecedented shift occurs against the backdrop of rising temperatures, changing atmospheric pressure fields, and declining wind speeds. Ecological restructuring in these lakes is linked to warming and/or enhanced water column stratification. In contrast to seasonally ice-covered Arctic and temperate alpine counterparts, aquatic production has not increased universally with warming, and has even declined in some lakes, possibly because enhanced thermal stability impedes the re-circulation of hypolimnetic nutrients to surface waters. Our results demonstrate that these lakes have already passed important ecological thresholds, with potentially far-reaching consequences for Andean water resources.

  15. Volcanic deposits in Antarctic snow and ice

    Science.gov (United States)

    Delmas, Robert J.; Legrand, Michel; Aristarain, Alberto J.; Zanolini, FrançOise

    1985-12-01

    Major volcanic eruptions are able to spread large amounts of sulfuric acid all over the world. Acid layers of volcanic origin were detected for the first time a few years ago by Hammer in Greenland ice. The present paper deals with volcanic deposits in the Antarctic. The different methods that can be used to find volcanic acid deposits in snow and ice cores are compared: electrical conductivity, sulfate, and acidity measurements. Numerous snow and ice samples collected at several Antarctic locations were analyzed. The results reveal that the two major volcanic events recorded by H2SO4, fallout in Antarctic ice over the last century are the eruptions of Krakatoa (1883) and Agung (1963), both located at equatorial latitudes in the southern hemisphere. The volcanic signals are found to be particularly well defined at central Antarctic locations apparently in relation to the low snow accumulation rates in these areas. It is demonstrated that volcanic sulfuric acid in snow is not even partially neutralized by ammonia. The possible influence of Antarctic volcanic activity on snow chemistry is also discussed, using the three recent eruptions of the Deception Island volcano as examples. Only one of them seems to have had a significant effect on the chemistry of snow at a location 200 km from this volcano. It is concluded that Antarctic volcanic ice records are less complicated than Greenland records because of the limited number of volcanos in the southern hemisphere and the apparently higher signal to background ratio for acidity in Antarctica than in Greenland.

  16. Evidence of proterozoic crust under the coastal Cordillera of Central Chile: Grenville age xenocrystic zircons in cretaceous volcanic rocks

    International Nuclear Information System (INIS)

    Zentilli, M; Pop, N; Heaman; L; Boric, R

    2001-01-01

    In the central Andes, Proterozoic basement rocks outcrop in isolated areas from beneath a Mesozoic and Cenozoic cover in southern Peru, northernmost Chile, Bolivia, and in northwestern Argentina. Their role in Andean magmatism and metallogenesis is well documented. In the southern Central Andes, Proterozoic rocks are so far known to outcrop in Argentina, east of the continental divide. In the course of U-Pb dating of the bimodal volcanic and sub-volcanic host rocks for Mesozoic manto-type copper deposits, we have encountered xenocrystic zircon with Proterozoic and Paleozoic ages. In the Punta del Cobre Cu-Fe (Au) District (27 o 30' S / 70 o 15' W) 22 km south of Copiapo xenocrystic zircon in the Lower Cretaceous host dacite yields ca. 1 Ga ages. In the El Soldado Cu District, (32 o 38' S /71 o 04' W), 120 km northwest of Santiago, scarce and strongly resorbed zircon crystals in the Lower Cretaceous host rhyodacite yield ages of 0.5 to 1.3 Ga. The early Cretaceous bimodal volcanic and subvolcanic rocks, which consists of primitive calc-alkaline basalts and rhyodacites, display geochemical evidence of crustal contamination. Our results suggest that, during their formation and ascent, the felsic magmas picked up zircons in the Proterozoic and Paleozoic crystalline basement of the Coastal Cordillera. The presence of Proterozoic (Grenville age) basement underlying localities as close as 30 km from the Pacific coast has implications for the extent and age of the Chilenia Terrane and gives further credence to correlation models that juxtapose eastern North America (Laurentia) and southwestern South America (Gondwana) during the Late Proterozoic (au)

  17. Landscape genetics, historical isolation and cross-Andean gene flow in the wax palm, Ceroxylon echinulatum (Arecaceae)

    DEFF Research Database (Denmark)

    Trénel, P.; Hansen, Michael Møller; Nordmand, S.

    2008-01-01

    and landscape genetics of the Andean wax palm Ceroxylon echinulatum (Arecaceae) that occurs in two narrow bands of montane forests on each side of the Andes in Ecuador and northeastern Peru. First, we tested the hypothesis of C. echinulatum being a geographic cline species crossing the Andes in the Amotape......-Huancabamba zone (AHZ) of southern Ecuador/northern Peru, as indicated by observations on fruit morphology. Second, we assessed the timeframe of cross-Andean divergence, and third, we investigated the impact of contemporary and historical landscape features on observed spatio-genetic patterns. Individual...

  18. Central Andean crustal structure from receiver function analysis

    Science.gov (United States)

    Ryan, Jamie; Beck, Susan; Zandt, George; Wagner, Lara; Minaya, Estela; Tavera, Hernado

    2016-07-01

    The Central Andean Plateau (15°-27°S) is a high plateau in excess of 3 km elevation, associated with thickened crust along the western edge of the South America plate, in the convergent margin between the subducting Nazca plate and the Brazilian craton. We have calculated receiver functions using seismic data from a recent portable deployment of broadband seismometers in the Bolivian orocline (12°-21°S) region and combined them with waveforms from 38 other stations in the region to investigate crustal thickness and crust and mantle structures. Results from the receiver functions provide a more detailed map of crustal thickness than previously existed, and highlight mid-crustal features that match well with prior studies. The active volcanic arc and Altiplano have thick crust with Moho depths increasing from the central Altiplano (65 km) to the northern Altiplano (75 km). The Eastern Cordillera shows large along strike variations in crustal thickness. Along a densely sampled SW-NE profile through the Bolivian orocline there is a small region of thin crust beneath the high peaks of the Cordillera Real where the average elevations are near 4 km, and the Moho depth varies from 55 to 60 km, implying the crust is undercompensated by 5 km. In comparison, a broader region of high elevations in the Eastern Cordillera to the southeast near 20°S has a deeper Moho at 65-70 km and appears close to isostatic equilibrium at the Moho. Assuming the modern-day pattern of high precipitation on the flanks of the Andean plateau has existed since the late Miocene, we suggest that climate induced exhumation can explain some of the variations in present day crustal structure across the Bolivian orocline. We also suggest that south of the orocline at 20°S, the thicker and isostatically compensated crust is due to the absence of erosional exhumation and the occurrence of lithospheric delamination.

  19. Volcanic gas

    Science.gov (United States)

    McGee, Kenneth A.; Gerlach, Terrance M.

    1995-01-01

    In Roman mythology, Vulcan, the god of fire, was said to have made tools and weapons for the other gods in his workshop at Olympus. Throughout history, volcanoes have frequently been identified with Vulcan and other mythological figures. Scientists now know that the “smoke" from volcanoes, once attributed by poets to be from Vulcan’s forge, is actually volcanic gas naturally released from both active and many inactive volcanoes. The molten rock, or magma, that lies beneath volcanoes and fuels eruptions, contains abundant gases that are released to the surface before, during, and after eruptions. These gases range from relatively benign low-temperature steam to thick hot clouds of choking sulfurous fume jetting from the earth. Water vapor is typically the most abundant volcanic gas, followed by carbon dioxide and sulfur dioxide. Other volcanic gases are hydrogen sulfide, hydrochloric acid, hydrogen, carbon monoxide, hydrofluoric acid, and other trace gases and volatile metals. The concentrations of these gas species can vary considerably from one volcano to the next.

  20. Gas geochemistry of the Cordon Caulle geothermal system, Southern Chile

    Energy Technology Data Exchange (ETDEWEB)

    Sepulveda, Fabian [SGGES, University of Auckland, Private Bag 92019, Auckland (New Zealand); Lahsen, Alfredo [Department of Geology, University of Chile, P.O. Box 13518 (21), Santiago (Chile); Powell, Thomas [Mighty River Power, P.O. Box 445, Hamilton (New Zealand)

    2007-10-15

    The Cordon Caulle geothermal system is located in a NW-trending volcano-tectonic depression of the Southern Andean Volcanic Zone of Chile. Outflows of low chloride water were previously interpreted as the surface expression of a shallow steam-heated aquifer, with subsurface temperatures of 150-170 C. Gas data from fumaroles and hot springs have been used to assess the nature and temperature of the deeper, underlying geothermal reservoir. Fumaroles at the northeastern border of Cordon Caulle have {sup 3}He/{sup 4}He ratios typical of subduction margins (6-7 R{sub A}) and N{sub 2}/Ar ratios of about 40, indicating deep convection of air-saturated groundwater. Fumaroles at the southwestern border have N{sub 2}/Ar ratios >300, suggesting the presence of a deep volcanic component. Gas ratios of fumarole discharges yield equilibration temperatures >300 C, whereas those of hot spring waters suggest temperatures of about 160 C. Based on these data, and comparisons with well documented liquid and vapor-dominated geothermal systems, a model is proposed of a boiling liquid-dominated geothermal system overlain by a secondary steam-heated aquifer. (author)

  1. MID-MIOCENE SEQUENCES OF HIGH- AND MODERATE-MG VOLCANIC ROCKS IN VITIM PLATEAU, SOUTHERN SIBERIA: IMPACT OF A SUB-LITHOSPHERIC CONVECTIVE MATERIAL ON THE LITHOSPHERE

    Directory of Open Access Journals (Sweden)

    I. S. Chuvashova

    2015-01-01

    Full Text Available A comparative study of major elements, trace elements, and isotopes in high- and moderate-Mg volcanic sequences of 16–14 and 14–13 Ma, respectively, has been performed in the Bereya volcanic center. In the former (small volume sequence, contaminated by crustal material basalts and trachybasalts of K–Na series were followed by uncontaminated basanites and basalts of transitional (K–Na–K compositions and afterwards by picrobasalts and ba­salts of K series. From pressure estimates using equation [Scarrow, Cox, 1995], high-Mg magma originated at the deep range of 115–150 km. In the latter (high-volume sequence, basalts and basaltic andesites of transitional (Na–K–Na compositions and basalts of Na series were overlain by basalts and trachybasalts of K–Na series. First, there was a strong melting of its shallow garnet-free part with coeval weak melting of more deep garnet-bearing portion, then only a deep garnet-bearing portion of the lithospheric mantle melted. It is suggested that the sequential formation of high- and moderate-Mg melts reflected the mid-Miocene thermal impact of the lithosphere by hot material from the Transbaikalian low-velocity domain, which had the potential temperature Tp as high as 1510 °С. This thermal impact triggered the rifting in the lithosphere of the Baikal Rift System.

  2. 40Ar/39Ar dating of tuff vents in the Campi Flegrei caldera (southern Italy): Toward a new chronostratigraphic reconstruction of the Holocene volcanic activity

    Science.gov (United States)

    Fedele, L.; Insinga, D.D.; Calvert, A.T.; Morra, V.; Perrotta, A.; Scarpati, C.

    2011-01-01

    The Campi Flegrei hosts numerous monogenetic vents inferred to be younger than the 15 ka Neapolitan Yellow Tuff. Sanidine crystals from the three young Campi Flegrei vents of Fondi di Baia, Bacoli and Nisida were dated using 40Ar/39Ar geochronology. These vents, together with several other young edifices, occur roughly along the inner border of the Campi Flegrei caldera, suggesting that the volcanic conduits are controlled by caldera-bounding faults. Plateau ages of ∼9.6 ka (Fondi di Baia), ∼8.6 ka (Bacoli) and ∼3.9 ka (Nisida) indicate eruptive activity during intervals previously interpreted as quiescent. A critical revision, involving calendar age correction of literature 14C data and available 40Ar/39Ar age data, is presented. A new reference chronostratigraphic framework for Holocene Phlegrean activity, which significantly differs from the previously adopted ones, is proposed. This has important implications for understanding the Campi Flegrei eruptive history and, ultimately, for the evaluation of related volcanic risk and hazard, for which the inferred history of its recent activity is generally taken into account.

  3. Stratigraphy of amethyst geode-bearing lavas and fault-block structures of the Entre Rios mining district, Paraná volcanic province, southern Brazil

    Directory of Open Access Journals (Sweden)

    LÉO A. HARTMANN

    2014-03-01

    Full Text Available The Entre Rios mining district produces a large volume of amethyst geodes in underground mines and is part of the world class deposits in the Paraná volcanic province of South America. Two producing basalt flows are numbered 4 and 5 in the lava stratigraphy. A total of seven basalt flows and one rhyodacite flow are present in the district. At the base of the stratigraphy, beginning at the Chapecó river bed, two basalt flows are Esmeralda, low-Ti type. The third flow in the sequence is a rhyodacite, Chapecó type, Guarapuava subtype. Above the rhyodacite flow, four basalt flows are Pitanga, high-Ti type including the two mineralized flows; only the topmost basalt in the stratigraphy is a Paranapanema, intermediate-Ti type. Each individual flow is uniquely identified from its geochemical and gamma-spectrometric properties. The study of several sections in the district allowed for the identification of a fault-block structure. Blocks are elongated NW and the block on the west side of the fault was downthrown. This important structural characterization of the mining district will have significant consequences in the search for new amethyst geode deposits and in the understanding of the evolution of the Paraná volcanic province.

  4. Administrative Law in the Andean Community of Nations

    Directory of Open Access Journals (Sweden)

    Jorge Enrique Santos Rodríguez

    2013-12-01

    Full Text Available One of the contemporary tendencies of Administrative Law is the recognition of its existence beyond the borders of a State. Under such premise, this paper aims to demonstrate that in the Andean Community of Nations sufficient elements to consider the existence of an Andean administrative Law. In the Andean statutes and rules, it is possible to identify an administrative function, as well as an administrative organization inside the Andean Integration System; and a system of Andean administrative rules and an administrative justice system.

  5. Constraints on deformation of the Southern Andes since the Cretaceous from anisotropy of magnetic susceptibility

    NARCIS (Netherlands)

    Maffione, Marco; Hernandez-Moreno, Catalina; Ghiglione, Matias C.; Speranza, Fabio; van Hinsbergen, Douwe J.J.; Lodolo, Emanuele

    2015-01-01

    The southernmost segment of the Andean Cordillera underwent a complex deformation history characterized by alternation of contractional, extensional, and strike-slip tectonics. Key elements of southern Andean deformation that remain poorly constrained, include the origin of the orogenic bend known

  6. Shifts in leaf litter breakdown along a forest-pasture-urban gradient in Andean streams.

    Science.gov (United States)

    Iñiguez-Armijos, Carlos; Rausche, Sirkka; Cueva, Augusta; Sánchez-Rodríguez, Aminael; Espinosa, Carlos; Breuer, Lutz

    2016-07-01

    Tropical montane ecosystems of the Andes are critically threatened by a rapid land-use change which can potentially affect stream variables, aquatic communities, and ecosystem processes such as leaf litter breakdown. However, these effects have not been sufficiently investigated in the Andean region and at high altitude locations in general. Here, we studied the influence of land use (forest-pasture-urban) on stream physico-chemical variables (e.g., water temperature, nutrient concentration, and pH), aquatic communities (macroinvertebrates and aquatic fungi) and leaf litter breakdown rates in Andean streams (southern Ecuador), and how variation in those stream physico-chemical variables affect macroinvertebrates and fungi related to leaf litter breakdown. We found that pH, water temperature, and nutrient concentration increased along the land-use gradient. Macroinvertebrate communities were significantly different between land uses. Shredder richness and abundance were lower in pasture than forest sites and totally absent in urban sites, and fungal richness and biomass were higher in forest sites than in pasture and urban sites. Leaf litter breakdown rates became slower as riparian land use changed from natural to anthropogenically disturbed conditions and were largely determined by pH, water temperature, phosphate concentration, fungal activity, and single species of leaf-shredding invertebrates. Our findings provide evidence that leaf litter breakdown in Andean streams is sensitive to riparian land-use change, with urban streams being the most affected. In addition, this study highlights the role of fungal biomass and shredder species (Phylloicus; Trichoptera and Anchytarsus; Coleoptera) on leaf litter breakdown in Andean streams and the contribution of aquatic fungi in supporting this ecosystem process when shredders are absent or present low abundance in streams affected by urbanization. Finally, we summarize important implications in terms of managing of

  7. Agronomic performance and stability of andean common bean lines with white grains in Brazil

    Directory of Open Access Journals (Sweden)

    Helton Santos Pereira

    2014-06-01

    Full Text Available This work evaluated the effect of genotype by environment interaction in Andean common bean lines with white grains, in Central Southern Brazil, to identify lines with high agronomic performance, stability and adaptability, aiming to meet domestic demand and to increase the Brazilian participation in the foreign market of common bean. Nineteen trials with twelve Andean lines were conducted in 2007, 2008 and 2009, in Central Southern Brazil. Grain yield and other agronomic traits were evaluated. Data were subjected to analysis of variance and of adaptability/stability using Annicchiarico and modified AMMI methods. Significant differences were found between lines for all traits evaluated. Genotype by environment interaction was important for lines with Andean origin and white seed. The utilization of weighted mean of absolute scores and yield with the AMMI results enabled the identification of the most stable and adapted lines. Lines Poroto Alubia, CNFB 16211, Ouro Branco and WAF 160 were stable and adapted, using both methods. CNFB 16211 line presented high agronomic performance, stability and adaptability and therefore this line may be a new cultivar. USWA 70 and WAF 75 lines presented grain size similar to that required by the foreign market and superior to the Brazilian cultivars, besides favorable agronomic traits, and thus these lines may be indicated as new cultivars.

  8. Volcanic Catastrophes

    Science.gov (United States)

    Eichelberger, J. C.

    2003-12-01

    The big news from 20th century geophysics may not be plate tectonics but rather the surprise return of catastrophism, following its apparent 19th century defeat to uniformitarianism. Divine miracles and plagues had yielded to the logic of integrating observations of everyday change over time. Yet the brilliant interpretation of the Cretaceous-Tertiary Boundary iridium anomaly introduced an empirically based catastrophism. Undoubtedly, decades of contemplating our own nuclear self-destruction played a role in this. Concepts of nuclear winter, volcanic winter, and meteor impact winter are closely allied. And once the veil of threat of all-out nuclear exchange began to lift, we could begin to imagine slower routes to destruction as "global change". As a way to end our world, fire is a good one. Three-dimensional magma chambers do not have as severe a magnitude limitation as essentially two-dimensional faults. Thus, while we have experienced earthquakes that are as big as they get, we have not experienced volcanic eruptions nearly as great as those preserved in the geologic record. The range extends to events almost three orders of magnitude greater than any eruptions of the 20th century. Such a calamity now would at the very least bring society to a temporary halt globally, and cause death and destruction on a continental scale. At maximum, there is the possibility of hindering photosynthesis and threatening life more generally. It has even been speculated that the relative genetic homogeneity of humankind derives from an evolutionary "bottleneck" from near-extinction in a volcanic cataclysm. This is somewhat more palatable to contemplate than a return to a form of Original Sin, in which we arrived at homogeneity by a sort of "ethnic cleansing". Lacking a written record of truly great eruptions, our sense of human impact must necessarily be aided by archeological and anthropological investigations. For example, there is much to be learned about the influence of

  9. Volcanic features of Io

    Science.gov (United States)

    Carr, M.H.; Masursky, H.; Strom, R.G.; Terrile, R.J.

    1979-01-01

    Volcanic activity is apparently higher on Io than on any other body in the Solar System. Its volcanic landforms can be compared with features on Earth to indicate the type of volcanism present on Io. ?? 1979 Nature Publishing Group.

  10. Partial delamination of continental mantle lithosphere, uplift-related crust mantle decoupling, volcanism and basin formation: a new model for the Pliocene Quaternary evolution of the southern East-Carpathians, Romania

    Science.gov (United States)

    Chalot-Prat, F.; Girbacea, R.

    2000-11-01

    A geodynamic model is proposed for the Mid-Miocene to Quaternary evolution of the southern East-Carpathians in order to explain the relationships between shallow and deep geological phenomena that occurred synchronously during late-collision tectonics. In this area, an active volcanic zone cross-cuts since 2 My the suture between the overriding Tisza-Dacia and subducting European continental plates. Mafic calc-alkaline and alkaline magmas (south Harghita and Persani volcanoes) erupted contemporaneously. These magmas were supplied by partial melting of the mantle lithosphere of the subducting, and not of the overriding, plate. In an effort to decipher this geodynamically a-typical setting of magma generation, the spatial and temporal distribution of shallow and deep phenomena was successively examined in order to establish the degree of their interdependence. Our model indicates that intra-mantle delamination of the subducting European plate is the principal cause of a succession of events. It caused upwelling of the hot asthenosphere below a thinned continental lithosphere of the Carpathians, inducing the uplift of the lithosphere and its internal decoupling at the Moho level by isostatic and mostly thermal effects. During this uplift, the crust deformed flexurally whilst the mantle deformed in a ductile way. This triggered decompressional partial melting of the uppermost mantle lithosphere. Flexural deformation of the crust induced its fracturing, allowing for the rapid ascent of magmas to the surface, as well as reactivation of an older detachment horizon at the base of the Carpathian nappe stack above which the Brasov, Ciuc and Gheorghieni hinterland basins formed by extension and gravity spreading. The rapid subsidence of the Focsani foreland basin is controlled by the load exerted on the lithosphere by the delaminated mantle slab that is still attached to it. In this model, crust-mantle decoupling, magma genesis and volcanism, local near-surface hinterland

  11. Andean region: measles on the way out.

    Science.gov (United States)

    1996-10-01

    In August 1996, health officials, program managers, epidemiologists, laboratory representatives, UNICEF, Rotary International, and Pan American Health Organization staff attended the VII Andean EPI Meeting in Quito, Ecuador, to review the progress of the Expanded Program on Immunization (EPI). All Andean countries have conducted catch-up measles vaccination campaigns targeting children 9 months to 15 years old. These campaigns achieved 90% vaccine coverage and a strong reduction in measles incidence (only 7 confirmed cases in 1996). Follow-up campaigns were conducted during 1995-1996 in Colombia, Peru, and Chile. They were expected in Bolivia, Ecuador, Peru, and Venezuela during 1997-1999. The Andean countries implemented a national surveillance system for measles in 1995. Meeting representatives made eight recommendations regarding measles. For example, health officials should reach and maintain routine vaccination coverage greater than 95% for children 12-23 months old in each municipality. Laboratory representatives proposed recommendations on uniform criteria for measles diagnosis. The last indigenous wild poliovirus in the Americas was isolated in 1991. Imported wild poliovirus remains a concern. The Andean countries are expanding surveillance of neonatal tetanus activities. Since 1989 the frequency of neonatal tetanus has been falling in the Andean region, especially in Bolivia and Peru. The impact of migration on the control of neonatal tetanus should be a higher priority. Participants repeated the need for systematic use and continuous monitoring of EPI indicators (e.g., vaccination coverage). Three countries plan on analyzing surveys on missed opportunities for vaccination in 1996. Three countries presented progress reports on hepatitis B vaccination and surveillance. Participants issued recommendations on quality control of vaccines. The responsibility for quality control lies with the manufacturers and the government. Vaccines for invasive diseases (e

  12. Coupled geohazards at Southern Andes (Copahue-Lanín volcanoes): Chile's GEO supersite proposal

    Science.gov (United States)

    Lara, Luis E.; Cordova, Loreto

    2017-04-01

    Southern Andes are a young and active mountain belt where volcanism and tectonic processes (and those related to the hydrometeorological conditions controlled by this geological setting) pose a significant threat to the growing communities nearby. This proposal focus on a ca. 200 km long segment of the Southern Andes where 9 stratovolcanoes and 2 distributed volcanic fields are located, just along a tectonic corridor defined by the northern segment of the Liquiñe-Ofqui Faul System (LOFS), a long-lived active strike-slip fault running for 1200 km. Volcanoes in this area take part of the central province of the Andean Southern Volcanic Zone (37-41°S), particularly the northermost portion that is limited at the south by an Andean tranverse fault (Lanalhue Fault, which define the Villarrica-Lanin volcanic chain) and run along the horse-tail array of the LOFS to the north. Most of the stravolcanoes are atop of the LOFS main branch with only 3 exceptions (Callaqui, Tolhuaca and Lanín) 15-20 km away, but related to transverse faults. Hazards in the segment derive from the activity of some of the most active volcanoes in South America (e.g., Villarrica, Llaima), others with long-lasting weak activity (e.g., Copahue) or some volcanoes with low frequency but high magnitude eruptions in the geological record. Only since the beggining of the 20th century 80 eruptions have been recorded in this area. In addition, activity of the LOFS has been detected prior to some eruptions and coeval with some others (e.g., Lonquimay 1989). A strong two-way coupling between tectonics and volcanism has been proposed for the segment but only recently detected by geophysical techniques or numerical modelling. Tectonic triggered landslides are frequent in this region together with debris flows at erupting ice-covered volcanoes or stream headed at high altitude basins. The latter scenario seems to be worst at present because of global climate change. Ground-based monitoring networks for both

  13. Volcanic stratigraphy and evidence of magma mixing in the Quaternary Payún Matrú volcano, andean backarc in western Argentina Estratigrafía volcánica y evidencia de mezcla de magmas en el volcán Payún Matrú del Cuaternario, en el retroarco andino de Argentina occidental

    Directory of Open Access Journals (Sweden)

    Irene R Hernando

    2012-01-01

    Full Text Available The Payún Matrú Volcanic Field is located in the Payenia Basaltic Province of the recent back-arc of western Argentina (35°S-38°S. This province is younger than 5 Ma, and most of its volcanic activity took place since 2 Ma. The Payún Matrú Volcanic Field contains two composite volcanoes, Payún Matrú and Payún Liso, and two basaltic fields in an E-W oriented zone, located east and west of the Payún Matrú volcano. Payún Matrú is the largest volcano of this volcanic field, and consists of a shield-shaped edifice with a circular summit caldera of 8 km in diameter. The composition of both composite volcanoes is alkaline and predominantly trachytic, having also minor intermediate lavas. The basaltic fields consist of basalts and trachybasalts, with clinopyroxene and abundant olivine as phenocrysts and also in the groundmass. Textures indicating mixing and mingling processes, such as dusty plagioclases along with clear ones, biotite replaced by anhydrous minerals and two groundmasses with a fluid-fluid relationship, are common in the early pre-caldera stage of Payún Matrú and some post-caldera lavas. The latest post-caldera lavas are trachytic, with clean sanidine phenocrysts without disequilibrium textures. A remarkable characteristic of the Payún Matrú Volcanic Field is the fact that the Payún Matrú caldera is surrounded by basaltic fields at its base, while no basalts were erupted in the caldera region. We propose that the absence of basaltic lavas in the Payún Matrú volcano is due to the presence of a magmatic chamber below it, and that the mafic magmas rising from deeper levels were unable to erupt without interaction with more evolved melts. Intermediate hybrid magmas produced as a consequence of magma mixing and mingling between basaltic and trachytic magmas, are present in the early and mid-history of Payún Matrú volcano. We present here new information about the Quaternary Payún Matrú Volcanic Field derived from field

  14. The fabrication of andean particularism

    Directory of Open Access Journals (Sweden)

    1989-01-01

    original culture through resistance, it focuses on the fabrication of tradition within the disciplinary strategies of the colonial order and on the local re-employment of those productions in political mobilizations. The discussion of this major issue within the field of Andean history is undertaken against the horizon of a case of resistance focusing on the Inca from the Audiencia of Quito in the seventeenth century. Such an incident affords a privileged field for the investigation of the connections between colonial authority and origins, since it stages the recall, simulation and reinstatement of the past.

  15. Ecological Resilience and Resistance in the Hyper Diverse Forests on the Eastern Andean Flank (Mera, Ecuador)

    Science.gov (United States)

    Keen, H. F.; Gosling, W. D.; Montoya, E.; Sherlock, S.; Mothes, P. A.

    2014-12-01

    Today the Neotropics contain some of the world's most biodiverse and threatened ecosystems. Sediments obtained from two radiocarbon infinite (>48,000 years) stratigraphic sections on the eastern Andean flank, provide new insight into the relationship between biodiversity and disturbance during the Pleistocene (~200,000 years). Pollen analysis of modern and fossil material indicates that hyper diverse forest vegetation has been a feature of the Andean flank landscape for 100,000 years (pollen richness: modern = 44, fossil = 48). Correlation of past vegetation with disturbance events (volcanic and fluvial) indicates the response of hyper-diverse forest to past landscape scale change. Pollen records from near Mera (01°27 S, 78°06 W; 1117 m asl) indicate two major changes in the pollen assemblage, with forest communities dominated by: i) Hedyosmum-Alnus-Ilex, and ii) Combretaceae-Melastomataceae-Myrtaceae. These two pollen assemblages most closely resemble modern vegetation cloud forest (2500-3400m asl) and lower montane rain forest (700-2499 m asl) respectively. Sedimentary evidence suggests that at least 21 volcanic events and three changes in the local fluvial regime perturbed the regional landscape during the period of deposition. However, there is no evidence for volcanic or fluvial disturbance events causing a persistent change in vegetation community. Volcanic events (tephra deposits) are associated with increased fire (charcoal particles), and changes in vegetation (pollen grains); however, within ~50cm of sediment accumulation above each tephra, pollen assemblages revert to pre-deposition compositions. Increased fluvial influence (gravel deposits) is associated with elevated input of pollen from taxa today found at higher elevations (Podocarpus-Celtis). The input of high elevation taxa concomitant with fluvial deposits is most likely indicative of an increase in long-distance transport of pollen along water courses originating in the Andes. Our data indicate

  16. Expanding Geophysical and Geochemical Investigation of Causes of Extraordinary Unrest at the Laguna del Maule (Rhyolitic) Volcanic Field, Southern Andes, Chile

    Science.gov (United States)

    Singer, B. S.

    2014-12-01

    The Laguna del Maule Volcanic Field, Chile, includes an unusually large and recent concentration of silicic eruptions. Since 2007 the crust here has been inflating at an astonishing rate of 25 cm/yr. Findings thus far lead to the hypothesis that the silicic vents have tapped an extensive layer of crystal-poor, rhyolitic melt that began to form atop a magmatic mush zone that was established by ~20 ka with a renewed phase of rhyolite eruptions during the Holocene. Modeling of surface deformation, magnetotelluric data, and gravity changes suggest that magma is currently intruding at a depth of ~5 km. Swarms of volcano-tectonic and long period earthquakes, mostly of M San Juan-Argentina, Nanyang Technological University-Singapore, SERNAGEOMIN, OVDAS, USGS, and SEGEMAR-Argentina. Team members will be introduced in this presentation. Our approach includes augmenting the OVDAS array of 6 permanent seisic stations with 40 additional instruments to conduct tomographic, receiver function and ambient noise studies. We continue to collect 4-D gravity data from 37 stations. Surface deformation is monitored via cGPS at 5 permanent receivers and InSAR data. A magnetotelluric survey across the Andes at 36o S is planned. Geochemical studies include mineral zoning and U-Th disequilibrium of zircons to constrain the timing of magma intrusion and mixing events prior to the current unrest. The overall aim is to integrate these observations and to construct numerical models of system dynamics. We are developing communications protocols and a web site to facilitate sharing of findings among the team members and with the public.

  17. Cambrian intermediate-mafic magmatism along the Laurentian margin: Evidence for flood basalt volcanism from well cuttings in the Southern Oklahoma Aulacogen (U.S.A.)

    Science.gov (United States)

    Brueseke, Matthew E.; Hobbs, Jasper M.; Bulen, Casey L.; Mertzman, Stanley A.; Puckett, Robert E.; Walker, J. Douglas; Feldman, Josh

    2016-09-01

    The Southern Oklahoma Aulocogen (SOA) stretches from southern Oklahoma through the Texas panhandle and into Colorado and New Mexico, and contains mafic through silicic magmatism related to the opening of the Iapetus Ocean during the early Cambrian. Cambrian magmatic products are best exposed in the Wichita Mountains (Oklahoma), where they have been extensively studied. However, their ultimate derivation is still somewhat contentious and centers on two very different models: SOA magmatism has been suggested to occur via [1] continental rifting (with or without mantle plume emplacement) or [2] transform-fault related magmatism (e.g., leaky strike-slip faults). Within the SOA, the subsurface in and adjacent to the Arbuckle Mountains in southern Oklahoma contains thick sequences of mafic to intermediate lavas, intrusive bodies, and phreatomagmatic deposits interlayered with thick, extensive rhyolite lavas, thin localized tuffs, and lesser silicic intrusive bodies. These materials were first described in the Arbuckle Mountains region by a 1982 drill test (Hamilton Brothers Turner Falls well) and the best available age constraints from SOA Arbuckle Mountains eruptive products are 535 to 540 Ma. Well cuttings of the mafic through intermediate units were collected from that well and six others and samples from all but the Turner Falls and Morton wells are the focus of this study. Samples analyzed from the wells are dominantly subalkaline, tholeiitic, and range from basalt to andesite. Their overall bulk major and trace element chemistry, normative mineralogy, and Srsbnd Nd isotope ratios are similar to magmas erupted/emplaced in flood basalt provinces. When compared with intrusive mafic rocks that crop out in the Wichita Mountains, the SOA well cuttings are geochemically most similar to the Roosevelt Gabbros. New geochemical and isotope data presented in this study, when coupled with recent geophysical work in the SOA and the coeval relationship with rhyolites, indicates

  18. K-Ar and TL volcanism chronology of the southern ends of the Red Sea spreading in Afar since 300 ka

    International Nuclear Information System (INIS)

    Lahite, P.; Coulie, E.; Gillot, P.Y.; Kidane, T.

    2001-01-01

    Continental rift segments linked to the propagation of the Red Sea plate boundary in Afar are dated using thermoluminescence and potassium-argon dating techniques. These new results constrain the mechanism of the two moderate extensional structures located at the southern ends of the propagator: the Manda Hararo and the Dadar graben. Ages obtained show that their internal floor are about 30 and 100 kyr old, respectively, and that the deduced vertical rate of fault scarps display values lower than those linked to the Gulf of Aden propagation. The lower deformation accommodated by the Red Sea structures, their youthfulness and the greater distance to the mature oceanic ridges could justify this contrast of evolution. (authors)

  19. Geochemical constraints on komatiite volcanism from Sargur Group Nagamangala greenstone belt, western Dharwar craton, southern India: Implications for Mesoarchean mantle evolution and continental growth

    Directory of Open Access Journals (Sweden)

    Tushipokla

    2013-05-01

    different depths in hot spot environments possibly with a rising plume. The low content of incompatible elements in studied komatiites suggest existence of depleted mantle during ca. 3.2 Ga which in turn imply an earlier episode of mantle differentiation, greenstone volcanism and continental growth probably during ca. 3.6–3.3 Ga which is substantiated by Nd and Pb isotope data of gneisses and komatiites in western Dharwar craton (WDC.

  20. The Andean Swallow (Orochelidon andecola) in Argentina

    OpenAIRE

    Mazar Barnett, Juan; Pugnali, Germán D.; Pearman Morrison, Mark; Bodrati, Alejandro; Moschione, Flavio; Clark, Ricardo; Roesler, Carlos Ignacio; Monteleone, Diego; Casañas, Hernán; Burgos Gallardo, Freddy; Segovia, José; Pagano, Luis; Povedano, Hernán; Areta, Juan Ignacio

    2016-01-01

    During ornithological studies in the provinces of Jujuy, Salta, and San Juan, we recorded the Andean Swallow Orochelidon andecola at 40 localities. These are the first records in Argentina, and also represent the southernmost for the species. Some of these localities are up to 1500 m lower than the previously known elevational limit (now 800 masl), and up to 1100 km southwards. This is a relatively poorly known swallow, and we present novel natural history data. We found evidence of breeding ...

  1. Immature intra-oceanic arc-type volcanism on the Izanagi Plate revealed by the geochemistry of the Daimaruyama greenstones in the Hiroo Complex, southern Hidaka Belt, central Hokkaido, Japan

    Science.gov (United States)

    Yamasaki, Toru; Nanayama, Futoshi

    2018-03-01

    The Izanagi Plate is assumed to have underlain the western Panthalassa Ocean to the east of Eurasia, and to have been subducting under the Eurasian continent. Although the Izanagi Plate has been lost to subduction, the subduction complexes of the circum-Panthalassa continental margins provide evidence that subduction-related volcanism occurred within the Panthalassa Ocean, and not just along its margins. The Daimaruyama mass is a kilometer-sized allochthonous greenstone body in the Hiroo Complex in the southeastern part of the Nakanogawa Group in the southern Hidaka Belt, northern Japan. The Hiroo Complex is a subduction complex that formed within the Paleo-Kuril arc-trench system at 57-48 Ma. The Daimaruyama greenstones consist mainly of coarse volcaniclastic rocks with lesser amount of lava. Red bedded chert, red shale, and micritic limestone are also observed as blocks associated with the greenstones. The presence of Early Cretaceous (Aptian-Albian) radiolaria in red bedded cherts within the greenstones indicates that the Daimaruyama greenstones formed after this time. An integrated major and trace element geochemical dataset for whole-rocks and clinopyroxenes of the greenstones indicates a calc-alkaline magmatic trend with low TiO2 contents and increases in SiO2 and decreases in FeO* with increasing differentiation. Negative anomalies of Nb, Ta, and Ti in normal mid-ocean-ridge basalt type normalized patterns are interpreted as "arc-signatures". Using "rhyolite-MELTS", we conducted a numerical simulation of magmatic differentiation under conditions of 1.5 kbar and H2O = 3 wt% to reproduce the liquid line of descent of the Daimaruyama greenstones. Back-calculations of the equilibrium melt compositions from the trace element chemistry of the clinopyroxenes generally agree with the whole-rock rare earth element compositions of the Daimaruyama greenstones, therefore providing support for the conditions used for the rhyolite-MELTS calculations as well as the actual

  2. New age constraints on the palaeoenvironmental evolution of the late Paleozoic back-arc basin along the western Gondwana margin of southern Peru

    Science.gov (United States)

    Boekhout, F.; Reitsma, M. J.; Spikings, R.; Rodriguez, R.; Ulianov, A.; Gerdes, A.; Schaltegger, U.

    2018-03-01

    The tectonic evolution of the western Gondwana margin during Pangaea amalgation is recorded in variations in the Permo-Carboniferous back-arc basin sedimentation of Peru. This study provides the first radiometric age constraints on the volcanic and sedimentary sequences of south-central eastern Peru up to the western-most tip of Bolivia, and now permits the correlation of lateral facies variations to the late Paleozoic pre-Andean orogenic cycle. The two phases of Gondwanide magmatism and metamorphism at c. 315 Ma and c. 260 Ma are reflected in two major changes in this sedimentary environment. Our detrital U-Pb zircon ages demonstrate that the timing of Ambo Formation deposition corroborates the Late Mississipian age estimates. The transition from the Ambo to the Tarma Formation around the Middle Pennsylvanian Early Gondwanide Orogeny (c. 315 Ma) represents a relative deepening of the basin. Throughout the shallow marine deposits of the Tarma Formation evidence for contemporaneous volcanism becomes gradually more pronounced and culminates around 312 - 309 Ma. Continuous basin subsidence resulted in a buildup of platform carbonates of the Copacabana Formation. Our data highlights the presence of a previously unrecognized phase of deposition of mainly fluvial sandstones and localized volcanism (281-270 Ma), which we named ´Oqoruro Formation'. This sedimentary succession was previously miss-assigned to the so-called Mitu Group, which has recently been dated to start deposition in the Middle Triassic (∼245-240 Ma). The emersion of this marine basin coincides with the onset of a major plutonic pulse related to the Late Gondwanide Orogeny (c. 260). Exhumation lead to the consequent retreat of the epeiric sea to the present-day sub-Andean region, and the coeval accumulation of the fluvial Oqoruro Formation in south eastern Peru. These late Paleozoic palaeoenvironmental changes in the back-arc basins along the western Gondwana margin of southern reflect changes in

  3. Deciphering shallow paleomagnetic inclinations: 1. Implications from correlation of Albian volcanic rocks along the Insular/Intermontane Superterrane boundary in the southern Canadian Cordillera

    Science.gov (United States)

    Haskin, M. L.; Enkin, R. J.; Mahoney, J. B.; Mustard, P. S.; Baker, J.

    2003-04-01

    Geologic and paleomagnetic data lead to two contradictory hypotheses regarding the paleoposition of the Insular and Intermontane Superterranes that presently constitute the western Canadian Cordillera. Paleomagnetic data from the Insular and Intermontane superterranes suggest a southerly origin coinciding with the latitude of Mexico and the northwest United States, respectively, during the mid-Cretaceous. Geologic evidence points to a northerly origin for these same tectonic entities during this period; both models cannot be correct. Geologic and paleomagnetic data from the Empire Valley-Churn Creek area in south central British Columbia (51.5°N, 122.5°W) are critical to resolving these contradictory hypotheses. Late Cretaceous rocks correlated to the Insular Superterrane with large paleomagnetic displacements unconformably overlie mid-Cretaceous rocks correlative to the Spences Bridge Group of the Intermontane Superterrane. We provide paleomagnetic evidence of this correlation based on similar magnetic properties, opaque mineral assemblages, demagnetization behavior, fold test results, mean inclinations, clockwise vertical axes rotations, and statistically indistinguishable paleomagnetic poles and displacement estimates. This correlation and the observed geologic relationships in the Empire Valley-Churn Creek area indicate that the Insular and Intermontane Superterranes were linked by the mid-Cretaceous. Sites from the two previous Spences Bridge Group studies are combined with their correlatives in the Empire Valley-Churn Creek area to give 81 sites that yield a paleomagnetic pole of 60.5°N, 304.5°E, dp = 3.7°, dm = 5.5° which corresponds to 1050 ± 450 km of displacement from the south. This new displacement estimate suggests that the Spences Bridge arc formed at the latitude of southern Oregon during the mid-Cretaceous.

  4. A conceptual model for hydrocarbon accumulation and seepage processes inside Chapopote asphalt volcanism site, Southern Gulf of Mexico: from high resolution seismic point of view

    Science.gov (United States)

    Ding, F.; Spiess, V.; Fekete, N.; Keil, H.; Bohrmann, G.

    2007-05-01

    As part of the German R/V Meteor M67/2 expedition in 2006 to the southern Gulf of Mexico, a set of 2D high resolution seismic profiles was acquired across the Chapopote knoll to study sea floor asphalt occurrences and their origin. Based on regional seismic stratigraphy studies, correlated to DSDP sites, a higher reflective coarse grained sediment unit of Late Miocene age is identified as a potential shallow gas reservoir, overlain by a low permeability fine grained Pliocene and Pleistocene cover. As a result of salt diapirism, local uplift has caused reduced accumulation rates above the diaper since the late Pliocene, while the rates had been uniform throughout the area before. This has further improved the seal properties, since more fine grained material deposited in elevated locations. Nevertheless, on the crest of Chapopote, sediments above the coarse sediment unit are only around 150-75 m thick. Since oil and gas production can well be expected at depth in Jurassic and Tertiary source rocks, the presence of high amplitude reflector packages within the reservoir unit is interpreted as a result of the presence of hydrocarbons. This interpretation is further supported by the observation that some reflectors are cross-cutting and/or reveal a drop in instantaneous frequency. But, the thin seal above the reservoir unit, located directly underneath a widespread occurrence of asphalts at the sea floor, probably facilitates the leakage of hydrocarbons trapped inside the reservoir through a ~ 750 m wide acoustically chaotic zone partly aided by faulting. Since the top of Chapopote shows a high structural complexity, more seepage sites may exist beyond where seafloor asphalts have been found so far. Evolution and structure of the migration and reservoir system, which may be deep rooted, will be discussed both with respect to shallow gas and asphalt occurrences.

  5. Marking behavior of Andean bears in an Ecuadorian cloud forest

    NARCIS (Netherlands)

    Filipczyková, Eva; Heitkonig, Ignas; Castellanos, Armando; Hantson, Wouter; Steyaert, Sam M.J.G.

    2017-01-01

    Very little is known about marking behavior of the endangered Andean bear (Tremarctos ornatus). Here, we present a first detailed description of Andean bear marking behavior obtained using camera traps. From November 2012 to April 2013, we inspected 16 bear trails in the Napo province of eastern

  6. Basaltic volcanic episodes of the Yucca Mountain region

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.M.

    1990-03-01

    The purpose of this paper is to summarize briefly the distribution and geologic characteristics of basaltic volcanism in the Yucca Mountain region during the last 10--12 Ma. This interval largely postdates the major period of silicic volcanism and coincides with and postdates the timing of major extensional faulting in the region. Field and geochronologic data for the basaltic rocks define two distinct episodes. The patterns in the volume and spatial distribution of these basaltic volcanic episodes in the central and southern part of the SNVF are used as a basis for forecasting potential future volcanic activity in vicinity of Yucca Mountain. 33 refs., 2 figs.

  7. Project Title: Geothermal Play Fairway Analysis of Potential Geothermal Resources in NE California, NW Nevada, and Southern Oregon: A Transition between Extension$-$Hosted and Volcanically$-$Hosted Geothermal Fields

    Energy Technology Data Exchange (ETDEWEB)

    McClain, James S. [Univ. of California, Davis, CA (United States). Dept. of; Dobson, Patrick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Glassley, William [Univ. of California, Davis, CA (United States). Dept. of Earth and Planetary Sciences; Schiffman, Peter [Univ. of California, Davis, CA (United States). Dept. of Earth and Planetary Sciences; Zierenberg, Robert [Univ. of California, Davis, CA (United States). Dept. of Earth and Planetary Sciences; Zhang, Yingqi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Conrad, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Siler, Drew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gasperikova, Erika [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Spycher, Nicolas F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-09-30

    Final report for the UCD-LBNL effort to apply Geothermal Play Fairway Analysis to a transition zone between a volcanically-hosted and extensionally-hosted geothermal. The project focusses on the geothermal resources in northeastern California.

  8. Evolution of ice-dammed proglacial lakes in Última Esperanza, Chile: implications from the late-glacial R1 eruption of Reclús volcano, Andean Austral Volcanic Zone Evolución de lagos proglaciales embalsados por hielo en Última Esperanza, Chile: Implicancias de la explosión volcánica tardiglacial R1 del volcán Reclús, Zona Volcánica Austral Andina

    Directory of Open Access Journals (Sweden)

    Charles R Stern

    2011-01-01

    Full Text Available Newly described outerops, excavations and sediment cores from the region of Última Esperanza, Magallanes, contain tephra derived from the large late-glacial explosive Rl eruption of the Reclús volcano in the Andean Austral Volcanic Zone. New radiocarbon dates associated to these deposits refine previous estimates of the age, to 14.9 cal kyrs BP (12,670±240 14C yrs BP, and volume, to >5 km³, of this tephra. The geographic and stratigraphic distribution of Rl also place constraints on the evolution of the ice-dammed proglacial lake that existed east of the cordillera in this area between the termination of the Last Glacial Maximum (LGM and the Holocene. This proglacial lake generated wave-cut terraces, and also caves, such as the Cueva de Milodón, along the highest prominent terrace. The current elevation of these terraces depends on the total amount of post-glacial isostatic rebound, which is unknown. Due to differential rebound, the highest prominent lake terraces decrease in height from west-to-east, from -170 m a.s.l. on Península Antonio Varas west of Seno Ultima Esperanza, to-150 m a.s.l. aroundLago Sofía, anddownto-125 m a.s.l. along their easternmost margin. The presence of thick deposits of Rl tephra in some of the caves around Lago Sofía implies that the proglacial lake had already dropped below its highest level prior to the time of this eruption, and, in fact, even earlier, prior to 16.1 cal kyrs BP (13,560±180 14C yrs BP, when land mammals first oceupied these caves. The depositional environment of Rl in a core from Dumestre bog suggests that the lake level was in fact 70 m a.s.l. until 12.8 cal kyrs BP (10,695±40 14C yrs BP. However, a 14.2 cal kyrs BP (12,125±85 14C yrs BF Mylodon pelvis from a nearby site, located at only -7 m a.s.l., suggests that the lake could have emptied, for at least a brief period, to this low level at this time. This latter datum, combined with the lack of any prominent terraces between the

  9. Volcanic stratigraphy: A review

    Science.gov (United States)

    Martí, Joan; Groppelli, Gianluca; Brum da Silveira, Antonio

    2018-05-01

    Volcanic stratigraphy is a fundamental component of geological mapping in volcanic areas as it yields the basic criteria and essential data for identifying the spatial and temporal relationships between volcanic products and intra/inter-eruptive processes (earth-surface, tectonic and climatic), which in turn provides greater understanding of the geological evolution of a region. Establishing precise stratigraphic relationships in volcanic successions is not only essential for understanding the past behaviour of volcanoes and for predicting how they might behave in the future, but is also critical for establishing guidelines for exploring economic and energy resources associated with volcanic systems or for reconstructing the evolution of sedimentary basins in which volcanism has played a significant role. Like classical stratigraphy, volcanic stratigraphy should also be defined using a systematic methodology that can provide an organised and comprehensive description of the temporal and spatial evolution of volcanic terrain. This review explores different methods employed in studies of volcanic stratigraphy, examines four case studies that use differing stratigraphic approaches, and recommends methods for using systematic volcanic stratigraphy based on the application of the concepts of traditional stratigraphy but adapted to the needs of volcanological environment.

  10. The new Andean Regional Office of Astronomy for Development (ROAD)

    Science.gov (United States)

    Char, Farid; Forero-Romero, Jaime

    2015-08-01

    The Andean Regional Office of Astronomy for Development (ROAD) is a new effort in South America to serve several goals in astronomical development. Six countries (Bolivia, Colombia, Chile, Ecuador, Perú and Venezuela) will work together, representing a common language block in the Andean region and focusing on develop strategies to strengthen the professional research, education and popularization of astronomy. Our current Working Structure comprises a ROAD Coordinator and Coordinators per Task Force, as well as Organizing Committees, Collaborators and Volunteers.The participating institutions of this new ROAD have been involved in many projects involving each of the current OAD’s Task Forces: research, schools and children and public, exploring educational activities/material to be shared among the Andean countries, standardizing the knowledge and creating inspirational experiences. We expect to generate many efforts in order to bring a more homogeneous activity in each Andean country, taking into account the special role of Chile in global astronomy, due to its great conditions for astronomy and the involvement of many professional observatories, universities and astronomy institutions.Our current (and upcoming) most relevant activities includes: Andean Schools on Astronomy, Andean Graduate Program and Massive Open Online Courses (TF1); Virtual Training Sessions and Teaching material for the visually impaired students; Annual TF2 meeting to gather all the collaborators (TF2); Development for planetariums and Communicating Astronomy with the Public (TF3). The Andean region, in the other hand, will also be involved in at least two important events: the CAP Meeting in May 2016 and the XV LARIM in October 2016 (both in Colombia); and Chile will bid to host the XXXI IAU GA in 2021, with the aim of show the great advances in astronomical development from the Andean region and South America.

  11. Silicate volcanism on Io

    Science.gov (United States)

    Carr, M. H.

    1986-03-01

    This paper is mainly concerned with the nature of volcanic eruptions on Io, taking into account questions regarding the presence of silicates or sulfur as principal component. Attention is given to the generation of silicate magma, the viscous dissipation in the melt zone, thermal anomalies at eruption sites, and Ionian volcanism. According to the information available about Io, it appears that its volcanism and hence its surface materials are dominantly silicic. Several percent of volatile materials such as sulfur, but also including sodium- and potassium-rich materials, may also be present. The volatile materials at the surface are continually vaporized and melted as a result of the high rates of silicate volcanism.

  12. Deforestation and benthic indicators: how much vegetation cover is needed to sustain healthy Andean streams?

    Directory of Open Access Journals (Sweden)

    Carlos Iñiguez-Armijos

    Full Text Available Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS, we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%. Our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. This research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments.

  13. Deforestation and Benthic Indicators: How Much Vegetation Cover Is Needed to Sustain Healthy Andean Streams?

    Science.gov (United States)

    Iñiguez–Armijos, Carlos; Leiva, Adrián; Frede, Hans–Georg; Hampel, Henrietta; Breuer, Lutz

    2014-01-01

    Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. This research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments. PMID:25147941

  14. Deforestation and benthic indicators: how much vegetation cover is needed to sustain healthy Andean streams?

    Science.gov (United States)

    Iñiguez-Armijos, Carlos; Leiva, Adrián; Frede, Hans-Georg; Hampel, Henrietta; Breuer, Lutz

    2014-01-01

    Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. This research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments.

  15. Characterization of Two Microbial Isolates from Andean Lakes in Bolivia

    Science.gov (United States)

    Demergasso, C.; Blamey, J.; Escudero, L.; Chong, G.; Casamayor, E. O.; Cabrol, N. A.; Grin, E. A.; Hock, A.; Kiss, A.; Borics, G.

    2004-01-01

    We are currently investigating the biological population present in the highest and least explored perennial lakes on earth in the Bolivian and Chilean Andes, including several volcanic crater lakes of more than 6000 m elevation, in combination of microbiological and molecular biological methods. Our samples were collected in saline lakes of the Laguna Blanca Laguna Verde area in the Bolivian Altiplano and in the Licancabur volcano crater (27 deg. 47 min S/67 deg. 47 min. W) in the ongoing project studying high altitude lakes. The main goal of the project is to look for analogies with Martian paleolakes. These Bolivian lakes can be described as Andean lakes following the classification of Chong. We have attempted to isolate pure cultures and phylogenetically characterize prokaryotes that grew under laboratory conditions. Sediment samples taken from the Licancabur crater lake (LC), Laguna Verde (LV), and Laguna Blanca (LB) were analyzed and cultured using enriched liquid media under both aerobic and anaerobic conditions. All cultures were incubated at room temperature (15 to 20 C) and under light exposure. For the reported isolates, 36 hours incubation were necessary for reaching optimal optical densities to consider them viable cultures. Ten serial dilutions starting from 1% inoculum were required to obtain a suitable enriched cell culture to transfer into solid media. Cultures on solid medium were necessary to verify the formation of colonies in order to isolate pure cultures. Different solid media were prepared using several combinations of both trace minerals and carbohydrates sources in order to fit their nutrient requirements. The microorganisms formed individual colonies on solid media enriched with tryptone, yeast extract and sodium chloride. Cells morphology was studied by optical and electronic microscopy. Rodshape morphologies were observed in most cases. Total bacterial genomic DNA was isolated from 50 ml late-exponential phase culture by using the CTAB

  16. Precursory Hints of June 23-2001 Earthquake in Southern Peru Seismic Gap

    Science.gov (United States)

    Ocola, L.

    2001-12-01

    On June 23, 2001, a destructive 8.3 Mw, shallow depth, shallow-dip thrust-mechanism earthquake shook southern Peru. The hypocenter was located under the ocean floor, at the northern end of the southern Peru seismic gap. The gap is about 500 km long, located between 16\\deg-19\\deg S, parallel to Peru-Chile trench. It delineates the rupture zone of the 1868, 9.0-9.3 Mw, earthquake; the largest historically documented "terremoto" in this region. This gap and the northern Chile gap have been known for several decades and they belong to a normal-subduction segment delimited by the Nazca-Abancay (northern end) and Copiapo-Tucuman (southern end) contortions of the Wadati-Benioff subduction zone. The Peru-Chile trench and the Central Andean Active Volcanic Zone axis run nearly parallel to each other in this subduction segment. Regional seismicity (1999-2000) was the clearest indicator of the proximity of incoming event. It showed a striking deficiency of activity in the southern Peru gap region which has a good spatial correlation with a negative anomaly of the rate of change of the GPS vertical component in, approximately, the same region. Since it was not possible to issue a prediction on the incoming event, an hypothetical scenario was computed for a 9.3 Mw earthquake and reported to the Civil Defense Agency in order to implement preventive measures for disaster mitigation. The June 23-2001, 8.3 Mw , earthquake occurred in the northern extreme of the hypothetical rupture zone. However, about one half of the rupture zone is to go in the near future to cover the 1868-earthquake equivalent rupture zone. In summary, the following precursory hints could be identified before the June 23-2001 earthquake: Deficiency of regional seismic activity, negative tendency on the rate of change of the GPS vertical component, seismicity on the near surface fault system in the gap region.

  17. Volcanic Lightning in Eruptions of Sakurajima Volcano

    Science.gov (United States)

    Edens, Harald; Thomas, Ronald; Behnke, Sonja; McNutt, Stephen; Smith, Cassandra; Farrell, Alexandra; Van Eaton, Alexa; Cimarelli, Corrado; Cigala, Valeria; Eack, Ken; Aulich, Graydon; Michel, Christopher; Miki, Daisuke; Iguchi, Masato

    2016-04-01

    In May 2015 a field program was undertaken to study volcanic lightning at the Sakurajima volcano in southern Japan. One of the main goals of the study was to gain a better understanding of small electrical discharges in volcanic eruptions, expanding on our earlier studies of volcanic lightning at Augustine and Redoubt volcanoes in Alaska, USA, and Eyjafjallajökull in Iceland. In typical volcanic eruptions, electrical activity occurs at the onset of an eruption as a near-continual production of VHF emissions at or near to the volcanic vent. These emissions can occur at rates of up to tens of thousands of emissions per second, and are referred to as continuous RF. As the ash cloud expands, small-scale lightning flashes of several hundred meters length begin to occur while the continuous RF ceases. Later on during the eruption larger-scale lightning flashes may occur within the ash cloud that are reminiscent of regular atmospheric lightning. Whereas volcanic lightning flashes are readily observed and reasonably well understood, the nature and morphology of the events producing continuous RF are unknown. During the 2015 field program we deployed a comprehensive set of instrumentation, including a 10-station 3-D Lightning Mapping Array (LMA) that operated in 10 μs high time resolution mode, slow and fast ΔE antennas, a VHF flat-plate antenna operating in the 20-80 MHz band, log-RF waveforms within the 60-66 MHz band, an infra-red video camera, a high-sensitivity Watec video camera, two high-speed video cameras, and still cameras. We give an overview of the Sakurajima field program and present preliminary results using correlated LMA, waveforms, photographs and video recordings of volcanic lightning at Sakurajima volcano.

  18. Taxonomic review of the species of Helina R.-D. (Diptera: Muscidae) from Andean-Patagonian forests.

    Science.gov (United States)

    Patitucci, Luciano Damián; Mulieri, Pablo Ricardo; Mariluis, Juan Carlos

    2016-08-12

    Helina Robineau-Desvoidy, 1830 is the second genus of Muscidae in terms of richness. This genus includes several species collected at high altitudes and high latitudes, and is poorly studied in the Neotropical region. Only 12 species of Helina have been recorded in the southern limit of South America in the Andean-Patagonian forests. In the present work, we studied all the species known from the Andean-Patagonian forests, with the exception of H. viola Malloch, 1934, present three new species, H. araucana sp. nov., H. dorada sp. nov., and H. ouina sp. nov., and provide the first description of the females of H. australis Carvalho & Pont, 1993 and H. rufoapicata Malloch, 1934. We also propose four new synonymies: H. nigrimana basilaris (Carvalho & Pont, 1993) and H. nigrimana grisea (Malloch, 1934) as new junior synonyms of H. nigrimana (Macquart, 1851); and H. fulvocalyptrata Malloch, 1934 and H. simplex Malloch, 1934 as new junior synonyms of H. chilensis Malloch, 1934. Finally, we provide a generic diagnosis and a new key for the Helina species of the Andean-Patagonian forests, as well as notes on the biology and distribution maps of each specimen, and discuss a preliminary contruction of groups of species.

  19. Sr, Nd, Pb and Hf isotopic constraints on mantle sources and crustal contaminants in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin; Thirlwall, Matthew F.

    2015-01-01

    The presented Sr, Nd, Hf and double-spike Pb-isotopic analyses of Quaternary basalts from the Payenia volcanic province in southern Mendoza, Argentina, confirm the presence of two distinct mantle types feeding the Payenia volcanism. The southern Payenia mantle source feeding the intraplate-type Río...

  20. Compositional variations revealed by ASTER image analysis of the Viedma Volcano, southern Andes Volcanic Zone Variaciones composicionales reveladas mediante análisis de imágenes ASTER del volcán Viedma, Zona Volcánica Andina Austral

    Directory of Open Access Journals (Sweden)

    Chiaki Kobayashi

    2010-07-01

    Full Text Available We conducted a lithological mapping of the Viedma volcano, one of five volcanoes in the Andean Austral Volcanic Zone (AVZ, using remote sensing techniques. We used data of the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER sensor which is highly effective in geological research, to understand build-up processes and to deduce compositional variation of the Viedma volcano emerging from the South Patagonian ice field. The volcanic edifice was divided into bright parts that mainly compose the eastern flank of the volcano and dark parts at the central crater area based on the observation in visible and near infrared ranges. The SiO2 concentration was cal-culated using the bands in the visible and thermal infrared regions. The dark part and the bright part have approximately 51 wt% and 63 wt% average SiO2 content respectively, indicating that the exposures of the Viedma volcano have a wide variation in SiO2 concentration. Although, according to other authors, ejecta from the Viedma volcano have 64-66 wt% SiO2 and other AV Z volcanoes are essentially monolithologic dacite/andesite volcanoes, the edifice of the Viedma volcano appears to be composed mostly of basalts or older rocks/basement with low silica contents.Mediante el uso de técnica de sensoría remota se ha desarrollado un mapeo litológico del volcán Viedma, uno de los cinco volcanes de la Zona Volcánica Andina Austral (ZVA. Para este efecto, se ha utilizado el radiómetro ‘Advanced Spaceborne Thermal Emission and Reflection’ (ASTER que es muy efectivo en investigación geológica, para entender los procesos que han controlado la estructura y deducir las variaciones composi-cionales del volcán Viedma, que sobresale levemente de la superficie del campo de hielo Patagónico Sur. Sobre la base de la observación en el intervalo del espectro visible e infrarrojo cercano, en el edificio se distinguen partes brillantes que corresponden al flanco oriental del volcán y

  1. Genetic divergence in populations of Lutzomyia ayacuchensis, a vector of Andean-type cutaneous leishmaniasis, in Ecuador and Peru.

    Science.gov (United States)

    Kato, Hirotomo; Cáceres, Abraham G; Gomez, Eduardo A; Mimori, Tatsuyuki; Uezato, Hiroshi; Hashiguchi, Yoshihisa

    2015-01-01

    Haplotype and gene network analyses were performed on mitochondrial cytochrome oxidase I and cytochrome b gene sequences of Lutzomyia (Lu.) ayacuchensis populations from Andean areas of Ecuador and southern Peru where the sand fly species transmit Leishmania (Leishmania) mexicana and Leishmania (Viannia) peruviana, respectively, and populations from the northern Peruvian Andes, for which transmission of Leishmania by Lu. ayacuchensis has not been reported. The haplotype analyses showed higher intrapopulation genetic divergence in northern Peruvian Andes populations and less divergence in the southern Peru and Ecuador populations, suggesting that a population bottleneck occurred in the latter populations, but not in former ones. Importantly, both haplotype and phylogenetic analyses showed that populations from Ecuador consisted of clearly distinct clusters from southern Peru, and the two populations were separated from those of northern Peru. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  2. Geodynamic controls on the contamination of Cenozoic arc magmas in the southern Central Andes: Insights from the O and Hf isotopic composition of zircon

    Science.gov (United States)

    Jones, Rosemary E.; Kirstein, Linda A.; Kasemann, Simone A.; Dhuime, Bruno; Elliott, Tim; Litvak, Vanesa D.; Alonso, Ricardo; Hinton, Richard

    2015-09-01

    Subduction zones, such as the Andean convergent margin of South America, are sites of active continental growth and crustal recycling. The composition of arc magmas, and therefore new continental crust, reflects variable contributions from mantle, crustal and subducted reservoirs. Temporal (Ma) and spatial (km) variations in these contributions to southern Central Andean arc magmas are investigated in relation to the changing plate geometry and geodynamic setting of the southern Central Andes (28-32° S) during the Cenozoic. The in-situ analysis of O and Hf isotopes in zircon, from both intrusive (granitoids) and extrusive (basaltic andesites to rhyolites) Late Cretaceous - Late Miocene arc magmatic rocks, combined with high resolution U-Pb dating, demonstrates distinct across-arc variations. Mantle-like δ18O(zircon) values (+5.4‰ to +5.7‰ (±0.4 (2σ))) and juvenile initial εHf(zircon) values (+8.3 (±0.8 (2σ)) to +10.0 (±0.9 (2σ))), combined with a lack of zircon inheritance suggests that the Late Cretaceous (∼73 Ma) to Eocene (∼39 Ma) granitoids emplaced in the Principal Cordillera of Chile formed from mantle-derived melts with very limited interaction with continental crustal material, therefore representing a sustained period of upper crustal growth. Late Eocene (∼36 Ma) to Early Miocene (∼17 Ma) volcanic arc rocks present in the Frontal Cordillera have 'mantle-like' δ18O(zircon) values (+4.8‰ (±0.2 (2σ) to +5.8‰ (±0.5 (2σ))), but less radiogenic initial εHf(zircon) values (+1.0 (±1.1 (2σ)) to +4.0 (±0.6 (2σ))) providing evidence for mixing of mantle-derived melts with the Late Paleozoic - Early Mesozoic basement (up to ∼20%). The assimilation of both Late Paleozoic - Early Mesozoic Andean crust and a Grenville-aged basement is required to produce the higher than 'mantle-like' δ18O(zircon) values (+5.5‰ (±0.6 (2σ) to +7.2‰ (±0.4 (2σ))) and unradiogenic, initial εHf(zircon) values (-3.9 (±1.0 (2σ)) to +1.6 (±4.4 (2

  3. High resolution seismic data coupled to Multibeam bathymetry of Stromboli island collected in the frame of the Stromboli geophysical experiment: implications with the marine geophysics and volcanology of the Aeolian Arc volcanic complex (Sicily, Southern Tyrrhenian sea, Italy).

    Science.gov (United States)

    Aiello, Gemma; Di Fiore, Vincenzo; Marsella, Ennio; Passaro, Salvatore

    2014-01-01

    New high resolution seismic data (Subbottom Chirp) coupled to high resolution Multibeam bathymetry collected in the frame of the Stromboli geophysical experiment aimed at recording active seismic data and tomography of the Stromboli Island are here presented. The Stromboli geophysical experiment has been already carried out based on onshore and offshore data acquisition in order to investigate the deep structure and the location of the magma chambers of the Stromboli volcano. A new detailed swath bathymetry of Stromboli Island is here shown and discussed to reconstruct an up-to-date morpho-bathymetry and marine geology of the area compared to the volcanologic setting of the Aeolian Arc volcanic complex. Due to its high resolution the new Digital Terrain Model of the Stromboli Island gives interesting information about the submerged structure of the volcano, particularly about the volcano-tectonic and gravitational processes involving the submarine flanks of the edifice. Several seismic units have been identified based on the geologic interpretation of Subbottom Chirp profiles recorded around the volcanic edifice and interpreted as volcanic acoustic basement pertaining to the volcano and overlying slide chaotic bodies emplaced during its complex volcano-tectonic evolution. They are related to the eruptive activity of Stromboli, mainly poliphasic and to regional geological processes involving the intriguing geology of the Aeolian Arc, a volcanic area still in activity and needing improved research interest.

  4. Andean tectonics: Implications for Satellite Geodesy

    Science.gov (United States)

    Allenby, R. J.

    1984-09-01

    Current knowledge and theories of large scale Andean tectonics as they relate to site planning for the NASA Crustal Dynamics Program's proposed high precision geodetic measurements of relative motions between the Nazca and South American plates are summarized. The Nazca Plate and its eastern margin, the Peru-Chile Trench, is considered a prototype plate marked by rapid motion, strong seismicity and well defined boundaries. Tectonic activity across the Andes results from the Nazca Plate subducting under the South American plate in a series of discrete platelets with different widths and dip angles. This in turn, is reflected in the tectonic complexity of the Andes which are a multitutde of orogenic belts superimposed on each other since the Precambrian. Sites for Crustal Dynamics Program measurements are being located to investigate both interplate and extraplate motions. Observing operations have already been initiated at Arequipa, Peru and Easter Island, Santiago and Cerro Tololo, Chile. Sites under consideration include Iquique, Chile; Oruro and Santa Cruz, Bolivia; Cuzco, Lima, Huancayo and Bayovar, Peru; and Quito and the Galapagos Islands, Ecuador. Based on scientific considerations, Santa Cruz, Huancayo (or Lima), Quito and the Galapagos Islands should be replaced by Isla San Felix, Chile; Brazilia or Petrolina, Brazil; and Guayaquil, Ecuador. If resources permit, additional important sites would be Buenaventura and Villavicencio or Puerto La Concordia, Colombia; and Mendoza and Cordoba, Argentina.

  5. The functional extinction of Andean megafauna.

    Science.gov (United States)

    Rozas-Davila, Angela; Valencia, Bryan G; Bush, Mark B

    2016-10-01

    Controversy exists over the cause and timing of the extinction of the Pleistocene megafauna. In the tropical Andes, deglaciation and associated rapid climate change began ~8,000 years before human arrival, providing an opportunity to separate the effects of climate change from human hunting on megafaunal extinction. We present a paleoecological record spanning the last 25,000 years from Lake Pacucha, Peru (3,100 m elevation). Fossil pollen, charcoal, diatoms, and the dung fungus Sporormiella, chronicle a two-stage megaherbivore population collapse. Sporormiella abundance, the proxy for megafaunal presence, fell sharply at ~21,000 years ago, but rebounded prior to a permanent decline between ~16,800 and 15,800 years ago. This two-stage decline in megaherbivores resulted in a functional extinction by ~15,800 years ago, 3,000 years earlier than known human occupation of the high Andes. Declining megaherbivore populations coincided with warm, wet intervals. Climatic instability and megafaunal population collapse triggered an ecological cascade that resulted in novel floral assemblages, and increases in woody species, fire frequency, and plant species that were sensitive to trampling. Our data revealed that Andean megafaunal populations collapsed due to positive feedbacks between habitat quality and climate change rather than human activity. © 2016 by the Ecological Society of America.

  6. Foreland sedimentary record of Andean mountain building during advancing and retreating subduction

    Science.gov (United States)

    Horton, Brian K.

    2016-04-01

    As in many ocean-continent (Andean-type) convergent margins, the South American foreland has long-lived (>50-100 Myr) sedimentary records spanning not only protracted crustal shortening, but also periods of neutral to extensional stress conditions. A regional synthesis of Andean basin histories is complemented by new results from the Mesozoic Neuquén basin system and succeeding Cenozoic foreland system of west-central Argentina (34-36°S) showing (1) a Late Cretaceous shift from backarc extension to retroarc contraction and (2) an anomalous mid-Cenozoic (~40-20 Ma) phase of sustained nondeposition. New detrital zircon U-Pb geochronological results from Jurassic through Neogene clastic deposits constrain exhumation of the evolving Andean magmatic arc, retroarc thrust belt, foreland basement uplifts, and distal eastern craton. Abrupt changes in sediment provenance and distal-to-proximal depositional conditions can be reconciled with a complex Mesozoic-Cenozoic history of extension, post-extensional thermal subsidence, punctuated tectonic inversion involving thick- and thin-skinned shortening, alternating phases of erosion and rapid accumulation, and overlapping igneous activity. U-Pb age distributions define the depositional ages of several Cenozoic stratigraphic units and reveal a major late middle Eocene-earliest Miocene (~40-20 Ma) hiatus in the Malargüe foreland basin. This boundary marks an abrupt shift in depositional conditions and sediment sources, from Paleocene-middle Eocene distal fluviolacustrine deposition of sediments from far western volcanic sources (Andean magmatic arc) and subordinate eastern cratonic basement (Permian-Triassic Choiyoi igneous complex) to Miocene-Quaternary proximal fluvial and alluvial-fan deposition of sediments recycled from emerging western sources (Malargüe fold-thrust belt) of Mesozoic basin fill originally derived from basement and magmatic arc sources. Neogene eastward advance of the fold-thrust belt involved thick

  7. Two new Cystoderma species from high Andean Ecuador

    DEFF Research Database (Denmark)

    Saar, I.; Læssøe, Thomas

    2006-01-01

    ABSTRACT: Two new agaric species, Cystoderma andinum and C. papallactae are described from high Andean Ecuador.......ABSTRACT: Two new agaric species, Cystoderma andinum and C. papallactae are described from high Andean Ecuador....

  8. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.

    2009-08-22

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  9. Volcanologic and petrologic evolution of Antuco-Sierra Velluda, Southern Andes, Chile

    Science.gov (United States)

    Martínez, Paola; Singer, Brad S.; Roa, Hugo Moreno; Jicha, Brian R.

    2018-01-01

    The Andean Southern Volcanic Zone comprises > 30 active arc front volcanoes that grew over periods of hundreds of thousands of years. Quantifying the rates at which these volcanoes grow is key to appreciating geological hazards, clarifying petrologic evolution, and exploring possible relationships between volcanism, ice loading, and climate. The integration of precise geochronology and geologic mapping, together with new lava compositions and volume estimates, reveal the evolution of the Antuco-Sierra Velluda volcanic complex at 37.2°S. Thirty-one new 40Ar/39Ar age determinations illuminate a punctuated eruptive history that spans at least 430 kyr. Sierra Velluda comprises 130 km3 and began to grow prior to 426.8 ka. A lacuna in the volcanic record between 343.5 and 150.4 ka coincides with glaciations associated with marine isotope stages (MIS) 10 and 8, although shallow intrusions were emplaced at 207.0 and 190.0 ka. Antuco began to grow rapidly on the northeast flank of Sierra Velluda, erupting > 60 km3 of lava during three phases: (1) an early phase that began at 150.4 ka, (2) a post-MIS 2 phase between 16.3 and 6.2 ka, and (3) a post-sector collapse phase after 6.2 ka. Volcanism has been continuous during the last 100 kyr, with an average rate of cone growth during this period of 0.46 km3/kyr that has accelerated by about 50% during the past 6 kyr. Whereas Sierra Velluda erupted basaltic andesitic to andesitic (53.5 to 58.7 wt% SiO2) lavas, during the last expansion of glaciers between 130 and 17 ka, Early Antuco erupted a wider spectrum of lavas, ranging from basaltic andesite to dacite (52.0 to 64.5 wt% SiO2). Notably, eruptions following the last glacial termination at 17 ka produced basalts and basaltic andesites (50.9-53.7% SiO2), and following the 6.2 ka cone collapse they have been exclusively olivine basalt (50.9-53.0% SiO2) with > 5 wt% MgO. Thermodynamic and trace element modeling suggests that lavas from Sierra Velluda and Early Antuco reflect

  10. Andean and Tibetan patterns of adaptation to high altitude.

    Science.gov (United States)

    Bigham, Abigail W; Wilson, Megan J; Julian, Colleen G; Kiyamu, Melisa; Vargas, Enrique; Leon-Velarde, Fabiola; Rivera-Chira, Maria; Rodriquez, Carmelo; Browne, Vaughn A; Parra, Esteban; Brutsaert, Tom D; Moore, Lorna G; Shriver, Mark D

    2013-01-01

    High-altitude hypoxia, or decreased oxygen levels caused by low barometric pressure, challenges the ability of humans to live and reproduce. Despite these challenges, human populations have lived on the Andean Altiplano and the Tibetan Plateau for millennia and exhibit unique circulatory, respiratory, and hematological adaptations to life at high altitude. We and others have identified natural selection candidate genes and gene regions for these adaptations using dense genome scan data. One gene previously known to be important in cellular oxygen sensing, egl nine homolog 1 (EGLN1), shows evidence of positive selection in both Tibetans and Andeans. Interestingly, the pattern of variation for this gene differs between the two populations. Continued research among Tibetan populations has identified statistical associations between hemoglobin concentration and single nucleotide polymorphism (SNP) genotype at EGLN1 and a second gene, endothelial PAS domain protein 1 (EPAS1). To measure for the effects of EGLN1 and EPAS1 altitude genotypes on hemoglobin concentration among Andean highlanders, we performed a multiple linear regression analysis of 10 candidate SNPs in or near these two genes. Our analysis did not identify significant associations between EPAS1 or EGLN1 SNP genotypes and hemoglobin concentration in Andeans. These results contribute to our understanding of the unique set of adaptations developed in different highland groups to the hypoxia of high altitude. Overall, the results provide key insights into the patterns of genetic adaptation to high altitude in Andean and Tibetan populations. Copyright © 2013 Wiley Periodicals, Inc.

  11. Phylogeny and biogeography of exindusiate Andean Polystichum (Dryopteridaceae).

    Science.gov (United States)

    McHenry, Monique A; Barrington, David S

    2014-02-01

    Uplift of the tropical Andes had a significant impact on the diversification of South American flora and fauna. Recent biogeographic inquiries have established patterns of Andean divergence, but investigations on ferns are scant. The fern genus Polystichum Roth (Dryopteridaceae) combines widespread geographic and elevational distribution with a large number of species to form an ideal system for investigation of the origin and diversification patterns of a fern lineage in the tropical Andes. The relationships among 42 Polystichum species, including taxa from all major biogeographic regions, were analyzed with 2591 aligned nucleotides from four plastid markers using maximum parsimony and Bayesian inference. The resulting phylogeny was then used to estimate divergence times and reconstruct both ancestral areas and ancestral elevations. Tropical Andean South American polystichums that lack an indusium (sori exindusiate) were confirmed to form a monophyletic group. This exindusiate Andean Polystichum clade diverged from a middle-elevation forest lineage now rich in species endemic to Mexico during the middle Miocene (13.12 million years ago). The majority of diversification that followed took place in the montane regions of the central Andes with radiations to the northern Andes, southeastern Brazil, and alpine regions. The monophyletic exindusiate Andean Polystichum lineage diverged from a Mexican lineage in the middle Miocene and diversified in the central Andes before dispersing northward. This south-to-north dispersal pattern, documented for many other Andean lineages, corresponds with episodes of uplift in the tropical Andes.

  12. Traditional use of the Andean flicker (Colaptes rupicola as a galactagogue in the Peruvian Andes

    Directory of Open Access Journals (Sweden)

    Froemming Steve

    2006-05-01

    Full Text Available Abstract This paper explores the use of the dried meat and feathers of the Andean Flicker (Colaptes rupicola to increase the milk supply of nursing women and domestic animals in the Andes. The treatment is of preColumbian origin, but continues to be used in some areas, including the village in the southern Peruvian highlands where I do ethnographic research. I explore the factors giving rise to and sustaining the practice, relate it to other galactagogues used in the Andes and to the use of birds in ethnomedical and ethnoveterinary treatments in general, and situate it within the general tendency in the Andes and elsewhere to replicate human relations in the treatment of valuable livestock. The bird's use as a galactagogue appears to be motivated by both metaphorical associations and its perceived efficacy, and conceptually blends human and animal healthcare domains.

  13. Andean Ores, Bronze Artifacts, and Lead Isotopes: Constraints on Metal Sources in Their Geological Context

    OpenAIRE

    Macfarlane, Andrew W.; Lechtman, Heather Nan

    2014-01-01

    With a focus on bronze production in the south-central Andes during the Middle Horizon, this study reports the first archaeological use of lead isotope analysis to investigate metallic ores and metal artifacts in the Andean zone of South America. Because the vast majority of metal deposits in the Andean cordillera formed in a convergent plate boundary setting, lead isotope compositions of most Andean ore sources are not unique. Lead isotope ratios of central and south-central Andean ores defi...

  14. Phreatomagmatic and water-influenced Strombolian eruptions of a small-volume parasitic cone complex on the southern ringplain of Mt. Ruapehu, New Zealand: Facies architecture and eruption mechanisms of the Ohakune Volcanic Complex controlled by an unstable fissure eruption

    Science.gov (United States)

    Kósik, S.; Németh, K.; Kereszturi, G.; Procter, J. N.; Zellmer, G. F.; Geshi, N.

    2016-11-01

    The Ohakune Volcanic Complex is a late Pleistocene tuff ring - scoria/spatter cone complex located south of Ruapehu volcano. This small-volume volcano consists of an outer E-W elongated compound tuff ring edifice, three inner scoria-spatter cones and further volcanic depressions, located on the Ohakune Fault. We quantified accurately the variations of the eruptive styles and processes through time by systematic sampling of key stratigraphic marker beds at proximal and distal locations, and the determination of grain size distribution, componentry, density and vesicularity. Using a Digital Terrain Model coupled with stratigraphic data, we also determined the spatial distribution and volume of each identified unit and individual edifices within the Ohakune Volcanic Complex. Activity began with a shallow phreatomagmatic phase characterized by an almost continuous generation of a low eruptive column, accompanied by wet pyroclastic density currents, together with the ejection of juvenile fragments and accidental lithics from the surrounding country rocks. Subsequent activity was dominated by a variety of Strombolian eruptions exhibiting differing intensities that were at times disrupted by phreatic blasts or phreatomagmatic explosions due to the interaction with external water and/or sudden changes in magma discharge rate. At least three major vent-shifting events occurred during the eruption, which is demonstrated by the truncation of the initial tuff ring and the infilling of the truncated area by several coarse grained surge units. Our study indicates that approx. 12 × 106 m3 DRE magma erupted within maximum 2.5 to 5 months through multiple vents. The erupted magma ascended from a depth of 16-18 km, and reached the surface within approximately 50 h. Alternating eruption styles, frequent vent-shifting and a variety of emplacement mechanisms inferred from the deposits of the Ohakune Volcanic Complex demonstrate the unpredictable nature of small-volume volcanism

  15. On the Nature of Cross-Linguistic Transfer: A Case Study of Andean Spanish

    Science.gov (United States)

    Muntendam, Antje G.

    2013-01-01

    This paper presents the results of a study on cross-linguistic transfer in Andean Spanish word order. In Andean Spanish the object appears in preverbal position more frequently than in non-Andean Spanish, which has been attributed to an influence from Quechua (a Subject-Object-Verb language). The high frequency of preverbal objects could be…

  16. Biodiversity of Andean potatoes: Morphological, nutritional and functional characterization.

    Science.gov (United States)

    Calliope, Sonia Rosario; Lobo, Manuel Oscar; Sammán, Norma Cristina

    2018-01-01

    Andean potatoes (Solanum tuberosum andigenum) are a staple food for Andean population; there is great biodiversity but only few varieties are cultivated nowadays. In order to contribute to biodiversity conservation of Andean potatoes, information about their morphological, nutritional and functional characteristics was generated. In gene bank (INTA-Balcarce), varieties collected from regional producers were preserved. Forty-four genotypes were multiplied and characterized. Morphological characteristics; proximate composition and functional compounds were analyzed. Cluster analysis separated them into 3 groups according to distinguishing characteristics, which define industrial or nutritional applications. Group 2 was characterized by higher content of macronutrients and Group 3 with the highest antioxidant activity, both would be advisable for direct consumption. Genotype CS 1418 had big size and oval form so it could be destined to potato chips industry. Knowledge on nutritional and functional properties of genotypes contributes to promoting the cultivation depending on properties and also to preserve biodiversity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Volcanic Rocks and Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanoes have contributed significantly to the formation of the surface of our planet. Volcanism produced the crust we live on and most of the air we breathe. The...

  18. Martian volcanism: A review

    International Nuclear Information System (INIS)

    Carr, M.H.

    1987-01-01

    Martian volcanism is reviewed. It is emphasized that lava plains constitute the major type of effusive flow, and can be differentiated by morphologic characteristics. Shield volcanoes, domes, and patera constitute the major constructional landforms, and recent work has suggested that explosive activity and resulting pyroclastic deposits may have been involved with formation of some of the small shields. Analysis of morphology, presumed composition, and spectroscopic data all indicate that Martian volcanism was dominantly basaltic in composition

  19. Northern hemispheric response to large volcanic eruptions in relation to El Nino - winter case studies

    International Nuclear Information System (INIS)

    Kirchner, I.

    1994-01-01

    A large part of the global climate variability is attributed to variations of the Indian Monsoon and of El Nino/Southern Oscillation. Facing the recent violent volcanic eruption of Mount Pinatubo in June 1991, and searching for the climate signal of the increased greenhouse effect, the climate impact of volcanic aerosols becomes more and more interesting

  20. Assessment of satellite rainfall products over the Andean plateau

    Science.gov (United States)

    Satgé, Frédéric; Bonnet, Marie-Paule; Gosset, Marielle; Molina, Jorge; Hernan Yuque Lima, Wilson; Pillco Zolá, Ramiro; Timouk, Franck; Garnier, Jérémie

    2016-01-01

    Nine satellite rainfall estimations (SREs) were evaluated for the first time over the South American Andean plateau watershed by comparison with rain gauge data acquired between 2005 and 2007. The comparisons were carried out at the annual, monthly and daily time steps. All SREs reproduce the salient pattern of the annual rain field, with a marked north-south gradient and a lighter east-west gradient. However, the intensity of the gradient differs among SREs: it is well marked in the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis 3B42 (TMPA-3B42), Precipitation Estimation from remotely Sensed Information using Artificial Neural Networks (PERSIANN) and Global Satellite Mapping of Precipitation (GSMaP) products, and it is smoothed out in the Climate prediction center MORPHing (CMORPH) products. Another interesting difference among products is the contrast in rainfall amounts between the water surfaces (Lake Titicaca) and the surrounding land. Some products (TMPA-3B42, PERSIANN and GSMaP) show a contradictory rainfall deficit over Lake Titicaca, which may be due to the emissivity contrast between the lake and the surrounding lands and warm rain cloud processes. An analysis differentiating coastal Lake Titicaca from inland pixels confirmed this trend. The raw or Real Time (RT) products have strong biases over the study region. These biases are strongly positive for PERSIANN (above 90%), moderately positive for TMPA-3B42 (28%), strongly negative for CMORPH (- 42%) and moderately negative for GSMaP (- 18%). The biases are associated with a deformation of the rain rate frequency distribution: GSMaP underestimates the proportion of rainfall events for all rain rates; CMORPH overestimates the proportion of rain rates below 2 mm day- 1; and the other products tend to overestimate the proportion of moderate to high rain rates. These biases are greatly reduced by the gauge adjustment in the TMPA-3B42, PERSIANN and CMORPH products, whereas a

  1. A Uniform Conductivity Image along the Chilean Margin? Observations from the Central and Southern Andes

    Science.gov (United States)

    Brasse, H.; Soyer, W.

    2001-12-01

    Over the last years a reasonably detailed image of electrical conductivity distribution has been achieved in the central Andes at latitudes 20--22oS. These studies have been complemented by recent magnetotelluric investigations in the southern Chilean Andes (39oS). Despite the different subduction settings concerning e.g., age of subducted plate, trench filling and history of volcanic arcs, the inferred conductivity distributions show remarkable similarities. Higher conductivities assumed to be connected with hydration-dehydration processes are only resolved as a 2nd order effect at larger depths above the downgoing slab. On the other hand, large margin-subparallel fault zones presumably originating from oblique subduction are consistently imaged as good conductors in the mid crust, e.g., the Atacama Fault and the West Fissure in the central Andes and the Liquiñe-Ofqui Fault in the south. The main differences concerning electrical properties between the two subduction settings include the large conductivity anomaly below the Altiplano high plateau in the central Andes and an anisotropic forearc crust in the south, indicated by ystematic deflection of induction arrows. An explanation of the latter phenomenon may possibly be seen in fossil, Cenozoic or even Pre-Andean structures.

  2. Was there a volcanic eruption off Vietnam in AD 608?

    Science.gov (United States)

    Khoo, T. T.

    In the Sui-shu (Annals of the Sui Dynasty, 581-618), there is a record that returning envoys of the Chinese court to a state in northeastern Malay peninsula had in April-June AD 608 reached the state of Lin-i where for a whole day's sail the air around the vessel was yellowish and fetid. Lin-i was located at the southern end of the Annam Highlands chain and it is interpreted here that the phenominon reported could be due to a volcanic eruption in the Poulo Cecir-Ile des Cendres-Veteran volcanic islands group near the area. During the months of May to June the winds of the southwest monsoon, too, blow from the volcanic area toward the southern end of the Annam Highlands.

  3. Volcanic hazards to airports

    Science.gov (United States)

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.

    2009-01-01

    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies

  4. Conceptual frameworks for monitoring of high-altitude Andean ecosystems

    Science.gov (United States)

    David E. Busch; Xavier Silva

    2006-01-01

    The Ecuadorian government and its partner organizations in the international conservation community share an interest in developing monitoring programs for Andean protected areas to help support management for recreation, education, and ecological sustainability. To accomplish this goal, the U.S. Agency for International Development and the Department of the Interior...

  5. Isolation of lipolytic bacteria from Colombian Andean soils

    DEFF Research Database (Denmark)

    Jaramillo, Paola Andrea Palacios; Borda-Molina, Daniel; Montaña, José Salvador

    2017-01-01

    Microbial enrichments with a substrate of interest could enhance the possibility of finding certain desired metabolic activities. As lipases are one of the most important enzymes in industrial applications, the Colombian Andean soils were explored as a source of lipolytic microorganisms. Two Ande...

  6. Cultural Politics, Communal Resistance and Identity in Andean Irrigation Development

    NARCIS (Netherlands)

    Boelens, R.A.; Gelles, P.H.

    2005-01-01

    This article uses two case studies to illustrate how Andean irrigation development and management emerges from a hybrid mix of local community rules and the changing political forms and ideological forces of hegemonic states. Some indigenous water-control institutions are with us today because they

  7. Andean grasslands are as productive as tropical cloud forests

    NARCIS (Netherlands)

    Oliveras Menor, I.; Girardin, C.; Doughty, C.E.; Cahuana, N.; Arenas, C.E.; Oliver, V.; Huaraca Huasco, W.; Malhi, Y.

    2014-01-01

    We aim to assess net primary productivity (NPP) and carbon cycling in Andean tropical alpine grasslands (puna) and compare it with NPP of tropical montane cloud forests. We ask the following questions: (1) how do NPP and soil respiration of grasslands vary over the seasonal cycle? (2) how do burning

  8. Democratic Governability in the Andean Region : Political and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Over the past 15 years, the Andean countries - Bolivia, Ecuador, Peru and Venezuela - have undertake a number of unsustainable political and institutional reforms that have caused dissatisfaction, exacerbated social and political unrest, and in some cases led to violent confrontation. New political and institutional reforms ...

  9. The Andean Common Market: An Experiment in Regional Cooperation.

    Science.gov (United States)

    Carlson, Reynold E.

    The Grupo Andino (GRAN) was formed in 1969 as an effort at economic integration by six Latin American countries (Bolivia, Chile, Columbia, Ecuador, Peru, and Venezuela). It was an outgrowth of its predecessor, the Latin American Free Trade Association (LAFTA), which had been formed in 1960 with eleven member countries. The Andean Group (GRAN) from…

  10. Inflammatory aspects of type 2 diabetes in the Andean region

    NARCIS (Netherlands)

    L.Y. Baldeón Rojas (Lucy)

    2015-01-01

    markdownabstractAbstract This thesis deals with the immune inflammatory aspects of obesity, the metabolic syndrome (MetS), insulin resistance and type 2 diabetes (T2D) in the Andean region, more precisely in Quito, Ecuador. To understand the research questions a short introduction in the

  11. Seasonality of volcanic eruptions

    Science.gov (United States)

    Mason, B. G.; Pyle, D. M.; Dade, W. B.; Jupp, T.

    2004-04-01

    An analysis of volcanic activity during the last three hundred years reveals that volcanic eruptions exhibit seasonality to a statistically significant degree. This remarkable pattern is observed primarily along the Pacific "Ring of Fire" and locally at some individual volcanoes. Globally, seasonal fluctuations amount to 18% of the historical average monthly eruption rate. In some regions, seasonal fluctuations amount to as much as 50% of the average eruption rate. Seasonality principally reflects the temporal distribution of the smaller, dated eruptions (volcanic explosivity index of 0-2) that dominate the eruption catalog. We suggest that the pattern of seasonality correlates with the annual Earth surface deformation that accompanies the movement of surface water mass during the annual hydrological cycle and illustrate this with respect to global models of surface deformation and regional measurements of annual sea level change. For example, seasonal peaks in the eruption rate of volcanoes in Central America, the Alaskan Peninsula, and Kamchatka coincide with periods of falling regional sea level. In Melanesia, in contrast, peak numbers of volcanic eruptions occur during months of maximal regional sea level and falling regional atmospheric pressure. We suggest that the well-documented slow deformation of Earth's surface that accompanies the annual movements of water mass from oceans to continents acts to impose a fluctuating boundary condition on volcanoes, such that volcanic eruptions tend to be concentrated during periods of local or regional surface change rather than simply being distributed randomly throughout the year. Our findings have important ramifications for volcanic risk assessment and volcanoclimate feedback mechanisms.

  12. Thermochronologic Evidence for Late Eocene Andean Mountain Building at 30°S

    Science.gov (United States)

    Lossada, Ana C.; Giambiagi, Laura; Hoke, Gregory D.; Fitzgerald, Paul G.; Creixell, Christian; Murillo, Ismael; Mardonez, Diego; Velásquez, Ricardo; Suriano, Julieta

    2017-11-01

    The Andes between 28° and 30°S represent a transition between the Puna-Altiplano Plateau and the Frontal/Principal Cordillera fold-and-thrust belts to the south. While significant early Cenozoic deformation documented in the Andean Plateau, deciphering the early episodes of deformation during Andean mountain building in the transition area is largely unstudied. Apatite fission track (AFT) and (U-Th-Sm)/He (AHe) thermochronology from a vertical and a horizontal transect reveal the exhumation history of the High Andes at 30°S, an area at the heart of this major transition. Interpretation of the age-elevation profile, combined with inverse thermal modeling, indicates that the onset of rapid cooling was underway by 35 Ma, followed by a significant decrease in cooling rate at 30-25 Ma. AFT thermal models also reveal a second episode of rapid cooling in the early Miocene ( 18 Ma) related to rock exhumation to its present position. Low exhumation between the rapid cooling events allowed for the development of a partial annealing zone. We interpret the observed Eocene rapid exhumation as the product of a previously unrecognized compressive event in this part of the Andes that reflects a southern extension of Eocene orogenesis recognized in the Puna/Altiplano. Renewed early-Miocene exhumation indicates that the late Cenozoic compressional stresses responsible for the main phase of uplift of the South Central Andes also impacted the core of the range in this transitional sector. The major episode of Eocene exhumation suggests the creation of significant topographic relief in the High Andes earlier than previously thought.

  13. Volcanic activity and climatic changes.

    Science.gov (United States)

    Bryson, R A; Goodman, B M

    1980-03-07

    Radiocarbon dates of volcanic activity suggest variations that appear to be related to climatic changes. Historical eruption records also show variations on the scale of years to centuries. These records can be combined with simple climatic models to estimate the impact of various volcanic activity levels. From this analysis it appears that climatic prediction in the range of 2 years to many decades requires broad-scale volcanic activity prediction. Statistical analysis of the volcanic record suggests that some predictability is possible.

  14. Young mafic back arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna plateau, central Andes

    Science.gov (United States)

    Kay, Suzanne Mahlburg; Coira, Beatriz; Viramonte, Jose

    1994-12-01

    The spatial distribution of some major and trace element and isotopic characteristics of backarc Plio-Quaternary basaltic to high-Mg andesitic (51% to 58% SiO2) lavas in the southern Puna (25 S to 27 S) of the Central Andean Volcanic Zone (CVZ) reflect varying continental lithospheric thickness and the thermal state of the underlying mantle wedge and subducting plate. These lavas erupted from small cones and fissures associated with faults related to a change in the regional stress system in the southern Puna at approximately = 2 to 3 Ma. Three geochemical groups are recognized: (1) a relatively high volume intraplate group (high K; La/Ta ratio less than 25) that occurs over a thin continental lithosphere above a gap in the modern seismic zone and represents the highest percentage of mantle partial melt, (2) an intermediate volume, high-K calc-alkaline group (La/Ta ratio greater than 25) that occurs over intermediate thickness lithosphere on the margins of the seismic gap and behind the main CVZ and represents an intermediate percentage of mantle partial melt, and (3) a small-volume shoshonitic group (very high K) that occurs over relatively thick continental lithosphere in the northeast Puna and Altiplano and represents a very small percentage of mantle partial melt. Mantle-generated characteristics of these lavas are partially overprinted by mixing with melts of the overlying thickened crust as shown by the presence of quartz and feldspar xenocrysts, negative Eu anomalies (Eu/E(sup *) less than 0.90; most less than 0.80), and radiogenic Sr (greater than 0.7055) and Pb and nonradiogenic Nd (epsilon(sub Nd) less than -0.4) isotopic ratios. Mixing calculations show that the lavas generally contain more than 20% to 25% crustal melt. The eruption of the intraplate group mafic lavas, the change in regional stress orientation, and the high elevation of the southern Puna are suggested to be the result of the late Pliocene mechanical delamination of a block (or blocks) of

  15. Modeling volcanic ash dispersal

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard...

  16. SPECIES RICHNESS AND INDICES OF ABUNDANCE OF MEDIUM-SIZED MAMMALS IN ANDEAN FOREST AND REFORESTATIONS WITH ANDEAN ALDER: A PRELIMINARY ANALYSIS

    Directory of Open Access Journals (Sweden)

    SÁNCHEZ FRANCISCO

    2008-07-01

    Full Text Available We studied the species richness and two indices of abundance of medium-sizedmammals in areas with Andean forest and Andean alder (Alnus acuminatareforestations in a reserve at the Central Andes of Colombia. Since reforested areashave a less complex habitat structure and lower plant diversity than native forests, wepredicted that they have lower richness of mammals than areas with Andean forest.We obtained the indices of abundance from direct contacts in transects and from theuse of track stations. Our results suggest that, indeed, areas with Andean forest hada higher richness of mammals than reforestations, but this pattern may be modifiedby anthropogenic factors. We found no differences between the indices of abundanceof the squirrel, Sciurus granatensis, in the two forest types. In contrast, the coatiswere recorded more frequently in the reforestations than in areas with Andean forestat the reserve.

  17. Volcanism Studies: Final Report for the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

    1998-12-01

    defined and described as one of many alternative models of the structural controls of the distribution of Plio-Quaternary basalt centers in the YMR. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be > than about 7 x 10{sup {minus}8} events yr{sup {minus}1} . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption

  18. Geochemical characterization of Parana Basin volcanic rocks: petrogenetic implications

    International Nuclear Information System (INIS)

    Marques, L.S.

    1988-01-01

    A detailed study of the geochemical characteristics of Parana Basin volcanic rocks is presented. The results are based on the analyses of major and trace elements of 158 samples. Ninety three of these volcanic samples belong to 8 flow sequences from Rio Grande do Sul and Santa Catarina States. The remaining sixty five samples are distributed over the entire basin. In order to study the influence of crustal contamination processes in changing chemical characteristics of the volcanic rocks, 47 samples representative of the crystalline basement of the southern and southeastern Parana Basin were also analysed. Several petrogenetic models were tested to explain the compocional variability of the volcanic rocks, in particular those of southern region. The results obtained sugest an assimilation-fractional crystallization process as viable to explain the differences of both the chemical characteristics and Sr isotope initial ratios observed in basic and intermediate rocks. A model involving melting processes of basic material, trapped at the base of the crust, with composition similar to low and high TiO 2 basalts appears to be a possibility to originate the Palmas and Chapeco acid melts, respectively. The study of ''uncontaminated'' or poorly contaminated low TiO 2 basic rocks from the southern, central and northern regions shows the existence of significant differences in the geochemical charactetistics according to their geographical occurrence. A similar geochemical diversity is also observed in high TiO 2 basalts and Chapeco volcanics. Differences in incompatible element ratios between low and high TiO 2 ''uncontaminated'' or poorly contaminated basalts suggest that they could have been produced by different degrees of melting in a garnet peridotite source. Geochemical and isotopic (Sr and Nd) data also support the view that basalts from northern and southern regions of Parana Basin originated from mantle source with different composition. (author) [pt

  19. Modelling beta diversity of aquatic macroinvertebrates in High Andean wetlands

    OpenAIRE

    Carolina Nieto; Daniel A. Dos Santos; Andrea E. Izquierdo; José S. Rodríguez; Héctor R. Grau

    2017-01-01

    Central Andean Highlands represent a singular environment characterized by various extreme conditions. Among them, peatbogs are exceptional marshy habitats scattered throughout this arid and harsh area. In an effort to understand the patterns of beta diversity, we sampled the benthic macroinvertebrates of thirteen peatbogs and related the biological distance with ecological distance using the GDM (Generalized Dissimilarity Modelling) approach. Variables analyzed were altitude, geographical di...

  20. Genetic diversity and germplasm conservation of three minor Andean tuber crop species

    Directory of Open Access Journals (Sweden)

    Malice M.

    2009-01-01

    Full Text Available In traditional Andean agrosystems, three minor tuber crop species are of regional or local importance: oca (Oxalis tuberosa Molina, ulluco (Ullucus tuberosus Caldas and mashua (Tropaeolum tuberosum Ruiz and Pav.. Genetic diversity within these species is very large and could result from the high ecological and cultural variability that characterizes the Andean area. Nowadays, many anthropic or ecological factors cause the loss of diversity and contribute to genetic erosion. The development of conservation strategies for genetic resources of Andean tubers, in situ as well as ex situ, includes a better knowledge of diversity in addition to the study of Andean farming strategies linked to this genetic diversity.

  1. SOM and Biomass C Stocks in Degraded and Undisturbed Andean and Coastal Nothofagus Forests of Southwestern South America

    Directory of Open Access Journals (Sweden)

    Francis Dube

    2016-12-01

    Full Text Available Grazing and over-exploitation can severely degrade soil in native forests. Considering that productivity in ecosystems is related to soil organic matter (SOM content and quality, the objectives of this study were to: (1 determine the influence of degraded (DEF, partly-degraded (PDF, and undisturbed (UNF Nothofagus forests on the stocks of carbon (C in tree biomass and SOM; (2 evaluate fractions of SOM as indicators of sustainable management; and (3 use the Century model to determine the potential gains of soil organic C (SOC. The forests are located in the Andes and Coastal mountains of southern Chile. The SOM was fractionated to separate the light fraction (LF, macroaggregates (>212 µm, mesoaggregates (212–53 µm, and microaggregates (<53 µm. In two measurement periods, the SOC stocks at 0–20 cm and 20–40 cm depths in macroaggregates were on average 100% higher in the Andean UNF, and SOC was over twice as much at 20–40 cm depth in Andean DEF. Century simulations showed that improved silvopastoral management would gradually increase total SOC in degraded soils of both sites, especially the Ultisol with a 15% increase between 2016 and 2216 (vs. 7% in the Andisol. Greater SOC in macroaggregates (p < 0.05 of UNF indicate a condition of higher sustainability and better management over the years.

  2. Volcanic eruptions on Io

    Science.gov (United States)

    Strom, R. G.; Schneider, N. M.; Terrile, R. J.; Cook, A. F.; Hansen, C.

    1981-09-01

    Nine eruption plumes which were observed during the Voyager 1 encounter with Io are discussed. During the Voyager 2 encounter, four months later, eight of the eruptions were still active although the largest became inactive sometime between the two encounters. Plumes range in height from 60 to over 300 km with corresponding ejection velocities of 0.5 to 1.0 km/s and plume sources are located on several plains and consist of fissures or calderas. The shape and brightness distribution together with the pattern of the surface deposition on a plume 3 is simulated by a ballistic model with a constant ejection velocity of 0.5 km/s and ejection angles which vary from 0-55 deg. The distribution of active and recent eruptions is concentrated in the equatorial regions and indicates that volcanic activity is more frequent and intense in the equatorial regions than in the polar regions. Due to the geologic setting of certain plume sources and large reservoirs of volatiles required for the active eruptions, it is concluded that sulfur volcanism rather than silicate volcanism is the most likely driving mechanism for the eruption plumes.

  3. A Late Quaternary shortening rate for the frontal thrust of the Andean Precordillera north of Mendoza

    Science.gov (United States)

    Schmidt, S.; Kuhlmann, J.; Hetzel, R.; Mingorance, F.; Ramos, V. A.

    2009-12-01

    Although large historical earthquakes occurred in the Andean back-arc region between 28° and 34°S - for instance Mendoza was destroyed by an earthquake of magnitude MS = 7.0 in 1861 - the slip rates of active faults remain unknown. We report a slip rate for the 50-km-long Las Penas thrust, which constitutes the frontal thrust of the Precordillera. In its southern part, a well preserved fluvial terrace along La Escondida Creek (Costa et al., 2000) is displaced vertically by 10.6 ± 0.7 m as documented by several fault scarp profiles. Apart from radiocarbon dating of plant remnants, three different approaches for 10Be exposure dating have been applied to constrain the age of the terrace. Amalgamated sandstone pebbles (corrected for an inherited 10Be component using similar pebbles from the active creek) and a depth profile obtained from four sand samples yield 10Be exposure ages of 12.2 ± 1.5 and 11.3 ± 2.0 kyr, respectively. Both ages are in excellent agreement with the 14C age of 12.61 ± 0.20 cal kyr BP. In contrast, 10Be ages of five sandstone boulders vary significantly and exceed the age of the terrace by 10 to 70 kyr, which demonstrates that the widely used assumption of a negligible inherited component is not valid here. The age of the river terrace combined with the vertical fault offset yields an uplift rate of ~0.8 mm/yr for the Las Penas thrust. Combined with the fault dip of 25°, we determine a Late Quaternary horizontal shortening rate of ~1.8 mm/yr, which is about 40% of the GPS derived shortening rate of 4.5 ± 1.7 mm/yr in the back-arc region of the Andes (Brooks et al., 2003). References Brooks, B.A., Bevis, M., Smalley, R., Kendrick, E., Manceda, R., Lauria, E., Maturana, R. & Araujo, M. (2003): Crustal motion in the Southern Andes (26° - 36°S): Do the Andes behave like a microplate? Geochem. Geophys. Geosyst., 4 (10), pp. 14, 1085, doi 10.1029/2003GC000505. Costa, C.H., Gardini, C.E., Diederix, H., Cortés, J.M. (2000): The Andean orogenic

  4. Transboundary protected area proposals along the Southern Andes of Chile and Argentina: Status of current efforts

    Science.gov (United States)

    Peter Keller

    2007-01-01

    An evolving network of protected areas along the southern Andes of Chile and Argentina-the heart of Patagonia-are in various stages of evaluation and potential Transboundary Protected Area designations. This paper examines three such efforts. The first proposal is the North Andean-Patagonia Regional Eco-Corridor, which was the subject of a recent bilateral meeting...

  5. Andean cutaneous leishmaniasis (Andean-CL, uta) in Peru and Ecuador: the causative Leishmania parasites and clinico-epidemiological features.

    Science.gov (United States)

    Hashiguchi, Yoshihisa; Gomez, Eduardo A L; Cáceres, Abraham G; Velez, Lenin N; Villegas, Nancy V; Hashiguchi, Kazue; Mimori, Tatsuyuki; Uezato, Hiroshi; Kato, Hirotomo

    2018-01-01

    This study provides comprehensive information on the past and current status of the Andean cutaneous leishmaniasis (Andean-CL, uta) in Peru and Ecuador, mainly focusing on the causative Leishmania parasites and clinico-epidemiological features. Available information and data including our unpublished works were analyzed thoroughly. Endemic regions of the Andean-CL (uta) in Peru run from the north Piura/Cajamarca to the south Ayacucho at a wide range of the Pacific watersheds of the Andes through several departments, while in Ecuador those exist at limited and spotted areas in the country's mid-southwestern two provinces, Azuay and Chimborazo. The principal species of the genus Leishmania are completely different at subgenus level, L. (Viannia) peruviana in Peru, and L. (Leishmania) mexicana and L. (L.) major-like (infrequent occurrence) in Ecuador. The Peruvian uta is now prevalent in different age and sex groups, being not clearly defined as found in the past. The precise reasons are not known and should be elucidated further, though probable factors, such as emergence of other Leishmania parasites, non-immune peoples' migration into the areas, etc., were discussed briefly in the text. The Andean-CL cases in Ecuador are more rural than before, probably because of a rapid development of the Leishmania-positive communities and towns, and the change of life-styles of the inhabitants, including newly constructed houses and roads in the endemic areas. Such information is helpful for future management of the disease, not only for Leishmania-endemic areas in the Andes but also for other endemic areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Late Devonian and Triassic basalts from the southern continental ...

    Indian Academy of Sciences (India)

    In Late Devonian and Early-to-Late Triassic times, the southern continental margin of the Eastern. European Platform was the site of a basaltic volcanism in the Donbas and Fore-Caucasus areas respectively. Both volcanic piles rest unconformably upon Paleoproterozoic and Late Paleozoic units respectively, and emplaced ...

  7. Late Devonian and Triassic basalts from the southern continental ...

    Indian Academy of Sciences (India)

    In Late Devonian and Early-to-Late Triassic times, the southern continental margin of the Eastern European Platform was the site of a basaltic volcanism in the Donbas and Fore-Caucasus areas respectively. Both volcanic piles rest unconformably upon Paleoproterozoic and Late Paleozoic units respectively, and emplaced ...

  8. Andean contributions to the biogeochemistry of the amazon river system

    Directory of Open Access Journals (Sweden)

    1995-01-01

    Atlántico. Un nuevo programa colaborativo de investigación se inició en 1994 con el propósito de caracterizar de una manera más completa la biogeoquímica de los ríos andinos. Contributions from Andean rivers may play a significant role in determining the basin-wide biogeochemistry integrated into the mainstem Amazon River of Brazil. Concentration data for organic C, NO3-, and PO43- in Andean rivers are highly variable and reveal no clear spatial or altitudinal patterns. Concentrations measured in Andean rivers are similar to those reported in the mainstem Amazon river and its major tributaries. Explanations of processes which alter Andean-derived particulates and solutes as they exit the Cordillera are only speculative at this time, but their net effect is to diminish Andean signals through decomposition and dilution by lowland inputs. The 13C of particulate and dissolved organic matter in the mainstem Amazon provides evidence that some fraction of Andean derived material persists within the river system, ultimately to be discharged to the Atlantic Ocean. In 1994 a new collaborative research program was launched to further characterize the biogeochemistry of Andean rivers.

  9. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A. [Los Alamos National Lab., NM (United States); Wells, S. [Univ. of California, Riverside, CA (United States); Bowker, L.; Finnegan, K. [Univ. of Nevada, Las Vegas, NV (United States); Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report.

  10. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A.; Wells, S.; Bowker, L.; Finnegan, K.; Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report

  11. The origin and crust/mantle mass balance of Central Andean ignimbrite magmatism constrained by oxygen and strontium isotopes and erupted volumes

    Science.gov (United States)

    Freymuth, Heye; Brandmeier, Melanie; Wörner, Gerhard

    2015-06-01

    Volcanism during the Neogene in the Central Volcanic Zone (CVZ) of the Andes produced (1) stratovolcanoes, (2) rhyodacitic to rhyolitic ignimbrites which reach volumes of generally less than 300 km3 and (3) large-volume monotonous dacitic ignimbrites of up to several thousand cubic kilometres. We present models for the origin of these magma types using O and Sr isotopes to constrain crust/mantle proportions for the large-volume ignimbrites and explore the relationship to the evolution of the Andean crust. Oxygen isotope ratios were measured on phenocrysts in order to avoid the effects of secondary alteration. Our results show a complete overlap in the Sr-O isotope compositions of lavas from stratovolcanoes and low-volume rhyolitic ignimbrites as well as older (>9 Ma) large-volume dacitic ignimbrites. This suggests that the mass balance of crustal and mantle components are largely similar. By contrast, younger (de Pica ignimbrites) and 70 km3 Ma-1 km-1 (assuming plutonic/volcanic ratios of 1:5) which are additional to, but within the order of, the arc background magmatic flux. Comparing our results to average shortening rates observed in the Andes, we observe a "lag-time" with large-volume eruptions occurring after accelerated shortening. A similar delay exists between the ignimbrite pulses and the subduction of the Juan Fernandez ridge. This is consistent with the idea that large-volume ignimbrite eruptions occurred in the wake of the N-S passage of the ridge after slab steepening has allowed hot asthenospheric mantle to ascend into and cause the melting of the mantle wedge. In our model, the older large-volume dacitic ignimbrites in the northern part of the CVZ have lower (15-37 %) crustal contributions because they were produced at times when the Central Andean crust was thinner and colder, and large-scale melting in the middle crust could not be achieved. Younger ignimbrite flare-ups further south (22°S) formed with a significantly higher crustal contribution

  12. Modelling ground deformation patterns associated with volcanic processes at the Okataina Volcanic Centre

    Science.gov (United States)

    Holden, L.; Cas, R.; Fournier, N.; Ailleres, L.

    2017-09-01

    vicinity of the southern margin. As a result, some of the cGPS stations in the vicinity of the OVC are more important for measuring deformation related to volcanic processes than others. The results have important implications for how any future observed deformation at the OVC is observed and interpreted.

  13. Glacial evolution of the Ampato Volcanic Complex (Peru)

    Science.gov (United States)

    Alcalá, J.; Palacios, D.; Zamorano, J. J.; Vázquez, L.

    2009-04-01

    Ice masses on the Western range of the Central Andes are a main source of water resources and act as a geoindicator of variations in the climate of the tropics (Mark, 2008). The study of their evolution is of particular interest since they are situated in the transition zone between the tropical and mid-latitude circulation areas of the atmosphere (Zech et al., 2007). The function of this transition area is currently under debate, and understanding it is essential for the development of global climate models (Kull et al, 2008; Mark, 2008). However our understanding of the evolution of glaciers and their paleoclimatic factors for this sector of the Central Andes is still at a very basic level. This paper presents initial results of a study on the glacial evolution of the Ampato volcanic complex (15°24´- 15° 51´ S, 71° 51´ - 73° W; 6288 m a.s.l.) located in the Western Range of the Central Andes in Southern Peru, 70 km NW of the city of Arequipa. The main objectives are to identify the number of glacial phases the complex has undergone using geomorphological criteria to define a time frame for each phase, based on cosmogenic 36Cl dating of a sequence of moraine deposits; and to estimate the glacier Equilibrium Line Altitude (ELA) of each phase. The Ampato volcanic complex is formed by 3 great andesitic stratovolcanoes, the Nevados HualcaHualca-Sabancaya-Ampato, which started forming between the late Miocene and early Quaternary (Bulmer et al., 1999), aligned N-S and with summits covered with glaciers. The Sabancaya volcano is fully active, with its latest eruption occurring in 2001. Glacial landforms were identified and mapped using photointerpretation of vertical aerial photographs from 1955 (1:35,000 scale, National Geographic Institute of Peru), oblique photographs from 1943 (Aerophotographical Service of Peru), and a geo-referenced high-resolution Mrsid satellite image from 2000 (NASA). This cartography was corrected and improved through fieldwork. It was

  14. Io - Volcanic Eruption

    Science.gov (United States)

    1979-01-01

    This photo of a volcanic eruption on Jupiter's satellite Io (dark fountain-like feature near the limb) was taken March 4, 1979, about 12 hours before Voyager 1's closest approach to Jupiter. This and the accompanying photo present the evidence for the first active volcanic eruption ever observed on another body in the solar system. This photo taken from a distance of 310,000 miles (499,000 kilometers), shows a plume-like structure rising more than 60 miles (100 kilometers) above the surface, a cloud of material being produced by an active eruption. At least four eruptions have been identified on Voyager 1 pictures and many more may yet be discovered on closer analysis. On a nearly airless body like Io, particulate material thrown out of a volcano follows a ballistic trajectory, accounting for the dome-like shape of the top of the cloud, formed as particles reach the top of their flight path and begin to fall back. Spherical expansion of outflowing gas forms an even larger cloud surrounding the dust. Several regions have been identified by the infrared instrument on Voyager 1 as being several hundred degrees Fahrenheit warmer than surrounding terrain, and correlated with the eruptions. The fact that several eruptions appear to be going on simultaneously makes Io the most active surface in the solar system and suggests to scientists that Io is undergoing continuous volcanism, revising downward the age of Io's surface once again. JPL manages and controls the Voyager Project for NASA's Office of Space Science.

  15. Fault-controlled permeability and fluid flow in low-porosity crystalline rocks: an example from naturally fractured geothermal systems in the Southern Andes

    Science.gov (United States)

    Arancibia, G.; Roquer, T.; Sepúlveda, J.; Veloso, E. A.; Morata, D.; Rowland, J. V.

    2017-12-01

    Fault zones can control the location, emplacement, and evolution of economic mineral deposits and geothermal systems by acting as barriers and/or conduits to crustal fluid flow (e.g. magma, gas, oil, hydro-geothermal and groundwater). The nature of the fault control permeability is critical in the case of fluid flow into low porosity/permeability crystalline rocks, since structural permeability provides the main hydraulic conductivity to generate a natural fractured system. However, several processes accompanying the failure of rocks (i.e. episodic permeability given by cycling ruptures, mineral precipitation from fluids in veins, dissolution of minerals in the vicinity of a fracture) promote a complex time-dependent and enhancing/reducing fault-controlled permeability. We propose the Southern Volcanic Zone (Southern Andes, Chile) as a case study to evaluate the role of the structural permeability in low porosity crystalline rocks belonging to the Miocene North Patagonian Batholith. Recently published studies propose a relatively well-constrained first-order role of two active fault systems, the arc-parallel (NS to NNE trending) Liquiñe Ofqui Fault System and the arc-oblique (NW trending) Andean Transverse Fault Zones, in fluid flow at crustal scales. We now propose to examine the Liquiñe ( 39°S) and Maihue ( 40°S) areas as sites of interaction between these fault systems, in order to evaluate a naturally fractured geothermal system. Preliminary results indicate upwelling of thermal water directly from fractured granite or from fluvial deposits overlying granitoids. Measured temperatures of thermal springs suggest a low- to medium-enthalpy system, which could potentially be harnessed for use in geothermal energy applications (e.g. heating, wood dryer and green house), which are much needed in Southern Chile. Future work will aim to examine the nature of structural permeability from the regional to the microscopic scale connecting the paleo- and current- fluid

  16. Photos provide information on age, but not kinship, of Andean bear.

    Science.gov (United States)

    Van Horn, Russell C; Zug, Becky; Appleton, Robyn D; Velez-Liendo, Ximena; Paisley, Susanna; LaCombe, Corrin

    2015-01-01

    Using photos of captive Andean bears of known age and pedigree, and photos of wild Andean bear cubs camera trap photos are one of the most readily available sources of information on large cryptic mammals, we suggest that similar methods be tested for use in other poorly understood species.

  17. Monogenetic Arc Volcanism in the Central Andes: The "Hidden" Mafic Component in the Land of Andesite and Ignimbrite

    Science.gov (United States)

    van Alderwerelt, B. M.; Ukstins Peate, I.; Ramos, F. C.

    2016-12-01

    Faulting in the upper crust of the Central Andes has provided passage for small volumes of mafic magma to reach the surface, providing a window into petrogenetic processes in the region's deep crust and upper mantle. Mafic lavas are rare in the Central Andean region dominated by intermediate-composition arc volcanism and massive sheets of silicic ignimbrite, and provide key data on magmatic origin, evolution, and transport. This work characterizes fault-controlled, within-arc monogenetic eruptive centers representative of the most mafic volcanism in the Altiplano-Puna region of the Andes since (at least) the Mesozoic. Olivine-phyric basaltic andesite (54 wt% SiO2, 7.3 wt% MgO) at Cerro Overo maar and associated dome, La Albóndiga Grande, and an olivine-clinopyroxene flow (53 wt% SiO2, 6.7 wt% MgO) from Cordón de Puntas Negras have been erupted at the intersection of regional structural features and the modern volcanic arc. Bulk magma chemistry, radiogenic isotopes, and microanalyses of mineral and melt inclusion composition provide insight on the composition(s) of mafic magmas being delivered to the lowermost crust and the deep crustal processes which shape central Andean magma. Bulk major and trace elements follow regional arc differentiation trends and are clearly modified by crustal magmatic processes. In contrast, microanalyses reveal a much richer history with olivine-hosted melt inclusions recording multiple distinct magmas, including potential primary melts. Single crystal olivine 87Sr/86Sr from Cerro Overo (0.7041-0.7071) define a broader range than whole rock (0.7062-0.7065), indicating preservation of juvenile melt in olivine-hosted inclusions lost at the whole rock scale. Mineral chemistry (via EMPA) P-T calculations define a petrogenetic history for these endmember lavas. Field mapping, bulk chemistry, and microanalyses outline the generation, storage, transportation, and eventual eruption of the "hidden" mafic component of the Andean arc.

  18. New environmentally-friendly antimicrobials and biocides from Andean and Mexican biodiversity.

    Science.gov (United States)

    Cespedes, Carlos L; Alarcon, Julio; Aqueveque, Pedro M; Lobo, Tatiana; Becerra, Julio; Balbontin, Cristian; Avila, Jose G; Kubo, Isao; Seigler, David S

    2015-10-01

    Persistent application of pesticides often leads to accumulation in the environment and to the development of resistance in various organisms. These chemicals frequently degrade slowly and have the potential to bio-accumulate across the food chain and in top predators. Cancer and neuronal damage at genomic and proteomic levels have been linked to exposure to pesticides in humans. These negative effects encourage search for new sources of biopesticides that are more "environmentally-friendly" to the environment and human health. Many plant or fungal compounds have significant biological activity associated with the presence of secondary metabolites. Plant biotechnology and new molecular methods offer ways to understand regulation and to improve production of secondary metabolites of interest. Naturally occurring crop protection chemicals offer new approaches for pest management by providing new sources of biologically active natural products with biodegradability, low mammalian toxicity and environmentally-friendly qualities. Latin America is one of the world's most biodiverse regions and provide a previously unsuspected reservoir of new and potentially useful molecules. Phytochemicals from a number of families of plants and fungi from the southern Andes and from Mexico have now been evaluated. Andean basidiomycetes are also a great source of scientifically new compounds that are interesting and potentially useful. Use of biopesticides is an important component of integrated pest management (IPM) and can improve the risks and benefits of production of many crops all over the world. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Sensitivity to volcanic field boundary

    Science.gov (United States)

    Runge, Melody; Bebbington, Mark; Cronin, Shane; Lindsay, Jan; Rashad Moufti, Mohammed

    2016-04-01

    Volcanic hazard analyses are desirable where there is potential for future volcanic activity to affect a proximal population. This is frequently the case for volcanic fields (regions of distributed volcanism) where low eruption rates, fertile soil, and attractive landscapes draw populations to live close by. Forecasting future activity in volcanic fields almost invariably uses spatial or spatio-temporal point processes with model selection and development based on exploratory analyses of previous eruption data. For identifiability reasons, spatio-temporal processes, and practically also spatial processes, the definition of a spatial region is required to which volcanism is confined. However, due to the complex and predominantly unknown sub-surface processes driving volcanic eruptions, definition of a region based solely on geological information is currently impossible. Thus, the current approach is to fit a shape to the known previous eruption sites. The class of boundary shape is an unavoidable subjective decision taken by the forecaster that is often overlooked during subsequent analysis of results. This study shows the substantial effect that this choice may have on even the simplest exploratory methods for hazard forecasting, illustrated using four commonly used exploratory statistical methods and two very different regions: the Auckland Volcanic Field, New Zealand, and Harrat Rahat, Kingdom of Saudi Arabia. For Harrat Rahat, sensitivity of results to boundary definition is substantial. For the Auckland Volcanic Field, the range of options resulted in similar shapes, nevertheless, some of the statistical tests still showed substantial variation in results. This work highlights the fact that when carrying out any hazard analysis on volcanic fields, it is vital to specify how the volcanic field boundary has been defined, assess the sensitivity of boundary choice, and to carry these assumptions and related uncertainties through to estimates of future activity and

  20. High-Up: A Remote Reservoir of Microbial Extremophiles in Central Andean Wetlands.

    Science.gov (United States)

    Albarracín, Virginia H; Kurth, Daniel; Ordoñez, Omar F; Belfiore, Carolina; Luccini, Eduardo; Salum, Graciela M; Piacentini, Ruben D; Farías, María E

    2015-01-01

    The Central Andes region displays unexplored ecosystems of shallow lakes and salt flats at mean altitudes of 3700 m. Being isolated and hostile, these so-called "High-Altitude Andean Lakes" (HAAL) are pristine and have been exposed to little human influence. HAAL proved to be a rich source of microbes showing interesting adaptations to life in extreme settings (poly-extremophiles) such as alkalinity, high concentrations of arsenic and dissolved salts, intense dryness, large daily ambient thermal amplitude, and extreme solar radiation levels. This work reviews HAAL microbiodiversity, taking into account different microbial niches, such as plankton, benthos, microbial mats and microbialites. The modern stromatolites and other microbialites discovered recently at HAAL are highlighted, as they provide unique modern-though quite imperfect-analogs of environments proxy for an earlier time in Earth's history (volcanic setting and profuse hydrothermal activity, low atmospheric O2 pressure, thin ozone layer and high UV exposure). Likewise, we stress the importance of HAAL microbes as model poly-extremophiles in the study of the molecular mechanisms underlying their resistance ability against UV and toxic or deleterious chemicals using genome mining and functional genomics. In future research directions, it will be necessary to exploit the full potential of HAAL poly-extremophiles in terms of their biotechnological applications. Current projects heading this way have yielded detailed molecular information and functional proof on novel extremoenzymes: i.e., DNA repair enzymes and arsenic efflux pumps for which medical and bioremediation applications, respectively, are envisaged. But still, much effort is required to unravel novel functions for this and other molecules that dwell in a unique biological treasure despite its being hidden high up, in the remote Andes.

  1. High-up: a remote reservoir of microbial extremophiles at Central Andean Wetlands

    Directory of Open Access Journals (Sweden)

    Virginia Helena Albarracín

    2015-12-01

    Full Text Available The Central Andes region displays unexplored ecosystems of shallow lakes and salt flats at mean altitudes of 3,700 m. Being isolated and hostile, these so-called High-Altitude Andean Lakes (HAAL are pristine and have been exposed to little human influence. HAAL proved to be a rich source of microbes showing interesting adaptations to life in extreme settings (poly-extremophiles such as alkalinity, high concentrations of arsenic and dissolved salts, intense dryness, large daily ambient thermal amplitude, and extreme solar radiation levels. This work reviews HAAL microbiodiversity, taking into account different microbial niches, such as plankton, benthos, microbial mats and microbialites. The modern stromatolites and other microbialites discovered recently at HAAL are highlighted, as they provide unique modern -though quite imperfect- analogues of environments proxy for an earlier time in Earth’s history (volcanic setting and profuse hydrothermal activity, low atmospheric O2 pressure, thin ozone layer and high UV exposure. Likewise, we stress the importance of HAAL microbes as model poly-extremophiles in the study of the molecular mechanisms underlying their resistance ability against UV and toxic or deleterious chemicals using genome mining and functional genomics. In future research directions, it will be necessary to exploit the full potential of HAAL poly-extremophiles in terms of their biotechnological applications. Current projects heading this way have yielded detailed molecular information and functional proof on novel extremoenzymes: i.e. DNA repair enzymes and arsenic efflux pumps for which medical and bioremediation applications, respectively, are envisaged. But still, much effort is required to unravel novel functions for this and other molecules that dwell in a unique biological treasure despite its being hidden high up, in the remote Andes.

  2. Pharmaceutical policy of the Andean sub-region.

    Science.gov (United States)

    1993-01-01

    Senior policy makers and health officials from the Andean countries--Bolivia, Colombia, Ecuador, Peru, and Venezuela--have developed a common pharmaceutical policy. The government's role is to assure availability and equal access to effective, quality, and affordable drugs and to safeguard their proper use. The government cannot delegate this role. The availability and accessibility of drugs gauge quality of health services and are social indicators of justice and equity. The public sector must use drugs from the essential drug list. These drugs are also valuable for the private sector. Drugs must not be treated like other merchandise, because the drug market is susceptible to misuse since the consumer cannot select the drug. Commercial advertising strongly influences prescribing of drugs and their use. The 2 major policy points are that promotion of essential drugs is the best approach from a health viewpoint and promotion of generic drug use is the best commercial alternative. The policy calls for the individual countries to pass a comprehensive drug law that reflects commitment to equity and appropriate use and incorporates standardization mechanisms. Criteria for selecting which drugs are allowed on the market include safety, proven efficacy, risk/benefit ratio, and treating the most common health problems at the lowest possible price. The Andean group is working towards harmonization of national essential drugs lists. To assure quality, health authorities must develop the capacity to enforce regulations when situations arise that threaten individual and community health. Supply, marketing, and logistics activities need to be improved and coordinated between the commercial and public sectors. Drug prices are being distanced from administrative control mechanisms and are going to be determined by a dynamic and well-supplied market. Drug information centers and prescription training are needed to achieve rational use of drugs. A joint pharmaceutical market for

  3. Volcanic Eruptions and Climate

    Science.gov (United States)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.

    2015-01-01

    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  4. Uranium series, volcanic rocks

    Science.gov (United States)

    Vazquez, Jorge A.

    2014-01-01

    Application of U-series dating to volcanic rocks provides unique and valuable information about the absolute timing of crystallization and differentiation of magmas prior to eruption. The 238U–230Th and 230Th-226Ra methods are the most commonly employed for dating the crystallization of mafic to silicic magmas that erupt at volcanoes. Dates derived from the U–Th and Ra–Th methods reflect crystallization because diffusion of these elements at magmatic temperatures is sluggish (Cherniak 2010) and diffusive re-equilibration is insignificant over the timescales (less than or equal to 10^5 years) typically associated with pre-eruptive storage of nearly all magma compositions (Cooper and Reid 2008). Other dating methods based on elements that diffuse rapidly at magmatic temperatures, such as the 40Ar/39Ar and (U–Th)/He methods, yield dates for the cooling of magma at the time of eruption. Disequilibrium of some short-lived daughters of the uranium series such as 210Po may be fractionated by saturation of a volatile phase and can be employed to date magmatic gas loss that is synchronous with volcanic eruption (e.g., Rubin et al. 1994).

  5. Integration, migration and sustainable development in the Andean group of nations.

    Science.gov (United States)

    Leon, R; Kratochwil, H

    1993-04-01

    This paper, which was presented at the 1993 meeting of the International Organization for Migration, summarizes past and recent progress in Andean integration and migration arrangements. Changes in the strategy of the Andean group of nations (GAN) have occurred in the adjustment to prevailing conditions at the subregional and international level. GAN includes Bolivia, Colombia, Ecuador, Peru, and Venezuela. The Andean Pact originated with the signing of the Cartegena Agreement in 1969. Members approved the Andean Strategic Design in 1989, which loosened up trade integration and the movement of capital, services, and persons across shared borders. The Strategic Design also addressed issues resulting from economic and social integration. A statement of migratory patterns among GAN, Andean integration during 1969-89, and the goals and operation of the Andean Strategic Design and integration are discussed in some detail. The Galapagos Declaration and the La Paz Statement of 1990 are also described. The present situation with Andean integration is based on the following meetings of Andean nations: the First Meeting of Migration Officials of the Andean Group of Nations in March 1991, the Second Meeting of Migration Officials in September 1991, and bilateral agreements between Andean nations. Seven basic conclusions are drawn: 1) the strategy is an institutional, deliberate, programmed process; 2) integration within GAN is the culmination of a joint, coordinated directive of achievement of sustainable development in the subregion which aims to reduce the economic gaps between the North and the South, to lessen the impact of protected markets of the North and their migration barriers, and to improve the possibility of development of technologically sophisticated human capital; 3) subregional policies are more sensitive to short-term change in domestic politics; 4) integration and migration can be sustained better with deliberate planning; 5) implementation is dependent on

  6. On the likelihood of future eruptions in the Chilean Southern Volcanic Zone: interpreting the past century's eruption record based on statistical analyses Probabilidades de futuras erupciones en la Zona Volcánica del Sur de Chile: interpretación estadística de la serie temporal de erupciones del siglo pasado

    Directory of Open Access Journals (Sweden)

    Yvonne Dzierma

    2012-09-01

    Full Text Available A sequence of 150 explosive eruptions recorded during the past century at the Chilean Southern Volcanic Zone (SVZ is subjected to statistical time series analysis. The exponential, Weibull, and log-logistic distribution functions are fit to the eruption record, separately for literature-assigned volcanic exploslvlty indices (VEI ≥ 2 and VEI ≥ 3. Since statistical tests confirm the adequacy of all the fits to describe the data, all models are used to estimate the likelihood of future eruptions. Only small differences are observed between the different distribution functions with regard to the eruption forecast, whereby the log-logistic distribution predicts the lowest probabilities. There is a 50% probability for VEI ≥ 2 eruptions to occur in the SVZ within less than a year, and 90% probability to occur within the next 2-3 years. For the larger VEI ≥ 3 eruptions, the 50% probability is reached in 3-4 years, while the 90% level is reached in 9-11 years.Se presenta un análisis estadístico de la serie temporal de 150 erupciones volcánicas explosivas registradas durante el siglo pasado en la Zona Volcánica del Sur de Chile. Se modeló el conjunto de erupciones mediante la distribución exponencial, de Weibull y log-logística, restringiendo el análisis a erupciones de índice de explosividad volcánica (IEV mayores a 2 y 3, respectivamente. Como los modelos pasan las pruebas estadísticas, los tres modelos se aplican para estimar la probabilidad de erupciones futuras. Se observan solo diferencias menores entre las predicciones mediante los distintos modelos, con la distribución log-logística dando las probabilidades más bajas. Para erupciones de IEV ≥ 2, la probabilidad de producirse una erupción dentro de un año es más del 50%, creciendo al 90% en 2-3 años. Para erupciones más grandes, de IEV ≥ 3, el 50% de probabilidad se alcanza dentro de 3-4 años, y el 90% dentro de 9-11 años.

  7. Andean cutaneous leishmaniasis (Andean-CL, uta) in Peru and Ecuador: the vector Lutzomyia sand flies and reservoir mammals.

    Science.gov (United States)

    Hashiguchi, Yoshihisa; Gomez L, Eduardo A; Cáceres, Abraham G; Velez, Lenin N; Villegas, Nancy V; Hashiguchi, Kazue; Mimori, Tatsuyuki; Uezato, Hiroshi; Kato, Hirotomo

    2018-02-01

    The vector Lutzomyia sand flies and reservoir host mammals of the Leishmania parasites, causing the Andean cutaneous leishmaniasis (Andean-CL, uta) in Peru and Ecuador were thoroughly reviewed, performing a survey of literatures including our unpublished data. The Peruvian L. (V.) peruviana, a principal Leishmania species causing Andean-CL in Peru, possessed three Lutzomyia species, Lu. peruensis, Lu. verrucarum and Lu. ayacuchensis as vectors, while the Ecuadorian L. (L.) mexicana parasite possessed only one species Lu. ayacuchensis as the vector. Among these, the Ecuadorian showed a markedly higher rate of natural Leishmania infections. However, the monthly and diurnal biting activities were mostly similar among these vector species was in both countries, and the higher rates of infection (transmission) reported, corresponded to sand fly's higher monthly-activity season (rainy season). The Lu. tejadai sand fly participated as a vector of a hybrid parasite of L. (V.) braziliensis/L. (V.) peruviana in the Peruvian Andes. Dogs were considered to be principal reservoir hosts of the L. (V.) peruviana and L. (L.) mexicana parasites in both countries, followed by other sylvatic mammals such as Phyllotis andium, Didelphis albiventris and Akodon sp. in Peru, and Rattus rattus in Ecuador, but information on the reservoir hosts/mammals was extremely poor in both countries. Thus, the Peruvian disease form demonstrated more complicated transmission dynamics than the Ecuadorian. A brief review was also given to the control of vector and reservoirs in the Andes areas. Such information is crucial for future development of the control strategies of the disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The Valle de Bravo Volcanic Field. A monogenetic field in the central front of the Mexican Volcanic Belt

    Science.gov (United States)

    Aguirre-Diaz, G. J.; Jaimes-Viera, M. D.; Nieto-Obreg¢n, J.; Lozano-Santacruz, R.

    2003-12-01

    The Valle de Bravo volcanic field, VBVF, is located in the central-southern front of the Mexican Volcanic Belt just to the southwest of Nevado de Toluca volcano. The VBVF covers 3,703 square Km and includes at least 122 cinder cones, 1 shield volcano, several domes, and the 2 volcanic complexes of Zitacuaro and Villa de Allende. Morphometric parameters calibrated with isotopic ages of the volcanic products indicate four groups or units for the VBVF, Pliocene domes and lava flows, undifferentiated Pleistocene lava flows,> 40 Ka cones and lavas, 40 to 25 Ka cones and lavas, 25 to 10 Ka cones and lavas, and < 10 Ka cones and lavas. Whole-rock chemistry shows that all products of the VBVF range from basaltic andesites to dacites. No basalts were found, in spite of many units are olivine-rich and large some with large weight percent contents of MgO, 1 to 9. There is the possibility that some or all of the olivines in some samples could be xenocrysts. Some andesites are high in Sr, 1000 to 1800 ppm, that correlates with relatively high values of Ba, Cr, Ni, Cu, CaO and MgO. Y and Nb have the typical low values for orogenic rocks. The only shield volcano of the VBVF has a base of 9 Km, and its composition is practically the average composition of the whole field. Stratigraphycally, it is one of the earlier events of the VBVF. Compared with other volcanic fields of the Mexican Volcanic Belt, it lacks basalts and alkalic rocks. All volcanism of this field is calcalkaline

  9. A 5000 Year Record of Andean South American Summer Monsoon Variability from Laguna de Ubaque, Colombia

    Science.gov (United States)

    Rudloff, O. M.; Bird, B. W.; Escobar, J.

    2014-12-01

    Hemispheres. By comparing our precipitation proxies with other terrestrial records, as well as Pacific sea surface temperatures (SST) and global climate reconstructions, we will examine the relationship between Northern and Southern Hemisphere Andean climate responses to assess the validity of existing theories on the modes of climate change in the region.

  10. Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations. Volume II

    International Nuclear Information System (INIS)

    Crowe, B.M.; Wohletz, K.H.; Vaniman, D.T.; Gladney, E.; Bower, N.

    1986-01-01

    Volcanic hazard investigations during FY 1984 focused on five topics: the emplacement mechanism of shallow basalt intrusions, geochemical trends through time for volcanic fields of the Death Valley-Pancake Range volcanic zone, the possibility of bimodal basalt-rhyolite volcanism, the age and process of enrichment for incompatible elements in young basalts of the Nevada Test Site (NTS) region, and the possibility of hydrovolcanic activity. The stress regime of Yucca Mountain may favor formation of shallow basalt intrusions. However, combined field and drill-hole studies suggest shallow basalt intrusions are rare in the geologic record of the southern Great Basin. The geochemical patterns of basaltic volcanism through time in the NTS region provide no evidence for evolution toward a large-volume volcanic field or increases in future rates of volcanism. Existing data are consistent with a declining volcanic system comparable to the late stages of the southern Death Valley volcanic field. The hazards of bimodal volcanism in this area are judged to be low. The source of a 6-Myr pumice discovered in alluvial deposits of Crater Flat has not been found. Geochemical studies show that the enrichment of trace elements in the younger rift basalts must be related to an enrichment of their mantle source rocks. This geochemical enrichment event, which may have been metasomatic alteration, predates the basalts of the silicic episode and is, therefore, not a young event. Studies of crater dimensions of hydrovolcanic landforms indicate that the worst case scenario (exhumation of a repository at Yucca Mountain by hydrovolcanic explosions) is unlikely. Theoretical models of melt-water vapor explosions, particularly the thermal detonation model, suggest hydrovolcanic explosion are possible at Yucca Mountain. 80 refs., 21 figs., 5 tabs

  11. Friction in volcanic environments

    Science.gov (United States)

    Kendrick, Jackie E.; Lavallée, Yan

    2016-04-01

    Volcanic landscapes are amongst the most dynamic on Earth and, as such, are particularly susceptible to failure and frictional processes. In rocks, damage accumulation is frequently accompanied by the release of seismic energy, which has been shown to accelerate in the approach to failure on both a field and laboratory scale. The point at which failure occurs is highly dependent upon strain-rate, which also dictates the slip-zone properties that pertain beyond failure, in scenarios such as sector collapse and pyroclastic flows as well as the ascent of viscous magma. High-velocity rotary shear (HVR) experiments have provided new opportunities to overcome the grand challenge of understanding faulting processes during volcanic phenomena. Work on granular ash material demonstrates that at ambient temperatures, ash gouge behaves according to Byerlee's rule at low slip velocities, but is slip-weakening, becoming increasingly lubricating as slip ensues. In absence of ash along a slip plane, rock-rock friction induces cataclasis and heating which, if sufficient, may induce melting (producing pseudotachylyte) and importantly, vesiculation. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The shear-thinning behaviour and viscoelasticity of frictional melts yield a tendency for extremely unstable slip, and occurrence of frictional melt fragmentation. This velocity-dependence acts as an important feedback mechanism on the slip plane, in addition to the bulk composition, mineralogy and glass content of the magma, that all influence frictional behaviour. During sector collapse events and in pyroclastic density currents it is the frictional properties of the rocks and ash that, in-part, control the run-out distance and associated risk. In addition, friction plays an important role in the eruption of viscous magmas: In the conduit, the rheology of magma is integral

  12. Modelling beta diversity of aquatic macroinvertebrates in High Andean wetlands

    Directory of Open Access Journals (Sweden)

    Carolina Nieto

    2017-06-01

    Full Text Available Central Andean Highlands represent a singular environment characterized by various extreme conditions. Among them, peatbogs are exceptional marshy habitats scattered throughout this arid and harsh area. In an effort to understand the patterns of beta diversity, we sampled the benthic macroinvertebrates of thirteen peatbogs and related the biological distance with ecological distance using the GDM (Generalized Dissimilarity Modelling approach. Variables analyzed were altitude, geographical distance, physical and chemical parameters of the water. A coefficient based on the ordering properties of count data, from the perspective of both sites and taxa, was used to measure the compositional similarity between samples. The most frequent taxa were: Hyallela, Simuliidae, Andesiops, Austrelmis, Podonominae, Protallagma, Trichocorixa, Orthocladiinae and Glossiphonidae. The highest altitudinal record ever for leeches is reported here. Altitude and conductivity contributed greatly to the single ecological predictor of beta diversity. Sampling points can be classified first by altitude (cutoff sets at 4,200 m, which can be considered a surrogate of a regional factor (distinction between Puna and High Andean ecoregions and then by conductivity (cutoff sets at 135 µS cm-1, which can be considered a proxy of a local factor (distinction between hyperfresh and more mineralized habitats. These results suggest a system of ecological filters acting on them. 

  13. Petrology of the Miocene igneous rocks in the Altar region, main Cordillera of San Juan, Argentina. A geodynamic model within the context of the Andean flat-slab segment and metallogenesis

    Science.gov (United States)

    Maydagán, Laura; Franchini, Marta; Chiaradia, Massimo; Pons, Josefina; Impiccini, Agnes; Toohey, Jeff; Rey, Roger

    2011-07-01

    The Altar porphyry Cu-(Au-Mo) deposit (31° 29' S, 70° 28' W) is located in the Andean Main Cordillera of San Juan Province (Argentina), in the southern portion of the flat-slab segment (28-33°S), 25 km north of the world-class porphyry Cu-Mo deposits of Los Pelambres and El Pachón. Igneous rocks in the area have been grouped into the Early Miocene Lower Volcanic Complex -composed of intercalations of lava flows and thin volcaniclastic units that grade upwards to a thick massive tuff- and the Middle-Late Miocene Upper Subvolcanic Suite that consists of a series of porphyritic stocks and dikes and magmatic and hydrothermal breccias. The Lower Volcanic Complex represents an Early Miocene arc (20.8 Ma ± 0.3 Ma; U-Pb age) erupted over a steep subduction zone. Their magmas equilibrated with an assemblage consisting of plagioclase- and pyroxene-dominated mineral residues, and experienced fractional crystallization and crustal contamination procesess. Their radiogenic signatures are interpreted to indicate conditions of relatively thickened continental crust in Altar during the Early Miocene, compared to the south and west. The Upper Subvolcanic Suite represents the development of a Middle-Late Miocene arc (11.75 ± 0.24 Ma, 10.35 ± 0.32 Ma; U-Pb ages) emplaced over a shallow subduction zone. A magmatic gap in Altar area betwen the Lower Volcanic Complex and Upper Subvolcanic Suite correlates with documented higher rates of compression in this period, that may have favored the storage of the USS magmas in cameras within the crust. Magmas of the Upper Subvolcanic Suite require a hornblende-bearing residual mineral assemblage that is interpreted to reflect their higher water contents. The relatively uniform radiogenic isotope compositions of the Upper Subvolcanic Suite magmas suggest a homogeneously mixed crust-mantle contribution in the source region. They have similar REE signatures as other fertile intrusives of the flat-slab. The differences observed in their

  14. Comparative repeatome analysis on Triatoma infestans Andean and Non-Andean lineages, main vector of Chagas disease

    Science.gov (United States)

    Panzera, Francisco; Mora, Pablo; Vela, Jesús; Cuadrado, Ángeles; Sánchez, Antonio; Palomeque, Teresa; Lorite, Pedro

    2017-01-01

    Triatoma infestans is the most important Chagas disease vector in South America. Two main evolutionary lineages, named Andean and non-Andean, have been recognized by geographical distribution, phenetic and genetic characteristics. One of the main differences is the genomic size, varying over 30% in their haploid DNA content. Here we realize a genome wide analysis to compare the repetitive genome fraction (repeatome) between both lineages in order to identify the main repetitive DNA changes occurred during T. infestans differentiation process. RepeatExplorer analysis using Illumina reads showed that both lineages exhibit the same amount of non-repeat sequences, and that satellite DNA is by far the major component of repetitive DNA and the main responsible for the genome size differentiation between both lineages. We characterize 42 satellite DNA families, which are virtually all present in both lineages but with different amount in each lineage. Furthermore, chromosomal location of satellite DNA by fluorescence in situ hybridization showed that genomic variations in T. infestans are mainly due to satellite DNA families located on the heterochromatic regions. The results also show that many satDNA families are located on the euchromatic regions of the chromosomes. PMID:28723933

  15. Waning Miocene subduction and arc volcanism in Baja California: the San Luis Gonzaga volcanic field

    Science.gov (United States)

    Martín, Arturo; Fletcher, John M.; López-Martínez, Margarita; Mendoza-Borunda, Ramón

    2000-03-01

    pink dacitic tuff that lies in the upper portion of Group 1 yielded an 40Ar/ 39Ar age of 17.2±0.3 Ma. The most precise of three ages from the andesitic sheet flows of Group 2 is 15.4±0.5 Ma. The dacite domes of Group 3 represent the end of Miocene arc activity, but they are strongly altered and no reliable ages were obtained. These data fall within the range of isotopic ages reported for arc lavas (21 to 16 Ma) from the discontinuous series of isolated volcanic fields in northern Baja California. This contrasts with the continuous and more voluminous arc-volcanism in southern Baja California that started earlier (25 Ma) and ended later (11 Ma). These space-time patterns of arc volcanism reflect the geometry of the subducted Farallon slab and the history of its breakup as the Rivera triple junction migrated to the south.

  16. Closer look at lunar volcanism

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Heiken, G.; Taylor, G.J.

    1984-01-01

    Although the American Apollo and Soviet Luna missions concentrated on mare basalt samples, major questions remain about lunar volcanism. Lunar field work will be indispensable for resolving the scientific questions about ages, compositions, and eruption processes of lunar volcanism. From a utilitarian standpoint, a better knowledge of lunar volcanism will also yield profitable returns in lunar base construction (e.g., exploitation of rille or lava-tube structures) and in access to materials such as volatile elements, pure glass, or ilmenite for lunar industry

  17. Oxygen Isotope Compositions of Meteoric Water Across an Elevation Gradient in Southern Peru

    Science.gov (United States)

    Xu, D. R.; White, E.; Cassel, E. J.; Lynch, B.; Yanites, B.; Breecker, D.

    2017-12-01

    The Central Andes is a prime example of elevated topography generated by oceanic plate subduction. Whereas previous stable isotope studies have investigated the paleoelevation of the Andean Eastern Cordillera, little is known about the paleoelevation of the Western Cordillera, where arc volcanism now occurs. As a first step towards studying the paleoelevation of this region, we investigated the change in δ18O values of modern soil waters across an elevation gradient from sea level to about 4725 meters in southern Peru. We sampled soil profiles from 5 to 80 cm in 15-20cm increments, and we sampled water from flowing natural streams at various elevations. We used cryogenic vacuum extraction to quantitatively remove non-structural water from soil samples. The δ18O values of water extracted from soil samples varies with the depth in the soil due to the diminishing effect of seasonality and evaporation. Every high elevation (>3500m) soil profile we measured had nearly constant δ18O values below 5cm and a total range of δ18O values between -12.8‰ and -17.1‰, apart from the Cusco profile. In the Cusco profile, the δ18O values ranged from -7.2 ‰ at 5 cm to -21.8 ‰ at 60 cm, defining a strong monotonic decrease not seen in other soil profiles. The δ18O trend in the Cusco profile may be different due to the impact of evaporation, soil hydrology, and/or seasonality in the δ18O values of precipitation. Further spatial analysis must be conducted to pinpoint a specific cause. Considering only the samples collected below 40cm, which are likely the best estimate of mean annual precipitation, the δ18O values decrease with increasing elevation at a rate higher than the global mean, suggesting that oxygen isotope paleoaltimetry can work in this study region.

  18. The «Andean judge» in intellectual property issues: application to the Peruvian case

    OpenAIRE

    Rejanovinschi Talledo, Moisés

    2015-01-01

    This paper emphasizes the role of Andean Tribunal of Justice, however disagrees with criteria used to recognize administrative entities such as «national judge» or «Andean judge». If we apply the Tribunal criteria, several administrators of justice in Intellectual Property will be exempt of collaborating with Andean integration. El presente documento enfatiza el rol del Tribunal de Justicia de la Comunidad Andina pero discrepa de los criterios establecidos para reconocer a las entidades ad...

  19. Volcanology: Volcanic bipolar disorder explained

    Science.gov (United States)

    Jellinek, Mark

    2014-02-01

    Eruptions come in a range of magnitudes. Numerical simulations and laboratory experiments show that rare, giant super-eruptions and smaller, more frequent events reflect a transition in the essential driving forces for volcanism.

  20. Timing and sources of neogene and quaternary volcanism in South-Central Guatemala

    Science.gov (United States)

    Reynolds, James H.

    1987-08-01

    Five new and six existing radiometric age dates place constraints on the timing of volcanic episodes in a 1400-km 2 area east of Guatemala City. The source of the voluminous Miocene rhyolitic welded tuffs was the newly discovered Santa Rosa de Lima caldera, in the northern part of the area, not fissure eruptions as was previously believed. Resurgence during the Pliocene included the eruption of more silicic tuffs, followed by post-collapse volcanism around the perimeter. Volcanism in the southern part of the area occurred along the Neogene volcanic front. The sources for these Late Miocene and Pliocene andesitic lavas were not fissure eruptions, as was once believed, but were four large volcanic centers, Cerro Pinula, Ixhuatán, Teanzul, and Cerro La Gabia. The Santa Rosa de Lima caldera structure deflects the Jalpatagua Fault forming tensional fractures along which eruptions in the Quaternary Cuilapa-Barbarena cinder cone field took place. Pleistocene ash flows were erupted from Ixhuatán and Tecuamburro volcanoes in the southern part of the area. Tephras from Ayarza, Amatitlán, and Atitlán blanket the northern and central portions. Present-day activity is restricted to hot springs around the northern and eastern base of Tecuamburro volcano. Based on the work in this area it is proposed that rocks of the Miocene Chalatenango Formation throughout northern Central America were erupted from calderas behind the Neogene volcanic front. Rocks of the Mio-Pliocene Bálsamo Formation in Guatemala and El Salvador were erupted from discrete volcanic centers along the Neogene volcanic front. Pliocene rocks of the Cuscatlán Formation probably represent post-collapse volcanism around earlier caldera structures.

  1. Monogenetic volcanic hazards and assessment

    Science.gov (United States)

    Connor, C.; Connor, L. J.; Richardson, J. A.

    2012-12-01

    Many of the Earth's major cities are build on the products of monogenetic volcanic eruptions and within geologically active basaltic volcanic fields. These cities include Mexico City (Mexico), Auckland (New Zealand), Melbourne (Australia), and Portland (USA) to name a few. Volcanic hazards in these areas are complex, and involve the potential formation of new volcanic vents and associated hazards, such as lava flows, tephra fallout, and ballistic hazards. Hazard assessment is complicated by the low recurrence rate of volcanism in most volcanic fields. We have developed a two-stage process for probabilistic modeling monogenetic volcanic hazards. The first step is an estimation of the possible locations of future eruptive vents based on kernel density estimation and recurrence rate of volcanism using Monte Carlo simulation and accounting for uncertainties in age determinations. The second step is convolution of this spatial density / recurrence rate model with hazard codes for modeling lava inundation, tephra fallout, and ballistic impacts. A methodology is presented using this two-stage approach to estimate lava flow hazard in several monogenetic volcanic fields, including at a nuclear power plant site near the Shamiram Plateau, a Quaternary volcanic field in Armenia. The location of possible future vents is determined by estimating spatial density from a distribution of 18 mapped vents using a 2-D elliptical Gaussian kernel function. The SAMSE method, a modified asymptotic mean squared error approach, uses the distribution of known eruptive vents to optimally determine a smoothing bandwidth for the Gaussian kernel function. The result is a probability map of vent density. A large random sample (N=10000) of vent locations is drawn from this probability map. For each randomly sampled vent location, a lava flow inundation model is executed. Lava flow input parameters (volume and average thickness) are determined from distributions fit to field observations of the low

  2. Volcanic crisis in

    Directory of Open Access Journals (Sweden)

    Mgs. Víctor Manuel Pérez Martínez

    2007-01-01

    Full Text Available The article is the result of an investigation which is focussed on some deontological aspects of the scientificjournalism. In the first place it gives a theoretical vision about science, journalism, internet and including some reflectionsabout the deontological principles in handling the information about science and technology. This focus is useful as it formsthe base of an investigation where we deal with the information about a possible ”volcanic crisis” in El Teide during the years2004-2005 done by the digital newspaper” El Dïa” a canarian newspaper from Tenerife. The work required the revision of theinformation which was published and a followed analysis of its context. It was used the digital version with the purpose ofvisualizing the news which was published. It was also compared with a printed version, with local cover but divulged theinformation to the public who was most affected by this particular news. The results give rise to some questions regardinghow the information is given to a topic which is of local interest as well as national and international interest due to therepercussions in the social, economical and tourist field (the tourist field is the main industrial sector in Tenerife by receivingthis type of news.

  3. Volcanic Zone, New Zealand

    Directory of Open Access Journals (Sweden)

    Graham J. Weir

    2001-01-01

    Full Text Available A conceptual model of the Taupo Volcanic Zone (TVZ is developed, to a depth of 25 km, formed from three constant density layers. The upper layer is formed from eruption products. A constant rate of eruption is assumed, which eventually implies a constant rate of extension, and a constant rate of volumetric creation in the middle and bottom layers. Tectonic extension creates volume which can accomodate magmatic intrusions. Spreading models assume this volume is distributed throughout the whole region, perhaps in vertical dykes, whereas rifting models assume the upper crust is thinned and the volume created lies under this upper crust. Bounds on the heat flow from such magmatic intrusions are calculated. Heat flow calculations are performed and some examples are provided which match the present total heat output from the TVZ of about 4200 MW, but these either have extension rates greater than the low values of about 8 ± 4 mm/a being reported from GPS measurements, or else consider extension rates in the TVZ to have varied over time.

  4. A new minute Andean Pristimantis (Anura: Strabomantidae from Venezuela

    Directory of Open Access Journals (Sweden)

    César L. Barrio-Amorós

    2012-12-01

    Full Text Available A new species of Pristimantis is described from the Venezuelan Andes. The new species is the smallest in its genus known in Venezuela and belongs to the Pristimantis unistrigatus Group. It differs from the rest of Venezuelan Andean congeners in body size (mean male SVL < 21.3 mm, female SVL < 26.3 mm, expanded discs on fingers and toes, absence of dorsolateral folds, and a distinctivecall consisting in 2–5 cricket-like short notes. The new species inhabits the southwestern part of the Cordillera de Mérida in Venezuela and the Venezuelan side of the Cordillera Oriental deColombia, and could be present on the Colombian portion of the cordillera as well.

  5. Climate Change Impacts in a Colombian Andean Tropical Basin

    Science.gov (United States)

    Ocampo, O. L.; Vélez, J. J.; Londoño, A.

    2012-12-01

    Climate change and climate variability have a large impact on water resources. Developing regions have less capacity to prepare for, respond to, and recover from climate-related hazards and effects, and then, populations may be disproportionately affected. In Colombia, the geographical location and the marked irregularity in the terrain, give as a result, a complex climate. These factors have contributed to the water supply of the territory. Unfortunately, the visualization of abundant and inexhaustible water resources created a great disregard for them. Besides, the water supply is not distributed uniformly across the country, and then there is water-deficit in some areas as Andean Region, where the largest population and the main development centers are located. In recent decades, water conflicts have emerged locally and regionally, which have generated a crisis in the allocation mechanisms and have improved the understanding of the water situation in Colombia. The Second National Communication to CCMNU alerts on possible future consequences of climate change and the need for regional studies for understanding climate change impacts on the fragile ecosystems of high mountains as paramos and fog forest, which are water production regulators. Colombian water resources are greatly affected by changes in rainfall patterns influenced by El Niño and La Niña. The recent disasters in the 2010-2011 rainy seasons have caught the attention of not only the authorities but from the scientific community to explore strategies to improve water management by tracking, anticipating and responding to climate variability and climate change. Whereas sound water management is built upon long-term, the country is undertaking a pilot exercise for the integrated management of water resources, five Basins are selected, among them, is the Chinchiná River Basin; this Andean tropical Basin is located on the western slopes at the central range in the Andes between 4°48 and 5°12 N

  6. Bioactive Potential of Andean Fruits, Seeds, and Tubers.

    Science.gov (United States)

    Campos, David; Chirinos, Rosana; Gálvez Ranilla, Lena; Pedreschi, Romina

    2018-01-01

    The Andes is considered the longest continental mountain range in the world. It covers 7000km long and about 200-700km wide and an average height of about 4000m. Very unique plant species are endemic of this area including fruits (e.g., lucuma, cherimoya, sweet pepino, sauco), roots and tubers (potatoes, sweet potatoes, yacón, chicuru, mashua, olluco, etc.), and seeds (quinoa, amaranth, tarwi, etc.). These crops have been used for centuries by the native population and relatively recently have gained the world attention due to the wide range of nutrients and/or phytochemicals they possess. In this chapter, main Andean fruits, seeds, and roots and tubers have been selected and detailed nutritional and functional information is provided. In addition, traditional and current uses are provided and their bioactive potential is reported based on published scientific literature. © 2018 Elsevier Inc. All rights reserved.

  7. Biodegradability and mechanical properties of starch films from Andean crops.

    Science.gov (United States)

    Torres, F G; Troncoso, O P; Torres, C; Díaz, D A; Amaya, E

    2011-05-01

    Different Andean crops were used to obtain starches not previously reported in literature as raw material for the production of biodegradable polymers. The twelve starches obtained were used to prepare biodegradable films by casting. Water and glycerol were used as plasticizers. The mechanical properties of the starch based films were assessed by means of tensile tests. Compost tests and FTIR tests were carried out to assess biodegradability of films. The results show that the mechanical properties (UTS, Young's modulus and elongation at break) of starch based films strongly depend on the starch source used for their production. We found that all the starch films prepared biodegrade following a three stage process and that the weight loss rate of all the starch based films tested was higher than the weight loss rate of the cellulose film used as control. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. An Outbreak of Bartonella bacilliformis in an Endemic Andean Community.

    Directory of Open Access Journals (Sweden)

    Nuria Sanchez Clemente

    Full Text Available Bartonellosis affects small Andean communities in Peru, Colombia and Ecuador. Research in this area has been limited.Retrospective review of 191 cases of bartonellosis managed in Caraz District Hospital, Peru, during the last outbreak (2003.The majority of cases (65% were 14 years old and younger. There was a peak in acute cases after the rainy season; chronic cases presented more constantly throughout the year. The sensitivity of blood smear against blood culture in acute disease was 25%. The most commonly used treatment for chronic disease was rifampicin; chloramphenicol was used to treat most acute cases. Complications arose in 6.8% and there were no deaths.Diagnostic and treatment algorithms for acute and chronic bartonellosis have been developed without a strong evidence base. Preparation of ready-to-go operational research protocols for future outbreaks would strengthen the evidence base for diagnostic and treatment strategies and enhance opportunities for control.

  9. Genetic diversity of Phytophthora infestans in the Northern Andean region.

    Science.gov (United States)

    Cárdenas, Martha; Grajales, Alejandro; Sierra, Roberto; Rojas, Alejandro; González-Almario, Adriana; Vargas, Angela; Marín, Mauricio; Fermín, Gustavo; Lagos, Luz E; Grünwald, Niklaus J; Bernal, Adriana; Salazar, Camilo; Restrepo, Silvia

    2011-02-09

    Phytophthora infestans (Mont.) de Bary, the causal agent of potato late blight, is responsible for tremendous crop losses worldwide. Countries in the northern part of the Andes dedicate a large proportion of the highlands to the production of potato, and more recently, solanaceous fruits such as cape gooseberry (Physalis peruviana) and tree tomato (Solanum betaceum), all of which are hosts of this oomycete. In the Andean region, P. infestans populations have been well characterized in Ecuador and Peru, but are poorly understood in Colombia and Venezuela. To understand the P. infestans population structure in the Northern part of the Andes, four nuclear regions (ITS, Ras, β-tubulin and Avr3a) and one mitochondrial (Cox1) region were analyzed in isolates of P. infestans sampled from different hosts in Colombia and Venezuela. Low genetic diversity was found within this sample of P. infestans isolates from crops within several regions of Colombia and Venezuela, revealing the presence of clonal populations of the pathogen in this region. We detected low frequency heterozygotes, and their distribution patterns might be a consequence of a high migration rate among populations with poor effective gene flow. Consistent genetic differentiation exists among isolates from different regions. The results here suggest that in the Northern Andean region P. infestans is a clonal population with some within-clone variation. P. infestans populations in Venezuela reflect historic isolation that is being reinforced by a recent self-sufficiency of potato seeds. In summary, the P. infestans population is mainly shaped by migration and probably by the appearance of variants of key effectors such as Avr3a.

  10. Genetic diversity of Phytophthora infestans in the Northern Andean region

    Directory of Open Access Journals (Sweden)

    Grünwald Niklaus J

    2011-02-01

    Full Text Available Abstract Background Phytophthora infestans (Mont. de Bary, the causal agent of potato late blight, is responsible for tremendous crop losses worldwide. Countries in the northern part of the Andes dedicate a large proportion of the highlands to the production of potato, and more recently, solanaceous fruits such as cape gooseberry (Physalis peruviana and tree tomato (Solanum betaceum, all of which are hosts of this oomycete. In the Andean region, P. infestans populations have been well characterized in Ecuador and Peru, but are poorly understood in Colombia and Venezuela. To understand the P. infestans population structure in the Northern part of the Andes, four nuclear regions (ITS, Ras, β-tubulin and Avr3a and one mitochondrial (Cox1 region were analyzed in isolates of P. infestans sampled from different hosts in Colombia and Venezuela. Results Low genetic diversity was found within this sample of P. infestans isolates from crops within several regions of Colombia and Venezuela, revealing the presence of clonal populations of the pathogen in this region. We detected low frequency heterozygotes, and their distribution patterns might be a consequence of a high migration rate among populations with poor effective gene flow. Consistent genetic differentiation exists among isolates from different regions. Conclusions The results here suggest that in the Northern Andean region P. infestans is a clonal population with some within-clone variation. P. infestans populations in Venezuela reflect historic isolation that is being reinforced by a recent self-sufficiency of potato seeds. In summary, the P. infestans population is mainly shaped by migration and probably by the appearance of variants of key effectors such as Avr3a.

  11. Watershed-based natural research management: Lessons from projects in the Andean region

    OpenAIRE

    Sowell, A.R.

    2009-01-01

    This Undergraduate Honors Thesis focuses on how different factors affect the success of a watershed management project and lessons learned from projects in the Andean Region. LTRA-3 (Watershed-based NRM for Small-scale Agriculture)

  12. Multivariate statistical tools for the radiometric features of volcanic islands

    International Nuclear Information System (INIS)

    Basile, S.; Brai, M.; Marrale, M.; Micciche, S.; Lanzo, G.; Rizzo, S.

    2009-01-01

    The Aeolian Islands represents a Quaternary volcanic arc related to the subduction of the Ionian plate beneath the Calabrian Arc. The geochemical variability of the islands has led to a broad spectrum of magma rocks. Volcanic products from calc-alkaline (CA) to calc-alkaline high in potassium (HKCA) are present throughout the Archipelago, but products belonging to shoshonitic (SHO) and potassium (KS) series characterize the southern portion of Lipari, Vulcano and Stromboli. Tectonics also plays an important role in the process of the islands differentiation. In this work, we want to review and cross-analyze the data on Lipari, Stromboli and Vulcano, collected in measurement and sampling campaigns over the last years. Chemical data were obtained by X-ray fluorescence. High resolution gamma-ray spectrometry with germanium detectors was used to measure primordial radionuclide activities. The activity of primordial radionuclides in the volcanic products of these three islands is strongly dependent on their chemism. The highest contents are found in more differentiated products (rhyolites). The CA products have lower concentrations, while the HKCA and Shoshonitic product concentrations are in between. Calculated dose rates have been correlated with the petrochemical features in order to gain further insight in evolution and differentiation of volcanic products. Ratio matching technique and multivariate statistical analyses, such as Principal Component Analysis and Minimum Spanning Tree, have been applied as an additional tool helpful to better describe the lithological affinities of the samples. (Author)

  13. Systematic Change in Global Patterns of Streamflow Following Volcanic Eruptions

    Science.gov (United States)

    Iles, C. E.; Hegerl, G. C.

    2015-12-01

    Precipitation decreases over much of the globe following large explosive volcanic eruptions, particularly in climatologically wet regions. Stratospheric volcanic aerosols reflect sunlight, reducing evaporation, whilst surface cooling stabilises the atmosphere and reduces its water-holding capacity. Circulation changes modulate this global precipitation reduction on regional scales. Despite the importance of rivers to people, it has until now been unclear whether volcanism causes detectable changes in streamflow given large natural variability. Here we analyse the response of 50 major world rivers using observational records, averaging across multiple eruptions to reduce noise. We find statistically significant reductions in flow for the Amazon, Congo, Nile, Orange, Ob, Yenisey and Kolyma amongst others. Results are clearer when neighbouring rivers are combined into regions based on the areas where climate models simulate either an increase or a decrease in precipitation following eruptions. We detect a significant streamflow decrease (privers, and on average across wet tropical and subtropical regions. We also detect a significant increase in southern South American and SW North American rivers. This significant change in global scale streamflow following volcanic eruptions has implications for predicting and mitigating the effects of future eruptions.

  14. Economic susceptibility of fire-prone landscapes in natural protected areas of the southern Andean Range.

    Science.gov (United States)

    Molina, Juan Ramón; Moreno, Roberto; Castillo, Miguel; Rodríguez Y Silva, Francisco

    2018-04-01

    Large fires are the most important disturbances at landscape-level due to their ecological and socioeconomic impacts. This study aimed to develop an approach for the assessment of the socio-economic landscape susceptibility to fire. Our methodology focuses on the integration of economic components of landscape management based on contingent valuation method (CVM) and net-value change (NVC). This former component has been estimated using depreciation rates or changes on the number of arrivals to different natural protected areas after a large fire occurrence. Landscape susceptibility concept has been motivated by the need to assist fire prevention programs and environmental management. There was a remarkable variation in annual economic value attributed to each protected area based on the CVM scenario, ranging from 40,189-46,887$/year ("Tolhuaca National Park") to 241,000-341,953$/year ("Conguillio National Park"). We added landscape susceptibility using depreciation rates or tourist arrival decrease which varied from 2.04% (low fire intensity in "Tolhuaca National Park") to 76.67% (high fire intensity in "Conguillio National Park"). The integration of this approach and future studies about vegetation resilience should seek management strategies to increase economic efficiency in the fire prevention activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Review of the andean armored catfishes of the genus Dolichancistrus Isbrücker (Siluriformes: Loricariidae

    Directory of Open Access Journals (Sweden)

    Gustavo A. Ballen

    Full Text Available The loricariid catfish genus Dolichancistrus is reviewed and four species recognized. Species of Dolichancistrus are distinguished from each other by the degree of development of the pectoral-fin spine, the form of the distal margin of the pelvic fin, the relative size and form of the cheek plates, the pattern of odontodes along the margin of the snout, the presence versus absence of a buccal papilla at the premaxillary symphysis, and the relative lengths of the anal- versus pelvic-spines. Dolichancistrus atratoensis is known from the río Atrato system and the río Cubarradó on the Pacific versant of Colombia; D. carnegiei occurs in the eastern río Magdalena basin in the departments of Boyacá and Santander, Colombia; D. cobrensis inhabits southern tributaries of the Lago Maracaibo basin in Colombia and Venezuela along with some highland rivers of the Cordillera de Mérida in Venezuela draining into the río Orinoco system; and D. fuesslii is known from the Andean piedmont portions of the río Meta basin in the western río Orinoco system. Pseudancistrus pediculatus is considered a junior synonym of Ancistrus fuesslii. Chaetostomus setosus previously assigned to Dolichancistrus, was found to lack features characteristic of its putative congeners and is rather more closely related to other members of Chaetostoma group. Consequently, the species is herein considered as incertae sedis within that group. Dolichancistrus is diagnosed, a key is provided to the members of the genus, and diagnoses and redescriptions are provided for all of the recognized species.

  16. Imaging the Seismic Cycle in the Central Andean Subduction Zone from Geodetic Observations

    Science.gov (United States)

    Ortega-Culaciati, F.; Becerra-Carreño, V. C.; Socquet, A.; Jara, J.; Carrizo, D.; Norabuena, E. O.; Simons, M.; Vigny, C.; Bataille, K. D.; Moreno, M.; Baez, J. C.; Comte, D.; Contreras-Reyes, E.; Delorme, A.; Genrich, J. F.; Klein, E.; Ortega, I.; Valderas, M. C.

    2015-12-01

    We aim to quantify spatial and temporal evolution of fault slip behavior during all stages of the seismic cycle in subduction megathrusts, with the eventual goal of improving our understanding of the mechanical behavior of the subduction system and its implications for earthquake and tsunami hazards. In this work, we analyze the portion of the Nazca-SouthAmerican plates subduction zone affected by the 1868 southern Peru and 1877 northern Chile mega-earthquakes. The 1868 and 1878 events defined a seismic gap that did not experience a large earthquake for over 124 years. Only recently, the 1995 Mw 8.1 Antofagasta, 2001 Mw 8.4 Arequipa, 2007 Mw 7.7 Tocopilla, and 2014 Mw 8.2 Pisagua earthquakes released only a small fraction of the potential slip budget, thereby raising concerns about continued seismic and tsunami hazard. We use over a decade of observations from continuous and campaign GPS networks to analyze inter-seismic strain accumulation, as well as co-seimic deformation associated to the more recent earthquakes in the in the Central Andean region. We obtain inferences of slip (and back-slip) behavior using a consistent and robust inversion framework that accounts for the spatial variability of the constraint provided by the observations on slip across the subduction megathrust. We present an updated inter-seismic coupling model and estimates of pre-, co- and post- seismic slip behavior associated with the most recent 2014 Mw 8.2 Pisagua earthquake. We analyze our results, along with published information on the recent and historical large earthquakes, to characterize the regions of the megathrust that tend to behave aseismically, and those that are capable to accumulate a slip budget (ultimately leading to the generation of large earthquakes), to what extent such regions may overlap, and discuss the potential for large earthquakes in the region.

  17. Bee pollen as non-wood forest product in the eastern Andean highlands of Colombia

    Directory of Open Access Journals (Sweden)

    Fermín José Chamorro García

    2013-07-01

    Full Text Available The Andean forests of the Eastern Andean high-lands of Colombia have a high conservation priority given the vulnerable condition of species such as Quercus humboldtii (Fagaceae that inhabit these ecosystems. Beekeeping is regarded as an alternative activity that could play a role in the conservation of Andean forests, but little is known about how the floras of these ecosystems contribute to honey and bee pollen production. We analyzed the contribution of Andean forests to bee pollen production, given the productive potential and commercial importance of this product. Pollen analyses were performed on 25 samples from apiaries near Andean forests located in the states of Cundinamarca, Boyacá and Santander. We found that Q. humboldtii is an important source of pollen with high potential for monofloral bee pollen production. In addition, bees collect pollen from other Andean forests species such as Weinmannia tomentosa, Viburnum spp. and Morella spp. Utilization of bee pollen could lead to incentives to carry out forest conservation practices through beekeeping management.

  18. From Dearth to El Dorado: Andean Nature, Plate Tectonics, and the Ontologies of Ecuadorian Resource Wealth

    Directory of Open Access Journals (Sweden)

    David Kneas

    2018-03-01

    Full Text Available Since the early 1990s, the Ecuadorian government has pledged to convert the nation into a “mining country” of global standing. Contemporary claims of mineral wealth, however, stand in stark contrast to previous assessments. Indeed, through much of the 20th century, geologists described Ecuador as a country of mineral dearth. Exploring the process through which Ecuador seemingly transitioned from a nation of resource scarcity to one of mineral plenty, I demonstrate how assessments of Ecuador’s resource potential relate to ideas of Andean nature. Promoters of resource abundance have emphasized Andean uniformity and equivalence—the notion that Ecuador’s mineral wealth is inevitable by virtue of the resource richness of its Andean neighbors. Geologists who have questioned Ecuador’s mineral content, on the other hand, have emphasized Andean heterogeneity. In the recent promotion of Ecuador’s resource potential, notions of Andean uniformity have been bolstered by models of subsoil copper that emerged in the in 1970s in the context of plate-tectonic theory. In highlighting the linkage between ideas of Andean nature and appraisals of Ecuadorian resource potential since the late 19th century, I outline the dialectics between nature and natural resources that underpin processes of resource becoming.

  19. A new look at the collision-related volcanism in Eastern Anatolia, Turkey: Volcanic history of the Northern-Van neovolcanic province

    Science.gov (United States)

    Keskin, Mehmet; Lebedev, Vladimir; Sharkov, Evgenii; Oyan, Vural; Ünal, Esin

    2010-05-01

    The region including the Eastern Anatolian - Northern Iranian High Plateau and Greater and Lesser Caucasus mountain ranges is one of the best examples of an active continental collision zone in the world, which is thought to have been formed by the closure of the northern branch of the Neotethyan Ocean. It comprises one of the high plateaus of the Alpine-Himalaya mountain belt (i.e. the Eastern Anatolia High Plateau) with an average elevation of ~2 km above the sea level. The volcanic activity initiated immediately after the block uplift of the region (at around 15 Ma as our new isotope-geochronological database indicates) and produced great volumes of volcanic material in a number of countries including Turkey, Russia, Georgia, Azerbaijan, Armenia and Iran. At present, the volcanic province extends from Eastern Anatolia (Turkey) into Caucasus of Southern Russia, spanning a distance of some 1000 km. Perhaps the most striking aspect of the Eastern Anatolian - N Iranian High Plateau and Caucasus is the volume and compositional variability of collision-related volcanic products erupted in a time interval from Neogene to Quaternary. Only in E Turkey, the collision-related volcanic units cover over half of the region (i.e.˜43,000 km2). In order to better understand the spatial and temporal compositional variations in volcanic rocks and their implications on magma genesis and geodynamic evolution of the region, we conducted joint research on this spectacular volcanic province. One of the largest Cenozoic volcanic areas on the EAHP is located in the north of Lake Van as we named "the Northern-Van neovolcanic province". It covers an area of about 6000 km2 starting from the northern cost of Lake Van. It is composed of a series of volcanic edifices (e.g. Girekol, Meydandag and Etrusk volcanoes). Remarkably, these volcanoes sit almost on the culmination of a regional domal structure called "Lake Van dome" in the vertex of the eastern Turkish high plateau. We intentionally

  20. Structural control and origin of volcanism in the Taupo volcanic zone, New Zealand

    Science.gov (United States)

    Cole, J. W.

    1990-08-01

    Taupor volcanic zone (TVZ) is the currently active volcanic arc and back-arc basin of the Taupo-Hikurangi arc-trench system, North Island, New Zealand. The volcanic arc is best developed at the southern (Tongariro volcanic centre) end of the TVZ, while on the eastern side of the TVZ it is represented mainly by dacite volcanoes, and in the Bay of Plenty andesite/dacite volcanoes occur on either side of the Whakatane graben. The back-arc basin is best developed in the central part of the TVZ and comprises bimodal rhyolite and high-alumina basalt volcanism. Widespread ignimbrite eruptions have occurred from this area in the past 0.6 Ma. Normal faults occur in both arc and back-arc basin. They are generally steeply dipping (>40°) and strike between 040° and 080°. In the back-arc basin, fault zones are en echelon and have the same trend as alignments of rhyolite domes and basalt vents. Open fissures have formed during historic earthquakes along some of the faults, and geodetic measurements on the north side of Lake Taupo suggest extension of 14±4 mm/year. In the Bay of Plenty and ML=6.3 earthquake occurred on 2 March 1987. Modelling of known structure in the area together with data derived from this earthquake suggests block faulting with faults dipping 45°±10° NW and a similar dip is suggested by seismic profiling of faults offshore of the Bay of Plenty where extension is estimated to be 5±2 mm/year. To the east of the TVZ, the North Island shear belt (NISB) is a zone of reverse-dextral, strike-slip faults, the surface expression of which terminates at the eastern end of the TVZ. On the opposite side of the TVZ in the offshore western Bay of Plenty and on line with the NISB is the Mayor Island fault belt. If the two fault belts were once continuous, as seems likely, strike-slip faults probably extend through the basement of the TVZ. When extension associated with the arc and back-arc basin is combined with these strike-slip faults, the resulting transtension

  1. Rate of volcanism on Venus

    International Nuclear Information System (INIS)

    Fegley, B. Jr.; Prinn, R.G.

    1988-07-01

    The maintenance of the global H 2 SO 4 clouds on Venus requires volcanism to replenish the atmospheric SO 2 which is continually being removed from the atmosphere by reaction with calcium minerals on the surface of Venus. The first laboratory measurements of the rate of one such reaction, between SO 2 and calcite (CaCO 3 ) to form anhydrite (CaSO 4 ), are reported. If the rate of this reaction is representative of the SO 2 reaction rate at the Venus surface, then we estimate that all SO 2 in the Venus atmosphere (and thus the H 2 SO 4 clouds) will be removed in 1.9 million years unless the lost SO 2 is replenished by volcanism. The required rate of volcanism ranges from about 0.4 to about 11 cu km of magma erupted per year, depending on the assumed sulfur content of the erupted material. If this material has the same composition as the Venus surface at the Venera 13, 14 and Vega 2 landing sites, then the required rate of volcanism is about 1 cu km per year. This independent geochemically estimated rate can be used to determine if either (or neither) of the two discordant (2 cu km/year vs. 200 to 300 cu km/year) geophysically estimated rates is correct. The geochemically estimated rate also suggests that Venus is less volcanically active than the Earth

  2. Volcanism in slab tear faults is larger than in island-arcs and back-arcs.

    Science.gov (United States)

    Cocchi, Luca; Passaro, Salvatore; Tontini, Fabio Caratori; Ventura, Guido

    2017-11-13

    Subduction-transform edge propagators are lithospheric tears bounding slabs and back-arc basins. The volcanism at these edges is enigmatic because it is lacking comprehensive geological and geophysical data. Here we present bathymetric, potential-field data, and direct observations of the seafloor on the 90 km long Palinuro volcanic chain overlapping the E-W striking tear of the roll-backing Ionian slab in Southern Tyrrhenian Sea. The volcanic chain includes arc-type central volcanoes and fissural, spreading-type centers emplaced along second-order shears. The volume of the volcanic chain is larger than that of the neighbor island-arc edifices and back-arc spreading center. Such large volume of magma is associated to an upwelling of the isotherms due to mantle melts upraising from the rear of the slab along the tear fault. The subduction-transform edge volcanism focuses localized spreading processes and its magnitude is underestimated. This volcanism characterizes the subduction settings associated to volcanic arcs and back-arc spreading centers.

  3. Colonization of native Andean grasses by arbuscular mycorrhizal fungi in Puna: a matter of altitude, host photosynthetic pathway and host life cycles.

    Science.gov (United States)

    Lugo, Mónica A; Negritto, María A; Jofré, Mariana; Anton, Ana; Galetto, Leonardo

    2012-08-01

    The relationships of altitude, host life cycle (annual or perennial) and photosynthetic pathway (C(3) or C(4) ) with arbuscular mycorrhiza (AM) root colonization were analysed in 35 species of Andean grasses. The study area is located in north-western Argentina along altitudinal sites within the Puna biogeographical region. Twenty-one sites from 3320 to 4314 m were sampled. Thirty-five grasses were collected, and the AM root colonization was quantified. We used multivariate analyses to test emerging patterns in these species by considering the plant traits and variables of AM colonization. Pearson's correlations were carried out to evaluate the specific relationships between some variables. Most grasses were associated with AM, but the colonization percentages were low in both C(3) and C(4) grasses. Nevertheless, the AM root colonization clearly decreased as the altitude increased. This distinctive pattern among different species was also observed between some of the populations of the same species sampled throughout the sites. An inverse relationship between altitude and AM colonization was found in this Southern Hemisphere Andean system. The effect of altitude on AM colonization seems to be more related to the grasses' photosynthetic pathway than to life cycles. This study represents the first report for this biogeographical region. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  4. Evolution of the Southern Margin of the Donbas (Ukraine) from Devonian to early Carboniferous Times.

    NARCIS (Netherlands)

    McCann, T.; Saintot, A.N.

    2003-01-01

    A Devonian-Early Carboniferous succession comprising thick clastic and carbonate sediments with interbedded volcanics was examined along the southern margin of the Donbas fold belt. Ukraine. Following initial rifting and subsidence, a continental (fluvial, lacustrine) succession was established.

  5. The Volcanism Ontology (VO): a model of the volcanic system

    Science.gov (United States)

    Myer, J.; Babaie, H. A.

    2017-12-01

    We have modeled a part of the complex material and process entities and properties of the volcanic system in the Volcanism Ontology (VO) applying several top-level ontologies such as Basic Formal Ontology (BFO), SWEET, and Ontology of Physics for Biology (OPB) within a single framework. The continuant concepts in BFO describe features with instances that persist as wholes through time and have qualities (attributes) that may change (e.g., state, composition, and location). In VO, the continuants include lava, volcanic rock, and volcano. The occurrent concepts in BFO include processes, their temporal boundaries, and the spatio-temporal regions within which they occur. In VO, these include eruption (process), the onset of pyroclastic flow (temporal boundary), and the space and time span of the crystallization of lava in a lava tube (spatio-temporal region). These processes can be of physical (e.g., debris flow, crystallization, injection), atmospheric (e.g., vapor emission, ash particles blocking solar radiation), hydrological (e.g., diffusion of water vapor, hot spring), thermal (e.g., cooling of lava) and other types. The properties (predicates) relate continuants to other continuants, occurrents to continuants, and occurrents to occurrents. The ontology also models other concepts such as laboratory and field procedures by volcanologists, sampling by sensors, and the type of instruments applied in monitoring volcanic activity. When deployed on the web, VO will be used to explicitly and formally annotate data and information collected by volcanologists based on domain knowledge. This will enable the integration of global volcanic data and improve the interoperability of software that deal with such data.

  6. Field-trip guide to mafic volcanism of the Cascade Range in Central Oregon—A volcanic, tectonic, hydrologic, and geomorphic journey

    Science.gov (United States)

    Deligne, Natalia I.; Mckay, Daniele; Conrey, Richard M.; Grant, Gordon E.; Johnson, Emily R.; O'Connor, Jim; Sweeney, Kristin

    2017-08-16

    The Cascade Range in central Oregon has been shaped by tectonics, volcanism, and hydrology, as well as geomorphic forces that include glaciations. As a result of the rich interplay between these forces, mafic volcanism here can have surprising manifestations, which include relatively large tephra footprints and extensive lava flows, as well as water shortages, transportation and agricultural disruption, and forest fires. Although the focus of this multidisciplinary field trip will be on mafic volcanism, we will also look at the hydrology, geomorphology, and ecology of the area, and we will examine how these elements both influence and are influenced by mafic volcanism. We will see mafic volcanic rocks at the Sand Mountain volcanic field and in the Santiam Pass area, at McKenzie Pass, and in the southern Bend region. In addition, this field trip will occur during a total solar eclipse, the first one visible in the United States in more than 25 years (and the first seen in the conterminous United States in more than 37 years).The Cascade Range is the result of subduction of the Juan de Fuca plate underneath the North American plate. This north-south-trending volcanic mountain range is immediately downwind of the Pacific Ocean, a huge source of moisture. As moisture is blown eastward from the Pacific on prevailing winds, it encounters the Cascade Range in Oregon, and the resulting orographic lift and corresponding rain shadow is one of the strongest precipitation gradients in the conterminous United States. We will see how the products of the volcanoes in the central Oregon Cascades have had a profound influence on groundwater flow and, thus, on the distribution of Pacific moisture. We will also see the influence that mafic volcanism has had on landscape evolution, vegetation development, and general hydrology.

  7. Metal fluxing in a large-scale intra-arc fault: insights from the Liquiñe-Ofqui Fault System (LOFS) and associated geothermal fields in southern Chile

    Science.gov (United States)

    Tardani, D.; Reich, M.; Sano, Y.; Takahata, N.; Wen, H.; Roulleau, E.; Sanchez-Alfaro, P.; González-Jiménez, J. M.; Shinohara, H.; Yang, T. F.; Cembrano, J. M.; Arancibia, G.

    2014-12-01

    In compressional and extensional settings, high-enthalpy geothermal systems and epithermal vein deposits are genetically linked to shallow magmatic reservoirs, overlying hydrothermal circulation cells, and structural meshes that permit vertical migration of fluids. In the Andean Cordillera of Central-Southern Chile, the nature of the relationship between tectonics and volcanism is the result of interaction between the crustal structures and the regional stress field. Between 37° and 46°S, the volcanic and geothermal activity is controlled by the NNE-trending, 1,200 km long LOFS, an intra-arc dextral strike-slip fault system, associated with second-order intra-arc anisotropies of overall NE-SW and NW-SE orientation. Although there is consensus that volcanism in this segment are controlled by the regional scale tectonic stress field, the structural controls on magma degassing and metal fluxing remains poorly constrained. The goal of the study is to constrain the first-order controls on fluxes of noble metals (Au, Ag, PGEs), base metals (Cu, Zn, Pb) and metalloids (As, Sb, Se) along this segment. For this purpose we collected fumarole and thermal water samples from five selected volcanic-geothermal systems along the northern termination of the LOFS. The selected areas are characterized by the occurrence of surface manifestations and are located along NNE-oriented or NWN-oriented fault systems. In each location, the trace metal budget and isotopic composition of fumaroles and springs were constrained along with cations, anions and dissolved gaseous species. The helium isotopic ratios of fumaroles, defined as R/Ra, range between 3.5 and 7.5 in the studied segment. High R/Ra, mantle-like signatures are associated with geothermal manifestations occurring along NNE-trending faults, whereas lower R/Ra values in NWN-oriented systems most likely represent mixing between mantle and crustal sources. Concentrations of Au, Cu and As are significant in selected geothermal wells

  8. Global Volcanism on Mercury at About 3.8 Ga

    Science.gov (United States)

    Byrne, P. K.; Ostrach, L. R.; Denevi, B. W.; Head, J. W., III; Hauck, S. A., II; Murchie, S. L.; Solomon, S. C.

    2014-12-01

    Smooth plains occupy c. 27% of the surface of Mercury. Embayment relations, spectral contrast with surroundings, and morphologic characteristics indicate that the majority of these plains are volcanic. The largest deposits are located in Mercury's northern hemisphere and include the extensive northern plains (NP) and the Caloris interior and exterior plains (with the latter likely including basin material). Both the NP and Caloris deposits are, within statistical error, the same age (~3.8-3.9 Ga). To test whether this age reflects a period of global volcanism on Mercury, we determined crater size-frequency distributions for four smooth plains units in the planet's southern hemisphere interpreted to be volcanic. Two deposits are situated within the Beethoven and Tolstoj impact basins; two are located close to the Debussy and the Alver and Disney basins, respectively. Each deposit hosts two populations of craters, one that postdates plains emplacement and one that consists of partially to nearly filled craters that predate the plains. This latter population indicates that some time elapsed between formation of the underlying basement and plains volcanism, though we cannot statistically resolve this interval at any of the four sites. Nonetheless, we find that the age given by the superposed crater population in each case is ~3.8 Ga, and crater density values are consistent with those for the NP and Caloris plains. This finding supports a global phase of volcanism near the end of the late heavy bombardment of Mercury and may indicate a period of widespread partial melting of Mercury's mantle. Notably, superposition relations between smooth plains, degraded impact structures, and contractional landforms suggest that by this time interior cooling had already placed Mercury's lithosphere in horizontal compression, tending to inhibit voluminous dike-fed volcanism such as that inferred responsible for the NP. Most smooth plains units, including the Caloris plains and our

  9. From Subordinate Marker to Discourse Marker: que in Andean Spanish

    Directory of Open Access Journals (Sweden)

    Anna María Escobar

    2005-06-01

    Full Text Available This paper proposes an analysis of a redundant use of que ('that' found in Andean Spanish as an expression which has undergone a grammaticalization process. Evidence suggests that the function of que as subordinate marker is much more generalized in this variety than in other dialects of Spanish. que is found to be used as a marker introducing both nominal and adjectival clauses, suggesting that adjectival subordinates behave as nominal subordinates in this variety of Spanish. An intrusive que appears in restricted syntactic and semantic contexts with clauses that have nominal and adjectival functions, and even appears replacing adverbial expressions in some adverbial subordinates (temporal, spatial, and manner. Furthermore, it is found to be sensitive to the degree of the argument’s thematic/semantic function in the subordinate clause. In particular, it seems to occur more often with low-agency arguments in adjectival and nominal contexts, and, in nominal subordinates, tends to appear with a restricted set of epistemic and evidential main verbs (e.g. creer 'to believe', saber 'to know', decir 'to say'. The analysis suggests that que has developed a new function in this variety of Spanish, namely, one of indicating that the information contained in the subordinate clause does not constitute background information (as would be expected in non-contact varieties of Spanish but instead contains information relevant to the discourse.

  10. Changing Hydrology in Glacier-fed High Altitude Andean Peatbogs

    Science.gov (United States)

    Slayback, D. A.; Yager, K.; Baraer, M.; Mohr, K. I.; Argollo, J.; Wigmore, O.; Meneses, R. I.; Mark, B. G.

    2012-12-01

    Montane peatbogs in the glacierized Andean highlands of Peru and Bolivia provide critical forage for camelids (llama and alpaca) in regionally extensive pastoral agriculture systems. During the long dry season, these wetlands often provide the only available green forage. A key question for the future of these peatbog systems, and the livelihoods they support, is the impact of climate change and glacier recession on their hydrology, and thus forage production. We have already documented substantial regional glacier recession, of, on average, approximately 30% of surface area over the past two decades. As glaciers begin to retreat under climate change, there is initially a period of increased meltwater outflow, culminating in a period of "peak water", and followed by a continual decline in outflows. Based on previous work, we know that some glaciers in the region have already passed peak water conditions, and are now declining. To better understand the impacts of these processes on peatbog hydrology and productivity, we have begun collecting a variety of surface data at several study sites in both Bolivia and Peru. These include precipitation, stream flow, water levels, water chemistry and isotope analyses, and peatbog biodiversity and biomass. These measurements will be used in conjunction with a regional model driven by satellite data to predict likely future impacts. We will present the results from these initial surface measurements, and an overview of satellite datasets to be used in the regional model.

  11. Phoretic mites identified on andean hummingbirds (Trochilidae of Caldas, Colombia

    Directory of Open Access Journals (Sweden)

    Natalia López-Orozco

    Full Text Available Within the bird-plant-mite system, the relationship between hummingbirds, flowers, and mites remains poorly understood. In this study, we evaluated the degree of association between nasal mites and eight species of Andean hummingbirds in Colombia (Amazilia saucerrottei,A. tzacatl, Chalybura buffonii,Chlorostilbon mellisugus, Florisuga mellivora, Glaucis hirsutus, Phaethornis guy and P. striigularis. Over a five-month period (trapping effort 360 hours/month, a total of 178 birds were captured, from which 81 mite specimens were collected and identified as belonging to three genera (Proctolaelaps, Rhinoseius andTropicoseius spanning eleven species. This is the first report of its kind from Colombia on the identification of the mite speciesP. rabulatus, R. luteyni, R. rafinskii, T. berryi, T. colwelli, T. erro and T. uniformisand the first record of P. guy as phoretic host forProctolaelaps rabulatus. Morphological characteristics (length of the dorsal plate, width of the dorsal plate and setae z5 length alone failed to distinguish between mite species. The ecologic impact of this relationship on flowers with respect to nectar and pollen availability and the effect of mites on pollination by hummingbirds needs to be determined.

  12. Phoretic mites identified on Andean hummingbirds (Trochilidae) of Caldas, Colombia.

    Science.gov (United States)

    López-Orozco, Natalia; Cañón-Franco, William Alberto

    2013-01-01

    Within the bird-plant-mite system, the relationship between hummingbirds, flowers, and mites remains poorly understood. In this study, we evaluated the degree of association between nasal mites and eight species of Andean hummingbirds in Colombia (Amazilia saucerrottei, A. tzacatl, Chalybura buffonii, Chlorostilbon mellisugus, Florisuga mellivora, Glaucis hirsutus, Phaethornis guy and P. striigularis). Over a five-month period (trapping effort 360 hours/month), a total of 178 birds were captured, from which 81 mite specimens were collected and identified as belonging to three genera (Proctolaelaps, Rhinoseius and Tropicoseius) spanning eleven species. This is the first report of its kind from Colombia on the identification of the mite species P. rabulatus, R. luteyni, R. rafinskii, T. berryi, T. colwelli, T. erro and T. uniformis and the first record of P. guy as phoretic host for Proctolaelaps rabulatus. Morphological characteristics (length of the dorsal plate, width of the dorsal plate and setae z5 length) alone failed to distinguish between mite species. The ecologic impact of this relationship on flowers with respect to nectar and pollen availability and the effect of mites on pollination by hummingbirds needs to be determined.

  13. Candidate constructional volcanic edifices on Mercury

    OpenAIRE

    Wright, J.; Rothery, D. A.; Balme, M. R.; Conway, S. J.

    2018-01-01

    [Introduction] Studies using MESSENGER data suggest that Mercury’s crust is predominantly a product of effusive volcanism that occurred in the first billion years following the planet’s formation. Despite this planet-wide effusive volcanism, no constructional volcanic edifices, characterized by a topographic rise, have hitherto been robustly identified on Mercury, whereas constructional volcanoes are common on other planetary bodies in the solar system with volcanic histories. Here, we descri...

  14. Disruptive event analysis: volcanism and igneous intrusion

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1979-01-01

    Three basic topics are addressed for the disruptive event analysis: first, the range of disruptive consequences of a radioactive waste repository by volcanic activity; second, the possible reduction of the risk of disruption by volcanic activity through selective siting of a repository; and third, the quantification of the probability of repository disruption by volcanic activity

  15. Andean deformation and rift inversion, eastern edge of Cordillera Oriental (Guateque Medina area), Colombia

    Science.gov (United States)

    Branquet, Y.; Cheilletz, A.; Cobbold, P. R.; Baby, P.; Laumonier, B.; Giuliani, G.

    2002-09-01

    In the Guateque-Medina area, Paleozoic basement and Mesozoic rift basins have been uplifted and exhumed during the Andean orogeny (12 Ma to present). Surface exposures and subsurface data constrain the deformation style and the rift geometry. We have mapped a regional transect and restored a cross section. We have also reconciled existing stratigraphic data, from cordillera, foothills and foreland basin, and have added new data of our own. In Early Cretaceous shales, there is evidence for fault-controlled sedimentation. A brecciated evaporitic layer, which is locally emerald bearing, has acted as a regional detachment. The underlying basement, composed of Paleozoic sediments, crops out as the Quetame Massif. It was uplifted during the Andean orogeny on a series of high-angle reverse faults. The main SE-verging Tesalia fault has resulted from Andean reactivation of an Early Cretaceous normal fault, which bounded a half-rift. A series of NW-verging back-thrusts may have resulted from Andean reactivation of Paleozoic faults. Between the back-thrusts and the Tesalia fault is a basement pop-up. It may be part of a flower structure, because components of right-lateral slip have been identified. These are attributed to eastward subduction of the Nazca plate beneath South America. In general, the style and timing of Andean deformation in the Guateque-Medina area are compatible with the plate tectonic setting of the northern Andes.

  16. Estimating detection and density of the Andean cat in the high Andes

    Science.gov (United States)

    Reppucci, Juan; Gardner, Beth; Lucherini, Mauro

    2011-01-01

    The Andean cat (Leopardus jacobita) is one of the most endangered, yet least known, felids. Although the Andean cat is considered at risk of extinction, rigorous quantitative population studies are lacking. Because physical observations of the Andean cat are difficult to make in the wild, we used a camera-trapping array to photo-capture individuals. The survey was conducted in northwestern Argentina at an elevation of approximately 4,200 m during October–December 2006 and April–June 2007. In each year we deployed 22 pairs of camera traps, which were strategically placed. To estimate detection probability and density we applied models for spatial capture–recapture using a Bayesian framework. Estimated densities were 0.07 and 0.12 individual/km2 for 2006 and 2007, respectively. Mean baseline detection probability was estimated at 0.07. By comparison, densities of the Pampas cat (Leopardus colocolo), another poorly known felid that shares its habitat with the Andean cat, were estimated at 0.74–0.79 individual/km2 in the same study area for 2006 and 2007, and its detection probability was estimated at 0.02. Despite having greater detectability, the Andean cat is rarer in the study region than the Pampas cat. Properly accounting for the detection probability is important in making reliable estimates of density, a key parameter in conservation and management decisions for any species.

  17. Use of spatial capture–recapture to estimate density of Andean bears in northern Ecuador

    Science.gov (United States)

    Molina, Santiago; Fuller, Angela K.; Morin, Dana J.; Royle, J. Andrew

    2017-01-01

    The Andean bear (Tremarctos ornatus) is the only extant species of bear in South America and is considered threatened across its range and endangered in Ecuador. Habitat loss and fragmentation is considered a critical threat to the species, and there is a lack of knowledge regarding its distribution and abundance. The species is thought to occur at low densities, making field studies designed to estimate abundance or density challenging. We conducted a pilot camera-trap study to estimate Andean bear density in a recently identified population of Andean bears northwest of Quito, Ecuador, during 2012. We compared 12 candidate spatial capture–recapture models including covariates on encounter probability and density and estimated a density of 7.45 bears/100 km2 within the region. In addition, we estimated that approximately 40 bears used a recently named Andean bear corridor established by the Secretary of Environment, and we produced a density map for this area. Use of a rub-post with vanilla scent attractant allowed us to capture numerous photographs for each event, improving our ability to identify individual bears by unique facial markings. This study provides the first empirically derived density estimate for Andean bears in Ecuador and should provide direction for future landscape-scale studies interested in conservation initiatives requiring spatially explicit estimates of density.

  18. Lost crops of the Incas: Origins of domestication of the Andean pulse crop tarwi, Lupinus mutabilis.

    Science.gov (United States)

    Atchison, Guy W; Nevado, Bruno; Eastwood, Ruth J; Contreras-Ortiz, Natalia; Reynel, Carlos; Madriñán, Santiago; Filatov, Dmitry A; Hughes, Colin E

    2016-09-01

    The Andean highlands are a hotspot of domestication, yet our understanding of the origins of early Andean agriculture remains fragmentary. Key questions of where, when, how many times, and from what progenitors many Andean crops were domesticated remain unanswered. The Andean lupine crop tarwi (Lupinus mutabilis) is a regionally important pulse crop with exceptionally high seed protein and oil content and is the focus of modern breeding efforts, but its origins remain obscure. A large genome-wide DNA polymorphism data set was generated using nextRADseq to infer relationships among more than 200 accessions of Andean Lupinus species, including 24 accessions of L. mutabilis and close relatives. Phylogenetic and demographic analyses were used to identify the likely progenitor of tarwi and elucidate the area and timing of domestication in combination with archaeological evidence. We infer that tarwi was domesticated once in northern Peru, most likely in the Cajamarca region within, or adjacent to the extant distribution of L. piurensis, which is the most likely wild progenitor. Demographic analyses suggest that tarwi split from L. piurensis around 2600 BP and suffered a classical domestication bottleneck. The earliest unequivocal archaeological evidence of domesticated tarwi seeds is from the Mantaro Valley, central Peru ca. 1800 BP. A single origin of tarwi from L. piurensis in northern Peru provides a robust working hypothesis for the domestication of this regionally important crop and is one of the first clear-cut examples of a crop originating in the highlands of northern Peru. © 2016 Botanical Society of America.

  19. A Volcanic Hydrogen Habitable Zone

    International Nuclear Information System (INIS)

    Ramirez, Ramses M.; Kaltenegger, Lisa

    2017-01-01

    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N 2 –CO 2 –H 2 O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO 2 outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H 2 can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N 2 –CO 2 –H 2 O–H 2 ) can be sustained as long as volcanic H 2 output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H 2 warming is reduced in dense H 2 O atmospheres. The atmospheric scale heights of such volcanic H 2 atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  20. A Volcanic Hydrogen Habitable Zone

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Ramses M.; Kaltenegger, Lisa, E-mail: rmr277@cornell.edu [Carl Sagan Institute, Cornell University, Ithaca, NY (United States)

    2017-03-01

    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N{sub 2}–CO{sub 2}–H{sub 2}O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO{sub 2} outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H{sub 2} can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N{sub 2}–CO{sub 2}–H{sub 2}O–H{sub 2}) can be sustained as long as volcanic H{sub 2} output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H{sub 2} warming is reduced in dense H{sub 2}O atmospheres. The atmospheric scale heights of such volcanic H{sub 2} atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  1. Provenance and fate of arsenic and other solutes in the Chaco-Pampean Plain of the Andean foreland, Argentina: From perspectives of hydrogeochemical modeling and regional tectonic setting

    Science.gov (United States)

    Raychowdhury, Nilasree; Mukherjee, Abhijit; Bhattacharya, Prosun; Johannesson, Karen; Bundschuh, Jochen; Sifuentes, Gabriela Bejarano; Nordberg, Erika; Martin, Raúl A.; Storniolo, Angel del Rosario

    2014-10-01

    Extensive arsenic (As) enriched groundwater is known to occur in the aquifers of the Chaco-Pampean Plain of Argentina. Previous studies speculated that the As mobilization in these groundwaters was a direct result of their elevated pH and oxidative conditions. The volcanic glass layers present in the aquifer matrix were hypothesized as one of the possible sources of As to the groundwaters. Here, we examine the groundwater chemistry of the Santiago del Estero province of Chaco-Pampean Plains of Argentina, and test these hypotheses by using hydrogeochemical modeling within the framework of the regional geologic-tectonic setting. The study area is located in the active foreland of the Andean orogenic belt, which forms a continental arc setting, and is dotted with several hot springs. Rhyolitic volcanic glass fragments derived from arc volcanism are abundant within the aeolian-fluvial aquifer sediments, and are related to the paleo-igneous extrusion in the vicinity. Hydrogeochemical analyses show that the groundwater is in predominantly oxidative condition. In addition, some of the groundwaters exhibit very high Na, Cl- and SO42- concentrations. It is hypothesized in this study that the groundwater chemistry has largely evolved by dissolution of rhyolitic volcanic glass fragments contained within the aquifer sediments along with mixing with saline surface waters from, adjoining salinas, which are thought to be partially evaporated remnants of a paleo inland sea. Flow path modeling, stability diagrams, and thermodynamic analyses undertaken in this study indicate that the dominant evolutionary processes include ion exchange reactions, chemical weathering of silicate and evaporites, in monosialitization-dominated weathering. Geochemical modeling predicts that plagioclase feldspar and volcanic glass are the major solids phases that contribute metal cations and dissolved silica to the local groundwaters. Co-influxed oxyanions, with similar ionic radii and structure (e.g. Mo

  2. Radiocarbon ages of lacustrine deposits in volcanic sequences of the Lomas Coloradas area, Socorro Island, Mexico

    Science.gov (United States)

    Farmer, J. D.; Farmer, M. C.; Berger, R.

    1993-01-01

    Extensive eruptions of alkalic basalt from low-elevation fissures and vents on the southern flank of the dormant volcano, Cerro Evermann, accompanied the most recent phase of volcanic activity on Socorro Island, and created the Lomas Coloradas, a broad, gently sloping terrain comprising the southern part of the island. We obtained 14C ages of 4690 +/- 270 BP (5000-5700 cal BP) and 5040 +/- 460 BP (5300-6300 cal BP) from lacustrine deposits that occur within volcanic sequences of the lower Lomas Coloradas. Apparently, the sediments accumulated within a topographic depression between two scoria cones shortly after they formed. The lacrustine environment was destroyed when the cones were breached by headward erosion of adjacent stream drainages. This was followed by the eruption of a thin basaltic flow from fissures near the base of the northernmost cone. The flow moved downslope for a short distance and into the drainages that presently bound the study area on the east and west. The flow postdates development of the present drainage system and may be very recent. Our 14C data, along with historical accounts of volcanic activity over the last century, including submarine eruptions that occurred a few km west of Socorro in early 1993, underscore the high risk for explosive volcanism in this region and the need for a detailed volcanic hazards plan and seismic monitoring.

  3. Andean stratigraphic record of the transition from backarc extension to orogenic shortening: A case study from the northern Neuquén Basin, Argentina

    Science.gov (United States)

    Horton, Brian K.; Fuentes, Facundo; Boll, Andrés; Starck, Daniel; Ramirez, Sebastian G.; Stockli, Daniel F.

    2016-11-01

    The temporal transition from backarc extension to retroarc shortening is a fundamental process in the evolution of many Andean-type convergent margins. This switch in tectonic regime is preserved in the 5-7 km thick Mesozoic-Cenozoic stratigraphic record of west-central Argentina at 34-36°S, where the northern Neuquén Basin and succeeding Cenozoic foreland succession chronicle a long history of fluctuating depositional systems and diverse sediment source regions during Andean orogenesis. New findings from sediment provenance and facies analyses are integrated with detrital zircon U-Pb geochronological results from 16 samples of Jurassic through Miocene clastic deposits to delineate the progressive exhumation of the evolving Andean magmatic arc, retroarc fold-thrust belt, and foreland province. Abrupt changes in provenance and depositional conditions can be reconciled with a complex Mesozoic-Cenozoic history of extension, postextensional thermal subsidence, punctuated tectonic inversion, thick- and thin-skinned shortening, overlapping igneous activity, and alternating phases of basin accumulation, sediment bypass, and erosion. U-Pb age distributions constrain the depositional ages of Cenozoic units and reveal a prolonged late middle Eocene to earliest Miocene (roughly 40-20 Ma) hiatus in the retroarc foreland basin. This stratigraphic gap is expressed as a regional disconformity that marks a pronounced shift in depositional conditions and sediment sources, from (i) slow Paleocene-middle Eocene accumulation of distal fluviolacustrine sediments (Pircala and Coihueco Formations) contributed from far western magmatic arc sources (Cretaceous-Paleogene volcanic rocks) and subordinate eastern basement rocks (Permian-Triassic Choiyoi igneous complex) to (ii) rapid Miocene-Quaternary accumulation of proximal fluvial to megafan sediments (Agua de la Piedra, Loma Fiera, and Tristeza Formations) recycled from emerging western thrust-belt sources of Mesozoic basin fill

  4. Impact of tectonic and volcanism on the Neogene evolution of isolated carbonate platforms (SW Indian Ocean)

    Science.gov (United States)

    Courgeon, S.; Jorry, S. J.; Jouet, G.; Camoin, G.; BouDagher-Fadel, M. K.; Bachèlery, P.; Caline, B.; Boichard, R.; Révillon, S.; Thomas, Y.; Thereau, E.; Guérin, C.

    2017-06-01

    Understanding the impact of tectonic activity and volcanism on long-term (i.e. millions years) evolution of shallow-water carbonate platforms represents a major issue for both industrial and academic perspectives. The southern central Mozambique Channel is characterized by a 100 km-long volcanic ridge hosting two guyots (the Hall and Jaguar banks) and a modern atoll (Bassas da India) fringed by a large terrace. Dredge sampling, geophysical acquisitions and submarines videos carried out during recent oceanographic cruises revealed that submarine flat-top seamounts correspond to karstified and drowned shallow-water carbonate platforms largely covered by volcanic material and structured by a dense network of normal faults. Microfacies and well-constrained stratigraphic data indicate that these carbonate platforms developed in shallow-water tropical environments during Miocene times and were characterized by biological assemblages dominated by corals, larger benthic foraminifera, red and green algae. The drowning of these isolated carbonate platforms is revealed by the deposition of outer shelf sediments during the Early Pliocene and seems closely linked to (1) volcanic activity typified by the establishment of wide lava flow complexes, and (2) to extensional tectonic deformation associated with high-offset normal faults dividing the flat-top seamounts into distinctive structural blocks. Explosive volcanic activity also affected platform carbonates and was responsible for the formation of crater(s) and the deposition of tuff layers including carbonate fragments. Shallow-water carbonate sedimentation resumed during Late Neogene time with the colonization of topographic highs inherited from tectonic deformation and volcanic accretion. Latest carbonate developments ultimately led to the formation of the Bassas da India modern atoll. The geological history of isolated carbonate platforms from the southern Mozambique Channel represents a new case illustrating the major

  5. Metamorphic and volcanic quartz of the siliciclastic Tipuma Formation, West Papua, Indonesia: an insight into Triassic palaeogeography of northern Australia

    Science.gov (United States)

    Gunawan, Indra; Hall, Robert; Augustsson, Carita

    2013-04-01

    The origin and Triassic evolution of the Bird's Head of West Papua has been a subject of active discussion. Many interpretations have been proposed for the Triassic evolution, from active margin to passive margin models. The Bird's Head region is underlain by Australian continental crust and has a relatively complete stratigraphy from Palaeozoic to Recent. The Tipuma Formation is a Mesozoic siliciclastic sequence and a potentially important reservoir. Its sedimentation may record parts of the region's Mesozoic tectonic history, including several phases of rifting. Little is known about the variations in lithologies and their composition, and nothing is known about its provenance. The Tipuma Formation is dominated by red to cream well-bedded mudstone, sandstone and conglomerate. It rests unconformably on the Kemum Formation and is overlain by the Cretaceous Jass Formation. It is difficult to assess the depositional age of the Tipuma Formation due to the absence of fossils. The suggested Triassic age is based solely on its stratigraphic position. The Tipuma Formation was previously thought to be deposited in a stable continental setting. Detrital modes indicate acid plutonic, metamorphic, and recycled sedimentary source rocks for the Tipuma Formation sandstones. Angular volcanic quartz and elongate euhedral zircons suggest a contribution from previously unrecognised contemporaneous acid volcanics. New interpretations suggest that the widespread Permo-Triassic volcanic activity in the Bird's Head was caused by subduction associated with an Andean-type active margin and that the Tipuma Formation was deposited in a fluvial setting close to the volcanic arc. Cathodoluminescence (CL) characteristics of quartz depend on variations in temperature, pressure, and geochemical environment during crystal growth and subsequent events. The CL colour spectra of quartz can be correlated with the formation conditions of the quartz. They can therefore be used as a provenance indicator

  6. Adakite-like volcanism of Ecuador: lower crust magmatic evolution and recycling

    Science.gov (United States)

    Chiaradia, Massimo; Müntener, Othmar; Beate, Bernardo; Fontignie, Denis

    2009-11-01

    In the Northern Andes of Ecuador, a broad Quaternary volcanic arc with significant across-arc geochemical changes sits upon continental crust consisting of accreted oceanic and continental terranes. Quaternary volcanic centers occur, from west to east, along the Western Cordillera (frontal arc), in the Inter-Andean Depression and along the Eastern Cordillera (main arc), and in the Sub-Andean Zone (back-arc). The adakite-like signatures of the frontal and main arc volcanoes have been interpreted either as the result of slab melting plus subsequent slab melt-mantle interactions or of lower crustal melting, fractional crystallization, and assimilation processes. In this paper, we present petrographic, geochemical, and isotopic (Sr, Nd, Pb) data on dominantly andesitic to dacitic volcanic rocks as well as crustal xenolith and cumulate samples from five volcanic centers (Pululagua, Pichincha, Ilalo, Chacana, Sumaco) forming a NW-SE transect at about 0° latitude and encompassing the frontal (Pululagua, Pichincha), main (Ilalo, Chacana), and back-arc (Sumaco) chains. All rocks display typical subduction-related geochemical signatures, such as Nb and Ta negative anomalies and LILE enrichment. They show a relative depletion of fluid-mobile elements and a general increase in incompatible elements from the front to the back-arc suggesting derivation from progressively lower degrees of partial melting of the mantle wedge induced by decreasing amounts of fluids released from the slab. We observe widespread petrographic evidence of interaction of primary melts with mafic xenoliths as well as with clinopyroxene- and/or amphibole-bearing cumulates and of magma mixing at all frontal and main arc volcanic centers. Within each volcanic center, rocks display correlations between evolution indices and radiogenic isotopes, although absolute variations of radiogenic isotopes are small and their values are overall rather primitive (e.g., ɛNd = +1.5 to +6, 87Sr/86Sr = 0

  7. Amazonian biomass burning-derived acid and nutrient deposition in the north Andean montane forest of Ecuador

    Science.gov (United States)

    Boy, Jens; Rollenbeck, Rütger; Valarezo, Carlos; Wilcke, Wolfgang

    2008-12-01

    We explored the influence of biomass burning in Amazonia and northeastern Latin America on N, C, P, S, K, Ca, Mg, Al, Mn, and Zn cycles of an Andean montane forest in south Ecuador exposed to the Amazon basin between May 1998 and April 2003. We assessed the response of the element budget of three microcatchments (8-13 ha) to the variations in atmospheric deposition between the intensive burning season and outside the burning season in Amazonia. There were significantly elevated H, N, and Mn depositions during biomass burning. Elevated H deposition during biomass burning caused elevated base metal loss from the canopy and the organic horizon and deteriorated already low base metal supply of the vegetation. N was only retained during biomass burning but not during nonfire conditions when deposition was much smaller. We conclude that biomass burning-related aerosol emissions in Amazonia are large enough to substantially increase element deposition at the western rim of Amazonia. Particularly the related increase of acid deposition impoverishes already base metal scarce ecosystems. As biomass burning is most intense during El Niño situations, a shortened El Niño-Southern Oscillation cycle because of global warming likely enhances the acid deposition at our study forest.

  8. Pattern of genetic differentiation of an incipient speciation process: The case of the high Andean killifish Orestias.

    Science.gov (United States)

    Guerrero-Jiménez, Claudia Jimena; Peña, Fabiola; Morales, Pamela; Méndez, Marco; Sallaberry, Michel; Vila, Irma; Poulin, Elie

    2017-01-01

    During the Pleistocene and Holocene, the southwest Andean Altiplano (17°-22°S) was affected by repeated fluctuations in water levels, high volcanic activity and major tectonic movements. In the early Holocene the humid Tauca phase shifted to the arid conditions that have lasted until the present, producing endorheic rivers, lakes, lagoons and wetlands. The endemic fish Orestias (Cyprinodontidae) represents a good model to observe the genetic differentiation that characterizes an incipient speciation process in allopatry since the morphospecies described inhabit a restricted geographic area, with present habitat fragmentation. The genetic diversity and population structure of four endemic morphospecies of Orestias (Cyprinodontidae) found in the Lauca National Park (LNP) analyzed with mitochondrial markers (Control Region) and eight microsatellites, revealed the existence of genetic groups that matches the fragmentation of these systems. High values of genetic and phylogeographic differentiation indices were observed between Chungará Lake and Piacota lagoon. The group composed of the Lauca River, Copapujo and Chuviri wetlands sampling sites showed a clear signal of expansion, with a star-like haplotype network. Levels of genetic differentiation were lower than in Chungará and Piacota, suggesting that these localities would have differentiated after the bottlenecks linked to the collapse of Parinacota volcano. The Parinacota sample showed a population signal that differed from the other localities revealing greater genetic diversity and a disperse network, presenting haplotypes shared with other LNP localities. A mixing pattern of the different genetic groups was evident using the microsatellite markers. The chronology of the vicariance events in LNP may indicate that the partition process of the Orestias populations was gradual. Considering this, and in view of the genetic results, we may conclude that the morphospecies from LNP are populations in ongoing

  9. Pattern of genetic differentiation of an incipient speciation process: The case of the high Andean killifish Orestias

    Science.gov (United States)

    Guerrero-Jiménez, Claudia Jimena; Peña, Fabiola; Morales, Pamela; Méndez, Marco; Sallaberry, Michel; Vila, Irma; Poulin, Elie

    2017-01-01

    During the Pleistocene and Holocene, the southwest Andean Altiplano (17°-22°S) was affected by repeated fluctuations in water levels, high volcanic activity and major tectonic movements. In the early Holocene the humid Tauca phase shifted to the arid conditions that have lasted until the present, producing endorheic rivers, lakes, lagoons and wetlands. The endemic fish Orestias (Cyprinodontidae) represents a good model to observe the genetic differentiation that characterizes an incipient speciation process in allopatry since the morphospecies described inhabit a restricted geographic area, with present habitat fragmentation. The genetic diversity and population structure of four endemic morphospecies of Orestias (Cyprinodontidae) found in the Lauca National Park (LNP) analyzed with mitochondrial markers (Control Region) and eight microsatellites, revealed the existence of genetic groups that matches the fragmentation of these systems. High values of genetic and phylogeographic differentiation indices were observed between Chungará Lake and Piacota lagoon. The group composed of the Lauca River, Copapujo and Chuviri wetlands sampling sites showed a clear signal of expansion, with a star-like haplotype network. Levels of genetic differentiation were lower than in Chungará and Piacota, suggesting that these localities would have differentiated after the bottlenecks linked to the collapse of Parinacota volcano. The Parinacota sample showed a population signal that differed from the other localities revealing greater genetic diversity and a disperse network, presenting haplotypes shared with other LNP localities. A mixing pattern of the different genetic groups was evident using the microsatellite markers. The chronology of the vicariance events in LNP may indicate that the partition process of the Orestias populations was gradual. Considering this, and in view of the genetic results, we may conclude that the morphospecies from LNP are populations in ongoing

  10. Potential volcanic impacts on future climate variability

    Science.gov (United States)

    Bethke, Ingo; Outten, Stephen; Otterå, Odd Helge; Hawkins, Ed; Wagner, Sebastian; Sigl, Michael; Thorne, Peter

    2017-11-01

    Volcanic activity plays a strong role in modulating climate variability. Most model projections of the twenty-first century, however, under-sample future volcanic effects by not representing the range of plausible eruption scenarios. Here, we explore how sixty possible volcanic futures, consistent with ice-core records, impact climate variability projections of the Norwegian Earth System Model (NorESM) under RCP4.5 (ref. ). The inclusion of volcanic forcing enhances climate variability on annual-to-decadal timescales. Although decades with negative global temperature trends become ~50% more commonplace with volcanic activity, these are unlikely to be able to mitigate long-term anthropogenic warming. Volcanic activity also impacts probabilistic projections of global radiation, sea level, ocean circulation, and sea-ice variability, the local-scale effects of which are detectable when quantifying the time of emergence. These results highlight the importance and feasibility of representing volcanic uncertainty in future climate assessments.

  11. K-Ar chronological study of the quaternary volcanic activity in Shin-etsu Highland

    International Nuclear Information System (INIS)

    Kaneko, Takayuki; Shimizu, Satoshi; Itaya, Tetsumaru.

    1989-01-01

    In order to clarify the temporal and spatial patterns in arc volcanism, 55 K-Ar ages of volcanic rocks from 17 volcanoes in Shin-etsu Highland, central Japan were determined. In addition, life spans, volume of erupted materials and eruption rates of each volcano were estimated. Graphical analysis demonstrates that volume of ejecta varies proportionately with both life span and eruption rate, and that there is no significant correlation between eruption rate and distance from the volcanic front. The life span of each volcano in this Highland is less than 0.6 m.y. In the central Shiga and southern Asama area, the volcanism started at 1 Ma and is still active. However the former had a peak in the activity at around 0.5 Ma, while the latter is apparently most intense at present. Northern Kenashi area has the volcanism without peak in 1.7 - 0.2 Ma, though the activity within a volcanic cluster or chain in central Japan lasts generally for 1 m.y. or less with a peak. (author)

  12. Diverging responses of tropical Andean biomes under future climate conditions.

    Science.gov (United States)

    Tovar, Carolina; Arnillas, Carlos Alberto; Cuesta, Francisco; Buytaert, Wouter

    2013-01-01

    Observations and projections for mountain regions show a strong tendency towards upslope displacement of their biomes under future climate conditions. Because of their climatic and topographic heterogeneity, a more complex response is expected for biodiversity hotspots such as tropical mountain regions. This study analyzes potential changes in the distribution of biomes in the Tropical Andes and identifies target areas for conservation. Biome distribution models were developed using logistic regressions. These models were then coupled to an ensemble of 8 global climate models to project future distribution of the Andean biomes and their uncertainties. We analysed projected changes in extent and elevational range and identified regions most prone to change. Our results show a heterogeneous response to climate change. Although the wetter biomes exhibit an upslope displacement of both the upper and the lower boundaries as expected, most dry biomes tend to show downslope expansion. Despite important losses being projected for several biomes, projections suggest that between 74.8% and 83.1% of the current total Tropical Andes will remain stable, depending on the emission scenario and time horizon. Between 3.3% and 7.6% of the study area is projected to change, mostly towards an increase in vertical structure. For the remaining area (13.1%-17.4%), there is no agreement between model projections. These results challenge the common believe that climate change will lead to an upslope displacement of biome boundaries in mountain regions. Instead, our models project diverging responses, including downslope expansion and large areas projected to remain stable. Lastly, a significant part of the area expected to change is already affected by land use changes, which has important implications for management. This, and the inclusion of a comprehensive uncertainty analysis, will help to inform conservation strategies in the Tropical Andes, and to guide similar assessments for other

  13. Social inequality and child malnutrition in four Andean countries

    Directory of Open Access Journals (Sweden)

    Carlos Larrea

    2002-06-01

    Full Text Available Objective. To analyze the effects of socioeconomic, regional, and ethnic conditions on chronic malnutrition in four Andean countries of South America: Bolivia, Colombia, Ecuador, and Peru. Methods. The study was based on Demographic and Health Surveys (DHS for Colombia (1995, Peru (1996, and Bolivia (1997, and on a Living Standard Measurement Survey for Ecuador (1998. We developed an index of household socioeconomic status using categorical principal components analysis. We broke down the prevalence of stunting by socioeconomic status (SES, ethnicity, place of residence (large cities, small cities, towns, and countryside, and region (highland region versus other areas of the country. We applied smoothed regression curves and linear functions to analyze SES effects on stunting, with specific models for Bolivia, Ecuador, and Peru. Results. Bolivia, Ecuador, and Peru have similar characteristics, with high stunting prevalences overall; higher stunting prevalences in their highland areas, particularly among indigenous populations; and strong socioeconomic disparities. Colombia, in contrast, has a lower stunting prevalence and smaller regional disparities. The socioeconomic gradient of stunting is strong in all four countries, with prevalence rates in the poorest deciles at least three times as high as those in the top decile. Discussion. The sharp contrast between the conditions found in Bolivia, Ecuador, and Peru and those in Colombia may be the result of specific ethnic factors affecting indigenous groups; a particular diet profile in the highland areas, with low protein and micronutrient intake; and differences in the long-term economic and social development paths that the countries have taken. Along with the strong socioeconomic gradient in all the countries, the weight of ethnic and regional factors suggests the need to reduce inequality as well as to comprehensively improve education and housing, better target health and nutrition programs

  14. Molecular phylogeography of the Andean alpine plant, Gunnera magellanica

    Science.gov (United States)

    Shimizu, M.; Fujii, N.; Ito, M.; Asakawa, T.; Nishida, H.; Suyama, C.; Ueda, K.

    2015-12-01

    To clarify the evolutionary history of Gunnera magellanica (Gunneraceae), an alpine plant of the Andes mountains, we performed molecular phylogeographic analyses based on the sequences of an internal transcribed spacer (ITS) of nuclear ribosomal DNA and four non-coding regions (trnH-psbA, trnL-trnF, atpB-rbcL, rpl16 intron) of chloroplast DNA. We investigated 3, 4, 4 and 11 populations in, Ecuador, Bolivia, Argentina, and Chile, respectively, and detected six ITS genotypes (Types A-F) in G. magellanica. Five genotypes (Types A-E) were observed in the northern Andes population (Ecuador and Bolivia); only one ITS genotype (Type F) was observed in the southern Andes population (Chile and Argentina). Phylogenetic analyses showed that the ITS genotypes of the northern and southern Andes populations form different clades with high bootstrap probability. Furthermore, network analysis, analysis of molecular variance, and spatial analysis of molecular variance showed that there were two major clusters (the northern and southern Andes populations) in this species. Furthermore, in chloroplast DNA analysis, three major clades (northern Andes, Chillan, and southern Andes) were inferred from phylogenetic analyses using four non-coding regions, a finding that was supported by the above three types of analysis. The Chillan clade is the northernmost population in the southern Andes populations. With the exception of the Chillan clade (Chillan population), results of nuclear DNA and chloroplast DNA analyses were consistent. Both markers showed that the northern and southern Andes populations of G. magellanica were genetically different from each other. This type of clear phylogeographical structure was supported by PERMUT analysis according to Pons & Petit (1995, 1996). Moreover, based on our preliminary estimation that is based on the ITS sequences, the northern and southern Andes clades diverged ~0.63-3 million years ago, during a period of upheaval in the Andes. This suggests

  15. Venus volcanism and El Chichon

    Science.gov (United States)

    Bell, Peter M.

    Reinterpretations of telemetry data returned to earth from the Pioneer Venus Orbiter suggest that the surface of Venus may be characterized by violent immense volcanic activity. L.W. Esposito has made an interactive analysis of Pioneer ultraviolet spectral data and similar data from the earth's atmosphere [Science, 223, 1072-1074, 1984]. Spacecraft analysis of sulfur dioxide in the earth's upper atmosphere, apparently released by El Chich[acu]on, Mexico, in March 1982 (EOS, June 14, 1983, p. 411, and August 16, 1983, p. 506) prompted reanalysis of accumulated Pioneer ultraviolet data. Massive injections of sulfur dioxide into the Venus atmosphere could be the result of volcanic eruptions about the size of the Krakatoa explosive eruption that took place between Java and Summatra in 1883.

  16. Source mechanisms of volcanic tsunamis.

    Science.gov (United States)

    Paris, Raphaël

    2015-10-28

    Volcanic tsunamis are generated by a variety of mechanisms, including volcano-tectonic earthquakes, slope instabilities, pyroclastic flows, underwater explosions, shock waves and caldera collapse. In this review, we focus on the lessons that can be learnt from past events and address the influence of parameters such as volume flux of mass flows, explosion energy or duration of caldera collapse on tsunami generation. The diversity of waves in terms of amplitude, period, form, dispersion, etc. poses difficulties for integration and harmonization of sources to be used for numerical models and probabilistic tsunami hazard maps. In many cases, monitoring and warning of volcanic tsunamis remain challenging (further technical and scientific developments being necessary) and must be coupled with policies of population preparedness. © 2015 The Author(s).

  17. Distribution of Recent Volcanism and Morphology of Volcanic Features in the GLIMPSE Study Area west of the East Pacific Rise

    Science.gov (United States)

    Scheirer, D.; Forsyth, D.; Harmon, N.; Duncan, R.

    2003-12-01

    The existence of seamounts and volcanic ridges west of the East Pacific Rise (EPR), perhaps associated with cross-grain gravity lineations, was initially revealed by detailed satellite altimetry. Multibeam bathymetry and sidescan reflectivity measurements made on board the R/V Melville in 2001 and 2002 as part of the GLIMPSE Experiment, plus additional data gathered on other cruises including those of the MELT Experiment, have allowed us to map the distribution of recent, off-axis volcanic activity west of the EPR and south of the Garrett Fracture Zone and to more precisely define the form of the volcanic features. The Southern Cross Seamount, Sojourn Ridge and Brown Ridge combine to form a linear feature nearly 500 km long, oriented perpendicular to the EPR about 80 km south of the Garrett FZ. Both the Sojourn and Brown ridges comprise several en echelon segments, each about 30 km long, linked together to form continuous topographic highs standing 2000 m or more above the surrounding seafloor. Side-scan data reveal reflective patches along the Brown Ridge at the eastern end of this feature that appear to be recent lava flows. Dredging of fresh basalts dated by Ar/Ar methods at about 0.3 Ma confirm this interpretation. The Southern Cross Seamount, at the western end of the chain, is the largest individual feature, standing more than 3.5 km above the surrounding seafloor and shoaling to depths less than 200 m below sealevel. The Hotu-Matua volcanic complex also extends for several hundred km, but is much more varied in its morphology. The western end has some very small, very linear ridges, flanked on the south by an extensive region of resurfaced, hummocky seafloor. This area is more reflective and presumably younger than the surrounding seafloor, but less reflective than the areas interpreted as recent flows. Roughly midway along this complex are the Hotu and Matua seamounts. Surrounding Matua is an extensive region of highly reflective, recent lava flows, some of

  18. Uranium deposits in volcanic rocks

    International Nuclear Information System (INIS)

    1985-01-01

    Twenty-eight papers were presented at the meeting and two additional papers were provided. Three panels were organized to consider the specific aspects of the genesis of uranium deposits in volcanic rocks, recognition criteria for the characterization of such deposits, and approaches to exploration. The papers presented and the findings of the panels are included in the Proceedings. Separate abstracts were prepared for each of these papers

  19. Description of new andean species of the genus Phymaturus (Iguania: Liolaemidae) from Northwestern Argentina.

    Science.gov (United States)

    Lobo, Fernando; Laspiur, Alejandro; Acosta, Juan Carlos

    2013-01-01

    As a result of several field trips and studies of collections of Phymaturus samples from Andean areas of central western Argentina (San Juan province), we discovered two populations that exhibit a particular character combination not seen in other species formally recognized in the literature. Based on a detailed analysis of an extended list of morphological characters (93), including scalation, color pattern, gular and nuchal folds, precloacal pores, and morphometric data, we conclude that these populations represent independent lineages that deserve to be considered as new species. According to the most recent revision of the genus and considering the descriptions made in another recent contribution, the taxonomic composition of the genus was increased to 38 species. In this study we provide the formal description of two additional new taxa, including their diagnosis and detailed comparisons with other members of their species group. The two new species belong to the palluma group, and can be assigned to the Puna subclade because they present the typical dorsal "spray" pattern. Other characters described in this study suggest their close phylogenetic relationship with other species of this subclade inhabiting the southern Puna region of Argentina, such as Phymaturus punae. Within the Puna subclade, Phymaturus aguanegra sp. nov. differs from all other members (P. antofagastensis, P. denotatus, P. laurenti, P punae, P extrilidus, P mallimaccii and P paihuanense) exhibiting the following combination of diagnostic characters: a complete melanism over the dorsum of neck, the presence of enlarged scales at the base of tail in males, having strongly keeled tarsal scales, lacking enlarged scales on the anterior margin of the antehumeral fold and centre of chest, females without flank coloration, a vertebral dark gray stripe usually present on the dorsum, females exhibiting a tricolor dorsal pattern, with two types of brown and scattered ferriferous oxide spots, and the

  20. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Perry, F. V.; Crowe, G. A.; Valentine, G. A.; Bowker, L. M.

    1997-09-23

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The distribution of Pliocene and Quaternary basaltic volcanic centers is evaluated with respect to tectonic models for detachment, caldera, regional and local rifting, and the Walker Lane structural zone. Geophysical data are described for the YMR and are used as an aid to understand the distribution of past basaltic volcanic centers and possible future magmatic processes. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the

  1. Fog Collection and its Variability in the Andean Mountain Range of Colombia: A Possible Source for Water Supply?

    Science.gov (United States)

    Molina, J. M.

    2008-12-01

    Hydrological droughts occur naturally in some regions of the Colombian Andean watersheds, some of them associated with large-scale climatic phenomena like El Nino. The associated water scarcity is aggravated by an advancing deforestation of the native highland forests. These events have negative consequences for the environment and for human development. Low water availability in arid/semiarid regions and water scarcity in surface sources in mountainous zones could be managed partially by means of water from fog collection. To date, fog collection variability and potential use of fog water as an alternative for water supply has not been evaluated in Colombia. This study evaluates the spatial and temporal fog collection variability and analyses the potential use of fog as an alternative source of water supply in an Andean rural region of southern Colombia, which is highly affected by droughts and low water availability. Fog collection experiments were carried out, and data collection covered both dry and rainy seasons in the period 2003 - 2005, with daily data registration of fog collection and drizzle/precipitation. Twelve Standard Fog Collectors (SFC), built from polypropylene mesh with a vertical collection surface of 1.0 m2, were installed in a mountainous zone with an area of approximately 500 ha, ranging from 1,680 to 1,850 m a.s.l. Chilean meshes with several shade coefficients were tested. In order to assess the spatial fog variability, isolines of fog-water collection rates were estimated using Kriging as the interpolation method. Our results suggest a high potential for the use of fog to supply domestic water requirements in rural areas. Also, the observed collection yields are consistent with some experimental results of fog harvesting from other countries in South America. Annual average collection rates amounted to 4.2 l/m2/day for precipitation + fog, and 3.3 l/m2/day for fog only. The temporal analysis indicates that the most important month for fog

  2. Field-trip guides to selected volcanoes and volcanic landscapes of the western United States

    Science.gov (United States)

    ,

    2017-06-23

    The North American Cordillera is home to a greater diversity of volcanic provinces than any comparably sized region in the world. The interplay between changing plate-margin interactions, tectonic complexity, intra-crustal magma differentiation, and mantle melting have resulted in a wealth of volcanic landscapes.  Field trips in this guide book collection (published as USGS Scientific Investigations Report 2017–5022) visit many of these landscapes, including (1) active subduction-related arc volcanoes in the Cascade Range; (2) flood basalts of the Columbia Plateau; (3) bimodal volcanism of the Snake River Plain-Yellowstone volcanic system; (4) some of the world’s largest known ignimbrites from southern Utah, central Colorado, and northern Nevada; (5) extension-related volcanism in the Rio Grande Rift and Basin and Range Province; and (6) the eastern Sierra Nevada featuring Long Valley Caldera and the iconic Bishop Tuff.  Some of the field trips focus on volcanic eruptive and emplacement processes, calling attention to the fact that the western United States provides opportunities to examine a wide range of volcanological phenomena at many scales.The 2017 Scientific Assembly of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) in Portland, Oregon, was the impetus to update field guides for many of the volcanoes in the Cascades Arc, as well as publish new guides for numerous volcanic provinces and features of the North American Cordillera. This collection of guidebooks summarizes decades of advances in understanding of magmatic and tectonic processes of volcanic western North America. These field guides are intended for future generations of scientists and the general public as introductions to these fascinating areas; the hope is that the general public will be enticed toward further exploration and that scientists will pursue further field-based research.

  3. Disruptive event analysis: volcanism and igneous intrusion

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1980-08-01

    An evaluation is made of the disruptive effects of volcanic activity with respect to long term isolation of radioactive waste through deep geologic storage. Three major questions are considered. First, what is the range of disruption effects of a radioactive waste repository by volcanic activity. Second, is it possible, by selective siting of a repository, to reduce the risk of disruption by future volcanic activity. And third, can the probability of repository disruption by volcanic activity be quantified. The main variables involved in the evaluation of the consequences of repository disruption by volcanic activity are the geometry of the magma-repository intersection (partly controlled by depth of burial) and the nature of volcanism. Potential radionuclide dispersal by volcanic transport within the biosphere ranges in distance from several kilometers to global. Risk from the most catastrophic types of eruptions can be reduced by careful site selection to maximize lag time prior to the onset of activity. Certain areas or volcanic provinces within the western United States have been sites of significant volcanism and should be avoided as potential sites for a radioactive waste repository. Examples of projection of future sites of active volcanism are discussed for three areas of the western United States. Probability calculations require two types of data: a numerical rate or frequency of volcanic activity and a numerical evaluation of the areal extent of volcanic disruption for a designated region. The former is clearly beyond the current state of art in volcanology. The latter can be approximated with a reasonable degree of satisfaction. In this report, simplified probability calculations are attempted for areas of past volcanic activity

  4. Volcanic Tephra ejected in south eastern Asia is the sole cause of all historic ENSO events. This natural aerosol plume has been intensified by an anthropogenic plume in the same region in recent decades which has intensified some ENSO events and altered the Southern Oscillation Index characteristics

    Science.gov (United States)

    Potts, K. A.

    2017-12-01

    ENSO events are the most significant perturbation of the climate system. Previous attempts to link ENSO with volcanic eruptions typically failed because only large eruptions across the globe which eject tephra into the stratosphere were considered. I analyse all volcanic eruptions in South Eastern (SE) Asia (10ºS to 10ºN and from 90ºE to 160ºE) the most volcanically active area in the world with over 23% of all eruptions in the Global Volcanism Program database occurring here and with 5 volcanoes stated to have erupted nearly continuously for 30 years. SE Asia is also the region where the convective arm of the thermally direct Walker Circulation occurs driven by the intense equatorial solar radiation which creates the high surface temperature. The volcanic tephra plume intercepts some of the solar radiation by absorption/reflection which cools the surface and heats the atmosphere creating a temperature inversion compared to periods without the plume. This reduces convection and causes the Walker Cell and Trade Winds to weaken. This reduced wind speed causes the central Pacific Ocean to warm which creates convection there which further weakens the Walker Cell. With the reduced wind stress the western Pacific warm pool migrates east. This creates an ENSO event which continues until the tephra plume reduces, typically when the SE Asian monsoon commences, and convection is re-established over SE Asia and the Pacific warm pool migrates back to the west. Correlations of SE Asian tephra and the ENSO indices are typically over 0.80 at p indices. If two events A and B correlate 5 options are available: 1. A causes B; 2. B causes A; 3. C, another event, causes A &B simultaneously; 4. It's a coincidence; and 5. The relationship is complex with feedback. The volcanic correlations only allow options 1 or 4 as ENSO cannot cause volcanoes to erupt and are backed up by several independent satellite datasets. I conclude volcanic and anthropogenic aerosols over SE Asia are the

  5. Low-pressure evolution of arc magmas in thickened crust: The San Pedro-Linzor volcanic chain, Central Andes, Northern Chile

    Science.gov (United States)

    Godoy, Benigno; Wörner, Gerhard; Kojima, Shoji; Aguilera, Felipe; Simon, Klaus; Hartmann, Gerald

    2014-07-01

    Magmatism at Andean Central Volcanic Zone (CVZ), or Central Andes, is strongly influenced by differentiation and assimilation at high pressures that occurred at lower levels of the thick continental crust. This is typically shown by high light to heavy rare earth element ratios (LREE/HREE) of the erupted lavas at this volcanic zone. Increase of these ratios with time is interpreted as a change to magma evolution in the presence of garnet during evolution of Central Andes. Such geochemical signals could be introduced into the magmas be high-pressure fractionation with garnet on the liquidus and/or assimilation from crustal rocks with a garnet-bearing residue. However, lavas erupted at San Pedro-Linzor volcanic chain show no evidence of garnet fractionation in their trace element patterns. This volcanic chain is located in the active volcanic arc, between 22°00‧S and 22°30‧S, over a continental crust ˜70 km thick. Sampled lavas show Sr/Y and Sm/Yb ratios Chile. We relate our geochemical observations to shallow crustal evolution of primitive magmas involving a high degree of assimilation of upper continental crust. We emphasize that low pressure AFC- (Assimilation Fractional Crystallization) type evolution of the San Pedro-Linzor volcanic chain reflects storage, fractionation, and contamination of mantle-derived magmas at the upper felsic crust (<40 km depth). The ascent of mantle-derived magmas to mid-crustal levels is related with the extensional regime that has existed in this zone of arc-front offset since Late-Miocene age, and the relatively thin portion of mafic lower crust observed below the volcanic chain.

  6. Changes in the As solid speciation during weathering of volcanic ashes: A XAS study on Patagonian ashes and Chacopampean loess

    Science.gov (United States)

    Bia, G.; García, M. G.; Borgnino, L.

    2017-09-01

    X-ray absorption spectroscopy (XAS) was used to determine the oxidation state of As, local chemical coordination and the relative proportion of different As species in recent and ancient Andean volcanic ashes, as well as in Chaco Pampean loess. As K edge XANES analysis indicates that in loess sediments the dominant species is As(V) (i.e., >91%). Conversely, As(III) is dominant in all ash samples. In the Puyehue sample, only As(III) species were determined, while in both, the Chaitén and the ancient tephra samples, As(III) species accounts for 66% of the total As. The remaining 34% corresponds to As(-1) in the Chaitén sample and to As(V) in the weathered tephra. The proposed EXAFS models fit well with the experimental data, suggesting that in ancient and recent volcanic ashes, As(III) is likely related to As atoms present as impurities within the glass structure, forming hydroxide species bound to the Al-Si network. In addition, the identified As(-1) species is related to arsenian pyrite, while in the ancient volcanic ash, As(V) was likely a product of incipient weathering. In loess sediments, the identified As(V) species represents arsenate ions adsorbed onto Fe oxy(hydr)oxides, forming inner-sphere surface complexes, in a bidentate binuclear configuration.

  7. Global CO2 Emission from Volcanic Lakes

    Science.gov (United States)

    Perez, N.; Hernandez Perez, P. A.; Padilla, G.; Melian Rodriguez, G.; Padron, E.; Barrancos, J.; Calvo, D.; Kusukabe, M.; Mori, T.; Nolasco, D.

    2009-12-01

    During the last two decades, scientists have paid attention to CO2 volcanic emissions and its contribution to the global C budget. Excluding MORBs as a net source of CO2 to the atmosphere, the global CO2 discharge from subaerial volcanism has been estimated about 300 Mt y-1 and this rate accounts for both visible (plume & fumaroles) and non-visible (diffuse) volcanic gas emanations (Mörner & Etíope, 2002). However, CO2 emissions from volcanic lakes have not been considered to estimate the global CO2 discharge from subaerial volcanoes. In order to improve this global CO2 emission rate and estimate the global CO2 emission from volcanic lakes, an extensive research on CO2 emission of volcanic lakes from Phillipines, Nicaragua, Guatemala, Mexico, Indonesia, Germany, France, Cameroon, Costa Rica, El Salvador and Ecuador had been recently carried out. In-situ measurements of CO2 efflux from the surface environment of volcanic lakes were performed by means of a modified floating device of the accumulation chamber method. To quantify the total CO2 emission from each volcanic lake, CO2 efflux maps were constructed using sequential Gaussian simulations (sGs). CO2 emission rates were normalized by the lake area (km2), and volcanic lakes were grouped following classification in acid, alkaline and neutral lakes. The observed average normalized CO2 emission rate values increase from alkaline (5.5 t km-2 d-1), neutral (210.0 t km-2 d-1), to acid (676.8 t km-2 d-1) volcanic lakes. Taking into account (i) these normalized CO2 emission rates from 31 volcanic lakes, (ii) the number of volcanic lakes in the world (~ 1100), (iii) the fraction of the investigated alkaline (45%), neutral (39%), and acid (16%) volcanic lakes, and (iv) the average areas of the investigated alkaline (36,8 km2), neutral (3,7 km2), and acid (0,5 km2) volcanic lakes; the global CO2 emission from volcanic lakes is about ~ 182 Mt year-1. This estimated value is about ~ 50% of the actual estimated global CO2

  8. Long term diet differences between morphs in trophically polymorphic Percichthys trucha (Pisces : Percichthyidae) populations from the southern Andes

    DEFF Research Database (Denmark)

    Logan, M.S.; Iverson, S.J.; Ruzzante, D.E.

    2000-01-01

    in resource use by two recently described sympatric morphs of Perichthys trucha, a common freshwater fish of the Andean and Patagonian regions of South America. Because dietary fatty acids are often stored in carnivorous animals with little modification after consumption, they can be used to infer information...... about dietary habits of individuals. We found that the two morphs differed in the overall composition of fatty acids in both adipose and muscle tissue, but that there were some differences in how the morphs differed in lakes from the northern vs southern part of the range. Furthermore, we found...... and also amphipods in the diets. Taken together, the results suggest that there are marked differences in the foraging ecology of the two morphs of P. trucha inhabiting southern Andean lakes. (C) 2000 The Linnean Society of London...

  9. Phylogeny and historical biogeography of trans-Andean cichlid fishes (Teleostei: Cichlidae)

    Czech Academy of Sciences Publication Activity Database

    Musilová, Zuzana; Říčan, O.; Říčanová, Š.; Janšta, P.; Gahura, O.; Novák, J.

    2015-01-01

    Roč. 65, č. 3 (2015), s. 333-350 ISSN 1864-5755 R&D Projects: GA MŠk LC06073 Institutional support: RVO:67985904 Keywords : Andean uplift * Andinoacara * Mesoheros Subject RIV: EG - Zoology Impact factor: 0.722, year: 2015

  10. Andean mountain building and magmatic arc migration driven by subduction-induced whole mantle flow

    NARCIS (Netherlands)

    Schellart, W. P.

    2017-01-01

    Subduction along the western margin of South America has been active since the Jurassic, but Andean orogeny started in the middle Cretaceous and was preceded by backarc extension in the Jurassic-Early Cretaceous. The timing and sequence of these events has remained unexplained. Here I present a

  11. Persistence of chironomids in metal polluted Andean high altitude streams: does melanin play a role?

    NARCIS (Netherlands)

    Loayza Muro, R.A.; Marticorena-Ruíz, J.K.; Palomino, E.J.; Merritt, C.; de Baat, M.L.; van Gemert, M.; Verweij, R.A.; Kraak, M.H.S.; Admiraal, W.

    2013-01-01

    In high altitude Andean streams an intense solar radiation and coinciding metal pollution allow the persistence of only a few specialized taxa, including chironomids. The aim of the present study was therefore to determine the mechanisms underlying the persistence of chironomids under these multiple

  12. Photos provide information on age, but not kinship, of Andean bear

    Directory of Open Access Journals (Sweden)

    Russell C. Van Horn

    2015-07-01

    Full Text Available Using photos of captive Andean bears of known age and pedigree, and photos of wild Andean bear cubs <6 months old, we evaluated the degree to which visual information may be used to estimate bears’ ages and assess their kinship. We demonstrate that the ages of Andean bear cubs ≤6 months old may be estimated from their size relative to their mothers with an average error of <0.01 ± 13.2 days (SD; n = 14, and that ages of adults ≥10 years old may be estimated from the proportion of their nose that is pink with an average error of <0.01 ± 3.5 years (n = 41. We also show that similarity among the bears’ natural markings, as perceived by humans, is not associated with pedigree kinship among the bears (R2 < 0.001, N = 1,043, p = 0.499. Thus, researchers may use photos of wild Andean bears to estimate the ages of young cubs and older adults, but not to infer their kinship. Given that camera trap photos are one of the most readily available sources of information on large cryptic mammals, we suggest that similar methods be tested for use in other poorly understood species.

  13. Dispersal, isolation and diversification with continued gene flow in an Andean tropical dry forest.

    Science.gov (United States)

    Toby Pennington, R; Lavin, Matt

    2017-07-01

    The Andes are the world's longest mountain chain, and the tropical Andes are the world's richest biodiversity hot spot. The origin of the tropical Andean cordillera is relatively recent because the elevation of the mountains was relatively low (400-2500 m palaeoelevations) only 10 MYA with final uplift being rapid. These final phases of the Andean orogeny are thought to have had a fundamental role in shaping processes of biotic diversification and biogeography, with these effects reaching far from the mountains themselves by changing the course of rivers and deposition of mineral-rich Andean sediments across the massive Amazon basin. In a recent issue of Molecular Ecology, Oswald, Overcast, Mauck, Andersen, and Smith (2017) investigate the biogeography and diversification of bird species in the Andes of Peru and Ecuador. Their study is novel in its focus on tropical dry forests (Figure 1) rather than more mesic biomes such as rain forests, cloud forests and paramos, which tend to be the focus of science and conservation in the Andean hot spot. It is also able to draw powerful conclusions via the first deployment of genomic approaches to a biogeographic question in the threatened dry forests of the New World. © 2017 John Wiley & Sons Ltd.

  14. Regional water resources management in the Andean region with numerical models and satellite remote sensing

    NARCIS (Netherlands)

    Menenti, M.; Mulders, C.W.B.

    1999-01-01

    This report describes the development and adaptation of distributed numerical simulation models of hydrological processes in complex watersheds typical of the Andean region. These distributed models take advantage of the synoptic capabilities of sensors on-board satellites and GIS procedures have

  15. Trade in Andean Condor Vulture gryphus feathers and body parts in ...

    African Journals Online (AJOL)

    body parts in the city of Cusco and the Sacred Valley,. Cusco region, Peru. Robert S. R. ... The sale of Andean Condor feathers and body parts is undertaken openly in the tourist markets of Cusco and the Sacred .... and shops. Prices in local currency – Nuevo Sol and US Dollar equivalent given in parentheses). Feather.

  16. Felsic Volcanics on the Moon

    Science.gov (United States)

    Jolliff, B. L.; Lawrence, S. J.; Stopar, J.; Braden, S.; Hawke, B. R.; Robinson, M. S.; Glotch, T. D.; Greenhagen, B. T.; Seddio, S. M.

    2012-12-01

    Lunar Reconnaissance Orbiter (LRO) imaging and thermal data provide new morphologic and compositional evidence for features that appear to be expressions of nonmare silicic volcanism. Examples reflecting a range of sizes and volcanic styles include the Gruithuisen and Mairan Domes, and the Hansteen Alpha (H-A) and Compton-Belkovich (C-B) volcanic complexes. In this work we combine new observations with existing compositional remote sensing and Apollo sample data to assess possible origins. Images and digital topographic data at 100 m scale (Wide Angle Camera) and ~0.5 to 2 m (Narrow Angle Camera) reveal (1) slopes on volcanic constructs of ~12° to 27°, (2) potential endogenic summit depressions, (3) small domical features with dense boulder populations, and (4) irregular collapse features. Morphologies in plan view range from the circular to elliptical Gruithuisen γ and δ domes (~340 km2 each), to smaller cumulodomes such as Mairan T and C-B α (~30 km2, each), to the H-A (~375 km2) and C-B (~680 km2) volcanic complexes. Heights range from ~800-1800 m, and most domes are relatively flat-topped or have a central depression. Positions of the Christiansen Feature in LRO Diviner data reflect silicic compositions [1]. Clementine UVVIS-derived FeO varies from ~5 to 10 wt%. Lunar Prospector Th data indicate model values of 20-55 ppm [2,3], which are consistent with compositions ranging from KREEP basalt to lunar granite. The Apollo collection contains small rocks and breccia clasts of felsic/granitic lithologies. Apollo 12 samples include small, pristine and brecciated granitic rock fragments and a large, polymict breccia (12013) consisting of felsic material (quartz & K-feldspar-rich) and mafic phases (similar to KREEP basalt). Many of the evolved lunar rocks have geochemically complementary compositions. The lithologic associations and the lack of samples with intermediate composition suggest a form of magmatic differentiation that produced mafic and felsic

  17. Tracking the Tristan-Gough mantle plume using discrete chains of intraplate volcanic centers buried in the Walvis Ridge

    NARCIS (Netherlands)

    O'Connor, J.M.; Jokat, W.

    2015-01-01

    Resolving the age-distance relation of volcanism along the Walvis Ridge (southern Atlantic Ocean) is essential to understanding relative motion between the African plate and the Tristan-Gough mantle plume since the opening of the South Atlantic. However, tracking the location of the Tristan-Gough

  18. Volcanic Ash Nephelometer Probe, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced dropsondes that could effectively be guided through atmospheric regions of interest such as volcanic plumes may enable unprecedented observations of...

  19. Nephelometric Dropsonde for Volcanic Ash, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced dropsondes that could effectively be guided through atmospheric regions of interest such as volcanic plumes could enable unprecedented observations of...

  20. Thermal vesiculation during volcanic eruptions.

    Science.gov (United States)

    Lavallée, Yan; Dingwell, Donald B; Johnson, Jeffrey B; Cimarelli, Corrado; Hornby, Adrian J; Kendrick, Jackie E; von Aulock, Felix W; Kennedy, Ben M; Andrews, Benjamin J; Wadsworth, Fabian B; Rhodes, Emma; Chigna, Gustavo

    2015-12-24

    Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the 'strength' of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive

  1. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data.

    Science.gov (United States)

    Bigham, Abigail; Bauchet, Marc; Pinto, Dalila; Mao, Xianyun; Akey, Joshua M; Mei, Rui; Scherer, Stephen W; Julian, Colleen G; Wilson, Megan J; López Herráez, David; Brutsaert, Tom; Parra, Esteban J; Moore, Lorna G; Shriver, Mark D

    2010-09-09

    High-altitude hypoxia (reduced inspired oxygen tension due to decreased barometric pressure) exerts severe physiological stress on the human body. Two high-altitude regions where humans have lived for millennia are the Andean Altiplano and the Tibetan Plateau. Populations living in these regions exhibit unique circulatory, respiratory, and hematological adaptations to life at high altitude. Although these responses have been well characterized physiologically, their underlying genetic basis remains unknown. We performed a genome scan to identify genes showing evidence of adaptation to hypoxia. We looked across each chromosome to identify genomic regions with previously unknown function with respect to altitude phenotypes. In addition, groups of genes functioning in oxygen metabolism and sensing were examined to test the hypothesis that particular pathways have been involved in genetic adaptation to altitude. Applying four population genetic statistics commonly used for detecting signatures of natural selection, we identified selection-nominated candidate genes and gene regions in these two populations (Andeans and Tibetans) separately. The Tibetan and Andean patterns of genetic adaptation are largely distinct from one another, with both populations showing evidence of positive natural selection in different genes or gene regions. Interestingly, one gene previously known to be important in cellular oxygen sensing, EGLN1 (also known as PHD2), shows evidence of positive selection in both Tibetans and Andeans. However, the pattern of variation for this gene differs between the two populations. Our results indicate that several key HIF-regulatory and targeted genes are responsible for adaptation to high altitude in Andeans and Tibetans, and several different chromosomal regions are implicated in the putative response to selection. These data suggest a genetic role in high-altitude adaption and provide a basis for future genotype/phenotype association studies necessary

  2. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data.

    Directory of Open Access Journals (Sweden)

    Abigail Bigham

    2010-09-01

    Full Text Available High-altitude hypoxia (reduced inspired oxygen tension due to decreased barometric pressure exerts severe physiological stress on the human body. Two high-altitude regions where humans have lived for millennia are the Andean Altiplano and the Tibetan Plateau. Populations living in these regions exhibit unique circulatory, respiratory, and hematological adaptations to life at high altitude. Although these responses have been well characterized physiologically, their underlying genetic basis remains unknown. We performed a genome scan to identify genes showing evidence of adaptation to hypoxia. We looked across each chromosome to identify genomic regions with previously unknown function with respect to altitude phenotypes. In addition, groups of genes functioning in oxygen metabolism and sensing were examined to test the hypothesis that particular pathways have been involved in genetic adaptation to altitude. Applying four population genetic statistics commonly used for detecting signatures of natural selection, we identified selection-nominated candidate genes and gene regions in these two populations (Andeans and Tibetans separately. The Tibetan and Andean patterns of genetic adaptation are largely distinct from one another, with both populations showing evidence of positive natural selection in different genes or gene regions. Interestingly, one gene previously known to be important in cellular oxygen sensing, EGLN1 (also known as PHD2, shows evidence of positive selection in both Tibetans and Andeans. However, the pattern of variation for this gene differs between the two populations. Our results indicate that several key HIF-regulatory and targeted genes are responsible for adaptation to high altitude in Andeans and Tibetans, and several different chromosomal regions are implicated in the putative response to selection. These data suggest a genetic role in high-altitude adaption and provide a basis for future genotype/phenotype association

  3. Andean Condor (Vultur gryphus) in Ecuador: Geographic Distribution, Population Size and Extinction Risk.

    Science.gov (United States)

    Naveda-Rodríguez, Adrián; Vargas, Félix Hernán; Kohn, Sebastián; Zapata-Ríos, Galo

    2016-01-01

    The Andean Condor (Vultur gryphus) in Ecuador is classified as Critically Endangered. Before 2015, standardized and systematic estimates of geographic distribution, population size and structure were not available for this species, hampering the assessment of its current status and hindering the design and implementation of effective conservation actions. In this study, we performed the first quantitative assessment of geographic distribution, population size and population viability of Andean Condor in Ecuador. We used a methodological approach that included an ecological niche model to study geographic distribution, a simultaneous survey of 70 roosting sites to estimate population size and a population viability analysis (PVA) for the next 100 years. Geographic distribution in the form of extent of occurrence was 49 725 km2. During a two-day census, 93 Andean Condors were recorded and a population of 94 to 102 individuals was estimated. In this population, adult-to-immature ratio was 1:0.5. In the modeled PVA scenarios, the probability of extinction, mean time to extinction and minimum population size varied from zero to 100%, 63 years and 193 individuals, respectively. Habitat loss is the greatest threat to the conservation of Andean Condor populations in Ecuador. Population size reduction in scenarios that included habitat loss began within the first 15 years of this threat. Population reinforcement had no effects on the recovery of Andean Condor populations given the current status of the species in Ecuador. The population size estimate presented in this study is the lower than those reported previously in other countries where the species occur. The inferences derived from the population viability analysis have implications for Condor management in Ecuador. This study highlights the need to redirect efforts from captive breeding and population reinforcement to habitat conservation.

  4. New insights on regional tectonics and crustal composition of the eastern Sierras Pampeanas in the Andean back arc region, Argentina (31-32ºS)

    Science.gov (United States)

    Ammirati, J. B.; Venerdini, A. L.; Alvarado, P. M.; Gilbert, H. J.

    2017-12-01

    Within the flat slab region of the south central Andes, the eastern Sierras Pampeanas (ESP) are the easternmost expression of a series of foreland uplifts affecting the Argentine back arc region ( 31-32ºS). This important crustal deformation has been related to the subduction of the Juan Fernández Ridge (JFR) under the South American plate. Geological observations suggest that the regional crustal structure is inherited from the accretion of different terranes during the Ordovician and later reactivated since the Miocene during the Andean compression. Geophysical experiments allowed to image how the structure observed at the surface behave in depth as décollement levels that accommodate regional crustal shortening. In order to get new insights on the mechanisms that control crustal regional tectonics, we computed teleseismic receiver functions (RF) and jointly invert them with Rayleigh-wave phase velocity dispersion curves. RFs allow resolving crustal thickness and intra crustal velocity variations with a good vertical resolution whereas surface wave information helps to constrain absolute seismic wave velocities. Our results show how the crustal thickness is increasing to the west with an important step in Moho depth. We observe that this step presents a NW-SE orientation, parallel to the trace at the surface of the Valle Fértil - La Huerta (SVF-LH) fault which suggest that this Moho step marks the transition in depth between the Pampia terrane (east) and the Cuyania terrane (west). Our images also reveal the presence of a high wave velocity lower crust west of this Moho step, beneath the eastern Sierras Pampeanas. This observation suggests that the SVF-LH fault is underthrusting the Cuyania lower crust under the Pampia terrane. Finally, our seismic images show very localized low velocity zones located at 10 km beneath late Cenozoic volcanic fields. We believe that these low velocity zones correspond to old magma chambers associated to the recent flat slab

  5. Comparative study of lahars generated by the 1961 and 1971 eruptions of Calbuco and Villarrica volcanoes, Southern Andes of Chile

    Science.gov (United States)

    Castruccio, Angelo; Clavero, Jorge; Rivera, Andrés

    2010-02-01

    The Villarrica and Calbuco volcanoes, of the Andean Southern Volcanic Zone, are two of the most active volcanoes in Chile and have erupted several times in the XX century. The 1961 eruption at Calbuco volcano generated lahars on the North, East and Southern flanks, while the 1971 eruption at Villarrica volcano generated lahars in almost all the drainages towards the north, west and south of the volcano. The deposits from these eruptions in the Voipir and Chaillupén River (Villarrica) and the Tepú River (Calbuco) are studied. The 1971 lahar deposits on Villarrica volcano show a great number of internal structures such as lamination, lenses, grading of larger clasts and a great abundance of large floating blocks on top of the deposits. The granulometry can be unimodal or bimodal with less than 5% by weight of silt + clay material. SEM images reveal a great variety of forms and compositions of clasts. The 1961 lahar deposits on Calbuco volcano have a scarce number of internal structures, steeper margins and features of hot emplacement such as semi-carbonized vegetal rests, segregation pipes and a more consolidated matrix. The granulometry usually is bimodal with great quantities of silt + clay material (> 10% by weight). SEM images show a uniformity of composition and forms of clasts. Differences on deposits reveal different dynamics on both lahars. The Villarrica lahar was generated by sudden melt of ice and snow during the paroxysmal phase of the 1971 eruption, when a high fountain of lava was formed. The melted water flowed down on the flanks of the volcano and incorporated sediments to become transition flows, highly energetic and were emplaced incrementally. Dilution of the flows occurs when the lahars reached unconfined and flatter areas. In cases where the lahar flow found large water streams, dilution is enhanced. The Calbuco lahars were generated by the dilution of block and ash pyroclastic flows by flowing over the ice or snow or by entering active rivers

  6. Observing the Impact of Calbuco Volcanic Aerosols on South Polar Ozone Depletion in 2015

    OpenAIRE

    Stone, KA; Solomon, S; Kinnison, DE; Pitts, MC; Poole, LR; Mills, MJ; Schmidt, Anja; Neely, RR; Ivy, D; Schwartz, MJ; Vernier, JP; Johnson, BJ; Tully, MB; Klekociuk, AR; König-Langlo, G

    2017-01-01

    The Southern Hemisphere Antarctic stratosphere experienced two noteworthy events in 2015: a significant injection of sulfur from the Calbuco volcanic eruption in Chile in April and a record-large Antarctic ozone hole in October and November. Here we quantify Calbuco's influence on stratospheric ozone depletion in austral spring 2015 using observations and an Earth system model. We analyze ozonesondes, as well as data from the Microwave Limb Sounder. We employ the Community Earth System Model,...

  7. Unveiling current Guanaco distribution in chile based upon niche structure of phylogeographic lineages: Andean puna to subpolar forests.

    Directory of Open Access Journals (Sweden)

    Benito A González

    Full Text Available Niche description and differentiation at broad geographic scales have been recent major topics in ecology and evolution. Describing the environmental niche structure of sister taxa with known evolutionary trajectories stands out as a useful exercise in understanding niche requirements. Here we model the environmental niche structure and distribution of the recently resolved phylogeography of guanaco (Lama guanicoe lineages on the western slope of the southern Andes. Using a maximum entropy framework, field data, and information on climate, topography, human density, and vegetation cover, we identify differences between the two subspecies (L.g.cacsilensis, L.g.guanicoe and their intermediate-hybrid lineage, that most likely determine the distribution of this species. While aridity seems to be a major factor influencing the distribution at the species-level (annual precipitation <900 mm, we also document important differences in niche specificity for each subspecies, where distribution of Northern lineage is explained mainly by elevation (mean = 3,413 m and precipitation seasonality (mean = 161 mm, hybrid lineage by annual precipitation (mean = 139 mm, and Southern subspecies by annual precipitation (mean = 553 mm, precipitation seasonality (mean = 21 mm and grass cover (mean = 8.2%. Among lineages, we detected low levels of niche overlap: I (Similarity Index = 0.06 and D (Schoener's Similarity Index = 0.01; and higher levels when comparing Northern and Southern subspecies with hybrids lineage ( I = 0.32-0.10 and D = 0.12-0.03, respectively. This suggests that important ecological and/or evolutionary processes are shaping the niche of guanacos in Chile, producing discrepancies when comparing range distribution at the species-level (81,756 km(2 with lineages-level (65,321 km(2. The subspecies-specific description of niche structure is provided here based upon detailed spatial distribution of the lineages of guanacos in Chile. Such description

  8. Long-term monitoring of tropical alpine habitat change, Andean anurans, and chytrid fungus in the Cordillera Vilcanota, Peru: Results from a decade of study.

    Science.gov (United States)

    Seimon, Tracie A; Seimon, Anton; Yager, Karina; Reider, Kelsey; Delgado, Amanda; Sowell, Preston; Tupayachi, Alfredo; Konecky, Bronwen; McAloose, Denise; Halloy, Stephan

    2017-03-01

    The Cordillera Vilcanota in southern Peru is the second largest glacierized range in the tropics and home to one of the largest high-alpine lakes, Sibinacocha (4,860 m). Here, Telmatobius marmoratus (marbled water frog), Rhinella spinulosa (Andean toad), and Pleurodema marmoratum (marbled four-eyed frog) have expanded their range vertically within the past century to inhabit newly formed ponds created by ongoing deglaciation. These anuran populations, geographically among the highest (5,200-5,400 m) recorded globally, are being impacted by the chytrid fungus Batrachochytrium dendrobatidis ( Bd ), and the disease it causes, chytridiomycosis. In this study, we report results from over a decade of monitoring these three anuran species, their habitat, and Bd infection status. Our observations reveal dynamic changes in habitat including ongoing rapid deglaciation (18.4 m/year widening of a corridor between retreating glaciers from 2005 to 2015), new pond formation, changes in vegetation in amphibian habitat, and widespread occurrence of Bd in amphibians in seven sites. Three of these sites have tested positive for Bd over a 9- to 12-year period. In addition, we observed a widespread reduction in T. marmoratus encounters in the Vilcanota in 2008, 2009, and 2012, while encounters increased in 2013 and 2015. Despite the rapid and dynamic changes in habitat under a warming climate, continued presence of Bd in the environment for over a decade, and a reduction in one of three anuran species, we document that these anurans continue to breed and survive in this high Andean environment. High variability in anuran encounters across sites and plasticity in these populations across habitats, sites, and years are all factors that could favor repopulation postdecline. Preserving the connectivity of wetlands in the Cordillera Vilcanota is therefore essential in ensuring that anurans continue to breed and adapt as climate change continues to reshape the environment.

  9. A decade of global volcanic SO2 emissions measured from space

    Science.gov (United States)

    Carn, S. A.; Fioletov, V. E.; McLinden, C. A.; Li, C.; Krotkov, N. A.

    2017-03-01

    The global flux of sulfur dioxide (SO2) emitted by passive volcanic degassing is a key parameter that constrains the fluxes of other volcanic gases (including carbon dioxide, CO2) and toxic trace metals (e.g., mercury). It is also a required input for atmospheric chemistry and climate models, since it impacts the tropospheric burden of sulfate aerosol, a major climate-forcing species. Despite its significance, an inventory of passive volcanic degassing is very difficult to produce, due largely to the patchy spatial and temporal coverage of ground-based SO2 measurements. We report here the first volcanic SO2 emissions inventory derived from global, coincident satellite measurements, made by the Ozone Monitoring Instrument (OMI) on NASA’s Aura satellite in 2005-2015. The OMI measurements permit estimation of SO2 emissions from over 90 volcanoes, including new constraints on fluxes from Indonesia, Papua New Guinea, the Aleutian Islands, the Kuril Islands and Kamchatka. On average over the past decade, the volcanic SO2 sources consistently detected from space have discharged a total of ~63 kt/day SO2 during passive degassing, or ~23 ± 2 Tg/yr. We find that ~30% of the sources show significant decadal trends in SO2 emissions, with positive trends observed at multiple volcanoes in some regions including Vanuatu, southern Japan, Peru and Chile.

  10. A decade of global volcanic SO2 emissions measured from space

    Science.gov (United States)

    Carn, S. A.; Fioletov, V. E.; McLinden, C. A.; Li, C.; Krotkov, N. A.

    2017-01-01

    The global flux of sulfur dioxide (SO2) emitted by passive volcanic degassing is a key parameter that constrains the fluxes of other volcanic gases (including carbon dioxide, CO2) and toxic trace metals (e.g., mercury). It is also a required input for atmospheric chemistry and climate models, since it impacts the tropospheric burden of sulfate aerosol, a major climate-forcing species. Despite its significance, an inventory of passive volcanic degassing is very difficult to produce, due largely to the patchy spatial and temporal coverage of ground-based SO2 measurements. We report here the first volcanic SO2 emissions inventory derived from global, coincident satellite measurements, made by the Ozone Monitoring Instrument (OMI) on NASA’s Aura satellite in 2005–2015. The OMI measurements permit estimation of SO2 emissions from over 90 volcanoes, including new constraints on fluxes from Indonesia, Papua New Guinea, the Aleutian Islands, the Kuril Islands and Kamchatka. On average over the past decade, the volcanic SO2 sources consistently detected from space have discharged a total of ~63 kt/day SO2 during passive degassing, or ~23 ± 2 Tg/yr. We find that ~30% of the sources show significant decadal trends in SO2 emissions, with positive trends observed at multiple volcanoes in some regions including Vanuatu, southern Japan, Peru and Chile. PMID:28275238

  11. A decade of global volcanic SO2emissions measured from space.

    Science.gov (United States)

    Carn, S A; Fioletov, V E; McLinden, C A; Li, C; Krotkov, N A

    2017-03-09

    The global flux of sulfur dioxide (SO 2 ) emitted by passive volcanic degassing is a key parameter that constrains the fluxes of other volcanic gases (including carbon dioxide, CO 2 ) and toxic trace metals (e.g., mercury). It is also a required input for atmospheric chemistry and climate models, since it impacts the tropospheric burden of sulfate aerosol, a major climate-forcing species. Despite its significance, an inventory of passive volcanic degassing is very difficult to produce, due largely to the patchy spatial and temporal coverage of ground-based SO 2 measurements. We report here the first volcanic SO 2 emissions inventory derived from global, coincident satellite measurements, made by the Ozone Monitoring Instrument (OMI) on NASA's Aura satellite in 2005-2015. The OMI measurements permit estimation of SO 2 emissions from over 90 volcanoes, including new constraints on fluxes from Indonesia, Papua New Guinea, the Aleutian Islands, the Kuril Islands and Kamchatka. On average over the past decade, the volcanic SO 2 sources consistently detected from space have discharged a total of ~63 kt/day SO 2 during passive degassing, or ~23 ± 2 Tg/yr. We find that ~30% of the sources show significant decadal trends in SO 2 emissions, with positive trends observed at multiple volcanoes in some regions including Vanuatu, southern Japan, Peru and Chile.

  12. Sensitivity of the regional climate in the Middle East and North Africa to volcanic perturbations

    Science.gov (United States)

    Dogar, Muhammad Mubashar; Stenchikov, Georgiy; Osipov, Sergey; Wyman, Bruce; Zhao, Ming

    2017-08-01

    The Middle East and North Africa (MENA) regional climate appears to be extremely sensitive to volcanic eruptions. Winter cooling after the 1991 Pinatubo eruption far exceeded the mean hemispheric temperature anomaly, even causing snowfall in Israel. To better understand MENA climate variability, the climate responses to the El Chichón and Pinatubo volcanic eruptions are analyzed using observations, NOAA/National Centers for Environmental Prediction Climate Forecast System Reanalysis, and output from the Geophysical Fluid Dynamics Laboratory's High-Resolution Atmospheric Model. A multiple regression analysis both for the observations and the model output is performed on seasonal summer and winter composites to separate out the contributions from climate trends, El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Indian summer monsoon, and volcanic aerosols. Strong regional temperature and precipitation responses over the MENA region are found in both winter and summer. The model and the observations both show that a positive NAO amplifies the MENA volcanic winter cooling. In boreal summer, the patterns of changing temperature and precipitation suggest a weakening and southward shift of the Intertropical Convergence Zone, caused by volcanic surface cooling and weakening of the Indian and West African monsoons. The model captures the main features of the climate response; however, it underestimates the total cooling, especially in winter, and exhibits a different spatial pattern of the NAO climate response in MENA compared to the observations. The conducted analysis sheds light on the internal mechanisms of MENA climate variability and helps to selectively diagnose the model deficiencies.

  13. Cenozoic volcanic rocks of Saudi Arabia

    Science.gov (United States)

    Coleman, R.G.; Gregory, R.T.; Brown, G.F.

    2016-01-01

    The Cenozoic volcanic rocks of Saudi Arabia cover about 90,000 km2, one of the largest areas of alkali olivine basalt in the world. These volcanic rocks are in 13 separate fields near the eastern coast of the Red Sea and in the western Arabian Peninsula highlands from Syria southward to the Yemen Arab Republic.

  14. Small volcanic eruptions and the stratospheric sulfate aerosol burden

    Science.gov (United States)

    Pyle, David M.

    2012-09-01

    least 1.3-1.5 Tg of SO2 (Krotkov et al 2011, Clarisse et al 2012). This was probably the largest sulfur yield from an explosive eruption since Pinatubo and Hudson in 1991 (Deshler et al 2006, Krotkov et al 2010). Within two weeks, volcanic aerosol had been detected at elevations of 15-20 km within the upper troposphere/lower stratosphere above north Africa and southern Eurasia; and within a month, the aerosol had been detected by lidar instruments on every continent in the northern hemisphere, from 20°-45°N. The aerosol, presumed to be dominated by sulfate, persisted for the period of observation (June-September 2011), and led to a small but significant stratospheric aerosol optical depth (AOD) perturbation (average ~0.02). While this is an order of magnitude lower than global AOD perturbations following the most significant eruptions of the 20th century (e.g. Stothers 1996), it is nonetheless substantially larger than estimates of the typical 'nonvolcanic' stratospheric aerosol background ( F 2012 Retrieval of sulphur dioxide from the infrared atmospheric sounding interferometer (IASI) Atmos. Meas. Technol. 5 581-94 Deshler T 2008 A review of global stratospheric aerosol: measurements, importance, life cycle and local stratospheric aerosol Atmos. Res. 90 223-32 Deshler T et al 2006 Trends in the nonvolcanic component of stratospheric aerosol over the period 1971-2004 J. Geophys. Res. 111 D01201 English J M, Toon O B and Mills M J 2012 Microphysical simulations of sulphur burdens from stratospheric sulphur geoengineering Atmos. Chem. Phys. 12 4775-93 Flentje H et al 2010 The Eyjafjallajökull eruption in April 2010—detection of volcanic plume using in situ measurements, ozone sondes and lidar-ceilometer profiles Atmos. Chem. Phys. 10 10085-92 Hamilton K 2012 Sereno Bishop, Rollo Russell, Bishop's Ring and the discovery of the 'Krakatoa easterlies' Atmos. Ocean 50 169-75 Harrison R G, Nicoll K A, Ulanowski Z and Mather T A 2010 Self-charging of the Eyjafjallaj

  15. 3-D velocity structures, seismicity patterns, and their tectonic implications across the Andean Foreland of San Juan Argentina

    Science.gov (United States)

    Asmerom, Biniam Beyene

    Three-dimensional velocity structures and seismicity patterns have been studied across the Andean Foreland of San Juan Argentina using data acquired by PANDA deployment. Distinct velocity variations are revealed between Precordillera in the west and Pie de Palo in the east. The low velocity anomaly beneath Precordillera is associated with the presence of thick sedimentary rocks and thick sediment cover of Matagusanos valley. Similarly, the high velocity anomaly east of Eastern Precordillera is correlated with the presence of basement rocks. These anomalies are observed from the station corrections of Joint Hypocentral Determination (JHD) analysis. A northeast trending west dipping high velocity anomaly is imaged beneath the southern half of Pie de Palo. This anomaly represents a Grenvillian suture zone formed when Pie de Palo collided with the Precordillera. Relocated seismicity using 3-D Vp and Vs models obtained in this study revealed crustal scale buried faults beneath the Eastern Precordillera and Sierra Pie de Palo. The fault defined by the seismicity extend down to a depth of ˜ 40 km and ~35 km beneath Precordillera and Pie de Palo, respectively, defining the lower bound of the brittle to ductile transition of the crust. These results confirm that present day active crustal thickening involves the entire crust in the tectonic process and results in thick-skinned deformation beneath both the Eastern Precordillera and Pie de Palo. Based on the seismicity pattern, geomorphology, and velocity structures, Sierra Pie de Palo, a basement uplift block, can be divided into two separate semi-blocks separated by a northeast trending fracture zone. The northern block is characterized by a well-defined west dipping fault and low Vp/Vs ratio particularly at a depth of 12 to 16 km, while the southern block shows a poorly-defined east dipping fault with high Vp/Vs ratio at a depth of 20 to 26 km. Spatial distribution of the well-relocated crustal earthquakes along these

  16. Southern Ethiopia

    African Journals Online (AJOL)

    Objective: To assess, the sanitary~hygienic conditions of public catering establishments in the district town of Zeway, Southern Ethiopia. Methods: A cross sectional descriptive study was conducted in all existing food and drink establishments. Results: Local informal catering establishments is considerably high in town with ...

  17. Geomorphological Approach for Regional Zoning In The Merapi Volcanic Area

    Directory of Open Access Journals (Sweden)

    Langgeng Wahyu Santosa

    2013-07-01

    Full Text Available Geomorphologial approach can be used as the basic for identifying and analyzing the natural resources potentials, especially in volcanic landscape. Based on its geomorphology, Merapi volcanic landscape can be divided into 5 morphological units, i.e.: volcanic cone, volcanic slope, volcanic foot, volcanic foot plain, and fluvio-volcanic plain. Each of these morphological units has specific characteristic and natural resources potential. Based on the condition of geomorphology, the regional zoning can be compiled to support the land use planning and to maintain the conservation of environmental function in the Merapi Volcanic area.

  18. Volcanic Ash on Slopes of Karymsky

    Science.gov (United States)

    2007-01-01

    A volcanic eruption can produce gases, lava, bombs of rock, volcanic ash, or any combination of these elements. Of the volcanic products that linger on the land, most of us think of hardened lava flows, but volcanic ash can also persist on the landscape. One example of that persistence appeared on Siberia's Kamchatka Peninsula in spring 2007. On March 25, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the area around the Karymsky Volcano. In this image, volcanic ash from earlier eruptions has settled onto the snowy landscape, leaving dark gray swaths. The ash stains are confined to the south of the volcano's summit, one large stain fanning out toward the southwest, and another toward the east. At first glance, the ash stain toward the east appears to form a semicircle north of the volcano and sweep back east. Only part of this dark shape, however, is actually volcanic ash. Near the coast, the darker color may result from thicker vegetation. Similar darker coloring appears to the south. Volcanic ash is not really ash at all, but tiny, jagged bits of rock and glass. These jagged particles pose serious health risks to humans and animals who might inhale them. Likewise, the ash poses hazards to animals eating plants that have been coated with ash. Because wind can carry volcanic ash thousands of kilometers, it poses a more far-reaching hazard than other volcanic ejecta. Substantial amounts of ash can even affect climate by blocking sunlight. Karymsky is a stratovolcano composed of alternating layers of solidified ash, hardened lava, and volcanic rocks. It is one of many active volcanoes on Russia's Kamchatka Peninsula, which is part of the 'Ring of Fire' around the Pacific Rim. NASA image created by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  19. Influence of Anthropogenic Disturbances on Stand Structural Complexity in Andean Temperate Forests: Implications for Managing Key Habitat for Biodiversity

    Science.gov (United States)

    2017-01-01

    Forest attributes and their abundances define the stand structural complexity available as habitat for faunal biodiversity; however, intensive anthropogenic disturbances have the potential to degrade and simplify forest stands. In this paper we develop an index of stand structural complexity and show how anthropogenic disturbances, namely fire, logging, livestock, and their combined presence, affect stand structural complexity in a southern Global Biodiversity Hotspot. From 2011 to 2013, we measured forest structural attributes as well as the presence of anthropogenic disturbances in 505 plots in the Andean zone of the La Araucanía Region, Chile. In each plot, understory density, coarse woody debris, number of snags, tree diameter at breast height, and litter depth were measured, along with signs of the presence of anthropogenic disturbances. Ninety-five percent of the plots showed signs of anthropogenic disturbance (N = 475), with the combined presence of fire, logging, and livestock being the most common disturbance (N = 222; 44% of plots). The lowest values for the index were measured in plots combining fire, logging, and livestock. Undisturbed plots and plots with the presence of relatively old fires (> 70 years) showed the highest values for the index of stand structural complexity. Our results suggest that secondary forests forests should be managed to retain structural attributes, including understory density (7.2 ± 2.5 # contacts), volume of CWD (22.4 ± 25.8 m3/ha), snag density (94.4 ± 71.0 stems/ha), stand basal area (61.2 ± 31.4 m2/ha), and litter depth (7.5 ± 2.7 cm). Achieving these values will increase forest structural complexity, likely benefiting a range of faunal species in South American temperate forests. PMID:28068349

  20. Large along-strike variations in the onset of Subandean exhumation: Implications for Central Andean orogenic growth

    Science.gov (United States)

    Lease, Richard O.; Ehlers, T.A.; Enkelmann, E.

    2016-01-01

    Plate tectonics drives mountain building in general, but the space-time pattern and style of deformation is influenced by how climate, geodynamics, and basement structure modify the orogenic wedge. Growth of the Subandean thrust belt, which lies at the boundary between the arid, high-elevation Central Andean Plateau and its humid, low-elevation eastern foreland, figures prominently into debates of orogenic wedge evolution. We integrate new apatite and zircon (U-Th)/He thermochronometer data with previously published apatite fission-track data from samples collected along four Subandean structural cross-sections in Bolivia between 15° and 20°S. We interpret cooling ages vs. structural depth to indicate the onset of Subandean exhumation and signify the forward propagation of deformation. We find that Subandean growth is diachronous south (11 ± 3 Ma) vs. north (6 ± 2 Ma) of the Bolivian orocline and that Subandean exhumation magnitudes vary by more than a factor of two. Similar north-south contrasts are present in foreland deposition, hinterland erosion, and paleoclimate; these observations both corroborate diachronous orogenic growth and illuminate potential propagation mechanisms. Of particular interest is an abrupt shift to cooler, more arid conditions in the Altiplano hinterland that is diachronous in southern Bolivia (16-13 Ma) vs. northern Bolivia (10-7 Ma) and precedes the timing of Subandean propagation in each region. Others have interpreted the paleoclimate shift to reflect either rapid surface uplift due to lithosphere removal or an abrupt change in climate dynamics once orographic threshold elevations were exceeded. These mechanisms are not mutually exclusive and both would drive forward propagation of the orogenic wedge by augmenting the hinterland backstop, either through surface uplift or spatially variable erosion. In summary, we suggest that diachronous Subandean exhumation was driven by piecemeal hinterland uplift, orography, and the outward

  1. Climatic Impact of Volcanic Eruptions

    Directory of Open Access Journals (Sweden)

    Gregory A. Zielinski

    2002-01-01

    Full Text Available Volcanic eruptions have the potential to force global climate, provided they are explosive enough to emit at least 1–5 megaton of sulfur gases into the stratosphere. The sulfuric acid produced during oxidation of these gases will both absorb and reflect incoming solar radiation, thus warming the stratosphere and cooling the Earth’s surface. Maximum global cooling on the order of 0.2–0.3°C, using instrumental temperature records, occurs in the first 2 years after the eruption, with lesser cooling possibly up to the 4th year. Equatorial eruptions are able to affect global climate, whereas mid- to high-latitude events will impact the hemisphere of origin. However, regional responses may differ, including the possibility of winter warming following certain eruptions. Also, El Niño warming may override the cooling induced by volcanic activity. Evaluation of different style eruptions as well as of multiple eruptions closely spaced in time beyond the instrumental record is attained through the analysis of ice-core, tree-ring, and geologic records. Using these data in conjunction with climate proxy data indicates that multiple eruptions may force climate on decadal time scales, as appears to have occurred during the Little Ice Age (i.e., roughly AD 1400s–1800s. The Toba mega-eruption of ~75,000 years ago may have injected extremely large amounts of material into the stratosphere that remained aloft for up to about 7 years. This scenario could lead to the initiation of feedback mechanisms within the climate system, such as cooling of sea-surface temperatures. These interacting mechanisms following a mega-eruption may cool climate on centennial time scales.

  2. Young Rhyolitic and Alkaline Volcanism of the Ecuadorian Arc - A Result of the Carnegie Ridge Subduction?

    Science.gov (United States)

    Hall, M. L.; Mothes, P. A.

    2010-12-01

    The subduction of aseismic submarine ridges under continental arcs generally results in the cessation of volcanic activity (Wilson, 1989). The rapidly-subducting (6 cm/yr) Carnegie Ridge under Ecuador, however, is associated with increased and diverse volcanism. The Northern Volcanic Zone in Colombia is a single row of volcanoes, but in Ecuador it is characterized by a high density of Pleistocene and active centers distributed in four parallel bands perpendicular to the convergence axis. Here the NVZ is higher in elevation (3-6 km high) and wider (ca. 140 km) than elsewhere. Ecuador’s volcanic arc has its volcanic front in the western cordillera where it is characterized by on-going dacitic, Si-rich andesitic, and adakitic-like volcanism. Eastwards, in the InterAndean Depression the volcanoes are older and andesitic. In the adjacent eastern cordillera the active volcanoes are normal 2-pyroxene andesites. However, co-existing with this andesite chain is a province of young rhyolitic volcanism (Hall & Mothes, 2001) which ranges in age from 2.7 Ma to historic times. In addition, immediately east of the rhyolitic province in a back-arc setting occurs a small group of alkaline volcanoes with feldspathoid-bearing basanites and tephrites. The rhyolite province extends 130 km southwards from the 50 km-long Chacana caldera complex (800 km3 of flow deposits) to early Holocene pumice flows recently identified at Pisayambo. Between these extremes are found the 20 km-wide Chalupas caldera and associated Late Pleistocene silicic centers and domes. The discovery of young rhyolitic centers at the eastern foot of the Andes (Aliso) extends the province 40 km eastwards. A flare-up of rhyolitic activity began at 200 ka with the 100 km3 Chalupas pumice flow, the coeval rhyolite flows from Chacana caldera, and a 11 km3 andesitic lava flow from nearby Antisana volcano. At 170-180 ka the northern sector of Chacana witnessed rhyolitic lava flows and extensive pumice lapilli falls whose

  3. Diversity and ecological ranges of plant species from dry inter-Andean valleys

    DEFF Research Database (Denmark)

    Quintana, Catalina

    Dry valleys in the American Andes and other mountains have provided excellent agricultural lands since millennia. Besides agriculture, wood extraction and the establishment of urban areas have diminished the native vegetation of these valleys. Consequently the original vegetation is now mostly...... found on steep slopes and in ravines. These areas of original dry valley vegetation preserve many wild relatives of cultivated plants on the one hand and old lineages of other wild plant groups. Dry inter-Andean valleys (DIAVs) in Ecuador therefore makeup a biodiversity hot spot for both plants...... of Ecuadorian dry inter-Andean valleys vegetation, including information related to the physical settings as well as to the vegetation and flora of the valleys. 2) This chapter unveils the influence of disturbance, water availability and low temperature in shaping species composition and occurrence. We found...

  4. Molecular identification of cryptic diversity in species of cis-Andean Mylossoma (Characiformes: Serrasalmidae).

    Science.gov (United States)

    Mateussi, Nadayca T B; Pavanelli, Carla Simone; Oliveira, Claudio

    2017-09-01

    Mylossoma is a Serrasalmidae genus with only two current valid species in the cis-Andean region but with several available names, today considered as junior synonymous. Morphological information combined with single-locus DNA sequences of cytochrome c oxidase I gene analysed by Barcode Index Number and General Mixed Yule Coalescent model were used in the present study to help the recognition of Operational Taxonomic Units (OTUs) in cis-Andean Mylossoma and discuss species boundaries within the genus. Five OTUs were recognized based on both morphological and molecular approaches. The analysis using the Barcode Index Number resulted in five OTUs, with M. duriventre being split in one unity in the Amazon, one in the Orinoco, one in Paraná-Paraguay and one in Tocantins-Araguaia which is coherent with our morphological results.

  5. Climate-driven terrestrial inputs in ultraoligotrophic mountain streams of Andean Patagonia revealed through chromophoric and fluorescent dissolved organic matter.

    Science.gov (United States)

    Garcia, Roberto D; Reissig, Mariana; Queimaliños, Claudia P; Garcia, Patricia E; Dieguez, Maria C

    2015-07-15

    Fluvial networks transport a substantial fraction of the terrestrial production, contributing to the global carbon cycle and being shaped by hydrologic, natural and anthropogenic factors. In this investigation, four Andean Patagonian oligotrophic streams connecting a forested catchment (~125km(2)) and draining to a double-basin large and deep lake (Lake Moreno complex, Northwestern Patagonia), were surveyed to analyze the dynamics of the allochthonous subsidy. The results of a 30month survey showed that the catchment supplies nutrients and dissolved organic matter (DOM) to the streams. The eruption of the Puyehue-Cordón Caulle at the beginning of the study overlapped with seasonal precipitation events. The largest terrestrial input was timed with precipitation which increased particulate materials, nutrients and DOM through enhanced runoff. Baseline suspended solids and nutrients were very low in all the streams (suspended solids: ~1mg/L; total nitrogen: ~0.02mg/L; total phosphorus: ~5μg/L), increasing several fold with runoff. Baseline dissolved organic carbon concentrations (DOC) ranged between 0.15 and 1mg/L peaking up to three-fold. Chromophoric and fluorescent analyses characterized the DOM as of large molecular weight and high aromaticity. Parallel factor modeling (PARAFAC) of DOM fluorescence matrices revealed three components of terrestrial origin, with certain degree of microbial processing: C1 and C2 (terrestrial humic-like compounds) and C3 (protein-like and pigment derived compounds). Seasonal changes in MOD quality represent different breakdown stages of the allochthonous DOM. Our survey allowed us to record and discuss the effects of the Puyehue-Cordón Caulle eruption, showing that due to the high slopes, high current and discharge of the streams the volcanic material was rapidly exported to the Moreno Lake complex. Overall, this survey underscores the magnitude and timing of the allochthonous input revealing the terrestrial subsidy to food webs in

  6. Divergent responses of tropical cyclone genesis factors to strong volcanic eruptions at different latitudes

    Science.gov (United States)

    Yan, Qing; Zhang, Zhongshi; Wang, Huijun

    2018-03-01

    To understand the behaviors of tropical cyclones (TCs), it is very important to explore how TCs respond to anthropogenic greenhouse gases and natural forcings. Volcanic eruptions are a major natural forcing mechanism because they inject sulphate aerosols into the stratosphere, which modulate the global climate by absorbing and scattering solar radiation. The number of Atlantic hurricanes is thought to be reduced following strong tropical eruptions, but whether the response of TCs varies with the locations of the volcanoes and the different ocean basins remains unknown. Here, we use the Community Earth System Model-Last Millennium Ensemble to investigate the response of the large-scale environmental factors that spawn TCs to strong volcanic eruptions at different latitudes. A composite analysis indicates that tropical and northern hemisphere volcanic eruptions lead to significantly unfavorable conditions for TC genesis over the whole Pacific basin and the North Atlantic during the 3 years post-eruption, relative to the preceding 3 years. Southern hemisphere volcanic eruptions result in obviously unfavorable conditions for TC formation over the southwestern Pacific, but more favorable conditions over the North Atlantic. The mean response over the Indian Ocean is generally muted and insignificant. It should be noted that volcanic eruptions impact on environmental conditions through both the direct effect (i.e. on radiative forcing) and the indirect effect (i.e. on El Niño-Southern Oscillation), which is not differentiated in this study. In addition, the spread of the TC genesis response is considerably large for each category of eruptions over each ocean basin, which is also seen in the observational/proxy-based records. This large spread is attributed to the differences in stratospheric aerosol distributions, initial states and eruption intensities, and makes the short-term forecast of TC activity following the next large eruption challenging.

  7. Maternal Knowledge and Use of Galactagogues in Andean Communities of Cusco, Peru

    Directory of Open Access Journals (Sweden)

    Madalena Monteban

    2017-09-01

    Full Text Available A commonly reported reason for early breastfeeding cessation is inadequate milk production. In response, women across the globe turn to galactagogues – substances used to increase the milk supply. Andean women have traditional knowledge about the medicinal and nutritional properties of plants and animals that are considered good to eat during breastfeeding. This research explores the maintenance and use of galactagogues, and specifically the use of the Andean flicker bird, within the wider framework of breastfeeding and nutrition policies in Peru. To elicit maternal knowledge and use of galactagogues, semi-structured and free-listing interviews were conducted with 33 mothers. Data analysis calculated the frequency and percentage of women reporting each type of galactagogue. In addition, thematic codes and relevant text passages were used in an iterative analytic process to document emerging themes. Identified galactagogues included five plants and six animals. Several galactagogues included protein-rich foods such as lamb meat and the Andean flicker bird. The use of protein-rich galactagogues as solid food is reinforced by public health messages. However, galactagogues in the research communities are usually consumed as soups or drinks, which are less rich in proteins than solid meals. The potential role of liquid galactagogues in the maintenance of appropriate hydration levels during breastfeeding in an environment where safe drinking water is scarce is a new contribution to the existing literature. The results are relevant to the design of maternal and child health policies that comply with intercultural health premises that value and respect the knowledge and practices of Andean Peoples.

  8. Coca: The History and Medical Significance of an Ancient Andean Tradition

    Directory of Open Access Journals (Sweden)

    Amy Sue Biondich

    2016-01-01

    Full Text Available Coca leaf products are an integral part of the lives of the Andean peoples from both a cultural and traditional medicine perspective. Coca is also the whole plant from which cocaine is derived. Coca products are thought to be a panacea for health troubles in regions of South America. This review will examine the toxicology of whole coca and will also look at medicinal applications of this plant, past, present, and future.

  9. Large-Scale Patterns of Turnover and Basal Area Change in Andean Forests

    OpenAIRE

    Báez Jácome, Vera Selene

    2015-01-01

    General patterns of forest dynamics and productivity in the Andes Mountains are poorly characterized. Here we present the first large-scale study of Andean forest dynamics using a set of 63 permanent forest plots assembled over the past two decades. In the North-Central Andes tree turnover (mortality and recruitment) and tree growth declined with increasing elevation and decreasing temperature. In addition, basal area increased in Lower Montane Moist Forests but did not change in Higher Monta...

  10. High-Up: A Remote Reservoir of Microbial Extremophiles in Central Andean Wetlands

    OpenAIRE

    Albarrac?n, Virginia H.; Kurth, Daniel; Ordo?ez, Omar F.; Belfiore, Carolina; Luccini, Eduardo; Salum, Graciela M.; Piacentini, Ruben D.; Far?as, Mar?a E.

    2015-01-01

    The Central Andes region displays unexplored ecosystems of shallow lakes and salt flats at mean altitudes of 3700 m. Being isolated and hostile, these so-called “High-Altitude Andean Lakes” (HAAL) are pristine and have been exposed to little human influence. HAAL proved to be a rich source of microbes showing interesting adaptations to life in extreme settings (poly-extremophiles) such as alkalinity, high concentrations of arsenic and dissolved salts, intense dryness, large daily ambient ther...

  11. New records in the Tubeufiaceae from Andean Patagonian forests of Argentina

    OpenAIRE

    Sanchez, Romina Magali; Bianchinotti, Maria Virginia

    2017-01-01

    Tubeufiaceae (Pleosporales, Ascomycota) occurring on native trees from the Andean Patagonian forests in Argentina are described and illustrated. Acanthostigma minutum and Tubeufia cerea with its anamorphic state are reported from South America for the first time on Nothofagus dombeyi and N. antarctica, respectively. Both species were up to now only known from the Northern Hemisphere. Fil: Sanchez, Romina Magali. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico ...

  12. Biofabrication of copper oxide nanoparticles using Andean blackberry (Rubus glaucus Benth.) fruit and leaf

    OpenAIRE

    Brajesh Kumar; Kumari Smita; Luis Cumbal; Alexis Debut; Yolanda Angulo

    2017-01-01

    Biofabrication of copper oxide nanoparticles (CuO-NPs) of a desired size remains a significant challenge. In this report, CuO-NPs were fabricated by treating 10 mM copper nitrate with Andean blackberry fruit (ABF) and leaf (ABL); and evaluated its antioxidant activity. As-prepared NPs characterization were determined by UV–visible spectrophotometry, Dynamic Light Scattering (DLS), transmission electron microscopy (TEM) with selected area electron diffraction (SAED) and X-ray diffraction (XRD)...

  13. Ultrasound agitated phytofabrication of palladium nanoparticles using Andean blackberry leaf and its photocatalytic activity

    OpenAIRE

    Kumar, Brajesh; Smita, Kumari; Cumbal, Luis; Debut, Alexis

    2015-01-01

    In this report, ultrasonication and Andean blackberry leaf extract are employed for the fabrication of palladium nanoparticles (PdNPs); and further evaluated its photocatalytic activity against methylene blue (MB). The as-synthesized PdNPs were characterized using UV–visible spectroscopy, transmission electron microscopy (TEM), Dynamic light scattering (DLS) and X-ray diffraction (XRD). TEM analysis demonstrated the formation of decahedron shape PdNPs with a diameter of 55–60 nm and XRD confi...

  14. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity.

    Science.gov (United States)

    Finer, Matt; Jenkins, Clinton N

    2012-01-01

    Due to rising energy demands and abundant untapped potential, hydropower projects are rapidly increasing in the Neotropics. This is especially true in the wet and rugged Andean Amazon, where regional governments are prioritizing new hydroelectric dams as the centerpiece of long-term energy plans. However, the current planning for hydropower lacks adequate regional and basin-scale assessment of potential ecological impacts. This lack of strategic planning is particularly problematic given the intimate link between the Andes and Amazonian flood plain, together one of the most species rich zones on Earth. We examined the potential ecological impacts, in terms of river connectivity and forest loss, of the planned proliferation of hydroelectric dams across all Andean tributaries of the Amazon River. Considering data on the full portfolios of existing and planned dams, along with data on roads and transmission line systems, we developed a new conceptual framework to estimate the relative impacts of all planned dams. There are plans for 151 new dams greater than 2 MW over the next 20 years, more than a 300% increase. These dams would include five of the six major Andean tributaries of the Amazon. Our ecological impact analysis classified 47% of the potential new dams as high impact and just 19% as low impact. Sixty percent of the dams would cause the first major break in connectivity between protected Andean headwaters and the lowland Amazon. More than 80% would drive deforestation due to new roads, transmission lines, or inundation. We conclude with a discussion of three major policy implications of these findings. 1) There is a critical need for further strategic regional and basin scale evaluation of dams. 2) There is an urgent need for a strategic plan to maintain Andes-Amazon connectivity. 3) Reconsideration of hydropower as a low-impact energy source in the Neotropics.

  15. Oxyoppia mustaciata n. sp. from andean forests of northwestern patagonia and key to oxyoppiinae from Argentina

    OpenAIRE

    Kun, M.E.

    2014-01-01

    International audience; During a three-year survey of oribatid mites in soil and leaf litter of Andean North patagonian forests, specimens belonging to the genus Oxyoppia were collected. Even though the specimens could be recognized by the use of previous descriptions and existing keys as being close to Oxyoppia (Oxyoppiella) suramericana, morphological analyses suggest enough differences to propose a new species Oxyoppia mustaciata n. sp. A new identification key to species of Oxyoppiinae fr...

  16. MORPHOLOGICAL CONSTRAINTS AND NECTAR ROBBING IN THREE ANDEAN BUMBLE BEE SPECIES (HYMENOPTERA, APIDAE, BOMBINI

    Directory of Open Access Journals (Sweden)

    RIVEROS ANDRE J.

    2006-06-01

    Full Text Available We report differences in foraging behavior of three Andean bumblebee species onflowers of Digitalis purpurea (Scrophulariaceae. Bombus atratus was a potentialpollinator while B. hortulanus and B. rubicundus collected nectar by robbing throughholes. We attribute behavioral differences to physical constraints. B. atratus has alonger glossa and a larger body size and is able to reach the nectaries, whereas B.hortulanus and B. rubicundus have shorter glossae and smaller bodies and probablymust rob nectar through holes at the base of flowers.

  17. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity.

    Directory of Open Access Journals (Sweden)

    Matt Finer

    Full Text Available Due to rising energy demands and abundant untapped potential, hydropower projects are rapidly increasing in the Neotropics. This is especially true in the wet and rugged Andean Amazon, where regional governments are prioritizing new hydroelectric dams as the centerpiece of long-term energy plans. However, the current planning for hydropower lacks adequate regional and basin-scale assessment of potential ecological impacts. This lack of strategic planning is particularly problematic given the intimate link between the Andes and Amazonian flood plain, together one of the most species rich zones on Earth. We examined the potential ecological impacts, in terms of river connectivity and forest loss, of the planned proliferation of hydroelectric dams across all Andean tributaries of the Amazon River. Considering data on the full portfolios of existing and planned dams, along with data on roads and transmission line systems, we developed a new conceptual framework to estimate the relative impacts of all planned dams. There are plans for 151 new dams greater than 2 MW over the next 20 years, more than a 300% increase. These dams would include five of the six major Andean tributaries of the Amazon. Our ecological impact analysis classified 47% of the potential new dams as high impact and just 19% as low impact. Sixty percent of the dams would cause the first major break in connectivity between protected Andean headwaters and the lowland Amazon. More than 80% would drive deforestation due to new roads, transmission lines, or inundation. We conclude with a discussion of three major policy implications of these findings. 1 There is a critical need for further strategic regional and basin scale evaluation of dams. 2 There is an urgent need for a strategic plan to maintain Andes-Amazon connectivity. 3 Reconsideration of hydropower as a low-impact energy source in the Neotropics.

  18. The TF1 Radio Astronomy Working Group in the Andean ROAD: goals and challenges for 2025

    Science.gov (United States)

    Chaparro Molano, G.

    2017-07-01

    Since the creation of the Andean Regional Office of Astronomy for Development (OAD) of the International Astronomical Union, one of the main goals has been to foster a scientific culture of radio astronomy in countries of the central and northern Andes (Bolivia, Colombia, Ecuador, Perú, and Venezuela). For this reason, Andean ROAD Task Force 1 (Research and Education in Universities) created the Radio Astronomy Working Group to set a path along which collaborative endeavors can grow and yield scientific results. The first official meeting of the Working Group took place in Bogotá, Colombia during the 2nd Astronomá en los Andes Workshop (2015) where scientists actively developing projects in radio astronomy set goals for the near future, such as improving mobility for researchers and students, developing collaborations in related areas such as engineering and data science, and building transnational collaborations aiming at developing VLBI across the countries of the Andean ROAD and beyond. In this poster, I present current projects and associated research groups (ROAS - Perú, SiAMo - Colombia, Alfa-Orion UTP - Colombia, RAIG - Chile) and discuss goalposts and current challenges in the development of transnational radioastronomical projects. As a case study, I present the development and early astronomical results of the privately funded UECCI 4m Radio Telescope for 21 cm line observations in Bogotá, Colombia.

  19. Preliminary phylogenetic analysis of the Andean clade and the placement of new Colombian blueberries (Ericaceae, Vaccinieae

    Directory of Open Access Journals (Sweden)

    Paola Pedraza-Penalosa

    2015-04-01

    Full Text Available The blueberry tribe Vaccinieae (Ericaceae is particularly diverse in South America and underwent extensive radiation in Colombia where many endemics occur. Recent fieldwork in Colombia has resulted in valuable additions to the phylogeny and as well in the discovery of morphologically noteworthy new species that need to be phylogenetically placed before being named. This is particularly important, as the monophyly of many of the studied genera have not been confirmed. In order to advance our understanding of the relationships within neotropical Vaccinieae and advice the taxonomy of the new blueberry relatives, here we present the most comprehensive phylogenetic analysis for the Andean clade. Anthopterus, Demosthenesia, and Pellegrinia are among the putative Andean genera recovered as monophyletic, while other eight Andean genera were not. The analyses also showed that genera that have been traditionally widely defined are non-monophyletic and could be further split into more discrete groups. Four newly discovered Colombian Vaccinieae are placed in the monophyletic Satyria s.s. and the Psammisia I clade. Although these new species are endemic to the Colombian Western Cordillera and Chocó biogeographic region and three are not known outside of Las Orquídeas National Park, they do not form sister pairs.

  20. [Diversity and dynamics of a high sub-Andean forest from Northern Andes, Colombia].

    Science.gov (United States)

    Restrepo, Jesús Oswaldo Velásquez; Maniguaje, Nancy Lorena; Duque, Alvaro Javier

    2012-06-01

    The sub-Andean forests are characterized by a high biodiversity, but little is known about their natural dynamics. In order to generate new information, this study assessed two permanent plots of one hectare each, in the Northern Andean area of the Western Cordillera, Colombia. Methodology included the evaluation of diversity patterns, above ground biomass (AGB) dynamics, and mortality and recruitment rates. Besides, we used the Fisher's Alpha index to calculate species diversity. Forest dynamics and AGB were evaluated in both plots by means of three censuses carried out within a nine years period. In total, we found 1 664 individuals with diameter at breast height (DBH)> or =10cm belonging to 222 species, 113 genera and 60 families. Mean species richness was of 156 species/ha and a mean Fisher's Alpha index of 56.2/ha. The mortality rate was 0.88% and recruitment was 1.16%, which did not allow to lay any external effect of global warming or climate change on individual forest dynamics. However, the mean AGB was 243.44+/-9.82t/ha, with an annual average increase of 2.9t/ha, a higher value than the one reported in other studies of high sub-Andean forests, which suggests that equilibrium in terms of the AGB have not yet been reached. Besides, according to field observations, a recovery process, from a disturbance that occurred in the past, might be on his way.

  1. Andean Mountain Building Did not Preclude Dispersal of Lowland Epiphytic Orchids in the Neotropics.

    Science.gov (United States)

    Pérez-Escobar, Oscar Alejandro; Gottschling, Marc; Chomicki, Guillaume; Condamine, Fabien L; Klitgård, Bente B; Pansarin, Emerson; Gerlach, Günter

    2017-07-07

    The Andean uplift is one of the major orographic events in the New World and has impacted considerably the diversification of numerous Neotropical lineages. Despite its importance for biogeography, the specific role of mountain ranges as a dispersal barrier between South and Central American lowland plant lineages is still poorly understood. The swan orchids (Cycnoches) comprise ca 34 epiphytic species distributed in lowland and pre-montane forests of Central and South America. Here, we study the historical biogeography of Cycnoches to better understand the impact of the Andean uplift on the diversification of Neotropical lowland plant lineages. Using novel molecular sequences (five nuclear and plastid regions) and twelve biogeographic models, we infer that the most recent common ancestor of Cycnoches originated in Amazonia ca 5 Mya. The first colonization of Central America occurred from a direct migration event from Amazonia, and multiple bidirectional trans-Andean migrations between Amazonia and Central America took place subsequently. Notably, these rare biological exchanges occurred well after major mountain building periods. The Andes have limited plant migration, yet it has seldom allowed episodic gene exchange of lowland epiphyte lineages such as orchids with great potential for effortless dispersal because of the very light, anemochorous seeds.

  2. Sensory evaluation and acceptability of gluten-free Andean corn spaghetti.

    Science.gov (United States)

    Giménez, Maria A; Gámbaro, Adriana; Miraballes, Marcelo; Roascio, Antonella; Amarillo, Miguel; Sammán, Norma; Lobo, Manuel

    2015-01-01

    Although pasta is one of the most widely demanded products among gluten-intolerant people, few studies have focused on the sensory analysis and acceptability of these products. Spaghetti was made from Andean corn (Zea mays var. amylacea), capia and cully varieties from northern Argentina, and the flash profile technique was applied by semi-trained assessors to compare the sensory profile of this type of spaghetti with those made with rice and wheat flours. Acceptability of capia corn spaghetti was studied in celiac and non-celiac consumer groups using a 9-point hedonic scale and check-all-that-apply (CATA) questions. Two Andean corn spaghetti samples were described by assessors as rough, odd-smelling and odd-tasting. These terms were also used by non-celiac consumers to describe the capia corn spaghetti sample, which explained its low acceptability scores. However, celiac consumers assigned high acceptability scores to the same sample and described it as tasty, smooth, tender, novel, having a pleasant flavor and good quality, and as a product that can be consumed every day and by the whole family. The results of this study suggest that Andean corn flours are a suitable and acceptable product for celiac consumers and can be used in the production of spaghetti for celiac consumers but should be reformulated for non-celiac consumers. © 2014 Society of Chemical Industry.

  3. Natural Selection on Genes Related to Cardiovascular Health in High-Altitude Adapted Andeans.

    Science.gov (United States)

    Crawford, Jacob E; Amaru, Ricardo; Song, Jihyun; Julian, Colleen G; Racimo, Fernando; Cheng, Jade Yu; Guo, Xiuqing; Yao, Jie; Ambale-Venkatesh, Bharath; Lima, João A; Rotter, Jerome I; Stehlik, Josef; Moore, Lorna G; Prchal, Josef T; Nielsen, Rasmus

    2017-11-02

    The increase in red blood cell mass (polycythemia) due to the reduced oxygen availability (hypoxia) of residence at high altitude or other conditions is generally thought to be beneficial in terms of increasing tissue oxygen supply. However, the extreme polycythemia and accompanying increased mortality due to heart failure in chronic mountain sickness most likely reduces fitness. Tibetan highlanders have adapted to high altitude, possibly in part via the selection of genetic variants associated with reduced polycythemic response to hypoxia. In contrast, high-altitude-adapted Quechua- and Aymara-speaking inhabitants of the Andean Altiplano are not protected from high-altitude polycythemia in the same way, yet they exhibit other adaptive features for which the genetic underpinnings remain obscure. Here, we used whole-genome sequencing to scan high-altitude Andeans for signals of selection. The genes showing the strongest evidence of selection-including BRINP3, NOS2, and TBX5-are associated with cardiovascular development and function but are not in the response-to-hypoxia pathway. Using association mapping, we demonstrated that the haplotypes under selection are associated with phenotypic variations related to cardiovascular health. We hypothesize that selection in response to hypoxia in Andeans could have vascular effects and could serve to mitigate the deleterious effects of polycythemia rather than reduce polycythemia itself. Copyright © 2017. Published by Elsevier Inc.

  4. Production and use of the pastures of the Colombia high Andean areas

    International Nuclear Information System (INIS)

    Lotero Cadavid, J.

    1993-01-01

    A relationship of the most common pastures is made in the Andean high area between the 2000 and 3000 m.s.n.m. and of their native vegetable associations, as well as of the invaders plants and overgrowths. The gramineae germoplasm and leguminous is indicated that has been proven lower those conditions. Data of yield average of dry matter are presented for native and introduced grasses of cold climate in Colombia. Equally it is indicated the daily earnings by animal, the load capacity and the animal production with different fertilization systems and some parameters of productivity are shown of gramineous and leguminous introduced in the high areas of Colombia. The nutritious value of gramineous and leguminous of cold climate and its chemical composition are made. A description is made of the ecological areas of the Andean high area and the pastures types that prevail in them. The factors are described that they impact in the degree of deterioration of the pastures like the environment, the same grass, the handling, the livestock, the type of exploitation, the holding of the earth and the administration. The agricultural production systems are mentioned that are associate the Andean pastures, as well as the main obstacles to increase the production of the systems and pastures and their possible solutions

  5. Geophysical variables and behavior: LX. Lonquimay and Alhué, Chile: tension from volcanic and earthquake hazard.

    Science.gov (United States)

    Larraín, P; Simpson-Housley, P

    1990-02-01

    This study assesses the effect of trait anxiety scores on subjects' responses to volcanic eruption hazard and earthquake hazard in Lonquimay and Alhué, respectively. Lonquimay is located in the southern Chilean Andes and Alhué is located in central Chile in the Coastal Range. The former was afflicted by a volcanic eruption which commenced on Christmas Day 1988 and the latter by an earthquake on March 3, 1985. Expectations of high damage and fear from a radio hazard prediction were associated with high trait-anxiety scores in the Alhué sample while positive adjustments to extenuate the hazard effect reached significance for the Lonquimay sample.

  6. Sedimentary control of volcanic debris-avalanche structures and transformation into lahars

    Science.gov (United States)

    Bernard, Karine; van Wyk de Vries, Benjamin; Thouret, Jean-Claude; Roche, Olivier; Samaniego Eguiguren, Pablo

    2017-04-01

    Volcanic debris avalanche structures and related transformations into lahars have been extensively analysed in order to establish a sedimentary classification of the deposits. Textural and structural variations of eight debris-avalanche deposits (DADs) have been correlated with Shape Preferred Orientation of 30,000 clasts together with grain-size distributions and statistical parameters from 156 sieved matrix samples. Granular segregation patterns have been observed with structural fault controls: proximal granular-segregation structures of the Tutupaca DAD ridges in Peru, basal sheared bands along overthrust lateral levee (Mt. Dore, France), mixing and cataclasis of fault-controlled deposits in half-graben during lateral spreading of distal thrust lobe (Pichu-Pichu, Peru), neo-cataclasis at the frontal thrust lobe (Meager, Canada and Mt. Dore, France). A logarithmic regression characterises the % matrix vs. matrix/gravels showing proximal and primary cataclasis, hybrid DADs with polymodal matrix and mixed facies up to transformations into lahar (Misti, Mt Dore). The sequential fragmentation helps to distinguish DAD that belong to Andean and Cascade Volcanic arcs (Tutupaca and Misti, Peru; Meager, Canada) to the hybrid DADs, before distal transformation into lahars (Pichu-Pichu); and hydrovolcanic fragmentation characterises the transformed lahar deposits (Misti). The fractal values of 150 sieved samples range between 2.3 and 2.7, implying extensional fractures with granular disaggregation. Skewness vs. kurtosis values help to distinguish the proximal mass wasting deposits and the transformed deposits by dilution. The sorting vs. median values enable us to differentiate the hybrid DADs with the transformed deposits by dilution. The sedimentological statistical parameters with Shape Preferred Orientation analysis that have been correlated with textural and structural observations show textural fabrics resulting from kinematic processes: cataclasis, hybrid matrix

  7. Widespread Lake Highstands in the Southernmost Andean Altiplano during Heinrich Event 1: Implications for the South American Summer Monsoon

    Science.gov (United States)

    Chen, C. Y.; McGee, D.; Quade, J.

    2014-12-01

    Speleothem-based oxygen isotope records provide strong evidence of anti-phased behavior of the northern and southern hemisphere summer monsoons during Heinrich events, but we lack rigorous constraints on the amount of wetting or drying occurring in monsoon regions. Studies centered on shoreline deposits of closed-basin lakes are well suited for establishing such quantitative controls on water balance changes by providing unequivocal evidence of lake volume variations. Here we present new dating constraints on the highstands of several high-altitude (3800-4350 m) paleolakes in the southern Andean Altiplano, an outlying arid region of the Atacama Desert stretching across the Chilean-Bolivian-Argentinian border east of the Andes (20-25°S). These lakes once occupied the closed basins where only phreatic playas, dry salars, and shallow ponds exist today. Initial U-Th dating of massive shoreline tufas reveals that these deposits are dateable to within ±150 to 300 yrs due to high U concentrations and low initial Th content (as indicated by high 230Th/232Th). Our U-Th and 14C dates show that lake highstands predominantly occur between 18.5 and 14.5 kyrs BP, coinciding with Heinrich Event 1 (HE1) and the expansion of other nearby lakes, such as Lake Titicaca. Because of their (1) location at the modern-day southwestern edge of the summer monsoon, (2) intact shoreline preservation, and (3) precise age control, these lakes may uniquely enable us to reconstruct the evolution of water balance (P-E) changes associated with HE1. Hydrologic modeling constrained by temperature estimates provided by local glacial records is used to provide bounds for past precipitation changes. We also examine North Atlantic cooling as the mechanism for these changes by comparing a compilation of S. American lake level records with various hosing experiments and transient climate simulations at HE1. Our results lend us confidence in expanding our U-Th work to other shoreline tufas in the

  8. Influence of volcanic eruptions on tropical hydroclimate during the last millennium

    Science.gov (United States)

    Colose, Christopher M.

    atmospheric energy budget. I discuss the significance of these findings for interpreting the paleoclimate record. In chapter 4, I expand upon chapter 3 by quantifying individual feedbacks (including water vapor and clouds) that arise in response to different spatial structures of volcanic forcing. I demonstrate that cloud and water vapor distributions differ dramatically for aerosol loadings that are northern hemisphere focused, southern hemisphere focused, or fairly symmetric about the equator. Such feedback differences may amplify or dampen ITCZ movements or complicate inferences of how feedbacks are expected to behave in a warming world.

  9. Late Ordovician (post-Sardic) rifting branches in the North Gondwanan Montagne Noire and Mouthoumet massifs of southern France

    DEFF Research Database (Denmark)

    Javier Álvaro, J.; Colmenar Lallena, Jorge; Monceret, Eric

    2016-01-01

    Upper Ordovician-Lower Devonian rocks of the Cabrières klippes (southern Montagne Noire) and the Mouthoumet massif in southern France rest paraconformably or with angular discordance on Cambrian-Lower Ordovician strata. Neither Middle-Ordovician volcanism nor associated metamorphism is recorded, ...

  10. A five million year record of compositional variations in mantle sources to magmatism on Santiago, southern Cape Verde archipelago

    DEFF Research Database (Denmark)

    Barker, Abigail K.; Holm, Paul Martin; Peate, David W.

    2010-01-01

    High-precision Pb isotope data and Sr-Nd-Hf isotope data are presented together with major and trace element data for samples spanning the 4.6 Ma history of volcanism at Santiago, in the southern Cape Verde islands. Pb isotope data confirm the positive ¿8/4 signature of the southern islands indic...

  11. Active Volcanic Plumes on Io

    Science.gov (United States)

    1997-01-01

    This color image, acquired during Galileo's ninth orbit around Jupiter, shows two volcanic plumes on Io. One plume was captured on the bright limb or edge of the moon (see inset at upper right), erupting over a caldera (volcanic depression) named Pillan Patera after a South American god of thunder, fire and volcanoes. The plume seen by Galileo is 140 kilometers (86 miles) high and was also detected by the Hubble Space Telescope. The Galileo spacecraft will pass almost directly over Pillan Patera in 1999 at a range of only 600 kilometers (373 miles).The second plume, seen near the terminator (boundary between day and night), is called Prometheus after the Greek fire god (see inset at lower right). The shadow of the 75-kilometer (45- mile) high airborne plume can be seen extending to the right of the eruption vent. The vent is near the center of the bright and dark rings. Plumes on Io have a blue color, so the plume shadow is reddish. The Prometheus plume can be seen in every Galileo image with the appropriate geometry, as well as every such Voyager image acquired in 1979. It is possible that this plume has been continuously active for more than 18 years. In contrast, a plume has never been seen at Pillan Patera prior to the recent Galileo and Hubble Space Telescope images.North is toward the top of the picture. The resolution is about 6 kilometers (3.7 miles) per picture element. This composite uses images taken with the green, violet and near infrared filters of the solid state imaging (CCD) system on NASA's Galileo spacecraft. The images were obtained on June 28, 1997, at a range of more than 600,000 kilometers (372,000 miles).The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http

  12. Quantifying the impact of early 21st century volcanic eruptions on global-mean surface temperature

    Science.gov (United States)

    Monerie, Paul-Arthur; Moine, Marie-Pierre; Terray, Laurent; Valcke, Sophie

    2017-05-01

    Despite a continuous increase in well-mixed greenhouse gases, the global-mean surface temperature has shown a quasi-stabilization since 1998. This muted warming has been linked to the combined effects of internal climate variability and external forcing. The latter includes the impact of recent increase in the volcanic activity and of solar irradiance changes. Here we used a high-resolution coupled ocean-atmosphere climate model to assess the impact of the recent volcanic eruptions on the Earth's temperature, compared with the low volcanic activity of the early 2000s. Two sets of simulations are performed, one with realistic aerosol optical depth values, and the other with a fixed value of aerosol optical depth corresponding to a period of weak volcanic activity (1998-2002). We conclude that the observed recent increase in the volcanic activity led to a reduced warming trend (from 2003 to 2012) of 0.08 °C in ten years. The induced cooling is stronger during the last five-year period (2008-2012), with an annual global mean cooling of 0.04 °C (+/- 0.04 °C). The cooling is similar in summer (0.05 °C +/- 0.04 °C cooling) than in winter (0.03 °C +/- 0.04 °C cooling), but stronger in the Northern Hemisphere than in the Southern Hemisphere. Although equatorial and Arctic precipitation decreases in summer, the change in precipitation does not indicate robust changes at a local scale. Global heat content variations are found not to be impacted by the recent increase in volcanic activity.

  13. Volcanic Ash Hazards and Risk in Argentina: Scientific and Social Collaborative Approaches.

    Science.gov (United States)

    Rovere, E. I., II; Violante, R. A.; Vazquez Herrera, M. D.; Martinez Fernandez, M. D. L. P.

    2015-12-01

    Due to the absence of alerts or volcanic impacts during 60 years (from 1932, Quizapu-Descabezado Grande -one of the major eruptions of the XX Century- until 1991 Hudson eruption) there was mild remembrance of volcanic hazards in the collective memory of the Argentina citizens. Since then and until April 2015, the social perception changed according to different factors: age, location, education, culture, vulnerability. This variability produces a maze of challenges that go beyond the scientific knowledge. Volcanic health hazards began to be understood in 2008 after the eruption of Chaiten volcano. The particle size of ashfall (Calbuco volcano started activity in April 2015, it came at a time when Villarrica volcano was also in an eruptive phase, and the SERNAGEOMIN Chile, through the Observatory OVDAS of the Southern Andes, faced multiple natural disasters at the same time, 3 volcanoes in activity, lahars, pyroclastic flows and floods in the North. In Argentina, critical infrastructure, farming, livestock and primary supplies were affected mainly in the western region. Copahue volcano, is increasing unstability on seismic and geochemistry data since 2012. Caviahue resort village, distant only 8 Km. from the active vent happens to be a high vulnerable location. In 2014 GEVAS (Geology, Volcanoes, Environment and Health) Network ARGENTINA Civil Association started collaborative activities with SEGEMAR and in 2015 with the IAPG (Geoethics, Argentina), intending to promote Best Practices in volcanic and geological hazards. Geoscientists and the volcano vulnerable population are aware about the governmental commitment to assume a strategic planning for mitigation, facing a volcanic emergency. Recently, university undergraduate students from Chile and Argentina are networking to acquire the skills needed for a better preparedness to the next volcanic eruption.

  14. Delineating priority habitat areas for the conservation of Andean bears in northern Ecuador

    Science.gov (United States)

    Peralvo, M.F.; Cuesta, F.; Van Manen, F.

    2005-01-01

    We sought to identify priority areas for the conservation of Andean bear (Tremarctos ornatus) habitat in the northern portion of the eastern Andean cordillera in Ecuador. The study area included pa??ramo and montane forest habitats within the Antisana and Cayambe-Coca ecological reserves, and unprotected areas north of these reserves with elevations ranging from 1,800 to 4,300 m. We collected data on bear occurrence along 53 transects during 2000-01 in the Oyacachi River basin, an area of indigenous communities within the Cayambe-Coca Ecological Reserve. We used those data and a set of 7 environmental variables to predict suitability of Andean bear habitat using Mahalanobis distance, a multivariate measure of dissimilarity. The Mahalanobis distance values were classified into 5 classes of habitat suitability and generalized to a resolution of 1,650-m ?? 1,650-m grid cells. Clusters of grid cells with high suitability values were delineated from the generalized model and denned as important habitat areas (IHAs) for conservation. The IHAs were ranked using a weighted index that included factors of elevation range, influence from disturbed areas, and current conservation status. We identified 12 IHAs, which were mainly associated with pa??ramo and cloud forest habitats; 2 of these areas have high conservation priorities because they are outside existing reserves and close to areas of human pressure. The distribution of the IHAs highlighted the role of human land use as the main source of fragmentation of Andean bear habitat in this region, emphasizing the importance of preserving habitat connectivity to allow the seasonal movements among habitat types that we documented for this species. Furthermore, the existence of areas with high habitat suitability close to areas of intense human use indicates the importance of bear-human conflict management as a critical Andean bear conservation strategy. We suggest that a promising conservation opportunity for this species is

  15. Captivity Shapes the Gut Microbiota of Andean Bears: Insights into Health Surveillance

    Directory of Open Access Journals (Sweden)

    Andrea Borbón-García

    2017-07-01

    Full Text Available The Andean bear is an endemic species of the tropical Andes who has an almost exclusively plant-based diet. Since herbivorous mammals do not carry enzymes for fiber degradation, the establishment of symbiosis with cellulolytic microorganisms in their gastrointestinal (GI tract is necessary to help them fulfill their nutritional needs. Furthermore, as described for other mammals, a stable, diverse, and balanced gut microbial composition is an indicator of a healthy status of the host; under disturbances this balance can be lost, leading to potential diseases of the host. The goal of this study was to describe the gut microbiota of wild and captive Andean bears and determine how habitat status influences the composition and diversity of the gut symbiotic community. Fecal samples from wild (n = 28 and captive (n = 8 Andean bears were collected in “Reserva Pantano de Martos” and “Fundación Bioandina”, Colombia. Composition and diversity analyses were performed using amplicons from the V4 region of the 16S rDNA gene sequenced using the Ion PGM platform. PICRUSt algorithm was applied to predict the gene content of the gut microbiome of wild and captive Andean bears. A total of 5,411 and 838 OTUs were identified for wild and captive bears, respectively. Captive bears contained a lower number of bacterial phyla (n = 7 compared to wild individuals (n = 9. Proteobacteria (59.03% and Firmicutes (14.03% were the phyla that contributed the most to differences between wild and captive bears (overall dissimilarity = 87.72%. At family level, Enterobacteriaceae drove the main differences between the two groups (13.7%. PICRUSt metagenomics predictions suggested a similar pattern of relative abundance of gene families associated with the metabolism of carbohydrates across samples in wild individuals, despite the taxonomic differences of their gut microbiota. Captivity alters the availability and diversity of food resources, which likely reduces microbiota

  16. Palaeoclimate: Volcanism caused ancient global warming

    Science.gov (United States)

    Meissner, Katrin J.; Bralower, Timothy J.

    2017-08-01

    A study confirms that volcanism set off one of Earth's fastest global-warming events. But the release of greenhouse gases was slow enough for negative feedbacks to mitigate impacts such as ocean acidification. See Letter p.573

  17. Volcanic Ash Advisory Database, 1983-2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanic ash is a significant hazard to aviation and can also affect global climate patterns. To ensure safe navigation and monitor possible climatic impact, the...

  18. A compound power-law model for volcanic eruptions: Implications for risk assessment of volcanism at the proposed nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ho, Chih-Hsiang

    1994-01-01

    Much of the ongoing debate on the use of nuclear power plants in U.S.A. centers on the safe disposal of the radioactive waste. Congress, aware of the importance of the waste issue, passed the Nuclear Waste Policy Act of 1982, requiring the federal government to develop a geologic repository for the permanent disposal of high level radioactive wastes from civilian nuclear power plants. The Department of Energy (DOE) established the Office of Civilian Radioactive Waste Management (OCRWM) in 1983 to identify potential sites. When OCRWM had selected three potential sites to study, Congress enacted the Nuclear Waste Policy Amendments Act of 1987, which directed the DOE to characterize only one of those sites, Yucca Mountain, in southern Nevada. For a site to be acceptable, theses studies must demonstrate that the site could comply with regulations and guidelines established by the federal agencies that will be responsible for licensing, regulating, and managing the waste facility. Advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Recent volcanism in the vicinity of Yucca Mountain is readily recognized as an important factor in determining future public and environmental safety because of the possibility of direct disruption of a repository site by volcanism. In particular, basaltic volcanism is regarded as direct and unequivocal evidence of deep-seated geologic instability. In this paper, statistical analysis of volcanic hazard assessment at the Yucca Mountain site is discussed, taking into account some significant geological factors raised by experts. Three types of models are considered in the data analysis. The first model assumes that both past and future volcanic activities follow a homogeneous Poisson process (HPP)

  19. Isotope Tracers as Tools for Identifying Water Sources in Developing Regions: Case of Study in Southern Ecuador

    Science.gov (United States)

    Mosquera, G.; Lazo, P.; Crespo, P.; Célleri, R.

    2014-12-01

    Páramo ecosystems are widely recognized for their high water regulation capacity and as the main source of runoff generation in the Andean region. Understanding the hydrological functioning of the fragile wet Andean páramo ecosystems is critical in the mountainous regions of South America given their high susceptibility to global and local stressors such as land use change and climate change and variability . Despite this, most of the basins in the Andean mountain range are still ungauged, resulting in a currently hindered hydrologic analysis of the water sources contributing to runoff generation in the high-elevation páramo ecosystems. To improve this situation and provide a baseline for future tracer-based hydrologic studies, the isotopic signature of water samples collected within the Zhurucay River experimental basin (7.53 km2) was analyzed. The study area is located in the southern Ecuador and stretches over an altitudinal range of 3200 and 3900 m a.s.l. Water samples in rainfall, streamflow, and soils were collected between May 2011 and May 2013. Streamflow hydrometric and isotopic information within the study site was collected using a nested monitoring system. The main soils in the study site are the Andosols mainly located in the steep slopes, and the Histosols (Andean páramo wetlands) predominantly located at the bottom of the valley. Results reveal that the Andosols drain the infiltrated rainfall water to the Histosols. The Histosols on their turn feed creeks and small rivers. Pre-event water stored in the Histosols is the primary source of runoff generation throughout the year. Defining the water sources contributing to runoff generation is the first step towards the establishment of scientifically-based programs of management and conservation of water resources in the Andean region; and the monitoring of isotopic information has proven useful to improve the understanding of the ecosystem's hydrologic behavior.

  20. Shape measurements of volcanic particles by CAMSIZER

    OpenAIRE

    Lo Castro, Maria Deborah; Andronico, Daniele; Nunnari, Giuseppe; Spata, Alessandro; Torrisi, Alessio

    2009-01-01

    The shape of volcanic particles is an important parameter holding information related to physical and geochemical processes. The study of particle shape may help improving knowledge on the main eruptive processes (fragmentation, transport and sedimentation) during explosive activity. In general, volcanic ash is formed by different components, namely juvenile, lithic and crystal particles, each one characterized by peculiar morphology. Moreover, quantifying the shape of pyroclasts is needed by...

  1. Imaging volcanic CO2 and SO2

    Science.gov (United States)

    Gabrieli, A.; Wright, R.; Lucey, P. G.; Porter, J. N.

    2017-12-01

    Detecting and quantifying volcanic carbon dioxide (CO2) and sulfur dioxide (SO2) emissions is of relevance to volcanologists. Changes in the amount and composition of gases that volcanoes emit are related to subsurface magma movements and the probability of eruptions. Volcanic gases and related acidic aerosols are also an important atmospheric pollution source that create environmental health hazards for people, animals, plants, and infrastructures. For these reasons, it is important to measure emissions from volcanic plumes during both day and night. We present image measurements of the volcanic plume at Kīlauea volcano, HI, and flux derivation, using a newly developed 8-14 um hyperspectral imaging spectrometer, the Thermal Hyperspectral Imager (THI). THI is capable of acquiring images of the scene it views from which spectra can be derived from each pixel. Each spectrum contains 50 wavelength samples between 8 and 14 um where CO2 and SO2 volcanic gases have diagnostic absorption/emission features respectively at 8.6 and 14 um. Plume radiance measurements were carried out both during the day and the night by using both the lava lake in the Halema'uma'u crater as a hot source and the sky as a cold background to detect respectively the spectral signatures of volcanic CO2 and SO2 gases. CO2 and SO2 path-concentrations were then obtained from the spectral radiance measurements using a new Partial Least Squares Regression (PLSR)-based inversion algorithm, which was developed as part of this project. Volcanic emission fluxes were determined by combining the path measurements with wind observations, derived directly from the images. Several hours long time-series of volcanic emission fluxes will be presented and the SO2 conversion rates into aerosols will be discussed. The new imaging and inversion technique, discussed here, are novel allowing for continuous CO2 and SO2 plume mapping during both day and night.

  2. Ice Nuclei Production in Volcanic Clouds

    Science.gov (United States)

    Few, A. A.

    2012-12-01

    The paper [Durant et al., 2008] includes a review of research on ice nucleation in explosive volcanic clouds in addition to reporting their own research on laboratory measurements focused on single-particle ice nucleation. Their research as well as the research they reviewed were concerned with the freezing of supercooled water drops (250 to 260 K) by volcanic ash particles acting as ice freezing nuclei. Among their conclusions are: Fine volcanic ash particles are very efficient ice freezing nuclei. Volcanic clouds likely contain fine ash concentrations 104 to 105 times greater than found in meteorological clouds. This overabundance of ice nuclei will produce a cloud with many small ice crystals that will not grow larger as they do in meteorological clouds because the cloud water content is widely distributed among the numerous small ice crystals. The small ice crystals have a small fall velocity, thus volcanic clouds are very stable. The small ice crystals are easily lofted into the stratosphere transporting water and adsorbed trace gasses. In this paper we examine the mechanism for the production of the small ice nuclei and develop a simple model for calculating the size of the ice nuclei based upon the distribution of magma around imbedded bubbles. We also have acquired a volcanic bomb that exhibits bubble remnants on its entire surface. The naturally occurring fragments from the volcanic bomb reveal a size distribution consistent with that predicted by the simple model. Durant, A. J., R. A. Shaw, W. I. Rose, Y. Mi, and G. G. J. Ernst (2008), Ice nucleation and overseeding of ice in volcanic clouds, J. Geophys. Res., 113, D09206, doi:10.1029/2007JD009064.

  3. Medical effects of volcanic eruptions

    Science.gov (United States)

    Baxter, Peter J.

    1990-09-01

    Excluding famine and tsunamis, most deaths in volcanic eruptions have been from pyroclastic flows and surges (nuées ardentes) and wet debris flows (lahars). Information on the causes of death and injury in eruptions is sparse but the available literature is summarised for the benefit of volcanologists and emergency planners. In nuées, thermal injury may be at least as important as asphyxia in causing immediate deaths. The high temperature of the gases and entrained particles readily causes severe burns to the skin and the air passages and the presence of both types of injury in an individual may combine to increase the delayed mortality risk from respiratory complications or from infection of burns. Trauma from missiles or body displacement is also common, but the role of asphyxiant or irritant gases, and steam, remains unclear. The ratio of dead: injured is much higher than in other natural disasters. At the periphery of a nuée being protected inside buildings which remain intact appears to greatly increase the chances of survival. In lahars, infected wounds and crush injury are the main delayed causes of death, and the scope for preventive measures, other than evacuation, is small. The evidence from Mount St. Helens, 1980, and other major eruptions indicates that, although mortality is high within the main zone of devastation and in the open, emergency planning should concentrate on the periphery of a nuée where preventive measures are feasible and could save many lives in densely populated areas.

  4. Local and remote infrasound from explosive volcanism

    Science.gov (United States)

    Matoza, R. S.; Fee, D.; LE Pichon, A.

    2014-12-01

    Explosive volcanic eruptions can inject large volumes of ash into heavily travelled air corridors and thus pose a significant societal and economic hazard. In remote volcanic regions, satellite data are sometimes the only technology available to observe volcanic eruptions and constrain ash-release parameters for aviation safety. Infrasound (acoustic waves ~0.01-20 Hz) data fill this critical observational gap, providing ground-based data for remote volcanic eruptions. Explosive volcanic eruptions are among the most powerful sources of infrasound observed on earth, with recordings routinely made at ranges of hundreds to thousands of kilometers. Advances in infrasound technology and the efficient propagation of infrasound in the atmosphere therefore greatly enhance our ability to monitor volcanoes in remote regions such as the North Pacific Ocean. Infrasound data can be exploited to detect, locate, and provide detailed chronologies of the timing of explosive volcanic eruptions for use in ash transport and dispersal models. We highlight results from case studies of multiple eruptions recorded by the International Monitoring System and dedicated regional infrasound networks (2008 Kasatochi, Alaska, USA; 2008 Okmok, Alaska, USA; 2009 Sarychev Peak, Kuriles, Russian Federation; 2010 Eyjafjallajökull, Icleand) and show how infrasound is currently used in volcano monitoring. We also present progress towards characterizing and modeling the variability in source mechanisms of infrasound from explosive eruptions using dedicated local infrasound field deployments at volcanoes Karymsky, Russian Federation and Sakurajima, Japan.

  5. Examples of transport of volcanic ash

    Science.gov (United States)

    Bursik, M. I.

    2011-12-01

    Examination of the transport of volcanic aerosol clouds can be implemented by utilizing models for introduction and early stage spread of eruption plumes, and long-range transport. As a plume rises into the atmosphere, it is subject to the atmospheric circulation. Average wind patterns in the troposphere and stratosphere are useful in determining general features of volcanic cloud transport, but daily, seasonal and year to year variance must be taken into account in any one particular case. Tropospheric circulation plays a small role relative to stratospheric circulation, although the effects of the tropospheric portion of eruptions can be significant to catastrophic, as was the case with the April, 2010, eruption of Eyjafjallajokull, Iceland. Stratospheric circulation plays an important role in the long-term influence of volcanic aerosol, since residence time is great, due to limited mixing and vertical motion. The eruptions of Eyjafjallajokull and Laki, Iceland; Hudson, Chile; El Chichon, Mexico, and Pinatubo, Phillipines, provide examples of how volcanic clouds interact with the atmospheric circulation. Eruption clouds from low latitudes spread across both hemispheres, while eruption clouds from high latitudes remain in the hemisphere of the eruption. Cloud form and dispersal pattern are determined by season; the shape of a volcanic cloud is altitude dependent. The size of a volcanic cloud in relation to atmospheric eddies is important in determining how it is dispersed.

  6. Volcanic loading: The dust veil index

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, H.H. [Univ. of East Anglia, Norwich (United Kingdom). Climatic Research Unit

    1985-09-01

    Dust ejected into the high atmosphere during explosive volcanic eruptions has been considered as a possible cause for climatic change. Dust veils created by volcanic eruptions can reduce the amount of light reaching the Earth`s surface and can cause reductions in surface temperatures. These climatic effects can be seen for several years following some eruptions and the magnitude and duration of the effects depend largely on the density or amount of tephra (i.e. dust) ejected, the latitude of injection, and atmospheric circulation patterns. Lamb (1970) formulated the Dust Veil Index (DVI) in an attempt to quantify the impact on the Earth`s energy balance of changes in atmospheric composition due to explosive volcanic eruptions. The DVI is a numerical index that quantifies the impact on the Earth`s energy balance of changes in atmospheric composition due to explosive volcanic eruptions. The DVI is a numerical index that quantifies the impact of a particular volcanic eruptions release of dust and aerosols over the years following the event. The DVI for any volcanic eruptions are available and have been used in estimating Lamb`s dust veil indices.

  7. High resolution 900 yr volcanic and climatic record from the Vostok area, East Antarctica

    Science.gov (United States)

    Osipov, E. Yu.; Khodzher, T. V.; Golobokova, L. P.; Onischuk, N. A.; Lipenkov, V. Ya.; Ekaykin, A. A.; Osipova, O. P.

    2013-05-01

    Detailed volcanic record of the last 900 yr (1093-2010 AD) has been received using high resolution (2-3 samples per accumulation year) sulfate measurements in four snow/firn cores from the Vostok station area, East Antarctica. Totally, 33 volcanic events have been identified in the record, including well-known low latitude eruption signals found in many polar ice cores (e.g., Pinatubo 1991, Agung 1963, Krakatoa 1883, Tambora 1815, Huanaputina 1600, Kuwae 1452), however in comparison with other Antarctic sites the record has more events covering the last 900 yr. The strongest volcanic signals occurred during mid-13th, mid-15th and 18th centuries. The largest volcanic signal of Vostok (both in sulfate concentration and flux) is the 1452 AD Kuwae eruption. Average snow accumulation rate calculated for the period 1093-2010 AD is 21.3 ± 2.3 mm H2O. Accumulation record demonstrates a slight positive trend, however sharply increased accumulation rate during the periods from 1600 to 1815 AD (by 11% from long-term mean) and from 1963 to 2010 AD (by 15%) are typical features of the site. Na+ record shows strong decadal-scale variability probably connected with coupled changes in atmospheric transport patterns over Antarctica (meridional circulation change) and local glaciology. The obtained high resolution climatic records suggest a high sensitivity of the Vostok location to environmental changes in Southern Hemisphere.

  8. Sensitivity of volcanic aerosol dispersion to meteorological conditions: A Pinatubo case study

    Science.gov (United States)

    Jones, Anthony C.; Haywood, James M.; Jones, Andy; Aquila, Valentina

    2016-06-01

    Using a global climate model (Hadley Centre Global Environment Model version 2-Carbon Cycle Stratosphere ) with a well-resolved stratosphere, we test the sensitivity of volcanic aerosol plume dispersion to meteorological conditions by simulating 1 day Mount Pinatubo-like eruptions on 10 consecutive days. The dispersion of the volcanic aerosol is found to be highly sensitive to the ambient meteorology for low-altitude eruptions (16-18 km), with this variability related to anomalous anticyclonic activity along the subtropical jet, which affects the permeability of the tropical pipe and controls the amount of aerosol that is retained by the tropical reservoir. Conversely, a high-altitude eruption scenario (19-29 km) exhibits low meteorological variability. Overcoming day-to-day meteorological variability by spreading the emission over 10 days is shown to produce insufficient radiative heating to loft the aerosol into the stratospheric tropical aerosol reservoir for the low eruption scenario. This results in limited penetration of aerosol into the southern hemisphere (SH) in contrast to the SH transport observed after the Pinatubo eruption. Our results have direct implications for the accurate simulation of past/future volcanic eruptions and volcanically forced climate changes, such as Intertropical Convergence Zone displacement.

  9. Volcanism on differentiated asteroids (Invited)

    Science.gov (United States)

    Wilson, L.

    2013-12-01

    after passing through optically dense fire fountains. At low eruption rates and high volatile contents many clasts cooled to form spatter or cinder deposits, but at high eruption rates and low volatile contents most clasts landed hot and coalesced into lava ponds to feed lava flows. Lava flow thickness varies with surface slope, acceleration due to gravity, and lava yield strength induced by cooling. Low gravity on asteroids caused flows to be relatively thick which reduced the effects of cooling, and many flows probably attained lengths of tens of km and stopped as a result of cessation of magma supply from the reservoir rather than cooling. On most asteroids larger than 100 km radius experiencing more than ~30% mantle melting, the erupted volcanic deposits will have buried the original chondritic surface layers of the asteroid to such great depths that they were melted, or at least heavily thermally metamorphosed, leaving no present-day meteoritical evidence of their prior existence. Tidal stresses from close encounters between asteroids and proto-planets may have very briefly increased melting and melt migration speeds in asteroid interiors but only gross structural disruption would have greatly have changed volcanic histories.

  10. Climate change underlies global demographic, genetic, and cultural transitions in pre-Columbian southern Peru.

    Science.gov (United States)

    Fehren-Schmitz, Lars; Haak, Wolfgang; Mächtle, Bertil; Masch, Florian; Llamas, Bastien; Cagigao, Elsa Tomasto; Sossna, Volker; Schittek, Karsten; Isla Cuadrado, Johny; Eitel, Bernhard; Reindel, Markus

    2014-07-01

    Several archaeological studies in the Central Andes have pointed at the temporal coincidence of climatic fluctuations (both long- and short-term) and episodes of cultural transition and changes of socioeconomic structures throughout the pre-Columbian period. Although most scholars explain the connection between environmental and cultural changes by the impact of climatic alterations on the capacities of the ecosystems inhabited by pre-Columbian cultures, direct evidence for assumed demographic consequences is missing so far. In this study, we address directly the impact of climatic changes on the spatial population dynamics of the Central Andes. We use a large dataset of pre-Columbian mitochondrial DNA sequences from the northern Rio Grande de Nasca drainage (RGND) in southern Peru, dating from ∼840 BC to 1450 AD. Alternative demographic scenarios are tested using Bayesian serial coalescent simulations in an approximate Bayesian computational framework. Our results indicate migrations from the lower coastal valleys of southern Peru into the Andean highlands coincident with increasing climate variability at the end of the Nasca culture at ∼640 AD. We also find support for a back-migration from the highlands to the coast coincident with droughts in the southeastern Andean highlands and improvement of climatic conditions on the coast after the decline of the Wari and Tiwanaku empires (∼1200 AD), leading to a genetic homogenization in the RGND and probably southern Peru as a whole.

  11. Modeling Io volcanism: Maximum volcanic temperatures, depths of melting and magma composition

    Science.gov (United States)

    Crumpler, L. S.; Strom, R. G.

    1984-01-01

    Interim results of thermal and structural modeling of volcanism on Io were presented. The final results of the modeling are summarized. The basic analysis is an evaluation of the magma trigger mechanism for initiating and maintaining eruptions. Secondary aspects include models of the mechanical mode of magma emplacement, interactions with a sulphur-rich upper crust, and more speculative implications for Io's volcanism.

  12. Volcanic Supersites as cross-disciplinary laboratories

    Science.gov (United States)

    Provenzale, Antonello; Beierkuhnlein, Carl; Giamberini, Mariasilvia; Pennisi, Maddalena; Puglisi, Giuseppe

    2017-04-01

    Volcanic Supersites, defined in the frame of the GEO-GSNL Initiative, are usually considered mainly for their geohazard and geological characteristics. However, volcanoes are extremely challenging areas from many other points of view, including environmental and climatic properties, ecosystems, hydrology, soil properties and biogeochemical cycling. Possibly, volcanoes are closer to early Earth conditions than most other types of environment. During FP7, EC effectively fostered the implementation of the European volcano Supersites (Mt. Etna, Campi Flegrei/Vesuvius and Iceland) through the MED-SUV and FUTUREVOLC projects. Currently, the large H2020 project ECOPOTENTIAL (2015-2019, 47 partners, http://www.ecopotential-project.eu/) contributes to GEO/GEOSS and to the GEO ECO Initiative, and it is devoted to making best use of remote sensing and in situ data to improve future ecosystem benefits, focusing on a network of Protected Areas of international relevance. In ECOPOTENTIAL, remote sensing and in situ data are collected, processed and used for a better understanding of the ecosystem dynamics, analysing and modelling the effects of global changes on ecosystem functions and services, over an array of different ecosystem types, including mountain, marine, coastal, arid and semi-arid ecosystems, and also areas of volcanic origin such as the Canary and La Reunion Islands. Here, we propose to extend the network of the ECOPOTENTIAL project to include active Volcanic Supersites, such as Mount Etna and other volcanic Protected Areas, and we discuss how they can be included in the framework of the ECOPOTENTIAL workflow. A coordinated and cross-disciplinary set of studies at these sites should include geological, biological, ecological, biogeochemical, climatic and biogeographical aspects, as well as their relationship with the antropogenic impact on the environment, and aim at the global analysis of the volcanic Earth Critical Zone - namely, the upper layer of the Earth

  13. Volcanic Alert System (VAS) developed during the (2011-2013) El Hierro (Canary Islands) volcanic process

    Science.gov (United States)

    Ortiz, Ramon; Berrocoso, Manuel; Marrero, Jose Manuel; Fernandez-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Garcia, Alicia

    2014-05-01

    In volcanic areas with long repose periods (as El Hierro), recently installed monitoring networks offer no instrumental record of past eruptions nor experience in handling a volcanic crisis. Both conditions, uncertainty and inexperience, contribute to make the communication of hazard more difficult. In fact, in the initial phases of the unrest at El Hierro, the perception of volcanic risk was somewhat distorted, as even relatively low volcanic hazards caused a high political impact. The need of a Volcanic Alert System became then evident. In general, the Volcanic Alert System is comprised of the monitoring network, the software tools for the analysis of the observables, the management of the Volcanic Activity Level, and the assessment of the threat. The Volcanic Alert System presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself. As part of the Volcanic Alert System, we introduce here the Volcanic Activity Level which continuously applies a routine analysis of monitoring data (particularly seismic and deformation data) to detect data trend changes or monitoring network failures. The data trend changes are quantified according to the Failure Forecast Method (FFM). When data changes and/or malfunctions are detected, by an automated watchdog, warnings are automatically issued to the Monitoring Scientific Team. Changes in the data patterns are then translated by the Monitoring Scientific Team into a simple Volcanic Activity Level, that is easy to use and understand by the scientists and technicians in charge for the technical management of the unrest. The main feature of the Volcanic Activity Level is its objectivity, as it does not depend on expert opinions, which are left to the Scientific Committee, and its capabilities for early detection of precursors. As a consequence of the El Hierro

  14. Earth's Largest Terrestrial Landslide (The Markagunt Gravity Slide of Southwest Utah): Insights from the Catastrophic Collapse of a Volcanic Field

    Science.gov (United States)

    Hacker, D. B.; Biek, R. F.; Rowley, P. D.

    2015-12-01

    The newly discovered Miocene Markagunt gravity slide (MGS; Utah, USA) represents the largest volcanic landslide structure on Earth. Recent geologic mapping of the MGS indicates that it was a large contiguous volcanic sheet of allochthonous andesitic mudflow breccias and lava flows, volcaniclastic rocks, and intertonguing regional ash-flow tuffs that blanketed an area of at least 5000 km2 with an estimated volume of ~3000 km3. From its breakaway zone in the Tushar and Mineral Mountains to its southern limits, the MGS is over 95 km long and at least 65 km wide. The MGS consists of four distinct structural segments: 1) a high-angle breakaway segment, 2) a bedding-plane segment, ~60 km long and ~65 km wide, typically located within the volcaniclastic Eocene-Oligocene Brian Head Formation, 3) a ramp segment ~1-2 km wide where the slide cuts upsection, and 4) a former land surface segment where the upper-plate moved at least 35 km over the Miocene landscape. The presence of basal and lateral cataclastic breccias, clastic dikes, jigsaw puzzle fracturing, internal shears, pseudotachylytes, and the overall geometry of the MGS show that it represents a single catastrophic emplacement event. The MGS represents gravitationally induced collapse of the southwest sector of the Oligocene to Miocene Marysvale volcanic field. We suggest that continuous growth of the Marysvale volcanic field, loading more volcanic rocks on a structurally weak Brian Head basement, created conditions necessary for gravity sliding. In addition, inflation of the volcanic pile due to multiple magmatic intrusions tilted the strata gently southward, inducing lateral spreading of the sub-volcanic rocks prior to failure. Although similar smaller-scale failures have been recognized from individual volcanoes, the MGS represents a new class of low frequency but high impact hazards associated with catastrophic sector collapse of large volcanic fields containing multiple volcanoes. The relationship of the MGS to

  15. Volcanic geology of Hadriaca Patera and the eastern Hellas region of Mars

    Science.gov (United States)

    Crown, David A.; Greeley, Ronald

    1993-01-01

    A detailed examination of the geomorphology of Hadriaca Patera, a low-relief volcano in the southern highlands of Mars northeast of the Hellas basin, is presented, and the surrounding eastern Hellas region is considered in order to assess whether the volcanic geology of Hadriaca Patera is consistent with previous characterizations and highland paterae. The morphologic characteristics of the channels suggest erosion by groundwater sapping and surface runoff. The erosional morphology of the volcano, the lack of lava flow features, and the friable nature of the flank materials indicate that Hadriaca Patera consists predominantly of pyroclastic deposits. From the predominance of hydrovolcanic eruptions in the development of Hadriaca and Tyrrhena patera, it is inferred that the transition in volcanic eruption style can be attributed to a volatile depletion of the crust, whereas magmatic eruptions at the paterae would be indicative of temporal changes in Martian magmas.

  16. Volcanic geology of Hadriaca Patera and the eastern Hellas region of Mars

    Science.gov (United States)

    Crown, D. A.; Greeley, R.

    1993-02-01

    A detailed examination of the geomorphology of Hadriaca Patera, a low-relief volcano in the southern highlands of Mars northeast of the Hellas basin, is presented, and the surrounding eastern Hellas region is considered in order to assess whether the volcanic geology of Hadriaca Patera is consistent with previous characterizations and highland paterae. The morphologic characteristics of the channels suggest erosion by groundwater sapping and surface runoff. The erosional morphology of the volcano, the lack of lava flow features, and the friable nature of the flank materials indicate that Hadriaca Patera consists predominantly of pyroclastic deposits. From the predominance of hydrovolcanic eruptions in the development of Hadriaca and Tyrrhena patera, it is inferred that the transition in volcanic eruption style can be attributed to a volatile depletion of the crust, whereas magmatic eruptions at the paterae would be indicative of temporal changes in Martian magmas.

  17. Acoustic waves in the atmosphere and ground generated by volcanic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru [Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Instituto Geofisico, Escuela Politecnica Nacional, Ladron de Guevara E11-253, Aptdo 2759, Quito (Ecuador); Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2012-09-04

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  18. Revision of fleas of the genus Plocopsylla belonging to the 'angusticeps-lewisi' complex in the Andean biogeographic region, with the description of a new species.

    Science.gov (United States)

    Sanchez, J; Beaucournu, J-C; Lareschi, M

    2015-06-01

    In Argentina, the Andean biogeographic region accommodates the most diverse population of fleas in the country. The Craneopsyllinae (Siphonaptera: Stephanocircidae) represent one of the most commonly found subfamilies in this region and show some endemism and high diversity. Plocopsylla is the most diverse genus of Craneopsyllinae; it includes 10 species mainly distributed in the Patagonian subregion, which parasitize sigmodontine rodents (Rodentia: Cricetidae). We describe and illustrate the morphology of the aedeagus in species of Plocopsylla that belong to the 'angusticeps-lewisi' complex. This character is of diagnostic value in differentiating among species. A new species of this complex, Plocopsylla (Plocopsylla) linardii sp. n., is described and identified by the shape and chaetotaxy of the distal arm of sternite IX, as well as by the shape of the median dorsal lobe of the aedeagus. New host associations for this complex and range extensions for most of its species are reported. Plocopsylla (P.) silewi is recorded for the first time in Argentina. The southern limits of the distributions of Plocopsylla (P.) lewisi and Plocopsylla (P.) wilesi are extended to Santa Cruz Province. The angusticeps-lewisi complex is found for the first time in San Juan Province. The information may be useful in epidemiological studies of flea-borne diseases. © 2015 The Royal Entomological Society.

  19. Probabilistic Forecasting of Drought Events Using Markov Chain- and Bayesian Network-Based Models: A Case Study of an Andean Regulated River Basin

    Directory of Open Access Journals (Sweden)

    Alex Avilés

    2016-01-01

    Full Text Available The scarcity of water resources in mountain areas can distort normal water application patterns with among other effects, a negative impact on water supply and river ecosystems. Knowing the probability of droughts might help to optimize a priori the planning and management of the water resources in general and of the Andean watersheds in particular. This study compares Markov chain- (MC and Bayesian network- (BN based models in drought forecasting using a recently developed drought index with respect to their capability to characterize different drought severity states. The copula functions were used to solve the BNs and the ranked probability skill score (RPSS to evaluate the performance of the models. Monthly rainfall and streamflow data of the Chulco River basin, located in Southern Ecuador, were used to assess the performance of both approaches. Global evaluation results revealed that the MC-based models predict better wet and dry periods, and BN-based models generate slightly more accurately forecasts of the most severe droughts. However, evaluation of monthly results reveals that, for each month of the hydrological year, either the MC- or BN-based model provides better forecasts. The presented approach could be of assistance to water managers to ensure that timely decision-making on drought response is undertaken.

  20. Distributional patterns of living ungulates (Mammalia: Cetartiodactyla and Perissodactyla) of the Neotropical region, the South American transition zone and Andean region

    Science.gov (United States)

    Absolon, Bruno Araujo; Gallo, Valéria; Avilla, Leonardo S.

    2016-11-01

    To recognize the distributional patterns of living ungulates in the Neotropical region, the South American transition zone, and Andean region using the panbiogeographical method of track analysis, and to attempt to correlate these patterns with geological history. The distribution of 24 species of living ungulates (in the families Camelidae, Cervidae, Tapiridae and Tayassuidae) was studied by the panbiogeographical method of track analysis. It was performed using distributional data acquired from literature and databases of scientific institutions. Individual tracks were obtained for each species by plotting locality records on maps and connecting them by minimum-spanning trees. Generalized tracks were determined from the spatial overlap between individual tracks, indicating a common history. The intersection between generalized tracks defined a biogeographic node, implying that these locations are biogeographic composites resulting from different ancestral biotas coming into spatial contact, possibly at different geologic times. The superposition of the 24 individual tracks resulted in five generalized tracks (GTs): GT1, Mesoamerican/Choco (composed of Mazama pandora, Mazama temama, Odoicoileus virginianus and Tapirus bairdii); GT2, Northern Andes (Mazama rufina, Pudu mephistophiles and Tapirus pinchaque); GT3, Central Andes (Hippocamelus antisensis, Lama guanicoe, Mazama chunyi and Vicugna vicugna); GT4, Chilean Patagonia (Hippocamelus bisulcus and Pudu puda); and GT5, Chaco/Central west Brazil (Blastocerus dichotomus, Catagonus wagneri and Ozotocerus bezoarticus). The biogeographic node was found in the Northwestern Colombia. The geological events such as tectonism and volcanism that occurred through the Neogene and mainly in the Pleistocene caused fragmentation, diversification and endemism of biota. The biogeographic node in Colombia occurred within a zone of convergence. This node emphasized the complexity of the area and it contains biotic elements with

  1. Volcanic activity: a review for health professionals.

    Science.gov (United States)

    Newhall, C G; Fruchter, J S

    1986-03-01

    Volcanoes erupt magma (molten rock containing variable amounts of solid crystals, dissolved volatiles, and gas bubbles) along with pulverized pre-existing rock (ripped from the walls of the vent and conduit). The resulting volcanic rocks vary in their physical and chemical characteristics, e.g., degree of fragmentation, sizes and shapes of fragments, minerals present, ratio of crystals to glass, and major and trace elements composition. Variability in the properties of magma, and in the relative roles of magmatic volatiles and groundwater in driving an eruption, determine to a great extent the type of an eruption; variability in the type of an eruption in turn influences the physical characteristics and distribution of the eruption products. The principal volcanic hazards are: ash and larger fragments that rain down from an explosion cloud (airfall tephra and ballistic fragments); flows of hot ash, blocks, and gases down the slopes of a volcano (pyroclastic flows); "mudflows" (debris flows); lava flows; and concentrations of volcanic gases in topographic depressions. Progress in volcanology is bringing improved long- and short-range forecasts of volcanic activity, and thus more options for mitigation of hazards. Collaboration between health professionals and volcanologists helps to mitigate health hazards of volcanic activity.

  2. Ages of plains volcanism on Mars

    Science.gov (United States)

    Hauber, Ernst; Jagert, Felix; Broz, Petr

    2010-05-01

    Plain-style volcanism [1] is widespread in the Tharsis and Elysium volcanic provinces on Mars, [2,3]. Detailed images and topographic data reveal the morphology and topography of clusters of low shields and associated lava flows. The landforms of plains volcanism on Mars have all well-known terrestrial analogues in basaltic volcanic regions, such as Hawaii, Iceland, and in particular the Snake River Plains [4]. The very gentle flank slopes (J. (1981) Icarus, 45, 586-601. [3] Hodges C.A. and Moore H.J. (1994) Atlas of volcanic features on Mars: USGS Prof. Paper 1534, 194 p. [4] Hauber E. et al. (2009) J. Volcanol. Geotherm. Res. 185, 69-95. [5] Wilson L. et al. (2009) J. Volcanol. Geotherm. Res. 185, 28-46. [6] Vaucher, J. et al. (2009) Icarus 204, 418-442. [7] Baratoux D. et al. (2009) J. Volcanol. Geotherm. Res. 185, 47-68. [8] Bleacher J.E. et al. (2009) J. Volcanol. Geotherm. Res. 185, 96-102. [9] Ivanov B.A. (2001) Space Sci. Rev. 96, 87-104. [10] Hartmann W.H. and Neukum G. (2001) Space Sci. Rev. 96, 165-194 [11] Kneissl T. et al. (2010) LPS XVI, submitted. [12] Michael, G.G. and Neukum G. (2010) Earth Planet. Sci. Lett., in press. . [13] Malin M.C. et al. (2007) JGR 112, E05S04, doi: 10.1029/2006JE002808.

  3. IAI Global Change Agenda and Support of Higher Education in the Andean Amazon Countries.

    Science.gov (United States)

    Galarraga, R.; McClain, M.; Fierro, V.

    2007-05-01

    The Andean Amazon River Analysis and Management project, an IAI Collaborative Research Network operating during 1999-2004, examined the impacts of climate and land-use changes on the hydrobiogeochemistry of rivers draining the Amazon Andes of Ecuador, Peru, Colombia and Bolivia. The project also provided a means to strengthen scientific collaboration among these Andean countries and the USA. Research in these countries was carried out under the guidance of investigators with backgrounds in the relevant environmental fields, but the bulk of the research activities were carried out by undergraduate and graduate students who studied within these countries and overseas. Twenty graduate students and 15 undergraduates completed studies within the project, in topics related to monitoring hydrometeorological variables both in time and space. Student research and capacity building were focused in areas central to global environmental change, including modeling of precipitation and precipitation-runoff processes, basin-scale water quality characterization and biogeochemical cycling, and socioeconomic controls on the use and management of riverine resources. The analysis of human dimension aspects of climate change research was also featured, especially those aspects that linked the consequences of water quality degradation on human health. Most of undergraduate and graduate students that collaborated in the AARAM project have joined national environmental institutions and some have continued for higher scientific degrees in fields closely related to the IAI scientific agenda. Through this IAI initiative, the number of trained global change scientists in the Andean countries has grown and there is enhanced awareness of key global change science issues among the scientific community.

  4. The potential impact of new Andean dams on Amazon fluvial ecosystems

    Science.gov (United States)

    Melack, John M.; Dunne, Thomas; Barthem, Ronaldo B.; Goulding, Michael; Paiva, Rodrigo C. D.; Sorribas, Mino V.; Silva, Urbano L.; Weisser, Sabine

    2017-01-01

    Increased energy demand has led to plans for building many new dams in the western Amazon, mostly in the Andean region. Historical data and mechanistic scenarios are used to examine potential impacts above and below six of the largest dams planned for the region, including reductions in downstream sediment and nutrient supplies, changes in downstream flood pulse, changes in upstream and downstream fish yields, reservoir siltation, greenhouse gas emissions and mercury contamination. Together, these six dams are predicted to reduce the supply of sediments, phosphorus and nitrogen from the Andean region by 69, 67 and 57% and to the entire Amazon basin by 64, 51 and 23%, respectively. These large reductions in sediment and nutrient supplies will have major impacts on channel geomorphology, floodplain fertility and aquatic productivity. These effects will be greatest near the dams and extend to the lowland floodplains. Attenuation of the downstream flood pulse is expected to alter the survival, phenology and growth of floodplain vegetation and reduce fish yields below the dams. Reservoir filling times due to siltation are predicted to vary from 106–6240 years, affecting the storage performance of some dams. Total CO2 equivalent carbon emission from 4 Andean dams was expected to average 10 Tg y-1 during the first 30 years of operation, resulting in a MegaWatt weighted Carbon Emission Factor of 0.139 tons C MWhr-1. Mercury contamination in fish and local human populations is expected to increase both above and below the dams creating significant health risks. Reservoir fish yields will compensate some downstream losses, but increased mercury contamination could offset these benefits. PMID:28832638

  5. Identifying positive selection candidate loci for high-altitude adaptation in Andean populations.

    Science.gov (United States)

    Bigham, Abigail W; Mao, Xianyun; Mei, Rui; Brutsaert, Tom; Wilson, Megan J; Julian, Colleen Glyde; Parra, Esteban J; Akey, Joshua M; Moore, Lorna G; Shriver, Mark D

    2009-12-01

    High-altitude environments (>2,500 m) provide scientists with a natural laboratory to study the physiological and genetic effects of low ambient oxygen tension on human populations. One approach to understanding how life at high altitude has affected human metabolism is to survey genome-wide datasets for signatures of natural selection. In this work, we report on a study to identify selection-nominated candidate genes involved in adaptation to hypoxia in one highland group, Andeans from the South American Altiplano. We analysed dense microarray genotype data using four test statistics that detect departures from neutrality. Using a candidate gene, single nucleotide polymorphism-based approach, we identified genes exhibiting preliminary evidence of recent genetic adaptation in this population. These included genes that are part of the hypoxia-inducible transcription factor ( HIF ) pathway, a biochemical pathway involved in oxygen homeostasis, as well as three other genomic regions previously not known to be associated with high-altitude phenotypes. In addition to identifying selection-nominated candidate genes, we also tested whether the HIF pathway shows evidence of natural selection. Our results indicate that the genes of this biochemical pathway as a group show no evidence of having evolved in response to hypoxia in Andeans. Results from particular HIF -targeted genes, however, suggest that genes in this pathway could play a role in Andean adaptation to high altitude, even if the pathway as a whole does not show higher relative rates of evolution. These data suggest a genetic role in high-altitude adaptation and provide a basis for genotype/phenotype association studies that are necessary to confirm the role of putative natural selection candidate genes and gene regions in adaptation to altitude.

  6. Explaining Andean potato weevils in relation to local and landscape features: a facilitated ecoinformatics approach.

    Directory of Open Access Journals (Sweden)

    Soroush Parsa

    Full Text Available BACKGROUND: Pest impact on an agricultural field is jointly influenced by local and landscape features. Rarely, however, are these features studied together. The present study applies a "facilitated ecoinformatics" approach to jointly screen many local and landscape features of suspected importance to Andean potato weevils (Premnotrypes spp., the most serious pests of potatoes in the high Andes. METHODOLOGY/PRINCIPAL FINDINGS: We generated a comprehensive list of predictors of weevil damage, including both local and landscape features deemed important by farmers and researchers. To test their importance, we assembled an observational dataset measuring these features across 138 randomly-selected potato fields in Huancavelica, Peru. Data for local features were generated primarily by participating farmers who were trained to maintain records of their management operations. An information theoretic approach to modeling the data resulted in 131,071 models, the best of which explained 40.2-46.4% of the observed variance in infestations. The best model considering both local and landscape features strongly outperformed the best models considering them in isolation. Multi-model inferences confirmed many, but not all of the expected patterns, and suggested gaps in local knowledge for Andean potato weevils. The most important predictors were the field's perimeter-to-area ratio, the number of nearby potato storage units, the amount of potatoes planted in close proximity to the field, and the number of insecticide treatments made early in the season. CONCLUSIONS/SIGNIFICANCE: Results underscored the need to refine the timing of insecticide applications and to explore adjustments in potato hilling as potential control tactics for Andean weevils. We believe our study illustrates the potential of ecoinformatics research to help streamline IPM learning in agricultural learning collaboratives.

  7. Genetic control of the seed coat colour of Middle American and Andean bean seeds.

    Science.gov (United States)

    Possobom, Micheli Thaise Della Flora; Ribeiro, Nerinéia Dalfollo; Zemolin, Allan Emanoel Mezzomo; Arns, Fernanda Daltrozo

    2015-02-01

    Seed coat colour of bean seeds is decisive for acceptance of a cultivar. The objectives of this research were to determine whether there is maternal effect for "L", a* and b* colour parameters in Middle American and Andean bean seeds; to obtain estimates of heritability and gain with selection for "L", a* and b* values; and select recombinants with the seed coat colour required by the market demand. Thus, controlled crossings were carried out between the Middle American lines CNFP 10104 and CHC 01-175, and between the Andean lines Cal 96 and Hooter, for obtaining F1, F1 reciprocal, F2 and F2 reciprocal generations for each hybrid combination. Parents and generations were evaluated in two field experiments (2012 normal rainy and 2013 dry seasons) in the state of Rio Grande do Sul, Brazil. Seed coat colour was quantified with a portable colorimeter. Genetic variability for "L" (luminosity), chromaticity a* (green to red shade), and chromaticity b* (blue to yellow shade) values was observed in seeds with F2 seed coat of Middle American and Andean beans. "L", a* and b* values in bean seeds presented maternal effects. High broad-sense heritability are observed for luminosity (h(2)b: 76.66-95.07%), chromaticity a* (h(2)b: 73.08-89.31%), and chromaticity b* (h(2)b: 88.63-92.50%) values in bean seeds. From the crossings, it was possible to select bean seeds in early generation for the black group, and for carioca and cranberry types (dark or clear background) which present the colour required by the market demand.

  8. Macrophyte Communities of Andean Rivers: Composition and Relation with Environmental Factors

    OpenAIRE

    Alida Marcela Gómez Rodríguez; Luz Teresa Valderrama Valderrama; Carlos A. Rivera-Rondón

    2017-01-01

    Small streams of tropical Andes have been poorly studied. Therefore, there is little information about the structure, dynamics and function of their macrophyte communities. In this research, aquatic plant communities of 18 Andean streams of La Vieja (Quindío) and Otún (Risaralda) river basins were studied; those are some of the basins most affected by anthropic activities in the country. Streams were selected according to their association with the main land’s uses of the region in both basin...

  9. The genus Phyllophaga Harris (Coleoptera: Scarabaeidae: Melolonthinae) in the Colombian Andean Mountains.

    Science.gov (United States)

    Vallejo, Luis Fernando; Wolff, Martha

    2013-01-01

    The number of species in the genus Phyllophaga Harris (Coleoptera: Scarabaeidae: Melolonthinae) in Colombia is updated to 33. This group represents one of the most common components of the "white grubs" complex, known to damage important agricultural crops, especially in the Colombian Andean Mountains. A commented taxonomic history of the genus is provided, including five new records for the country (P. schizorhina, P. onoreana, P. densata, P. guanacasteca, and P. gigantea) and Phyllophaga tesorito is described as a new species. A key to the identification of male specimens of 30 species is included with a catalogue illustrating their key structures. Finally, aspects related to their ecological importance, geographic distribution, and phenology are discussed.

  10. [Decriminalizing traditional Andean medicine: an interview with Walter Álvarez Quispe].

    Science.gov (United States)

    Quispe, Walter Álvarez; Loza, Carmen Beatriz

    2014-01-01

    Walter Álvarez Quispe, a Kallawaya healer and biomedical practitioner specializing in general surgery and gynecology, presents the struggle of traditional and alternative healers to get their Andean medical systems depenalized between 1960 and 1990. Bolivia was the first country in Latin America and the Caribbean to decriminalize traditional medicine before the proposals of the International Conference on Primary Health Care (Alma-Ata, 1978). The data provided by the interviewee show that the successes achieved, mainly by the Kallawayas, stem from their own independent initiative. These victories are not the result of official policies of interculturality in healthcare, although the successes achieved tend to be ascribed to them.

  11. The electronic contract formation in the framework of the Andean Community

    Directory of Open Access Journals (Sweden)

    William David Hernández

    2012-12-01

    Full Text Available The influence of the Information and Communication Technology (ICT in all the aspects of the society is an unquestionable fact that implies, for the Law, the inescapable responsibility of fostering the fulfillment of the declarations or objectives of the Society of Information. Today´s world, framed in a process of globalization and regional integration, heads to the normative harmonization. In line with the above, the present document studies the elements supporting the normative unification concerning the formation of the contract by electronic means in the Andean Community.

  12. Evaluation of an andean common bean reference collection under drought stress

    OpenAIRE

    Pérez Vega, Juan Carlos; Blair, Matthew W.; Monserrate, Fredy; Ligarreto Moreno, Gustavo Adolfo

    2012-01-01

    More than 60% of common bean (Phaseolus vulgaris L.) production worldwide is impacted by the risk of drought. In this study, the goal was to evaluate 64 bush bean genotypes from the CIAT reference collection to identify possible sources of drought resistance in the Andean gene pool. Phenotypic traits such as yield, 100-seed weight (P100) and days to physiological maturity (Dpm) were evaluated on selected accessions of this collection which was grown in an 8x8 lattice with two repetitions unde...

  13. Physics in the Andean Countries: A Perspective from Condensed Matter, Novel Materials and Nanotechnology

    Science.gov (United States)

    Prieto, P.

    2009-05-01

    We will discuss the current state of R&D in the fields of condensed matter, novel materials, and nanotechnology in the Andean nations. We will initially consider Latin America and the Caribbean (LAC) to then visualize individual developments, as well as those for the region as a whole in these fields of knowledge in each of the nations constituting the Andean Region (Bolivia, Ecuador, Chile, Venezuela, Peru, and Colombia). Based on Science & Technology watch exercises in the countries involved, along with the Iberian American and Inter-American Science & Technology Network of Indicators (Red de indicadores de Ciencia y Tecnolog'ia (RICYT) iberoamericana e interamericana)1, we will reveal statistical data that will shed light on the development in the fields mentioned. As will be noted, total R&D investment in Latin American and Caribbean countries remained constant since 1997. In spite of having reached a general increase in publications without international collaboration in LAC nations, the countries with greatest research productivity in Latin America (Argentina, Mexico, Brazil, and Chile) have strengthened their international collaboration with the United States, France, Germany, and Italy through close links associated with the formation processes of their researchers. Academic and research integration is evaluated through joint authorship of scientific articles, evidencing close collaboration in fields of research. This principle has been used in the creation of cooperation networks among participating nations. As far as networks of research on condensed matter, novel materials, and nanotechnology, the Andean nations have not consolidated a regional network allowing permanent and effective cooperation in research and technological development; as would be expected, given their idiomatic and cultural similarities, their historical background, and geographical proximity, which have been integrating factors in other research areas or socio-economic aspects. This

  14. Late Pleistocene-Holocene Volcanism of the Mexico Basin and Assessment of Volcanic Hazards in One of the World’s Largest Cities

    Science.gov (United States)

    Layer, P. W.; Macías, J.; Arce, J.; García, F.

    2009-12-01

    deposits that now underlie the city of Cuernavaca. Zempoala is located at the southern end of Sierra de las Cruces and is in the intersection of the late Pleistocene-Holocene Chichinautzin Volcanic Field. We have obtained volcanic edifices in the Sierra de Santa Catarina, which are now surrounded by densely populated areas. Our preliminary data show that there are many of these poorly understood, but potentially hazardous, volcanic centers throughout the Mexico Basin that have evidence of Late Pleistocene-Holocene activity. Further geological mapping and geochronologic data will allow us to better understand the complex migration patterns and eruption occurrence rate of the volcanic centers around Mexico City, evaluate their potential hazards, and understand the evolution of these ranges in relation to the tectonic framework in central Mexico.

  15. National volcanic ash operations plan for aviation

    Science.gov (United States)

    ,; ,

    2007-01-01

    The National Aviation Weather Program Strategic Plan (1997) and the National Aviation Weather Initiatives (1999) both identified volcanic ash as a high-priority informational need to aviation services. The risk to aviation from airborne volcanic ash is known and includes degraded engine performance (including flameout), loss of visibility, failure of critical navigational and operational instruments, and, in the worse case, loss of life. The immediate costs for aircraft encountering a dense plume are potentially major—damages up to $80 million have occurred to a single aircraft. Aircraft encountering less dense volcanic ash clouds can incur longer-term costs due to increased maintenance of engines and external surfaces. The overall goal, as stated in the Initiatives, is to eliminate encounters with ash that could degrade the in-flight safety of aircrews and passengers and cause damage to the aircraft. This goal can be accomplished by improving the ability to detect, track, and forecast hazardous ash clouds and to provide adequate warnings to the aviation community on the present and future location of the cloud. To reach this goal, the National Aviation Weather Program established three objectives: (1) prevention of accidental encounters with hazardous clouds; (2) reduction of air traffic delays, diversions, or evasive actions when hazardous clouds are present; and (3) the development of a single, worldwide standard for exchange of information on airborne hazardous materials. To that end, over the last several years, based on numerous documents (including an OFCMsponsored comprehensive study on aviation training and an update of Aviation Weather Programs/Projects), user forums, and two International Conferences on Volcanic Ash and Aviation Safety (1992 and 2004), the Working Group for Volcanic Ash (WG/VA), under the OFCM-sponsored Committee for Aviation Services and Research, developed the National Volcanic Ash Operations Plan for Aviation and Support of the

  16. Two Extreme Climate Events of the Last 1000 Years Recorded in Himalayan and Andean Ice Cores: Impacts on Humans

    Science.gov (United States)

    Thompson, L. G.; Mosley-Thompson, E. S.; Davis, M. E.; Kenny, D. V.; Lin, P.

    2013-12-01

    In the last few decades numerous studies have linked pandemic influenza, cholera, malaria, and viral pneumonia, as well as droughts, famines and global crises, to the El Niño-Southern Oscillation (ENSO). Two annually resolved ice core records, one from Dasuopu Glacier in the Himalaya and one from the Quelccaya Ice Cap in the tropical Peruvian Andes provide an opportunity to investigate these relationships on opposite sides of the Pacific Basin for the last 1000 years. The Dasuopu record provides an annual history from 1440 to 1997 CE and a decadally resolved record from 1000 to 1440 CE while the Quelccaya ice core provides annual resolution over the last 1000 years. Major ENSO events are often recorded in the oxygen isotope, insoluble dust, and chemical records from these cores. Here we investigate outbreaks of diseases, famines and global crises during two of the largest events recorded in the chemistry of these cores, particularly large peaks in the concentrations of chloride (Cl-) and fluoride (Fl-). One event is centered on 1789 to 1800 CE and the second begins abruptly in 1345 and tapers off after 1360 CE. These Cl- and F- peaks represent major droughts and reflect the abundance of continental atmospheric dust, derived in part from dried lake beds in drought stricken regions upwind of the core sites. For Dasuopu the likely sources are in India while for Quelccaya the sources would be the Andean Altiplano. Both regions are subject to drought conditions during the El Niño phase of the ENSO cycle. These two events persist longer (10 to 15 years) than today's typical ENSO events in the Pacific Ocean Basin. The 1789 to 1800 CE event was associated with a very strong El Niño event and was coincidental with the Boji Bara famine resulting from extended droughts that led to over 600,000 deaths in central India by 1792. Similarly extensive droughts are documented in Central and South America. Likewise, the 1345 to 1360 CE event, although poorly documented

  17. Late Quaternary slip rates of two active thrust faults at the front of the Andean Precordillera, Mendoza, Argentina

    Science.gov (United States)

    Hetzel, R.; Schmidt, S.; Ramos, V. A.; Mingorance, F.

    2010-12-01

    Several destructive earthquakes occurred in the last several hundred years along the active mountain front of the Andean Precordillera between 30°S and 33°S (Siame et al., 2002). However, slip rates of active reverse faults remain largely unknown and the seismic hazard related to these faults is still poorly constrained. Here we report slip rates for two active thrusts located north of Mendoza, the Penas and Cal thrusts, which offset Late Pleistocene to Holocene terraces and form well preserved fault scarps. At the Penas thrust three terraces (T1, T2 and T3) are displaced vertically by 0.9, 2 and 11 m, respectively. 10Be and 14C age constraints yield a vertical slip rate of ~0.9 mm/a for the Penas thrust fault. Combined with the dip angle of the fault of ~25°, this leads to a horizontal shortening rate of about 2 mm/a. At the Cal thrust the highest terrace, which has a maximum 10Be age of 12 ka, is displaced by ~7.5 m. This translates into a minimum horizontal shortening rate of about 1 mm/a. Comparison with short-term GPS data (Brooks et al., 2003) suggests that both the Penas and Cal thrusts accomodate a significant portion of the present-day E-W shortening rate in the eastern Andes. The vertical surface displacements derived from the smallest scarps is 0.9 m for both thrusts. Hence, given their length (Penas thrust: 40 km, Cal thrust: 31 km), these faults are capable of producing magnitude 7 earthquakes (Wells & Coppersmith, 1994), which is confirmed by a Ms = 7.0 earthquake on the Cal thrust that destroyed the city of Mendoza in 1861. Assuming characteristic earthquakes for both faults suggests average reccurence intervals of 1000 to 1500 years during the Holocene. References Brooks, B.A., Bevis, M., Smalley, R., Kendrick, E., Manceda, R., Lauria, E., Maturana, R., Araujo, M., 2003. Crustal motion in the Southern Andes (26°-36°S): Do the Andes behave like a microplate? Geochemistry Geophysics Geosystems 4, doi: 10.1029/2003GC000505. Siame, L.L., Bellier, O

  18. Tropical Volcanic Soils From Flores Island, Indonesia

    Directory of Open Access Journals (Sweden)

    Hikmatullah

    2010-01-01

    Full Text Available Soils that are developed intropical region with volcanic parent materials have many unique properties, and high potential for agricultural use.The purpose of this study is to characterize the soils developed on volcanic materials from Flores Island, Indonesia,and to examine if the soils meet the requirements for andic soil properties. Selected five soils profiles developed fromandesitic volcanic materials from Flores Island were studied to determine their properties. They were compared intheir physical, chemical and mineralogical characteristics according to their parent material, and climatic characteristicdifferent. The soils were developed under humid tropical climate with ustic to udic soil moisture regimes withdifferent annual rainfall. The soils developed from volcanic ash parent materials in Flores Island showed differentproperties compared to the soils derived from volcanic tuff, even though they were developed from the sameintermediary volcanic materials. The silica contents, clay mineralogy and sand fractions, were shown as the differences.The different in climatic conditions developed similar properties such as deep solum, dark color, medium texture, andvery friable soil consistency. The soils have high organic materials, slightly acid to acid, low to medium cationexchange capacity (CEC. The soils in western region have higher clay content and showing more developed than ofthe eastern region. All the profiles meet the requirements for andic soil properties, and classified as Andisols order.The composition of sand mineral was dominated by hornblende, augite, and hypersthenes with high weatherablemineral reserves, while the clay fraction was dominated by disordered kaolinite, and hydrated halloysite. The soilswere classified into subgroup as Thaptic Hapludands, Typic Hapludands, and Dystric Haplustands

  19. Sensitivity of the Regional Climate in the Middle East and North Africa to Volcanic Perturbations

    KAUST Repository

    Dogar, Muhammad Mubashar

    2017-07-27

    The Middle East and North Africa (MENA) regional climate appears to be extremely sensitive to volcanic eruptions. Winter cooling after the 1991 Pinatubo eruption far exceeded the mean hemispheric temperature anomaly, even causing snowfall in Israel. To better understand MENA climate variability, the climate responses to the El Chichón and Pinatubo volcanic eruptions are analyzed using observations, NOAA/NCEP Climate Forecast System Reanalysis, and output from the Geophysical Fluid Dynamics Laboratory\\'s High-Resolution Atmospheric Model (HiRAM). A multiple regression analysis both for the observations and the model output is performed on seasonal summer and winter composites to separate out the contributions from climate trends, El Niño Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Indian summer monsoon and volcanic aerosols. Strong regional temperature and precipitation responses over the MENA region are found in both winter and summer. The model and the observations both show that a positive NAO amplifies the MENA volcanic winter cooling. In boreal summer, the patterns of changing temperature and precipitation suggest a weakening and southward shift of the Intertropical Convergence Zone, caused by volcanic surface cooling and weakening of the Indian and West African monsoons. The model captures the main features of the climate response; however, it underestimates the total cooling, especially in winter, and exhibits a different spatial pattern of the NAO climate response in MENA compared to the observations. The conducted analysis sheds light on the internal mechanisms of MENA climate variability and helps to selectively diagnose the model deficiencies.

  20. Subglacial Calcites from Northern Victoria Land: archive of Antarctic volcanism in the Last Glacial Maximum

    Science.gov (United States)

    Frisia, Silvia; Weirich, Laura; Hellstrom, John; Borsato, Andrea; Golledge, Nicholas R.; Anesio, Alexandre M.; Bajo, Petra; Drysdale, Russell N.; Augustinus, Paul C.; Barbante, Carlo; Cooper, Alan

    2017-04-01

    Subglacial carbonates bear similarities to stalagmites in their fabrics and the potential to obtain precise chronologies using U-series methods. Their chemical properties also reflect those of their parent waters, which, in contrast to stalagmites, are those of subglacial meltwaters. In analogy to speleothems, stable Carbon isotope ratios and trace elements such as Uranium, Iron and Manganese provide the opportunity to investigate ancient extreme environments without the need to drill through thousands of metres of ice. Sedimentological, geochemical and microbial evidence preserved in LGM subglacial calcites from Northern Victoria Land, close to the East Antarctic Ice Sheet margin, allow us to infer that subglacial volcanism was active in the Trans Antarctic Mountain region and induced basal ice melting. We hypothesize that a meltwater reservoir was drained and injected into interconnected basal pore systems where microbial processes enhanced bedrock weathering and, thus, released micronutrients. Volcanic influence is supported by the presence of fluorine (F) and sulphur in sediment-laden calcite layers containing termophilic species. Notably, calcite δ13C points to dissolved inorganic carbon evolved from subglacial metabolic processes. Once transported to the sea, soluble iron likely contributed to fertilizing the Southern Ocean and CO2 drawdown. This is the first well-dated evidence for LGM volcanism in Antarctica, which complements the record of volcanic eruptions retrieved from Talos Dome ice core, and supports the hypothesis of large-scale volcanism as an important driver of climate change. We conclude that subglacial carbonates are equivalent to speleothems in their palaeoclimate potential and may become a most useful source of information of ecosystems and processes at peak glacials in high altitude/high latitude settings.

  1. Extensional Volcanism of the Taos Plateau Volcanic Field, Northern Rio Grande Rift, USA: New Insights from Geologic Mapping, 40Ar/39Ar Geochronology, Geochemistry and Geophysical Modeling

    Science.gov (United States)

    Thompson, R. A.; Turner, K. J.; Cosca, M. A.; Drenth, B.; Grauch, V. J. S.

    2016-12-01

    The Pliocene Taos Plateau Volcanic Field (TPVF) is the largest volcanic field of the Rio Grande rift. Deposits of the TPVF are distributed across 4500 km2 in the southern part of the 11,500 km2 San Luis Valley in southern Colorado and northern New Mexico constituting a major component of the structural San Luis Basin (SLB) fill. Exposed deposit thicknesses range from a few meters near the distal termini of basaltic lava flows to 240 m in the Rio Grande gorge near Taos, NM. New geologic mapping and 100 high-resolution 40Ar/39Ar age determinations help identify a complex distribution of >50 exposed eruptive centers ranging in composition from basalt to rhyolite. Total eruptive volume, estimated from geologic map relations, geophysical modeling of basin geometry and subsurface distribution of basaltic deposits, are approximately 300 km3; comprising 66% Servilleta Basalt (tholeiite), 3% mildly alkaline trachybasalt & trachyandesite, 12% olivine andesite, 17% dacite, and Guadalupe Mountain/Cerro Negro, 3.9 Ma Ute Mountain, and 3 Ma San Antonio Mountain) reach elevations of 3300 m, 770 m above the valley floor each spatially and temporally associated with fault-bounded sub-basins superposed on the broader structural SLB. Locally, coeval Pliocene fault-slip rates are 2.5 times the long-term rates determined for the SLB confirming the temporal association of local intrabasin extensional faulting and eruptive centers.

  2. Desert dust,Ocean spray,Volcanoes,Biomass burning: Pathways of nutrients into Andean rainforests

    Science.gov (United States)

    Fabian, P.; Rollenbeck, R.; Spichtinger, N.; Dominguez, G.; Brothers, L.; Thiemens, M.

    2009-04-01

    Atlantic air masses to reach the receptor site within less than 5 days.Episodes of enhanced Ca 2+ and Mg 2+ were found to be associated with air masses from African deserts.Satellite aerosol data clearly confirmed desert sources both on the Northern (Sahara) as on the Southern Hemisphere (Namib),depending on season. Few episodes of distinct PO43-deposition are due to air masses either from north African (phosphate mining) or coastal sites of Peru (guano?). While volcanic,oceanic and desert sources are natural, large scale biomass burning is an anthropogenic source which adds about 7 kg/ha of NO3- and 14 kg/ha of SO4 2- per year .The episodic PO4 3- deposition amounts to about 2.6 kg/ha PO4 3- per year.Controlled fertilizing experiments are presently carried out to investigate the impact of these disturbances on the mountain forest ecosystem.

  3. Volcanic air pollution hazards in Hawaii

    Science.gov (United States)

    Elias, Tamar; Sutton, A. Jeff

    2017-04-20

    Noxious sulfur dioxide gas and other air pollutants emitted from Kīlauea Volcano on the Island of Hawai‘i react with oxygen, atmospheric moisture, and sunlight to produce volcanic smog (vog) and acid rain. Vog can negatively affect human health and agriculture, and acid rain can contaminate household water supplies by leaching metals from building and plumbing materials in rooftop rainwater-catchment systems. U.S. Geological Survey scientists, along with health professionals and local government officials are working together to better understand volcanic air pollution and to enhance public awareness of this hazard.

  4. Volcanic Eruptions and Climate: Outstanding Research Issues

    Science.gov (United States)

    Robock, Alan

    2016-04-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. Based on observations after major eruptions of the past and experiments with numerical models of the climate system, we understand much about their climatic impact, but there are also a number of unanswered questions. Volcanic eruptions produce global cooling, and are an important natural cause of interannual, interdecadal, and even centennial-scale climate change. One of the most interesting volcanic effects is the "winter warming" of Northern Hemisphere continents following major tropical eruptions. During the winter in the Northern Hemisphere following every large tropical eruption of the past century, surface air temperatures over North America, Europe, and East Asia were warmer than normal, while they were colder over Greenland and the Middle East. This pattern and the coincident atmospheric circulation correspond to the positive phase of the Arctic Oscillation. While this response is observed after recent major eruptions, most state-of-the-art climate models have trouble simulating winter warming. Why? High latitude eruptions in the Northern Hemisphere, while also producing global cooling, do not have the same impact on atmospheric dynamics. Both tropical and high latitude eruptions can weaken the Indian and African summer monsoon, and the effects can be seen in past records of flow in the Nile and Niger Rivers. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade have had a small effect on global temperature trends. Some important outstanding research questions include: How much seasonal, annual, and decadal predictability is possible following a large volcanic eruption? Do

  5. Beginning and end of lunar mare volcanism

    International Nuclear Information System (INIS)

    Schultz, P.H.; Spudis, P.D.

    1983-01-01

    Having presented the inferred distribution and style of the early phases of mare volcanism, based on current evidence, it is suggested that certain regions of the Moon underwent two distinct pulses of igneous activity. Crater statistics for the post-Lichtenberg mare unit and other selected units are examined and it is concluded that mare volcanism extended to a time comparable with that of the Copernicus impact, or approximately 1 Myr BP. These reassessments of the oldest and youngest maria provide new constraints on geophysical models of the internal thermal history of the Moon. (U.K.)

  6. Durham, North Carolina, Students Study Martian Volcanism

    Science.gov (United States)

    2008-01-01

    This image of the wall of a graben a depressed block of land between two parellel faults in Tyrrhena Terra, in Mars' ancient southern highlands, was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 0914 UTC (4:14 a.m. EST) on February 6, 2008, near 17.3 degrees south latitude, 95.5 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 35 meters (115 feet) across. The region covered is just over 10 kilometers (6.2 miles) wide at its narrowest point. This image was part of an investigation planned by students in four high schools in Durham, North Carolina. The students are working with the CRISM science team in a project called the Mars Exploration Student Data Teams (MESDT), which is part of NASA's Mars Public Engagement Program and Arizona State University's Mars Education Program. Starting with a medium-resolution map of the area, taken as part of CRISM's 'multispectral survey' campaign to map Mars in 72 colors at 200 meters (660 feet) per pixel, the students identified a key rock outcrop to test their hypothesis that the irregular depression was formed by Martian volcanism. They provided the coordinates of the target to CRISM's operations team, who took a high-resolution image of the site. The Context Imager (CTX) accompanied CRISM with a 6 meter (20 feet) per pixel, high-resolution image to sharpen the relationship of spectral variations to the underlying surface structures. The Durham students worked with a mentor on the CRISM team to analyze the data, and presented their results at the 39th Lunar and Planetary Science Conference, held in League City, Texas, on March 10-14, 2008. The upper panel of the image shows the location of the CRISM data and the surrounding, larger CTX image, overlain on an image mosaic taken by the Thermal Emission Imaging System (THEMIS) on Mars Odyssey. The mosaic has been color-coded for elevation using data from the Mars Orbiter Laser

  7. A 150-ka-long record for the volcano-tectonic deformation of Central Anatolian Volcanic Province

    Science.gov (United States)

    Karabacak, Volkan; Tonguç Uysal, I.; Ünal-İmer, Ezgi; Mutlu, Halim; Zhao, Jian-xin

    2017-04-01

    The Anatolian Block represents one of the most outstanding examples of intra-plate deformation related to continental collision. Deformation related to the convergence of the Afro-Arabian continent toward north gives rise to widespread and intense arc volcanism in the Central Anatolia. All the usual studies on dating the volcano-tectonic deformation of the region are performed entirely on volcanic events of the geological record resulted in eruptions. However, without volcanic eruption, magma migration and related fluid pressurization also generate crustal deformation. In the current study has been funded by the Scientific and Technological Research Council of Turkey with the project no. 115Y497, we focused on fracture systems and their carbonate veins around the Ihlara Valley (Cappadocia) surrounded by well-known volcanic centers with latest activities of the southern Central Anatolian Volcanic Province. We dated 37 samples using the Uranium-series technique and analyzed their isotope systematics from fissure veins, which are thought to be controlled by the young volcanism in the region. Our detailed fracture analyses in the field show that there is a regional dilatation as a result of a NW-SE striking extension which is consistent with the results of recent GPS studies. The Uranium-series results indicate that fracture development and associated carbonate vein deposition occurred in the last 150 ka. Carbon and oxygen isotope systematics have almost remained unchanged in the studied time interval. Although veins in the region were precipitated from fluids primarily of meteoric origin, fluids originating from water-rock interaction also contribute for the deposition of carbonate veins. The age distribution indicates that the crustal deformation intensified during 7 different period at about 4.7, 34, 44, 52, 83, 91, 149 ka BP. Four of these periods (4.7, 34, 91, 149 ka BP) correspond to the volcanic activities suggested in the previous studies. The three crustal

  8. Projected distribution shifts and protected area coverage of range-restricted Andean birds under climate change

    Directory of Open Access Journals (Sweden)

    Verónica del Rosario Avalos

    2015-07-01

    Full Text Available In this study we projected the effect of anthropogenic climate change in endemic and restricted-range Andean bird species that spread out from the center of Bolivia to southeastern Peru. We also analyzed the representation of these species in protected areas. The ensemble forecasts from niche-based models indicated that 91–100% of species may reduce their range size under full and no dispersal scenarios, including five species that are currently threatened. The large range reduction (average 63% suggests these mountain species may be threatened by climate change. The strong effects due to range species losses are predicted in the humid mountain forests of Bolivia. The representation of bird species also decreased in protected areas. Partial gap species (94–86% are expected to increase over the present (62%. This suggests climate change and other non-climate stressors should be incorporated in conservations plans for the long-term persistence of these species. This study anticipates the magnitude of shifts in the distribution of endemic birds, and represents in the study area the first exploration of the representation of range-restricted Andean birds in protected areas under climate change.

  9. Two new trans-Andean species of Imparfinis Eigenmann & Norris, 1900 (Siluriformes: Heptapteridae from Colombia

    Directory of Open Access Journals (Sweden)

    Armando Ortega-Lara

    Full Text Available Two new species of Imparfinis are described from the trans-Andean region of Colombia. Imparfinis timana is diagnosed by having longer anal fin base (12.4-15.5% in SL, in combination with long adipose fin (24.6-31.3% in SL, 5-6 gill rakers on the first ceratobranchial, 42-43 vertebrae and additional measurements. Imparfinis usmai is distinguished by the combination of first ray of dorsal fin longest, but not projected as a long filament, long adipose fin (21.1-27.0% in SL, maxillary barbel exceeding pelvic-fin base, 39-40 vertebrae, upper caudal-fin lobe pointed and longer than lower lobe, lower lobe rounded, 7-8 gill rakers on the first ceratobranchial, as well as additional measurements. Imparfinis timana is only known from río Guarapas, a small tributary of the upper course of the río Magdalena. Imparfinis usmai is broadly distributed in the upper basin of ríos Cauca and Magdalena, and in the lower Patía river basin. The restricted distribution of I. nemacheir to trans-Andean drainages (Atrato, Magdalena, and Lago de Maracaibo is also discussed.

  10. The Andean Paepalanthus pilosus complex (Eriocaulaceae): a revision with three new taxa.

    Science.gov (United States)

    Hensold, Nancy

    2016-01-01

    A herbarium-based revision is provided for Paepalanthus pilosus and allies, five commonly confused species of cushion plants native to Andean paramo. These are placed in the recircumscribed Paepalanthus subsect. Cryptanthella Suess. The group includes Paepalanthus pilosus, Paepalanthus dendroides, and Paepalanthus lodiculoides. An additional two species and one variety are newly described: Paepalanthus caryonauta, Paepalanthus huancabambensis, and Paepalanthus pilosus var. leoniae. The latter two are Peruvian endemics, while Paepalanthus caryonauta is known from four countries, and has long been confused with other species. An additional, possibly undescribed taxon is noted from the Serrania de Perijá, Colombia. Five new synonyms and three lectotypes are proposed, and the common misapplication of some names is noted. Within the Paepalanthus pilosus complex, species differences were found in timing of peduncle elongation, sex ratio, and leaf, perianth, diaspore and nectary morphology. Ecological differences are suggested by specimen data and a review of ecological literature. Descriptions, photographs and maps are provided for all species, as is a key to the groups of eriocaulaceous cushion plants from Andean South America.

  11. Recognizing rural territorial heritage: characterization of Andean tuber production systems in Boyacá

    Directory of Open Access Journals (Sweden)

    Clavijo Ponce Neidy Lorena

    2011-08-01

    Full Text Available

    In the municipalities Ventaquemada and Turmequé (Boyacá- Colombia, we identified 20 small agricultures by their production systems including the following Andean tubers: Ullucus tuberosus Caldas (ulluco, Oxalis tuberosa Molina (oca, and Tropaeolum tuberosum R. & P. (Mashua, which were important in their family meals and culture, however, their use has declined and the area has not seen research and development processes that provide alternatives for handling, conservation, use and marketing, and now are at the risk of disappearing. This research conducted participatory assessment processes for the characterization of production systems and initiated reassessment processes of territorial heritage, identifying common sub-farm agrobiodiversity and projects for these traditional Andean tuber crops in order to enhance the special and knowhow knowledge surrounding the production.

  12. Research Priorities for the Conservation and Sustainable Governance of Andean Forest Landscapes

    Directory of Open Access Journals (Sweden)

    Sarah-Lan Mathez-Stiefel

    2017-08-01

    Full Text Available The long-term survival of Andean forest landscapes (AFL and of their capacity to contribute to sustainable development in a context of global change requires integrated adaptation and mitigation responses informed by a thorough understanding of the dynamic and complex interactions between their ecological and social components. This article proposes a research agenda that can help guide AFL research efforts for the next 15 years. The agenda was developed between July 2015 and June 2016 through a series of workshops in Ecuador, Peru, and Switzerland and involved 48 researchers and development experts working on AFL from different disciplinary perspectives. Based on our review of current research and identification of pressing challenges for the conservation and sustainable governance of AFL, we propose a conceptual framework that draws on sustainability sciences and social–ecological systems research, and we identify a set of high-priority research goals and objectives organized into 3 broad categories: systems knowledge, target knowledge, and transformation knowledge. This paper is intended to be a reference for a broad array of actors engaged in policy, research, and implementation in the Andean region. We hope it will trigger collaborative research initiatives for the continued conservation and sustainable governance of AFL.

  13. Electrical charging of ash in Icelandic volcanic plumes

    OpenAIRE

    Aplin, Karen L; Houghton, Isobel M P; Nicoll, Keri A

    2014-01-01

    The existence of volcanic lightning and alteration of the atmospheric potential gradient in the vicinity of near-vent volcanic plumes provides strong evidence for the charging of volcanic ash. More subtle electrical effects are also visible in balloon soundings of distal volcanic plumes. Near the vent, some proposed charging mechanisms are fractoemission, triboelectrification, and the so-called "dirty thunderstorm" mechanism, which is where ash and convective clouds interact electrically to e...

  14. On the climatic implications of volcanic cooling

    Science.gov (United States)

    Lindzen, Richard S.; Giannitsis, Constantine

    1998-03-01

    A simple energy balance model is used to investigate the response to a volcanic-type radiative forcing under different assumptions about the climatic sensitivity of the system. Volcanic eruptions are used as control experiments to investigate the role of the ocean-atmosphere coupling and of diffusive heat uptake by the thermocline. The effect of varying equilibrium climate sensitivity by varying the coupling of the atmosphere and ocean is examined, high sensitivity being associated with weak coupling. A model representing a coupled land-ocean system, with a reasonably realistic representation of the large-scale physics is used. It is found that systems with large equilibrium sensitivities not only respond somewhat more strongly to radiative perturbations but also return to equilibrium with much longer timescales. Based on this behavior pattern, we examine the model response to a series of volcanic eruptions following Krakatoa in 1883. Comparison between the model results and past temperature records seems to suggest that use of small sensitivity parameters is more appropriate. Despite the uncertainties associated with both the physics and the quantitative characteristics of the radiative forcing and the temperature anomalies produced by volcanic eruptions, the present study constitutes a possible test of different assumptions about the sensitivity of the climate system.

  15. Volcanic sunset-glow stratum: origin.

    Science.gov (United States)

    Meinel, A B; Meinel, M P

    1967-01-13

    Reexamination of the phenomenon of volcanic-dust sunsets, as typified by the Krakatoa event, supports a theory that the scattering layer is produced by the interaction of ozone and sulfur dioxide in much the same manner as is the normal "Junge"aerosol layer at 20 kilometers.

  16. A case study from Wadi Natash volcanic

    Indian Academy of Sciences (India)

    This paper aims at revealing the spectral characteristics of the olivine basalts exposed at Wadi Natash area, Egypt, using FieldSpec spectroradiometer. It also evaluates band ratios and fusion techniques for mapping purposes using ASTER data. Several volcanic episodes occurred during Early- to Late-Cretaceous are ...

  17. Monitoring and forecasting Etna volcanic plumes

    Directory of Open Access Journals (Sweden)

    S. Scollo

    2009-09-01

    Full Text Available In this paper we describe the results of a project ongoing at the Istituto Nazionale di Geofisica e Vulcanologia (INGV. The objective is to develop and implement a system for monitoring and forecasting volcanic plumes of Etna. Monitoring is based at present by multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager on board the Meteosat Second Generation geosynchronous satellite, visual and thermal cameras, and three radar disdrometers able to detect ash dispersal and fallout. Forecasting is performed by using automatic procedures for: i downloading weather forecast data from meteorological mesoscale models; ii running models of tephra dispersal, iii plotting hazard maps of volcanic ash dispersal and deposition for certain scenarios and, iv publishing the results on a web-site dedicated to the Italian Civil Protection. Simulations are based on eruptive scenarios obtained by analysing field data collected after the end of recent Etna eruptions. Forecasting is, hence, supported by plume observations carried out by the monitoring system. The system was tested on some explosive events occurred during 2006 and 2007 successfully. The potentiality use of monitoring and forecasting Etna volcanic plumes, in a way to prevent threats to aviation from volcanic ash, is finally discussed.

  18. Monogenetic volcanism: personal views and discussion

    Science.gov (United States)

    Németh, K.; Kereszturi, G.

    2015-11-01

    Monogenetic volcanism produces small-volume volcanoes with a wide range of eruptive styles, lithological features and geomorphic architectures. They are classified as spatter cones, scoria (or cinder) cones, tuff rings, maars (maar-diatremes) and tuff cones based on the magma/water ratio, dominant eruption styles and their typical surface morphotypes. The common interplay between internal, such as the physical-chemical characteristics of magma, and external parameters, such as groundwater flow, substrate characteristics or topography, plays an important role in creating small-volume volcanoes with diverse architectures, which can give the impression of complexity and of similarities to large-volume polygenetic volcanoes. In spite of this volcanic facies complexity, we defend the term "monogenetic volcano" and highlight the term's value, especially to express volcano morphotypes. This study defines a monogenetic volcano, a volcanic edifice with a small cumulative volume (typically ≤1 km3) that has been built up by one continuous, or many discontinuous, small eruptions fed from one or multiple magma batches. This definition provides a reasonable explanation of the recently recognized chemical diversities of this type of volcanism.

  19. The Elusive Evidence of Volcanic Lightning.

    Science.gov (United States)

    Genareau, K; Gharghabi, P; Gafford, J; Mazzola, M

    2017-11-14

    Lightning strikes are known to morphologically alter and chemically reduce geologic formations and deposits, forming fulgurites. A similar process occurs as the result of volcanic lightning discharge, when airborne volcanic ash is transformed into lightning-induced volcanic spherules (LIVS). Here, we adapt the calculations used in previous studies of lightning-induced damage to infrastructure materials to determine the effects on pseudo-ash samples of simplified composition. Using laboratory high-current impulse experiments, this research shows that within the lightning discharge channel there is an ideal melting zone that represents roughly 10% or less of the total channel radius at which temperatures are sufficient to melt the ash, regardless of peak current. The melted ash is simultaneously expelled from the channel by the heated, expanding air, permitting particles to cool during atmospheric transport before coming to rest in ash fall deposits. The limited size of this ideal melting zone explains the low number of LIVS typically observed in volcanic ash despite the frequent occurrence of lightning during explosive eruptions.

  20. Geochemistry and petrogenesis of anorogenic basic volcanic ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    anorogenic setting for the basic rocks of Kundal area is suggested, which is in conformity with the similar setting for Malani Igneous Suite. 1. Introduction. The Malani magmatism is characterized by sub- volcanic setting, volcano-plutonic ring structures, anorogenic (A-type), high heat producing magma- tism and controlled by ...

  1. Amazonian volcanism inside Valles Marineris on Mars

    Czech Academy of Sciences Publication Activity Database

    Brož, Petr; Hauber, E.; Wray, J. J.; Michael, G.

    2017-01-01

    Roč. 473, September (2017), s. 122-130 ISSN 0012-821X Institutional support: RVO:67985530 Keywords : Mars * Valles Marineris * volcanism * scoria cone * hydrothermal activity Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 4.409, year: 2016

  2. A great volcanic eruption around AD 1300 recorded in lacustrine ...

    Indian Academy of Sciences (India)

    The Sr and Nd isotope compositions at 61 cm are in excellent agreement with those in volcanic materials, but they are significantly different from those in terrigenous dust, implying a possible material input from historical volcanic eruptions in the lacustrine sediment. DY6. The documented great Samalas volcanic eruption at ...

  3. Compositional Differences between Felsic Volcanic rocks from the ...

    African Journals Online (AJOL)

    Pliocene felsic rift margin and Quaternary rift center volcanic rocks from the northern Main Ethiopian Rift (MER) exhibit contrasts in major and trace element contents and Sr-Nd isotopic ratios. Quaternary rift center felsic volcanic rocks are mainly peralkaline trachytes and rhyolites, whereas Pliocene felsic rift margin volcanic ...

  4. Microphysical Properties of Alaskan Volcanic Ash

    Science.gov (United States)

    Puthukkudy, A.; Espinosa, R.; Rocha Lima, A.; Remer, L.; Colarco, P. R.; Whelley, P.; Krotkov, N. A.; Young, K.; Dubovik, O.; Wallace, K.; Martins, J. V.

    2017-12-01

    Volcanic ash has the potential to cause a variety of severe problems for human health and the environment. Therefore, effective monitoring of the dispersion and fallout from volcanic ash clouds and characterization of the aerosol particle properties are essential. One way to acquire information from volcanic clouds is through satellite remote sensing: such images have greater coverage than ground-based observations and can present a "big picture" perspective. A challenge of remote sensing is that assumptions of certain properties of the target are often a pre-requisite for making accurate and quantitative retrievals. For example, detailed information about size distribution, sphericity, and optical properties of the constituent matter is needed or must be assumed. The same kind of information is also needed for atmospheric transport models to properly simulate the dispersion and fallout of volcanic ash. Presented here is a laboratory method to determine the microphysical and optical properties of volcanic ash samples collected from two Alaskan volcanoes with markedly different compositions. Our method uses a Polarized Imaging Nephelometer (PI-Neph) and a system that re-suspends the particles in an air flow. The PI-Neph measures angular light scattering and polarization of the re-suspended particles from 3o to 175o in scattering angle, with an angular resolution of 1o . Primary measurements include phase function and polarized phase function at three wavelengths (445nm, 532nm, and 661nm). Size distribution, sphericity, and complex refractive index are retrieved indirectly from the PI-Neph measurements using the GRASP (Generalized Retrieval of Aerosol and Surface Properties) inversion algorithm. We report the results of this method applied to samples from the Mt. Okmok (2008) and Mt. Katmai (1912) volcanic eruptions. To our knowledge, this is the first time direct measurements of phase matrix elements of ash from Mt. Okmok and Mt. Katmai have been reported. Retrieved

  5. Sources of Quaternary volcanism in the Itasy and Ankaratra volcanic fields, Madagascar

    Science.gov (United States)

    Rasoazanamparany, C.; Widom, E.; Kuentz, D. C.; Raharimahefa, T.; Rakotondrazafy, F. M. A.; Rakotondravelo, K. M.

    2017-12-01

    We present new major and trace element and Sr, Nd, Pb and Os isotope data for Quaternary basaltic lavas and tephra from the Itasy and Ankaratra volcanic fields, representing the most recent volcanism in Madagascar. Mafic magmas from Itasy and Ankaratra exhibit significant inter- and intra-volcanic field geochemical heterogeneity. The Itasy eruptive products range in composition from foidite to phonotephrite whereas Ankaratra lavas range from basanite to trachybasalts. Trace element signatures of samples from both volcanic fields are very similar to those of ocean island basalts (OIB), with significant enrichment in Nb and Ta, depletion in Rb, Cs, and K, and relatively high Nb/U and Ce/Pb. However, the Itasy volcanic rocks show enrichment relative to those of Ankaratra in most incompatible elements, indicative of a more enriched source and/or lower degrees of partial melting. Significant inter- and intra-volcanic field heterogeneity is also observed in Sr, Nd, Pb and Os isotope signatures. The Itasy volcanic rocks generally have less radiogenic Sr and Nd isotopic ratios but more radiogenic Pb isotopic signatures than the Ankaratra volcanic field. Together, the Itasy and Ankarat